Merge branch 'i2c-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jdelvar...
[pandora-kernel.git] / drivers / mtd / ubi / scan.c
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Author: Artem Bityutskiy (Битюцкий Артём)
19  */
20
21 /*
22  * UBI scanning sub-system.
23  *
24  * This sub-system is responsible for scanning the flash media, checking UBI
25  * headers and providing complete information about the UBI flash image.
26  *
27  * The scanning information is represented by a &struct ubi_scan_info' object.
28  * Information about found volumes is represented by &struct ubi_scan_volume
29  * objects which are kept in volume RB-tree with root at the @volumes field.
30  * The RB-tree is indexed by the volume ID.
31  *
32  * Found logical eraseblocks are represented by &struct ubi_scan_leb objects.
33  * These objects are kept in per-volume RB-trees with the root at the
34  * corresponding &struct ubi_scan_volume object. To put it differently, we keep
35  * an RB-tree of per-volume objects and each of these objects is the root of
36  * RB-tree of per-eraseblock objects.
37  *
38  * Corrupted physical eraseblocks are put to the @corr list, free physical
39  * eraseblocks are put to the @free list and the physical eraseblock to be
40  * erased are put to the @erase list.
41  */
42
43 #include <linux/err.h>
44 #include <linux/slab.h>
45 #include <linux/crc32.h>
46 #include <linux/math64.h>
47 #include "ubi.h"
48
49 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
50 static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si);
51 #else
52 #define paranoid_check_si(ubi, si) 0
53 #endif
54
55 /* Temporary variables used during scanning */
56 static struct ubi_ec_hdr *ech;
57 static struct ubi_vid_hdr *vidh;
58
59 /**
60  * add_to_list - add physical eraseblock to a list.
61  * @si: scanning information
62  * @pnum: physical eraseblock number to add
63  * @ec: erase counter of the physical eraseblock
64  * @list: the list to add to
65  *
66  * This function adds physical eraseblock @pnum to free, erase, corrupted or
67  * alien lists. Returns zero in case of success and a negative error code in
68  * case of failure.
69  */
70 static int add_to_list(struct ubi_scan_info *si, int pnum, int ec,
71                        struct list_head *list)
72 {
73         struct ubi_scan_leb *seb;
74
75         if (list == &si->free)
76                 dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
77         else if (list == &si->erase)
78                 dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
79         else if (list == &si->corr) {
80                 dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
81                 si->corr_count += 1;
82         } else if (list == &si->alien)
83                 dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
84         else
85                 BUG();
86
87         seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL);
88         if (!seb)
89                 return -ENOMEM;
90
91         seb->pnum = pnum;
92         seb->ec = ec;
93         list_add_tail(&seb->u.list, list);
94         return 0;
95 }
96
97 /**
98  * validate_vid_hdr - check volume identifier header.
99  * @vid_hdr: the volume identifier header to check
100  * @sv: information about the volume this logical eraseblock belongs to
101  * @pnum: physical eraseblock number the VID header came from
102  *
103  * This function checks that data stored in @vid_hdr is consistent. Returns
104  * non-zero if an inconsistency was found and zero if not.
105  *
106  * Note, UBI does sanity check of everything it reads from the flash media.
107  * Most of the checks are done in the I/O sub-system. Here we check that the
108  * information in the VID header is consistent to the information in other VID
109  * headers of the same volume.
110  */
111 static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr,
112                             const struct ubi_scan_volume *sv, int pnum)
113 {
114         int vol_type = vid_hdr->vol_type;
115         int vol_id = be32_to_cpu(vid_hdr->vol_id);
116         int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
117         int data_pad = be32_to_cpu(vid_hdr->data_pad);
118
119         if (sv->leb_count != 0) {
120                 int sv_vol_type;
121
122                 /*
123                  * This is not the first logical eraseblock belonging to this
124                  * volume. Ensure that the data in its VID header is consistent
125                  * to the data in previous logical eraseblock headers.
126                  */
127
128                 if (vol_id != sv->vol_id) {
129                         dbg_err("inconsistent vol_id");
130                         goto bad;
131                 }
132
133                 if (sv->vol_type == UBI_STATIC_VOLUME)
134                         sv_vol_type = UBI_VID_STATIC;
135                 else
136                         sv_vol_type = UBI_VID_DYNAMIC;
137
138                 if (vol_type != sv_vol_type) {
139                         dbg_err("inconsistent vol_type");
140                         goto bad;
141                 }
142
143                 if (used_ebs != sv->used_ebs) {
144                         dbg_err("inconsistent used_ebs");
145                         goto bad;
146                 }
147
148                 if (data_pad != sv->data_pad) {
149                         dbg_err("inconsistent data_pad");
150                         goto bad;
151                 }
152         }
153
154         return 0;
155
156 bad:
157         ubi_err("inconsistent VID header at PEB %d", pnum);
158         ubi_dbg_dump_vid_hdr(vid_hdr);
159         ubi_dbg_dump_sv(sv);
160         return -EINVAL;
161 }
162
163 /**
164  * add_volume - add volume to the scanning information.
165  * @si: scanning information
166  * @vol_id: ID of the volume to add
167  * @pnum: physical eraseblock number
168  * @vid_hdr: volume identifier header
169  *
170  * If the volume corresponding to the @vid_hdr logical eraseblock is already
171  * present in the scanning information, this function does nothing. Otherwise
172  * it adds corresponding volume to the scanning information. Returns a pointer
173  * to the scanning volume object in case of success and a negative error code
174  * in case of failure.
