Merge branch 'fix/hda' into for-linus
[pandora-kernel.git] / drivers / mtd / ubi / scan.c
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Author: Artem Bityutskiy (Битюцкий Артём)
19  */
20
21 /*
22  * UBI scanning sub-system.
23  *
24  * This sub-system is responsible for scanning the flash media, checking UBI
25  * headers and providing complete information about the UBI flash image.
26  *
27  * The scanning information is represented by a &struct ubi_scan_info' object.
28  * Information about found volumes is represented by &struct ubi_scan_volume
29  * objects which are kept in volume RB-tree with root at the @volumes field.
30  * The RB-tree is indexed by the volume ID.
31  *
32  * Found logical eraseblocks are represented by &struct ubi_scan_leb objects.
33  * These objects are kept in per-volume RB-trees with the root at the
34  * corresponding &struct ubi_scan_volume object. To put it differently, we keep
35  * an RB-tree of per-volume objects and each of these objects is the root of
36  * RB-tree of per-eraseblock objects.
37  *
38  * Corrupted physical eraseblocks are put to the @corr list, free physical
39  * eraseblocks are put to the @free list and the physical eraseblock to be
40  * erased are put to the @erase list.
41  */
42
43 #include <linux/err.h>
44 #include <linux/crc32.h>
45 #include <linux/math64.h>
46 #include "ubi.h"
47
48 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
49 static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si);
50 #else
51 #define paranoid_check_si(ubi, si) 0
52 #endif
53
54 /* Temporary variables used during scanning */
55 static struct ubi_ec_hdr *ech;
56 static struct ubi_vid_hdr *vidh;
57
58 /**
59  * add_to_list - add physical eraseblock to a list.
60  * @si: scanning information
61  * @pnum: physical eraseblock number to add
62  * @ec: erase counter of the physical eraseblock
63  * @list: the list to add to
64  *
65  * This function adds physical eraseblock @pnum to free, erase, corrupted or
66  * alien lists. Returns zero in case of success and a negative error code in
67  * case of failure.
68  */
69 static int add_to_list(struct ubi_scan_info *si, int pnum, int ec,
70                        struct list_head *list)
71 {
72         struct ubi_scan_leb *seb;
73
74         if (list == &si->free)
75                 dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
76         else if (list == &si->erase)
77                 dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
78         else if (list == &si->corr)
79                 dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
80         else if (list == &si->alien)
81                 dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
82         else
83                 BUG();
84
85         seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL);
86         if (!seb)
87                 return -ENOMEM;
88
89         seb->pnum = pnum;
90         seb->ec = ec;
91         list_add_tail(&seb->u.list, list);
92         return 0;
93 }
94
95 /**
96  * validate_vid_hdr - check volume identifier header.
97  * @vid_hdr: the volume identifier header to check
98  * @sv: information about the volume this logical eraseblock belongs to
99  * @pnum: physical eraseblock number the VID header came from
100  *
101  * This function checks that data stored in @vid_hdr is consistent. Returns
102  * non-zero if an inconsistency was found and zero if not.
103  *
104  * Note, UBI does sanity check of everything it reads from the flash media.
105  * Most of the checks are done in the I/O sub-system. Here we check that the
106  * information in the VID header is consistent to the information in other VID
107  * headers of the same volume.
108  */
109 static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr,
110                             const struct ubi_scan_volume *sv, int pnum)
111 {
112         int vol_type = vid_hdr->vol_type;
113         int vol_id = be32_to_cpu(vid_hdr->vol_id);
114         int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
115         int data_pad = be32_to_cpu(vid_hdr->data_pad);
116
117         if (sv->leb_count != 0) {
118                 int sv_vol_type;
119
120                 /*
121                  * This is not the first logical eraseblock belonging to this
122                  * volume. Ensure that the data in its VID header is consistent
123                  * to the data in previous logical eraseblock headers.
124                  */
125
126                 if (vol_id != sv->vol_id) {
127                         dbg_err("inconsistent vol_id");
128                         goto bad;
129                 }
130
131                 if (sv->vol_type == UBI_STATIC_VOLUME)
132                         sv_vol_type = UBI_VID_STATIC;
133                 else
134                         sv_vol_type = UBI_VID_DYNAMIC;
135
136                 if (vol_type != sv_vol_type) {
137                         dbg_err("inconsistent vol_type");
138                         goto bad;
139                 }
140
141                 if (used_ebs != sv->used_ebs) {
142                         dbg_err("inconsistent used_ebs");
143                         goto bad;
144                 }
145
146                 if (data_pad != sv->data_pad) {
147                         dbg_err("inconsistent data_pad");
148                         goto bad;
149                 }
150         }
151
152         return 0;
153
154 bad:
155         ubi_err("inconsistent VID header at PEB %d", pnum);
156         ubi_dbg_dump_vid_hdr(vid_hdr);
157         ubi_dbg_dump_sv(sv);
158         return -EINVAL;
159 }
160
161 /**
162  * add_volume - add volume to the scanning information.
163  * @si: scanning information
164  * @vol_id: ID of the volume to add
165  * @pnum: physical eraseblock number
166  * @vid_hdr: volume identifier header
167  *
168  * If the volume corresponding to the @vid_hdr logical eraseblock is already
169  * present in the scanning information, this function does nothing. Otherwise
170  * it adds corresponding volume to the scanning information. Returns a pointer
171  * to the scanning volume object in case of success and a negative error code
172  * in case of failure.
173  */
174 static struct ubi_scan_volume *add_volume(struct ubi_scan_info *si, int vol_id,
175                                           int pnum,
176                                           const struct ubi_vid_hdr *vid_hdr)
177 {
178         struct ubi_scan_volume *sv;
179         struct rb_node **p = &si->volumes.rb_node, *parent = NULL;
180
181         ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
182
183         /* Walk the volume RB-tree to look if this volume is already present */
184         while (*p) {
185                 parent = *p;
186                 sv = rb_entry(parent, struct ubi_scan_volume, rb);
187
188                 if (vol_id == sv->vol_id)
189                         return sv;
190
191                 if (vol_id > sv->vol_id)
192                         p = &(*p)->rb_left;
193                 else
194                         p = &(*p)->rb_right;
195         }
196
197         /* The volume is absent - add it */
198         sv = kmalloc(sizeof(struct ubi_scan_volume), GFP_KERNEL);
199         if (!sv)
200                 return ERR_PTR(-ENOMEM);
201
202         sv->highest_lnum = sv->leb_count = 0;
203         sv->vol_id = vol_id;
204         sv->root = RB_ROOT;
205         sv->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
206         sv->data_pad = be32_to_cpu(vid_hdr->data_pad);
207         sv->compat = vid_hdr->compat;
208         sv->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
209                                                             : UBI_STATIC_VOLUME;
210         if (vol_id > si->highest_vol_id)
211                 si->highest_vol_id = vol_id;
212
213         rb_link_node(&sv->rb, parent, p);
214         rb_insert_color(&sv->rb, &si->volumes);
215         si->vols_found += 1;
216         dbg_bld("added volume %d", vol_id);
217         return sv;
218 }
219
220 /**
221  * compare_lebs - find out which logical eraseblock is newer.
222  * @ubi: UBI device description object
223  * @seb: first logical eraseblock to compare
224  * @pnum: physical eraseblock number of the second logical eraseblock to
225  * compare
226  * @vid_hdr: volume identifier header of the second logical eraseblock
227  *
228  * This function compares 2 copies of a LEB and informs which one is newer. In
229  * case of success this function returns a positive value, in case of failure, a
230  * negative error code is returned. The success return codes use the following
231  * bits:
232  *     o bit 0 is cleared: the first PEB (described by @seb) is newer then the
233  *       second PEB (described by @pnum and @vid_hdr);
234  *     o bit 0 is set: the second PEB is newer;
235  *     o bit 1 is cleared: no bit-flips were detected in the newer LEB;
236  *     o bit 1 is set: bit-flips were detected in the newer LEB;
237  *     o bit 2 is cleared: the older LEB is not corrupted;
238  *     o bit 2 is set: the older LEB is corrupted.
239  */
240 static int compare_lebs(struct ubi_device *ubi, const struct ubi_scan_leb *seb,
241                         int pnum, const struct ubi_vid_hdr *vid_hdr)
242 {
243         void *buf;
244         int len, err, second_is_newer, bitflips = 0, corrupted = 0;
245         uint32_t data_crc, crc;
246         struct ubi_vid_hdr *vh = NULL;
247         unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
248
249         if (sqnum2 == seb->sqnum) {
250                 /*
251                  * This must be a really ancient UBI image which has been
252                  * created before sequence numbers support has been added. At
253                  * that times we used 32-bit LEB versions stored in logical
254                  * eraseblocks. That was before UBI got into mainline. We do not
255                  * support these images anymore. Well, those images will work
256                  * still work, but only if no unclean reboots happened.
257                  */
258                 ubi_err("unsupported on-flash UBI format\n");
259                 return -EINVAL;
260         }
261
262         /* Obviously the LEB with lower sequence counter is older */
263         second_is_newer = !!(sqnum2 > seb->sqnum);
264
265         /*
266          * Now we know which copy is newer. If the copy flag of the PEB with
267          * newer version is not set, then we just return, otherwise we have to
268          * check data CRC. For the second PEB we already have the VID header,
269          * for the first one - we'll need to re-read it from flash.
270          *
271          * Note: this may be optimized so that we wouldn't read twice.
272          */
273
274         if (second_is_newer) {
275                 if (!vid_hdr->copy_flag) {
276                         /* It is not a copy, so it is newer */
277                         dbg_bld("second PEB %d is newer, copy_flag is unset",
278                                 pnum);
279                         return 1;
280                 }
281         } else {
282                 pnum = seb->pnum;
283
284                 vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
285                 if (!vh)
286                         return -ENOMEM;
287
288                 err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
289                 if (err) {
290                         if (err == UBI_IO_BITFLIPS)
291                                 bitflips = 1;
292                         else {
293                                 dbg_err("VID of PEB %d header is bad, but it "
294                                         "was OK earlier", pnum);
295                                 if (err > 0)
296                                         err = -EIO;
297
298                                 goto out_free_vidh;
299                         }
300                 }
301
302                 if (!vh->copy_flag) {
303                         /* It is not a copy, so it is newer */
304                         dbg_bld("first PEB %d is newer, copy_flag is unset",
305                                 pnum);
306                         err = bitflips << 1;
307                         goto out_free_vidh;
308                 }
309
310                 vid_hdr = vh;
311         }
312
313         /* Read the data of the copy and check the CRC */
314
315         len = be32_to_cpu(vid_hdr->data_size);
316         buf = vmalloc(len);
317         if (!buf) {
318                 err = -ENOMEM;
319                 goto out_free_vidh;
320         }
321
322         err = ubi_io_read_data(ubi, buf, pnum, 0, len);
323         if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
324                 goto out_free_buf;
325
326         data_crc = be32_to_cpu(vid_hdr->data_crc);
327         crc = crc32(UBI_CRC32_INIT, buf, len);
328         if (crc != data_crc) {
329                 dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
330                         pnum, crc, data_crc);
331                 corrupted = 1;
332                 bitflips = 0;
333                 second_is_newer = !second_is_newer;
334         } else {
335                 dbg_bld("PEB %d CRC is OK", pnum);
336                 bitflips = !!err;
337         }
338
339         vfree(buf);
340         ubi_free_vid_hdr(ubi, vh);
341
342         if (second_is_newer)
343                 dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
344         else
345                 dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
346
347         return second_is_newer | (bitflips << 1) | (corrupted << 2);
348
349 out_free_buf:
350         vfree(buf);
351 out_free_vidh:
352         ubi_free_vid_hdr(ubi, vh);
353         return err;
354 }
355
356 /**
357  * ubi_scan_add_used - add physical eraseblock to the scanning information.
358  * @ubi: UBI device description object
359  * @si: scanning information
360  * @pnum: the physical eraseblock number
361  * @ec: erase counter
362  * @vid_hdr: the volume identifier header
363  * @bitflips: if bit-flips were detected when this physical eraseblock was read
364  *
365  * This function adds information about a used physical eraseblock to the
366  * 'used' tree of the corresponding volume. The function is rather complex
367  * because it has to handle cases when this is not the first physical
368  * eraseblock belonging to the same logical eraseblock, and the newer one has
369  * to be picked, while the older one has to be dropped. This function returns
370  * zero in case of success and a negative error code in case of failure.
371  */
372 int ubi_scan_add_used(struct ubi_device *ubi, struct ubi_scan_info *si,
373                       int pnum, int ec, const struct ubi_vid_hdr *vid_hdr,
374                       int bitflips)
375 {
376         int err, vol_id, lnum;
377         unsigned long long sqnum;
378         struct ubi_scan_volume *sv;
379         struct ubi_scan_leb *seb;
380         struct rb_node **p, *parent = NULL;
381
382         vol_id = be32_to_cpu(vid_hdr->vol_id);
383         lnum = be32_to_cpu(vid_hdr->lnum);
384         sqnum = be64_to_cpu(vid_hdr->sqnum);
385
386         dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d",
387                 pnum, vol_id, lnum, ec, sqnum, bitflips);
388
389         sv = add_volume(si, vol_id, pnum, vid_hdr);
390         if (IS_ERR(sv))
391                 return PTR_ERR(sv);
392
393         if (si->max_sqnum < sqnum)
394                 si->max_sqnum = sqnum;
395
396         /*
397          * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
398          * if this is the first instance of this logical eraseblock or not.
399          */
400         p = &sv->root.rb_node;
401         while (*p) {
402                 int cmp_res;
403
404                 parent = *p;
405                 seb = rb_entry(parent, struct ubi_scan_leb, u.rb);
406                 if (lnum != seb->lnum) {
407                         if (lnum < seb->lnum)
408                                 p = &(*p)->rb_left;
409                         else
410                                 p = &(*p)->rb_right;
411                         continue;
412                 }
413
414                 /*
415                  * There is already a physical eraseblock describing the same
416                  * logical eraseblock present.
417                  */
418
419                 dbg_bld("this LEB already exists: PEB %d, sqnum %llu, "
420                         "EC %d", seb->pnum, seb->sqnum, seb->ec);
421
422                 /*
423                  * Make sure that the logical eraseblocks have different
424                  * sequence numbers. Otherwise the image is bad.
425                  *
426                  * However, if the sequence number is zero, we assume it must
427                  * be an ancient UBI image from the era when UBI did not have
428                  * sequence numbers. We still can attach these images, unless
429                  * there is a need to distinguish between old and new
430                  * eraseblocks, in which case we'll refuse the image in
431                  * 'compare_lebs()'. In other words, we attach old clean
432                  * images, but refuse attaching old images with duplicated
433                  * logical eraseblocks because there was an unclean reboot.
434                  */
435                 if (seb->sqnum == sqnum && sqnum != 0) {
436                         ubi_err("two LEBs with same sequence number %llu",
437                                 sqnum);
438                         ubi_dbg_dump_seb(seb, 0);
439                         ubi_dbg_dump_vid_hdr(vid_hdr);
440                         return -EINVAL;
441                 }
442
443                 /*
444                  * Now we have to drop the older one and preserve the newer
445                  * one.
446                  */
447                 cmp_res = compare_lebs(ubi, seb, pnum, vid_hdr);
448                 if (cmp_res < 0)
449                         return cmp_res;
450
451                 if (cmp_res & 1) {
452                         /*
453                          * This logical eraseblock is newer then the one
454                          * found earlier.
455                          */
456                         err = validate_vid_hdr(vid_hdr, sv, pnum);
457                         if (err)
458                                 return err;
459
460                         if (cmp_res & 4)
461                                 err = add_to_list(si, seb->pnum, seb->ec,
462                                                   &si->corr);
463                         else
464                                 err = add_to_list(si, seb->pnum, seb->ec,
465                                                   &si->erase);
466                         if (err)
467                                 return err;
468
469                         seb->ec = ec;
470                         seb->pnum = pnum;
471                         seb->scrub = ((cmp_res & 2) || bitflips);
472                         seb->sqnum = sqnum;
473
474                         if (sv->highest_lnum == lnum)
475                                 sv->last_data_size =
476                                         be32_to_cpu(vid_hdr->data_size);
477
478                         return 0;
479                 } else {
480                         /*
481                          * This logical eraseblock is older than the one found
482                          * previously.
483                          */
484                         if (cmp_res & 4)
485                                 return add_to_list(si, pnum, ec, &si->corr);
486                         else
487                                 return add_to_list(si, pnum, ec, &si->erase);
488                 }
489         }
490
491         /*
492          * We've met this logical eraseblock for the first time, add it to the
493          * scanning information.
494          */
495
496         err = validate_vid_hdr(vid_hdr, sv, pnum);
497         if (err)
498                 return err;
499
500         seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL);
501         if (!seb)
502                 return -ENOMEM;
503
504         seb->ec = ec;
505         seb->pnum = pnum;
506         seb->lnum = lnum;
507         seb->sqnum = sqnum;
508         seb->scrub = bitflips;
509
510         if (sv->highest_lnum <= lnum) {
511                 sv->highest_lnum = lnum;
512                 sv->last_data_size = be32_to_cpu(vid_hdr->data_size);
513         }
514
515         sv->leb_count += 1;
516         rb_link_node(&seb->u.rb, parent, p);
517         rb_insert_color(&seb->u.rb, &sv->root);
518         return 0;
519 }
520
521 /**
522  * ubi_scan_find_sv - find volume in the scanning information.
523  * @si: scanning information
524  * @vol_id: the requested volume ID
525  *
526  * This function returns a pointer to the volume description or %NULL if there
527  * are no data about this volume in the scanning information.
528  */
529 struct ubi_scan_volume *ubi_scan_find_sv(const struct ubi_scan_info *si,
530                                          int vol_id)
531 {
532         struct ubi_scan_volume *sv;
533         struct rb_node *p = si->volumes.rb_node;
534
535         while (p) {
536                 sv = rb_entry(p, struct ubi_scan_volume, rb);
537
538                 if (vol_id == sv->vol_id)
539                         return sv;
540
541                 if (vol_id > sv->vol_id)
542                         p = p->rb_left;
543                 else
544                         p = p->rb_right;
545         }
546
547         return NULL;
548 }
549
550 /**
551  * ubi_scan_find_seb - find LEB in the volume scanning information.
552  * @sv: a pointer to the volume scanning information
553  * @lnum: the requested logical eraseblock
554  *
555  * This function returns a pointer to the scanning logical eraseblock or %NULL
556  * if there are no data about it in the scanning volume information.
557  */
558 struct ubi_scan_leb *ubi_scan_find_seb(const struct ubi_scan_volume *sv,
559                                        int lnum)
560 {
561         struct ubi_scan_leb *seb;
562         struct rb_node *p = sv->root.rb_node;
563
564         while (p) {
565                 seb = rb_entry(p, struct ubi_scan_leb, u.rb);
566
567                 if (lnum == seb->lnum)
568                         return seb;
569
570                 if (lnum > seb->lnum)
571                         p = p->rb_left;
572                 else
573                         p = p->rb_right;
574         }
575
576         return NULL;
577 }
578
579 /**
580  * ubi_scan_rm_volume - delete scanning information about a volume.
581  * @si: scanning information
582  * @sv: the volume scanning information to delete
583  */
584 void ubi_scan_rm_volume(struct ubi_scan_info *si, struct ubi_scan_volume *sv)
585 {
586         struct rb_node *rb;
587         struct ubi_scan_leb *seb;
588
589         dbg_bld("remove scanning information about volume %d", sv->vol_id);
590
591         while ((rb = rb_first(&sv->root))) {
592                 seb = rb_entry(rb, struct ubi_scan_leb, u.rb);
593                 rb_erase(&seb->u.rb, &sv->root);
594                 list_add_tail(&seb->u.list, &si->erase);
595         }
596
597         rb_erase(&sv->rb, &si->volumes);
598         kfree(sv);
599         si->vols_found -= 1;
600 }
601
602 /**
603  * ubi_scan_erase_peb - erase a physical eraseblock.
604  * @ubi: UBI device description object
605  * @si: scanning information
606  * @pnum: physical eraseblock number to erase;
607  * @ec: erase counter value to write (%UBI_SCAN_UNKNOWN_EC if it is unknown)
608  *
609  * This function erases physical eraseblock 'pnum', and writes the erase
610  * counter header to it. This function should only be used on UBI device
611  * initialization stages, when the EBA sub-system had not been yet initialized.
612  * This function returns zero in case of success and a negative error code in
613  * case of failure.
614  */
615 int ubi_scan_erase_peb(struct ubi_device *ubi, const struct ubi_scan_info *si,
616                        int pnum, int ec)
617 {
618         int err;
619         struct ubi_ec_hdr *ec_hdr;
620
621         if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
622                 /*
623                  * Erase counter overflow. Upgrade UBI and use 64-bit
624                  * erase counters internally.
625                  */
626                 ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec);
627                 return -EINVAL;
628         }
629
630         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
631         if (!ec_hdr)
632                 return -ENOMEM;
633
634         ec_hdr->ec = cpu_to_be64(ec);
635
636         err = ubi_io_sync_erase(ubi, pnum, 0);
637         if (err < 0)
638                 goto out_free;
639
640         err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
641
642 out_free:
643         kfree(ec_hdr);
644         return err;
645 }
646
647 /**
648  * ubi_scan_get_free_peb - get a free physical eraseblock.
649  * @ubi: UBI device description object
650  * @si: scanning information
651  *
652  * This function returns a free physical eraseblock. It is supposed to be
653  * called on the UBI initialization stages when the wear-leveling sub-system is
654  * not initialized yet. This function picks a physical eraseblocks from one of
655  * the lists, writes the EC header if it is needed, and removes it from the
656  * list.
657  *
658  * This function returns scanning physical eraseblock information in case of
659  * success and an error code in case of failure.
660  */
661 struct ubi_scan_leb *ubi_scan_get_free_peb(struct ubi_device *ubi,
662                                            struct ubi_scan_info *si)
663 {
664         int err = 0, i;
665         struct ubi_scan_leb *seb;
666
667         if (!list_empty(&si->free)) {
668                 seb = list_entry(si->free.next, struct ubi_scan_leb, u.list);
669                 list_del(&seb->u.list);
670                 dbg_bld("return free PEB %d, EC %d", seb->pnum, seb->ec);
671                 return seb;
672         }
673
674         for (i = 0; i < 2; i++) {
675                 struct list_head *head;
676                 struct ubi_scan_leb *tmp_seb;
677
678                 if (i == 0)
679                         head = &si->erase;
680                 else
681                         head = &si->corr;
682
683                 /*
684                  * We try to erase the first physical eraseblock from the @head
685                  * list and pick it if we succeed, or try to erase the
686                  * next one if not. And so forth. We don't want to take care
687                  * about bad eraseblocks here - they'll be handled later.
688                  */
689                 list_for_each_entry_safe(seb, tmp_seb, head, u.list) {
690                         if (seb->ec == UBI_SCAN_UNKNOWN_EC)
691                                 seb->ec = si->mean_ec;
692
693                         err = ubi_scan_erase_peb(ubi, si, seb->pnum, seb->ec+1);
694                         if (err)
695                                 continue;
696
697                         seb->ec += 1;
698                         list_del(&seb->u.list);
699                         dbg_bld("return PEB %d, EC %d", seb->pnum, seb->ec);
700                         return seb;
701                 }
702         }
703
704         ubi_err("no eraseblocks found");
705         return ERR_PTR(-ENOSPC);
706 }
707
708 /**
709  * process_eb - read, check UBI headers, and add them to scanning information.
710  * @ubi: UBI device description object
711  * @si: scanning information
712  * @pnum: the physical eraseblock number
713  *
714  * This function returns a zero if the physical eraseblock was successfully
715  * handled and a negative error code in case of failure.
716  */
717 static int process_eb(struct ubi_device *ubi, struct ubi_scan_info *si,
718                       int pnum)
719 {
720         long long uninitialized_var(ec);
721         int err, bitflips = 0, vol_id, ec_corr = 0;
722
723         dbg_bld("scan PEB %d", pnum);
724
725         /* Skip bad physical eraseblocks */
726         err = ubi_io_is_bad(ubi, pnum);
727         if (err < 0)
728                 return err;
729         else if (err) {
730                 /*
731                  * FIXME: this is actually duty of the I/O sub-system to
732                  * initialize this, but MTD does not provide enough
733                  * information.
734                  */
735                 si->bad_peb_count += 1;
736                 return 0;
737         }
738
739         err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
740         if (err < 0)
741                 return err;
742         else if (err == UBI_IO_BITFLIPS)
743                 bitflips = 1;
744         else if (err == UBI_IO_PEB_EMPTY)
745                 return add_to_list(si, pnum, UBI_SCAN_UNKNOWN_EC, &si->erase);
746         else if (err == UBI_IO_BAD_EC_HDR) {
747                 /*
748                  * We have to also look at the VID header, possibly it is not
749                  * corrupted. Set %bitflips flag in order to make this PEB be
750                  * moved and EC be re-created.
751                  */
752                 ec_corr = 1;
753                 ec = UBI_SCAN_UNKNOWN_EC;
754                 bitflips = 1;
755         }
756
757         si->is_empty = 0;
758
759         if (!ec_corr) {
760                 int image_seq;
761
762                 /* Make sure UBI version is OK */
763                 if (ech->version != UBI_VERSION) {
764                         ubi_err("this UBI version is %d, image version is %d",
765                                 UBI_VERSION, (int)ech->version);
766                         return -EINVAL;
767                 }
768
769                 ec = be64_to_cpu(ech->ec);
770                 if (ec > UBI_MAX_ERASECOUNTER) {
771                         /*
772                          * Erase counter overflow. The EC headers have 64 bits
773                          * reserved, but we anyway make use of only 31 bit
774                          * values, as this seems to be enough for any existing
775                          * flash. Upgrade UBI and use 64-bit erase counters
776                          * internally.
777                          */
778                         ubi_err("erase counter overflow, max is %d",
779                                 UBI_MAX_ERASECOUNTER);
780                         ubi_dbg_dump_ec_hdr(ech);
781                         return -EINVAL;
782                 }
783
784                 image_seq = be32_to_cpu(ech->image_seq);
785                 if (!si->image_seq_set) {
786                         ubi->image_seq = image_seq;
787                         si->image_seq_set = 1;
788                 } else if (ubi->image_seq != image_seq) {
789                         ubi_err("bad image sequence number %d in PEB %d, "
790                                 "expected %d", image_seq, pnum, ubi->image_seq);
791                         ubi_dbg_dump_ec_hdr(ech);
792                         return -EINVAL;
793                 }
794
795         }
796
797         /* OK, we've done with the EC header, let's look at the VID header */
798
799         err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
800         if (err < 0)
801                 return err;
802         else if (err == UBI_IO_BITFLIPS)
803                 bitflips = 1;
804         else if (err == UBI_IO_BAD_VID_HDR ||
805                  (err == UBI_IO_PEB_FREE && ec_corr)) {
806                 /* VID header is corrupted */
807                 err = add_to_list(si, pnum, ec, &si->corr);
808                 if (err)
809                         return err;
810                 goto adjust_mean_ec;
811         } else if (err == UBI_IO_PEB_FREE) {
812                 /* No VID header - the physical eraseblock is free */
813                 err = add_to_list(si, pnum, ec, &si->free);
814                 if (err)
815                         return err;
816                 goto adjust_mean_ec;
817         }
818
819         vol_id = be32_to_cpu(vidh->vol_id);
820         if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) {
821                 int lnum = be32_to_cpu(vidh->lnum);
822
823                 /* Unsupported internal volume */
824                 switch (vidh->compat) {
825                 case UBI_COMPAT_DELETE:
826                         ubi_msg("\"delete\" compatible internal volume %d:%d"
827                                 " found, remove it", vol_id, lnum);
828                         err = add_to_list(si, pnum, ec, &si->corr);
829                         if (err)
830                                 return err;
831                         break;
832
833                 case UBI_COMPAT_RO:
834                         ubi_msg("read-only compatible internal volume %d:%d"
835                                 " found, switch to read-only mode",
836                                 vol_id, lnum);
837                         ubi->ro_mode = 1;
838                         break;
839
840                 case UBI_COMPAT_PRESERVE:
841                         ubi_msg("\"preserve\" compatible internal volume %d:%d"
842                                 " found", vol_id, lnum);
843                         err = add_to_list(si, pnum, ec, &si->alien);
844                         if (err)
845                                 return err;
846                         si->alien_peb_count += 1;
847                         return 0;
848
849                 case UBI_COMPAT_REJECT:
850                         ubi_err("incompatible internal volume %d:%d found",
851                                 vol_id, lnum);
852                         return -EINVAL;
853                 }
854         }
855
856         /* Both UBI headers seem to be fine */
857         err = ubi_scan_add_used(ubi, si, pnum, ec, vidh, bitflips);
858         if (err)
859                 return err;
860
861 adjust_mean_ec:
862         if (!ec_corr) {
863                 si->ec_sum += ec;
864                 si->ec_count += 1;
865                 if (ec > si->max_ec)
866                         si->max_ec = ec;
867                 if (ec < si->min_ec)
868                         si->min_ec = ec;
869         }
870
871         return 0;
872 }
873
874 /**
875  * ubi_scan - scan an MTD device.
876  * @ubi: UBI device description object
877  *
878  * This function does full scanning of an MTD device and returns complete
879  * information about it. In case of failure, an error code is returned.
880  */
881 struct ubi_scan_info *ubi_scan(struct ubi_device *ubi)
882 {
883         int err, pnum;
884         struct rb_node *rb1, *rb2;
885         struct ubi_scan_volume *sv;
886         struct ubi_scan_leb *seb;
887         struct ubi_scan_info *si;
888
889         si = kzalloc(sizeof(struct ubi_scan_info), GFP_KERNEL);
890         if (!si)
891                 return ERR_PTR(-ENOMEM);
892
893         INIT_LIST_HEAD(&si->corr);
894         INIT_LIST_HEAD(&si->free);
895         INIT_LIST_HEAD(&si->erase);
896         INIT_LIST_HEAD(&si->alien);
897         si->volumes = RB_ROOT;
898         si->is_empty = 1;
899
900         err = -ENOMEM;
901         ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
902         if (!ech)
903                 goto out_si;
904
905         vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
906         if (!vidh)
907                 goto out_ech;
908
909         for (pnum = 0; pnum < ubi->peb_count; pnum++) {
910                 cond_resched();
911
912                 dbg_gen("process PEB %d", pnum);
913                 err = process_eb(ubi, si, pnum);
914                 if (err < 0)
915                         goto out_vidh;
916         }
917
918         dbg_msg("scanning is finished");
919
920         /* Calculate mean erase counter */
921         if (si->ec_count)
922                 si->mean_ec = div_u64(si->ec_sum, si->ec_count);
923
924         if (si->is_empty)
925                 ubi_msg("empty MTD device detected");
926
927         /*
928          * In case of unknown erase counter we use the mean erase counter
929          * value.
930          */
931         ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
932                 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb)
933                         if (seb->ec == UBI_SCAN_UNKNOWN_EC)
934                                 seb->ec = si->mean_ec;
935         }
936
937         list_for_each_entry(seb, &si->free, u.list) {
938                 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
939                         seb->ec = si->mean_ec;
940         }
941
942         list_for_each_entry(seb, &si->corr, u.list)
943                 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
944                         seb->ec = si->mean_ec;
945
946         list_for_each_entry(seb, &si->erase, u.list)
947                 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
948                         seb->ec = si->mean_ec;
949
950         err = paranoid_check_si(ubi, si);
951         if (err) {
952                 if (err > 0)
953                         err = -EINVAL;
954                 goto out_vidh;
955         }
956
957         ubi_free_vid_hdr(ubi, vidh);
958         kfree(ech);
959
960         return si;
961
962 out_vidh:
963         ubi_free_vid_hdr(ubi, vidh);
964 out_ech:
965         kfree(ech);
966 out_si:
967         ubi_scan_destroy_si(si);
968         return ERR_PTR(err);
969 }
970
971 /**
972  * destroy_sv - free the scanning volume information
973  * @sv: scanning volume information
974  *
975  * This function destroys the volume RB-tree (@sv->root) and the scanning
976  * volume information.
977  */
978 static void destroy_sv(struct ubi_scan_volume *sv)
979 {
980         struct ubi_scan_leb *seb;
981         struct rb_node *this = sv->root.rb_node;
982
983         while (this) {
984                 if (this->rb_left)
985                         this = this->rb_left;
986                 else if (this->rb_right)
987                         this = this->rb_right;
988                 else {
989                         seb = rb_entry(this, struct ubi_scan_leb, u.rb);
990                         this = rb_parent(this);
991                         if (this) {
992                                 if (this->rb_left == &seb->u.rb)
993                                         this->rb_left = NULL;
994                                 else
995                                         this->rb_right = NULL;
996                         }
997
998                         kfree(seb);
999                 }
1000         }
1001         kfree(sv);
1002 }
1003
1004 /**
1005  * ubi_scan_destroy_si - destroy scanning information.
1006  * @si: scanning information
1007  */
1008 void ubi_scan_destroy_si(struct ubi_scan_info *si)
1009 {
1010         struct ubi_scan_leb *seb, *seb_tmp;
1011         struct ubi_scan_volume *sv;
1012         struct rb_node *rb;
1013
1014         list_for_each_entry_safe(seb, seb_tmp, &si->alien, u.list) {
1015                 list_del(&seb->u.list);
1016                 kfree(seb);
1017         }
1018         list_for_each_entry_safe(seb, seb_tmp, &si->erase, u.list) {
1019                 list_del(&seb->u.list);
1020                 kfree(seb);
1021         }
1022         list_for_each_entry_safe(seb, seb_tmp, &si->corr, u.list) {
1023                 list_del(&seb->u.list);
1024                 kfree(seb);
1025         }
1026         list_for_each_entry_safe(seb, seb_tmp, &si->free, u.list) {
1027                 list_del(&seb->u.list);
1028                 kfree(seb);
1029         }
1030
1031         /* Destroy the volume RB-tree */
1032         rb = si->volumes.rb_node;
1033         while (rb) {
1034                 if (rb->rb_left)
1035                         rb = rb->rb_left;
1036                 else if (rb->rb_right)
1037                         rb = rb->rb_right;
1038                 else {
1039                         sv = rb_entry(rb, struct ubi_scan_volume, rb);
1040
1041                         rb = rb_parent(rb);
1042                         if (rb) {
1043                                 if (rb->rb_left == &sv->rb)
1044                                         rb->rb_left = NULL;
1045                                 else
1046                                         rb->rb_right = NULL;
1047                         }
1048
1049                         destroy_sv(sv);
1050                 }
1051         }
1052
1053         kfree(si);
1054 }
1055
1056 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1057
1058 /**
1059  * paranoid_check_si - check the scanning information.
1060  * @ubi: UBI device description object
1061  * @si: scanning information
1062  *
1063  * This function returns zero if the scanning information is all right, %1 if
1064  * not and a negative error code if an error occurred.
1065  */
1066 static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si)
1067 {
1068         int pnum, err, vols_found = 0;
1069         struct rb_node *rb1, *rb2;
1070         struct ubi_scan_volume *sv;
1071         struct ubi_scan_leb *seb, *last_seb;
1072         uint8_t *buf;
1073
1074         /*
1075          * At first, check that scanning information is OK.
1076          */
1077         ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1078                 int leb_count = 0;
1079
1080                 cond_resched();
1081
1082                 vols_found += 1;
1083
1084                 if (si->is_empty) {
1085                         ubi_err("bad is_empty flag");
1086                         goto bad_sv;
1087                 }
1088
1089                 if (sv->vol_id < 0 || sv->highest_lnum < 0 ||
1090                     sv->leb_count < 0 || sv->vol_type < 0 || sv->used_ebs < 0 ||
1091                     sv->data_pad < 0 || sv->last_data_size < 0) {
1092                         ubi_err("negative values");
1093                         goto bad_sv;
1094                 }
1095
1096                 if (sv->vol_id >= UBI_MAX_VOLUMES &&
1097                     sv->vol_id < UBI_INTERNAL_VOL_START) {
1098                         ubi_err("bad vol_id");
1099                         goto bad_sv;
1100                 }
1101
1102                 if (sv->vol_id > si->highest_vol_id) {
1103                         ubi_err("highest_vol_id is %d, but vol_id %d is there",
1104                                 si->highest_vol_id, sv->vol_id);
1105                         goto out;
1106                 }
1107
1108                 if (sv->vol_type != UBI_DYNAMIC_VOLUME &&
1109                     sv->vol_type != UBI_STATIC_VOLUME) {
1110                         ubi_err("bad vol_type");
1111                         goto bad_sv;
1112                 }
1113
1114                 if (sv->data_pad > ubi->leb_size / 2) {
1115                         ubi_err("bad data_pad");
1116                         goto bad_sv;
1117                 }
1118
1119                 last_seb = NULL;
1120                 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1121                         cond_resched();
1122
1123                         last_seb = seb;
1124                         leb_count += 1;
1125
1126                         if (seb->pnum < 0 || seb->ec < 0) {
1127                                 ubi_err("negative values");
1128                                 goto bad_seb;
1129                         }
1130
1131                         if (seb->ec < si->min_ec) {
1132                                 ubi_err("bad si->min_ec (%d), %d found",
1133                                         si->min_ec, seb->ec);
1134                                 goto bad_seb;
1135                         }
1136
1137                         if (seb->ec > si->max_ec) {
1138                                 ubi_err("bad si->max_ec (%d), %d found",
1139                                         si->max_ec, seb->ec);
1140                                 goto bad_seb;
1141                         }
1142
1143                         if (seb->pnum >= ubi->peb_count) {
1144                                 ubi_err("too high PEB number %d, total PEBs %d",
1145                                         seb->pnum, ubi->peb_count);
1146                                 goto bad_seb;
1147                         }
1148
1149                         if (sv->vol_type == UBI_STATIC_VOLUME) {
1150                                 if (seb->lnum >= sv->used_ebs) {
1151                                         ubi_err("bad lnum or used_ebs");
1152                                         goto bad_seb;
1153                                 }
1154                         } else {
1155                                 if (sv->used_ebs != 0) {
1156                                         ubi_err("non-zero used_ebs");
1157                                         goto bad_seb;
1158                                 }
1159                         }
1160
1161                         if (seb->lnum > sv->highest_lnum) {
1162                                 ubi_err("incorrect highest_lnum or lnum");
1163                                 goto bad_seb;
1164                         }
1165                 }
1166
1167                 if (sv->leb_count != leb_count) {
1168                         ubi_err("bad leb_count, %d objects in the tree",
1169                                 leb_count);
1170                         goto bad_sv;
1171                 }
1172
1173                 if (!last_seb)
1174                         continue;
1175
1176                 seb = last_seb;
1177
1178                 if (seb->lnum != sv->highest_lnum) {
1179                         ubi_err("bad highest_lnum");
1180                         goto bad_seb;
1181                 }
1182         }
1183
1184         if (vols_found != si->vols_found) {
1185                 ubi_err("bad si->vols_found %d, should be %d",
1186                         si->vols_found, vols_found);
1187                 goto out;
1188         }
1189
1190         /* Check that scanning information is correct */
1191         ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1192                 last_seb = NULL;
1193                 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1194                         int vol_type;
1195
1196                         cond_resched();
1197
1198                         last_seb = seb;
1199
1200                         err = ubi_io_read_vid_hdr(ubi, seb->pnum, vidh, 1);
1201                         if (err && err != UBI_IO_BITFLIPS) {
1202                                 ubi_err("VID header is not OK (%d)", err);
1203                                 if (err > 0)
1204                                         err = -EIO;
1205                                 return err;
1206                         }
1207
1208                         vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1209                                    UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1210                         if (sv->vol_type != vol_type) {
1211                                 ubi_err("bad vol_type");
1212                                 goto bad_vid_hdr;
1213                         }
1214
1215                         if (seb->sqnum != be64_to_cpu(vidh->sqnum)) {
1216                                 ubi_err("bad sqnum %llu", seb->sqnum);
1217                                 goto bad_vid_hdr;
1218                         }
1219
1220                         if (sv->vol_id != be32_to_cpu(vidh->vol_id)) {
1221                                 ubi_err("bad vol_id %d", sv->vol_id);
1222                                 goto bad_vid_hdr;
1223                         }
1224
1225                         if (sv->compat != vidh->compat) {
1226                                 ubi_err("bad compat %d", vidh->compat);
1227                                 goto bad_vid_hdr;
1228                         }
1229
1230                         if (seb->lnum != be32_to_cpu(vidh->lnum)) {
1231                                 ubi_err("bad lnum %d", seb->lnum);
1232                                 goto bad_vid_hdr;
1233                         }
1234
1235                         if (sv->used_ebs != be32_to_cpu(vidh->used_ebs)) {
1236                                 ubi_err("bad used_ebs %d", sv->used_ebs);
1237                                 goto bad_vid_hdr;
1238                         }
1239
1240                         if (sv->data_pad != be32_to_cpu(vidh->data_pad)) {
1241                                 ubi_err("bad data_pad %d", sv->data_pad);
1242                                 goto bad_vid_hdr;
1243                         }
1244                 }
1245
1246                 if (!last_seb)
1247                         continue;
1248
1249                 if (sv->highest_lnum != be32_to_cpu(vidh->lnum)) {
1250                         ubi_err("bad highest_lnum %d", sv->highest_lnum);
1251                         goto bad_vid_hdr;
1252                 }
1253
1254                 if (sv->last_data_size != be32_to_cpu(vidh->data_size)) {
1255                         ubi_err("bad last_data_size %d", sv->last_data_size);
1256                         goto bad_vid_hdr;
1257                 }
1258         }
1259
1260         /*
1261          * Make sure that all the physical eraseblocks are in one of the lists
1262          * or trees.
1263          */
1264         buf = kzalloc(ubi->peb_count, GFP_KERNEL);
1265         if (!buf)
1266                 return -ENOMEM;
1267
1268         for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1269                 err = ubi_io_is_bad(ubi, pnum);
1270                 if (err < 0) {
1271                         kfree(buf);
1272                         return err;
1273                 } else if (err)
1274                         buf[pnum] = 1;
1275         }
1276
1277         ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb)
1278                 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb)
1279                         buf[seb->pnum] = 1;
1280
1281         list_for_each_entry(seb, &si->free, u.list)
1282                 buf[seb->pnum] = 1;
1283
1284         list_for_each_entry(seb, &si->corr, u.list)
1285                 buf[seb->pnum] = 1;
1286
1287         list_for_each_entry(seb, &si->erase, u.list)
1288                 buf[seb->pnum] = 1;
1289
1290         list_for_each_entry(seb, &si->alien, u.list)
1291                 buf[seb->pnum] = 1;
1292
1293         err = 0;
1294         for (pnum = 0; pnum < ubi->peb_count; pnum++)
1295                 if (!buf[pnum]) {
1296                         ubi_err("PEB %d is not referred", pnum);
1297                         err = 1;
1298                 }
1299
1300         kfree(buf);
1301         if (err)
1302                 goto out;
1303         return 0;
1304
1305 bad_seb:
1306         ubi_err("bad scanning information about LEB %d", seb->lnum);
1307         ubi_dbg_dump_seb(seb, 0);
1308         ubi_dbg_dump_sv(sv);
1309         goto out;
1310
1311 bad_sv:
1312         ubi_err("bad scanning information about volume %d", sv->vol_id);
1313         ubi_dbg_dump_sv(sv);
1314         goto out;
1315
1316 bad_vid_hdr:
1317         ubi_err("bad scanning information about volume %d", sv->vol_id);
1318         ubi_dbg_dump_sv(sv);
1319         ubi_dbg_dump_vid_hdr(vidh);
1320
1321 out:
1322         ubi_dbg_dump_stack();
1323         return 1;
1324 }
1325
1326 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */