Merge branch 'staging-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[pandora-kernel.git] / drivers / net / bna / bnad.c
1 /*
2  * Linux network driver for Brocade Converged Network Adapter.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License (GPL) Version 2 as
6  * published by the Free Software Foundation
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  */
13 /*
14  * Copyright (c) 2005-2010 Brocade Communications Systems, Inc.
15  * All rights reserved
16  * www.brocade.com
17  */
18 #include <linux/netdevice.h>
19 #include <linux/skbuff.h>
20 #include <linux/etherdevice.h>
21 #include <linux/in.h>
22 #include <linux/ethtool.h>
23 #include <linux/if_vlan.h>
24 #include <linux/if_ether.h>
25 #include <linux/ip.h>
26
27 #include "bnad.h"
28 #include "bna.h"
29 #include "cna.h"
30
31 static DEFINE_MUTEX(bnad_fwimg_mutex);
32
33 /*
34  * Module params
35  */
36 static uint bnad_msix_disable;
37 module_param(bnad_msix_disable, uint, 0444);
38 MODULE_PARM_DESC(bnad_msix_disable, "Disable MSIX mode");
39
40 static uint bnad_ioc_auto_recover = 1;
41 module_param(bnad_ioc_auto_recover, uint, 0444);
42 MODULE_PARM_DESC(bnad_ioc_auto_recover, "Enable / Disable auto recovery");
43
44 /*
45  * Global variables
46  */
47 u32 bnad_rxqs_per_cq = 2;
48
49 static const u8 bnad_bcast_addr[] =  {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
50
51 /*
52  * Local MACROS
53  */
54 #define BNAD_TX_UNMAPQ_DEPTH (bnad->txq_depth * 2)
55
56 #define BNAD_RX_UNMAPQ_DEPTH (bnad->rxq_depth)
57
58 #define BNAD_GET_MBOX_IRQ(_bnad)                                \
59         (((_bnad)->cfg_flags & BNAD_CF_MSIX) ?                  \
60          ((_bnad)->msix_table[(_bnad)->msix_num - 1].vector) :  \
61          ((_bnad)->pcidev->irq))
62
63 #define BNAD_FILL_UNMAPQ_MEM_REQ(_res_info, _num, _depth)       \
64 do {                                                            \
65         (_res_info)->res_type = BNA_RES_T_MEM;                  \
66         (_res_info)->res_u.mem_info.mem_type = BNA_MEM_T_KVA;   \
67         (_res_info)->res_u.mem_info.num = (_num);               \
68         (_res_info)->res_u.mem_info.len =                       \
69         sizeof(struct bnad_unmap_q) +                           \
70         (sizeof(struct bnad_skb_unmap) * ((_depth) - 1));       \
71 } while (0)
72
73 #define BNAD_TXRX_SYNC_MDELAY   250     /* 250 msecs */
74
75 /*
76  * Reinitialize completions in CQ, once Rx is taken down
77  */
78 static void
79 bnad_cq_cmpl_init(struct bnad *bnad, struct bna_ccb *ccb)
80 {
81         struct bna_cq_entry *cmpl, *next_cmpl;
82         unsigned int wi_range, wis = 0, ccb_prod = 0;
83         int i;
84
85         BNA_CQ_QPGE_PTR_GET(ccb_prod, ccb->sw_qpt, cmpl,
86                             wi_range);
87
88         for (i = 0; i < ccb->q_depth; i++) {
89                 wis++;
90                 if (likely(--wi_range))
91                         next_cmpl = cmpl + 1;
92                 else {
93                         BNA_QE_INDX_ADD(ccb_prod, wis, ccb->q_depth);
94                         wis = 0;
95                         BNA_CQ_QPGE_PTR_GET(ccb_prod, ccb->sw_qpt,
96                                                 next_cmpl, wi_range);
97                 }
98                 cmpl->valid = 0;
99                 cmpl = next_cmpl;
100         }
101 }
102
103 /*
104  * Frees all pending Tx Bufs
105  * At this point no activity is expected on the Q,
106  * so DMA unmap & freeing is fine.
107  */
108 static void
109 bnad_free_all_txbufs(struct bnad *bnad,
110                  struct bna_tcb *tcb)
111 {
112         u32             unmap_cons;
113         struct bnad_unmap_q *unmap_q = tcb->unmap_q;
114         struct bnad_skb_unmap *unmap_array;
115         struct sk_buff          *skb = NULL;
116         int                     i;
117
118         unmap_array = unmap_q->unmap_array;
119
120         unmap_cons = 0;
121         while (unmap_cons < unmap_q->q_depth) {
122                 skb = unmap_array[unmap_cons].skb;
123                 if (!skb) {
124                         unmap_cons++;
125                         continue;
126                 }
127                 unmap_array[unmap_cons].skb = NULL;
128
129                 dma_unmap_single(&bnad->pcidev->dev,
130                                  dma_unmap_addr(&unmap_array[unmap_cons],
131                                                 dma_addr), skb_headlen(skb),
132                                                 DMA_TO_DEVICE);
133
134                 dma_unmap_addr_set(&unmap_array[unmap_cons], dma_addr, 0);
135                 if (++unmap_cons >= unmap_q->q_depth)
136                         break;
137
138                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
139                         dma_unmap_page(&bnad->pcidev->dev,
140                                        dma_unmap_addr(&unmap_array[unmap_cons],
141                                                       dma_addr),
142                                        skb_shinfo(skb)->frags[i].size,
143                                        DMA_TO_DEVICE);
144                         dma_unmap_addr_set(&unmap_array[unmap_cons], dma_addr,
145                                            0);
146                         if (++unmap_cons >= unmap_q->q_depth)
147                                 break;
148                 }
149                 dev_kfree_skb_any(skb);
150         }
151 }
152
153 /* Data Path Handlers */
154
155 /*
156  * bnad_free_txbufs : Frees the Tx bufs on Tx completion
157  * Can be called in a) Interrupt context
158  *                  b) Sending context
159  *                  c) Tasklet context
160  */
161 static u32
162 bnad_free_txbufs(struct bnad *bnad,
163                  struct bna_tcb *tcb)
164 {
165         u32             sent_packets = 0, sent_bytes = 0;
166         u16             wis, unmap_cons, updated_hw_cons;
167         struct bnad_unmap_q *unmap_q = tcb->unmap_q;
168         struct bnad_skb_unmap *unmap_array;
169         struct sk_buff          *skb;
170         int i;
171
172         /*
173          * Just return if TX is stopped. This check is useful
174          * when bnad_free_txbufs() runs out of a tasklet scheduled
175          * before bnad_cb_tx_cleanup() cleared BNAD_TXQ_TX_STARTED bit
176          * but this routine runs actually after the cleanup has been
177          * executed.
178          */
179         if (!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
180                 return 0;
181
182         updated_hw_cons = *(tcb->hw_consumer_index);
183
184         wis = BNA_Q_INDEX_CHANGE(tcb->consumer_index,
185                                   updated_hw_cons, tcb->q_depth);
186
187         BUG_ON(!(wis <= BNA_QE_IN_USE_CNT(tcb, tcb->q_depth)));
188
189         unmap_array = unmap_q->unmap_array;
190         unmap_cons = unmap_q->consumer_index;
191
192         prefetch(&unmap_array[unmap_cons + 1]);
193         while (wis) {
194                 skb = unmap_array[unmap_cons].skb;
195
196                 unmap_array[unmap_cons].skb = NULL;
197
198                 sent_packets++;
199                 sent_bytes += skb->len;
200                 wis -= BNA_TXQ_WI_NEEDED(1 + skb_shinfo(skb)->nr_frags);
201
202                 dma_unmap_single(&bnad->pcidev->dev,
203                                  dma_unmap_addr(&unmap_array[unmap_cons],
204                                                 dma_addr), skb_headlen(skb),
205                                  DMA_TO_DEVICE);
206                 dma_unmap_addr_set(&unmap_array[unmap_cons], dma_addr, 0);
207                 BNA_QE_INDX_ADD(unmap_cons, 1, unmap_q->q_depth);
208
209                 prefetch(&unmap_array[unmap_cons + 1]);
210                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
211                         prefetch(&unmap_array[unmap_cons + 1]);
212
213                         dma_unmap_page(&bnad->pcidev->dev,
214                                        dma_unmap_addr(&unmap_array[unmap_cons],
215                                                       dma_addr),
216                                        skb_shinfo(skb)->frags[i].size,
217                                        DMA_TO_DEVICE);
218                         dma_unmap_addr_set(&unmap_array[unmap_cons], dma_addr,
219                                            0);
220                         BNA_QE_INDX_ADD(unmap_cons, 1, unmap_q->q_depth);
221                 }
222                 dev_kfree_skb_any(skb);
223         }
224
225         /* Update consumer pointers. */
226         tcb->consumer_index = updated_hw_cons;
227         unmap_q->consumer_index = unmap_cons;
228
229         tcb->txq->tx_packets += sent_packets;
230         tcb->txq->tx_bytes += sent_bytes;
231
232         return sent_packets;
233 }
234
235 /* Tx Free Tasklet function */
236 /* Frees for all the tcb's in all the Tx's */
237 /*
238  * Scheduled from sending context, so that
239  * the fat Tx lock is not held for too long
240  * in the sending context.
241  */
242 static void
243 bnad_tx_free_tasklet(unsigned long bnad_ptr)
244 {
245         struct bnad *bnad = (struct bnad *)bnad_ptr;
246         struct bna_tcb *tcb;
247         u32             acked = 0;
248         int                     i, j;
249
250         for (i = 0; i < bnad->num_tx; i++) {
251                 for (j = 0; j < bnad->num_txq_per_tx; j++) {
252                         tcb = bnad->tx_info[i].tcb[j];
253                         if (!tcb)
254                                 continue;
255                         if (((u16) (*tcb->hw_consumer_index) !=
256                                 tcb->consumer_index) &&
257                                 (!test_and_set_bit(BNAD_TXQ_FREE_SENT,
258                                                   &tcb->flags))) {
259                                 acked = bnad_free_txbufs(bnad, tcb);
260                                 if (likely(test_bit(BNAD_TXQ_TX_STARTED,
261                                         &tcb->flags)))
262                                         bna_ib_ack(tcb->i_dbell, acked);
263                                 smp_mb__before_clear_bit();
264                                 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
265                         }
266                         if (unlikely(!test_bit(BNAD_TXQ_TX_STARTED,
267                                                 &tcb->flags)))
268                                 continue;
269                         if (netif_queue_stopped(bnad->netdev)) {
270                                 if (acked && netif_carrier_ok(bnad->netdev) &&
271                                         BNA_QE_FREE_CNT(tcb, tcb->q_depth) >=
272                                                 BNAD_NETIF_WAKE_THRESHOLD) {
273                                         netif_wake_queue(bnad->netdev);
274                                         /* TODO */
275                                         /* Counters for individual TxQs? */
276                                         BNAD_UPDATE_CTR(bnad,
277                                                 netif_queue_wakeup);
278                                 }
279                         }
280                 }
281         }
282 }
283
284 static u32
285 bnad_tx(struct bnad *bnad, struct bna_tcb *tcb)
286 {
287         struct net_device *netdev = bnad->netdev;
288         u32 sent = 0;
289
290         if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags))
291                 return 0;
292
293         sent = bnad_free_txbufs(bnad, tcb);
294         if (sent) {
295                 if (netif_queue_stopped(netdev) &&
296                     netif_carrier_ok(netdev) &&
297                     BNA_QE_FREE_CNT(tcb, tcb->q_depth) >=
298                                     BNAD_NETIF_WAKE_THRESHOLD) {
299                         if (test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)) {
300                                 netif_wake_queue(netdev);
301                                 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
302                         }
303                 }
304         }
305
306         if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
307                 bna_ib_ack(tcb->i_dbell, sent);
308
309         smp_mb__before_clear_bit();
310         clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
311
312         return sent;
313 }
314
315 /* MSIX Tx Completion Handler */
316 static irqreturn_t
317 bnad_msix_tx(int irq, void *data)
318 {
319         struct bna_tcb *tcb = (struct bna_tcb *)data;
320         struct bnad *bnad = tcb->bnad;
321
322         bnad_tx(bnad, tcb);
323
324         return IRQ_HANDLED;
325 }
326
327 static void
328 bnad_reset_rcb(struct bnad *bnad, struct bna_rcb *rcb)
329 {
330         struct bnad_unmap_q *unmap_q = rcb->unmap_q;
331
332         rcb->producer_index = 0;
333         rcb->consumer_index = 0;
334
335         unmap_q->producer_index = 0;
336         unmap_q->consumer_index = 0;
337 }
338
339 static void
340 bnad_free_all_rxbufs(struct bnad *bnad, struct bna_rcb *rcb)
341 {
342         struct bnad_unmap_q *unmap_q;
343         struct bnad_skb_unmap *unmap_array;
344         struct sk_buff *skb;
345         int unmap_cons;
346
347         unmap_q = rcb->unmap_q;
348         unmap_array = unmap_q->unmap_array;
349         for (unmap_cons = 0; unmap_cons < unmap_q->q_depth; unmap_cons++) {
350                 skb = unmap_array[unmap_cons].skb;
351                 if (!skb)
352                         continue;
353                 unmap_array[unmap_cons].skb = NULL;
354                 dma_unmap_single(&bnad->pcidev->dev,
355                                  dma_unmap_addr(&unmap_array[unmap_cons],
356                                                 dma_addr),
357                                  rcb->rxq->buffer_size,
358                                  DMA_FROM_DEVICE);
359                 dev_kfree_skb(skb);
360         }
361         bnad_reset_rcb(bnad, rcb);
362 }
363
364 static void
365 bnad_alloc_n_post_rxbufs(struct bnad *bnad, struct bna_rcb *rcb)
366 {
367         u16 to_alloc, alloced, unmap_prod, wi_range;
368         struct bnad_unmap_q *unmap_q = rcb->unmap_q;
369         struct bnad_skb_unmap *unmap_array;
370         struct bna_rxq_entry *rxent;
371         struct sk_buff *skb;
372         dma_addr_t dma_addr;
373
374         alloced = 0;
375         to_alloc =
376                 BNA_QE_FREE_CNT(unmap_q, unmap_q->q_depth);
377
378         unmap_array = unmap_q->unmap_array;
379         unmap_prod = unmap_q->producer_index;
380
381         BNA_RXQ_QPGE_PTR_GET(unmap_prod, rcb->sw_qpt, rxent, wi_range);
382
383         while (to_alloc--) {
384                 if (!wi_range) {
385                         BNA_RXQ_QPGE_PTR_GET(unmap_prod, rcb->sw_qpt, rxent,
386                                              wi_range);
387                 }
388                 skb = alloc_skb(rcb->rxq->buffer_size + NET_IP_ALIGN,
389                                      GFP_ATOMIC);
390                 if (unlikely(!skb)) {
391                         BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed);
392                         goto finishing;
393                 }
394                 skb->dev = bnad->netdev;
395                 skb_reserve(skb, NET_IP_ALIGN);
396                 unmap_array[unmap_prod].skb = skb;
397                 dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
398                                           rcb->rxq->buffer_size,
399                                           DMA_FROM_DEVICE);
400                 dma_unmap_addr_set(&unmap_array[unmap_prod], dma_addr,
401                                    dma_addr);
402                 BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr);
403                 BNA_QE_INDX_ADD(unmap_prod, 1, unmap_q->q_depth);
404
405                 rxent++;
406                 wi_range--;
407                 alloced++;
408         }
409
410 finishing:
411         if (likely(alloced)) {
412                 unmap_q->producer_index = unmap_prod;
413                 rcb->producer_index = unmap_prod;
414                 smp_mb();
415                 if (likely(test_bit(BNAD_RXQ_STARTED, &rcb->flags)))
416                         bna_rxq_prod_indx_doorbell(rcb);
417         }
418 }
419
420 static inline void
421 bnad_refill_rxq(struct bnad *bnad, struct bna_rcb *rcb)
422 {
423         struct bnad_unmap_q *unmap_q = rcb->unmap_q;
424
425         if (!test_and_set_bit(BNAD_RXQ_REFILL, &rcb->flags)) {
426                 if (BNA_QE_FREE_CNT(unmap_q, unmap_q->q_depth)
427                          >> BNAD_RXQ_REFILL_THRESHOLD_SHIFT)
428                         bnad_alloc_n_post_rxbufs(bnad, rcb);
429                 smp_mb__before_clear_bit();
430                 clear_bit(BNAD_RXQ_REFILL, &rcb->flags);
431         }
432 }
433
434 static u32
435 bnad_poll_cq(struct bnad *bnad, struct bna_ccb *ccb, int budget)
436 {
437         struct bna_cq_entry *cmpl, *next_cmpl;
438         struct bna_rcb *rcb = NULL;
439         unsigned int wi_range, packets = 0, wis = 0;