175  */
176 static struct ubi_scan_volume *add_volume(struct ubi_scan_info *si, int vol_id,
177                                           int pnum,
178                                           const struct ubi_vid_hdr *vid_hdr)
179 {
180         struct ubi_scan_volume *sv;
181         struct rb_node **p = &si->volumes.rb_node, *parent = NULL;
182
183         ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
184
185         /* Walk the volume RB-tree to look if this volume is already present */
186         while (*p) {
187                 parent = *p;
188                 sv = rb_entry(parent, struct ubi_scan_volume, rb);
189
190                 if (vol_id == sv->vol_id)
191                         return sv;
192
193                 if (vol_id > sv->vol_id)
194                         p = &(*p)->rb_left;
195                 else
196                         p = &(*p)->rb_right;
197         }
198
199         /* The volume is absent - add it */
200         sv = kmalloc(sizeof(struct ubi_scan_volume), GFP_KERNEL);
201         if (!sv)
202                 return ERR_PTR(-ENOMEM);
203
204         sv->highest_lnum = sv->leb_count = 0;
205         sv->vol_id = vol_id;
206         sv->root = RB_ROOT;
207         sv->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
208         sv->data_pad = be32_to_cpu(vid_hdr->data_pad);
209         sv->compat = vid_hdr->compat;
210         sv->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
211                                                             : UBI_STATIC_VOLUME;
212         if (vol_id > si->highest_vol_id)
213                 si->highest_vol_id = vol_id;
214
215         rb_link_node(&sv->rb, parent, p);
216         rb_insert_color(&sv->rb, &si->volumes);
217         si->vols_found += 1;
218         dbg_bld("added volume %d", vol_id);
219         return sv;
220 }
221
222 /**
223  * compare_lebs - find out which logical eraseblock is newer.
224  * @ubi: UBI device description object
225  * @seb: first logical eraseblock to compare
226  * @pnum: physical eraseblock number of the second logical eraseblock to
227  * compare
228  * @vid_hdr: volume identifier header of the second logical eraseblock
229  *
230  * This function compares 2 copies of a LEB and informs which one is newer. In
231  * case of success this function returns a positive value, in case of failure, a
232  * negative error code is returned. The success return codes use the following
233  * bits:
234  *     o bit 0 is cleared: the first PEB (described by @seb) is newer than the
235  *       second PEB (described by @pnum and @vid_hdr);
236  *     o bit 0 is set: the second PEB is newer;
237  *     o bit 1 is cleared: no bit-flips were detected in the newer LEB;
238  *     o bit 1 is set: bit-flips were detected in the newer LEB;
239  *     o bit 2 is cleared: the older LEB is not corrupted;
240  *     o bit 2 is set: the older LEB is corrupted.
241  */
242 static int compare_lebs(struct ubi_device *ubi, const struct ubi_scan_leb *seb,
243                         int pnum, const struct ubi_vid_hdr *vid_hdr)
244 {
245         void *buf;
246         int len, err, second_is_newer, bitflips = 0, corrupted = 0;
247         uint32_t data_crc, crc;
248         struct ubi_vid_hdr *vh = NULL;
249         unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
250
251         if (sqnum2 == seb->sqnum) {
252                 /*
253                  * This must be a really ancient UBI image which has been
254                  * created before sequence numbers support has been added. At
255                  * that times we used 32-bit LEB versions stored in logical
256                  * eraseblocks. That was before UBI got into mainline. We do not
257                  * support these images anymore. Well, those images will work
258                  * still work, but only if no unclean reboots happened.
259                  */
260                 ubi_err("unsupported on-flash UBI format\n");
261                 return -EINVAL;
262         }
263
264         /* Obviously the LEB with lower sequence counter is older */
265         second_is_newer = !!(sqnum2 > seb->sqnum);
266
267         /*
268          * Now we know which copy is newer. If the copy flag of the PEB with
269          * newer version is not set, then we just return, otherwise we have to
270          * check data CRC. For the second PEB we already have the VID header,
271          * for the first one - we'll need to re-read it from flash.
272          *
273          * Note: this may be optimized so that we wouldn't read twice.
274          */
275
276         if (second_is_newer) {
277                 if (!vid_hdr->copy_flag) {
278                         /* It is not a copy, so it is newer */
279                         dbg_bld("second PEB %d is newer, copy_flag is unset",
280                                 pnum);
281                         return 1;
282                 }
283         } else {
284                 pnum = seb->pnum;
285
286                 vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
287                 if (!vh)
288                         return -ENOMEM;
289
290                 err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
291                 if (err) {
292                         if (err == UBI_IO_BITFLIPS)
293                                 bitflips = 1;
294                         else {
295                                 dbg_err("VID of PEB %d header is bad, but it "
296                                         "was OK earlier", pnum);
297                                 if (err > 0)
298                                         err = -EIO;
299
300                                 goto out_free_vidh;
301                         }
302                 }
303
304                 if (!vh->copy_flag) {
305                         /* It is not a copy, so it is newer */
306                         dbg_bld("first PEB %d is newer, copy_flag is unset",
307                                 pnum);
308                         err = bitflips << 1;
309                         goto out_free_vidh;
310                 }
311
312                 vid_hdr = vh;
313         }
314
315         /* Read the data of the copy and check the CRC */
316
317         len = be32_to_cpu(vid_hdr->data_size);
318         buf = vmalloc(len);
319         if (!buf) {
320                 err = -ENOMEM;
321                 goto out_free_vidh;
322         }
323
324         err = ubi_io_read_data(ubi, buf, pnum, 0, len);
325         if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
326                 goto out_free_buf;
327
328         data_crc = be32_to_cpu(vid_hdr->data_crc);
329         crc = crc32(UBI_CRC32_INIT, buf, len);
330         if (crc != data_crc) {
331                 dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
332                         pnum, crc, data_crc);
333                 corrupted = 1;
334                 bitflips = 0;
335                 second_is_newer = !second_is_newer;
336         } else {
337                 dbg_bld("PEB %d CRC is OK", pnum);
338                 bitflips = !!err;
339         }
340
341         vfree(buf);
342         ubi_free_vid_hdr(ubi, vh);
343
344         if (second_is_newer)
345                 dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
346         else
347                 dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
348
349         return second_is_newer | (bitflips << 1) | (corrupted << 2);
350
351 out_free_buf:
352         vfree(buf);
353 out_free_vidh:
354         ubi_free_vid_hdr(ubi, vh);
355         return err;
356 }
357
358 /**
359  * ubi_scan_add_used - add physical eraseblock to the scanning information.
360  * @ubi: UBI device description object
361  * @si: scanning information
362  * @pnum: the physical eraseblock number
363  * @ec: erase counter
364  * @vid_hdr: the volume identifier header
365  * @bitflips: if bit-flips were detected when this physical eraseblock was read
366  *
367  * This function adds information about a used physical eraseblock to the
368  * 'used' tree of the corresponding volume. The function is rather complex
369  * because it has to handle cases when this is not the first physical
370  * eraseblock belonging to the same logical eraseblock, and the newer one has
371  * to be picked, while the older one has to be dropped. This function returns
372  * zero in case of success and a negative error code in case of failure.
373  */
374 int ubi_scan_add_used(struct ubi_device *ubi, struct ubi_scan_info *si,
375                       int pnum, int ec, const struct ubi_vid_hdr *vid_hdr,
376                       int bitflips)
377 {
378         int err, vol_id, lnum;
379         unsigned long long sqnum;
380         struct ubi_scan_volume *sv;
381         struct ubi_scan_leb *seb;
382         struct rb_node **p, *parent = NULL;
383
384         vol_id = be32_to_cpu(vid_hdr->vol_id);
385         lnum = be32_to_cpu(vid_hdr->lnum);
386         sqnum = be64_to_cpu(vid_hdr->sqnum);
387
388         dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d",
389                 pnum, vol_id, lnum, ec, sqnum, bitflips);
390
391         sv = add_volume(si, vol_id, pnum, vid_hdr);
392         if (IS_ERR(sv))
393                 return PTR_ERR(sv);
394
395         if (si->max_sqnum < sqnum)
396                 si->max_sqnum = sqnum;
397
398         /*
399          * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
400          * if this is the first instance of this logical eraseblock or not.
401          */
402         p = &sv->root.rb_node;
403         while (*p) {
404                 int cmp_res;
405
406                 parent = *p;
407                 seb = rb_entry(parent, struct ubi_scan_leb, u.rb);
408                 if (lnum != seb->lnum) {
409                         if (lnum < seb->lnum)
410                                 p = &(*p)->rb_left;
411                         else
412                                 p = &(*p)->rb_right;
413                         continue;
414                 }
415
416                 /*
417                  * There is already a physical eraseblock describing the same
418                  * logical eraseblock present.
419                  */
420
421                 dbg_bld("this LEB already exists: PEB %d, sqnum %llu, "
422                         "EC %d", seb->pnum, seb->sqnum, seb->ec);
423
424                 /*
425                  * Make sure that the logical eraseblocks have different
426                  * sequence numbers. Otherwise the image is bad.
427                  *
428                  * However, if the sequence number is zero, we assume it must
429                  * be an ancient UBI image from the era when UBI did not have
430                  * sequence numbers. We still can attach these images, unless
431                  * there is a need to distinguish between old and new
432                  * eraseblocks, in which case we'll refuse the image in
433                  * 'compare_lebs()'. In other words, we attach old clean
434                  * images, but refuse attaching old images with duplicated
435                  * logical eraseblocks because there was an unclean reboot.
436                  */
437                 if (seb->sqnum == sqnum && sqnum != 0) {
438                         ubi_err("two LEBs with same sequence number %llu",
439                                 sqnum);
440                         ubi_dbg_dump_seb(seb, 0);
441                         ubi_dbg_dump_vid_hdr(vid_hdr);
442                         return -EINVAL;
443                 }
444
445                 /*
446                  * Now we have to drop the older one and preserve the newer
447                  * one.
448                  */
449                 cmp_res = compare_lebs(ubi, seb, pnum, vid_hdr);
450                 if (cmp_res < 0)
451                         return cmp_res;
452
453                 if (cmp_res & 1) {
454                         /*
455                          * This logical eraseblock is newer than the one
456                          * found earlier.
457                          */
458                         err = validate_vid_hdr(vid_hdr, sv, pnum);
459                         if (err)
460                                 return err;
461
462                         if (cmp_res & 4)
463                                 err = add_to_list(si, seb->pnum, seb->ec,
464                                                   &si->corr);
465                         else
466                                 err = add_to_list(si, seb->pnum, seb->ec,
467                                                   &si->erase);
468                         if (err)
469                                 return err;
470
471                         seb->ec = ec;
472                         seb->pnum = pnum;
473                         seb->scrub = ((cmp_res & 2) || bitflips);
474                         seb->sqnum = sqnum;
475
476                         if (sv->highest_lnum == lnum)
477                                 sv->last_data_size =
478                                         be32_to_cpu(vid_hdr->data_size);
479
480                         return 0;
481                 } else {
482                         /*
483                          * This logical eraseblock is older than the one found
484                          * previously.
485                          */
486                         if (cmp_res & 4)
487                                 return add_to_list(si, pnum, ec, &si->corr);
488                         else
489                                 return add_to_list(si, pnum, ec, &si->erase);
490                 }
491         }
492
493         /*
494          * We've met this logical eraseblock for the first time, add it to the
495          * scanning information.
