Merge branch 'fixes' of http://ftp.arm.linux.org.uk/pub/linux/arm/kernel/git-cur...
[pandora-kernel.git] / drivers / mtd / nand / nandsim.c
1 /*
2  * NAND flash simulator.
3  *
4  * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
5  *
6  * Copyright (C) 2004 Nokia Corporation
7  *
8  * Note: NS means "NAND Simulator".
9  * Note: Input means input TO flash chip, output means output FROM chip.
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the
13  * Free Software Foundation; either version 2, or (at your option) any later
14  * version.
15  *
16  * This program is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19  * Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
24  */
25
26 #include <linux/init.h>
27 #include <linux/types.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/vmalloc.h>
31 #include <asm/div64.h>
32 #include <linux/slab.h>
33 #include <linux/errno.h>
34 #include <linux/string.h>
35 #include <linux/mtd/mtd.h>
36 #include <linux/mtd/nand.h>
37 #include <linux/mtd/nand_bch.h>
38 #include <linux/mtd/partitions.h>
39 #include <linux/delay.h>
40 #include <linux/list.h>
41 #include <linux/random.h>
42 #include <linux/sched.h>
43 #include <linux/fs.h>
44 #include <linux/pagemap.h>
45
46 /* Default simulator parameters values */
47 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE)  || \
48     !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
49     !defined(CONFIG_NANDSIM_THIRD_ID_BYTE)  || \
50     !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
51 #define CONFIG_NANDSIM_FIRST_ID_BYTE  0x98
52 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
53 #define CONFIG_NANDSIM_THIRD_ID_BYTE  0xFF /* No byte */
54 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
55 #endif
56
57 #ifndef CONFIG_NANDSIM_ACCESS_DELAY
58 #define CONFIG_NANDSIM_ACCESS_DELAY 25
59 #endif
60 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
61 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
62 #endif
63 #ifndef CONFIG_NANDSIM_ERASE_DELAY
64 #define CONFIG_NANDSIM_ERASE_DELAY 2
65 #endif
66 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
67 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
68 #endif
69 #ifndef CONFIG_NANDSIM_INPUT_CYCLE
70 #define CONFIG_NANDSIM_INPUT_CYCLE  50
71 #endif
72 #ifndef CONFIG_NANDSIM_BUS_WIDTH
73 #define CONFIG_NANDSIM_BUS_WIDTH  8
74 #endif
75 #ifndef CONFIG_NANDSIM_DO_DELAYS
76 #define CONFIG_NANDSIM_DO_DELAYS  0
77 #endif
78 #ifndef CONFIG_NANDSIM_LOG
79 #define CONFIG_NANDSIM_LOG        0
80 #endif
81 #ifndef CONFIG_NANDSIM_DBG
82 #define CONFIG_NANDSIM_DBG        0
83 #endif
84 #ifndef CONFIG_NANDSIM_MAX_PARTS
85 #define CONFIG_NANDSIM_MAX_PARTS  32
86 #endif
87
88 static uint first_id_byte  = CONFIG_NANDSIM_FIRST_ID_BYTE;
89 static uint second_id_byte = CONFIG_NANDSIM_SECOND_ID_BYTE;
90 static uint third_id_byte  = CONFIG_NANDSIM_THIRD_ID_BYTE;
91 static uint fourth_id_byte = CONFIG_NANDSIM_FOURTH_ID_BYTE;
92 static uint access_delay   = CONFIG_NANDSIM_ACCESS_DELAY;
93 static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
94 static uint erase_delay    = CONFIG_NANDSIM_ERASE_DELAY;
95 static uint output_cycle   = CONFIG_NANDSIM_OUTPUT_CYCLE;
96 static uint input_cycle    = CONFIG_NANDSIM_INPUT_CYCLE;
97 static uint bus_width      = CONFIG_NANDSIM_BUS_WIDTH;
98 static uint do_delays      = CONFIG_NANDSIM_DO_DELAYS;
99 static uint log            = CONFIG_NANDSIM_LOG;
100 static uint dbg            = CONFIG_NANDSIM_DBG;
101 static unsigned long parts[CONFIG_NANDSIM_MAX_PARTS];
102 static unsigned int parts_num;
103 static char *badblocks = NULL;
104 static char *weakblocks = NULL;
105 static char *weakpages = NULL;
106 static unsigned int bitflips = 0;
107 static char *gravepages = NULL;
108 static unsigned int rptwear = 0;
109 static unsigned int overridesize = 0;
110 static char *cache_file = NULL;
111 static unsigned int bbt;
112 static unsigned int bch;
113
114 module_param(first_id_byte,  uint, 0400);
115 module_param(second_id_byte, uint, 0400);
116 module_param(third_id_byte,  uint, 0400);
117 module_param(fourth_id_byte, uint, 0400);
118 module_param(access_delay,   uint, 0400);
119 module_param(programm_delay, uint, 0400);
120 module_param(erase_delay,    uint, 0400);
121 module_param(output_cycle,   uint, 0400);
122 module_param(input_cycle,    uint, 0400);
123 module_param(bus_width,      uint, 0400);
124 module_param(do_delays,      uint, 0400);
125 module_param(log,            uint, 0400);
126 module_param(dbg,            uint, 0400);
127 module_param_array(parts, ulong, &parts_num, 0400);
128 module_param(badblocks,      charp, 0400);
129 module_param(weakblocks,     charp, 0400);
130 module_param(weakpages,      charp, 0400);
131 module_param(bitflips,       uint, 0400);
132 module_param(gravepages,     charp, 0400);
133 module_param(rptwear,        uint, 0400);
134 module_param(overridesize,   uint, 0400);
135 module_param(cache_file,     charp, 0400);
136 module_param(bbt,            uint, 0400);
137 module_param(bch,            uint, 0400);
138
139 MODULE_PARM_DESC(first_id_byte,  "The first byte returned by NAND Flash 'read ID' command (manufacturer ID)");
140 MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
141 MODULE_PARM_DESC(third_id_byte,  "The third byte returned by NAND Flash 'read ID' command");
142 MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command");
143 MODULE_PARM_DESC(access_delay,   "Initial page access delay (microseconds)");
144 MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
145 MODULE_PARM_DESC(erase_delay,    "Sector erase delay (milliseconds)");
146 MODULE_PARM_DESC(output_cycle,   "Word output (from flash) time (nanoseconds)");
147 MODULE_PARM_DESC(input_cycle,    "Word input (to flash) time (nanoseconds)");
148 MODULE_PARM_DESC(bus_width,      "Chip's bus width (8- or 16-bit)");
149 MODULE_PARM_DESC(do_delays,      "Simulate NAND delays using busy-waits if not zero");
150 MODULE_PARM_DESC(log,            "Perform logging if not zero");
151 MODULE_PARM_DESC(dbg,            "Output debug information if not zero");
152 MODULE_PARM_DESC(parts,          "Partition sizes (in erase blocks) separated by commas");
153 /* Page and erase block positions for the following parameters are independent of any partitions */
154 MODULE_PARM_DESC(badblocks,      "Erase blocks that are initially marked bad, separated by commas");
155 MODULE_PARM_DESC(weakblocks,     "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
156                                  " separated by commas e.g. 113:2 means eb 113"
157                                  " can be erased only twice before failing");
158 MODULE_PARM_DESC(weakpages,      "Weak pages [: maximum writes (defaults to 3)]"
159                                  " separated by commas e.g. 1401:2 means page 1401"
160                                  " can be written only twice before failing");
161 MODULE_PARM_DESC(bitflips,       "Maximum number of random bit flips per page (zero by default)");
162 MODULE_PARM_DESC(gravepages,     "Pages that lose data [: maximum reads (defaults to 3)]"
163                                  " separated by commas e.g. 1401:2 means page 1401"
164                                  " can be read only twice before failing");
165 MODULE_PARM_DESC(rptwear,        "Number of erases between reporting wear, if not zero");
166 MODULE_PARM_DESC(overridesize,   "Specifies the NAND Flash size overriding the ID bytes. "
167                                  "The size is specified in erase blocks and as the exponent of a power of two"
168                                  " e.g. 5 means a size of 32 erase blocks");
169 MODULE_PARM_DESC(cache_file,     "File to use to cache nand pages instead of memory");
170 MODULE_PARM_DESC(bbt,            "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area");
171 MODULE_PARM_DESC(bch,            "Enable BCH ecc and set how many bits should "
172                                  "be correctable in 512-byte blocks");
173
174 /* The largest possible page size */
175 #define NS_LARGEST_PAGE_SIZE    4096
176
177 /* The prefix for simulator output */
178 #define NS_OUTPUT_PREFIX "[nandsim]"
179
180 /* Simulator's output macros (logging, debugging, warning, error) */
181 #define NS_LOG(args...) \
182         do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
183 #define NS_DBG(args...) \
184         do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
185 #define NS_WARN(args...) \
186         do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
187 #define NS_ERR(args...) \
188         do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
189 #define NS_INFO(args...) \
190         do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)
191
192 /* Busy-wait delay macros (microseconds, milliseconds) */
193 #define NS_UDELAY(us) \
194         do { if (do_delays) udelay(us); } while(0)
195 #define NS_MDELAY(us) \
196         do { if (do_delays) mdelay(us); } while(0)
197
198 /* Is the nandsim structure initialized ? */
199 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
200
201 /* Good operation completion status */
202 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
203
204 /* Operation failed completion status */
205 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
206
207 /* Calculate the page offset in flash RAM image by (row, column) address */
208 #define NS_RAW_OFFSET(ns) \
209         (((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column)
210
211 /* Calculate the OOB offset in flash RAM image by (row, column) address */
212 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
213
214 /* After a command is input, the simulator goes to one of the following states */
215 #define STATE_CMD_READ0        0x00000001 /* read data from the beginning of page */
216 #define STATE_CMD_READ1        0x00000002 /* read data from the second half of page */
217 #define STATE_CMD_READSTART    0x00000003 /* read data second command (large page devices) */
218 #define STATE_CMD_PAGEPROG     0x00000004 /* start page program */
219 #define STATE_CMD_READOOB      0x00000005 /* read OOB area */
220 #define STATE_CMD_ERASE1       0x00000006 /* sector erase first command */
221 #define STATE_CMD_STATUS       0x00000007 /* read status */
222 #define STATE_CMD_STATUS_M     0x00000008 /* read multi-plane status (isn't implemented) */
223 #define STATE_CMD_SEQIN        0x00000009 /* sequential data input */
224 #define STATE_CMD_READID       0x0000000A /* read ID */
225 #define STATE_CMD_ERASE2       0x0000000B /* sector erase second command */
226 #define STATE_CMD_RESET        0x0000000C /* reset */
227 #define STATE_CMD_RNDOUT       0x0000000D /* random output command */
228 #define STATE_CMD_RNDOUTSTART  0x0000000E /* random output start command */
229 #define STATE_CMD_MASK         0x0000000F /* command states mask */
230
231 /* After an address is input, the simulator goes to one of these states */
232 #define STATE_ADDR_PAGE        0x00000010 /* full (row, column) address is accepted */
233 #define STATE_ADDR_SEC         0x00000020 /* sector address was accepted */
234 #define STATE_ADDR_COLUMN      0x00000030 /* column address was accepted */
235 #define STATE_ADDR_ZERO        0x00000040 /* one byte zero address was accepted */
236 #define STATE_ADDR_MASK        0x00000070 /* address states mask */
237
238 /* During data input/output the simulator is in these states */
239 #define STATE_DATAIN           0x00000100 /* waiting for data input */
240 #define STATE_DATAIN_MASK      0x00000100 /* data input states mask */
241
242 #define STATE_DATAOUT          0x00001000 /* waiting for page data output */
243 #define STATE_DATAOUT_ID       0x00002000 /* waiting for ID bytes output */
244 #define STATE_DATAOUT_STATUS   0x00003000 /* waiting for status output */
245 #define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
246 #define STATE_DATAOUT_MASK     0x00007000 /* data output states mask */
247
248 /* Previous operation is done, ready to accept new requests */
249 #define STATE_READY            0x00000000
250
251 /* This state is used to mark that the next state isn't known yet */
252 #define STATE_UNKNOWN          0x10000000
253
254 /* Simulator's actions bit masks */
255 #define ACTION_CPY       0x00100000 /* copy page/OOB to the internal buffer */
256 #define ACTION_PRGPAGE   0x00200000 /* program the internal buffer to flash */
257 #define ACTION_SECERASE  0x00300000 /* erase sector */
258 #define ACTION_ZEROOFF   0x00400000 /* don't add any offset to address */
259 #define ACTION_HALFOFF   0x00500000 /* add to address half of page */
260 #define ACTION_OOBOFF    0x00600000 /* add to address OOB offset */
261 #define ACTION_MASK      0x00700000 /* action mask */
262
263 #define NS_OPER_NUM      13 /* Number of operations supported by the simulator */
264 #define NS_OPER_STATES   6  /* Maximum number of states in operation */
265
266 #define OPT_ANY          0xFFFFFFFF /* any chip supports this operation */
267 #define OPT_PAGE256      0x00000001 /* 256-byte  page chips */
268 #define OPT_PAGE512      0x00000002 /* 512-byte  page chips */
269 #define OPT_PAGE2048     0x00000008 /* 2048-byte page chips */
270 #define OPT_SMARTMEDIA   0x00000010 /* SmartMedia technology chips */
271 #define OPT_AUTOINCR     0x00000020 /* page number auto incrementation is possible */
272 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
273 #define OPT_PAGE4096     0x00000080 /* 4096-byte page chips */
274 #define OPT_LARGEPAGE    (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */
275 #define OPT_SMALLPAGE    (OPT_PAGE256  | OPT_PAGE512)  /* 256 and 512-byte page chips */
276
277 /* Remove action bits from state */
278 #define NS_STATE(x) ((x) & ~ACTION_MASK)
279
280 /*
281  * Maximum previous states which need to be saved. Currently saving is
282  * only needed for page program operation with preceded read command
283  * (which is only valid for 512-byte pages).
284  */
285 #define NS_MAX_PREVSTATES 1
286
287 /* Maximum page cache pages needed to read or write a NAND page to the cache_file */
288 #define NS_MAX_HELD_PAGES 16
289
290 /*
291  * A union to represent flash memory contents and flash buffer.
292  */
293 union ns_mem {
294         u_char *byte;    /* for byte access */
295         uint16_t *word;  /* for 16-bit word access */
296 };
297
298 /*
299  * The structure which describes all the internal simulator data.
300  */
301 struct nandsim {
302         struct mtd_partition partitions[CONFIG_NANDSIM_MAX_PARTS];
303         unsigned int nbparts;
304
305         uint busw;              /* flash chip bus width (8 or 16) */
306         u_char ids[4];          /* chip's ID bytes */
307         uint32_t options;       /* chip's characteristic bits */
308         uint32_t state;         /* current chip state */
309         uint32_t nxstate;       /* next expected state */
310
311         uint32_t *op;           /* current operation, NULL operations isn't known yet  */
312         uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
313         uint16_t npstates;      /* number of previous states saved */
314         uint16_t stateidx;      /* current state index */
315
316         /* The simulated NAND flash pages array */
317         union ns_mem *pages;
318
319         /* Slab allocator for nand pages */
320         struct kmem_cache *nand_pages_slab;
321
322         /* Internal buffer of page + OOB size bytes */
323         union ns_mem buf;
324
325         /* NAND flash "geometry" */
326         struct {
327                 uint64_t totsz;     /* total flash size, bytes */
328                 uint32_t secsz;     /* flash sector (erase block) size, bytes */
329                 uint pgsz;          /* NAND flash page size, bytes */
330                 uint oobsz;         /* page OOB area size, bytes */
331                 uint64_t totszoob;  /* total flash size including OOB, bytes */
332                 uint pgszoob;       /* page size including OOB , bytes*/
333                 uint secszoob;      /* sector size including OOB, bytes */
334                 uint pgnum;         /* total number of pages */
335                 uint pgsec;         /* number of pages per sector */
336                 uint secshift;      /* bits number in sector size */
337                 uint pgshift;       /* bits number in page size */
338                 uint oobshift;      /* bits number in OOB size */
339                 uint pgaddrbytes;   /* bytes per page address */
340                 uint secaddrbytes;  /* bytes per sector address */
341                 uint idbytes;       /* the number ID bytes that this chip outputs */
342         } geom;
343
344         /* NAND flash internal registers */
345         struct {
346                 unsigned command; /* the command register */
347                 u_char   status;  /* the status register */
348                 uint     row;     /* the page number */
349                 uint     column;  /* the offset within page */
350                 uint     count;   /* internal counter */
351                 uint     num;     /* number of bytes which must be processed */
352                 uint     off;     /* fixed page offset */
353         } regs;
354
355         /* NAND flash lines state */
356         struct {
357                 int ce;  /* chip Enable */
358                 int cle; /* command Latch Enable */
359                 int ale; /* address Latch Enable */
360                 int wp;  /* write Protect */
361         } lines;
362
363         /* Fields needed when using a cache file */
364         struct file *cfile; /* Open file */
365         unsigned char *pages_written; /* Which pages have been written */
366         void *file_buf;
367         struct page *held_pages[NS_MAX_HELD_PAGES];
368         int held_cnt;
369 };
370
371 /*
372  * Operations array. To perform any operation the simulator must pass
373  * through the correspondent states chain.
374  */
375 static struct nandsim_operations {
376         uint32_t reqopts;  /* options which are required to perform the operation */
377         uint32_t states[NS_OPER_STATES]; /* operation's states */
378 } ops[NS_OPER_NUM] = {
379         /* Read page + OOB from the beginning */
380         {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
381                         STATE_DATAOUT, STATE_READY}},
382         /* Read page + OOB from the second half */
383         {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
384                         STATE_DATAOUT, STATE_READY}},
385         /* Read OOB */
386         {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
387                         STATE_DATAOUT, STATE_READY}},
388         /* Program page starting from the beginning */
389         {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
390                         STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
391         /* Program page starting from the beginning */
392         {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
393                               STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
394         /* Program page starting from the second half */
395         {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
396                               STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
397         /* Program OOB */
398         {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
399                               STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
400         /* Erase sector */
401         {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
402         /* Read status */
403         {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
404         /* Read multi-plane status */
405         {OPT_SMARTMEDIA, {STATE_CMD_STATUS_M, STATE_DATAOUT_STATUS_M, STATE_READY}},
406         /* Read ID */
407         {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
408         /* Large page devices read page */
409         {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
410                                STATE_DATAOUT, STATE_READY}},
411         /* Large page devices random page read */
412         {OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY,
413                                STATE_DATAOUT, STATE_READY}},
414 };
415
416 struct weak_block {
417         struct list_head list;
418         unsigned int erase_block_no;
419         unsigned int max_erases;
420         unsigned int erases_done;
421 };
422
423 static LIST_HEAD(weak_blocks);
424
425 struct weak_page {
426         struct list_head list;
427         unsigned int page_no;
428         unsigned int max_writes;
429         unsigned int writes_done;
430 };
431
432 static LIST_HEAD(weak_pages);
433
434 struct grave_page {
435         struct list_head list;
436         unsigned int page_no;
437         unsigned int max_reads;
438         unsigned int reads_done;
439 };
440
441 static LIST_HEAD(grave_pages);
442
443 static unsigned long *erase_block_wear = NULL;
444 static unsigned int wear_eb_count = 0;
445 static unsigned long total_wear = 0;
446 static unsigned int rptwear_cnt = 0;
447
448 /* MTD structure for NAND controller */
449 static struct mtd_info *nsmtd;
450
451 static u_char ns_verify_buf[NS_LARGEST_PAGE_SIZE];
452
453 /*
454  * Allocate array of page pointers, create slab allocation for an array
455  * and initialize the array by NULL pointers.
456  *
457  * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
458  */
459 static int alloc_device(struct nandsim *ns)
460 {
461         struct file *cfile;
462         int i, err;
463
464         if (cache_file) {
465                 cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600);
466                 if (IS_ERR(cfile))
467                         return PTR_ERR(cfile);
468                 if (!cfile->f_op || (!cfile->f_op->read && !cfile->f_op->aio_read)) {
469                         NS_ERR("alloc_device: cache file not readable\n");
470                         err = -EINVAL;
471                         goto err_close;
472                 }
473                 if (!cfile->f_op->write && !cfile->f_op->aio_write) {
474                         NS_ERR("alloc_device: cache file not writeable\n");
475                         err = -EINVAL;
476                         goto err_close;
477                 }
478                 ns->pages_written = vzalloc(ns->geom.pgnum);
479                 if (!ns->pages_written) {
480                         NS_ERR("alloc_device: unable to allocate pages written array\n");
481                         err = -ENOMEM;
482                         goto err_close;
483                 }
484                 ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
485                 if (!ns->file_buf) {
486                         NS_ERR("alloc_device: unable to allocate file buf\n");
487                         err = -ENOMEM;
488                         goto err_free;
489                 }
490                 ns->cfile = cfile;
491                 return 0;
492         }
493
494         ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem));
495         if (!ns->pages) {
496                 NS_ERR("alloc_device: unable to allocate page array\n");
497                 return -ENOMEM;
498         }
499         for (i = 0; i < ns->geom.pgnum; i++) {
500                 ns->pages[i].byte = NULL;
501         }
502         ns->nand_pages_slab = kmem_cache_create("nandsim",
503                                                 ns->geom.pgszoob, 0, 0, NULL);
504         if (!ns->nand_pages_slab) {
505                 NS_ERR("cache_create: unable to create kmem_cache\n");
506                 return -ENOMEM;
507         }
508
509         return 0;
510
511 err_free:
512         vfree(ns->pages_written);
513 err_close:
514         filp_close(cfile, NULL);
515         return err;
516 }
517
518 /*
519  * Free any allocated pages, and free the array of page pointers.
520  */
521 static void free_device(struct nandsim *ns)
522 {
523         int i;
524
525         if (ns->cfile) {
526                 kfree(ns->file_buf);
527                 vfree(ns->pages_written);
528                 filp_close(ns->cfile, NULL);
529                 return;
530         }
531
532         if (ns->pages) {
533                 for (i = 0; i < ns->geom.pgnum; i++) {
534                         if (ns->pages[i].byte)
535                                 kmem_cache_free(ns->nand_pages_slab,
536                                                 ns->pages[i].byte);
537                 }
538                 kmem_cache_destroy(ns->nand_pages_slab);
539                 vfree(ns->pages);
540         }
541 }
542
543 static char *get_partition_name(int i)
544 {
545         char buf[64];
546         sprintf(buf, "NAND simulator partition %d", i);
547         return kstrdup(buf, GFP_KERNEL);
548 }
549
550 static uint64_t divide(uint64_t n, uint32_t d)
551 {
552         do_div(n, d);
553         return n;
554 }
555
556 /*
557  * Initialize the nandsim structure.
558  *
559  * RETURNS: 0 if success, -ERRNO if failure.
560  */
561 static int init_nandsim(struct mtd_info *mtd)
562 {
563         struct nand_chip *chip = mtd->priv;
564         struct nandsim   *ns   = chip->priv;
565         int i, ret = 0;
566         uint64_t remains;
567         uint64_t next_offset;
568
569         if (NS_IS_INITIALIZED(ns)) {
570                 NS_ERR("init_nandsim: nandsim is already initialized\n");
571                 return -EIO;
572         }
573
574         /* Force mtd to not do delays */
575         chip->chip_delay = 0;
576
577         /* Initialize the NAND flash parameters */
578         ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
579         ns->geom.totsz    = mtd->size;
580         ns->geom.pgsz     = mtd->writesize;
581         ns->geom.oobsz    = mtd->oobsize;
582         ns->geom.secsz    = mtd->erasesize;
583         ns->geom.pgszoob  = ns->geom.pgsz + ns->geom.oobsz;
584         ns->geom.pgnum    = divide(ns->geom.totsz, ns->geom.pgsz);
585         ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
586         ns->geom.secshift = ffs(ns->geom.secsz) - 1;
587         ns->geom.pgshift  = chip->page_shift;
588         ns->geom.oobshift = ffs(ns->geom.oobsz) - 1;
589         ns->geom.pgsec    = ns->geom.secsz / ns->geom.pgsz;
590         ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
591         ns->options = 0;
592
593         if (ns->geom.pgsz == 256) {
594                 ns->options |= OPT_PAGE256;
595         }
596         else if (ns->geom.pgsz == 512) {
597                 ns->options |= (OPT_PAGE512 | OPT_AUTOINCR);
598                 if (ns->busw == 8)
599                         ns->options |= OPT_PAGE512_8BIT;
600         } else if (ns->geom.pgsz == 2048) {
601                 ns->options |= OPT_PAGE2048;
602         } else if (ns->geom.pgsz == 4096) {
603                 ns->options |= OPT_PAGE4096;
604         } else {
605                 NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
606                 return -EIO;
607         }
608
609         if (ns->options & OPT_SMALLPAGE) {
610                 if (ns->geom.totsz <= (32 << 20)) {
611                         ns->geom.pgaddrbytes  = 3;
612                         ns->geom.secaddrbytes = 2;
613                 } else {
614                         ns->geom.pgaddrbytes  = 4;
615                         ns->geom.secaddrbytes = 3;
616                 }
617         } else {
618                 if (ns->geom.totsz <= (128 << 20)) {
619                         ns->geom.pgaddrbytes  = 4;
620                         ns->geom.secaddrbytes = 2;
621                 } else {
622                         ns->geom.pgaddrbytes  = 5;
623                         ns->geom.secaddrbytes = 3;
624                 }
625         }
626
627         /* Fill the partition_info structure */
628         if (parts_num > ARRAY_SIZE(ns->partitions)) {
629                 NS_ERR("too many partitions.\n");
630                 ret = -EINVAL;
631                 goto error;
632         }
633         remains = ns->geom.totsz;
634         next_offset = 0;
635         for (i = 0; i < parts_num; ++i) {
636                 uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz;
637
638                 if (!part_sz || part_sz > remains) {
639                         NS_ERR("bad partition size.\n");
640                         ret = -EINVAL;
641                         goto error;
642                 }
643                 ns->partitions[i].name   = get_partition_name(i);
644                 ns->partitions[i].offset = next_offset;
645                 ns->partitions[i].size   = part_sz;
646                 next_offset += ns->partitions[i].size;
647                 remains -= ns->partitions[i].size;
648         }
649         ns->nbparts = parts_num;
650         if (remains) {
651                 if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
652                         NS_ERR("too many partitions.\n");
653                         ret = -EINVAL;
654                         goto error;
655                 }
656                 ns->partitions[i].name   = get_partition_name(i);
657                 ns->partitions[i].offset = next_offset;
658                 ns->partitions[i].size   = remains;
659                 ns->nbparts += 1;
660         }
661
662         /* Detect how many ID bytes the NAND chip outputs */
663         for (i = 0; nand_flash_ids[i].name != NULL; i++) {
664                 if (second_id_byte != nand_flash_ids[i].id)
665                         continue;
666                 if (!(nand_flash_ids[i].options & NAND_NO_AUTOINCR))
667                         ns->options |= OPT_AUTOINCR;
668         }
669
670         if (ns->busw == 16)
671                 NS_WARN("16-bit flashes support wasn't tested\n");
672
673         printk("flash size: %llu MiB\n",
674                         (unsigned long long)ns->geom.totsz >> 20);
675         printk("page size: %u bytes\n",         ns->geom.pgsz);
676         printk("OOB area size: %u bytes\n",     ns->geom.oobsz);
677         printk("sector size: %u KiB\n",         ns->geom.secsz >> 10);
678         printk("pages number: %u\n",            ns->geom.pgnum);
679         printk("pages per sector: %u\n",        ns->geom.pgsec);
680         printk("bus width: %u\n",               ns->busw);
681         printk("bits in sector size: %u\n",     ns->geom.secshift);
682         printk("bits in page size: %u\n",       ns->geom.pgshift);
683         printk("bits in OOB size: %u\n",        ns->geom.oobshift);
684         printk("flash size with OOB: %llu KiB\n",
685                         (unsigned long long)ns->geom.totszoob >> 10);
686         printk("page address bytes: %u\n",      ns->geom.pgaddrbytes);
687         printk("sector address bytes: %u\n",    ns->geom.secaddrbytes);
688         printk("options: %#x\n",                ns->options);
689
690         if ((ret = alloc_device(ns)) != 0)
691                 goto error;
692
693         /* Allocate / initialize the internal buffer */
694         ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
695         if (!ns->buf.byte) {
696                 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
697                         ns->geom.pgszoob);
698                 ret = -ENOMEM;
699                 goto error;
700         }
701         memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
702
703         return 0;
704
705 error:
706         free_device(ns);
707
708         return ret;
709 }
710
711 /*
712  * Free the nandsim structure.
713  */
714 static void free_nandsim(struct nandsim *ns)
715 {
716         kfree(ns->buf.byte);
717         free_device(ns);
718
719         return;
720 }
721
722 static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
723 {
724         char *w;
725         int zero_ok;
726         unsigned int erase_block_no;
727         loff_t offset;
728
729         if (!badblocks)
730                 return 0;
731         w = badblocks;
732         do {
733                 zero_ok = (*w == '0' ? 1 : 0);
734                 erase_block_no = simple_strtoul(w, &w, 0);
735                 if (!zero_ok && !erase_block_no) {
736                         NS_ERR("invalid badblocks.\n");
737                         return -EINVAL;
738                 }
739                 offset = erase_block_no * ns->geom.secsz;
740                 if (mtd->block_markbad(mtd, offset)) {
741                         NS_ERR("invalid badblocks.\n");
742                         return -EINVAL;
743                 }
744                 if (*w == ',')
745                         w += 1;
746         } while (*w);
747         return 0;
748 }
749
750 static int parse_weakblocks(void)
751 {
752         char *w;
753         int zero_ok;
754         unsigned int erase_block_no;
755         unsigned int max_erases;
756         struct weak_block *wb;
757
758         if (!weakblocks)
759                 return 0;
760         w = weakblocks;
761         do {
762                 zero_ok = (*w == '0' ? 1 : 0);
763                 erase_block_no = simple_strtoul(w, &w, 0);
764                 if (!zero_ok && !erase_block_no) {
765                         NS_ERR("invalid weakblocks.\n");
766                         return -EINVAL;
767                 }
768                 max_erases = 3;
769                 if (*w == ':') {
770                         w += 1;
771                         max_erases = simple_strtoul(w, &w, 0);
772                 }
773                 if (*w == ',')
774                         w += 1;
775                 wb = kzalloc(sizeof(*wb), GFP_KERNEL);
776                 if (!wb) {
777                         NS_ERR("unable to allocate memory.\n");
778                         return -ENOMEM;
779                 }
780                 wb->erase_block_no = erase_block_no;
781                 wb->max_erases = max_erases;
782                 list_add(&wb->list, &weak_blocks);
783         } while (*w);
784         return 0;
785 }
786
787 static int erase_error(unsigned int erase_block_no)
788 {
789         struct weak_block *wb;
790
791         list_for_each_entry(wb, &weak_blocks, list)
792                 if (wb->erase_block_no == erase_block_no) {
793                         if (wb->erases_done >= wb->max_erases)
794                                 return 1;
795                         wb->erases_done += 1;
796                         return 0;
797                 }
798         return 0;
799 }
800
801 static int parse_weakpages(void)
802 {
803         char *w;
804         int zero_ok;
805         unsigned int page_no;
806         unsigned int max_writes;
807         struct weak_page *wp;
808
809         if (!weakpages)
810                 return 0;
811         w = weakpages;
812         do {
813                 zero_ok = (*w == '0' ? 1 : 0);
814                 page_no = simple_strtoul(w, &w, 0);
815                 if (!zero_ok && !page_no) {
816                         NS_ERR("invalid weakpagess.\n");
817                         return -EINVAL;
818                 }
819                 max_writes = 3;
820                 if (*w == ':') {
821                         w += 1;
822                         max_writes = simple_strtoul(w, &w, 0);
823                 }
824                 if (*w == ',')
825                         w += 1;
826                 wp = kzalloc(sizeof(*wp), GFP_KERNEL);
827                 if (!wp) {
828                         NS_ERR("unable to allocate memory.\n");
829                         return -ENOMEM;
830                 }
831                 wp->page_no = page_no;
832                 wp->max_writes = max_writes;
833                 list_add(&wp->list, &weak_pages);
834         } while (*w);
835         return 0;
836 }
837
838 static int write_error(unsigned int page_no)
839 {
840         struct weak_page *wp;
841
842         list_for_each_entry(wp, &weak_pages, list)
843                 if (wp->page_no == page_no) {
844                         if (wp->writes_done >= wp->max_writes)
845                                 return 1;
846                         wp->writes_done += 1;
847                         return 0;
848                 }
849         return 0;
850 }
851
852 static int parse_gravepages(void)
853 {
854         char *g;
855         int zero_ok;
856         unsigned int page_no;
857         unsigned int max_reads;
858         struct grave_page *gp;
859
860         if (!gravepages)
861                 return 0;
862         g = gravepages;
863         do {
864                 zero_ok = (*g == '0' ? 1 : 0);
865                 page_no = simple_strtoul(g, &g, 0);
866                 if (!zero_ok && !page_no) {
867                         NS_ERR("invalid gravepagess.\n");
868                         return -EINVAL;
869                 }
870                 max_reads = 3;
871                 if (*g == ':') {
872                         g += 1;
873                         max_reads = simple_strtoul(g, &g, 0);
874                 }
875                 if (*g == ',')
876                         g += 1;
877                 gp = kzalloc(sizeof(*gp), GFP_KERNEL);
878                 if (!gp) {
879                         NS_ERR("unable to allocate memory.\n");
880                         return -ENOMEM;
881                 }
882                 gp->page_no = page_no;
883                 gp->max_reads = max_reads;
884                 list_add(&gp->list, &grave_pages);
885         } while (*g);
886         return 0;
887 }
888
889 static int read_error(unsigned int page_no)
890 {
891         struct grave_page *gp;
892
893         list_for_each_entry(gp, &grave_pages, list)
894                 if (gp->page_no == page_no) {
895                         if (gp->reads_done >= gp->max_reads)
896                                 return 1;
897                         gp->reads_done += 1;
898                         return 0;
899                 }
900         return 0;
901 }
902
903 static void free_lists(void)
904 {
905         struct list_head *pos, *n;
906         list_for_each_safe(pos, n, &weak_blocks) {
907                 list_del(pos);
908                 kfree(list_entry(pos, struct weak_block, list));
909         }
910         list_for_each_safe(pos, n, &weak_pages) {
911                 list_del(pos);
912                 kfree(list_entry(pos, struct weak_page, list));
913         }
914         list_for_each_safe(pos, n, &grave_pages) {
915                 list_del(pos);
916                 kfree(list_entry(pos, struct grave_page, list));
917         }
918         kfree(erase_block_wear);
919 }
920
921 static int setup_wear_reporting(struct mtd_info *mtd)
922 {
923         size_t mem;
924
925         if (!rptwear)
926                 return 0;
927         wear_eb_count = divide(mtd->size, mtd->erasesize);
928         mem = wear_eb_count * sizeof(unsigned long);
929         if (mem / sizeof(unsigned long) != wear_eb_count) {
930                 NS_ERR("Too many erase blocks for wear reporting\n");
931                 return -ENOMEM;
932         }
933         erase_block_wear = kzalloc(mem, GFP_KERNEL);
934         if (!erase_block_wear) {
935                 NS_ERR("Too many erase blocks for wear reporting\n");
936                 return -ENOMEM;
937         }
938         return 0;
939 }
940
941 static void update_wear(unsigned int erase_block_no)
942 {
943         unsigned long wmin = -1, wmax = 0, avg;
944         unsigned long deciles[10], decile_max[10], tot = 0;
945         unsigned int i;
946
947         if (!erase_block_wear)
948                 return;
949         total_wear += 1;
950         if (total_wear == 0)
951                 NS_ERR("Erase counter total overflow\n");
952         erase_block_wear[erase_block_no] += 1;
953         if (erase_block_wear[erase_block_no] == 0)
954                 NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
955         rptwear_cnt += 1;
956         if (rptwear_cnt < rptwear)
957                 return;
958         rptwear_cnt = 0;
959         /* Calc wear stats */
960         for (i = 0; i < wear_eb_count; ++i) {
961                 unsigned long wear = erase_block_wear[i];
962                 if (wear < wmin)
963                         wmin = wear;
964                 if (wear > wmax)
965                         wmax = wear;
966                 tot += wear;
967         }
968         for (i = 0; i < 9; ++i) {
969                 deciles[i] = 0;
970                 decile_max[i] = (wmax * (i + 1) + 5) / 10;
971         }
972         deciles[9] = 0;
973         decile_max[9] = wmax;
974         for (i = 0; i < wear_eb_count; ++i) {
975                 int d;
976                 unsigned long wear = erase_block_wear[i];
977                 for (d = 0; d < 10; ++d)
978                         if (wear <= decile_max[d]) {
979                                 deciles[d] += 1;
980                                 break;
981                         }
982         }
983         avg = tot / wear_eb_count;
984         /* Output wear report */
985         NS_INFO("*** Wear Report ***\n");
986         NS_INFO("Total numbers of erases:  %lu\n", tot);
987         NS_INFO("Number of erase blocks:   %u\n", wear_eb_count);
988         NS_INFO("Average number of erases: %lu\n", avg);
989         NS_INFO("Maximum number of erases: %lu\n", wmax);
990         NS_INFO("Minimum number of erases: %lu\n", wmin);
991         for (i = 0; i < 10; ++i) {
992                 unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
993                 if (from > decile_max[i])
994                         continue;
995                 NS_INFO("Number of ebs with erase counts from %lu to %lu : %lu\n",
996                         from,
997                         decile_max[i],
998                         deciles[i]);
999         }
1000         NS_INFO("*** End of Wear Report ***\n");
1001 }
1002
1003 /*
1004  * Returns the string representation of 'state' state.
1005  */
1006 static char *get_state_name(uint32_t state)
1007 {
1008         switch (NS_STATE(state)) {
1009                 case STATE_CMD_READ0:
1010                         return "STATE_CMD_READ0";
1011                 case STATE_CMD_READ1:
1012                         return "STATE_CMD_READ1";
1013                 case STATE_CMD_PAGEPROG:
1014                         return "STATE_CMD_PAGEPROG";
1015                 case STATE_CMD_READOOB:
1016                         return "STATE_CMD_READOOB";
1017                 case STATE_CMD_READSTART:
1018                         return "STATE_CMD_READSTART";
1019                 case STATE_CMD_ERASE1:
1020                         return "STATE_CMD_ERASE1";
1021                 case STATE_CMD_STATUS:
1022                         return "STATE_CMD_STATUS";
1023                 case STATE_CMD_STATUS_M:
1024                         return "STATE_CMD_STATUS_M";
1025                 case STATE_CMD_SEQIN:
1026                         return "STATE_CMD_SEQIN";
1027                 case STATE_CMD_READID:
1028                         return "STATE_CMD_READID";
1029                 case STATE_CMD_ERASE2:
1030                         return "STATE_CMD_ERASE2";
1031                 case STATE_CMD_RESET:
1032                         return "STATE_CMD_RESET";
1033                 case STATE_CMD_RNDOUT:
1034                         return "STATE_CMD_RNDOUT";
1035                 case STATE_CMD_RNDOUTSTART:
1036                         return "STATE_CMD_RNDOUTSTART";
1037                 case STATE_ADDR_PAGE:
1038                         return "STATE_ADDR_PAGE";
1039                 case STATE_ADDR_SEC:
1040                         return "STATE_ADDR_SEC";
1041                 case STATE_ADDR_ZERO:
1042                         return "STATE_ADDR_ZERO";
1043                 case STATE_ADDR_COLUMN:
1044                         return "STATE_ADDR_COLUMN";
1045                 case STATE_DATAIN:
1046                         return "STATE_DATAIN";
1047                 case STATE_DATAOUT:
1048                         return "STATE_DATAOUT";
1049                 case STATE_DATAOUT_ID:
1050                         return "STATE_DATAOUT_ID";
1051                 case STATE_DATAOUT_STATUS:
1052                         return "STATE_DATAOUT_STATUS";
1053                 case STATE_DATAOUT_STATUS_M:
1054                         return "STATE_DATAOUT_STATUS_M";
1055                 case STATE_READY:
1056                         return "STATE_READY";
1057                 case STATE_UNKNOWN:
1058                         return "STATE_UNKNOWN";
1059         }
1060
1061         NS_ERR("get_state_name: unknown state, BUG\n");
1062         return NULL;
1063 }
1064
1065 /*
1066  * Check if command is valid.
1067  *
1068  * RETURNS: 1 if wrong command, 0 if right.
1069  */
1070 static int check_command(int cmd)
1071 {
1072         switch (cmd) {
1073
1074         case NAND_CMD_READ0:
1075         case NAND_CMD_READ1:
1076         case NAND_CMD_READSTART:
1077         case NAND_CMD_PAGEPROG:
1078         case NAND_CMD_READOOB:
1079         case NAND_CMD_ERASE1:
1080         case NAND_CMD_STATUS:
1081         case NAND_CMD_SEQIN:
1082         case NAND_CMD_READID:
1083         case NAND_CMD_ERASE2:
1084         case NAND_CMD_RESET:
1085         case NAND_CMD_RNDOUT:
1086         case NAND_CMD_RNDOUTSTART:
1087                 return 0;
1088
1089         case NAND_CMD_STATUS_MULTI:
1090         default:
1091                 return 1;
1092         }
1093 }
1094
1095 /*
1096  * Returns state after command is accepted by command number.
1097  */
1098 static uint32_t get_state_by_command(unsigned command)
1099 {
1100         switch (command) {
1101                 case NAND_CMD_READ0:
1102                         return STATE_CMD_READ0;
1103                 case NAND_CMD_READ1:
1104                         return STATE_CMD_READ1;
1105                 case NAND_CMD_PAGEPROG:
1106                         return STATE_CMD_PAGEPROG;
1107                 case NAND_CMD_READSTART:
1108                         return STATE_CMD_READSTART;
1109                 case NAND_CMD_READOOB:
1110                         return STATE_CMD_READOOB;
1111                 case NAND_CMD_ERASE1:
1112                         return STATE_CMD_ERASE1;
1113                 case NAND_CMD_STATUS:
1114                         return STATE_CMD_STATUS;
1115                 case NAND_CMD_STATUS_MULTI:
1116                         return STATE_CMD_STATUS_M;
1117                 case NAND_CMD_SEQIN:
1118                         return STATE_CMD_SEQIN;
1119                 case NAND_CMD_READID:
1120                         return STATE_CMD_READID;
1121                 case NAND_CMD_ERASE2:
1122                         return STATE_CMD_ERASE2;
1123                 case NAND_CMD_RESET:
1124                         return STATE_CMD_RESET;
1125                 case NAND_CMD_RNDOUT:
1126                         return STATE_CMD_RNDOUT;
1127                 case NAND_CMD_RNDOUTSTART:
1128                         return STATE_CMD_RNDOUTSTART;
1129         }
1130
1131         NS_ERR("get_state_by_command: unknown command, BUG\n");
1132         return 0;
1133 }
1134
1135 /*
1136  * Move an address byte to the correspondent internal register.
1137  */
1138 static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
1139 {
1140         uint byte = (uint)bt;
1141
1142         if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
1143                 ns->regs.column |= (byte << 8 * ns->regs.count);
1144         else {
1145                 ns->regs.row |= (byte << 8 * (ns->regs.count -
1146                                                 ns->geom.pgaddrbytes +
1147                                                 ns->geom.secaddrbytes));
1148         }
1149
1150         return;
1151 }
1152
1153 /*
1154  * Switch to STATE_READY state.
1155  */
1156 static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
1157 {
1158         NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
1159
1160         ns->state       = STATE_READY;
1161         ns->nxstate     = STATE_UNKNOWN;
1162         ns->op          = NULL;
1163         ns->npstates    = 0;
1164         ns->stateidx    = 0;
1165         ns->regs.num    = 0;
1166         ns->regs.count  = 0;
1167         ns->regs.off    = 0;
1168         ns->regs.row    = 0;
1169         ns->regs.column = 0;
1170         ns->regs.status = status;
1171 }
1172
1173 /*
1174  * If the operation isn't known yet, try to find it in the global array
1175  * of supported operations.
1176  *
1177  * Operation can be unknown because of the following.
1178  *   1. New command was accepted and this is the first call to find the
1179  *      correspondent states chain. In this case ns->npstates = 0;
1180  *   2. There are several operations which begin with the same command(s)
1181  *      (for example program from the second half and read from the
1182  *      second half operations both begin with the READ1 command). In this
1183  *      case the ns->pstates[] array contains previous states.
1184  *
1185  * Thus, the function tries to find operation containing the following
1186  * states (if the 'flag' parameter is 0):
1187  *    ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1188  *
1189  * If (one and only one) matching operation is found, it is accepted (
1190  * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1191  * zeroed).
1192  *
1193  * If there are several matches, the current state is pushed to the
1194  * ns->pstates.
1195  *
1196  * The operation can be unknown only while commands are input to the chip.
1197  * As soon as address command is accepted, the operation must be known.
1198  * In such situation the function is called with 'flag' != 0, and the
1199  * operation is searched using the following pattern:
1200  *     ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1201  *
1202  * It is supposed that this pattern must either match one operation or
1203  * none. There can't be ambiguity in that case.
1204  *
1205  * If no matches found, the function does the following:
1206  *   1. if there are saved states present, try to ignore them and search
1207  *      again only using the last command. If nothing was found, switch
1208  *      to the STATE_READY state.
1209  *   2. if there are no saved states, switch to the STATE_READY state.
1210  *
1211  * RETURNS: -2 - no matched operations found.
1212  *          -1 - several matches.
1213  *           0 - operation is found.
1214  */
1215 static int find_operation(struct nandsim *ns, uint32_t flag)
1216 {
1217         int opsfound = 0;
1218         int i, j, idx = 0;
1219
1220         for (i = 0; i < NS_OPER_NUM; i++) {
1221
1222                 int found = 1;
1223
1224                 if (!(ns->options & ops[i].reqopts))
1225                         /* Ignore operations we can't perform */
1226                         continue;
1227
1228                 if (flag) {
1229                         if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
1230                                 continue;
1231                 } else {
1232                         if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
1233                                 continue;
1234                 }
1235
1236                 for (j = 0; j < ns->npstates; j++)
1237                         if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
1238                                 && (ns->options & ops[idx].reqopts)) {
1239                                 found = 0;
1240                                 break;
1241                         }
1242
1243                 if (found) {
1244                         idx = i;
1245                         opsfound += 1;
1246                 }
1247         }
1248
1249         if (opsfound == 1) {
1250                 /* Exact match */
1251                 ns->op = &ops[idx].states[0];
1252                 if (flag) {
1253                         /*
1254                          * In this case the find_operation function was
1255                          * called when address has just began input. But it isn't
1256                          * yet fully input and the current state must
1257                          * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1258                          * state must be the next state (ns->nxstate).
1259                          */
1260                         ns->stateidx = ns->npstates - 1;
1261                 } else {
1262                         ns->stateidx = ns->npstates;
1263                 }
1264                 ns->npstates = 0;
1265                 ns->state = ns->op[ns->stateidx];
1266                 ns->nxstate = ns->op[ns->stateidx + 1];
1267                 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1268                                 idx, get_state_name(ns->state), get_state_name(ns->nxstate));
1269                 return 0;
1270         }
1271
1272         if (opsfound == 0) {
1273                 /* Nothing was found. Try to ignore previous commands (if any) and search again */
1274                 if (ns->npstates != 0) {
1275                         NS_DBG("find_operation: no operation found, try again with state %s\n",
1276                                         get_state_name(ns->state));
1277                         ns->npstates = 0;
1278                         return find_operation(ns, 0);
1279
1280                 }
1281                 NS_DBG("find_operation: no operations found\n");
1282                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1283                 return -2;
1284         }
1285
1286         if (flag) {
1287                 /* This shouldn't happen */
1288                 NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1289                 return -2;
1290         }
1291
1292         NS_DBG("find_operation: there is still ambiguity\n");
1293
1294         ns->pstates[ns->npstates++] = ns->state;
1295
1296         return -1;
1297 }
1298
1299 static void put_pages(struct nandsim *ns)
1300 {
1301         int i;
1302
1303         for (i = 0; i < ns->held_cnt; i++)
1304                 page_cache_release(ns->held_pages[i]);
1305 }
1306
1307 /* Get page cache pages in advance to provide NOFS memory allocation */
1308 static int get_pages(struct nandsim *ns, struct file *file, size_t count, loff_t pos)
1309 {
1310         pgoff_t index, start_index, end_index;
1311         struct page *page;
1312         struct address_space *mapping = file->f_mapping;
1313
1314         start_index = pos >> PAGE_CACHE_SHIFT;
1315         end_index = (pos + count - 1) >> PAGE_CACHE_SHIFT;
1316         if (end_index - start_index + 1 > NS_MAX_HELD_PAGES)
1317                 return -EINVAL;
1318         ns->held_cnt = 0;
1319         for (index = start_index; index <= end_index; index++) {
1320                 page = find_get_page(mapping, index);
1321                 if (page == NULL) {
1322                         page = find_or_create_page(mapping, index, GFP_NOFS);
1323                         if (page == NULL) {
1324                                 write_inode_now(mapping->host, 1);
1325                                 page = find_or_create_page(mapping, index, GFP_NOFS);
1326                         }
1327                         if (page == NULL) {
1328                                 put_pages(ns);
1329                                 return -ENOMEM;
1330                         }
1331                         unlock_page(page);
1332                 }
1333                 ns->held_pages[ns->held_cnt++] = page;
1334         }
1335         return 0;
1336 }
1337
1338 static int set_memalloc(void)
1339 {
1340         if (current->flags & PF_MEMALLOC)
1341                 return 0;
1342         current->flags |= PF_MEMALLOC;
1343         return 1;
1344 }
1345
1346 static void clear_memalloc(int memalloc)
1347 {
1348         if (memalloc)
1349                 current->flags &= ~PF_MEMALLOC;
1350 }
1351
1352 static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t *pos)
1353 {
1354         mm_segment_t old_fs;
1355         ssize_t tx;
1356         int err, memalloc;
1357
1358         err = get_pages(ns, file, count, *pos);
1359         if (err)
1360                 return err;
1361         old_fs = get_fs();
1362         set_fs(get_ds());
1363         memalloc = set_memalloc();
1364         tx = vfs_read(file, (char __user *)buf, count, pos);
1365         clear_memalloc(memalloc);
1366         set_fs(old_fs);
1367         put_pages(ns);
1368         return tx;
1369 }
1370
1371 static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t *pos)
1372 {
1373         mm_segment_t old_fs;
1374         ssize_t tx;
1375         int err, memalloc;
1376
1377         err = get_pages(ns, file, count, *pos);
1378         if (err)
1379                 return err;
1380         old_fs = get_fs();
1381         set_fs(get_ds());
1382         memalloc = set_memalloc();
1383         tx = vfs_write(file, (char __user *)buf, count, pos);
1384         clear_memalloc(memalloc);
1385         set_fs(old_fs);
1386         put_pages(ns);
1387         return tx;
1388 }
1389
1390 /*
1391  * Returns a pointer to the current page.
1392  */
1393 static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
1394 {
1395         return &(ns->pages[ns->regs.row]);
1396 }
1397
1398 /*
1399  * Retuns a pointer to the current byte, within the current page.
1400  */
1401 static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
1402 {
1403         return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
1404 }
1405
1406 int do_read_error(struct nandsim *ns, int num)
1407 {
1408         unsigned int page_no = ns->regs.row;
1409
1410         if (read_error(page_no)) {
1411                 int i;
1412                 memset(ns->buf.byte, 0xFF, num);
1413                 for (i = 0; i < num; ++i)
1414                         ns->buf.byte[i] = random32();
1415                 NS_WARN("simulating read error in page %u\n", page_no);
1416                 return 1;
1417         }
1418         return 0;
1419 }
1420
1421 void do_bit_flips(struct nandsim *ns, int num)
1422 {
1423         if (bitflips && random32() < (1 << 22)) {
1424                 int flips = 1;
1425                 if (bitflips > 1)
1426                         flips = (random32() % (int) bitflips) + 1;
1427                 while (flips--) {
1428                         int pos = random32() % (num * 8);
1429                         ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
1430                         NS_WARN("read_page: flipping bit %d in page %d "
1431                                 "reading from %d ecc: corrected=%u failed=%u\n",
1432                                 pos, ns->regs.row, ns->regs.column + ns->regs.off,
1433                                 nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
1434                 }
1435         }
1436 }
1437
1438 /*
1439  * Fill the NAND buffer with data read from the specified page.
1440  */
1441 static void read_page(struct nandsim *ns, int num)
1442 {
1443         union ns_mem *mypage;
1444
1445         if (ns->cfile) {
1446                 if (!ns->pages_written[ns->regs.row]) {
1447                         NS_DBG("read_page: page %d not written\n", ns->regs.row);
1448                         memset(ns->buf.byte, 0xFF, num);
1449                 } else {
1450                         loff_t pos;
1451                         ssize_t tx;
1452
1453                         NS_DBG("read_page: page %d written, reading from %d\n",
1454                                 ns->regs.row, ns->regs.column + ns->regs.off);
1455                         if (do_read_error(ns, num))
1456                                 return;
1457                         pos = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off;
1458                         tx = read_file(ns, ns->cfile, ns->buf.byte, num, &pos);
1459                         if (tx != num) {
1460                                 NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1461                                 return;
1462                         }
1463                         do_bit_flips(ns, num);
1464                 }
1465                 return;
1466         }
1467
1468         mypage = NS_GET_PAGE(ns);
1469         if (mypage->byte == NULL) {
1470                 NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
1471                 memset(ns->buf.byte, 0xFF, num);
1472         } else {
1473                 NS_DBG("read_page: page %d allocated, reading from %d\n",
1474                         ns->regs.row, ns->regs.column + ns->regs.off);
1475                 if (do_read_error(ns, num))
1476                         return;
1477                 memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
1478                 do_bit_flips(ns, num);
1479         }
1480 }
1481
1482 /*
1483  * Erase all pages in the specified sector.
1484  */
1485 static void erase_sector(struct nandsim *ns)
1486 {
1487         union ns_mem *mypage;
1488         int i;
1489
1490         if (ns->cfile) {
1491                 for (i = 0; i < ns->geom.pgsec; i++)
1492                         if (ns->pages_written[ns->regs.row + i]) {
1493                                 NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i);
1494                                 ns->pages_written[ns->regs.row + i] = 0;
1495                         }
1496                 return;
1497         }
1498
1499         mypage = NS_GET_PAGE(ns);
1500         for (i = 0; i < ns->geom.pgsec; i++) {
1501                 if (mypage->byte != NULL) {
1502                         NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
1503                         kmem_cache_free(ns->nand_pages_slab, mypage->byte);
1504                         mypage->byte = NULL;
1505                 }
1506                 mypage++;
1507         }
1508 }
1509
1510 /*
1511  * Program the specified page with the contents from the NAND buffer.
1512  */
1513 static int prog_page(struct nandsim *ns, int num)
1514 {
1515         int i;
1516         union ns_mem *mypage;
1517         u_char *pg_off;
1518
1519         if (ns->cfile) {
1520                 loff_t off, pos;
1521                 ssize_t tx;
1522                 int all;
1523
1524                 NS_DBG("prog_page: writing page %d\n", ns->regs.row);
1525                 pg_off = ns->file_buf + ns->regs.column + ns->regs.off;
1526                 off = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off;
1527                 if (!ns->pages_written[ns->regs.row]) {
1528                         all = 1;
1529                         memset(ns->file_buf, 0xff, ns->geom.pgszoob);
1530                 } else {
1531                         all = 0;
1532                         pos = off;
1533                         tx = read_file(ns, ns->cfile, pg_off, num, &pos);
1534                         if (tx != num) {
1535                                 NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1536                                 return -1;
1537                         }
1538                 }
1539                 for (i = 0; i < num; i++)
1540                         pg_off[i] &= ns->buf.byte[i];
1541                 if (all) {
1542                         pos = (loff_t)ns->regs.row * ns->geom.pgszoob;
1543                         tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, &pos);
1544                         if (tx != ns->geom.pgszoob) {
1545                                 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1546                                 return -1;
1547                         }
1548                         ns->pages_written[ns->regs.row] = 1;
1549                 } else {
1550                         pos = off;
1551                         tx = write_file(ns, ns->cfile, pg_off, num, &pos);
1552                         if (tx != num) {
1553                                 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1554                                 return -1;
1555                         }
1556                 }
1557                 return 0;
1558         }
1559
1560         mypage = NS_GET_PAGE(ns);
1561         if (mypage->byte == NULL) {
1562                 NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
1563                 /*
1564                  * We allocate memory with GFP_NOFS because a flash FS may
1565                  * utilize this. If it is holding an FS lock, then gets here,
1566                  * then kernel memory alloc runs writeback which goes to the FS
1567                  * again and deadlocks. This was seen in practice.
1568                  */
1569                 mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS);
1570                 if (mypage->byte == NULL) {
1571                         NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
1572                         return -1;
1573                 }
1574                 memset(mypage->byte, 0xFF, ns->geom.pgszoob);
1575         }
1576
1577         pg_off = NS_PAGE_BYTE_OFF(ns);
1578         for (i = 0; i < num; i++)
1579                 pg_off[i] &= ns->buf.byte[i];
1580
1581         return 0;
1582 }
1583
1584 /*
1585  * If state has any action bit, perform this action.
1586  *
1587  * RETURNS: 0 if success, -1 if error.
1588  */
1589 static int do_state_action(struct nandsim *ns, uint32_t action)
1590 {
1591         int num;
1592         int busdiv = ns->busw == 8 ? 1 : 2;
1593         unsigned int erase_block_no, page_no;
1594
1595         action &= ACTION_MASK;
1596
1597         /* Check that page address input is correct */
1598         if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
1599                 NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
1600                 return -1;
1601         }
1602
1603         switch (action) {
1604
1605         case ACTION_CPY:
1606                 /*
1607                  * Copy page data to the internal buffer.
1608                  */
1609
1610                 /* Column shouldn't be very large */
1611                 if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
1612                         NS_ERR("do_state_action: column number is too large\n");
1613                         break;
1614                 }
1615                 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1616                 read_page(ns, num);
1617
1618                 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1619                         num, NS_RAW_OFFSET(ns) + ns->regs.off);
1620
1621                 if (ns->regs.off == 0)
1622                         NS_LOG("read page %d\n", ns->regs.row);
1623                 else if (ns->regs.off < ns->geom.pgsz)
1624                         NS_LOG("read page %d (second half)\n", ns->regs.row);
1625                 else
1626                         NS_LOG("read OOB of page %d\n", ns->regs.row);
1627
1628                 NS_UDELAY(access_delay);
1629                 NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
1630
1631                 break;
1632
1633         case ACTION_SECERASE:
1634                 /*
1635                  * Erase sector.
1636                  */
1637
1638                 if (ns->lines.wp) {
1639                         NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1640                         return -1;
1641                 }
1642
1643                 if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
1644                         || (ns->regs.row & ~(ns->geom.secsz - 1))) {
1645                         NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
1646                         return -1;
1647                 }
1648
1649                 ns->regs.row = (ns->regs.row <<
1650                                 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
1651                 ns->regs.column = 0;
1652
1653                 erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
1654
1655                 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1656                                 ns->regs.row, NS_RAW_OFFSET(ns));
1657                 NS_LOG("erase sector %u\n", erase_block_no);
1658
1659                 erase_sector(ns);
1660
1661                 NS_MDELAY(erase_delay);
1662
1663                 if (erase_block_wear)
1664                         update_wear(erase_block_no);
1665
1666                 if (erase_error(erase_block_no)) {
1667                         NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
1668                         return -1;
1669                 }
1670
1671                 break;
1672
1673         case ACTION_PRGPAGE:
1674                 /*
1675                  * Program page - move internal buffer data to the page.
1676                  */
1677
1678                 if (ns->lines.wp) {
1679                         NS_WARN("do_state_action: device is write-protected, programm\n");
1680                         return -1;
1681                 }
1682
1683                 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1684                 if (num != ns->regs.count) {
1685                         NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1686                                         ns->regs.count, num);
1687                         return -1;
1688                 }
1689
1690                 if (prog_page(ns, num) == -1)
1691                         return -1;
1692
1693                 page_no = ns->regs.row;
1694
1695                 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1696                         num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
1697                 NS_LOG("programm page %d\n", ns->regs.row);
1698
1699                 NS_UDELAY(programm_delay);
1700                 NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
1701
1702                 if (write_error(page_no)) {
1703                         NS_WARN("simulating write failure in page %u\n", page_no);
1704                         return -1;
1705                 }
1706
1707                 break;
1708
1709         case ACTION_ZEROOFF:
1710                 NS_DBG("do_state_action: set internal offset to 0\n");
1711                 ns->regs.off = 0;
1712                 break;
1713
1714         case ACTION_HALFOFF:
1715                 if (!(ns->options & OPT_PAGE512_8BIT)) {
1716                         NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1717                                 "byte page size 8x chips\n");
1718                         return -1;
1719                 }
1720                 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
1721                 ns->regs.off = ns->geom.pgsz/2;
1722                 break;
1723
1724         case ACTION_OOBOFF:
1725                 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
1726                 ns->regs.off = ns->geom.pgsz;
1727                 break;
1728
1729         default:
1730                 NS_DBG("do_state_action: BUG! unknown action\n");
1731         }
1732
1733         return 0;
1734 }
1735
1736 /*
1737  * Switch simulator's state.
1738  */
1739 static void switch_state(struct nandsim *ns)
1740 {
1741         if (ns->op) {
1742                 /*
1743                  * The current operation have already been identified.
1744                  * Just follow the states chain.
1745                  */
1746
1747                 ns->stateidx += 1;
1748                 ns->state = ns->nxstate;
1749                 ns->nxstate = ns->op[ns->stateidx + 1];
1750
1751                 NS_DBG("switch_state: operation is known, switch to the next state, "
1752                         "state: %s, nxstate: %s\n",
1753                         get_state_name(ns->state), get_state_name(ns->nxstate));
1754
1755                 /* See, whether we need to do some action */
1756                 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1757                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1758                         return;
1759                 }
1760
1761         } else {
1762                 /*
1763                  * We don't yet know which operation we perform.
1764                  * Try to identify it.
1765                  */
1766
1767                 /*
1768                  *  The only event causing the switch_state function to
1769                  *  be called with yet unknown operation is new command.
1770                  */
1771                 ns->state = get_state_by_command(ns->regs.command);
1772
1773                 NS_DBG("switch_state: operation is unknown, try to find it\n");
1774
1775                 if (find_operation(ns, 0) != 0)
1776                         return;
1777
1778                 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1779                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1780                         return;
1781                 }
1782         }
1783
1784         /* For 16x devices column means the page offset in words */
1785         if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
1786                 NS_DBG("switch_state: double the column number for 16x device\n");
1787                 ns->regs.column <<= 1;
1788         }
1789
1790         if (NS_STATE(ns->nxstate) == STATE_READY) {
1791                 /*
1792                  * The current state is the last. Return to STATE_READY
1793                  */
1794
1795                 u_char status = NS_STATUS_OK(ns);
1796
1797                 /* In case of data states, see if all bytes were input/output */
1798                 if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
1799                         && ns->regs.count != ns->regs.num) {
1800                         NS_WARN("switch_state: not all bytes were processed, %d left\n",
1801                                         ns->regs.num - ns->regs.count);
1802                         status = NS_STATUS_FAILED(ns);
1803                 }
1804
1805                 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1806
1807                 switch_to_ready_state(ns, status);
1808
1809                 return;
1810         } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
1811                 /*
1812                  * If the next state is data input/output, switch to it now
1813                  */
1814
1815                 ns->state      = ns->nxstate;
1816                 ns->nxstate    = ns->op[++ns->stateidx + 1];
1817                 ns->regs.num   = ns->regs.count = 0;
1818
1819                 NS_DBG("switch_state: the next state is data I/O, switch, "
1820                         "state: %s, nxstate: %s\n",
1821                         get_state_name(ns->state), get_state_name(ns->nxstate));
1822
1823                 /*
1824                  * Set the internal register to the count of bytes which
1825                  * are expected to be input or output
1826                  */
1827                 switch (NS_STATE(ns->state)) {
1828                         case STATE_DATAIN:
1829                         case STATE_DATAOUT:
1830                                 ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1831                                 break;
1832
1833                         case STATE_DATAOUT_ID:
1834                                 ns->regs.num = ns->geom.idbytes;
1835                                 break;
1836
1837                         case STATE_DATAOUT_STATUS:
1838                         case STATE_DATAOUT_STATUS_M:
1839                                 ns->regs.count = ns->regs.num = 0;
1840                                 break;
1841
1842                         default:
1843                                 NS_ERR("switch_state: BUG! unknown data state\n");
1844                 }
1845
1846         } else if (ns->nxstate & STATE_ADDR_MASK) {
1847                 /*
1848                  * If the next state is address input, set the internal
1849                  * register to the number of expected address bytes
1850                  */
1851
1852                 ns->regs.count = 0;
1853
1854                 switch (NS_STATE(ns->nxstate)) {
1855                         case STATE_ADDR_PAGE:
1856                                 ns->regs.num = ns->geom.pgaddrbytes;
1857
1858                                 break;
1859                         case STATE_ADDR_SEC:
1860                                 ns->regs.num = ns->geom.secaddrbytes;
1861                                 break;
1862
1863                         case STATE_ADDR_ZERO:
1864                                 ns->regs.num = 1;
1865                                 break;
1866
1867                         case STATE_ADDR_COLUMN:
1868                                 /* Column address is always 2 bytes */
1869                                 ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes;
1870                                 break;
1871
1872                         default:
1873                                 NS_ERR("switch_state: BUG! unknown address state\n");
1874                 }
1875         } else {
1876                 /*
1877                  * Just reset internal counters.
1878                  */
1879
1880                 ns->regs.num = 0;
1881                 ns->regs.count = 0;
1882         }
1883 }
1884
1885 static u_char ns_nand_read_byte(struct mtd_info *mtd)
1886 {
1887         struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1888         u_char outb = 0x00;
1889
1890         /* Sanity and correctness checks */
1891         if (!ns->lines.ce) {
1892                 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1893                 return outb;
1894         }
1895         if (ns->lines.ale || ns->lines.cle) {
1896                 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1897                 return outb;
1898         }
1899         if (!(ns->state & STATE_DATAOUT_MASK)) {
1900                 NS_WARN("read_byte: unexpected data output cycle, state is %s "
1901                         "return %#x\n", get_state_name(ns->state), (uint)outb);
1902                 return outb;
1903         }
1904
1905         /* Status register may be read as many times as it is wanted */
1906         if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1907                 NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1908                 return ns->regs.status;
1909         }
1910
1911         /* Check if there is any data in the internal buffer which may be read */
1912         if (ns->regs.count == ns->regs.num) {
1913                 NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1914                 return outb;
1915         }
1916
1917         switch (NS_STATE(ns->state)) {
1918                 case STATE_DATAOUT:
1919                         if (ns->busw == 8) {
1920                                 outb = ns->buf.byte[ns->regs.count];
1921                                 ns->regs.count += 1;
1922                         } else {
1923                                 outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1924                                 ns->regs.count += 2;
1925                         }
1926                         break;
1927                 case STATE_DATAOUT_ID:
1928                         NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1929                         outb = ns->ids[ns->regs.count];
1930                         ns->regs.count += 1;
1931                         break;
1932                 default:
1933                         BUG();
1934         }
1935
1936         if (ns->regs.count == ns->regs.num) {
1937                 NS_DBG("read_byte: all bytes were read\n");
1938
1939                 /*
1940                  * The OPT_AUTOINCR allows to read next consecutive pages without
1941                  * new read operation cycle.
1942                  */
1943                 if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
1944                         ns->regs.count = 0;
1945                         if (ns->regs.row + 1 < ns->geom.pgnum)
1946                                 ns->regs.row += 1;
1947                         NS_DBG("read_byte: switch to the next page (%#x)\n", ns->regs.row);
1948                         do_state_action(ns, ACTION_CPY);
1949                 }
1950                 else if (NS_STATE(ns->nxstate) == STATE_READY)
1951                         switch_state(ns);
1952
1953         }
1954
1955         return outb;
1956 }
1957
1958 static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
1959 {
1960         struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1961
1962         /* Sanity and correctness checks */
1963         if (!ns->lines.ce) {
1964                 NS_ERR("write_byte: chip is disabled, ignore write\n");
1965                 return;
1966         }
1967         if (ns->lines.ale && ns->lines.cle) {
1968                 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1969                 return;
1970         }
1971
1972         if (ns->lines.cle == 1) {
1973                 /*
1974                  * The byte written is a command.
1975                  */
1976
1977                 if (byte == NAND_CMD_RESET) {
1978                         NS_LOG("reset chip\n");
1979                         switch_to_ready_state(ns, NS_STATUS_OK(ns));
1980                         return;
1981                 }
1982
1983                 /* Check that the command byte is correct */
1984                 if (check_command(byte)) {
1985                         NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
1986                         return;
1987                 }
1988
1989                 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
1990                         || NS_STATE(ns->state) == STATE_DATAOUT_STATUS_M
1991                         || NS_STATE(ns->state) == STATE_DATAOUT) {
1992                         int row = ns->regs.row;
1993
1994                         switch_state(ns);
1995                         if (byte == NAND_CMD_RNDOUT)
1996                                 ns->regs.row = row;
1997                 }
1998
1999                 /* Check if chip is expecting command */
2000                 if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
2001                         /* Do not warn if only 2 id bytes are read */
2002                         if (!(ns->regs.command == NAND_CMD_READID &&
2003                             NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) {
2004                                 /*
2005                                  * We are in situation when something else (not command)
2006                                  * was expected but command was input. In this case ignore
2007                                  * previous command(s)/state(s) and accept the last one.
2008                                  */
2009                                 NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
2010                                         "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
2011                         }
2012                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2013                 }
2014
2015                 NS_DBG("command byte corresponding to %s state accepted\n",
2016                         get_state_name(get_state_by_command(byte)));
2017                 ns->regs.command = byte;
2018                 switch_state(ns);
2019
2020         } else if (ns->lines.ale == 1) {
2021                 /*
2022                  * The byte written is an address.
2023                  */
2024
2025                 if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
2026
2027                         NS_DBG("write_byte: operation isn't known yet, identify it\n");
2028
2029                         if (find_operation(ns, 1) < 0)
2030                                 return;
2031
2032                         if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
2033                                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2034                                 return;
2035                         }
2036
2037                         ns->regs.count = 0;
2038                         switch (NS_STATE(ns->nxstate)) {
2039                                 case STATE_ADDR_PAGE:
2040                                         ns->regs.num = ns->geom.pgaddrbytes;
2041                                         break;
2042                                 case STATE_ADDR_SEC:
2043                                         ns->regs.num = ns->geom.secaddrbytes;
2044                                         break;
2045                                 case STATE_ADDR_ZERO:
2046                                         ns->regs.num = 1;
2047                                         break;
2048                                 default:
2049                                         BUG();
2050                         }
2051                 }
2052
2053                 /* Check that chip is expecting address */
2054                 if (!(ns->nxstate & STATE_ADDR_MASK)) {
2055                         NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
2056                                 "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
2057                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2058                         return;
2059                 }
2060
2061                 /* Check if this is expected byte */
2062                 if (ns->regs.count == ns->regs.num) {
2063                         NS_ERR("write_byte: no more address bytes expected\n");
2064                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2065                         return;
2066                 }
2067
2068                 accept_addr_byte(ns, byte);
2069
2070                 ns->regs.count += 1;
2071
2072                 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
2073                                 (uint)byte, ns->regs.count, ns->regs.num);
2074
2075                 if (ns->regs.count == ns->regs.num) {
2076                         NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
2077                         switch_state(ns);
2078                 }
2079
2080         } else {
2081                 /*
2082                  * The byte written is an input data.
2083                  */
2084
2085                 /* Check that chip is expecting data input */
2086                 if (!(ns->state & STATE_DATAIN_MASK)) {
2087                         NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
2088                                 "switch to %s\n", (uint)byte,
2089                                 get_state_name(ns->state), get_state_name(STATE_READY));
2090                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2091                         return;
2092                 }
2093
2094                 /* Check if this is expected byte */
2095                 if (ns->regs.count == ns->regs.num) {
2096                         NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
2097                                         ns->regs.num);
2098                         return;
2099                 }
2100
2101                 if (ns->busw == 8) {
2102                         ns->buf.byte[ns->regs.count] = byte;
2103                         ns->regs.count += 1;
2104                 } else {
2105                         ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
2106                         ns->regs.count += 2;
2107                 }
2108         }
2109
2110         return;
2111 }
2112
2113 static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
2114 {
2115         struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2116
2117         ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
2118         ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
2119         ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
2120
2121         if (cmd != NAND_CMD_NONE)
2122                 ns_nand_write_byte(mtd, cmd);
2123 }
2124
2125 static int ns_device_ready(struct mtd_info *mtd)
2126 {
2127         NS_DBG("device_ready\n");
2128         return 1;
2129 }
2130
2131 static uint16_t ns_nand_read_word(struct mtd_info *mtd)
2132 {
2133         struct nand_chip *chip = (struct nand_chip *)mtd->priv;
2134
2135         NS_DBG("read_word\n");
2136
2137         return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
2138 }
2139
2140 static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
2141 {
2142         struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2143
2144         /* Check that chip is expecting data input */
2145         if (!(ns->state & STATE_DATAIN_MASK)) {
2146                 NS_ERR("write_buf: data input isn't expected, state is %s, "
2147                         "switch to STATE_READY\n", get_state_name(ns->state));
2148                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2149                 return;
2150         }
2151
2152         /* Check if these are expected bytes */
2153         if (ns->regs.count + len > ns->regs.num) {
2154                 NS_ERR("write_buf: too many input bytes\n");
2155                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2156                 return;
2157         }
2158
2159         memcpy(ns->buf.byte + ns->regs.count, buf, len);
2160         ns->regs.count += len;
2161
2162         if (ns->regs.count == ns->regs.num) {
2163                 NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
2164         }
2165 }
2166
2167 static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
2168 {
2169         struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2170
2171         /* Sanity and correctness checks */
2172         if (!ns->lines.ce) {
2173                 NS_ERR("read_buf: chip is disabled\n");
2174                 return;
2175         }
2176         if (ns->lines.ale || ns->lines.cle) {
2177                 NS_ERR("read_buf: ALE or CLE pin is high\n");
2178                 return;
2179         }
2180         if (!(ns->state & STATE_DATAOUT_MASK)) {
2181                 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
2182                         get_state_name(ns->state));
2183                 return;
2184         }
2185
2186         if (NS_STATE(ns->state) != STATE_DATAOUT) {
2187                 int i;
2188
2189                 for (i = 0; i < len; i++)
2190                         buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd);
2191
2192                 return;
2193         }
2194
2195         /* Check if these are expected bytes */
2196         if (ns->regs.count + len > ns->regs.num) {
2197                 NS_ERR("read_buf: too many bytes to read\n");
2198                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2199                 return;
2200         }
2201
2202         memcpy(buf, ns->buf.byte + ns->regs.count, len);
2203         ns->regs.count += len;
2204
2205         if (ns->regs.count == ns->regs.num) {
2206                 if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
2207                         ns->regs.count = 0;
2208                         if (ns->regs.row + 1 < ns->geom.pgnum)
2209                                 ns->regs.row += 1;
2210                         NS_DBG("read_buf: switch to the next page (%#x)\n", ns->regs.row);
2211                         do_state_action(ns, ACTION_CPY);
2212                 }
2213                 else if (NS_STATE(ns->nxstate) == STATE_READY)
2214                         switch_state(ns);
2215         }
2216
2217         return;
2218 }
2219
2220 static int ns_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
2221 {
2222         ns_nand_read_buf(mtd, (u_char *)&ns_verify_buf[0], len);
2223
2224         if (!memcmp(buf, &ns_verify_buf[0], len)) {
2225                 NS_DBG("verify_buf: the buffer is OK\n");
2226                 return 0;
2227         } else {
2228                 NS_DBG("verify_buf: the buffer is wrong\n");
2229                 return -EFAULT;
2230         }
2231 }
2232
2233 /*
2234  * Module initialization function
2235  */
2236 static int __init ns_init_module(void)
2237 {
2238         struct nand_chip *chip;
2239         struct nandsim *nand;
2240         int retval = -ENOMEM, i;
2241
2242         if (bus_width != 8 && bus_width != 16) {
2243                 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
2244                 return -EINVAL;
2245         }
2246
2247         /* Allocate and initialize mtd_info, nand_chip and nandsim structures */
2248         nsmtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip)
2249                                 + sizeof(struct nandsim), GFP_KERNEL);
2250         if (!nsmtd) {
2251                 NS_ERR("unable to allocate core structures.\n");
2252                 return -ENOMEM;
2253         }
2254         chip        = (struct nand_chip *)(nsmtd + 1);
2255         nsmtd->priv = (void *)chip;
2256         nand        = (struct nandsim *)(chip + 1);
2257         chip->priv  = (void *)nand;
2258
2259         /*
2260          * Register simulator's callbacks.
2261          */
2262         chip->cmd_ctrl   = ns_hwcontrol;
2263         chip->read_byte  = ns_nand_read_byte;
2264         chip->dev_ready  = ns_device_ready;
2265         chip->write_buf  = ns_nand_write_buf;
2266         chip->read_buf   = ns_nand_read_buf;
2267         chip->verify_buf = ns_nand_verify_buf;
2268         chip->read_word  = ns_nand_read_word;
2269         chip->ecc.mode   = NAND_ECC_SOFT;
2270         /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
2271         /* and 'badblocks' parameters to work */
2272         chip->options   |= NAND_SKIP_BBTSCAN;
2273
2274         switch (bbt) {
2275         case 2:
2276                  chip->bbt_options |= NAND_BBT_NO_OOB;
2277         case 1:
2278                  chip->bbt_options |= NAND_BBT_USE_FLASH;
2279         case 0:
2280                 break;
2281         default:
2282                 NS_ERR("bbt has to be 0..2\n");
2283                 retval = -EINVAL;
2284                 goto error;
2285         }
2286         /*
2287          * Perform minimum nandsim structure initialization to handle
2288          * the initial ID read command correctly
2289          */
2290         if (third_id_byte != 0xFF || fourth_id_byte != 0xFF)
2291                 nand->geom.idbytes = 4;
2292         else
2293                 nand->geom.idbytes = 2;
2294         nand->regs.status = NS_STATUS_OK(nand);
2295         nand->nxstate = STATE_UNKNOWN;
2296         nand->options |= OPT_PAGE256; /* temporary value */
2297         nand->ids[0] = first_id_byte;
2298         nand->ids[1] = second_id_byte;
2299         nand->ids[2] = third_id_byte;
2300         nand->ids[3] = fourth_id_byte;
2301         if (bus_width == 16) {
2302                 nand->busw = 16;
2303                 chip->options |= NAND_BUSWIDTH_16;
2304         }
2305
2306         nsmtd->owner = THIS_MODULE;
2307
2308         if ((retval = parse_weakblocks()) != 0)
2309                 goto error;
2310
2311         if ((retval = parse_weakpages()) != 0)
2312                 goto error;
2313
2314         if ((retval = parse_gravepages()) != 0)
2315                 goto error;
2316
2317         retval = nand_scan_ident(nsmtd, 1, NULL);
2318         if (retval) {
2319                 NS_ERR("cannot scan NAND Simulator device\n");
2320                 if (retval > 0)
2321                         retval = -ENXIO;
2322                 goto error;
2323         }
2324
2325         if (bch) {
2326                 unsigned int eccsteps, eccbytes;
2327                 if (!mtd_nand_has_bch()) {
2328                         NS_ERR("BCH ECC support is disabled\n");
2329                         retval = -EINVAL;
2330                         goto error;
2331                 }
2332                 /* use 512-byte ecc blocks */
2333                 eccsteps = nsmtd->writesize/512;
2334                 eccbytes = (bch*13+7)/8;
2335                 /* do not bother supporting small page devices */
2336                 if ((nsmtd->oobsize < 64) || !eccsteps) {
2337                         NS_ERR("bch not available on small page devices\n");
2338                         retval = -EINVAL;
2339                         goto error;
2340                 }
2341                 if ((eccbytes*eccsteps+2) > nsmtd->oobsize) {
2342                         NS_ERR("invalid bch value %u\n", bch);
2343                         retval = -EINVAL;
2344                         goto error;
2345                 }
2346                 chip->ecc.mode = NAND_ECC_SOFT_BCH;
2347                 chip->ecc.size = 512;
2348                 chip->ecc.bytes = eccbytes;
2349                 NS_INFO("using %u-bit/%u bytes BCH ECC\n", bch, chip->ecc.size);
2350         }
2351
2352         retval = nand_scan_tail(nsmtd);
2353         if (retval) {
2354                 NS_ERR("can't register NAND Simulator\n");
2355                 if (retval > 0)
2356                         retval = -ENXIO;
2357                 goto error;
2358         }
2359
2360         if (overridesize) {
2361                 uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize;
2362                 if (new_size >> overridesize != nsmtd->erasesize) {
2363                         NS_ERR("overridesize is too big\n");
2364                         goto err_exit;
2365                 }
2366                 /* N.B. This relies on nand_scan not doing anything with the size before we change it */
2367                 nsmtd->size = new_size;
2368                 chip->chipsize = new_size;
2369                 chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
2370                 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2371         }
2372
2373         if ((retval = setup_wear_reporting(nsmtd)) != 0)
2374                 goto err_exit;
2375
2376         if ((retval = init_nandsim(nsmtd)) != 0)
2377                 goto err_exit;
2378
2379         if ((retval = nand_default_bbt(nsmtd)) != 0)
2380                 goto err_exit;
2381
2382         if ((retval = parse_badblocks(nand, nsmtd)) != 0)
2383                 goto err_exit;
2384
2385         /* Register NAND partitions */
2386         retval = mtd_device_register(nsmtd, &nand->partitions[0],
2387                                      nand->nbparts);
2388         if (retval != 0)
2389                 goto err_exit;
2390
2391         return 0;
2392
2393 err_exit:
2394         free_nandsim(nand);
2395         nand_release(nsmtd);
2396         for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i)
2397                 kfree(nand->partitions[i].name);
2398 error:
2399         kfree(nsmtd);
2400         free_lists();
2401
2402         return retval;
2403 }
2404
2405 module_init(ns_init_module);
2406
2407 /*
2408  * Module clean-up function
2409  */
2410 static void __exit ns_cleanup_module(void)
2411 {
2412         struct nandsim *ns = ((struct nand_chip *)nsmtd->priv)->priv;
2413         int i;
2414
2415         free_nandsim(ns);    /* Free nandsim private resources */
2416         nand_release(nsmtd); /* Unregister driver */
2417         for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
2418                 kfree(ns->partitions[i].name);
2419         kfree(nsmtd);        /* Free other structures */
2420         free_lists();
2421 }
2422
2423 module_exit(ns_cleanup_module);
2424
2425 MODULE_LICENSE ("GPL");
2426 MODULE_AUTHOR ("Artem B. Bityuckiy");
2427 MODULE_DESCRIPTION ("The NAND flash simulator");