440         struct bnad_unmap_q *unmap_q;
441         struct bnad_skb_unmap *unmap_array;
442         struct sk_buff *skb;
443         u32 flags, unmap_cons;
444         u32 qid0 = ccb->rcb[0]->rxq->rxq_id;
445         struct bna_pkt_rate *pkt_rt = &ccb->pkt_rate;
446
447         if (!test_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags))
448                 return 0;
449
450         prefetch(bnad->netdev);
451         BNA_CQ_QPGE_PTR_GET(ccb->producer_index, ccb->sw_qpt, cmpl,
452                             wi_range);
453         BUG_ON(!(wi_range <= ccb->q_depth));
454         while (cmpl->valid && packets < budget) {
455                 packets++;
456                 BNA_UPDATE_PKT_CNT(pkt_rt, ntohs(cmpl->length));
457
458                 if (qid0 == cmpl->rxq_id)
459                         rcb = ccb->rcb[0];
460                 else
461                         rcb = ccb->rcb[1];
462
463                 unmap_q = rcb->unmap_q;
464                 unmap_array = unmap_q->unmap_array;
465                 unmap_cons = unmap_q->consumer_index;
466
467                 skb = unmap_array[unmap_cons].skb;
468                 BUG_ON(!(skb));
469                 unmap_array[unmap_cons].skb = NULL;
470                 dma_unmap_single(&bnad->pcidev->dev,
471                                  dma_unmap_addr(&unmap_array[unmap_cons],
472                                                 dma_addr),
473                                  rcb->rxq->buffer_size,
474                                  DMA_FROM_DEVICE);
475                 BNA_QE_INDX_ADD(unmap_q->consumer_index, 1, unmap_q->q_depth);
476
477                 /* Should be more efficient ? Performance ? */
478                 BNA_QE_INDX_ADD(rcb->consumer_index, 1, rcb->q_depth);
479
480                 wis++;
481                 if (likely(--wi_range))
482                         next_cmpl = cmpl + 1;
483                 else {
484                         BNA_QE_INDX_ADD(ccb->producer_index, wis, ccb->q_depth);
485                         wis = 0;
486                         BNA_CQ_QPGE_PTR_GET(ccb->producer_index, ccb->sw_qpt,
487                                                 next_cmpl, wi_range);
488                         BUG_ON(!(wi_range <= ccb->q_depth));
489                 }
490                 prefetch(next_cmpl);
491
492                 flags = ntohl(cmpl->flags);
493                 if (unlikely
494                     (flags &
495                      (BNA_CQ_EF_MAC_ERROR | BNA_CQ_EF_FCS_ERROR |
496                       BNA_CQ_EF_TOO_LONG))) {
497                         dev_kfree_skb_any(skb);
498                         rcb->rxq->rx_packets_with_error++;
499                         goto next;
500                 }
501
502                 skb_put(skb, ntohs(cmpl->length));
503                 if (likely
504                     (bnad->rx_csum &&
505                      (((flags & BNA_CQ_EF_IPV4) &&
506                       (flags & BNA_CQ_EF_L3_CKSUM_OK)) ||
507                       (flags & BNA_CQ_EF_IPV6)) &&
508                       (flags & (BNA_CQ_EF_TCP | BNA_CQ_EF_UDP)) &&
509                       (flags & BNA_CQ_EF_L4_CKSUM_OK)))
510                         skb->ip_summed = CHECKSUM_UNNECESSARY;
511                 else
512                         skb_checksum_none_assert(skb);
513
514                 rcb->rxq->rx_packets++;
515                 rcb->rxq->rx_bytes += skb->len;
516                 skb->protocol = eth_type_trans(skb, bnad->netdev);
517
518                 if (bnad->vlan_grp && (flags & BNA_CQ_EF_VLAN)) {
519                         struct bnad_rx_ctrl *rx_ctrl =
520                                 (struct bnad_rx_ctrl *)ccb->ctrl;
521                         if (skb->ip_summed == CHECKSUM_UNNECESSARY)
522                                 vlan_gro_receive(&rx_ctrl->napi, bnad->vlan_grp,
523                                                 ntohs(cmpl->vlan_tag), skb);
524                         else
525                                 vlan_hwaccel_receive_skb(skb,
526                                                          bnad->vlan_grp,
527                                                          ntohs(cmpl->vlan_tag));
528
529                 } else { /* Not VLAN tagged/stripped */
530                         struct bnad_rx_ctrl *rx_ctrl =
531                                 (struct bnad_rx_ctrl *)ccb->ctrl;
532                         if (skb->ip_summed == CHECKSUM_UNNECESSARY)
533                                 napi_gro_receive(&rx_ctrl->napi, skb);
534                         else
535                                 netif_receive_skb(skb);
536                 }
537
538 next:
539                 cmpl->valid = 0;
540                 cmpl = next_cmpl;
541         }
542
543         BNA_QE_INDX_ADD(ccb->producer_index, wis, ccb->q_depth);
544
545         if (likely(ccb)) {
546                 if (likely(test_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags)))
547                         bna_ib_ack(ccb->i_dbell, packets);
548                 bnad_refill_rxq(bnad, ccb->rcb[0]);
549                 if (ccb->rcb[1])
550                         bnad_refill_rxq(bnad, ccb->rcb[1]);
551         } else {
552                 if (likely(test_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags)))
553                         bna_ib_ack(ccb->i_dbell, 0);
554         }
555
556         return packets;
557 }
558
559 static void
560 bnad_disable_rx_irq(struct bnad *bnad, struct bna_ccb *ccb)
561 {
562         if (unlikely(!test_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags)))
563                 return;
564
565         bna_ib_coalescing_timer_set(ccb->i_dbell, 0);
566         bna_ib_ack(ccb->i_dbell, 0);
567 }
568
569 static void
570 bnad_enable_rx_irq(struct bnad *bnad, struct bna_ccb *ccb)
571 {
572         unsigned long flags;
573
574         /* Because of polling context */
575         spin_lock_irqsave(&bnad->bna_lock, flags);
576         bnad_enable_rx_irq_unsafe(ccb);
577         spin_unlock_irqrestore(&bnad->bna_lock, flags);
578 }
579
580 static void
581 bnad_netif_rx_schedule_poll(struct bnad *bnad, struct bna_ccb *ccb)
582 {
583         struct bnad_rx_ctrl *rx_ctrl = (struct bnad_rx_ctrl *)(ccb->ctrl);
584         struct napi_struct *napi = &rx_ctrl->napi;
585
586         if (likely(napi_schedule_prep(napi))) {
587                 bnad_disable_rx_irq(bnad, ccb);
588                 __napi_schedule(napi);
589         }
590         BNAD_UPDATE_CTR(bnad, netif_rx_schedule);
591 }
592
593 /* MSIX Rx Path Handler */
594 static irqreturn_t
595 bnad_msix_rx(int irq, void *data)
596 {
597         struct bna_ccb *ccb = (struct bna_ccb *)data;
598         struct bnad *bnad = ccb->bnad;
599
600         bnad_netif_rx_schedule_poll(bnad, ccb);
601
602         return IRQ_HANDLED;
603 }
604
605 /* Interrupt handlers */
606
607 /* Mbox Interrupt Handlers */
608 static irqreturn_t
609 bnad_msix_mbox_handler(int irq, void *data)
610 {
611         u32 intr_status;
612         unsigned long flags;
613         struct bnad *bnad = (struct bnad *)data;
614
615         if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags)))
616                 return IRQ_HANDLED;
617
618         spin_lock_irqsave(&bnad->bna_lock, flags);
619
620         bna_intr_status_get(&bnad->bna, intr_status);
621
622         if (BNA_IS_MBOX_ERR_INTR(intr_status))
623                 bna_mbox_handler(&bnad->bna, intr_status);
624
625         spin_unlock_irqrestore(&bnad->bna_lock, flags);
626
627         return IRQ_HANDLED;
628 }
629
630 static irqreturn_t
631 bnad_isr(int irq, void *data)
632 {
633         int i, j;
634         u32 intr_status;
635         unsigned long flags;
636         struct bnad *bnad = (struct bnad *)data;
637         struct bnad_rx_info *rx_info;
638         struct bnad_rx_ctrl *rx_ctrl;
639
640         if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags)))
641                 return IRQ_NONE;
642
643         bna_intr_status_get(&bnad->bna, intr_status);
644
645         if (unlikely(!intr_status))
646                 return IRQ_NONE;
647
648         spin_lock_irqsave(&bnad->bna_lock, flags);
649
650         if (BNA_IS_MBOX_ERR_INTR(intr_status))
651                 bna_mbox_handler(&bnad->bna, intr_status);
652
653         spin_unlock_irqrestore(&bnad->bna_lock, flags);
654
655         if (!BNA_IS_INTX_DATA_INTR(intr_status))
656                 return IRQ_HANDLED;
657
658         /* Process data interrupts */
659         /* Tx processing */
660         for (i = 0; i < bnad->num_tx; i++) {
661                 for (j = 0; j < bnad->num_txq_per_tx; j++)
662                         bnad_tx(bnad, bnad->tx_info[i].tcb[j]);
663         }
664         /* Rx processing */
665         for (i = 0; i < bnad->num_rx; i++) {
666                 rx_info = &bnad->rx_info[i];
667                 if (!rx_info->rx)
668                         continue;
669                 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
670                         rx_ctrl = &rx_info->rx_ctrl[j];
671                         if (rx_ctrl->ccb)
672                                 bnad_netif_rx_schedule_poll(bnad,
673                                                             rx_ctrl->ccb);
674                 }
675         }
676         return IRQ_HANDLED;
677 }
678
679 /*
680  * Called in interrupt / callback context
681  * with bna_lock held, so cfg_flags access is OK
682  */
683 static void
684 bnad_enable_mbox_irq(struct bnad *bnad)
685 {
686         clear_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
687
688         BNAD_UPDATE_CTR(bnad, mbox_intr_enabled);
689 }
690
691 /*
692  * Called with bnad->bna_lock held b'cos of
693  * bnad->cfg_flags access.
694  */
695 static void
696 bnad_disable_mbox_irq(struct bnad *bnad)
697 {
698         set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
699
700         BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
701 }
702
703 static void
704 bnad_set_netdev_perm_addr(struct bnad *bnad)
705 {
706         struct net_device *netdev = bnad->netdev;
707
708         memcpy(netdev->perm_addr, &bnad->perm_addr, netdev->addr_len);
709         if (is_zero_ether_addr(netdev->dev_addr))
710                 memcpy(netdev->dev_addr, &bnad->perm_addr, netdev->addr_len);
711 }
712
713 /* Control Path Handlers */
714
715 /* Callbacks */
716 void
717 bnad_cb_device_enable_mbox_intr(struct bnad *bnad)
718 {
719         bnad_enable_mbox_irq(bnad);
720 }
721
722 void
723 bnad_cb_device_disable_mbox_intr(struct bnad *bnad)
724 {
725         bnad_disable_mbox_irq(bnad);
726 }
727
728 void
729 bnad_cb_device_enabled(struct bnad *bnad, enum bna_cb_status status)
730 {
731         complete(&bnad->bnad_completions.ioc_comp);
732         bnad->bnad_completions.ioc_comp_status = status;
733 }
734
735 void
736 bnad_cb_device_disabled(struct bnad *bnad, enum bna_cb_status status)
737 {
738         complete(&bnad->bnad_completions.ioc_comp);
739         bnad->bnad_completions.ioc_comp_status = status;
740 }
741
742 static void
743 bnad_cb_port_disabled(void *arg, enum bna_cb_status status)
744 {
745         struct bnad *bnad = (struct bnad *)arg;
746
747         complete(&bnad->bnad_completions.port_comp);
748
749         netif_carrier_off(bnad->netdev);
750 }
751
752 void
753 bnad_cb_port_link_status(struct bnad *bnad,
754                         enum bna_link_status link_status)
755 {
756         bool link_up = 0;
757
758         link_up = (link_status == BNA_LINK_UP) || (link_status == BNA_CEE_UP);
759
760         if (link_status == BNA_CEE_UP) {
761                 set_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
762                 BNAD_UPDATE_CTR(bnad, cee_up);
763         } else
764                 clear_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
765
766         if (link_up) {
767                 if (!netif_carrier_ok(bnad->netdev)) {
768                         struct bna_tcb *tcb = bnad->tx_info[0].tcb[0];
769                         if (!tcb)
770                                 return;
771                         pr_warn("bna: %s link up\n",
772                                 bnad->netdev->name);
773                         netif_carrier_on(bnad->netdev);
774                         BNAD_UPDATE_CTR(bnad, link_toggle);
775                         if (test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)) {
776                                 /* Force an immediate Transmit Schedule */
777                                 pr_info("bna: %s TX_STARTED\n",
778                                         bnad->netdev->name);
779                                 netif_wake_queue(bnad->netdev);
780                                 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
781                         } else {
782                                 netif_stop_queue(bnad->netdev);
783                                 BNAD_UPDATE_CTR(bnad, netif_queue_stop);
784                         }
785                 }
786         } else {
787                 if (netif_carrier_ok(bnad->netdev)) {
788                         pr_warn("bna: %s link down\n",
789                                 bnad->netdev->name);
790                         netif_carrier_off(bnad->netdev);
791                         BNAD_UPDATE_CTR(bnad, link_toggle);
792                 }
793         }
794 }
795
796 static void
797 bnad_cb_tx_disabled(void *arg, struct bna_tx *tx,
798                         enum bna_cb_status status)
799 {
800         struct bnad *bnad = (struct bnad *)arg;
801
802         complete(&bnad->bnad_completions.tx_comp);
803 }
804
805 static void
806 bnad_cb_tcb_setup(struct bnad *bnad, struct bna_tcb *tcb)
807 {
808         struct bnad_tx_info *tx_info =
809                         (struct bnad_tx_info *)tcb->txq->tx->priv;
810         struct bnad_unmap_q *unmap_q = tcb->unmap_q;
811
812         tx_info->tcb[tcb->id] = tcb;
813         unmap_q->producer_index = 0;
814         unmap_q->consumer_index = 0;
815         unmap_q->q_depth = BNAD_TX_UNMAPQ_DEPTH;
816 }
817
818 static void
819 bnad_cb_tcb_destroy(struct bnad *bnad, struct bna_tcb *tcb)
820 {
821         struct bnad_tx_info *tx_info =
822                         (struct bnad_tx_info *)tcb->txq->tx->priv;
823         struct bnad_unmap_q *unmap_q = tcb->unmap_q;
824
825         while (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags))
826                 cpu_relax();
827
828         bnad_free_all_txbufs(bnad, tcb);
829
830         unmap_q->producer_index = 0;
831         unmap_q->consumer_index = 0;
832
833         smp_mb__before_clear_bit();
834         clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
835
836         tx_info->tcb[tcb->id] = NULL;
837 }
838
839 static void
840 bnad_cb_rcb_setup(struct bnad *bnad, struct bna_rcb *rcb)
841 {
842         struct bnad_unmap_q *unmap_q = rcb->unmap_q;
843
844         unmap_q->producer_index = 0;
845         unmap_q->consumer_index = 0;
846         unmap_q->q_depth = BNAD_RX_UNMAPQ_DEPTH;
847 }
848
849 static void
850 bnad_cb_rcb_destroy(struct bnad *bnad, struct bna_rcb *rcb)
851 {
852         bnad_free_all_rxbufs(bnad, rcb);
853 }
854
855 static void
856 bnad_cb_ccb_setup(struct bnad *bnad, struct bna_ccb *ccb)
857 {
858         struct bnad_rx_info *rx_info =
859                         (struct bnad_rx_info *)ccb->cq->rx->priv;
860
861         rx_info->rx_ctrl[ccb->id].ccb = ccb;
862         ccb->ctrl = &rx_info->rx_ctrl[ccb->id];
863 }
864
865 static void
866 bnad_cb_ccb_destroy(struct bnad *bnad, struct bna_ccb *ccb)
867 {
868         struct bnad_rx_info *rx_info =
869                         (struct bnad_rx_info *)ccb->cq->rx->priv;
870
871         rx_info->rx_ctrl[ccb->id].ccb = NULL;
872 }
873
874 static void
875 bnad_cb_tx_stall(struct bnad *bnad, struct bna_tcb *tcb)
876 {
877         struct bnad_tx_info *tx_info =
878                         (struct bnad_tx_info *)tcb->txq->tx->priv;
879
880         if (tx_info != &bnad->tx_info[0])
881                 return;
882
883         clear_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
884         netif_stop_queue(bnad->netdev);
885         pr_info("bna: %s TX_STOPPED\n", bnad->netdev->name);
886 }
887
888 static void
889 bnad_cb_tx_resume(struct bnad *bnad, struct bna_tcb *tcb)
890 {
891         struct bnad_unmap_q *unmap_q = tcb->unmap_q;
892
893         if (test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
894                 return;
895
896         clear_bit(BNAD_RF_TX_SHUTDOWN_DELAYED, &bnad->run_flags);
897
898         while (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags))
899                 cpu_relax();
900
901         bnad_free_all_txbufs(bnad, tcb);
902
903         unmap_q->producer_index = 0;
904         unmap_q->consumer_index = 0;
905
906         smp_mb__before_clear_bit();
907         clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
908
909         /*
910          * Workaround for first device enable failure & we
911          * get a 0 MAC address. We try to get the MAC address
912          * again here.
913          */
914         if (is_zero_ether_addr(&bnad->perm_addr.mac[0])) {
915                 bna_port_mac_get(&bnad->bna.port, &bnad->perm_addr);
916                 bnad_set_netdev_perm_addr(bnad);
917         }
918
919         set_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
920
921         if (netif_carrier_ok(bnad->netdev)) {
922                 pr_info("bna: %s TX_STARTED\n", bnad->netdev->name);
923                 netif_wake_queue(bnad->netdev);
924                 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
925         }
926 }
927
928 static void
929 bnad_cb_tx_cleanup(struct bnad *bnad, struct bna_tcb *tcb)
930 {
931         /* Delay only once for the whole Tx Path Shutdown */
932         if (!test_and_set_bit(BNAD_RF_TX_SHUTDOWN_DELAYED, &bnad->run_flags))
933                 mdelay(BNAD_TXRX_SYNC_MDELAY);
934 }
935
936 static void
937 bnad_cb_rx_cleanup(struct bnad *bnad,
938                         struct bna_ccb *ccb)
939 {
940         clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags);
941
942         if (ccb->rcb[1])
943                 clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[1]->flags);
944
945         if (!test_and_set_bit(BNAD_RF_RX_SHUTDOWN_DELAYED, &bnad->run_flags))
946                 mdelay(BNAD_TXRX_SYNC_MDELAY);
947 }
948
949 static void
950 bnad_cb_rx_post(struct bnad *bnad, struct bna_rcb *rcb)
951 {
952         struct bnad_unmap_q *unmap_q = rcb->unmap_q;
953
954         clear_bit(BNAD_RF_RX_SHUTDOWN_DELAYED, &bnad->run_flags);
955
956         if (rcb == rcb->cq->ccb->rcb[0])
957                 bnad_cq_cmpl_init(bnad, rcb->cq->ccb);
958
959         bnad_free_all_rxbufs(bnad, rcb);
960
961         set_bit(BNAD_RXQ_STARTED, &rcb->flags);
962
963         /* Now allocate & post buffers for this RCB */
964         /* !!Allocation in callback context */
965         if (!test_and_set_bit(BNAD_RXQ_REFILL, &rcb->flags)) {
966                 if (BNA_QE_FREE_CNT(unmap_q, unmap_q->q_depth)
967                          >> BNAD_RXQ_REFILL_THRESHOLD_SHIFT)
968                         bnad_alloc_n_post_rxbufs(bnad, rcb);
969                 smp_mb__before_clear_bit();
970                 clear_bit(BNAD_RXQ_REFILL, &rcb->flags);
971         }
972 }
973
974 static void
975 bnad_cb_rx_disabled(void *arg, struct bna_rx *rx,
976                         enum bna_cb_status status)
977 {
978         struct bnad *bnad = (struct bnad *)arg;
979
980         complete(&bnad->bnad_completions.rx_comp);
981 }
982
983 static void
984 bnad_cb_rx_mcast_add(struct bnad *bnad, struct bna_rx *rx,
985                                 enum bna_cb_status status)
986 {
987         bnad->bnad_completions.mcast_comp_status = status;
988         complete(&bnad->bnad_completions.mcast_comp);
989 }
990
991 void
992 bnad_cb_stats_get(struct bnad *bnad, enum bna_cb_status status,
993                        struct bna_stats *stats)
994 {
995         if (status == BNA_CB_SUCCESS)
996                 BNAD_UPDATE_CTR(bnad, hw_stats_updates);
997
998         if (!netif_running(bnad->netdev) ||
999                 !test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1000                 return;
1001
1002         mod_timer(&bnad->stats_timer,
1003                   jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1004 }
1005
1006 /* Resource allocation, free functions */
1007
1008 static void
1009 bnad_mem_free(struct bnad *bnad,
1010               struct bna_mem_info *mem_info)
1011 {
1012         int i;
1013         dma_addr_t dma_pa;
1014
1015         if (mem_info->mdl == NULL)
1016                 return;
1017
1018         for (i = 0; i < mem_info->num; i++) {
1019                 if (mem_info->mdl[i].kva != NULL) {
1020                         if (mem_info->mem_type == BNA_MEM_T_DMA) {
1021                                 BNA_GET_DMA_ADDR(&(mem_info->mdl[i].dma),
1022                                                 dma_pa);
1023                                 dma_free_coherent(&bnad->pcidev->dev,
1024                                                   mem_info->mdl[i].len,
1025                                                   mem_info->mdl[i].kva, dma_pa);
1026                         } else
1027                                 kfree(mem_info->mdl[i].kva);
1028                 }
1029         }
1030         kfree(mem_info->mdl);
1031         mem_info->mdl = NULL;
1032 }
1033
1034 static int
1035 bnad_mem_alloc(struct bnad *bnad,
1036                struct bna_mem_info *mem_info)
1037 {
1038         int i;
1039         dma_addr_t dma_pa;
1040
1041         if ((mem_info->num == 0) || (mem_info->len == 0)) {
1042                 mem_info->mdl = NULL;
1043                 return 0;
1044         }
1045
1046         mem_info->mdl = kcalloc(mem_info->num, sizeof(struct bna_mem_descr),
1047                                 GFP_KERNEL);
1048         if (mem_info->mdl == NULL)
1049                 return -ENOMEM;
1050
1051         if (mem_info->mem_type == BNA_MEM_T_DMA) {
1052                 for (i = 0; i < mem_info->num; i++) {
1053                         mem_info->mdl[i].len = mem_info->len;
1054                         mem_info->mdl[i].kva =
1055                                 dma_alloc_coherent(&bnad->pcidev->dev,
1056                                                 mem_info->len, &dma_pa,
1057                                                 GFP_KERNEL);
1058
1059                         if (mem_info->mdl[i].kva == NULL)
1060                                 goto err_return;
1061
1062                         BNA_SET_DMA_ADDR(dma_pa,
1063                                          &(mem_info->mdl[i].dma));
1064                 }
1065         } else {
1066                 for (i = 0; i < mem_info->num; i++) {
1067                         mem_info->mdl[i].len = mem_info->len;
1068                         mem_info->mdl[i].kva = kzalloc(mem_info->len,
1069                                                         GFP_KERNEL);
1070                         if (mem_info->mdl[i].kva == NULL)
1071                                 goto err_return;
1072                 }
1073         }
1074
1075         return 0;
1076
1077 err_return:
1078         bnad_mem_free(bnad, mem_info);
1079         return -ENOMEM;
1080 }
1081
1082 /* Free IRQ for Mailbox */
1083 static void
1084 bnad_mbox_irq_free(struct bnad *bnad,
1085                    struct bna_intr_info *intr_info)
1086 {
1087         int irq;
1088         unsigned long flags;
1089
1090         if (intr_info->idl == NULL)
1091                 return;
1092
1093         spin_lock_irqsave(&bnad->bna_lock, flags);
1094         bnad_disable_mbox_irq(bnad);
1095         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1096
1097         irq = BNAD_GET_MBOX_IRQ(bnad);
1098         free_irq(irq, bnad);
1099
1100         kfree(intr_info->idl);
1101 }
1102
1103 /*
1104  * Allocates IRQ for Mailbox, but keep it disabled
1105  * This will be enabled once we get the mbox enable callback
1106  * from bna
1107  */
1108 static int
1109 bnad_mbox_irq_alloc(struct bnad *bnad,
1110                     struct bna_intr_info *intr_info)
1111 {
1112         int             err = 0;
1113         unsigned long   flags;
1114         u32     irq;
1115         irq_handler_t   irq_handler;
1116
1117         /* Mbox should use only 1 vector */
1118
1119         intr_info->idl = kzalloc(sizeof(*(intr_info->idl)), GFP_KERNEL);
1120         if (!intr_info->idl)
1121                 return -ENOMEM;
1122
1123         spin_lock_irqsave(&bnad->bna_lock, flags);
1124         if (bnad->cfg_flags & BNAD_CF_MSIX) {
1125                 irq_handler = (irq_handler_t)bnad_msix_mbox_handler;
1126                 irq = bnad->msix_table[bnad->msix_num - 1].vector;
1127                 flags = 0;
1128                 intr_info->intr_type = BNA_INTR_T_MSIX;
1129                 intr_info->idl[0].vector = bnad->msix_num - 1;
1130         } else {
1131                 irq_handler = (irq_handler_t)bnad_isr;
1132                 irq = bnad->pcidev->irq;
1133                 flags = IRQF_SHARED;
1134                 intr_info->intr_type = BNA_INTR_T_INTX;
1135                 /* intr_info->idl.vector = 0 ? */
1136         }
1137         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1138
1139         sprintf(bnad->mbox_irq_name, "%s", BNAD_NAME);
1140
1141         /*
1142          * Set the Mbox IRQ disable flag, so that the IRQ handler
1143          * called from request_irq() for SHARED IRQs do not execute
1144          */
1145         set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
1146
1147         BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
1148
1149         err = request_irq(irq, irq_handler, flags,
1150                           bnad->mbox_irq_name, bnad);
1151
1152         if (err) {
1153                 kfree(intr_info->idl);
1154                 intr_info->idl = NULL;
1155         }
1156
1157         return err;
1158 }
1159
1160 static void
1161 bnad_txrx_irq_free(struct bnad *bnad, struct bna_intr_info *intr_info)
1162 {
1163         kfree(intr_info->idl);
1164         intr_info->idl = NULL;
1165 }
1166
1167 /* Allocates Interrupt Descriptor List for MSIX/INT-X vectors */
1168 static int
1169 bnad_txrx_irq_alloc(struct bnad *bnad, enum bnad_intr_source src,
1170                     uint txrx_id, struct bna_intr_info *intr_info)
1171 {
1172         int i, vector_start = 0;
1173         u32 cfg_flags;
1174         unsigned long flags;
1175
1176         spin_lock_irqsave(&bnad->bna_lock, flags);
1177         cfg_flags = bnad->cfg_flags;
1178         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1179
1180         if (cfg_flags & BNAD_CF_MSIX) {
1181                 intr_info->intr_type = BNA_INTR_T_MSIX;
1182                 intr_info->idl = kcalloc(intr_info->num,
1183                                         sizeof(struct bna_intr_descr),
1184                                         GFP_KERNEL);
1185                 if (!intr_info->idl)
1186                         return -ENOMEM;
1187
1188                 switch (src) {
1189                 case BNAD_INTR_TX:
1190                         vector_start = txrx_id;
1191                         break;
1192
1193                 case BNAD_INTR_RX:
1194                         vector_start = bnad->num_tx * bnad->num_txq_per_tx +
1195                                         txrx_id;
1196                         break;
1197
1198                 default:
1199                         BUG();
1200                 }
1201
1202                 for (i = 0; i < intr_info->num; i++)
1203                         intr_info->idl[i].vector = vector_start + i;
1204         } else {
1205                 intr_info->intr_type = BNA_INTR_T_INTX;
1206                 intr_info->num = 1;
1207                 intr_info->idl = kcalloc(intr_info->num,
1208                                         sizeof(struct bna_intr_descr),
1209                                         GFP_KERNEL);
1210                 if (!intr_info->idl)
1211                         return -ENOMEM;
1212
1213                 switch (src) {
1214                 case BNAD_INTR_TX:
1215                         intr_info->idl[0].vector = 0x1; /* Bit mask : Tx IB */
1216                         break;
1217
1218                 case BNAD_INTR_RX:
1219                         intr_info->idl[0].vector = 0x2; /* Bit mask : Rx IB */
1220                         break;
1221                 }
1222         }
1223         return 0;
1224 }
1225
1226 /**
1227  * NOTE: Should be called for MSIX only
1228  * Unregisters Tx MSIX vector(s) from the kernel
1229  */
1230 static void
1231 bnad_tx_msix_unregister(struct bnad *bnad, struct bnad_tx_info *tx_info,
1232                         int num_txqs)
1233 {
1234         int i;
1235         int vector_num;
1236
1237         for (i = 0; i < num_txqs; i++) {
1238                 if (tx_info->tcb[i] == NULL)
1239                         continue;
1240
1241                 vector_num = tx_info->tcb[i]->intr_vector;
1242                 free_irq(bnad->msix_table[vector_num].vector, tx_info->tcb[i]);
1243         }
1244 }
1245
1246 /**
1247  * NOTE: Should be called for MSIX only
1248  * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1249  */
1250 static int
1251 bnad_tx_msix_register(struct bnad *bnad, struct bnad_tx_info *tx_info,
1252                         uint tx_id, int num_txqs)
1253 {
1254         int i;
1255         int err;
1256         int vector_num;
1257
1258         for (i = 0; i < num_txqs; i++) {
1259                 vector_num = tx_info->tcb[i]->intr_vector;
1260                 sprintf(tx_info->tcb[i]->name, "%s TXQ %d", bnad->netdev->name,
1261                                 tx_id + tx_info->tcb[i]->id);
1262                 err = request_irq(bnad->msix_table[vector_num].vector,
1263                                   (irq_handler_t)bnad_msix_tx, 0,
1264                                   tx_info->tcb[i]->name,
1265                                   tx_info->tcb[i]);
1266                 if (err)
1267                         goto err_return;
1268         }
1269
1270         return 0;
1271
1272 err_return:
1273         if (i > 0)
1274                 bnad_tx_msix_unregister(bnad, tx_info, (i - 1));
1275         return -1;
1276 }
1277
1278 /**
1279  * NOTE: Should be called for MSIX only
1280  * Unregisters Rx MSIX vector(s) from the kernel
1281  */
1282 static void
1283 bnad_rx_msix_unregister(struct bnad *bnad, struct bnad_rx_info *rx_info,
1284                         int num_rxps)
1285 {
1286         int i;
1287         int vector_num;
1288
1289         for (i = 0; i < num_rxps; i++) {
1290                 if (rx_info->rx_ctrl[i].ccb == NULL)
1291                         continue;
1292
1293                 vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1294                 free_irq(bnad->msix_table[vector_num].vector,
1295                          rx_info->rx_ctrl[i].ccb);
1296         }
1297 }
1298
1299 /**
1300  * NOTE: Should be called for MSIX only
1301  * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1302  */
1303 static int
1304 bnad_rx_msix_register(struct bnad *bnad, struct bnad_rx_info *rx_info,
1305                         uint rx_id, int num_rxps)
1306 {
1307         int i;
1308         int err;
1309         int vector_num;
1310
1311         for (i = 0; i < num_rxps; i++) {
1312                 vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1313                 sprintf(rx_info->rx_ctrl[i].ccb->name, "%s CQ %d",
1314                         bnad->netdev->name,
1315                         rx_id + rx_info->rx_ctrl[i].ccb->id);
1316                 err = request_irq(bnad->msix_table[vector_num].vector,
1317                                   (irq_handler_t)bnad_msix_rx, 0,
1318                                   rx_info->rx_ctrl[i].ccb->name,
1319                                   rx_info->rx_ctrl[i].ccb);
1320                 if (err)
1321                         goto err_return;
1322         }
1323
1324         return 0;
1325
1326 err_return:
1327         if (i > 0)
1328                 bnad_rx_msix_unregister(bnad, rx_info, (i - 1));
1329         return -1;
1330 }
1331
1332 /* Free Tx object Resources */
1333 static void
1334 bnad_tx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1335 {
1336         int i;
1337
1338         for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1339                 if (res_info[i].res_type == BNA_RES_T_MEM)
1340                         bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1341                 else if (res_info[i].res_type == BNA_RES_T_INTR)
1342                         bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1343         }
1344 }
1345
1346 /* Allocates memory and interrupt resources for Tx object */
1347 static int
1348 bnad_tx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1349                   uint tx_id)
1350 {
1351         int i, err = 0;
1352
1353         for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1354                 if (res_info[i].res_type == BNA_RES_T_MEM)
1355                         err = bnad_mem_alloc(bnad,
1356                                         &res_info[i].res_u.mem_info);
1357                 else if (res_info[i].res_type == BNA_RES_T_INTR)
1358                         err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_TX, tx_id,
1359                                         &res_info[i].res_u.intr_info);
1360                 if (err)
1361                         goto err_return;
1362         }
1363         return 0;
1364
1365 err_return:
1366         bnad_tx_res_free(bnad, res_info);
1367         return err;
1368 }
1369
1370 /* Free Rx object Resources */
1371 static void
1372 bnad_rx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1373 {
1374         int i;
1375
1376         for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1377                 if (res_info[i].res_type == BNA_RES_T_MEM)
1378                         bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1379                 else if (res_info[i].res_type == BNA_RES_T_INTR)
1380                         bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1381         }
1382 }
1383
1384 /* Allocates memory and interrupt resources for Rx object */
1385 static int
1386 bnad_rx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1387                   uint rx_id)
1388 {
1389         int i, err = 0;
1390
1391         /* All memory needs to be allocated before setup_ccbs */
1392         for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1393                 if (res_info[i].res_type == BNA_RES_T_MEM)
1394                         err = bnad_mem_alloc(bnad,
1395                                         &res_info[i].res_u.mem_info);
1396                 else if (res_info[i].res_type == BNA_RES_T_INTR)
1397                         err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_RX, rx_id,
1398                                         &res_info[i].res_u.intr_info);
1399                 if (err)
1400                         goto err_return;
1401         }
1402         return 0;
1403
1404 err_return:
1405         bnad_rx_res_free(bnad, res_info);
1406         return err;
1407 }
1408
1409 /* Timer callbacks */
1410 /* a) IOC timer */
1411 static void
1412 bnad_ioc_timeout(unsigned long data)
1413 {
1414         struct bnad *bnad = (struct bnad *)data;
1415         unsigned long flags;
1416
1417         spin_lock_irqsave(&bnad->bna_lock, flags);
1418         bfa_nw_ioc_timeout((void *) &bnad->bna.device.ioc);
1419         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1420 }
1421
1422 static void
1423 bnad_ioc_hb_check(unsigned long data)
1424 {
1425         struct bnad *bnad = (struct bnad *)data;
1426         unsigned long flags;
1427
1428         spin_lock_irqsave(&bnad->bna_lock, flags);
1429         bfa_nw_ioc_hb_check((void *) &bnad->bna.device.ioc);
1430         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1431 }
1432
1433 static void
1434 bnad_iocpf_timeout(unsigned long data)
1435 {
1436         struct bnad *bnad = (struct bnad *)data;
1437         unsigned long flags;
1438
1439         spin_lock_irqsave(&bnad->bna_lock, flags);
1440         bfa_nw_iocpf_timeout((void *) &bnad->bna.device.ioc);
1441         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1442 }
1443
1444 static void
1445 bnad_iocpf_sem_timeout(unsigned long data)
1446 {
1447         struct bnad *bnad = (struct bnad *)data;
1448         unsigned long flags;
1449
1450         spin_lock_irqsave(&bnad->bna_lock, flags);
1451         bfa_nw_iocpf_sem_timeout((void *) &bnad->bna.device.ioc);
1452         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1453 }
1454
1455 /*
1456  * All timer routines use bnad->bna_lock to protect against
1457  * the following race, which may occur in case of no locking:
1458  *      Time    CPU m           CPU n
1459  *      0       1 = test_bit
1460  *      1                       clear_bit
1461  *      2                       del_timer_sync
1462  *      3       mod_timer
1463  */
1464
1465 /* b) Dynamic Interrupt Moderation Timer */
1466 static void
1467 bnad_dim_timeout(unsigned long data)
1468 {
1469         struct bnad *bnad = (struct bnad *)data;
1470         struct bnad_rx_info *rx_info;
1471         struct bnad_rx_ctrl *rx_ctrl;
1472         int i, j;
1473         unsigned long flags;
1474
1475         if (!netif_carrier_ok(bnad->netdev))
1476                 return;
1477
1478         spin_lock_irqsave(&bnad->bna_lock, flags);
1479         for (i = 0; i < bnad->num_rx; i++) {
1480                 rx_info = &bnad->rx_info[i];
1481                 if (!rx_info->rx)
1482                         continue;
1483                 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
1484                         rx_ctrl = &rx_info->rx_ctrl[j];
1485                         if (!rx_ctrl->ccb)
1486                                 continue;
1487                         bna_rx_dim_update(rx_ctrl->ccb);
1488                 }
1489         }
1490
1491         /* Check for BNAD_CF_DIM_ENABLED, does not eleminate a race */
1492         if (test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags))
1493                 mod_timer(&bnad->dim_timer,
1494                           jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1495         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1496 }
1497
1498 /* c)  Statistics Timer */
1499 static void
1500 bnad_stats_timeout(unsigned long data)
1501 {
1502         struct bnad *bnad = (struct bnad *)data;
1503         unsigned long flags;
1504
1505         if (!netif_running(bnad->netdev) ||
1506                 !test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1507                 return;
1508
1509         spin_lock_irqsave(&bnad->bna_lock, flags);
1510         bna_stats_get(&bnad->bna);
1511         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1512 }
1513
1514 /*
1515  * Set up timer for DIM
1516  * Called with bnad->bna_lock held
1517  */
1518 void
1519 bnad_dim_timer_start(struct bnad *bnad)
1520 {
1521         if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED &&
1522             !test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) {
1523                 setup_timer(&bnad->dim_timer, bnad_dim_timeout,
1524                             (unsigned long)bnad);
1525                 set_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
1526                 mod_timer(&bnad->dim_timer,
1527                           jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1528         }
1529 }
1530
1531 /*
1532  * Set up timer for statistics
1533  * Called with mutex_lock(&bnad->conf_mutex) held
1534  */
1535 static void
1536 bnad_stats_timer_start(struct bnad *bnad)
1537 {
1538         unsigned long flags;
1539
1540         spin_lock_irqsave(&bnad->bna_lock, flags);
1541         if (!test_and_set_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags)) {
1542                 setup_timer(&bnad->stats_timer, bnad_stats_timeout,
1543                             (unsigned long)bnad);
1544                 mod_timer(&bnad->stats_timer,
1545                           jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1546         }
1547         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1548 }
1549
1550 /*
1551  * Stops the stats timer
1552  * Called with mutex_lock(&bnad->conf_mutex) held
1553  */
1554 static void
1555 bnad_stats_timer_stop(struct bnad *bnad)
1556 {
1557         int to_del = 0;
1558         unsigned long flags;
1559
1560         spin_lock_irqsave(&bnad->bna_lock, flags);
1561         if (test_and_clear_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1562                 to_del = 1;
1563         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1564         if (to_del)
1565                 del_timer_sync(&bnad->stats_timer);
1566 }
1567
1568 /* Utilities */
1569
1570 static void
1571 bnad_netdev_mc_list_get(struct net_device *netdev, u8 *mc_list)
1572 {
1573         int i = 1; /* Index 0 has broadcast address */
1574         struct netdev_hw_addr *mc_addr;
1575
1576         netdev_for_each_mc_addr(mc_addr, netdev) {
1577                 memcpy(&mc_list[i * ETH_ALEN], &mc_addr->addr[0],
1578                                                         ETH_ALEN);
1579                 i++;
1580         }
1581 }
1582
1583 static int
1584 bnad_napi_poll_rx(struct napi_struct *napi, int budget)
1585 {
1586         struct bnad_rx_ctrl *rx_ctrl =
1587                 container_of(napi, struct bnad_rx_ctrl, napi);
1588         struct bna_ccb *ccb;
1589         struct bnad *bnad;
1590         int rcvd = 0;
1591
1592         ccb = rx_ctrl->ccb;
1593
1594         bnad = ccb->bnad;
1595
1596         if (!netif_carrier_ok(bnad->netdev))
1597                 goto poll_exit;
1598
1599         rcvd = bnad_poll_cq(bnad, ccb, budget);
1600         if (rcvd == budget)
1601                 return rcvd;
1602
1603 poll_exit:
1604         napi_complete((napi));
1605
1606         BNAD_UPDATE_CTR(bnad, netif_rx_complete);
1607
1608         bnad_enable_rx_irq(bnad, ccb);
1609         return rcvd;
1610 }
1611
1612 static void
1613 bnad_napi_enable(struct bnad *bnad, u32 rx_id)
1614 {
1615         struct bnad_rx_ctrl *rx_ctrl;
1616         int i;
1617
1618         /* Initialize & enable NAPI */
1619         for (i = 0; i < bnad->num_rxp_per_rx; i++) {
1620                 rx_ctrl = &bnad->rx_info[rx_id].rx_ctrl[i];
1621
1622                 netif_napi_add(bnad->netdev, &rx_ctrl->napi,
1623                                bnad_napi_poll_rx, 64);
1624
1625                 napi_enable(&rx_ctrl->napi);
1626         }
1627 }
1628
1629 static void
1630 bnad_napi_disable(struct bnad *bnad, u32 rx_id)
1631 {
1632         int i;
1633
1634         /* First disable and then clean up */
1635         for (i = 0; i < bnad->num_rxp_per_rx; i++) {
1636                 napi_disable(&bnad->rx_info[rx_id].rx_ctrl[i].napi);
1637                 netif_napi_del(&bnad->rx_info[rx_id].rx_ctrl[i].napi);
1638         }
1639 }
1640
1641 /* Should be held with conf_lock held */
1642 void
1643 bnad_cleanup_tx(struct bnad *bnad, uint tx_id)
1644 {
1645         struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1646         struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1647         unsigned long flags;
1648
1649         if (!tx_info->tx)
1650                 return;
1651
1652         init_completion(&bnad->bnad_completions.tx_comp);
1653         spin_lock_irqsave(&bnad->bna_lock, flags);
1654         bna_tx_disable(tx_info->tx, BNA_HARD_CLEANUP, bnad_cb_tx_disabled);
1655         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1656         wait_for_completion(&bnad->bnad_completions.tx_comp);
1657
1658         if (tx_info->tcb[0]->intr_type == BNA_INTR_T_MSIX)
1659                 bnad_tx_msix_unregister(bnad, tx_info,
1660                         bnad->num_txq_per_tx);
1661
1662         spin_lock_irqsave(&bnad->bna_lock, flags);
1663         bna_tx_destroy(tx_info->tx);
1664         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1665
1666         tx_info->tx = NULL;
1667
1668         if (0 == tx_id)
1669                 tasklet_kill(&bnad->tx_free_tasklet);
1670
1671         bnad_tx_res_free(bnad, res_info);
1672 }
1673
1674 /* Should be held with conf_lock held */
1675 int
1676 bnad_setup_tx(struct bnad *bnad, uint tx_id)
1677 {
1678         int err;
1679         struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1680         struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1681         struct bna_intr_info *intr_info =
1682                         &res_info[BNA_TX_RES_INTR_T_TXCMPL].res_u.intr_info;
1683         struct bna_tx_config *tx_config = &bnad->tx_config[tx_id];
1684         struct bna_tx_event_cbfn tx_cbfn;
1685         struct bna_tx *tx;
1686         unsigned long flags;
1687
1688         /* Initialize the Tx object configuration */
1689         tx_config->num_txq = bnad->num_txq_per_tx;
1690         tx_config->txq_depth = bnad->txq_depth;
1691         tx_config->tx_type = BNA_TX_T_REGULAR;
1692
1693         /* Initialize the tx event handlers */
1694         tx_cbfn.tcb_setup_cbfn = bnad_cb_tcb_setup;
1695         tx_cbfn.tcb_destroy_cbfn = bnad_cb_tcb_destroy;
1696         tx_cbfn.tx_stall_cbfn = bnad_cb_tx_stall;
1697         tx_cbfn.tx_resume_cbfn = bnad_cb_tx_resume;
1698         tx_cbfn.tx_cleanup_cbfn = bnad_cb_tx_cleanup;
1699
1700         /* Get BNA's resource requirement for one tx object */
1701         spin_lock_irqsave(&bnad->bna_lock, flags);
1702         bna_tx_res_req(bnad->num_txq_per_tx,
1703                 bnad->txq_depth, res_info);
1704         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1705
1706         /* Fill Unmap Q memory requirements */
1707         BNAD_FILL_UNMAPQ_MEM_REQ(
1708                         &res_info[BNA_TX_RES_MEM_T_UNMAPQ],
1709                         bnad->num_txq_per_tx,
1710                         BNAD_TX_UNMAPQ_DEPTH);
1711
1712         /* Allocate resources */
1713         err = bnad_tx_res_alloc(bnad, res_info, tx_id);
1714         if (err)
1715                 return err;
1716
1717         /* Ask BNA to create one Tx object, supplying required resources */
1718         spin_lock_irqsave(&bnad->bna_lock, flags);
1719         tx = bna_tx_create(&bnad->bna, bnad, tx_config, &tx_cbfn, res_info,
1720                         tx_info);
1721         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1722         if (!tx)
1723                 goto err_return;
1724         tx_info->tx = tx;
1725
1726         /* Register ISR for the Tx object */
1727         if (intr_info->intr_type == BNA_INTR_T_MSIX) {
1728                 err = bnad_tx_msix_register(bnad, tx_info,
1729                         tx_id, bnad->num_txq_per_tx);
1730                 if (err)
1731                         goto err_return;
1732         }
1733
1734         spin_lock_irqsave(&bnad->bna_lock, flags);
1735         bna_tx_enable(tx);
1736         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1737
1738         return 0;
1739
1740 err_return:
1741         bnad_tx_res_free(bnad, res_info);
1742         return err;
1743 }
1744
1745 /* Setup the rx config for bna_rx_create */
1746 /* bnad decides the configuration */
1747 static void
1748 bnad_init_rx_config(struct bnad *bnad, struct bna_rx_config *rx_config)
1749 {
1750         rx_config->rx_type = BNA_RX_T_REGULAR;
1751         rx_config->num_paths = bnad->num_rxp_per_rx;
1752
1753         if (bnad->num_rxp_per_rx > 1) {
1754                 rx_config->rss_status = BNA_STATUS_T_ENABLED;
1755                 rx_config->rss_config.hash_type =
1756                                 (BFI_RSS_T_V4_TCP |
1757                                  BFI_RSS_T_V6_TCP |
1758                                  BFI_RSS_T_V4_IP  |
1759                                  BFI_RSS_T_V6_IP);
1760                 rx_config->rss_config.hash_mask =
1761                                 bnad->num_rxp_per_rx - 1;
1762                 get_random_bytes(rx_config->rss_config.toeplitz_hash_key,
1763                         sizeof(rx_config->rss_config.toeplitz_hash_key));
1764         } else {
1765                 rx_config->rss_status = BNA_STATUS_T_DISABLED;
1766                 memset(&rx_config->rss_config, 0,
1767                        sizeof(rx_config->rss_config));
1768         }
1769         rx_config->rxp_type = BNA_RXP_SLR;
1770         rx_config->q_depth = bnad->rxq_depth;
1771
1772         rx_config->small_buff_size = BFI_SMALL_RXBUF_SIZE;
1773
1774         rx_config->vlan_strip_status = BNA_STATUS_T_ENABLED;
1775 }
1776
1777 /* Called with mutex_lock(&bnad->conf_mutex) held */
1778 void
1779 bnad_cleanup_rx(struct bnad *bnad, uint rx_id)
1780 {
1781         struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
1782         struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
1783         struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
1784         unsigned long flags;
1785         int dim_timer_del = 0;
1786
1787         if (!rx_info->rx)
1788                 return;
1789
1790         if (0 == rx_id) {
1791                 spin_lock_irqsave(&bnad->bna_lock, flags);
1792                 dim_timer_del = bnad_dim_timer_running(bnad);
1793                 if (dim_timer_del)
1794                         clear_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
1795                 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1796                 if (dim_timer_del)
1797                         del_timer_sync(&bnad->dim_timer);
1798         }
1799
1800         bnad_napi_disable(bnad, rx_id);
1801
1802         init_completion(&bnad->bnad_completions.rx_comp);
1803         spin_lock_irqsave(&bnad->bna_lock, flags);
1804         bna_rx_disable(rx_info->rx, BNA_HARD_CLEANUP, bnad_cb_rx_disabled);
1805         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1806         wait_for_completion(&bnad->bnad_completions.rx_comp);
1807
1808         if (rx_info->rx_ctrl[0].ccb->intr_type == BNA_INTR_T_MSIX)
1809                 bnad_rx_msix_unregister(bnad, rx_info, rx_config->num_paths);
1810
1811         spin_lock_irqsave(&bnad->bna_lock, flags);
1812         bna_rx_destroy(rx_info->rx);
1813         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1814
1815         rx_info->rx = NULL;
1816
1817         bnad_rx_res_free(bnad, res_info);
1818 }
1819
1820 /* Called with mutex_lock(&bnad->conf_mutex) held */
1821 int
1822 bnad_setup_rx(struct bnad *bnad, uint rx_id)
1823 {
1824         int err;
1825         struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
1826         struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
1827         struct bna_intr_info *intr_info =
1828                         &res_info[BNA_RX_RES_T_INTR].res_u.intr_info;
1829         struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
1830         struct bna_rx_event_cbfn rx_cbfn;
1831         struct bna_rx *rx;
1832         unsigned long flags;
1833
1834         /* Initialize the Rx object configuration */
1835         bnad_init_rx_config(bnad, rx_config);
1836
1837         /* Initialize the Rx event handlers */
1838         rx_cbfn.rcb_setup_cbfn = bnad_cb_rcb_setup;
1839         rx_cbfn.rcb_destroy_cbfn = bnad_cb_rcb_destroy;
1840         rx_cbfn.ccb_setup_cbfn = bnad_cb_ccb_setup;
1841         rx_cbfn.ccb_destroy_cbfn = bnad_cb_ccb_destroy;
1842         rx_cbfn.rx_cleanup_cbfn = bnad_cb_rx_cleanup;
1843         rx_cbfn.rx_post_cbfn = bnad_cb_rx_post;
1844
1845         /* Get BNA's resource requirement for one Rx object */
1846         spin_lock_irqsave(&bnad->bna_lock, flags);
1847         bna_rx_res_req(rx_config, res_info);
1848         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1849
1850         /* Fill Unmap Q memory requirements */
1851         BNAD_FILL_UNMAPQ_MEM_REQ(
1852                         &res_info[BNA_RX_RES_MEM_T_UNMAPQ],
1853                         rx_config->num_paths +
1854                         ((rx_config->rxp_type == BNA_RXP_SINGLE) ? 0 :
1855                                 rx_config->num_paths), BNAD_RX_UNMAPQ_DEPTH);
1856
1857         /* Allocate resource */
1858         err = bnad_rx_res_alloc(bnad, res_info, rx_id);
1859         if (err)
1860                 return err;
1861
1862         /* Ask BNA to create one Rx object, supplying required resources */
1863         spin_lock_irqsave(&bnad->bna_lock, flags);
1864         rx = bna_rx_create(&bnad->bna, bnad, rx_config, &rx_cbfn, res_info,
1865                         rx_info);
1866         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1867         if (!rx)
1868                 goto err_return;
1869         rx_info->rx = rx;
1870
1871         /* Register ISR for the Rx object */
1872         if (intr_info->intr_type == BNA_INTR_T_MSIX) {
1873                 err = bnad_rx_msix_register(bnad, rx_info, rx_id,
1874                                                 rx_config->num_paths);
1875                 if (err)
1876                         goto err_return;
1877         }
1878
1879         /* Enable NAPI */
1880         bnad_napi_enable(bnad, rx_id);
1881
1882         spin_lock_irqsave(&bnad->bna_lock, flags);
1883         if (0 == rx_id) {
1884                 /* Set up Dynamic Interrupt Moderation Vector */
1885                 if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED)
1886                         bna_rx_dim_reconfig(&bnad->bna, bna_napi_dim_vector);
1887
1888                 /* Enable VLAN filtering only on the default Rx */
1889                 bna_rx_vlanfilter_enable(rx);
1890
1891                 /* Start the DIM timer */
1892                 bnad_dim_timer_start(bnad);
1893         }
1894
1895         bna_rx_enable(rx);
1896         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1897
1898         return 0;
1899
1900 err_return:
1901         bnad_cleanup_rx(bnad, rx_id);
1902         return err;
1903 }
1904
1905 /* Called with conf_lock & bnad->bna_lock held */
1906 void
1907 bnad_tx_coalescing_timeo_set(struct bnad *bnad)
1908 {
1909         struct bnad_tx_info *tx_info;
1910
1911         tx_info = &bnad->tx_info[0];
1912         if (!tx_info->tx)
1913                 return;
1914
1915         bna_tx_coalescing_timeo_set(tx_info->tx, bnad->tx_coalescing_timeo);
1916 }
1917
1918 /* Called with conf_lock & bnad->bna_lock held */
1919 void
1920 bnad_rx_coalescing_timeo_set(struct bnad *bnad)
1921 {
1922         struct bnad_rx_info *rx_info;
1923         int     i;
1924
1925         for (i = 0; i < bnad->num_rx; i++) {
1926                 rx_info = &bnad->rx_info[i];
1927                 if (!rx_info->rx)
1928                         continue;
1929                 bna_rx_coalescing_timeo_set(rx_info->rx,
1930                                 bnad->rx_coalescing_timeo);
1931         }
1932 }
1933
1934 /*
1935  * Called with bnad->bna_lock held
1936  */
1937 static int
1938 bnad_mac_addr_set_locked(struct bnad *bnad, u8 *mac_addr)
1939 {
1940         int ret;
1941
1942         if (!is_valid_ether_addr(mac_addr))
1943                 return -EADDRNOTAVAIL;
1944
1945         /* If datapath is down, pretend everything went through */
1946         if (!bnad->rx_info[0].rx)
1947                 return 0;
1948
1949         ret = bna_rx_ucast_set(bnad->rx_info[0].rx, mac_addr, NULL);
1950         if (ret != BNA_CB_SUCCESS)
1951                 return -EADDRNOTAVAIL;
1952
1953         return 0;
1954 }
1955
1956 /* Should be called with conf_lock held */
1957 static int
1958 bnad_enable_default_bcast(struct bnad *bnad)
1959 {
1960         struct bnad_rx_info *rx_info = &bnad->rx_info[0];
1961         int ret;
1962         unsigned long flags;
1963
1964         init_completion(&bnad->bnad_completions.mcast_comp);
1965
1966         spin_lock_irqsave(&bnad->bna_lock, flags);
1967         ret = bna_rx_mcast_add(rx_info->rx, (u8 *)bnad_bcast_addr,
1968                                 bnad_cb_rx_mcast_add);
1969         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1970
1971         if (ret == BNA_CB_SUCCESS)
1972                 wait_for_completion(&bnad->bnad_completions.mcast_comp);
1973         else
1974                 return -ENODEV;
1975
1976         if (bnad->bnad_completions.mcast_comp_status != BNA_CB_SUCCESS)
1977                 return -ENODEV;
1978
1979         return 0;
1980 }
1981
1982 /* Called with bnad_conf_lock() held */
1983 static void
1984 bnad_restore_vlans(struct bnad *bnad, u32 rx_id)
1985 {
1986         u16 vlan_id;
1987         unsigned long flags;
1988
1989         if (!bnad->vlan_grp)
1990                 return;
1991
1992         BUG_ON(!(VLAN_N_VID == (BFI_MAX_VLAN + 1)));
1993
1994         for (vlan_id = 0; vlan_id < VLAN_N_VID; vlan_id++) {
1995                 if (!vlan_group_get_device(bnad->vlan_grp, vlan_id))
1996                         continue;
1997                 spin_lock_irqsave(&bnad->bna_lock, flags);
1998                 bna_rx_vlan_add(bnad->rx_info[rx_id].rx, vlan_id);
1999                 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2000         }
2001 }
2002
2003 /* Statistics utilities */
2004 void
2005 bnad_netdev_qstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2006 {
2007         int i, j;
2008
2009         for (i = 0; i < bnad->num_rx; i++) {
2010                 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
2011                         if (bnad->rx_info[i].rx_ctrl[j].ccb) {
2012                                 stats->rx_packets += bnad->rx_info[i].
2013                                 rx_ctrl[j].ccb->rcb[0]->rxq->rx_packets;
2014                                 stats->rx_bytes += bnad->rx_info[i].
2015                                         rx_ctrl[j].ccb->rcb[0]->rxq->rx_bytes;
2016                                 if (bnad->rx_info[i].rx_ctrl[j].ccb->rcb[1] &&
2017                                         bnad->rx_info[i].rx_ctrl[j].ccb->
2018                                         rcb[1]->rxq) {
2019                                         stats->rx_packets +=
2020                                                 bnad->rx_info[i].rx_ctrl[j].
2021                                                 ccb->rcb[1]->rxq->rx_packets;
2022                                         stats->rx_bytes +=
2023                                                 bnad->rx_info[i].rx_ctrl[j].
2024                                                 ccb->rcb[1]->rxq->rx_bytes;
2025                                 }
2026                         }
2027                 }
2028         }
2029         for (i = 0; i < bnad->num_tx; i++) {
2030                 for (j = 0; j < bnad->num_txq_per_tx; j++) {
2031                         if (bnad->tx_info[i].tcb[j]) {
2032                                 stats->tx_packets +=
2033                                 bnad->tx_info[i].tcb[j]->txq->tx_packets;
2034                                 stats->tx_bytes +=
2035                                         bnad->tx_info[i].tcb[j]->txq->tx_bytes;
2036                         }
2037                 }
2038         }
2039 }
2040
2041 /*
2042  * Must be called with the bna_lock held.
2043  */
2044 void
2045 bnad_netdev_hwstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2046 {
2047         struct bfi_ll_stats_mac *mac_stats;
2048         u64 bmap;
2049         int i;
2050
2051         mac_stats = &bnad->stats.bna_stats->hw_stats->mac_stats;
2052         stats->rx_errors =
2053                 mac_stats->rx_fcs_error + mac_stats->rx_alignment_error +
2054                 mac_stats->rx_frame_length_error + mac_stats->rx_code_error +
2055                 mac_stats->rx_undersize;
2056         stats->tx_errors = mac_stats->tx_fcs_error +
2057                                         mac_stats->tx_undersize;
2058         stats->rx_dropped = mac_stats->rx_drop;
2059         stats->tx_dropped = mac_stats->tx_drop;
2060         stats->multicast = mac_stats->rx_multicast;
2061         stats->collisions = mac_stats->tx_total_collision;
2062
2063         stats->rx_length_errors = mac_stats->rx_frame_length_error;
2064
2065         /* receive ring buffer overflow  ?? */
2066
2067         stats->rx_crc_errors = mac_stats->rx_fcs_error;
2068         stats->rx_frame_errors = mac_stats->rx_alignment_error;
2069         /* recv'r fifo overrun */
2070         bmap = (u64)bnad->stats.bna_stats->rxf_bmap[0] |
2071                 ((u64)bnad->stats.bna_stats->rxf_bmap[1] << 32);
2072         for (i = 0; bmap && (i < BFI_LL_RXF_ID_MAX); i++) {
2073                 if (bmap & 1) {
2074                         stats->rx_fifo_errors +=
2075                                 bnad->stats.bna_stats->
2076                                         hw_stats->rxf_stats[i].frame_drops;
2077                         break;
2078                 }
2079                 bmap >>= 1;
2080         }
2081 }
2082
2083 static void
2084 bnad_mbox_irq_sync(struct bnad *bnad)
2085 {
2086         u32 irq;
2087         unsigned long flags;
2088
2089         spin_lock_irqsave(&bnad->bna_lock, flags);
2090         if (bnad->cfg_flags & BNAD_CF_MSIX)
2091                 irq = bnad->msix_table[bnad->msix_num - 1].vector;
2092         else
2093                 irq = bnad->pcidev->irq;
2094         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2095
2096         synchronize_irq(irq);
2097 }
2098
2099 /* Utility used by bnad_start_xmit, for doing TSO */
2100 static int
2101 bnad_tso_prepare(struct bnad *bnad, struct sk_buff *skb)
2102 {
2103         int err;
2104
2105         /* SKB_GSO_TCPV4 and SKB_GSO_TCPV6 is defined since 2.6.18. */
2106         BUG_ON(!(skb_shinfo(skb)->gso_type == SKB_GSO_TCPV4 ||
2107                    skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6));
2108         if (skb_header_cloned(skb)) {
2109                 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2110                 if (err) {
2111                         BNAD_UPDATE_CTR(bnad, tso_err);
2112                         return err;
2113                 }
2114         }
2115
2116         /*
2117          * For TSO, the TCP checksum field is seeded with pseudo-header sum
2118          * excluding the length field.
2119          */
2120         if (skb->protocol == htons(ETH_P_IP)) {
2121                 struct iphdr *iph = ip_hdr(skb);
2122
2123                 /* Do we really need these? */
2124                 iph->tot_len = 0;
2125                 iph->check = 0;
2126
2127                 tcp_hdr(skb)->check =
2128                         ~csum_tcpudp_magic(iph->saddr, iph->daddr, 0,
2129                                            IPPROTO_TCP, 0);
2130                 BNAD_UPDATE_CTR(bnad, tso4);
2131         } else {
2132                 struct ipv6hdr *ipv6h = ipv6_hdr(skb);
2133
2134                 BUG_ON(!(skb->protocol == htons(ETH_P_IPV6)));
2135                 ipv6h->payload_len = 0;
2136                 tcp_hdr(skb)->check =
2137                         ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr, 0,
2138                                          IPPROTO_TCP, 0);
2139                 BNAD_UPDATE_CTR(bnad, tso6);
2140         }
2141
2142         return 0;
2143 }
2144
2145 /*
2146  * Initialize Q numbers depending on Rx Paths
2147  * Called with bnad->bna_lock held, because of cfg_flags
2148  * access.
2149  */
2150 static void
2151 bnad_q_num_init(struct bnad *bnad)
2152 {
2153         int rxps;
2154
2155         rxps = min((uint)num_online_cpus(),
2156                         (uint)(BNAD_MAX_RXS * BNAD_MAX_RXPS_PER_RX));
2157
2158         if (!(bnad->cfg_flags & BNAD_CF_MSIX))
2159                 rxps = 1;       /* INTx */
2160
2161         bnad->num_rx = 1;
2162         bnad->num_tx = 1;
2163         bnad->num_rxp_per_rx = rxps;
2164         bnad->num_txq_per_tx = BNAD_TXQ_NUM;
2165 }
2166
2167 /*
2168  * Adjusts the Q numbers, given a number of msix vectors
2169  * Give preference to RSS as opposed to Tx priority Queues,
2170  * in such a case, just use 1 Tx Q
2171  * Called with bnad->bna_lock held b'cos of cfg_flags access
2172  */
2173 static void
2174 bnad_q_num_adjust(struct bnad *bnad, int msix_vectors)
2175 {
2176         bnad->num_txq_per_tx = 1;
2177         if ((msix_vectors >= (bnad->num_tx * bnad->num_txq_per_tx)  +
2178              bnad_rxqs_per_cq + BNAD_MAILBOX_MSIX_VECTORS) &&
2179             (bnad->cfg_flags & BNAD_CF_MSIX)) {
2180                 bnad->num_rxp_per_rx = msix_vectors -
2181                         (bnad->num_tx * bnad->num_txq_per_tx) -
2182                         BNAD_MAILBOX_MSIX_VECTORS;
2183         } else
2184                 bnad->num_rxp_per_rx = 1;
2185 }
2186
2187 /* Enable / disable device */
2188 static void
2189 bnad_device_disable(struct bnad *bnad)
2190 {
2191         unsigned long flags;
2192
2193         init_completion(&bnad->bnad_completions.ioc_comp);
2194
2195         spin_lock_irqsave(&bnad->bna_lock, flags);
2196         bna_device_disable(&bnad->bna.device, BNA_HARD_CLEANUP);
2197         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2198
2199         wait_for_completion(&bnad->bnad_completions.ioc_comp);
2200 }
2201
2202 static int
2203 bnad_device_enable(struct bnad *bnad)
2204 {
2205         int err = 0;
2206         unsigned long flags;
2207
2208         init_completion(&bnad->bnad_completions.ioc_comp);
2209
2210         spin_lock_irqsave(&bnad->bna_lock, flags);
2211         bna_device_enable(&bnad->bna.device);
2212         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2213
2214         wait_for_completion(&bnad->bnad_completions.ioc_comp);
2215
2216         if (bnad->bnad_completions.ioc_comp_status)
2217                 err = bnad->bnad_completions.ioc_comp_status;
2218
2219         return err;
2220 }
2221
2222 /* Free BNA resources */
2223 static void
2224 bnad_res_free(struct bnad *bnad)
2225 {
2226         int i;
2227         struct bna_res_info *res_info = &bnad->res_info[0];
2228
2229         for (i = 0; i < BNA_RES_T_MAX; i++) {
2230                 if (res_info[i].res_type == BNA_RES_T_MEM)
2231                         bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
2232                 else
2233                         bnad_mbox_irq_free(bnad, &res_info[i].res_u.intr_info);
2234         }
2235 }
2236
2237 /* Allocates memory and interrupt resources for BNA */
2238 static int
2239 bnad_res_alloc(struct bnad *bnad)
2240 {
2241         int i, err;
2242         struct bna_res_info *res_info = &bnad->res_info[0];
2243
2244         for (i = 0; i < BNA_RES_T_MAX; i++) {
2245                 if (res_info[i].res_type == BNA_RES_T_MEM)
2246                         err = bnad_mem_alloc(bnad, &res_info[i].res_u.mem_info);
2247                 else
2248                         err = bnad_mbox_irq_alloc(bnad,
2249                                                   &res_info[i].res_u.intr_info);
2250                 if (err)
2251                         goto err_return;
2252         }
2253         return 0;
2254
2255 err_return:
2256         bnad_res_free(bnad);
2257         return err;
2258 }
2259
2260 /* Interrupt enable / disable */
2261 static void
2262 bnad_enable_msix(struct bnad *bnad)
2263 {
2264         int i, ret;
2265         unsigned long flags;
2266
2267         spin_lock_irqsave(&bnad->bna_lock, flags);
2268         if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
2269                 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2270                 return;
2271         }
2272         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2273
2274         if (bnad->msix_table)
2275                 return;
2276
2277         bnad->msix_table =
2278                 kcalloc(bnad->msix_num, sizeof(struct msix_entry), GFP_KERNEL);
2279
2280         if (!bnad->msix_table)
2281                 goto intx_mode;
2282
2283         for (i = 0; i < bnad->msix_num; i++)
2284                 bnad->msix_table[i].entry = i;
2285
2286         ret = pci_enable_msix(bnad->pcidev, bnad->msix_table, bnad->msix_num);
2287         if (ret > 0) {
2288                 /* Not enough MSI-X vectors. */
2289
2290                 spin_lock_irqsave(&bnad->bna_lock, flags);
2291                 /* ret = #of vectors that we got */
2292                 bnad_q_num_adjust(bnad, ret);
2293                 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2294
2295                 bnad->msix_num = (bnad->num_tx * bnad->num_txq_per_tx)
2296                         + (bnad->num_rx
2297                         * bnad->num_rxp_per_rx) +
2298                          BNAD_MAILBOX_MSIX_VECTORS;
2299
2300                 /* Try once more with adjusted numbers */
2301                 /* If this fails, fall back to INTx */
2302                 ret = pci_enable_msix(bnad->pcidev, bnad->msix_table,
2303                                       bnad->msix_num);
2304                 if (ret)
2305                         goto intx_mode;
2306
2307         } else if (ret < 0)
2308                 goto intx_mode;
2309         return;
2310
2311 intx_mode:
2312
2313         kfree(bnad->msix_table);
2314         bnad->msix_table = NULL;
2315         bnad->msix_num = 0;
2316         spin_lock_irqsave(&bnad->bna_lock, flags);
2317         bnad->cfg_flags &= ~BNAD_CF_MSIX;
2318         bnad_q_num_init(bnad);
2319         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2320 }
2321
2322 static void
2323 bnad_disable_msix(struct bnad *bnad)
2324 {
2325         u32 cfg_flags;
2326         unsigned long flags;
2327
2328         spin_lock_irqsave(&bnad->bna_lock, flags);
2329         cfg_flags = bnad->cfg_flags;
2330         if (bnad->cfg_flags & BNAD_CF_MSIX)
2331                 bnad->cfg_flags &= ~BNAD_CF_MSIX;
2332         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2333
2334         if (cfg_flags & BNAD_CF_MSIX) {
2335                 pci_disable_msix(bnad->pcidev);
2336                 kfree(bnad->msix_table);
2337                 bnad->msix_table = NULL;
2338         }
2339 }
2340
2341 /* Netdev entry points */
2342 static int
2343 bnad_open(struct net_device *netdev)
2344 {
2345         int err;
2346         struct bnad *bnad = netdev_priv(netdev);
2347         struct bna_pause_config pause_config;
2348         int mtu;
2349         unsigned long flags;
2350
2351         mutex_lock(&bnad->conf_mutex);
2352
2353         /* Tx */
2354         err = bnad_setup_tx(bnad, 0);
2355         if (err)
2356                 goto err_return;
2357
2358         /* Rx */
2359         err = bnad_setup_rx(bnad, 0);
2360         if (err)
2361                 goto cleanup_tx;
2362
2363         /* Port */
2364         pause_config.tx_pause = 0;
2365         pause_config.rx_pause = 0;
2366
2367         mtu = ETH_HLEN + bnad->netdev->mtu + ETH_FCS_LEN;
2368
2369         spin_lock_irqsave(&bnad->bna_lock, flags);
2370         bna_port_mtu_set(&bnad->bna.port, mtu, NULL);
2371         bna_port_pause_config(&bnad->bna.port, &pause_config, NULL);
2372         bna_port_enable(&bnad->bna.port);
2373         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2374
2375         /* Enable broadcast */
2376         bnad_enable_default_bcast(bnad);
2377
2378         /* Restore VLANs, if any */
2379         bnad_restore_vlans(bnad, 0);
2380
2381         /* Set the UCAST address */
2382         spin_lock_irqsave(&bnad->bna_lock, flags);
2383         bnad_mac_addr_set_locked(bnad, netdev->dev_addr);
2384         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2385
2386         /* Start the stats timer */
2387         bnad_stats_timer_start(bnad);
2388
2389         mutex_unlock(&bnad->conf_mutex);
2390
2391         return 0;
2392
2393 cleanup_tx:
2394         bnad_cleanup_tx(bnad, 0);
2395
2396 err_return:
2397         mutex_unlock(&bnad->conf_mutex);
2398         return err;
2399 }
2400
2401 static int
2402 bnad_stop(struct net_device *netdev)
2403 {
2404         struct bnad *bnad = netdev_priv(netdev);
2405         unsigned long flags;
2406
2407         mutex_lock(&bnad->conf_mutex);
2408
2409         /* Stop the stats timer */
2410         bnad_stats_timer_stop(bnad);
2411
2412         init_completion(&bnad->bnad_completions.port_comp);
2413
2414         spin_lock_irqsave(&bnad->bna_lock, flags);
2415         bna_port_disable(&bnad->bna.port, BNA_HARD_CLEANUP,
2416                         bnad_cb_port_disabled);
2417         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2418
2419         wait_for_completion(&bnad->bnad_completions.port_comp);
2420
2421         bnad_cleanup_tx(bnad, 0);
2422         bnad_cleanup_rx(bnad, 0);
2423
2424         /* Synchronize mailbox IRQ */
2425         bnad_mbox_irq_sync(bnad);
2426
2427         mutex_unlock(&bnad->conf_mutex);
2428
2429         return 0;
2430 }
2431
2432 /* TX */
2433 /*
2434  * bnad_start_xmit : Netdev entry point for Transmit
2435  *                   Called under lock held by net_device
2436  */
2437 static netdev_tx_t
2438 bnad_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2439 {
2440         struct bnad *bnad = netdev_priv(netdev);
2441
2442         u16             txq_prod, vlan_tag = 0;
2443         u32             unmap_prod, wis, wis_used, wi_range;
2444         u32             vectors, vect_id, i, acked;
2445         u32             tx_id;
2446         int                     err;
2447
2448         struct bnad_tx_info *tx_info;
2449         struct bna_tcb *tcb;
2450         struct bnad_unmap_q *unmap_q;
2451         dma_addr_t              dma_addr;
2452         struct bna_txq_entry *txqent;
2453         bna_txq_wi_ctrl_flag_t  flags;
2454
2455         if (unlikely
2456             (skb->len <= ETH_HLEN || skb->len > BFI_TX_MAX_DATA_PER_PKT)) {
2457                 dev_kfree_skb(skb);
2458                 return NETDEV_TX_OK;
2459         }
2460
2461         tx_id = 0;
2462
2463         tx_info = &bnad->tx_info[tx_id];
2464         tcb = tx_info->tcb[tx_id];
2465         unmap_q = tcb->unmap_q;
2466
2467         /*
2468          * Takes care of the Tx that is scheduled between clearing the flag
2469          * and the netif_stop_queue() call.
2470          */
2471         if (unlikely(!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))) {
2472                 dev_kfree_skb(skb);
2473                 return NETDEV_TX_OK;
2474         }
2475
2476         vectors = 1 + skb_shinfo(skb)->nr_frags;
2477         if (vectors > BFI_TX_MAX_VECTORS_PER_PKT) {
2478                 dev_kfree_skb(skb);
2479                 return NETDEV_TX_OK;
2480         }
2481         wis = BNA_TXQ_WI_NEEDED(vectors);       /* 4 vectors per work item */
2482         acked = 0;
2483         if (unlikely
2484             (wis > BNA_QE_FREE_CNT(tcb, tcb->q_depth) ||
2485              vectors > BNA_QE_FREE_CNT(unmap_q, unmap_q->q_depth))) {
2486                 if ((u16) (*tcb->hw_consumer_index) !=
2487                     tcb->consumer_index &&
2488                     !test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) {
2489                         acked = bnad_free_txbufs(bnad, tcb);
2490                         if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
2491                                 bna_ib_ack(tcb->i_dbell, acked);
2492                         smp_mb__before_clear_bit();
2493                         clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
2494                 } else {
2495                         netif_stop_queue(netdev);
2496                         BNAD_UPDATE_CTR(bnad, netif_queue_stop);
2497                 }
2498
2499                 smp_mb();
2500                 /*
2501                  * Check again to deal with race condition between
2502                  * netif_stop_queue here, and netif_wake_queue in
2503                  * interrupt handler which is not inside netif tx lock.
2504                  */
2505                 if (likely
2506                     (wis > BNA_QE_FREE_CNT(tcb, tcb->q_depth) ||
2507                      vectors > BNA_QE_FREE_CNT(unmap_q, unmap_q->q_depth))) {
2508                         BNAD_UPDATE_CTR(bnad, netif_queue_stop);
2509                         return NETDEV_TX_BUSY;
2510                 } else {
2511                         netif_wake_queue(netdev);
2512                         BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
2513                 }
2514         }
2515
2516         unmap_prod = unmap_q->producer_index;
2517         wis_used = 1;
2518         vect_id = 0;
2519         flags = 0;
2520
2521         txq_prod = tcb->producer_index;
2522         BNA_TXQ_QPGE_PTR_GET(txq_prod, tcb->sw_qpt, txqent, wi_range);
2523         BUG_ON(!(wi_range <= tcb->q_depth));
2524         txqent->hdr.wi.reserved = 0;
2525         txqent->hdr.wi.num_vectors = vectors;
2526         txqent->hdr.wi.opcode =
2527                 htons((skb_is_gso(skb) ? BNA_TXQ_WI_SEND_LSO :
2528                        BNA_TXQ_WI_SEND));
2529
2530         if (vlan_tx_tag_present(skb)) {
2531                 vlan_tag = (u16) vlan_tx_tag_get(skb);
2532                 flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2533         }
2534         if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags)) {
2535                 vlan_tag =
2536                         (tcb->priority & 0x7) << 13 | (vlan_tag & 0x1fff);
2537                 flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2538         }
2539
2540         txqent->hdr.wi.vlan_tag = htons(vlan_tag);
2541
2542         if (skb_is_gso(skb)) {
2543                 err = bnad_tso_prepare(bnad, skb);
2544                 if (err) {
2545                         dev_kfree_skb(skb);
2546                         return NETDEV_TX_OK;
2547                 }
2548                 txqent->hdr.wi.lso_mss = htons(skb_is_gso(skb));
2549                 flags |= (BNA_TXQ_WI_CF_IP_CKSUM | BNA_TXQ_WI_CF_TCP_CKSUM);
2550                 txqent->hdr.wi.l4_hdr_size_n_offset =
2551                         htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2552                               (tcp_hdrlen(skb) >> 2,
2553                                skb_transport_offset(skb)));
2554         } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2555                 u8 proto = 0;
2556
2557                 txqent->hdr.wi.lso_mss = 0;
2558
2559                 if (skb->protocol == htons(ETH_P_IP))
2560                         proto = ip_hdr(skb)->protocol;
2561                 else if (skb->protocol == htons(ETH_P_IPV6)) {
2562                         /* nexthdr may not be TCP immediately. */
2563                         proto = ipv6_hdr(skb)->nexthdr;
2564                 }
2565                 if (proto == IPPROTO_TCP) {
2566                         flags |= BNA_TXQ_WI_CF_TCP_CKSUM;
2567                         txqent->hdr.wi.l4_hdr_size_n_offset =
2568                                 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2569                                       (0, skb_transport_offset(skb)));
2570
2571                         BNAD_UPDATE_CTR(bnad, tcpcsum_offload);
2572
2573                         BUG_ON(!(skb_headlen(skb) >=
2574                                 skb_transport_offset(skb) + tcp_hdrlen(skb)));
2575
2576                 } else if (proto == IPPROTO_UDP) {
2577                         flags |= BNA_TXQ_WI_CF_UDP_CKSUM;
2578                         txqent->hdr.wi.l4_hdr_size_n_offset =
2579                                 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2580                                       (0, skb_transport_offset(skb)));
2581
2582                         BNAD_UPDATE_CTR(bnad, udpcsum_offload);
2583
2584                         BUG_ON(!(skb_headlen(skb) >=
2585                                    skb_transport_offset(skb) +
2586                                    sizeof(struct udphdr)));
2587                 } else {
2588                         err = skb_checksum_help(skb);
2589                         BNAD_UPDATE_CTR(bnad, csum_help);
2590                         if (err) {
2591                                 dev_kfree_skb(skb);
2592                                 BNAD_UPDATE_CTR(bnad, csum_help_err);
2593                                 return NETDEV_TX_OK;
2594                         }
2595                 }
2596         } else {
2597                 txqent->hdr.wi.lso_mss = 0;
2598                 txqent->hdr.wi.l4_hdr_size_n_offset = 0;
2599         }
2600
2601         txqent->hdr.wi.flags = htons(flags);
2602
2603         txqent->hdr.wi.frame_length = htonl(skb->len);
2604
2605         unmap_q->unmap_array[unmap_prod].skb = skb;
2606         BUG_ON(!(skb_headlen(skb) <= BFI_TX_MAX_DATA_PER_VECTOR));
2607         txqent->vector[vect_id].length = htons(skb_headlen(skb));
2608         dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
2609                                   skb_headlen(skb), DMA_TO_DEVICE);
2610         dma_unmap_addr_set(&unmap_q->unmap_array[unmap_prod], dma_addr,
2611                            dma_addr);
2612
2613         BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[vect_id].host_addr);
2614         BNA_QE_INDX_ADD(unmap_prod, 1, unmap_q->q_depth);
2615
2616         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2617                 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i];
2618                 u32             size = frag->size;
2619
2620                 if (++vect_id == BFI_TX_MAX_VECTORS_PER_WI) {
2621                         vect_id = 0;
2622                         if (--wi_range)
2623                                 txqent++;
2624                         else {
2625                                 BNA_QE_INDX_ADD(txq_prod, wis_used,
2626                                                 tcb->q_depth);
2627                                 wis_used = 0;
2628                                 BNA_TXQ_QPGE_PTR_GET(txq_prod, tcb->sw_qpt,
2629                                                      txqent, wi_range);
2630                                 BUG_ON(!(wi_range <= tcb->q_depth));
2631                         }
2632                         wis_used++;
2633                         txqent->hdr.wi_ext.opcode = htons(BNA_TXQ_WI_EXTENSION);
2634                 }
2635
2636                 BUG_ON(!(size <= BFI_TX_MAX_DATA_PER_VECTOR));
2637                 txqent->vector[vect_id].length = htons(size);
2638                 dma_addr = dma_map_page(&bnad->pcidev->dev, frag->page,
2639                                         frag->page_offset, size, DMA_TO_DEVICE);
2640                 dma_unmap_addr_set(&unmap_q->unmap_array[unmap_prod], dma_addr,
2641                                    dma_addr);
2642                 BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[vect_id].host_addr);
2643                 BNA_QE_INDX_ADD(unmap_prod, 1, unmap_q->q_depth);
2644         }
2645
2646         unmap_q->producer_index = unmap_prod;
2647         BNA_QE_INDX_ADD(txq_prod, wis_used, tcb->q_depth);
2648         tcb->producer_index = txq_prod;
2649
2650         smp_mb();
2651
2652         if (unlikely(!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
2653                 return NETDEV_TX_OK;
2654
2655         bna_txq_prod_indx_doorbell(tcb);
2656
2657         if ((u16) (*tcb->hw_consumer_index) != tcb->consumer_index)
2658                 tasklet_schedule(&bnad->tx_free_tasklet);
2659
2660         return NETDEV_TX_OK;
2661 }
2662
2663 /*
2664  * Used spin_lock to synchronize reading of stats structures, which
2665  * is written by BNA under the same lock.
2666  */
2667 static struct rtnl_link_stats64 *
2668 bnad_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
2669 {
2670         struct bnad *bnad = netdev_priv(netdev);
2671         unsigned long flags;
2672
2673         spin_lock_irqsave(&bnad->bna_lock, flags);
2674
2675         bnad_netdev_qstats_fill(bnad, stats);
2676         bnad_netdev_hwstats_fill(bnad, stats);
2677
2678         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2679
2680         return stats;
2681 }
2682
2683 static void
2684 bnad_set_rx_mode(struct net_device *netdev)
2685 {
2686         struct bnad *bnad = netdev_priv(netdev);
2687         u32     new_mask, valid_mask;
2688         unsigned long flags;
2689
2690         spin_lock_irqsave(&bnad->bna_lock, flags);
2691
2692         new_mask = valid_mask = 0;
2693
2694         if (netdev->flags & IFF_PROMISC) {
2695                 if (!(bnad->cfg_flags & BNAD_CF_PROMISC)) {
2696                         new_mask = BNAD_RXMODE_PROMISC_DEFAULT;
2697                         valid_mask = BNAD_RXMODE_PROMISC_DEFAULT;
2698                         bnad->cfg_flags |= BNAD_CF_PROMISC;
2699                 }
2700         } else {
2701                 if (bnad->cfg_flags & BNAD_CF_PROMISC) {
2702                         new_mask = ~BNAD_RXMODE_PROMISC_DEFAULT;
2703                         valid_mask = BNAD_RXMODE_PROMISC_DEFAULT;
2704                         bnad->cfg_flags &= ~BNAD_CF_PROMISC;
2705                 }
2706         }
2707
2708         if (netdev->flags & IFF_ALLMULTI) {
2709                 if (!(bnad->cfg_flags & BNAD_CF_ALLMULTI)) {
2710                         new_mask |= BNA_RXMODE_ALLMULTI;
2711                         valid_mask |= BNA_RXMODE_ALLMULTI;
2712                         bnad->cfg_flags |= BNAD_CF_ALLMULTI;
2713                 }
2714         } else {
2715                 if (bnad->cfg_flags & BNAD_CF_ALLMULTI) {
2716                         new_mask &= ~BNA_RXMODE_ALLMULTI;
2717                         valid_mask |= BNA_RXMODE_ALLMULTI;
2718                         bnad->cfg_flags &= ~BNAD_CF_ALLMULTI;
2719                 }
2720         }
2721
2722         bna_rx_mode_set(bnad->rx_info[0].rx, new_mask, valid_mask, NULL);
2723
2724         if (!netdev_mc_empty(netdev)) {
2725                 u8 *mcaddr_list;
2726                 int mc_count = netdev_mc_count(netdev);
2727
2728                 /* Index 0 holds the broadcast address */
2729                 mcaddr_list =
2730                         kzalloc((mc_count + 1) * ETH_ALEN,
2731                                 GFP_ATOMIC);
2732                 if (!mcaddr_list)
2733                         goto unlock;
2734
2735                 memcpy(&mcaddr_list[0], &bnad_bcast_addr[0], ETH_ALEN);
2736
2737                 /* Copy rest of the MC addresses */
2738                 bnad_netdev_mc_list_get(netdev, mcaddr_list);
2739
2740                 bna_rx_mcast_listset(bnad->rx_info[0].rx, mc_count + 1,
2741                                         mcaddr_list, NULL);
2742
2743                 /* Should we enable BNAD_CF_ALLMULTI for err != 0 ? */
2744                 kfree(mcaddr_list);
2745         }
2746 unlock:
2747         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2748 }
2749
2750 /*
2751  * bna_lock is used to sync writes to netdev->addr
2752  * conf_lock cannot be used since this call may be made
2753  * in a non-blocking context.
2754  */
2755 static int
2756 bnad_set_mac_address(struct net_device *netdev, void *mac_addr)
2757 {
2758         int err;
2759         struct bnad *bnad = netdev_priv(netdev);
2760         struct sockaddr *sa = (struct sockaddr *)mac_addr;
2761         unsigned long flags;
2762
2763         spin_lock_irqsave(&bnad->bna_lock, flags);
2764
2765         err = bnad_mac_addr_set_locked(bnad, sa->sa_data);
2766
2767         if (!err)
2768                 memcpy(netdev->dev_addr, sa->sa_data, netdev->addr_len);
2769
2770         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2771
2772         return err;
2773 }
2774
2775 static int
2776 bnad_change_mtu(struct net_device *netdev, int new_mtu)
2777 {
2778         int mtu, err = 0;
2779         unsigned long flags;
2780
2781         struct bnad *bnad = netdev_priv(netdev);
2782
2783         if (new_mtu + ETH_HLEN < ETH_ZLEN || new_mtu > BNAD_JUMBO_MTU)
2784                 return -EINVAL;
2785
2786         mutex_lock(&bnad->conf_mutex);
2787
2788         netdev->mtu = new_mtu;
2789
2790         mtu = ETH_HLEN + new_mtu + ETH_FCS_LEN;
2791
2792         spin_lock_irqsave(&bnad->bna_lock, flags);
2793         bna_port_mtu_set(&bnad->bna.port, mtu, NULL);
2794         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2795
2796         mutex_unlock(&bnad->conf_mutex);
2797         return err;
2798 }
2799
2800 static void
2801 bnad_vlan_rx_register(struct net_device *netdev,
2802                                   struct vlan_group *vlan_grp)
2803 {
2804         struct bnad *bnad = netdev_priv(netdev);
2805
2806         mutex_lock(&bnad->conf_mutex);
2807         bnad->vlan_grp = vlan_grp;
2808         mutex_unlock(&bnad->conf_mutex);
2809 }
2810
2811 static void
2812 bnad_vlan_rx_add_vid(struct net_device *netdev,
2813                                  unsigned short vid)
2814 {
2815         struct bnad *bnad = netdev_priv(netdev);
2816         unsigned long flags;
2817
2818         if (!bnad->rx_info[0].rx)
2819                 return;
2820
2821         mutex_lock(&bnad->conf_mutex);
2822
2823         spin_lock_irqsave(&bnad->bna_lock, flags);
2824         bna_rx_vlan_add(bnad->rx_info[0].rx, vid);
2825         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2826
2827         mutex_unlock(&bnad->conf_mutex);
2828 }
2829
2830 static void
2831 bnad_vlan_rx_kill_vid(struct net_device *netdev,
2832                                   unsigned short vid)
2833 {
2834         struct bnad *bnad = netdev_priv(netdev);
2835         unsigned long flags;
2836
2837         if (!bnad->rx_info[0].rx)
2838                 return;
2839
2840         mutex_lock(&bnad->conf_mutex);
2841
2842         spin_lock_irqsave(&bnad->bna_lock, flags);
2843         bna_rx_vlan_del(bnad->rx_info[0].rx, vid);
2844         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2845
2846         mutex_unlock(&bnad->conf_mutex);
2847 }
2848
2849 #ifdef CONFIG_NET_POLL_CONTROLLER
2850 static void
2851 bnad_netpoll(struct net_device *netdev)
2852 {
2853         struct bnad *bnad = netdev_priv(netdev);
2854         struct bnad_rx_info *rx_info;
2855         struct bnad_rx_ctrl *rx_ctrl;
2856         u32 curr_mask;
2857         int i, j;
2858
2859         if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
2860                 bna_intx_disable(&bnad->bna, curr_mask);
2861                 bnad_isr(bnad->pcidev->irq, netdev);
2862                 bna_intx_enable(&bnad->bna, curr_mask);
2863         } else {
2864                 for (i = 0; i < bnad->num_rx; i++) {
2865                         rx_info = &bnad->rx_info[i];
2866                         if (!rx_info->rx)
2867                                 continue;
2868                         for (j = 0; j < bnad->num_rxp_per_rx; j++) {
2869                                 rx_ctrl = &rx_info->rx_ctrl[j];
2870                                 if (rx_ctrl->ccb) {
2871                                         bnad_disable_rx_irq(bnad,
2872                                                             rx_ctrl->ccb);
2873                                         bnad_netif_rx_schedule_poll(bnad,
2874                                                             rx_ctrl->ccb);
2875                                 }
2876                         }
2877                 }
2878         }
2879 }
2880 #endif
2881
2882 static const struct net_device_ops bnad_netdev_ops = {
2883         .ndo_open               = bnad_open,
2884         .ndo_stop               = bnad_stop,
2885         .ndo_start_xmit         = bnad_start_xmit,
2886         .ndo_get_stats64                = bnad_get_stats64,
2887         .ndo_set_rx_mode        = bnad_set_rx_mode,
2888         .ndo_set_multicast_list = bnad_set_rx_mode,
2889         .ndo_validate_addr      = eth_validate_addr,
2890         .ndo_set_mac_address    = bnad_set_mac_address,
2891         .ndo_change_mtu         = bnad_change_mtu,
2892         .ndo_vlan_rx_register   = bnad_vlan_rx_register,
2893         .ndo_vlan_rx_add_vid    = bnad_vlan_rx_add_vid,
2894         .ndo_vlan_rx_kill_vid   = bnad_vlan_rx_kill_vid,
2895 #ifdef CONFIG_NET_POLL_CONTROLLER
2896         .ndo_poll_controller    = bnad_netpoll
2897 #endif
2898 };
2899
2900 static void
2901 bnad_netdev_init(struct bnad *bnad, bool using_dac)
2902 {
2903         struct net_device *netdev = bnad->netdev;
2904
2905         netdev->features |= NETIF_F_IPV6_CSUM;
2906         netdev->features |= NETIF_F_TSO;
2907         netdev->features |= NETIF_F_TSO6;
2908
2909         netdev->features |= NETIF_F_GRO;
2910         pr_warn("bna: GRO enabled, using kernel stack GRO\n");
2911
2912         netdev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
2913
2914         if (using_dac)
2915                 netdev->features |= NETIF_F_HIGHDMA;
2916
2917         netdev->features |=
2918                 NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX |
2919                 NETIF_F_HW_VLAN_FILTER;
2920
2921         netdev->vlan_features = netdev->features;
2922         netdev->mem_start = bnad->mmio_start;
2923         netdev->mem_end = bnad->mmio_start + bnad->mmio_len - 1;
2924
2925         netdev->netdev_ops = &bnad_netdev_ops;
2926         bnad_set_ethtool_ops(netdev);
2927 }
2928
2929 /*
2930  * 1. Initialize the bnad structure
2931  * 2. Setup netdev pointer in pci_dev
2932  * 3. Initialze Tx free tasklet
2933  * 4. Initialize no. of TxQ & CQs & MSIX vectors
2934  */
2935 static int
2936 bnad_init(struct bnad *bnad,
2937           struct pci_dev *pdev, struct net_device *netdev)
2938 {
2939         unsigned long flags;
2940
2941         SET_NETDEV_DEV(netdev, &pdev->dev);
2942         pci_set_drvdata(pdev, netdev);
2943
2944         bnad->netdev = netdev;
2945         bnad->pcidev = pdev;
2946         bnad->mmio_start = pci_resource_start(pdev, 0);
2947         bnad->mmio_len = pci_resource_len(pdev, 0);
2948         bnad->bar0 = ioremap_nocache(bnad->mmio_start, bnad->mmio_len);
2949         if (!bnad->bar0) {
2950                 dev_err(&pdev->dev, "ioremap for bar0 failed\n");
2951                 pci_set_drvdata(pdev, NULL);
2952                 return -ENOMEM;
2953         }
2954         pr_info("bar0 mapped to %p, len %llu\n", bnad->bar0,
2955                (unsigned long long) bnad->mmio_len);
2956
2957         spin_lock_irqsave(&bnad->bna_lock, flags);
2958         if (!bnad_msix_disable)
2959                 bnad->cfg_flags = BNAD_CF_MSIX;
2960
2961         bnad->cfg_flags |= BNAD_CF_DIM_ENABLED;
2962
2963         bnad_q_num_init(bnad);
2964         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2965
2966         bnad->msix_num = (bnad->num_tx * bnad->num_txq_per_tx) +
2967                 (bnad->num_rx * bnad->num_rxp_per_rx) +
2968                          BNAD_MAILBOX_MSIX_VECTORS;
2969
2970         bnad->txq_depth = BNAD_TXQ_DEPTH;
2971         bnad->rxq_depth = BNAD_RXQ_DEPTH;
2972         bnad->rx_csum = true;
2973
2974         bnad->tx_coalescing_timeo = BFI_TX_COALESCING_TIMEO;
2975         bnad->rx_coalescing_timeo = BFI_RX_COALESCING_TIMEO;
2976
2977         tasklet_init(&bnad->tx_free_tasklet, bnad_tx_free_tasklet,
2978                      (unsigned long)bnad);
2979
2980         return 0;
2981 }
2982
2983 /*
2984  * Must be called after bnad_pci_uninit()
2985  * so that iounmap() and pci_set_drvdata(NULL)
2986  * happens only after PCI uninitialization.
2987  */
2988 static void
2989 bnad_uninit(struct bnad *bnad)
2990 {
2991         if (bnad->bar0)
2992                 iounmap(bnad->bar0);
2993         pci_set_drvdata(bnad->pcidev, NULL);
2994 }
2995
2996 /*
2997  * Initialize locks
2998         a) Per device mutes used for serializing configuration
2999            changes from OS interface
3000         b) spin lock used to protect bna state machine
3001  */
3002 static void
3003 bnad_lock_init(struct bnad *bnad)
3004 {
3005         spin_lock_init(&bnad->bna_lock);
3006         mutex_init(&bnad->conf_mutex);
3007 }
3008
3009 static void
3010 bnad_lock_uninit(struct bnad *bnad)
3011 {
3012         mutex_destroy(&bnad->conf_mutex);
3013 }
3014
3015 /* PCI Initialization */
3016 static int
3017 bnad_pci_init(struct bnad *bnad,
3018               struct pci_dev *pdev, bool *using_dac)
3019 {
3020         int err;
3021
3022         err = pci_enable_device(pdev);
3023         if (err)
3024                 return err;
3025         err = pci_request_regions(pdev, BNAD_NAME);
3026         if (err)
3027                 goto disable_device;
3028         if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) &&
3029             !dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64))) {
3030                 *using_dac = 1;
3031         } else {
3032                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
3033                 if (err) {
3034                         err = dma_set_coherent_mask(&pdev->dev,
3035                                                     DMA_BIT_MASK(32));
3036                         if (err)
3037                                 goto release_regions;
3038                 }
3039                 *using_dac = 0;
3040         }
3041         pci_set_master(pdev);
3042         return 0;
3043
3044 release_regions:
3045         pci_release_regions(pdev);
3046 disable_device:
3047         pci_disable_device(pdev);
3048
3049         return err;
3050 }
3051
3052 static void
3053 bnad_pci_uninit(struct pci_dev *pdev)
3054 {
3055         pci_release_regions(pdev);
3056         pci_disable_device(pdev);
3057 }
3058
3059 static int __devinit
3060 bnad_pci_probe(struct pci_dev *pdev,
3061                 const struct pci_device_id *pcidev_id)
3062 {
3063         bool    using_dac = false;
3064         int     err;
3065         struct bnad *bnad;
3066         struct bna *bna;
3067         struct net_device *netdev;
3068         struct bfa_pcidev pcidev_info;
3069         unsigned long flags;
3070
3071         pr_info("bnad_pci_probe : (0x%p, 0x%p) PCI Func : (%d)\n",
3072                pdev, pcidev_id, PCI_FUNC(pdev->devfn));
3073
3074         mutex_lock(&bnad_fwimg_mutex);
3075         if (!cna_get_firmware_buf(pdev)) {
3076                 mutex_unlock(&bnad_fwimg_mutex);
3077                 pr_warn("Failed to load Firmware Image!\n");
3078                 return -ENODEV;
3079         }
3080         mutex_unlock(&bnad_fwimg_mutex);
3081
3082         /*
3083          * Allocates sizeof(struct net_device + struct bnad)
3084          * bnad = netdev->priv
3085          */
3086         netdev = alloc_etherdev(sizeof(struct bnad));
3087         if (!netdev) {
3088                 dev_err(&pdev->dev, "alloc_etherdev failed\n");
3089                 err = -ENOMEM;
3090                 return err;
3091         }
3092         bnad = netdev_priv(netdev);
3093
3094         /*
3095          * PCI initialization
3096          *      Output : using_dac = 1 for 64 bit DMA
3097          *                         = 0 for 32 bit DMA
3098          */
3099         err = bnad_pci_init(bnad, pdev, &using_dac);
3100         if (err)
3101                 goto free_netdev;
3102
3103         bnad_lock_init(bnad);
3104         /*
3105          * Initialize bnad structure
3106          * Setup relation between pci_dev & netdev
3107          * Init Tx free tasklet
3108          */
3109         err = bnad_init(bnad, pdev, netdev);
3110         if (err)
3111                 goto pci_uninit;
3112         /* Initialize netdev structure, set up ethtool ops */
3113         bnad_netdev_init(bnad, using_dac);
3114
3115         /* Set link to down state */
3116         netif_carrier_off(netdev);
3117
3118         bnad_enable_msix(bnad);
3119
3120         /* Get resource requirement form bna */
3121         bna_res_req(&bnad->res_info[0]);
3122
3123         /* Allocate resources from bna */
3124         err = bnad_res_alloc(bnad);
3125         if (err)
3126                 goto free_netdev;
3127
3128         bna = &bnad->bna;
3129
3130         /* Setup pcidev_info for bna_init() */
3131         pcidev_info.pci_slot = PCI_SLOT(bnad->pcidev->devfn);
3132         pcidev_info.pci_func = PCI_FUNC(bnad->pcidev->devfn);
3133         pcidev_info.device_id = bnad->pcidev->device;
3134         pcidev_info.pci_bar_kva = bnad->bar0;
3135
3136         mutex_lock(&bnad->conf_mutex);
3137
3138         spin_lock_irqsave(&bnad->bna_lock, flags);
3139         bna_init(bna, bnad, &pcidev_info, &bnad->res_info[0]);
3140         spin_unlock_irqrestore(&bnad->bna_lock, flags);
3141
3142         bnad->stats.bna_stats = &bna->stats;
3143
3144         /* Set up timers */
3145         setup_timer(&bnad->bna.device.ioc.ioc_timer, bnad_ioc_timeout,
3146                                 ((unsigned long)bnad));
3147         setup_timer(&bnad->bna.device.ioc.hb_timer, bnad_ioc_hb_check,
3148                                 ((unsigned long)bnad));
3149         setup_timer(&bnad->bna.device.ioc.iocpf_timer, bnad_iocpf_timeout,
3150                                 ((unsigned long)bnad));
3151         setup_timer(&bnad->bna.device.ioc.sem_timer, bnad_iocpf_sem_timeout,
3152                                 ((unsigned long)bnad));
3153
3154         /* Now start the timer before calling IOC */
3155         mod_timer(&bnad->bna.device.ioc.iocpf_timer,
3156                   jiffies + msecs_to_jiffies(BNA_IOC_TIMER_FREQ));
3157
3158         /*
3159          * Start the chip
3160          * Don't care even if err != 0, bna state machine will
3161          * deal with it
3162          */
3163         err = bnad_device_enable(bnad);
3164
3165         /* Get the burnt-in mac */
3166         spin_lock_irqsave(&bnad->bna_lock, flags);
3167         bna_port_mac_get(&bna->port, &bnad->perm_addr);
3168         bnad_set_netdev_perm_addr(bnad);
3169         spin_unlock_irqrestore(&bnad->bna_lock, flags);
3170
3171         mutex_unlock(&bnad->conf_mutex);
3172
3173         /* Finally, reguister with net_device layer */
3174         err = register_netdev(netdev);
3175         if (err) {
3176                 pr_err("BNA : Registering with netdev failed\n");
3177                 goto disable_device;
3178         }
3179
3180         return 0;
3181
3182 disable_device:
3183         mutex_lock(&bnad->conf_mutex);
3184         bnad_device_disable(bnad);
3185         del_timer_sync(&bnad->bna.device.ioc.ioc_timer);
3186         del_timer_sync(&bnad->bna.device.ioc.sem_timer);
3187         del_timer_sync(&bnad->bna.device.ioc.hb_timer);
3188         spin_lock_irqsave(&bnad->bna_lock, flags);
3189         bna_uninit(bna);
3190         spin_unlock_irqrestore(&bnad->bna_lock, flags);
3191         mutex_unlock(&bnad->conf_mutex);
3192
3193         bnad_res_free(bnad);
3194         bnad_disable_msix(bnad);
3195 pci_uninit:
3196         bnad_pci_uninit(pdev);
3197         bnad_lock_uninit(bnad);
3198         bnad_uninit(bnad);
3199 free_netdev:
3200         free_netdev(netdev);
3201         return err;
3202 }
3203
3204 static void __devexit
3205 bnad_pci_remove(struct pci_dev *pdev)
3206 {
3207         struct net_device *netdev = pci_get_drvdata(pdev);
3208         struct bnad *bnad;
3209         struct bna *bna;
3210         unsigned long flags;
3211
3212         if (!netdev)
3213                 return;
3214
3215         pr_info("%s bnad_pci_remove\n", netdev->name);
3216         bnad = netdev_priv(netdev);
3217         bna = &bnad->bna;
3218
3219         unregister_netdev(netdev);
3220
3221         mutex_lock(&bnad->conf_mutex);
3222         bnad_device_disable(bnad);
3223         del_timer_sync(&bnad->bna.device.ioc.ioc_timer);
3224         del_timer_sync(&bnad->bna.device.ioc.sem_timer);
3225         del_timer_sync(&bnad->bna.device.ioc.hb_timer);
3226         spin_lock_irqsave(&bnad->bna_lock, flags);
3227         bna_uninit(bna);
3228         spin_unlock_irqrestore(&bnad->bna_lock, flags);
3229         mutex_unlock(&bnad->conf_mutex);
3230
3231         bnad_res_free(bnad);
3232         bnad_disable_msix(bnad);
3233         bnad_pci_uninit(pdev);
3234         bnad_lock_uninit(bnad);
3235         bnad_uninit(bnad);
3236         free_netdev(netdev);
3237 }
3238
3239 static const struct pci_device_id bnad_pci_id_table[] = {
3240         {
3241                 PCI_DEVICE(PCI_VENDOR_ID_BROCADE,
3242                         PCI_DEVICE_ID_BROCADE_CT),
3243                 .class = PCI_CLASS_NETWORK_ETHERNET << 8,
3244                 .class_mask =  0xffff00
3245         }, {0,  }
3246 };
3247
3248 MODULE_DEVICE_TABLE(pci, bnad_pci_id_table);
3249
3250 static struct pci_driver bnad_pci_driver = {
3251         .name = BNAD_NAME,
3252         .id_table = bnad_pci_id_table,
3253         .probe = bnad_pci_probe,
3254         .remove = __devexit_p(bnad_pci_remove),
3255 };
3256
3257 static int __init
3258 bnad_module_init(void)
3259 {
3260         int err;
3261
3262         pr_info("Brocade 10G Ethernet driver\n");
3263
3264         bfa_nw_ioc_auto_recover(bnad_ioc_auto_recover);
3265
3266         err = pci_register_driver(&bnad_pci_driver);
3267         if (err < 0) {
3268                 pr_err("bna : PCI registration failed in module init "
3269                        "(%d)\n", err);
3270                 return err;
3271         }
3272
3273         return 0;
3274 }
3275
3276 static void __exit
3277 bnad_module_exit(void)
3278 {
3279         pci_unregister_driver(&bnad_pci_driver);
3280
3281         if (bfi_fw)
3282                 release_firmware(bfi_fw);
3283 }
3284
3285 module_init(bnad_module_init);
3286 module_exit(bnad_module_exit);
3287
3288 MODULE_AUTHOR("Brocade");
3289 MODULE_LICENSE("GPL");
3290 MODULE_DESCRIPTION("Brocade 10G PCIe Ethernet driver");
3291 MODULE_VERSION(BNAD_VERSION);
3292 MODULE_FIRMWARE(CNA_FW_FILE_CT);