496          */
497
498         err = validate_vid_hdr(vid_hdr, sv, pnum);
499         if (err)
500                 return err;
501
502         seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL);
503         if (!seb)
504                 return -ENOMEM;
505
506         seb->ec = ec;
507         seb->pnum = pnum;
508         seb->lnum = lnum;
509         seb->sqnum = sqnum;
510         seb->scrub = bitflips;
511
512         if (sv->highest_lnum <= lnum) {
513                 sv->highest_lnum = lnum;
514                 sv->last_data_size = be32_to_cpu(vid_hdr->data_size);
515         }
516
517         sv->leb_count += 1;
518         rb_link_node(&seb->u.rb, parent, p);
519         rb_insert_color(&seb->u.rb, &sv->root);
520         return 0;
521 }
522
523 /**
524  * ubi_scan_find_sv - find volume in the scanning information.
525  * @si: scanning information
526  * @vol_id: the requested volume ID
527  *
528  * This function returns a pointer to the volume description or %NULL if there
529  * are no data about this volume in the scanning information.
530  */
531 struct ubi_scan_volume *ubi_scan_find_sv(const struct ubi_scan_info *si,
532                                          int vol_id)
533 {
534         struct ubi_scan_volume *sv;
535         struct rb_node *p = si->volumes.rb_node;
536
537         while (p) {
538                 sv = rb_entry(p, struct ubi_scan_volume, rb);
539
540                 if (vol_id == sv->vol_id)
541                         return sv;
542
543                 if (vol_id > sv->vol_id)
544                         p = p->rb_left;
545                 else
546                         p = p->rb_right;
547         }
548
549         return NULL;
550 }
551
552 /**
553  * ubi_scan_find_seb - find LEB in the volume scanning information.
554  * @sv: a pointer to the volume scanning information
555  * @lnum: the requested logical eraseblock
556  *
557  * This function returns a pointer to the scanning logical eraseblock or %NULL
558  * if there are no data about it in the scanning volume information.
559  */
560 struct ubi_scan_leb *ubi_scan_find_seb(const struct ubi_scan_volume *sv,
561                                        int lnum)
562 {
563         struct ubi_scan_leb *seb;
564         struct rb_node *p = sv->root.rb_node;
565
566         while (p) {
567                 seb = rb_entry(p, struct ubi_scan_leb, u.rb);
568
569                 if (lnum == seb->lnum)
570                         return seb;
571
572                 if (lnum > seb->lnum)
573                         p = p->rb_left;
574                 else
575                         p = p->rb_right;
576         }
577
578         return NULL;
579 }
580
581 /**
582  * ubi_scan_rm_volume - delete scanning information about a volume.
583  * @si: scanning information
584  * @sv: the volume scanning information to delete
585  */
586 void ubi_scan_rm_volume(struct ubi_scan_info *si, struct ubi_scan_volume *sv)
587 {
588         struct rb_node *rb;
589         struct ubi_scan_leb *seb;
590
591         dbg_bld("remove scanning information about volume %d", sv->vol_id);
592
593         while ((rb = rb_first(&sv->root))) {
594                 seb = rb_entry(rb, struct ubi_scan_leb, u.rb);
595                 rb_erase(&seb->u.rb, &sv->root);
596                 list_add_tail(&seb->u.list, &si->erase);
597         }
598
599         rb_erase(&sv->rb, &si->volumes);
600         kfree(sv);
601         si->vols_found -= 1;
602 }
603
604 /**
605  * ubi_scan_erase_peb - erase a physical eraseblock.
606  * @ubi: UBI device description object
607  * @si: scanning information
608  * @pnum: physical eraseblock number to erase;
609  * @ec: erase counter value to write (%UBI_SCAN_UNKNOWN_EC if it is unknown)
610  *
611  * This function erases physical eraseblock 'pnum', and writes the erase
612  * counter header to it. This function should only be used on UBI device
613  * initialization stages, when the EBA sub-system had not been yet initialized.
614  * This function returns zero in case of success and a negative error code in
615  * case of failure.
616  */
617 int ubi_scan_erase_peb(struct ubi_device *ubi, const struct ubi_scan_info *si,
618                        int pnum, int ec)
619 {
620         int err;
621         struct ubi_ec_hdr *ec_hdr;
622
623         if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
624                 /*
625                  * Erase counter overflow. Upgrade UBI and use 64-bit
626                  * erase counters internally.
627                  */
628                 ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec);
629                 return -EINVAL;
630         }
631
632         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
633         if (!ec_hdr)
634                 return -ENOMEM;
635
636         ec_hdr->ec = cpu_to_be64(ec);
637
638         err = ubi_io_sync_erase(ubi, pnum, 0);
639         if (err < 0)
640                 goto out_free;
641
642         err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
643
644 out_free:
645         kfree(ec_hdr);
646         return err;
647 }
648
649 /**
650  * ubi_scan_get_free_peb - get a free physical eraseblock.
651  * @ubi: UBI device description object
652  * @si: scanning information
653  *
654  * This function returns a free physical eraseblock. It is supposed to be
655  * called on the UBI initialization stages when the wear-leveling sub-system is
656  * not initialized yet. This function picks a physical eraseblocks from one of
657  * the lists, writes the EC header if it is needed, and removes it from the
658  * list.
659  *
660  * This function returns scanning physical eraseblock information in case of
661  * success and an error code in case of failure.
662  */
663 struct ubi_scan_leb *ubi_scan_get_free_peb(struct ubi_device *ubi,
664                                            struct ubi_scan_info *si)
665 {
666         int err = 0, i;
667         struct ubi_scan_leb *seb;
668
669         if (!list_empty(&si->free)) {
670                 seb = list_entry(si->free.next, struct ubi_scan_leb, u.list);
671                 list_del(&seb->u.list);
672                 dbg_bld("return free PEB %d, EC %d", seb->pnum, seb->ec);
673                 return seb;
674         }
675
676         for (i = 0; i < 2; i++) {
677                 struct list_head *head;
678                 struct ubi_scan_leb *tmp_seb;
679
680                 if (i == 0)
681                         head = &si->erase;
682                 else
683                         head = &si->corr;
684
685                 /*
686                  * We try to erase the first physical eraseblock from the @head
687                  * list and pick it if we succeed, or try to erase the
688                  * next one if not. And so forth. We don't want to take care
689                  * about bad eraseblocks here - they'll be handled later.
690                  */
691                 list_for_each_entry_safe(seb, tmp_seb, head, u.list) {
692                         if (seb->ec == UBI_SCAN_UNKNOWN_EC)
693                                 seb->ec = si->mean_ec;
694
695                         err = ubi_scan_erase_peb(ubi, si, seb->pnum, seb->ec+1);
696                         if (err)
697                                 continue;
698
699                         seb->ec += 1;
700                         list_del(&seb->u.list);
701                         dbg_bld("return PEB %d, EC %d", seb->pnum, seb->ec);
702                         return seb;
703                 }
704         }
705
706         ubi_err("no eraseblocks found");
707         return ERR_PTR(-ENOSPC);
708 }
709
710 /**
711  * process_eb - read, check UBI headers, and add them to scanning information.
712  * @ubi: UBI device description object
713  * @si: scanning information
714  * @pnum: the physical eraseblock number
715  *
716  * This function returns a zero if the physical eraseblock was successfully
717  * handled and a negative error code in case of failure.
718  */
719 static int process_eb(struct ubi_device *ubi, struct ubi_scan_info *si,
720                       int pnum)
721 {
722         long long uninitialized_var(ec);
723         int err, bitflips = 0, vol_id, ec_corr = 0;
724
725         dbg_bld("scan PEB %d", pnum);
726
727         /* Skip bad physical eraseblocks */
728         err = ubi_io_is_bad(ubi, pnum);
729         if (err < 0)
730                 return err;
731         else if (err) {
732                 /*
733                  * FIXME: this is actually duty of the I/O sub-system to
734                  * initialize this, but MTD does not provide enough
735                  * information.
736                  */
737                 si->bad_peb_count += 1;
738                 return 0;
739         }
740
741         err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
742         if (err < 0)
743                 return err;
744         else if (err == UBI_IO_BITFLIPS)
745                 bitflips = 1;
746         else if (err == UBI_IO_PEB_EMPTY)
747                 return add_to_list(si, pnum, UBI_SCAN_UNKNOWN_EC, &si->erase);
748         else if (err == UBI_IO_BAD_EC_HDR) {
749                 /*
750                  * We have to also look at the VID header, possibly it is not
751                  * corrupted. Set %bitflips flag in order to make this PEB be
752                  * moved and EC be re-created.
753                  */
754                 ec_corr = 1;
755                 ec = UBI_SCAN_UNKNOWN_EC;
756                 bitflips = 1;
757         }
758
759         si->is_empty = 0;
760
761         if (!ec_corr) {
762                 int image_seq;
763
764                 /* Make sure UBI version is OK */
765                 if (ech->version != UBI_VERSION) {
766                         ubi_err("this UBI version is %d, image version is %d",
767                                 UBI_VERSION, (int)ech->version);
768                         return -EINVAL;
769                 }
770
771                 ec = be64_to_cpu(ech->ec);
772                 if (ec > UBI_MAX_ERASECOUNTER) {
773                         /*
774                          * Erase counter overflow. The EC headers have 64 bits
775                          * reserved, but we anyway make use of only 31 bit
776                          * values, as this seems to be enough for any existing
777                          * flash. Upgrade UBI and use 64-bit erase counters
778                          * internally.
779                          */
780                         ubi_err("erase counter overflow, max is %d",
781                                 UBI_MAX_ERASECOUNTER);
782                         ubi_dbg_dump_ec_hdr(ech);
783                         return -EINVAL;
784                 }
785
786                 /*
787                  * Make sure that all PEBs have the same image sequence number.
788                  * This allows us to detect situations when users flash UBI
789                  * images incorrectly, so that the flash has the new UBI image
790                  * and leftovers from the old one. This feature was added
791                  * relatively recently, and the sequence number was always
792                  * zero, because old UBI implementations always set it to zero.
793                  * For this reasons, we do not panic if some PEBs have zero
794                  * sequence number, while other PEBs have non-zero sequence
795                  * number.
796                  */
797                 image_seq = be32_to_cpu(ech->image_seq);
798                 if (!ubi->image_seq && image_seq)
799                         ubi->image_seq = image_seq;
800                 if (ubi->image_seq && image_seq &&
801                     ubi->image_seq != image_seq) {
802                         ubi_err("bad image sequence number %d in PEB %d, "
803                                 "expected %d", image_seq, pnum, ubi->image_seq);
804                         ubi_dbg_dump_ec_hdr(ech);
805                         return -EINVAL;
806                 }
807         }
808
809         /* OK, we've done with the EC header, let's look at the VID header */
810
811         err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
812         if (err < 0)
813                 return err;
814         else if (err == UBI_IO_BITFLIPS)
815                 bitflips = 1;
816         else if (err == UBI_IO_BAD_VID_HDR ||
817                  (err == UBI_IO_PEB_FREE && ec_corr)) {
818                 /* VID header is corrupted */
819                 err = add_to_list(si, pnum, ec, &si->corr);
820                 if (err)
821                         return err;
822                 goto adjust_mean_ec;
823         } else if (err == UBI_IO_PEB_FREE) {
824                 /* No VID header - the physical eraseblock is free */
825                 err = add_to_list(si, pnum, ec, &si->free);
826                 if (err)
827                         return err;
828                 goto adjust_mean_ec;
829         }
830
831         vol_id = be32_to_cpu(vidh->vol_id);
832         if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) {
833                 int lnum = be32_to_cpu(vidh->lnum);
834
835                 /* Unsupported internal volume */
836                 switch (vidh->compat) {
837                 case UBI_COMPAT_DELETE:
838                         ubi_msg("\"delete\" compatible internal volume %d:%d"
839                                 " found, remove it", vol_id, lnum);
840                         err = add_to_list(si, pnum, ec, &si->corr);
841                         if (err)
842                                 return err;
843                         break;
844
845                 case UBI_COMPAT_RO:
846                         ubi_msg("read-only compatible internal volume %d:%d"
847                                 " found, switch to read-only mode",
848                                 vol_id, lnum);
849                         ubi->ro_mode = 1;
850                         break;
851
852                 case UBI_COMPAT_PRESERVE:
853                         ubi_msg("\"preserve\" compatible internal volume %d:%d"
854                                 " found", vol_id, lnum);
855                         err = add_to_list(si, pnum, ec, &si->alien);
856                         if (err)
857                                 return err;
858                         si->alien_peb_count += 1;
859                         return 0;
860
861                 case UBI_COMPAT_REJECT:
862                         ubi_err("incompatible internal volume %d:%d found",
863                                 vol_id, lnum);
864                         return -EINVAL;
865                 }
866         }
867
868         if (ec_corr)
869                 ubi_warn("valid VID header but corrupted EC header at PEB %d",
870                          pnum);
871         err = ubi_scan_add_used(ubi, si, pnum, ec, vidh, bitflips);
872         if (err)
873                 return err;
874
875 adjust_mean_ec:
876         if (!ec_corr) {
877                 si->ec_sum += ec;
878                 si->ec_count += 1;
879                 if (ec > si->max_ec)
880                         si->max_ec = ec;
881                 if (ec < si->min_ec)
882                         si->min_ec = ec;
883         }
884
885         return 0;
886 }
887
888 /**
889  * ubi_scan - scan an MTD device.
890  * @ubi: UBI device description object
891  *
892  * This function does full scanning of an MTD device and returns complete
893  * information about it. In case of failure, an error code is returned.
894  */
895 struct ubi_scan_info *ubi_scan(struct ubi_device *ubi)
896 {
897         int err, pnum;
898         struct rb_node *rb1, *rb2;
899         struct ubi_scan_volume *sv;
900         struct ubi_scan_leb *seb;
901         struct ubi_scan_info *si;
902
903         si = kzalloc(sizeof(struct ubi_scan_info), GFP_KERNEL);
904         if (!si)
905                 return ERR_PTR(-ENOMEM);
906
907         INIT_LIST_HEAD(&si->corr);
908         INIT_LIST_HEAD(&si->free);
909         INIT_LIST_HEAD(&si->erase);
910         INIT_LIST_HEAD(&si->alien);
911         si->volumes = RB_ROOT;
912         si->is_empty = 1;
913
914         err = -ENOMEM;
915         ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
916         if (!ech)
917                 goto out_si;
918
919         vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
920         if (!vidh)
921                 goto out_ech;
922
923         for (pnum = 0; pnum < ubi->peb_count; pnum++) {
924                 cond_resched();
925
926                 dbg_gen("process PEB %d", pnum);
927                 err = process_eb(ubi, si, pnum);
928                 if (err < 0)
929                         goto out_vidh;
930         }
931
932         dbg_msg("scanning is finished");
933
934         /* Calculate mean erase counter */
935         if (si->ec_count)
936                 si->mean_ec = div_u64(si->ec_sum, si->ec_count);
937
938         if (si->is_empty)
939                 ubi_msg("empty MTD device detected");
940
941         /*
942          * Few corrupted PEBs are not a problem and may be just a result of
943          * unclean reboots. However, many of them may indicate some problems
944          * with the flash HW or driver. Print a warning in this case.
945          */
946         if (si->corr_count >= 8 || si->corr_count >= ubi->peb_count / 4) {
947                 ubi_warn("%d PEBs are corrupted", si->corr_count);
948                 printk(KERN_WARNING "corrupted PEBs are:");
949                 list_for_each_entry(seb, &si->corr, u.list)
950                         printk(KERN_CONT " %d", seb->pnum);
951                 printk(KERN_CONT "\n");
952         }
953
954         /*
955          * In case of unknown erase counter we use the mean erase counter
956          * value.
957          */
958         ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
959                 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb)
960                         if (seb->ec == UBI_SCAN_UNKNOWN_EC)
961                                 seb->ec = si->mean_ec;
962         }
963
964         list_for_each_entry(seb, &si->free, u.list) {
965                 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
966                         seb->ec = si->mean_ec;
967         }
968
969         list_for_each_entry(seb, &si->corr, u.list)
970                 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
971                         seb->ec = si->mean_ec;
972
973         list_for_each_entry(seb, &si->erase, u.list)
974                 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
975                         seb->ec = si->mean_ec;
976
977         err = paranoid_check_si(ubi, si);
978         if (err)
979                 goto out_vidh;
980
981         ubi_free_vid_hdr(ubi, vidh);
982         kfree(ech);
983
984         return si;
985
986 out_vidh:
987         ubi_free_vid_hdr(ubi, vidh);
988 out_ech:
989         kfree(ech);
990 out_si:
991         ubi_scan_destroy_si(si);
992         return ERR_PTR(err);
993 }
994
995 /**
996  * destroy_sv - free the scanning volume information
997  * @sv: scanning volume information
998  *
999  * This function destroys the volume RB-tree (@sv->root) and the scanning
1000  * volume information.
1001  */
1002 static void destroy_sv(struct ubi_scan_volume *sv)
1003 {
1004         struct ubi_scan_leb *seb;
1005         struct rb_node *this = sv->root.rb_node;
1006
1007         while (this) {
1008                 if (this->rb_left)
1009                         this = this->rb_left;
1010                 else if (this->rb_right)
1011                         this = this->rb_right;
1012                 else {
1013                         seb = rb_entry(this, struct ubi_scan_leb, u.rb);
1014                         this = rb_parent(this);
1015                         if (this) {
1016                                 if (this->rb_left == &seb->u.rb)
1017                                         this->rb_left = NULL;
1018                                 else
1019                                         this->rb_right = NULL;
1020                         }
1021
1022                         kfree(seb);
1023                 }
1024         }
1025         kfree(sv);
1026 }
1027
1028 /**
1029  * ubi_scan_destroy_si - destroy scanning information.
1030  * @si: scanning information
1031  */
1032 void ubi_scan_destroy_si(struct ubi_scan_info *si)
1033 {
1034         struct ubi_scan_leb *seb, *seb_tmp;
1035         struct ubi_scan_volume *sv;
1036         struct rb_node *rb;
1037
1038         list_for_each_entry_safe(seb, seb_tmp, &si->alien, u.list) {
1039                 list_del(&seb->u.list);
1040                 kfree(seb);
1041         }
1042         list_for_each_entry_safe(seb, seb_tmp, &si->erase, u.list) {
1043                 list_del(&seb->u.list);
1044                 kfree(seb);
1045         }
1046         list_for_each_entry_safe(seb, seb_tmp, &si->corr, u.list) {
1047                 list_del(&seb->u.list);
1048                 kfree(seb);
1049         }
1050         list_for_each_entry_safe(seb, seb_tmp, &si->free, u.list) {
1051                 list_del(&seb->u.list);
1052                 kfree(seb);
1053         }
1054
1055         /* Destroy the volume RB-tree */
1056         rb = si->volumes.rb_node;
1057         while (rb) {
1058                 if (rb->rb_left)
1059                         rb = rb->rb_left;
1060                 else if (rb->rb_right)
1061                         rb = rb->rb_right;
1062                 else {
1063                         sv = rb_entry(rb, struct ubi_scan_volume, rb);
1064
1065                         rb = rb_parent(rb);
1066                         if (rb) {
1067                                 if (rb->rb_left == &sv->rb)
1068                                         rb->rb_left = NULL;
1069                                 else
1070                                         rb->rb_right = NULL;
1071                         }
1072
1073                         destroy_sv(sv);
1074                 }
1075         }
1076
1077         kfree(si);
1078 }
1079
1080 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1081
1082 /**
1083  * paranoid_check_si - check the scanning information.
1084  * @ubi: UBI device description object
1085  * @si: scanning information
1086  *
1087  * This function returns zero if the scanning information is all right, and a
1088  * negative error code if not or if an error occurred.
1089  */
1090 static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si)
1091 {
1092         int pnum, err, vols_found = 0;
1093         struct rb_node *rb1, *rb2;
1094         struct ubi_scan_volume *sv;
1095         struct ubi_scan_leb *seb, *last_seb;
1096         uint8_t *buf;
1097
1098         /*
1099          * At first, check that scanning information is OK.
1100          */
1101         ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1102                 int leb_count = 0;
1103
1104                 cond_resched();
1105
1106                 vols_found += 1;
1107
1108                 if (si->is_empty) {
1109                         ubi_err("bad is_empty flag");
1110                         goto bad_sv;
1111                 }
1112
1113                 if (sv->vol_id < 0 || sv->highest_lnum < 0 ||
1114                     sv->leb_count < 0 || sv->vol_type < 0 || sv->used_ebs < 0 ||
1115                     sv->data_pad < 0 || sv->last_data_size < 0) {
1116                         ubi_err("negative values");
1117                         goto bad_sv;
1118                 }
1119
1120                 if (sv->vol_id >= UBI_MAX_VOLUMES &&
1121                     sv->vol_id < UBI_INTERNAL_VOL_START) {
1122                         ubi_err("bad vol_id");
1123                         goto bad_sv;
1124                 }
1125
1126                 if (sv->vol_id > si->highest_vol_id) {
1127                         ubi_err("highest_vol_id is %d, but vol_id %d is there",
1128                                 si->highest_vol_id, sv->vol_id);
1129                         goto out;
1130                 }
1131
1132                 if (sv->vol_type != UBI_DYNAMIC_VOLUME &&
1133                     sv->vol_type != UBI_STATIC_VOLUME) {
1134                         ubi_err("bad vol_type");
1135                         goto bad_sv;
1136                 }
1137
1138                 if (sv->data_pad > ubi->leb_size / 2) {
1139                         ubi_err("bad data_pad");
1140                         goto bad_sv;
1141                 }
1142
1143                 last_seb = NULL;
1144                 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1145                         cond_resched();
1146
1147                         last_seb = seb;
1148                         leb_count += 1;
1149
1150                         if (seb->pnum < 0 || seb->ec < 0) {
1151                                 ubi_err("negative values");
1152                                 goto bad_seb;
1153                         }
1154
1155                         if (seb->ec < si->min_ec) {
1156                                 ubi_err("bad si->min_ec (%d), %d found",
1157                                         si->min_ec, seb->ec);
1158                                 goto bad_seb;
1159                         }
1160
1161                         if (seb->ec > si->max_ec) {
1162                                 ubi_err("bad si->max_ec (%d), %d found",
1163                                         si->max_ec, seb->ec);
1164                                 goto bad_seb;
1165                         }
1166
1167                         if (seb->pnum >= ubi->peb_count) {
1168                                 ubi_err("too high PEB number %d, total PEBs %d",
1169                                         seb->pnum, ubi->peb_count);
1170                                 goto bad_seb;
1171                         }
1172
1173                         if (sv->vol_type == UBI_STATIC_VOLUME) {
1174                                 if (seb->lnum >= sv->used_ebs) {
1175                                         ubi_err("bad lnum or used_ebs");
1176                                         goto bad_seb;
1177                                 }
1178                         } else {
1179                                 if (sv->used_ebs != 0) {
1180                                         ubi_err("non-zero used_ebs");
1181                                         goto bad_seb;
1182                                 }
1183                         }
1184
1185                         if (seb->lnum > sv->highest_lnum) {
1186                                 ubi_err("incorrect highest_lnum or lnum");
1187                                 goto bad_seb;
1188                         }
1189                 }
1190
1191                 if (sv->leb_count != leb_count) {
1192                         ubi_err("bad leb_count, %d objects in the tree",
1193                                 leb_count);
1194                         goto bad_sv;
1195                 }
1196
1197                 if (!last_seb)
1198                         continue;
1199
1200                 seb = last_seb;
1201
1202                 if (seb->lnum != sv->highest_lnum) {
1203                         ubi_err("bad highest_lnum");
1204                         goto bad_seb;
1205                 }
1206         }
1207
1208         if (vols_found != si->vols_found) {
1209                 ubi_err("bad si->vols_found %d, should be %d",
1210                         si->vols_found, vols_found);
1211                 goto out;
1212         }
1213
1214         /* Check that scanning information is correct */
1215         ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1216                 last_seb = NULL;
1217                 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1218                         int vol_type;
1219
1220                         cond_resched();
1221
1222                         last_seb = seb;
1223
1224                         err = ubi_io_read_vid_hdr(ubi, seb->pnum, vidh, 1);
1225                         if (err && err != UBI_IO_BITFLIPS) {
1226                                 ubi_err("VID header is not OK (%d)", err);
1227                                 if (err > 0)
1228                                         err = -EIO;
1229                                 return err;
1230                         }
1231
1232                         vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1233                                    UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1234                         if (sv->vol_type != vol_type) {
1235                                 ubi_err("bad vol_type");
1236                                 goto bad_vid_hdr;
1237                         }
1238
1239                         if (seb->sqnum != be64_to_cpu(vidh->sqnum)) {
1240                                 ubi_err("bad sqnum %llu", seb->sqnum);
1241                                 goto bad_vid_hdr;
1242                         }
1243
1244                         if (sv->vol_id != be32_to_cpu(vidh->vol_id)) {
1245                                 ubi_err("bad vol_id %d", sv->vol_id);
1246                                 goto bad_vid_hdr;
1247                         }
1248
1249                         if (sv->compat != vidh->compat) {
1250                                 ubi_err("bad compat %d", vidh->compat);
1251                                 goto bad_vid_hdr;
1252                         }
1253
1254                         if (seb->lnum != be32_to_cpu(vidh->lnum)) {
1255                                 ubi_err("bad lnum %d", seb->lnum);
1256                                 goto bad_vid_hdr;
1257                         }
1258
1259                         if (sv->used_ebs != be32_to_cpu(vidh->used_ebs)) {
1260                                 ubi_err("bad used_ebs %d", sv->used_ebs);
1261                                 goto bad_vid_hdr;
1262                         }
1263
1264                         if (sv->data_pad != be32_to_cpu(vidh->data_pad)) {
1265                                 ubi_err("bad data_pad %d", sv->data_pad);
1266                                 goto bad_vid_hdr;
1267                         }
1268                 }
1269
1270                 if (!last_seb)
1271                         continue;
1272
1273                 if (sv->highest_lnum != be32_to_cpu(vidh->lnum)) {
1274                         ubi_err("bad highest_lnum %d", sv->highest_lnum);
1275                         goto bad_vid_hdr;
1276                 }
1277
1278                 if (sv->last_data_size != be32_to_cpu(vidh->data_size)) {
1279                         ubi_err("bad last_data_size %d", sv->last_data_size);
1280                         goto bad_vid_hdr;
1281                 }
1282         }
1283
1284         /*
1285          * Make sure that all the physical eraseblocks are in one of the lists
1286          * or trees.
1287          */
1288         buf = kzalloc(ubi->peb_count, GFP_KERNEL);
1289         if (!buf)
1290                 return -ENOMEM;
1291
1292         for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1293                 err = ubi_io_is_bad(ubi, pnum);
1294                 if (err < 0) {
1295                         kfree(buf);
1296                         return err;
1297                 } else if (err)
1298                         buf[pnum] = 1;
1299         }
1300
1301         ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb)
1302                 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb)
1303                         buf[seb->pnum] = 1;
1304
1305         list_for_each_entry(seb, &si->free, u.list)
1306                 buf[seb->pnum] = 1;
1307
1308         list_for_each_entry(seb, &si->corr, u.list)
1309                 buf[seb->pnum] = 1;
1310
1311         list_for_each_entry(seb, &si->erase, u.list)
1312                 buf[seb->pnum] = 1;
1313
1314         list_for_each_entry(seb, &si->alien, u.list)
1315                 buf[seb->pnum] = 1;
1316
1317         err = 0;
1318         for (pnum = 0; pnum < ubi->peb_count; pnum++)
1319                 if (!buf[pnum]) {
1320                         ubi_err("PEB %d is not referred", pnum);
1321                         err = 1;
1322                 }
1323
1324         kfree(buf);
1325         if (err)
1326                 goto out;
1327         return 0;
1328
1329 bad_seb:
1330         ubi_err("bad scanning information about LEB %d", seb->lnum);
1331         ubi_dbg_dump_seb(seb, 0);
1332         ubi_dbg_dump_sv(sv);
1333         goto out;
1334
1335 bad_sv:
1336         ubi_err("bad scanning information about volume %d", sv->vol_id);
1337         ubi_dbg_dump_sv(sv);
1338         goto out;
1339
1340 bad_vid_hdr:
1341         ubi_err("bad scanning information about volume %d", sv->vol_id);
1342         ubi_dbg_dump_sv(sv);
1343         ubi_dbg_dump_vid_hdr(vidh);
1344
1345 out:
1346         ubi_dbg_dump_stack();
1347         return -EINVAL;
1348 }
1349
1350 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */