Merge branch 'ixp4xx' of git://git.kernel.org/pub/scm/linux/kernel/git/chris/linux-2.6
[pandora-kernel.git] / drivers / net / arm / ixp4xx_eth.c
1 /*
2  * Intel IXP4xx Ethernet driver for Linux
3  *
4  * Copyright (C) 2007 Krzysztof Halasa <khc@pm.waw.pl>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of version 2 of the GNU General Public License
8  * as published by the Free Software Foundation.
9  *
10  * Ethernet port config (0x00 is not present on IXP42X):
11  *
12  * logical port         0x00            0x10            0x20
13  * NPE                  0 (NPE-A)       1 (NPE-B)       2 (NPE-C)
14  * physical PortId      2               0               1
15  * TX queue             23              24              25
16  * RX-free queue        26              27              28
17  * TX-done queue is always 31, per-port RX and TX-ready queues are configurable
18  *
19  *
20  * Queue entries:
21  * bits 0 -> 1  - NPE ID (RX and TX-done)
22  * bits 0 -> 2  - priority (TX, per 802.1D)
23  * bits 3 -> 4  - port ID (user-set?)
24  * bits 5 -> 31 - physical descriptor address
25  */
26
27 #include <linux/delay.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/dmapool.h>
30 #include <linux/etherdevice.h>
31 #include <linux/io.h>
32 #include <linux/kernel.h>
33 #include <linux/phy.h>
34 #include <linux/platform_device.h>
35 #include <linux/slab.h>
36 #include <mach/npe.h>
37 #include <mach/qmgr.h>
38
39 #define DEBUG_DESC              0
40 #define DEBUG_RX                0
41 #define DEBUG_TX                0
42 #define DEBUG_PKT_BYTES         0
43 #define DEBUG_MDIO              0
44 #define DEBUG_CLOSE             0
45
46 #define DRV_NAME                "ixp4xx_eth"
47
48 #define MAX_NPES                3
49
50 #define RX_DESCS                64 /* also length of all RX queues */
51 #define TX_DESCS                16 /* also length of all TX queues */
52 #define TXDONE_QUEUE_LEN        64 /* dwords */
53
54 #define POOL_ALLOC_SIZE         (sizeof(struct desc) * (RX_DESCS + TX_DESCS))
55 #define REGS_SIZE               0x1000
56 #define MAX_MRU                 1536 /* 0x600 */
57 #define RX_BUFF_SIZE            ALIGN((NET_IP_ALIGN) + MAX_MRU, 4)
58
59 #define NAPI_WEIGHT             16
60 #define MDIO_INTERVAL           (3 * HZ)
61 #define MAX_MDIO_RETRIES        100 /* microseconds, typically 30 cycles */
62 #define MAX_CLOSE_WAIT          1000 /* microseconds, typically 2-3 cycles */
63
64 #define NPE_ID(port_id)         ((port_id) >> 4)
65 #define PHYSICAL_ID(port_id)    ((NPE_ID(port_id) + 2) % 3)
66 #define TX_QUEUE(port_id)       (NPE_ID(port_id) + 23)
67 #define RXFREE_QUEUE(port_id)   (NPE_ID(port_id) + 26)
68 #define TXDONE_QUEUE            31
69
70 /* TX Control Registers */
71 #define TX_CNTRL0_TX_EN         0x01
72 #define TX_CNTRL0_HALFDUPLEX    0x02
73 #define TX_CNTRL0_RETRY         0x04
74 #define TX_CNTRL0_PAD_EN        0x08
75 #define TX_CNTRL0_APPEND_FCS    0x10
76 #define TX_CNTRL0_2DEFER        0x20
77 #define TX_CNTRL0_RMII          0x40 /* reduced MII */
78 #define TX_CNTRL1_RETRIES       0x0F /* 4 bits */
79
80 /* RX Control Registers */
81 #define RX_CNTRL0_RX_EN         0x01
82 #define RX_CNTRL0_PADSTRIP_EN   0x02
83 #define RX_CNTRL0_SEND_FCS      0x04
84 #define RX_CNTRL0_PAUSE_EN      0x08
85 #define RX_CNTRL0_LOOP_EN       0x10
86 #define RX_CNTRL0_ADDR_FLTR_EN  0x20
87 #define RX_CNTRL0_RX_RUNT_EN    0x40
88 #define RX_CNTRL0_BCAST_DIS     0x80
89 #define RX_CNTRL1_DEFER_EN      0x01
90
91 /* Core Control Register */
92 #define CORE_RESET              0x01
93 #define CORE_RX_FIFO_FLUSH      0x02
94 #define CORE_TX_FIFO_FLUSH      0x04
95 #define CORE_SEND_JAM           0x08
96 #define CORE_MDC_EN             0x10 /* MDIO using NPE-B ETH-0 only */
97
98 #define DEFAULT_TX_CNTRL0       (TX_CNTRL0_TX_EN | TX_CNTRL0_RETRY |    \
99                                  TX_CNTRL0_PAD_EN | TX_CNTRL0_APPEND_FCS | \
100                                  TX_CNTRL0_2DEFER)
101 #define DEFAULT_RX_CNTRL0       RX_CNTRL0_RX_EN
102 #define DEFAULT_CORE_CNTRL      CORE_MDC_EN
103
104
105 /* NPE message codes */
106 #define NPE_GETSTATUS                   0x00
107 #define NPE_EDB_SETPORTADDRESS          0x01
108 #define NPE_EDB_GETMACADDRESSDATABASE   0x02
109 #define NPE_EDB_SETMACADDRESSSDATABASE  0x03
110 #define NPE_GETSTATS                    0x04
111 #define NPE_RESETSTATS                  0x05
112 #define NPE_SETMAXFRAMELENGTHS          0x06
113 #define NPE_VLAN_SETRXTAGMODE           0x07
114 #define NPE_VLAN_SETDEFAULTRXVID        0x08
115 #define NPE_VLAN_SETPORTVLANTABLEENTRY  0x09
116 #define NPE_VLAN_SETPORTVLANTABLERANGE  0x0A
117 #define NPE_VLAN_SETRXQOSENTRY          0x0B
118 #define NPE_VLAN_SETPORTIDEXTRACTIONMODE 0x0C
119 #define NPE_STP_SETBLOCKINGSTATE        0x0D
120 #define NPE_FW_SETFIREWALLMODE          0x0E
121 #define NPE_PC_SETFRAMECONTROLDURATIONID 0x0F
122 #define NPE_PC_SETAPMACTABLE            0x11
123 #define NPE_SETLOOPBACK_MODE            0x12
124 #define NPE_PC_SETBSSIDTABLE            0x13
125 #define NPE_ADDRESS_FILTER_CONFIG       0x14
126 #define NPE_APPENDFCSCONFIG             0x15
127 #define NPE_NOTIFY_MAC_RECOVERY_DONE    0x16
128 #define NPE_MAC_RECOVERY_START          0x17
129
130
131 #ifdef __ARMEB__
132 typedef struct sk_buff buffer_t;
133 #define free_buffer dev_kfree_skb
134 #define free_buffer_irq dev_kfree_skb_irq
135 #else
136 typedef void buffer_t;
137 #define free_buffer kfree
138 #define free_buffer_irq kfree
139 #endif
140
141 struct eth_regs {
142         u32 tx_control[2], __res1[2];           /* 000 */
143         u32 rx_control[2], __res2[2];           /* 010 */
144         u32 random_seed, __res3[3];             /* 020 */
145         u32 partial_empty_threshold, __res4;    /* 030 */
146         u32 partial_full_threshold, __res5;     /* 038 */
147         u32 tx_start_bytes, __res6[3];          /* 040 */
148         u32 tx_deferral, rx_deferral, __res7[2];/* 050 */
149         u32 tx_2part_deferral[2], __res8[2];    /* 060 */
150         u32 slot_time, __res9[3];               /* 070 */
151         u32 mdio_command[4];                    /* 080 */
152         u32 mdio_status[4];                     /* 090 */
153         u32 mcast_mask[6], __res10[2];          /* 0A0 */
154         u32 mcast_addr[6], __res11[2];          /* 0C0 */
155         u32 int_clock_threshold, __res12[3];    /* 0E0 */
156         u32 hw_addr[6], __res13[61];            /* 0F0 */
157         u32 core_control;                       /* 1FC */
158 };
159
160 struct port {
161         struct resource *mem_res;
162         struct eth_regs __iomem *regs;
163         struct npe *npe;
164         struct net_device *netdev;
165         struct napi_struct napi;
166         struct phy_device *phydev;
167         struct eth_plat_info *plat;
168         buffer_t *rx_buff_tab[RX_DESCS], *tx_buff_tab[TX_DESCS];
169         struct desc *desc_tab;  /* coherent */
170         u32 desc_tab_phys;
171         int id;                 /* logical port ID */
172         int speed, duplex;
173         u8 firmware[4];
174 };
175
176 /* NPE message structure */
177 struct msg {
178 #ifdef __ARMEB__
179         u8 cmd, eth_id, byte2, byte3;
180         u8 byte4, byte5, byte6, byte7;
181 #else
182         u8 byte3, byte2, eth_id, cmd;
183         u8 byte7, byte6, byte5, byte4;
184 #endif
185 };
186
187 /* Ethernet packet descriptor */
188 struct desc {
189         u32 next;               /* pointer to next buffer, unused */
190
191 #ifdef __ARMEB__
192         u16 buf_len;            /* buffer length */
193         u16 pkt_len;            /* packet length */
194         u32 data;               /* pointer to data buffer in RAM */
195         u8 dest_id;
196         u8 src_id;
197         u16 flags;
198         u8 qos;
199         u8 padlen;
200         u16 vlan_tci;
201 #else
202         u16 pkt_len;            /* packet length */
203         u16 buf_len;            /* buffer length */
204         u32 data;               /* pointer to data buffer in RAM */
205         u16 flags;
206         u8 src_id;
207         u8 dest_id;
208         u16 vlan_tci;
209         u8 padlen;
210         u8 qos;
211 #endif
212
213 #ifdef __ARMEB__
214         u8 dst_mac_0, dst_mac_1, dst_mac_2, dst_mac_3;
215         u8 dst_mac_4, dst_mac_5, src_mac_0, src_mac_1;
216         u8 src_mac_2, src_mac_3, src_mac_4, src_mac_5;
217 #else
218         u8 dst_mac_3, dst_mac_2, dst_mac_1, dst_mac_0;
219         u8 src_mac_1, src_mac_0, dst_mac_5, dst_mac_4;
220         u8 src_mac_5, src_mac_4, src_mac_3, src_mac_2;
221 #endif
222 };
223
224
225 #define rx_desc_phys(port, n)   ((port)->desc_tab_phys +                \
226                                  (n) * sizeof(struct desc))
227 #define rx_desc_ptr(port, n)    (&(port)->desc_tab[n])
228
229 #define tx_desc_phys(port, n)   ((port)->desc_tab_phys +                \
230                                  ((n) + RX_DESCS) * sizeof(struct desc))
231 #define tx_desc_ptr(port, n)    (&(port)->desc_tab[(n) + RX_DESCS])
232
233 #ifndef __ARMEB__
234 static inline void memcpy_swab32(u32 *dest, u32 *src, int cnt)
235 {
236         int i;
237         for (i = 0; i < cnt; i++)
238                 dest[i] = swab32(src[i]);
239 }
240 #endif
241
242 static spinlock_t mdio_lock;
243 static struct eth_regs __iomem *mdio_regs; /* mdio command and status only */
244 static struct mii_bus *mdio_bus;
245 static int ports_open;
246 static struct port *npe_port_tab[MAX_NPES];
247 static struct dma_pool *dma_pool;
248
249
250 static int ixp4xx_mdio_cmd(struct mii_bus *bus, int phy_id, int location,
251                            int write, u16 cmd)
252 {
253         int cycles = 0;
254
255         if (__raw_readl(&mdio_regs->mdio_command[3]) & 0x80) {
256                 printk(KERN_ERR "%s: MII not ready to transmit\n", bus->name);
257                 return -1;
258         }
259
260         if (write) {
261                 __raw_writel(cmd & 0xFF, &mdio_regs->mdio_command[0]);
262                 __raw_writel(cmd >> 8, &mdio_regs->mdio_command[1]);
263         }
264         __raw_writel(((phy_id << 5) | location) & 0xFF,
265                      &mdio_regs->mdio_command[2]);
266         __raw_writel((phy_id >> 3) | (write << 2) | 0x80 /* GO */,
267                      &mdio_regs->mdio_command[3]);
268
269         while ((cycles < MAX_MDIO_RETRIES) &&
270                (__raw_readl(&mdio_regs->mdio_command[3]) & 0x80)) {
271                 udelay(1);
272                 cycles++;
273         }
274
275         if (cycles == MAX_MDIO_RETRIES) {
276                 printk(KERN_ERR "%s #%i: MII write failed\n", bus->name,
277                        phy_id);
278                 return -1;
279         }
280
281 #if DEBUG_MDIO
282         printk(KERN_DEBUG "%s #%i: mdio_%s() took %i cycles\n", bus->name,
283                phy_id, write ? "write" : "read", cycles);
284 #endif
285
286         if (write)
287                 return 0;
288
289         if (__raw_readl(&mdio_regs->mdio_status[3]) & 0x80) {
290 #if DEBUG_MDIO
291                 printk(KERN_DEBUG "%s #%i: MII read failed\n", bus->name,
292                        phy_id);
293 #endif
294                 return 0xFFFF; /* don't return error */
295         }
296
297         return (__raw_readl(&mdio_regs->mdio_status[0]) & 0xFF) |
298                 ((__raw_readl(&mdio_regs->mdio_status[1]) & 0xFF) << 8);
299 }
300
301 static int ixp4xx_mdio_read(struct mii_bus *bus, int phy_id, int location)
302 {
303         unsigned long flags;
304         int ret;
305
306         spin_lock_irqsave(&mdio_lock, flags);
307         ret = ixp4xx_mdio_cmd(bus, phy_id, location, 0, 0);
308         spin_unlock_irqrestore(&mdio_lock, flags);
309 #if DEBUG_MDIO
310         printk(KERN_DEBUG "%s #%i: MII read [%i] -> 0x%X\n", bus->name,
311                phy_id, location, ret);
312 #endif
313         return ret;
314 }
315
316 static int ixp4xx_mdio_write(struct mii_bus *bus, int phy_id, int location,
317                              u16 val)
318 {
319         unsigned long flags;
320         int ret;
321
322         spin_lock_irqsave(&mdio_lock, flags);
323         ret = ixp4xx_mdio_cmd(bus, phy_id, location, 1, val);
324         spin_unlock_irqrestore(&mdio_lock, flags);
325 #if DEBUG_MDIO
326         printk(KERN_DEBUG "%s #%i: MII write [%i] <- 0x%X, err = %i\n",
327                bus->name, phy_id, location, val, ret);
328 #endif
329         return ret;
330 }
331
332 static int ixp4xx_mdio_register(void)
333 {
334         int err;
335
336         if (!(mdio_bus = mdiobus_alloc()))
337                 return -ENOMEM;
338
339         if (cpu_is_ixp43x()) {
340                 /* IXP43x lacks NPE-B and uses NPE-C for MII PHY access */
341                 if (!(ixp4xx_read_feature_bits() & IXP4XX_FEATURE_NPEC_ETH))
342                         return -ENODEV;
343                 mdio_regs = (struct eth_regs __iomem *)IXP4XX_EthC_BASE_VIRT;
344         } else {
345                 /* All MII PHY accesses use NPE-B Ethernet registers */
346                 if (!(ixp4xx_read_feature_bits() & IXP4XX_FEATURE_NPEB_ETH0))
347                         return -ENODEV;
348                 mdio_regs = (struct eth_regs __iomem *)IXP4XX_EthB_BASE_VIRT;
349         }
350
351         __raw_writel(DEFAULT_CORE_CNTRL, &mdio_regs->core_control);
352         spin_lock_init(&mdio_lock);
353         mdio_bus->name = "IXP4xx MII Bus";
354         mdio_bus->read = &ixp4xx_mdio_read;
355         mdio_bus->write = &ixp4xx_mdio_write;
356         strcpy(mdio_bus->id, "0");
357
358         if ((err = mdiobus_register(mdio_bus)))
359                 mdiobus_free(mdio_bus);
360         return err;
361 }
362
363 static void ixp4xx_mdio_remove(void)
364 {
365         mdiobus_unregister(mdio_bus);
366         mdiobus_free(mdio_bus);
367 }
368
369
370 static void ixp4xx_adjust_link(struct net_device *dev)
371 {
372         struct port *port = netdev_priv(dev);
373         struct phy_device *phydev = port->phydev;
374
375         if (!phydev->link) {
376                 if (port->speed) {
377                         port->speed = 0;
378                         printk(KERN_INFO "%s: link down\n", dev->name);
379                 }
380                 return;
381         }
382
383         if (port->speed == phydev->speed && port->duplex == phydev->duplex)
384                 return;
385
386         port->speed = phydev->speed;
387         port->duplex = phydev->duplex;
388
389         if (port->duplex)
390                 __raw_writel(DEFAULT_TX_CNTRL0 & ~TX_CNTRL0_HALFDUPLEX,
391                              &port->regs->tx_control[0]);
392         else
393                 __raw_writel(DEFAULT_TX_CNTRL0 | TX_CNTRL0_HALFDUPLEX,
394                              &port->regs->tx_control[0]);
395
396         printk(KERN_INFO "%s: link up, speed %u Mb/s, %s duplex\n",
397                dev->name, port->speed, port->duplex ? "full" : "half");
398 }
399
400
401 static inline void debug_pkt(struct net_device *dev, const char *func,
402                              u8 *data, int len)
403 {
404 #if DEBUG_PKT_BYTES
405         int i;
406
407         printk(KERN_DEBUG "%s: %s(%i) ", dev->name, func, len);
408         for (i = 0; i < len; i++) {
409                 if (i >= DEBUG_PKT_BYTES)
410                         break;
411                 printk("%s%02X",
412                        ((i == 6) || (i == 12) || (i >= 14)) ? " " : "",
413                        data[i]);
414         }
415         printk("\n");
416 #endif
417 }
418
419
420 static inline void debug_desc(u32 phys, struct desc *desc)
421 {
422 #if DEBUG_DESC
423         printk(KERN_DEBUG "%X: %X %3X %3X %08X %2X < %2X %4X %X"
424                " %X %X %02X%02X%02X%02X%02X%02X < %02X%02X%02X%02X%02X%02X\n",
425                phys, desc->next, desc->buf_len, desc->pkt_len,
426                desc->data, desc->dest_id, desc->src_id, desc->flags,
427                desc->qos, desc->padlen, desc->vlan_tci,
428                desc->dst_mac_0, desc->dst_mac_1, desc->dst_mac_2,
429                desc->dst_mac_3, desc->dst_mac_4, desc->dst_mac_5,
430                desc->src_mac_0, desc->src_mac_1, desc->src_mac_2,
431                desc->src_mac_3, desc->src_mac_4, desc->src_mac_5);
432 #endif
433 }
434
435 static inline int queue_get_desc(unsigned int queue, struct port *port,
436                                  int is_tx)
437 {
438         u32 phys, tab_phys, n_desc;
439         struct desc *tab;
440
441         if (!(phys = qmgr_get_entry(queue)))
442                 return -1;
443
444         phys &= ~0x1F; /* mask out non-address bits */
445         tab_phys = is_tx ? tx_desc_phys(port, 0) : rx_desc_phys(port, 0);
446         tab = is_tx ? tx_desc_ptr(port, 0) : rx_desc_ptr(port, 0);
447         n_desc = (phys - tab_phys) / sizeof(struct desc);
448         BUG_ON(n_desc >= (is_tx ? TX_DESCS : RX_DESCS));
449         debug_desc(phys, &tab[n_desc]);
450         BUG_ON(tab[n_desc].next);
451         return n_desc;
452 }
453
454 static inline void queue_put_desc(unsigned int queue, u32 phys,
455                                   struct desc *desc)
456 {
457         debug_desc(phys, desc);
458         BUG_ON(phys & 0x1F);
459         qmgr_put_entry(queue, phys);
460         /* Don't check for queue overflow here, we've allocated sufficient
461            length and queues >= 32 don't support this check anyway. */
462 }
463
464
465 static inline void dma_unmap_tx(struct port *port, struct desc *desc)
466 {
467 #ifdef __ARMEB__
468         dma_unmap_single(&port->netdev->dev, desc->data,
469                          desc->buf_len, DMA_TO_DEVICE);
470 #else
471         dma_unmap_single(&port->netdev->dev, desc->data & ~3,
472                          ALIGN((desc->data & 3) + desc->buf_len, 4),
473                          DMA_TO_DEVICE);
474 #endif
475 }
476
477
478 static void eth_rx_irq(void *pdev)
479 {
480         struct net_device *dev = pdev;
481         struct port *port = netdev_priv(dev);
482
483 #if DEBUG_RX
484         printk(KERN_DEBUG "%s: eth_rx_irq\n", dev->name);
485 #endif
486         qmgr_disable_irq(port->plat->rxq);
487         napi_schedule(&port->napi);
488 }
489
490 static int eth_poll(struct napi_struct *napi, int budget)
491 {
492         struct port *port = container_of(napi, struct port, napi);
493         struct net_device *dev = port->netdev;
494         unsigned int rxq = port->plat->rxq, rxfreeq = RXFREE_QUEUE(port->id);
495         int received = 0;
496
497 #if DEBUG_RX
498         printk(KERN_DEBUG "%s: eth_poll\n", dev->name);
499 #endif
500
501         while (received < budget) {
502                 struct sk_buff *skb;
503                 struct desc *desc;
504                 int n;
505 #ifdef __ARMEB__
506                 struct sk_buff *temp;
507                 u32 phys;
508 #endif
509
510                 if ((n = queue_get_desc(rxq, port, 0)) < 0) {
511 #if DEBUG_RX
512                         printk(KERN_DEBUG "%s: eth_poll napi_complete\n",
513                                dev->name);
514 #endif
515                         napi_complete(napi);
516                         qmgr_enable_irq(rxq);
517                         if (!qmgr_stat_below_low_watermark(rxq) &&
518                             napi_reschedule(napi)) { /* not empty again */
519 #if DEBUG_RX
520                                 printk(KERN_DEBUG "%s: eth_poll"
521                                        " napi_reschedule successed\n",
522                                        dev->name);
523 #endif
524                                 qmgr_disable_irq(rxq);
525                                 continue;
526                         }
527 #if DEBUG_RX
528                         printk(KERN_DEBUG "%s: eth_poll all done\n",
529                                dev->name);
530 #endif
531                         return received; /* all work done */
532                 }
533
534                 desc = rx_desc_ptr(port, n);
535
536 #ifdef __ARMEB__
537                 if ((skb = netdev_alloc_skb(dev, RX_BUFF_SIZE))) {
538                         phys = dma_map_single(&dev->dev, skb->data,
539                                               RX_BUFF_SIZE, DMA_FROM_DEVICE);
540                         if (dma_mapping_error(&dev->dev, phys)) {
541                                 dev_kfree_skb(skb);
542                                 skb = NULL;
543                         }
544                 }
545 #else
546                 skb = netdev_alloc_skb(dev,
547                                        ALIGN(NET_IP_ALIGN + desc->pkt_len, 4));
548 #endif
549
550                 if (!skb) {
551                         dev->stats.rx_dropped++;
552                         /* put the desc back on RX-ready queue */
553                         desc->buf_len = MAX_MRU;
554                         desc->pkt_len = 0;
555                         queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
556                         continue;
557                 }
558
559                 /* process received frame */
560 #ifdef __ARMEB__
561                 temp = skb;
562                 skb = port->rx_buff_tab[n];
563                 dma_unmap_single(&dev->dev, desc->data - NET_IP_ALIGN,
564                                  RX_BUFF_SIZE, DMA_FROM_DEVICE);
565 #else
566                 dma_sync_single_for_cpu(&dev->dev, desc->data - NET_IP_ALIGN,
567                                         RX_BUFF_SIZE, DMA_FROM_DEVICE);
568                 memcpy_swab32((u32 *)skb->data, (u32 *)port->rx_buff_tab[n],
569                               ALIGN(NET_IP_ALIGN + desc->pkt_len, 4) / 4);
570 #endif
571                 skb_reserve(skb, NET_IP_ALIGN);
572                 skb_put(skb, desc->pkt_len);
573
574                 debug_pkt(dev, "eth_poll", skb->data, skb->len);
575
576                 skb->protocol = eth_type_trans(skb, dev);
577                 dev->stats.rx_packets++;
578                 dev->stats.rx_bytes += skb->len;
579                 netif_receive_skb(skb);
580
581                 /* put the new buffer on RX-free queue */
582 #ifdef __ARMEB__
583                 port->rx_buff_tab[n] = temp;
584                 desc->data = phys + NET_IP_ALIGN;
585 #endif
586                 desc->buf_len = MAX_MRU;
587                 desc->pkt_len = 0;
588                 queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
589                 received++;
590         }
591
592 #if DEBUG_RX
593         printk(KERN_DEBUG "eth_poll(): end, not all work done\n");
594 #endif
595         return received;                /* not all work done */
596 }
597
598
599 static void eth_txdone_irq(void *unused)
600 {
601         u32 phys;
602
603 #if DEBUG_TX
604         printk(KERN_DEBUG DRV_NAME ": eth_txdone_irq\n");
605 #endif
606         while ((phys = qmgr_get_entry(TXDONE_QUEUE)) != 0) {
607                 u32 npe_id, n_desc;
608                 struct port *port;
609                 struct desc *desc;
610                 int start;
611
612                 npe_id = phys & 3;
613                 BUG_ON(npe_id >= MAX_NPES);
614                 port = npe_port_tab[npe_id];
615                 BUG_ON(!port);
616                 phys &= ~0x1F; /* mask out non-address bits */
617                 n_desc = (phys - tx_desc_phys(port, 0)) / sizeof(struct desc);
618                 BUG_ON(n_desc >= TX_DESCS);
619                 desc = tx_desc_ptr(port, n_desc);
620                 debug_desc(phys, desc);
621
622                 if (port->tx_buff_tab[n_desc]) { /* not the draining packet */
623                         port->netdev->stats.tx_packets++;
624                         port->netdev->stats.tx_bytes += desc->pkt_len;
625
626                         dma_unmap_tx(port, desc);
627 #if DEBUG_TX
628                         printk(KERN_DEBUG "%s: eth_txdone_irq free %p\n",
629                                port->netdev->name, port->tx_buff_tab[n_desc]);
630 #endif
631                         free_buffer_irq(port->tx_buff_tab[n_desc]);
632                         port->tx_buff_tab[n_desc] = NULL;
633                 }
634
635                 start = qmgr_stat_below_low_watermark(port->plat->txreadyq);
636                 queue_put_desc(port->plat->txreadyq, phys, desc);
637                 if (start) { /* TX-ready queue was empty */
638 #if DEBUG_TX
639                         printk(KERN_DEBUG "%s: eth_txdone_irq xmit ready\n",
640                                port->netdev->name);
641 #endif
642                         netif_wake_queue(port->netdev);
643                 }
644         }
645 }
646
647 static int eth_xmit(struct sk_buff *skb, struct net_device *dev)
648 {
649         struct port *port = netdev_priv(dev);
650         unsigned int txreadyq = port->plat->txreadyq;
651         int len, offset, bytes, n;
652         void *mem;
653         u32 phys;
654         struct desc *desc;
655
656 #if DEBUG_TX
657         printk(KERN_DEBUG "%s: eth_xmit\n", dev->name);
658 #endif
659
660         if (unlikely(skb->len > MAX_MRU)) {
661                 dev_kfree_skb(skb);
662                 dev->stats.tx_errors++;
663                 return NETDEV_TX_OK;
664         }
665
666         debug_pkt(dev, "eth_xmit", skb->data, skb->len);
667
668         len = skb->len;
669 #ifdef __ARMEB__
670         offset = 0; /* no need to keep alignment */
671         bytes = len;
672         mem = skb->data;
673 #else
674         offset = (int)skb->data & 3; /* keep 32-bit alignment */
675         bytes = ALIGN(offset + len, 4);
676         if (!(mem = kmalloc(bytes, GFP_ATOMIC))) {
677                 dev_kfree_skb(skb);
678                 dev->stats.tx_dropped++;
679                 return NETDEV_TX_OK;
680         }
681         memcpy_swab32(mem, (u32 *)((int)skb->data & ~3), bytes / 4);
682         dev_kfree_skb(skb);
683 #endif
684
685         phys = dma_map_single(&dev->dev, mem, bytes, DMA_TO_DEVICE);
686         if (dma_mapping_error(&dev->dev, phys)) {
687 #ifdef __ARMEB__
688                 dev_kfree_skb(skb);
689 #else
690                 kfree(mem);
691 #endif
692                 dev->stats.tx_dropped++;
693                 return NETDEV_TX_OK;
694         }
695
696         n = queue_get_desc(txreadyq, port, 1);
697         BUG_ON(n < 0);
698         desc = tx_desc_ptr(port, n);
699
700 #ifdef __ARMEB__
701         port->tx_buff_tab[n] = skb;
702 #else
703         port->tx_buff_tab[n] = mem;
704 #endif
705         desc->data = phys + offset;
706         desc->buf_len = desc->pkt_len = len;
707
708         /* NPE firmware pads short frames with zeros internally */
709         wmb();
710         queue_put_desc(TX_QUEUE(port->id), tx_desc_phys(port, n), desc);
711
712         if (qmgr_stat_below_low_watermark(txreadyq)) { /* empty */
713 #if DEBUG_TX
714                 printk(KERN_DEBUG "%s: eth_xmit queue full\n", dev->name);
715 #endif
716                 netif_stop_queue(dev);
717                 /* we could miss TX ready interrupt */
718                 /* really empty in fact */
719                 if (!qmgr_stat_below_low_watermark(txreadyq)) {
720 #if DEBUG_TX
721                         printk(KERN_DEBUG "%s: eth_xmit ready again\n",
722                                dev->name);
723 #endif
724                         netif_wake_queue(dev);
725                 }
726         }
727
728 #if DEBUG_TX
729         printk(KERN_DEBUG "%s: eth_xmit end\n", dev->name);
730 #endif
731         return NETDEV_TX_OK;
732 }
733
734
735 static void eth_set_mcast_list(struct net_device *dev)
736 {
737         struct port *port = netdev_priv(dev);
738         struct netdev_hw_addr *ha;
739         u8 diffs[ETH_ALEN], *addr;
740         int i;
741         static const u8 allmulti[] = { 0x01, 0x00, 0x00, 0x00, 0x00, 0x00 };
742
743         if (dev->flags & IFF_ALLMULTI) {
744                 for (i = 0; i < ETH_ALEN; i++) {
745                         __raw_writel(allmulti[i], &port->regs->mcast_addr[i]);
746                         __raw_writel(allmulti[i], &port->regs->mcast_mask[i]);
747                 }
748                 __raw_writel(DEFAULT_RX_CNTRL0 | RX_CNTRL0_ADDR_FLTR_EN,
749                         &port->regs->rx_control[0]);
750                 return;
751         }
752
753         if ((dev->flags & IFF_PROMISC) || netdev_mc_empty(dev)) {
754                 __raw_writel(DEFAULT_RX_CNTRL0 & ~RX_CNTRL0_ADDR_FLTR_EN,
755                              &port->regs->rx_control[0]);
756                 return;
757         }
758
759         memset(diffs, 0, ETH_ALEN);
760
761         addr = NULL;
762         netdev_for_each_mc_addr(ha, dev) {
763                 if (!addr)
764                         addr = ha->addr; /* first MAC address */
765                 for (i = 0; i < ETH_ALEN; i++)
766                         diffs[i] |= addr[i] ^ ha->addr[i];
767         }
768
769         for (i = 0; i < ETH_ALEN; i++) {
770                 __raw_writel(addr[i], &port->regs->mcast_addr[i]);
771                 __raw_writel(~diffs[i], &port->regs->mcast_mask[i]);
772         }
773
774         __raw_writel(DEFAULT_RX_CNTRL0 | RX_CNTRL0_ADDR_FLTR_EN,
775                      &port->regs->rx_control[0]);
776 }
777
778
779 static int eth_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
780 {
781         struct port *port = netdev_priv(dev);
782
783         if (!netif_running(dev))
784                 return -EINVAL;
785
786         return phy_mii_ioctl(port->phydev, req, cmd);
787 }
788
789 /* ethtool support */
790
791 static void ixp4xx_get_drvinfo(struct net_device *dev,
792                                struct ethtool_drvinfo *info)
793 {
794         struct port *port = netdev_priv(dev);
795         strcpy(info->driver, DRV_NAME);
796         snprintf(info->fw_version, sizeof(info->fw_version), "%u:%u:%u:%u",
797                  port->firmware[0], port->firmware[1],
798                  port->firmware[2], port->firmware[3]);
799         strcpy(info->bus_info, "internal");
800 }
801
802 static int ixp4xx_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
803 {
804         struct port *port = netdev_priv(dev);
805         return phy_ethtool_gset(port->phydev, cmd);
806 }
807
808 static int ixp4xx_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
809 {
810         struct port *port = netdev_priv(dev);
811         return phy_ethtool_sset(port->phydev, cmd);
812 }
813
814 static int ixp4xx_nway_reset(struct net_device *dev)
815 {
816         struct port *port = netdev_priv(dev);
817         return phy_start_aneg(port->phydev);
818 }
819
820 static const struct ethtool_ops ixp4xx_ethtool_ops = {
821         .get_drvinfo = ixp4xx_get_drvinfo,
822         .get_settings = ixp4xx_get_settings,
823         .set_settings = ixp4xx_set_settings,
824         .nway_reset = ixp4xx_nway_reset,
825         .get_link = ethtool_op_get_link,
826 };
827
828
829 static int request_queues(struct port *port)
830 {
831         int err;
832
833         err = qmgr_request_queue(RXFREE_QUEUE(port->id), RX_DESCS, 0, 0,
834                                  "%s:RX-free", port->netdev->name);
835         if (err)
836                 return err;
837
838         err = qmgr_request_queue(port->plat->rxq, RX_DESCS, 0, 0,
839                                  "%s:RX", port->netdev->name);
840         if (err)
841                 goto rel_rxfree;
842
843         err = qmgr_request_queue(TX_QUEUE(port->id), TX_DESCS, 0, 0,
844                                  "%s:TX", port->netdev->name);
845         if (err)
846                 goto rel_rx;
847
848         err = qmgr_request_queue(port->plat->txreadyq, TX_DESCS, 0, 0,
849                                  "%s:TX-ready", port->netdev->name);
850         if (err)
851                 goto rel_tx;
852
853         /* TX-done queue handles skbs sent out by the NPEs */
854         if (!ports_open) {
855                 err = qmgr_request_queue(TXDONE_QUEUE, TXDONE_QUEUE_LEN, 0, 0,
856                                          "%s:TX-done", DRV_NAME);
857                 if (err)
858                         goto rel_txready;
859         }
860         return 0;
861
862 rel_txready:
863         qmgr_release_queue(port->plat->txreadyq);
864 rel_tx:
865         qmgr_release_queue(TX_QUEUE(port->id));
866 rel_rx:
867         qmgr_release_queue(port->plat->rxq);
868 rel_rxfree:
869         qmgr_release_queue(RXFREE_QUEUE(port->id));
870         printk(KERN_DEBUG "%s: unable to request hardware queues\n",
871                port->netdev->name);
872         return err;
873 }
874
875 static void release_queues(struct port *port)
876 {
877         qmgr_release_queue(RXFREE_QUEUE(port->id));
878         qmgr_release_queue(port->plat->rxq);
879         qmgr_release_queue(TX_QUEUE(port->id));
880         qmgr_release_queue(port->plat->txreadyq);
881
882         if (!ports_open)
883                 qmgr_release_queue(TXDONE_QUEUE);
884 }
885
886 static int init_queues(struct port *port)
887 {
888         int i;
889
890         if (!ports_open)
891                 if (!(dma_pool = dma_pool_create(DRV_NAME, NULL,
892                                                  POOL_ALLOC_SIZE, 32, 0)))
893                         return -ENOMEM;
894
895         if (!(port->desc_tab = dma_pool_alloc(dma_pool, GFP_KERNEL,
896                                               &port->desc_tab_phys)))
897                 return -ENOMEM;
898         memset(port->desc_tab, 0, POOL_ALLOC_SIZE);
899         memset(port->rx_buff_tab, 0, sizeof(port->rx_buff_tab)); /* tables */
900         memset(port->tx_buff_tab, 0, sizeof(port->tx_buff_tab));
901
902         /* Setup RX buffers */
903         for (i = 0; i < RX_DESCS; i++) {
904                 struct desc *desc = rx_desc_ptr(port, i);
905                 buffer_t *buff; /* skb or kmalloc()ated memory */
906                 void *data;
907 #ifdef __ARMEB__
908                 if (!(buff = netdev_alloc_skb(port->netdev, RX_BUFF_SIZE)))
909                         return -ENOMEM;
910                 data = buff->data;
911 #else
912                 if (!(buff = kmalloc(RX_BUFF_SIZE, GFP_KERNEL)))
913                         return -ENOMEM;
914                 data = buff;
915 #endif
916                 desc->buf_len = MAX_MRU;
917                 desc->data = dma_map_single(&port->netdev->dev, data,
918                                             RX_BUFF_SIZE, DMA_FROM_DEVICE);
919                 if (dma_mapping_error(&port->netdev->dev, desc->data)) {
920                         free_buffer(buff);
921                         return -EIO;
922                 }
923                 desc->data += NET_IP_ALIGN;
924                 port->rx_buff_tab[i] = buff;
925         }
926
927         return 0;
928 }
929
930 static void destroy_queues(struct port *port)
931 {
932         int i;
933
934         if (port->desc_tab) {
935                 for (i = 0; i < RX_DESCS; i++) {
936                         struct desc *desc = rx_desc_ptr(port, i);
937                         buffer_t *buff = port->rx_buff_tab[i];
938                         if (buff) {
939                                 dma_unmap_single(&port->netdev->dev,
940                                                  desc->data - NET_IP_ALIGN,
941                                                  RX_BUFF_SIZE, DMA_FROM_DEVICE);
942                                 free_buffer(buff);
943                         }
944                 }
945                 for (i = 0; i < TX_DESCS; i++) {
946                         struct desc *desc = tx_desc_ptr(port, i);
947                         buffer_t *buff = port->tx_buff_tab[i];
948                         if (buff) {
949                                 dma_unmap_tx(port, desc);
950                                 free_buffer(buff);
951                         }
952                 }
953                 dma_pool_free(dma_pool, port->desc_tab, port->desc_tab_phys);
954                 port->desc_tab = NULL;
955         }
956
957         if (!ports_open && dma_pool) {
958                 dma_pool_destroy(dma_pool);
959                 dma_pool = NULL;
960         }
961 }
962
963 static int eth_open(struct net_device *dev)
964 {
965         struct port *port = netdev_priv(dev);
966         struct npe *npe = port->npe;
967         struct msg msg;
968         int i, err;
969
970         if (!npe_running(npe)) {
971                 err = npe_load_firmware(npe, npe_name(npe), &dev->dev);
972                 if (err)
973                         return err;
974
975                 if (npe_recv_message(npe, &msg, "ETH_GET_STATUS")) {
976                         printk(KERN_ERR "%s: %s not responding\n", dev->name,
977                                npe_name(npe));
978                         return -EIO;
979                 }
980                 port->firmware[0] = msg.byte4;
981                 port->firmware[1] = msg.byte5;
982                 port->firmware[2] = msg.byte6;
983                 port->firmware[3] = msg.byte7;
984         }
985
986         memset(&msg, 0, sizeof(msg));
987         msg.cmd = NPE_VLAN_SETRXQOSENTRY;
988         msg.eth_id = port->id;
989         msg.byte5 = port->plat->rxq | 0x80;
990         msg.byte7 = port->plat->rxq << 4;
991         for (i = 0; i < 8; i++) {
992                 msg.byte3 = i;
993                 if (npe_send_recv_message(port->npe, &msg, "ETH_SET_RXQ"))
994                         return -EIO;
995         }
996
997         msg.cmd = NPE_EDB_SETPORTADDRESS;
998         msg.eth_id = PHYSICAL_ID(port->id);
999         msg.byte2 = dev->dev_addr[0];
1000         msg.byte3 = dev->dev_addr[1];
1001         msg.byte4 = dev->dev_addr[2];
1002         msg.byte5 = dev->dev_addr[3];
1003         msg.byte6 = dev->dev_addr[4];
1004         msg.byte7 = dev->dev_addr[5];
1005         if (npe_send_recv_message(port->npe, &msg, "ETH_SET_MAC"))
1006                 return -EIO;
1007
1008         memset(&msg, 0, sizeof(msg));
1009         msg.cmd = NPE_FW_SETFIREWALLMODE;
1010         msg.eth_id = port->id;
1011         if (npe_send_recv_message(port->npe, &msg, "ETH_SET_FIREWALL_MODE"))
1012                 return -EIO;
1013
1014         if ((err = request_queues(port)) != 0)
1015                 return err;
1016
1017         if ((err = init_queues(port)) != 0) {
1018                 destroy_queues(port);
1019                 release_queues(port);
1020                 return err;
1021         }
1022
1023         port->speed = 0;        /* force "link up" message */
1024         phy_start(port->phydev);
1025
1026         for (i = 0; i < ETH_ALEN; i++)
1027                 __raw_writel(dev->dev_addr[i], &port->regs->hw_addr[i]);
1028         __raw_writel(0x08, &port->regs->random_seed);
1029         __raw_writel(0x12, &port->regs->partial_empty_threshold);
1030         __raw_writel(0x30, &port->regs->partial_full_threshold);
1031         __raw_writel(0x08, &port->regs->tx_start_bytes);
1032         __raw_writel(0x15, &port->regs->tx_deferral);
1033         __raw_writel(0x08, &port->regs->tx_2part_deferral[0]);
1034         __raw_writel(0x07, &port->regs->tx_2part_deferral[1]);
1035         __raw_writel(0x80, &port->regs->slot_time);
1036         __raw_writel(0x01, &port->regs->int_clock_threshold);
1037
1038         /* Populate queues with buffers, no failure after this point */
1039         for (i = 0; i < TX_DESCS; i++)
1040                 queue_put_desc(port->plat->txreadyq,
1041                                tx_desc_phys(port, i), tx_desc_ptr(port, i));
1042
1043         for (i = 0; i < RX_DESCS; i++)
1044                 queue_put_desc(RXFREE_QUEUE(port->id),
1045                                rx_desc_phys(port, i), rx_desc_ptr(port, i));
1046
1047         __raw_writel(TX_CNTRL1_RETRIES, &port->regs->tx_control[1]);
1048         __raw_writel(DEFAULT_TX_CNTRL0, &port->regs->tx_control[0]);
1049         __raw_writel(0, &port->regs->rx_control[1]);
1050         __raw_writel(DEFAULT_RX_CNTRL0, &port->regs->rx_control[0]);
1051
1052         napi_enable(&port->napi);
1053         eth_set_mcast_list(dev);
1054         netif_start_queue(dev);
1055
1056         qmgr_set_irq(port->plat->rxq, QUEUE_IRQ_SRC_NOT_EMPTY,
1057                      eth_rx_irq, dev);
1058         if (!ports_open) {
1059                 qmgr_set_irq(TXDONE_QUEUE, QUEUE_IRQ_SRC_NOT_EMPTY,
1060                              eth_txdone_irq, NULL);
1061                 qmgr_enable_irq(TXDONE_QUEUE);
1062         }
1063         ports_open++;
1064         /* we may already have RX data, enables IRQ */
1065         napi_schedule(&port->napi);
1066         return 0;
1067 }
1068
1069 static int eth_close(struct net_device *dev)
1070 {
1071         struct port *port = netdev_priv(dev);
1072         struct msg msg;
1073         int buffs = RX_DESCS; /* allocated RX buffers */
1074         int i;
1075
1076         ports_open--;
1077         qmgr_disable_irq(port->plat->rxq);
1078         napi_disable(&port->napi);
1079         netif_stop_queue(dev);
1080
1081         while (queue_get_desc(RXFREE_QUEUE(port->id), port, 0) >= 0)
1082                 buffs--;
1083
1084         memset(&msg, 0, sizeof(msg));
1085         msg.cmd = NPE_SETLOOPBACK_MODE;
1086         msg.eth_id = port->id;
1087         msg.byte3 = 1;
1088         if (npe_send_recv_message(port->npe, &msg, "ETH_ENABLE_LOOPBACK"))
1089                 printk(KERN_CRIT "%s: unable to enable loopback\n", dev->name);
1090
1091         i = 0;
1092         do {                    /* drain RX buffers */
1093                 while (queue_get_desc(port->plat->rxq, port, 0) >= 0)
1094                         buffs--;
1095                 if (!buffs)
1096                         break;
1097                 if (qmgr_stat_empty(TX_QUEUE(port->id))) {
1098                         /* we have to inject some packet */
1099                         struct desc *desc;
1100                         u32 phys;
1101                         int n = queue_get_desc(port->plat->txreadyq, port, 1);
1102                         BUG_ON(n < 0);
1103                         desc = tx_desc_ptr(port, n);
1104                         phys = tx_desc_phys(port, n);
1105                         desc->buf_len = desc->pkt_len = 1;
1106                         wmb();
1107                         queue_put_desc(TX_QUEUE(port->id), phys, desc);
1108                 }
1109                 udelay(1);
1110         } while (++i < MAX_CLOSE_WAIT);
1111
1112         if (buffs)
1113                 printk(KERN_CRIT "%s: unable to drain RX queue, %i buffer(s)"
1114                        " left in NPE\n", dev->name, buffs);
1115 #if DEBUG_CLOSE
1116         if (!buffs)
1117                 printk(KERN_DEBUG "Draining RX queue took %i cycles\n", i);
1118 #endif
1119
1120         buffs = TX_DESCS;
1121         while (queue_get_desc(TX_QUEUE(port->id), port, 1) >= 0)
1122                 buffs--; /* cancel TX */
1123
1124         i = 0;
1125         do {
1126                 while (queue_get_desc(port->plat->txreadyq, port, 1) >= 0)
1127                         buffs--;
1128                 if (!buffs)
1129                         break;
1130         } while (++i < MAX_CLOSE_WAIT);
1131
1132         if (buffs)
1133                 printk(KERN_CRIT "%s: unable to drain TX queue, %i buffer(s) "
1134                        "left in NPE\n", dev->name, buffs);
1135 #if DEBUG_CLOSE
1136         if (!buffs)
1137                 printk(KERN_DEBUG "Draining TX queues took %i cycles\n", i);
1138 #endif
1139
1140         msg.byte3 = 0;
1141         if (npe_send_recv_message(port->npe, &msg, "ETH_DISABLE_LOOPBACK"))
1142                 printk(KERN_CRIT "%s: unable to disable loopback\n",
1143                        dev->name);
1144
1145         phy_stop(port->phydev);
1146
1147         if (!ports_open)
1148                 qmgr_disable_irq(TXDONE_QUEUE);
1149         destroy_queues(port);
1150         release_queues(port);
1151         return 0;
1152 }
1153
1154 static const struct net_device_ops ixp4xx_netdev_ops = {
1155         .ndo_open = eth_open,
1156         .ndo_stop = eth_close,
1157         .ndo_start_xmit = eth_xmit,
1158         .ndo_set_multicast_list = eth_set_mcast_list,
1159         .ndo_do_ioctl = eth_ioctl,
1160         .ndo_change_mtu = eth_change_mtu,
1161         .ndo_set_mac_address = eth_mac_addr,
1162         .ndo_validate_addr = eth_validate_addr,
1163 };
1164
1165 static int __devinit eth_init_one(struct platform_device *pdev)
1166 {
1167         struct port *port;
1168         struct net_device *dev;
1169         struct eth_plat_info *plat = pdev->dev.platform_data;
1170         u32 regs_phys;
1171         char phy_id[MII_BUS_ID_SIZE + 3];
1172         int err;
1173
1174         if (!(dev = alloc_etherdev(sizeof(struct port))))
1175                 return -ENOMEM;
1176
1177         SET_NETDEV_DEV(dev, &pdev->dev);
1178         port = netdev_priv(dev);
1179         port->netdev = dev;
1180         port->id = pdev->id;
1181
1182         switch (port->id) {
1183         case IXP4XX_ETH_NPEA:
1184                 port->regs = (struct eth_regs __iomem *)IXP4XX_EthA_BASE_VIRT;
1185                 regs_phys  = IXP4XX_EthA_BASE_PHYS;
1186                 break;
1187         case IXP4XX_ETH_NPEB:
1188                 port->regs = (struct eth_regs __iomem *)IXP4XX_EthB_BASE_VIRT;
1189                 regs_phys  = IXP4XX_EthB_BASE_PHYS;
1190                 break;
1191         case IXP4XX_ETH_NPEC:
1192                 port->regs = (struct eth_regs __iomem *)IXP4XX_EthC_BASE_VIRT;
1193                 regs_phys  = IXP4XX_EthC_BASE_PHYS;
1194                 break;
1195         default:
1196                 err = -ENODEV;
1197                 goto err_free;
1198         }
1199
1200         dev->netdev_ops = &ixp4xx_netdev_ops;
1201         dev->ethtool_ops = &ixp4xx_ethtool_ops;
1202         dev->tx_queue_len = 100;
1203
1204         netif_napi_add(dev, &port->napi, eth_poll, NAPI_WEIGHT);
1205
1206         if (!(port->npe = npe_request(NPE_ID(port->id)))) {
1207                 err = -EIO;
1208                 goto err_free;
1209         }
1210
1211         port->mem_res = request_mem_region(regs_phys, REGS_SIZE, dev->name);
1212         if (!port->mem_res) {
1213                 err = -EBUSY;
1214                 goto err_npe_rel;
1215         }
1216
1217         port->plat = plat;
1218         npe_port_tab[NPE_ID(port->id)] = port;
1219         memcpy(dev->dev_addr, plat->hwaddr, ETH_ALEN);
1220
1221         platform_set_drvdata(pdev, dev);
1222
1223         __raw_writel(DEFAULT_CORE_CNTRL | CORE_RESET,
1224                      &port->regs->core_control);
1225         udelay(50);
1226         __raw_writel(DEFAULT_CORE_CNTRL, &port->regs->core_control);
1227         udelay(50);
1228
1229         snprintf(phy_id, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, "0", plat->phy);
1230         port->phydev = phy_connect(dev, phy_id, &ixp4xx_adjust_link, 0,
1231                                    PHY_INTERFACE_MODE_MII);
1232         if ((err = IS_ERR(port->phydev)))
1233                 goto err_free_mem;
1234
1235         port->phydev->irq = PHY_POLL;
1236
1237         if ((err = register_netdev(dev)))
1238                 goto err_phy_dis;
1239
1240         printk(KERN_INFO "%s: MII PHY %i on %s\n", dev->name, plat->phy,
1241                npe_name(port->npe));
1242
1243         return 0;
1244
1245 err_phy_dis:
1246         phy_disconnect(port->phydev);
1247 err_free_mem:
1248         npe_port_tab[NPE_ID(port->id)] = NULL;
1249         platform_set_drvdata(pdev, NULL);
1250         release_resource(port->mem_res);
1251 err_npe_rel:
1252         npe_release(port->npe);
1253 err_free:
1254         free_netdev(dev);
1255         return err;
1256 }
1257
1258 static int __devexit eth_remove_one(struct platform_device *pdev)
1259 {
1260         struct net_device *dev = platform_get_drvdata(pdev);
1261         struct port *port = netdev_priv(dev);
1262
1263         unregister_netdev(dev);
1264         phy_disconnect(port->phydev);
1265         npe_port_tab[NPE_ID(port->id)] = NULL;
1266         platform_set_drvdata(pdev, NULL);
1267         npe_release(port->npe);
1268         release_resource(port->mem_res);
1269         free_netdev(dev);
1270         return 0;
1271 }
1272
1273 static struct platform_driver ixp4xx_eth_driver = {
1274         .driver.name    = DRV_NAME,
1275         .probe          = eth_init_one,
1276         .remove         = eth_remove_one,
1277 };
1278
1279 static int __init eth_init_module(void)
1280 {
1281         int err;
1282         if ((err = ixp4xx_mdio_register()))
1283                 return err;
1284         return platform_driver_register(&ixp4xx_eth_driver);
1285 }
1286
1287 static void __exit eth_cleanup_module(void)
1288 {
1289         platform_driver_unregister(&ixp4xx_eth_driver);
1290         ixp4xx_mdio_remove();
1291 }
1292
1293 MODULE_AUTHOR("Krzysztof Halasa");
1294 MODULE_DESCRIPTION("Intel IXP4xx Ethernet driver");
1295 MODULE_LICENSE("GPL v2");
1296 MODULE_ALIAS("platform:ixp4xx_eth");
1297 module_init(eth_init_module);
1298 module_exit(eth_cleanup_module);