Merge branch 'for-linus' of git://oss.sgi.com/xfs/xfs
[pandora-kernel.git] / drivers / mtd / nand / nand_base.c
1 /*
2  *  drivers/mtd/nand.c
3  *
4  *  Overview:
5  *   This is the generic MTD driver for NAND flash devices. It should be
6  *   capable of working with almost all NAND chips currently available.
7  *   Basic support for AG-AND chips is provided.
8  *
9  *      Additional technical information is available on
10  *      http://www.linux-mtd.infradead.org/doc/nand.html
11  *
12  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13  *                2002-2006 Thomas Gleixner (tglx@linutronix.de)
14  *
15  *  Credits:
16  *      David Woodhouse for adding multichip support
17  *
18  *      Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19  *      rework for 2K page size chips
20  *
21  *  TODO:
22  *      Enable cached programming for 2k page size chips
23  *      Check, if mtd->ecctype should be set to MTD_ECC_HW
24  *      if we have HW ecc support.
25  *      The AG-AND chips have nice features for speed improvement,
26  *      which are not supported yet. Read / program 4 pages in one go.
27  *      BBT table is not serialized, has to be fixed
28  *
29  * This program is free software; you can redistribute it and/or modify
30  * it under the terms of the GNU General Public License version 2 as
31  * published by the Free Software Foundation.
32  *
33  */
34
35 #include <linux/module.h>
36 #include <linux/delay.h>
37 #include <linux/errno.h>
38 #include <linux/err.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
42 #include <linux/mtd/mtd.h>
43 #include <linux/mtd/nand.h>
44 #include <linux/mtd/nand_ecc.h>
45 #include <linux/mtd/nand_bch.h>
46 #include <linux/interrupt.h>
47 #include <linux/bitops.h>
48 #include <linux/leds.h>
49 #include <linux/io.h>
50
51 #ifdef CONFIG_MTD_PARTITIONS
52 #include <linux/mtd/partitions.h>
53 #endif
54
55 /* Define default oob placement schemes for large and small page devices */
56 static struct nand_ecclayout nand_oob_8 = {
57         .eccbytes = 3,
58         .eccpos = {0, 1, 2},
59         .oobfree = {
60                 {.offset = 3,
61                  .length = 2},
62                 {.offset = 6,
63                  .length = 2} }
64 };
65
66 static struct nand_ecclayout nand_oob_16 = {
67         .eccbytes = 6,
68         .eccpos = {0, 1, 2, 3, 6, 7},
69         .oobfree = {
70                 {.offset = 8,
71                  . length = 8} }
72 };
73
74 static struct nand_ecclayout nand_oob_64 = {
75         .eccbytes = 24,
76         .eccpos = {
77                    40, 41, 42, 43, 44, 45, 46, 47,
78                    48, 49, 50, 51, 52, 53, 54, 55,
79                    56, 57, 58, 59, 60, 61, 62, 63},
80         .oobfree = {
81                 {.offset = 2,
82                  .length = 38} }
83 };
84
85 static struct nand_ecclayout nand_oob_128 = {
86         .eccbytes = 48,
87         .eccpos = {
88                    80, 81, 82, 83, 84, 85, 86, 87,
89                    88, 89, 90, 91, 92, 93, 94, 95,
90                    96, 97, 98, 99, 100, 101, 102, 103,
91                    104, 105, 106, 107, 108, 109, 110, 111,
92                    112, 113, 114, 115, 116, 117, 118, 119,
93                    120, 121, 122, 123, 124, 125, 126, 127},
94         .oobfree = {
95                 {.offset = 2,
96                  .length = 78} }
97 };
98
99 static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
100                            int new_state);
101
102 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
103                              struct mtd_oob_ops *ops);
104
105 /*
106  * For devices which display every fart in the system on a separate LED. Is
107  * compiled away when LED support is disabled.
108  */
109 DEFINE_LED_TRIGGER(nand_led_trigger);
110
111 static int check_offs_len(struct mtd_info *mtd,
112                                         loff_t ofs, uint64_t len)
113 {
114         struct nand_chip *chip = mtd->priv;
115         int ret = 0;
116
117         /* Start address must align on block boundary */
118         if (ofs & ((1 << chip->phys_erase_shift) - 1)) {
119                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Unaligned address\n", __func__);
120                 ret = -EINVAL;
121         }
122
123         /* Length must align on block boundary */
124         if (len & ((1 << chip->phys_erase_shift) - 1)) {
125                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Length not block aligned\n",
126                                         __func__);
127                 ret = -EINVAL;
128         }
129
130         /* Do not allow past end of device */
131         if (ofs + len > mtd->size) {
132                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Past end of device\n",
133                                         __func__);
134                 ret = -EINVAL;
135         }
136
137         return ret;
138 }
139
140 /**
141  * nand_release_device - [GENERIC] release chip
142  * @mtd:        MTD device structure
143  *
144  * Deselect, release chip lock and wake up anyone waiting on the device
145  */
146 static void nand_release_device(struct mtd_info *mtd)
147 {
148         struct nand_chip *chip = mtd->priv;
149
150         /* De-select the NAND device */
151         chip->select_chip(mtd, -1);
152
153         /* Release the controller and the chip */
154         spin_lock(&chip->controller->lock);
155         chip->controller->active = NULL;
156         chip->state = FL_READY;
157         wake_up(&chip->controller->wq);
158         spin_unlock(&chip->controller->lock);
159 }
160
161 /**
162  * nand_read_byte - [DEFAULT] read one byte from the chip
163  * @mtd:        MTD device structure
164  *
165  * Default read function for 8bit buswith
166  */
167 static uint8_t nand_read_byte(struct mtd_info *mtd)
168 {
169         struct nand_chip *chip = mtd->priv;
170         return readb(chip->IO_ADDR_R);
171 }
172
173 /**
174  * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
175  * @mtd:        MTD device structure
176  *
177  * Default read function for 16bit buswith with
178  * endianess conversion
179  */
180 static uint8_t nand_read_byte16(struct mtd_info *mtd)
181 {
182         struct nand_chip *chip = mtd->priv;
183         return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
184 }
185
186 /**
187  * nand_read_word - [DEFAULT] read one word from the chip
188  * @mtd:        MTD device structure
189  *
190  * Default read function for 16bit buswith without
191  * endianess conversion
192  */
193 static u16 nand_read_word(struct mtd_info *mtd)
194 {
195         struct nand_chip *chip = mtd->priv;
196         return readw(chip->IO_ADDR_R);
197 }
198
199 /**
200  * nand_select_chip - [DEFAULT] control CE line
201  * @mtd:        MTD device structure
202  * @chipnr:     chipnumber to select, -1 for deselect
203  *
204  * Default select function for 1 chip devices.
205  */
206 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
207 {
208         struct nand_chip *chip = mtd->priv;
209
210         switch (chipnr) {
211         case -1:
212                 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
213                 break;
214         case 0:
215                 break;
216
217         default:
218                 BUG();
219         }
220 }
221
222 /**
223  * nand_write_buf - [DEFAULT] write buffer to chip
224  * @mtd:        MTD device structure
225  * @buf:        data buffer
226  * @len:        number of bytes to write
227  *
228  * Default write function for 8bit buswith
229  */
230 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
231 {
232         int i;
233         struct nand_chip *chip = mtd->priv;
234
235         for (i = 0; i < len; i++)
236                 writeb(buf[i], chip->IO_ADDR_W);
237 }
238
239 /**
240  * nand_read_buf - [DEFAULT] read chip data into buffer
241  * @mtd:        MTD device structure
242  * @buf:        buffer to store date
243  * @len:        number of bytes to read
244  *
245  * Default read function for 8bit buswith
246  */
247 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
248 {
249         int i;
250         struct nand_chip *chip = mtd->priv;
251
252         for (i = 0; i < len; i++)
253                 buf[i] = readb(chip->IO_ADDR_R);
254 }
255
256 /**
257  * nand_verify_buf - [DEFAULT] Verify chip data against buffer
258  * @mtd:        MTD device structure
259  * @buf:        buffer containing the data to compare
260  * @len:        number of bytes to compare
261  *
262  * Default verify function for 8bit buswith
263  */
264 static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
265 {
266         int i;
267         struct nand_chip *chip = mtd->priv;
268
269         for (i = 0; i < len; i++)
270                 if (buf[i] != readb(chip->IO_ADDR_R))
271                         return -EFAULT;
272         return 0;
273 }
274
275 /**
276  * nand_write_buf16 - [DEFAULT] write buffer to chip
277  * @mtd:        MTD device structure
278  * @buf:        data buffer
279  * @len:        number of bytes to write
280  *
281  * Default write function for 16bit buswith
282  */
283 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
284 {
285         int i;
286         struct nand_chip *chip = mtd->priv;
287         u16 *p = (u16 *) buf;
288         len >>= 1;
289
290         for (i = 0; i < len; i++)
291                 writew(p[i], chip->IO_ADDR_W);
292
293 }
294
295 /**
296  * nand_read_buf16 - [DEFAULT] read chip data into buffer
297  * @mtd:        MTD device structure
298  * @buf:        buffer to store date
299  * @len:        number of bytes to read
300  *
301  * Default read function for 16bit buswith
302  */
303 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
304 {
305         int i;
306         struct nand_chip *chip = mtd->priv;
307         u16 *p = (u16 *) buf;
308         len >>= 1;
309
310         for (i = 0; i < len; i++)
311                 p[i] = readw(chip->IO_ADDR_R);
312 }
313
314 /**
315  * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
316  * @mtd:        MTD device structure
317  * @buf:        buffer containing the data to compare
318  * @len:        number of bytes to compare
319  *
320  * Default verify function for 16bit buswith
321  */
322 static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
323 {
324         int i;
325         struct nand_chip *chip = mtd->priv;
326         u16 *p = (u16 *) buf;
327         len >>= 1;
328
329         for (i = 0; i < len; i++)
330                 if (p[i] != readw(chip->IO_ADDR_R))
331                         return -EFAULT;
332
333         return 0;
334 }
335
336 /**
337  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
338  * @mtd:        MTD device structure
339  * @ofs:        offset from device start
340  * @getchip:    0, if the chip is already selected
341  *
342  * Check, if the block is bad.
343  */
344 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
345 {
346         int page, chipnr, res = 0;
347         struct nand_chip *chip = mtd->priv;
348         u16 bad;
349
350         if (chip->options & NAND_BBT_SCANLASTPAGE)
351                 ofs += mtd->erasesize - mtd->writesize;
352
353         page = (int)(ofs >> chip->page_shift) & chip->pagemask;
354
355         if (getchip) {
356                 chipnr = (int)(ofs >> chip->chip_shift);
357
358                 nand_get_device(chip, mtd, FL_READING);
359
360                 /* Select the NAND device */
361                 chip->select_chip(mtd, chipnr);
362         }
363
364         if (chip->options & NAND_BUSWIDTH_16) {
365                 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos & 0xFE,
366                               page);
367                 bad = cpu_to_le16(chip->read_word(mtd));
368                 if (chip->badblockpos & 0x1)
369                         bad >>= 8;
370                 else
371                         bad &= 0xFF;
372         } else {
373                 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos, page);
374                 bad = chip->read_byte(mtd);
375         }
376
377         if (likely(chip->badblockbits == 8))
378                 res = bad != 0xFF;
379         else
380                 res = hweight8(bad) < chip->badblockbits;
381
382         if (getchip)
383                 nand_release_device(mtd);
384
385         return res;
386 }
387
388 /**
389  * nand_default_block_markbad - [DEFAULT] mark a block bad
390  * @mtd:        MTD device structure
391  * @ofs:        offset from device start
392  *
393  * This is the default implementation, which can be overridden by
394  * a hardware specific driver.
395 */
396 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
397 {
398         struct nand_chip *chip = mtd->priv;
399         uint8_t buf[2] = { 0, 0 };
400         int block, ret, i = 0;
401
402         if (chip->options & NAND_BBT_SCANLASTPAGE)
403                 ofs += mtd->erasesize - mtd->writesize;
404
405         /* Get block number */
406         block = (int)(ofs >> chip->bbt_erase_shift);
407         if (chip->bbt)
408                 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
409
410         /* Do we have a flash based bad block table ? */
411         if (chip->options & NAND_USE_FLASH_BBT)
412                 ret = nand_update_bbt(mtd, ofs);
413         else {
414                 nand_get_device(chip, mtd, FL_WRITING);
415
416                 /* Write to first two pages and to byte 1 and 6 if necessary.
417                  * If we write to more than one location, the first error
418                  * encountered quits the procedure. We write two bytes per
419                  * location, so we dont have to mess with 16 bit access.
420                  */
421                 do {
422                         chip->ops.len = chip->ops.ooblen = 2;
423                         chip->ops.datbuf = NULL;
424                         chip->ops.oobbuf = buf;
425                         chip->ops.ooboffs = chip->badblockpos & ~0x01;
426
427                         ret = nand_do_write_oob(mtd, ofs, &chip->ops);
428
429                         if (!ret && (chip->options & NAND_BBT_SCANBYTE1AND6)) {
430                                 chip->ops.ooboffs = NAND_SMALL_BADBLOCK_POS
431                                         & ~0x01;
432                                 ret = nand_do_write_oob(mtd, ofs, &chip->ops);
433                         }
434                         i++;
435                         ofs += mtd->writesize;
436                 } while (!ret && (chip->options & NAND_BBT_SCAN2NDPAGE) &&
437                                 i < 2);
438
439                 nand_release_device(mtd);
440         }
441         if (!ret)
442                 mtd->ecc_stats.badblocks++;
443
444         return ret;
445 }
446
447 /**
448  * nand_check_wp - [GENERIC] check if the chip is write protected
449  * @mtd:        MTD device structure
450  * Check, if the device is write protected
451  *
452  * The function expects, that the device is already selected
453  */
454 static int nand_check_wp(struct mtd_info *mtd)
455 {
456         struct nand_chip *chip = mtd->priv;
457
458         /* broken xD cards report WP despite being writable */
459         if (chip->options & NAND_BROKEN_XD)
460                 return 0;
461
462         /* Check the WP bit */
463         chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
464         return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
465 }
466
467 /**
468  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
469  * @mtd:        MTD device structure
470  * @ofs:        offset from device start
471  * @getchip:    0, if the chip is already selected
472  * @allowbbt:   1, if its allowed to access the bbt area
473  *
474  * Check, if the block is bad. Either by reading the bad block table or
475  * calling of the scan function.
476  */
477 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
478                                int allowbbt)
479 {
480         struct nand_chip *chip = mtd->priv;
481
482         if (!chip->bbt)
483                 return chip->block_bad(mtd, ofs, getchip);
484
485         /* Return info from the table */
486         return nand_isbad_bbt(mtd, ofs, allowbbt);
487 }
488
489 /**
490  * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
491  * @mtd:        MTD device structure
492  * @timeo:      Timeout
493  *
494  * Helper function for nand_wait_ready used when needing to wait in interrupt
495  * context.
496  */
497 static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
498 {
499         struct nand_chip *chip = mtd->priv;
500         int i;
501
502         /* Wait for the device to get ready */
503         for (i = 0; i < timeo; i++) {
504                 if (chip->dev_ready(mtd))
505                         break;
506                 touch_softlockup_watchdog();
507                 mdelay(1);
508         }
509 }
510
511 /*
512  * Wait for the ready pin, after a command
513  * The timeout is catched later.
514  */
515 void nand_wait_ready(struct mtd_info *mtd)
516 {
517         struct nand_chip *chip = mtd->priv;
518         unsigned long timeo = jiffies + 2;
519
520         /* 400ms timeout */
521         if (in_interrupt() || oops_in_progress)
522                 return panic_nand_wait_ready(mtd, 400);
523
524         led_trigger_event(nand_led_trigger, LED_FULL);
525         /* wait until command is processed or timeout occures */
526         do {
527                 if (chip->dev_ready(mtd))
528                         break;
529                 touch_softlockup_watchdog();
530         } while (time_before(jiffies, timeo));
531         led_trigger_event(nand_led_trigger, LED_OFF);
532 }
533 EXPORT_SYMBOL_GPL(nand_wait_ready);
534
535 /**
536  * nand_command - [DEFAULT] Send command to NAND device
537  * @mtd:        MTD device structure
538  * @command:    the command to be sent
539  * @column:     the column address for this command, -1 if none
540  * @page_addr:  the page address for this command, -1 if none
541  *
542  * Send command to NAND device. This function is used for small page
543  * devices (256/512 Bytes per page)
544  */
545 static void nand_command(struct mtd_info *mtd, unsigned int command,
546                          int column, int page_addr)
547 {
548         register struct nand_chip *chip = mtd->priv;
549         int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
550
551         /*
552          * Write out the command to the device.
553          */
554         if (command == NAND_CMD_SEQIN) {
555                 int readcmd;
556
557                 if (column >= mtd->writesize) {
558                         /* OOB area */
559                         column -= mtd->writesize;
560                         readcmd = NAND_CMD_READOOB;
561                 } else if (column < 256) {
562                         /* First 256 bytes --> READ0 */
563                         readcmd = NAND_CMD_READ0;
564                 } else {
565                         column -= 256;
566                         readcmd = NAND_CMD_READ1;
567                 }
568                 chip->cmd_ctrl(mtd, readcmd, ctrl);
569                 ctrl &= ~NAND_CTRL_CHANGE;
570         }
571         chip->cmd_ctrl(mtd, command, ctrl);
572
573         /*
574          * Address cycle, when necessary
575          */
576         ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
577         /* Serially input address */
578         if (column != -1) {
579                 /* Adjust columns for 16 bit buswidth */
580                 if (chip->options & NAND_BUSWIDTH_16)
581                         column >>= 1;
582                 chip->cmd_ctrl(mtd, column, ctrl);
583                 ctrl &= ~NAND_CTRL_CHANGE;
584         }
585         if (page_addr != -1) {
586                 chip->cmd_ctrl(mtd, page_addr, ctrl);
587                 ctrl &= ~NAND_CTRL_CHANGE;
588                 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
589                 /* One more address cycle for devices > 32MiB */
590                 if (chip->chipsize > (32 << 20))
591                         chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
592         }
593         chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
594
595         /*
596          * program and erase have their own busy handlers
597          * status and sequential in needs no delay
598          */
599         switch (command) {
600
601         case NAND_CMD_PAGEPROG:
602         case NAND_CMD_ERASE1:
603         case NAND_CMD_ERASE2:
604         case NAND_CMD_SEQIN:
605         case NAND_CMD_STATUS:
606                 return;
607
608         case NAND_CMD_RESET:
609                 if (chip->dev_ready)
610                         break;
611                 udelay(chip->chip_delay);
612                 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
613                                NAND_CTRL_CLE | NAND_CTRL_CHANGE);
614                 chip->cmd_ctrl(mtd,
615                                NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
616                 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
617                                 ;
618                 return;
619
620                 /* This applies to read commands */
621         default:
622                 /*
623                  * If we don't have access to the busy pin, we apply the given
624                  * command delay
625                  */
626                 if (!chip->dev_ready) {
627                         udelay(chip->chip_delay);
628                         return;
629                 }
630         }
631         /* Apply this short delay always to ensure that we do wait tWB in
632          * any case on any machine. */
633         ndelay(100);
634
635         nand_wait_ready(mtd);
636 }
637
638 /**
639  * nand_command_lp - [DEFAULT] Send command to NAND large page device
640  * @mtd:        MTD device structure
641  * @command:    the command to be sent
642  * @column:     the column address for this command, -1 if none
643  * @page_addr:  the page address for this command, -1 if none
644  *
645  * Send command to NAND device. This is the version for the new large page
646  * devices We dont have the separate regions as we have in the small page
647  * devices.  We must emulate NAND_CMD_READOOB to keep the code compatible.
648  */
649 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
650                             int column, int page_addr)
651 {
652         register struct nand_chip *chip = mtd->priv;
653
654         /* Emulate NAND_CMD_READOOB */
655         if (command == NAND_CMD_READOOB) {
656                 column += mtd->writesize;
657                 command = NAND_CMD_READ0;
658         }
659
660         /* Command latch cycle */
661         chip->cmd_ctrl(mtd, command & 0xff,
662                        NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
663
664         if (column != -1 || page_addr != -1) {
665                 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
666
667                 /* Serially input address */
668                 if (column != -1) {
669                         /* Adjust columns for 16 bit buswidth */
670                         if (chip->options & NAND_BUSWIDTH_16)
671                                 column >>= 1;
672                         chip->cmd_ctrl(mtd, column, ctrl);
673                         ctrl &= ~NAND_CTRL_CHANGE;
674                         chip->cmd_ctrl(mtd, column >> 8, ctrl);
675                 }
676                 if (page_addr != -1) {
677                         chip->cmd_ctrl(mtd, page_addr, ctrl);
678                         chip->cmd_ctrl(mtd, page_addr >> 8,
679                                        NAND_NCE | NAND_ALE);
680                         /* One more address cycle for devices > 128MiB */
681                         if (chip->chipsize > (128 << 20))
682                                 chip->cmd_ctrl(mtd, page_addr >> 16,
683                                                NAND_NCE | NAND_ALE);
684                 }
685         }
686         chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
687
688         /*
689          * program and erase have their own busy handlers
690          * status, sequential in, and deplete1 need no delay
691          */
692         switch (command) {
693
694         case NAND_CMD_CACHEDPROG:
695         case NAND_CMD_PAGEPROG:
696         case NAND_CMD_ERASE1:
697         case NAND_CMD_ERASE2:
698         case NAND_CMD_SEQIN:
699         case NAND_CMD_RNDIN:
700         case NAND_CMD_STATUS:
701         case NAND_CMD_DEPLETE1:
702                 return;
703
704                 /*
705                  * read error status commands require only a short delay
706                  */
707         case NAND_CMD_STATUS_ERROR:
708         case NAND_CMD_STATUS_ERROR0:
709         case NAND_CMD_STATUS_ERROR1:
710         case NAND_CMD_STATUS_ERROR2:
711         case NAND_CMD_STATUS_ERROR3:
712                 udelay(chip->chip_delay);
713                 return;
714
715         case NAND_CMD_RESET:
716                 if (chip->dev_ready)
717                         break;
718                 udelay(chip->chip_delay);
719                 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
720                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
721                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
722                                NAND_NCE | NAND_CTRL_CHANGE);
723                 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
724                                 ;
725                 return;
726
727         case NAND_CMD_RNDOUT:
728                 /* No ready / busy check necessary */
729                 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
730                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
731                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
732                                NAND_NCE | NAND_CTRL_CHANGE);
733                 return;
734
735         case NAND_CMD_READ0:
736                 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
737                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
738                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
739                                NAND_NCE | NAND_CTRL_CHANGE);
740
741                 /* This applies to read commands */
742         default:
743                 /*
744                  * If we don't have access to the busy pin, we apply the given
745                  * command delay
746                  */
747                 if (!chip->dev_ready) {
748                         udelay(chip->chip_delay);
749                         return;
750                 }
751         }
752
753         /* Apply this short delay always to ensure that we do wait tWB in
754          * any case on any machine. */
755         ndelay(100);
756
757         nand_wait_ready(mtd);
758 }
759
760 /**
761  * panic_nand_get_device - [GENERIC] Get chip for selected access
762  * @chip:       the nand chip descriptor
763  * @mtd:        MTD device structure
764  * @new_state:  the state which is requested
765  *
766  * Used when in panic, no locks are taken.
767  */
768 static void panic_nand_get_device(struct nand_chip *chip,
769                       struct mtd_info *mtd, int new_state)
770 {
771         /* Hardware controller shared among independend devices */
772         chip->controller->active = chip;
773         chip->state = new_state;
774 }
775
776 /**
777  * nand_get_device - [GENERIC] Get chip for selected access
778  * @chip:       the nand chip descriptor
779  * @mtd:        MTD device structure
780  * @new_state:  the state which is requested
781  *
782  * Get the device and lock it for exclusive access
783  */
784 static int
785 nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state)
786 {
787         spinlock_t *lock = &chip->controller->lock;
788         wait_queue_head_t *wq = &chip->controller->wq;
789         DECLARE_WAITQUEUE(wait, current);
790 retry:
791         spin_lock(lock);
792
793         /* Hardware controller shared among independent devices */
794         if (!chip->controller->active)
795                 chip->controller->active = chip;
796
797         if (chip->controller->active == chip && chip->state == FL_READY) {
798                 chip->state = new_state;
799                 spin_unlock(lock);
800                 return 0;
801         }
802         if (new_state == FL_PM_SUSPENDED) {
803                 if (chip->controller->active->state == FL_PM_SUSPENDED) {
804                         chip->state = FL_PM_SUSPENDED;
805                         spin_unlock(lock);
806                         return 0;
807                 }
808         }
809         set_current_state(TASK_UNINTERRUPTIBLE);
810         add_wait_queue(wq, &wait);
811         spin_unlock(lock);
812         schedule();
813         remove_wait_queue(wq, &wait);
814         goto retry;
815 }
816
817 /**
818  * panic_nand_wait - [GENERIC]  wait until the command is done
819  * @mtd:        MTD device structure
820  * @chip:       NAND chip structure
821  * @timeo:      Timeout
822  *
823  * Wait for command done. This is a helper function for nand_wait used when
824  * we are in interrupt context. May happen when in panic and trying to write
825  * an oops through mtdoops.
826  */
827 static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
828                             unsigned long timeo)
829 {
830         int i;
831         for (i = 0; i < timeo; i++) {
832                 if (chip->dev_ready) {
833                         if (chip->dev_ready(mtd))
834                                 break;
835                 } else {
836                         if (chip->read_byte(mtd) & NAND_STATUS_READY)
837                                 break;
838                 }
839                 mdelay(1);
840         }
841 }
842
843 /**
844  * nand_wait - [DEFAULT]  wait until the command is done
845  * @mtd:        MTD device structure
846  * @chip:       NAND chip structure
847  *
848  * Wait for command done. This applies to erase and program only
849  * Erase can take up to 400ms and program up to 20ms according to
850  * general NAND and SmartMedia specs
851  */
852 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
853 {
854
855         unsigned long timeo = jiffies;
856         int status, state = chip->state;
857
858         if (state == FL_ERASING)
859                 timeo += (HZ * 400) / 1000;
860         else
861                 timeo += (HZ * 20) / 1000;
862
863         led_trigger_event(nand_led_trigger, LED_FULL);
864
865         /* Apply this short delay always to ensure that we do wait tWB in
866          * any case on any machine. */
867         ndelay(100);
868
869         if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
870                 chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
871         else
872                 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
873
874         if (in_interrupt() || oops_in_progress)
875                 panic_nand_wait(mtd, chip, timeo);
876         else {
877                 while (time_before(jiffies, timeo)) {
878                         if (chip->dev_ready) {
879                                 if (chip->dev_ready(mtd))
880                                         break;
881                         } else {
882                                 if (chip->read_byte(mtd) & NAND_STATUS_READY)
883                                         break;
884                         }
885                         cond_resched();
886                 }
887         }
888         led_trigger_event(nand_led_trigger, LED_OFF);
889
890         status = (int)chip->read_byte(mtd);
891         return status;
892 }
893
894 /**
895  * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
896  *
897  * @mtd: mtd info
898  * @ofs: offset to start unlock from
899  * @len: length to unlock
900  * @invert:   when = 0, unlock the range of blocks within the lower and
901  *                      upper boundary address
902  *            when = 1, unlock the range of blocks outside the boundaries
903  *                      of the lower and upper boundary address
904  *
905  * return - unlock status
906  */
907 static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
908                                         uint64_t len, int invert)
909 {
910         int ret = 0;
911         int status, page;
912         struct nand_chip *chip = mtd->priv;
913
914         /* Submit address of first page to unlock */
915         page = ofs >> chip->page_shift;
916         chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
917
918         /* Submit address of last page to unlock */
919         page = (ofs + len) >> chip->page_shift;
920         chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
921                                 (page | invert) & chip->pagemask);
922
923         /* Call wait ready function */
924         status = chip->waitfunc(mtd, chip);
925         udelay(1000);
926         /* See if device thinks it succeeded */
927         if (status & 0x01) {
928                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Error status = 0x%08x\n",
929                                         __func__, status);
930                 ret = -EIO;
931         }
932
933         return ret;
934 }
935
936 /**
937  * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
938  *
939  * @mtd: mtd info
940  * @ofs: offset to start unlock from
941  * @len: length to unlock
942  *
943  * return - unlock status
944  */
945 int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
946 {
947         int ret = 0;
948         int chipnr;
949         struct nand_chip *chip = mtd->priv;
950
951         DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
952                         __func__, (unsigned long long)ofs, len);
953
954         if (check_offs_len(mtd, ofs, len))
955                 ret = -EINVAL;
956
957         /* Align to last block address if size addresses end of the device */
958         if (ofs + len == mtd->size)
959                 len -= mtd->erasesize;
960
961         nand_get_device(chip, mtd, FL_UNLOCKING);
962
963         /* Shift to get chip number */
964         chipnr = ofs >> chip->chip_shift;
965
966         chip->select_chip(mtd, chipnr);
967
968         /* Check, if it is write protected */
969         if (nand_check_wp(mtd)) {
970                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
971                                         __func__);
972                 ret = -EIO;
973                 goto out;
974         }
975
976         ret = __nand_unlock(mtd, ofs, len, 0);
977
978 out:
979         /* de-select the NAND device */
980         chip->select_chip(mtd, -1);
981
982         nand_release_device(mtd);
983
984         return ret;
985 }
986 EXPORT_SYMBOL(nand_unlock);
987
988 /**
989  * nand_lock - [REPLACEABLE] locks all blocks present in the device
990  *
991  * @mtd: mtd info
992  * @ofs: offset to start unlock from
993  * @len: length to unlock
994  *
995  * return - lock status
996  *
997  * This feature is not supported in many NAND parts. 'Micron' NAND parts
998  * do have this feature, but it allows only to lock all blocks, not for
999  * specified range for block.
1000  *
1001  * Implementing 'lock' feature by making use of 'unlock', for now.
1002  */
1003 int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1004 {
1005         int ret = 0;
1006         int chipnr, status, page;
1007         struct nand_chip *chip = mtd->priv;
1008
1009         DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
1010                         __func__, (unsigned long long)ofs, len);
1011
1012         if (check_offs_len(mtd, ofs, len))
1013                 ret = -EINVAL;
1014
1015         nand_get_device(chip, mtd, FL_LOCKING);
1016
1017         /* Shift to get chip number */
1018         chipnr = ofs >> chip->chip_shift;
1019
1020         chip->select_chip(mtd, chipnr);
1021
1022         /* Check, if it is write protected */
1023         if (nand_check_wp(mtd)) {
1024                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
1025                                         __func__);
1026                 status = MTD_ERASE_FAILED;
1027                 ret = -EIO;
1028                 goto out;
1029         }
1030
1031         /* Submit address of first page to lock */
1032         page = ofs >> chip->page_shift;
1033         chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1034
1035         /* Call wait ready function */
1036         status = chip->waitfunc(mtd, chip);
1037         udelay(1000);
1038         /* See if device thinks it succeeded */
1039         if (status & 0x01) {
1040                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Error status = 0x%08x\n",
1041                                         __func__, status);
1042                 ret = -EIO;
1043                 goto out;
1044         }
1045
1046         ret = __nand_unlock(mtd, ofs, len, 0x1);
1047
1048 out:
1049         /* de-select the NAND device */
1050         chip->select_chip(mtd, -1);
1051
1052         nand_release_device(mtd);
1053
1054         return ret;
1055 }
1056 EXPORT_SYMBOL(nand_lock);
1057
1058 /**
1059  * nand_read_page_raw - [Intern] read raw page data without ecc
1060  * @mtd:        mtd info structure
1061  * @chip:       nand chip info structure
1062  * @buf:        buffer to store read data
1063  * @page:       page number to read
1064  *
1065  * Not for syndrome calculating ecc controllers, which use a special oob layout
1066  */
1067 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1068                               uint8_t *buf, int page)
1069 {
1070         chip->read_buf(mtd, buf, mtd->writesize);
1071         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1072         return 0;
1073 }
1074
1075 /**
1076  * nand_read_page_raw_syndrome - [Intern] read raw page data without ecc
1077  * @mtd:        mtd info structure
1078  * @chip:       nand chip info structure
1079  * @buf:        buffer to store read data
1080  * @page:       page number to read
1081  *
1082  * We need a special oob layout and handling even when OOB isn't used.
1083  */
1084 static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1085                                         struct nand_chip *chip,
1086                                         uint8_t *buf, int page)
1087 {
1088         int eccsize = chip->ecc.size;
1089         int eccbytes = chip->ecc.bytes;
1090         uint8_t *oob = chip->oob_poi;
1091         int steps, size;
1092
1093         for (steps = chip->ecc.steps; steps > 0; steps--) {
1094                 chip->read_buf(mtd, buf, eccsize);
1095                 buf += eccsize;
1096
1097                 if (chip->ecc.prepad) {
1098                         chip->read_buf(mtd, oob, chip->ecc.prepad);
1099                         oob += chip->ecc.prepad;
1100                 }
1101
1102                 chip->read_buf(mtd, oob, eccbytes);
1103                 oob += eccbytes;
1104
1105                 if (chip->ecc.postpad) {
1106                         chip->read_buf(mtd, oob, chip->ecc.postpad);
1107                         oob += chip->ecc.postpad;
1108                 }
1109         }
1110
1111         size = mtd->oobsize - (oob - chip->oob_poi);
1112         if (size)
1113                 chip->read_buf(mtd, oob, size);
1114
1115         return 0;
1116 }
1117
1118 /**
1119  * nand_read_page_swecc - [REPLACABLE] software ecc based page read function
1120  * @mtd:        mtd info structure
1121  * @chip:       nand chip info structure
1122  * @buf:        buffer to store read data
1123  * @page:       page number to read
1124  */
1125 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1126                                 uint8_t *buf, int page)
1127 {
1128         int i, eccsize = chip->ecc.size;
1129         int eccbytes = chip->ecc.bytes;
1130         int eccsteps = chip->ecc.steps;
1131         uint8_t *p = buf;
1132         uint8_t *ecc_calc = chip->buffers->ecccalc;
1133         uint8_t *ecc_code = chip->buffers->ecccode;
1134         uint32_t *eccpos = chip->ecc.layout->eccpos;
1135
1136         chip->ecc.read_page_raw(mtd, chip, buf, page);
1137
1138         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1139                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1140
1141         for (i = 0; i < chip->ecc.total; i++)
1142                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1143
1144         eccsteps = chip->ecc.steps;
1145         p = buf;
1146
1147         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1148                 int stat;
1149
1150                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1151                 if (stat < 0)
1152                         mtd->ecc_stats.failed++;
1153                 else
1154                         mtd->ecc_stats.corrected += stat;
1155         }
1156         return 0;
1157 }
1158
1159 /**
1160  * nand_read_subpage - [REPLACABLE] software ecc based sub-page read function
1161  * @mtd:        mtd info structure
1162  * @chip:       nand chip info structure
1163  * @data_offs:  offset of requested data within the page
1164  * @readlen:    data length
1165  * @bufpoi:     buffer to store read data
1166  */
1167 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1168                         uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi)
1169 {
1170         int start_step, end_step, num_steps;
1171         uint32_t *eccpos = chip->ecc.layout->eccpos;
1172         uint8_t *p;
1173         int data_col_addr, i, gaps = 0;
1174         int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1175         int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1176         int index = 0;
1177
1178         /* Column address wihin the page aligned to ECC size (256bytes). */
1179         start_step = data_offs / chip->ecc.size;
1180         end_step = (data_offs + readlen - 1) / chip->ecc.size;
1181         num_steps = end_step - start_step + 1;
1182
1183         /* Data size aligned to ECC ecc.size*/
1184         datafrag_len = num_steps * chip->ecc.size;
1185         eccfrag_len = num_steps * chip->ecc.bytes;
1186
1187         data_col_addr = start_step * chip->ecc.size;
1188         /* If we read not a page aligned data */
1189         if (data_col_addr != 0)
1190                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1191
1192         p = bufpoi + data_col_addr;
1193         chip->read_buf(mtd, p, datafrag_len);
1194
1195         /* Calculate  ECC */
1196         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1197                 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1198
1199         /* The performance is faster if to position offsets
1200            according to ecc.pos. Let make sure here that
1201            there are no gaps in ecc positions */
1202         for (i = 0; i < eccfrag_len - 1; i++) {
1203                 if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
1204                         eccpos[i + start_step * chip->ecc.bytes + 1]) {
1205                         gaps = 1;
1206                         break;
1207                 }
1208         }
1209         if (gaps) {
1210                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1211                 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1212         } else {
1213                 /* send the command to read the particular ecc bytes */
1214                 /* take care about buswidth alignment in read_buf */
1215                 index = start_step * chip->ecc.bytes;
1216
1217                 aligned_pos = eccpos[index] & ~(busw - 1);
1218                 aligned_len = eccfrag_len;
1219                 if (eccpos[index] & (busw - 1))
1220                         aligned_len++;
1221                 if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
1222                         aligned_len++;
1223
1224                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1225                                         mtd->writesize + aligned_pos, -1);
1226                 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1227         }
1228
1229         for (i = 0; i < eccfrag_len; i++)
1230                 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
1231
1232         p = bufpoi + data_col_addr;
1233         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1234                 int stat;
1235
1236                 stat = chip->ecc.correct(mtd, p,
1237                         &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1238                 if (stat < 0)
1239                         mtd->ecc_stats.failed++;
1240                 else
1241                         mtd->ecc_stats.corrected += stat;
1242         }
1243         return 0;
1244 }
1245
1246 /**
1247  * nand_read_page_hwecc - [REPLACABLE] hardware ecc based page read function
1248  * @mtd:        mtd info structure
1249  * @chip:       nand chip info structure
1250  * @buf:        buffer to store read data
1251  * @page:       page number to read
1252  *
1253  * Not for syndrome calculating ecc controllers which need a special oob layout
1254  */
1255 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1256                                 uint8_t *buf, int page)
1257 {
1258         int i, eccsize = chip->ecc.size;
1259         int eccbytes = chip->ecc.bytes;
1260         int eccsteps = chip->ecc.steps;
1261         uint8_t *p = buf;
1262         uint8_t *ecc_calc = chip->buffers->ecccalc;
1263         uint8_t *ecc_code = chip->buffers->ecccode;
1264         uint32_t *eccpos = chip->ecc.layout->eccpos;
1265
1266         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1267                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1268                 chip->read_buf(mtd, p, eccsize);
1269                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1270         }
1271         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1272
1273         for (i = 0; i < chip->ecc.total; i++)
1274                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1275
1276         eccsteps = chip->ecc.steps;
1277         p = buf;
1278
1279         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1280                 int stat;
1281
1282                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1283                 if (stat < 0)
1284                         mtd->ecc_stats.failed++;
1285                 else
1286                         mtd->ecc_stats.corrected += stat;
1287         }
1288         return 0;
1289 }
1290
1291 /**
1292  * nand_read_page_hwecc_oob_first - [REPLACABLE] hw ecc, read oob first
1293  * @mtd:        mtd info structure
1294  * @chip:       nand chip info structure
1295  * @buf:        buffer to store read data
1296  * @page:       page number to read
1297  *
1298  * Hardware ECC for large page chips, require OOB to be read first.
1299  * For this ECC mode, the write_page method is re-used from ECC_HW.
1300  * These methods read/write ECC from the OOB area, unlike the
1301  * ECC_HW_SYNDROME support with multiple ECC steps, follows the
1302  * "infix ECC" scheme and reads/writes ECC from the data area, by
1303  * overwriting the NAND manufacturer bad block markings.
1304  */
1305 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1306         struct nand_chip *chip, uint8_t *buf, int page)
1307 {
1308         int i, eccsize = chip->ecc.size;
1309         int eccbytes = chip->ecc.bytes;
1310         int eccsteps = chip->ecc.steps;
1311         uint8_t *p = buf;
1312         uint8_t *ecc_code = chip->buffers->ecccode;
1313         uint32_t *eccpos = chip->ecc.layout->eccpos;
1314         uint8_t *ecc_calc = chip->buffers->ecccalc;
1315
1316         /* Read the OOB area first */
1317         chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1318         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1319         chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1320
1321         for (i = 0; i < chip->ecc.total; i++)
1322                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1323
1324         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1325                 int stat;
1326
1327                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1328                 chip->read_buf(mtd, p, eccsize);
1329                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1330
1331                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1332                 if (stat < 0)
1333                         mtd->ecc_stats.failed++;
1334                 else
1335                         mtd->ecc_stats.corrected += stat;
1336         }
1337         return 0;
1338 }
1339
1340 /**
1341  * nand_read_page_syndrome - [REPLACABLE] hardware ecc syndrom based page read
1342  * @mtd:        mtd info structure
1343  * @chip:       nand chip info structure
1344  * @buf:        buffer to store read data
1345  * @page:       page number to read
1346  *
1347  * The hw generator calculates the error syndrome automatically. Therefor
1348  * we need a special oob layout and handling.
1349  */
1350 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1351                                    uint8_t *buf, int page)
1352 {
1353         int i, eccsize = chip->ecc.size;
1354         int eccbytes = chip->ecc.bytes;
1355         int eccsteps = chip->ecc.steps;
1356         uint8_t *p = buf;
1357         uint8_t *oob = chip->oob_poi;
1358
1359         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1360                 int stat;
1361
1362                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1363                 chip->read_buf(mtd, p, eccsize);
1364
1365                 if (chip->ecc.prepad) {
1366                         chip->read_buf(mtd, oob, chip->ecc.prepad);
1367                         oob += chip->ecc.prepad;
1368                 }
1369
1370                 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1371                 chip->read_buf(mtd, oob, eccbytes);
1372                 stat = chip->ecc.correct(mtd, p, oob, NULL);
1373
1374                 if (stat < 0)
1375                         mtd->ecc_stats.failed++;
1376                 else
1377                         mtd->ecc_stats.corrected += stat;
1378
1379                 oob += eccbytes;
1380
1381                 if (chip->ecc.postpad) {
1382                         chip->read_buf(mtd, oob, chip->ecc.postpad);
1383                         oob += chip->ecc.postpad;
1384                 }
1385         }
1386
1387         /* Calculate remaining oob bytes */
1388         i = mtd->oobsize - (oob - chip->oob_poi);
1389         if (i)
1390                 chip->read_buf(mtd, oob, i);
1391
1392         return 0;
1393 }
1394
1395 /**
1396  * nand_transfer_oob - [Internal] Transfer oob to client buffer
1397  * @chip:       nand chip structure
1398  * @oob:        oob destination address
1399  * @ops:        oob ops structure
1400  * @len:        size of oob to transfer
1401  */
1402 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1403                                   struct mtd_oob_ops *ops, size_t len)
1404 {
1405         switch (ops->mode) {
1406
1407         case MTD_OOB_PLACE:
1408         case MTD_OOB_RAW:
1409                 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1410                 return oob + len;
1411
1412         case MTD_OOB_AUTO: {
1413                 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1414                 uint32_t boffs = 0, roffs = ops->ooboffs;
1415                 size_t bytes = 0;
1416
1417                 for (; free->length && len; free++, len -= bytes) {
1418                         /* Read request not from offset 0 ? */
1419                         if (unlikely(roffs)) {
1420                                 if (roffs >= free->length) {
1421                                         roffs -= free->length;
1422                                         continue;
1423                                 }
1424                                 boffs = free->offset + roffs;
1425                                 bytes = min_t(size_t, len,
1426                                               (free->length - roffs));
1427                                 roffs = 0;
1428                         } else {
1429                                 bytes = min_t(size_t, len, free->length);
1430                                 boffs = free->offset;
1431                         }
1432                         memcpy(oob, chip->oob_poi + boffs, bytes);
1433                         oob += bytes;
1434                 }
1435                 return oob;
1436         }
1437         default:
1438                 BUG();
1439         }
1440         return NULL;
1441 }
1442
1443 /**
1444  * nand_do_read_ops - [Internal] Read data with ECC
1445  *
1446  * @mtd:        MTD device structure
1447  * @from:       offset to read from
1448  * @ops:        oob ops structure
1449  *
1450  * Internal function. Called with chip held.
1451  */
1452 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1453                             struct mtd_oob_ops *ops)
1454 {
1455         int chipnr, page, realpage, col, bytes, aligned;
1456         struct nand_chip *chip = mtd->priv;
1457         struct mtd_ecc_stats stats;
1458         int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1459         int sndcmd = 1;
1460         int ret = 0;
1461         uint32_t readlen = ops->len;
1462         uint32_t oobreadlen = ops->ooblen;
1463         uint32_t max_oobsize = ops->mode == MTD_OOB_AUTO ?
1464                 mtd->oobavail : mtd->oobsize;
1465
1466         uint8_t *bufpoi, *oob, *buf;
1467
1468         stats = mtd->ecc_stats;
1469
1470         chipnr = (int)(from >> chip->chip_shift);
1471         chip->select_chip(mtd, chipnr);
1472
1473         realpage = (int)(from >> chip->page_shift);
1474         page = realpage & chip->pagemask;
1475
1476         col = (int)(from & (mtd->writesize - 1));
1477
1478         buf = ops->datbuf;
1479         oob = ops->oobbuf;
1480
1481         while (1) {
1482                 bytes = min(mtd->writesize - col, readlen);
1483                 aligned = (bytes == mtd->writesize);
1484
1485                 /* Is the current page in the buffer ? */
1486                 if (realpage != chip->pagebuf || oob) {
1487                         bufpoi = aligned ? buf : chip->buffers->databuf;
1488
1489                         if (likely(sndcmd)) {
1490                                 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1491                                 sndcmd = 0;
1492                         }
1493
1494                         /* Now read the page into the buffer */
1495                         if (unlikely(ops->mode == MTD_OOB_RAW))
1496                                 ret = chip->ecc.read_page_raw(mtd, chip,
1497                                                               bufpoi, page);
1498                         else if (!aligned && NAND_SUBPAGE_READ(chip) && !oob)
1499                                 ret = chip->ecc.read_subpage(mtd, chip,
1500                                                         col, bytes, bufpoi);
1501                         else
1502                                 ret = chip->ecc.read_page(mtd, chip, bufpoi,
1503                                                           page);
1504                         if (ret < 0)
1505                                 break;
1506
1507                         /* Transfer not aligned data */
1508                         if (!aligned) {
1509                                 if (!NAND_SUBPAGE_READ(chip) && !oob &&
1510                                     !(mtd->ecc_stats.failed - stats.failed))
1511                                         chip->pagebuf = realpage;
1512                                 memcpy(buf, chip->buffers->databuf + col, bytes);
1513                         }
1514
1515                         buf += bytes;
1516
1517                         if (unlikely(oob)) {
1518
1519                                 int toread = min(oobreadlen, max_oobsize);
1520
1521                                 if (toread) {
1522                                         oob = nand_transfer_oob(chip,
1523                                                 oob, ops, toread);
1524                                         oobreadlen -= toread;
1525                                 }
1526                         }
1527
1528                         if (!(chip->options & NAND_NO_READRDY)) {
1529                                 /*
1530                                  * Apply delay or wait for ready/busy pin. Do
1531                                  * this before the AUTOINCR check, so no
1532                                  * problems arise if a chip which does auto
1533                                  * increment is marked as NOAUTOINCR by the
1534                                  * board driver.
1535                                  */
1536                                 if (!chip->dev_ready)
1537                                         udelay(chip->chip_delay);
1538                                 else
1539                                         nand_wait_ready(mtd);
1540                         }
1541                 } else {
1542                         memcpy(buf, chip->buffers->databuf + col, bytes);
1543                         buf += bytes;
1544                 }
1545
1546                 readlen -= bytes;
1547
1548                 if (!readlen)
1549                         break;
1550
1551                 /* For subsequent reads align to page boundary. */
1552                 col = 0;
1553                 /* Increment page address */
1554                 realpage++;
1555
1556                 page = realpage & chip->pagemask;
1557                 /* Check, if we cross a chip boundary */
1558                 if (!page) {
1559                         chipnr++;
1560                         chip->select_chip(mtd, -1);
1561                         chip->select_chip(mtd, chipnr);
1562                 }
1563
1564                 /* Check, if the chip supports auto page increment
1565                  * or if we have hit a block boundary.
1566                  */
1567                 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1568                         sndcmd = 1;
1569         }
1570
1571         ops->retlen = ops->len - (size_t) readlen;
1572         if (oob)
1573                 ops->oobretlen = ops->ooblen - oobreadlen;
1574
1575         if (ret)
1576                 return ret;
1577
1578         if (mtd->ecc_stats.failed - stats.failed)
1579                 return -EBADMSG;
1580
1581         return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1582 }
1583
1584 /**
1585  * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
1586  * @mtd:        MTD device structure
1587  * @from:       offset to read from
1588  * @len:        number of bytes to read
1589  * @retlen:     pointer to variable to store the number of read bytes
1590  * @buf:        the databuffer to put data
1591  *
1592  * Get hold of the chip and call nand_do_read
1593  */
1594 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1595                      size_t *retlen, uint8_t *buf)
1596 {
1597         struct nand_chip *chip = mtd->priv;
1598         int ret;
1599
1600         /* Do not allow reads past end of device */
1601         if ((from + len) > mtd->size)
1602                 return -EINVAL;
1603         if (!len)
1604                 return 0;
1605
1606         nand_get_device(chip, mtd, FL_READING);
1607
1608         chip->ops.len = len;
1609         chip->ops.datbuf = buf;
1610         chip->ops.oobbuf = NULL;
1611
1612         ret = nand_do_read_ops(mtd, from, &chip->ops);
1613
1614         *retlen = chip->ops.retlen;
1615
1616         nand_release_device(mtd);
1617
1618         return ret;
1619 }
1620
1621 /**
1622  * nand_read_oob_std - [REPLACABLE] the most common OOB data read function
1623  * @mtd:        mtd info structure
1624  * @chip:       nand chip info structure
1625  * @page:       page number to read
1626  * @sndcmd:     flag whether to issue read command or not
1627  */
1628 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1629                              int page, int sndcmd)
1630 {
1631         if (sndcmd) {
1632                 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1633                 sndcmd = 0;
1634         }
1635         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1636         return sndcmd;
1637 }
1638
1639 /**
1640  * nand_read_oob_syndrome - [REPLACABLE] OOB data read function for HW ECC
1641  *                          with syndromes
1642  * @mtd:        mtd info structure
1643  * @chip:       nand chip info structure
1644  * @page:       page number to read
1645  * @sndcmd:     flag whether to issue read command or not
1646  */
1647 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1648                                   int page, int sndcmd)
1649 {
1650         uint8_t *buf = chip->oob_poi;
1651         int length = mtd->oobsize;
1652         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1653         int eccsize = chip->ecc.size;
1654         uint8_t *bufpoi = buf;
1655         int i, toread, sndrnd = 0, pos;
1656
1657         chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1658         for (i = 0; i < chip->ecc.steps; i++) {
1659                 if (sndrnd) {
1660                         pos = eccsize + i * (eccsize + chunk);
1661                         if (mtd->writesize > 512)
1662                                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1663                         else
1664                                 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1665                 } else
1666                         sndrnd = 1;
1667                 toread = min_t(int, length, chunk);
1668                 chip->read_buf(mtd, bufpoi, toread);
1669                 bufpoi += toread;
1670                 length -= toread;
1671         }
1672         if (length > 0)
1673                 chip->read_buf(mtd, bufpoi, length);
1674
1675         return 1;
1676 }
1677
1678 /**
1679  * nand_write_oob_std - [REPLACABLE] the most common OOB data write function
1680  * @mtd:        mtd info structure
1681  * @chip:       nand chip info structure
1682  * @page:       page number to write
1683  */
1684 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1685                               int page)
1686 {
1687         int status = 0;
1688         const uint8_t *buf = chip->oob_poi;
1689         int length = mtd->oobsize;
1690
1691         chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1692         chip->write_buf(mtd, buf, length);
1693         /* Send command to program the OOB data */
1694         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1695
1696         status = chip->waitfunc(mtd, chip);
1697
1698         return status & NAND_STATUS_FAIL ? -EIO : 0;
1699 }
1700
1701 /**
1702  * nand_write_oob_syndrome - [REPLACABLE] OOB data write function for HW ECC
1703  *                           with syndrome - only for large page flash !
1704  * @mtd:        mtd info structure
1705  * @chip:       nand chip info structure
1706  * @page:       page number to write
1707  */
1708 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1709                                    struct nand_chip *chip, int page)
1710 {
1711         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1712         int eccsize = chip->ecc.size, length = mtd->oobsize;
1713         int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1714         const uint8_t *bufpoi = chip->oob_poi;
1715
1716         /*
1717          * data-ecc-data-ecc ... ecc-oob
1718          * or
1719          * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1720          */
1721         if (!chip->ecc.prepad && !chip->ecc.postpad) {
1722                 pos = steps * (eccsize + chunk);
1723                 steps = 0;
1724         } else
1725                 pos = eccsize;
1726
1727         chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1728         for (i = 0; i < steps; i++) {
1729                 if (sndcmd) {
1730                         if (mtd->writesize <= 512) {
1731                                 uint32_t fill = 0xFFFFFFFF;
1732
1733                                 len = eccsize;
1734                                 while (len > 0) {
1735                                         int num = min_t(int, len, 4);
1736                                         chip->write_buf(mtd, (uint8_t *)&fill,
1737                                                         num);
1738                                         len -= num;
1739                                 }
1740                         } else {
1741                                 pos = eccsize + i * (eccsize + chunk);
1742                                 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1743                         }
1744                 } else
1745                         sndcmd = 1;
1746                 len = min_t(int, length, chunk);
1747                 chip->write_buf(mtd, bufpoi, len);
1748                 bufpoi += len;
1749                 length -= len;
1750         }
1751         if (length > 0)
1752                 chip->write_buf(mtd, bufpoi, length);
1753
1754         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1755         status = chip->waitfunc(mtd, chip);
1756
1757         return status & NAND_STATUS_FAIL ? -EIO : 0;
1758 }
1759
1760 /**
1761  * nand_do_read_oob - [Intern] NAND read out-of-band
1762  * @mtd:        MTD device structure
1763  * @from:       offset to read from
1764  * @ops:        oob operations description structure
1765  *
1766  * NAND read out-of-band data from the spare area
1767  */
1768 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1769                             struct mtd_oob_ops *ops)
1770 {
1771         int page, realpage, chipnr, sndcmd = 1;
1772         struct nand_chip *chip = mtd->priv;
1773         int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1774         int readlen = ops->ooblen;
1775         int len;
1776         uint8_t *buf = ops->oobbuf;
1777
1778         DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08Lx, len = %i\n",
1779                         __func__, (unsigned long long)from, readlen);
1780
1781         if (ops->mode == MTD_OOB_AUTO)
1782                 len = chip->ecc.layout->oobavail;
1783         else
1784                 len = mtd->oobsize;
1785
1786         if (unlikely(ops->ooboffs >= len)) {
1787                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to start read "
1788                                         "outside oob\n", __func__);
1789                 return -EINVAL;
1790         }
1791
1792         /* Do not allow reads past end of device */
1793         if (unlikely(from >= mtd->size ||
1794                      ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1795                                         (from >> chip->page_shift)) * len)) {
1796                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt read beyond end "
1797                                         "of device\n", __func__);
1798                 return -EINVAL;
1799         }
1800
1801         chipnr = (int)(from >> chip->chip_shift);
1802         chip->select_chip(mtd, chipnr);
1803
1804         /* Shift to get page */
1805         realpage = (int)(from >> chip->page_shift);
1806         page = realpage & chip->pagemask;
1807
1808         while (1) {
1809                 sndcmd = chip->ecc.read_oob(mtd, chip, page, sndcmd);
1810
1811                 len = min(len, readlen);
1812                 buf = nand_transfer_oob(chip, buf, ops, len);
1813
1814                 if (!(chip->options & NAND_NO_READRDY)) {
1815                         /*
1816                          * Apply delay or wait for ready/busy pin. Do this
1817                          * before the AUTOINCR check, so no problems arise if a
1818                          * chip which does auto increment is marked as
1819                          * NOAUTOINCR by the board driver.
1820                          */
1821                         if (!chip->dev_ready)
1822                                 udelay(chip->chip_delay);
1823                         else
1824                                 nand_wait_ready(mtd);
1825                 }
1826
1827                 readlen -= len;
1828                 if (!readlen)
1829                         break;
1830
1831                 /* Increment page address */
1832                 realpage++;
1833
1834                 page = realpage & chip->pagemask;
1835                 /* Check, if we cross a chip boundary */
1836                 if (!page) {
1837                         chipnr++;
1838                         chip->select_chip(mtd, -1);
1839                         chip->select_chip(mtd, chipnr);
1840                 }
1841
1842                 /* Check, if the chip supports auto page increment
1843                  * or if we have hit a block boundary.
1844                  */
1845                 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1846                         sndcmd = 1;
1847         }
1848
1849         ops->oobretlen = ops->ooblen;
1850         return 0;
1851 }
1852
1853 /**
1854  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1855  * @mtd:        MTD device structure
1856  * @from:       offset to read from
1857  * @ops:        oob operation description structure
1858  *
1859  * NAND read data and/or out-of-band data
1860  */
1861 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1862                          struct mtd_oob_ops *ops)
1863 {
1864         struct nand_chip *chip = mtd->priv;
1865         int ret = -ENOTSUPP;
1866
1867         ops->retlen = 0;
1868
1869         /* Do not allow reads past end of device */
1870         if (ops->datbuf && (from + ops->len) > mtd->size) {
1871                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt read "
1872                                 "beyond end of device\n", __func__);
1873                 return -EINVAL;
1874         }
1875
1876         nand_get_device(chip, mtd, FL_READING);
1877
1878         switch (ops->mode) {
1879         case MTD_OOB_PLACE:
1880         case MTD_OOB_AUTO:
1881         case MTD_OOB_RAW:
1882                 break;
1883
1884         default:
1885                 goto out;
1886         }
1887
1888         if (!ops->datbuf)
1889                 ret = nand_do_read_oob(mtd, from, ops);
1890         else
1891                 ret = nand_do_read_ops(mtd, from, ops);
1892
1893 out:
1894         nand_release_device(mtd);
1895         return ret;
1896 }
1897
1898
1899 /**
1900  * nand_write_page_raw - [Intern] raw page write function
1901  * @mtd:        mtd info structure
1902  * @chip:       nand chip info structure
1903  * @buf:        data buffer
1904  *
1905  * Not for syndrome calculating ecc controllers, which use a special oob layout
1906  */
1907 static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1908                                 const uint8_t *buf)
1909 {
1910         chip->write_buf(mtd, buf, mtd->writesize);
1911         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1912 }
1913
1914 /**
1915  * nand_write_page_raw_syndrome - [Intern] raw page write function
1916  * @mtd:        mtd info structure
1917  * @chip:       nand chip info structure
1918  * @buf:        data buffer
1919  *
1920  * We need a special oob layout and handling even when ECC isn't checked.
1921  */
1922 static void nand_write_page_raw_syndrome(struct mtd_info *mtd,
1923                                         struct nand_chip *chip,
1924                                         const uint8_t *buf)
1925 {
1926         int eccsize = chip->ecc.size;
1927         int eccbytes = chip->ecc.bytes;
1928         uint8_t *oob = chip->oob_poi;
1929         int steps, size;
1930
1931         for (steps = chip->ecc.steps; steps > 0; steps--) {
1932                 chip->write_buf(mtd, buf, eccsize);
1933                 buf += eccsize;
1934
1935                 if (chip->ecc.prepad) {
1936                         chip->write_buf(mtd, oob, chip->ecc.prepad);
1937                         oob += chip->ecc.prepad;
1938                 }
1939
1940                 chip->read_buf(mtd, oob, eccbytes);
1941                 oob += eccbytes;
1942
1943                 if (chip->ecc.postpad) {
1944                         chip->write_buf(mtd, oob, chip->ecc.postpad);
1945                         oob += chip->ecc.postpad;
1946                 }
1947         }
1948
1949         size = mtd->oobsize - (oob - chip->oob_poi);
1950         if (size)
1951                 chip->write_buf(mtd, oob, size);
1952 }
1953 /**
1954  * nand_write_page_swecc - [REPLACABLE] software ecc based page write function
1955  * @mtd:        mtd info structure
1956  * @chip:       nand chip info structure
1957  * @buf:        data buffer
1958  */
1959 static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1960                                   const uint8_t *buf)
1961 {
1962         int i, eccsize = chip->ecc.size;
1963         int eccbytes = chip->ecc.bytes;
1964         int eccsteps = chip->ecc.steps;
1965         uint8_t *ecc_calc = chip->buffers->ecccalc;
1966         const uint8_t *p = buf;
1967         uint32_t *eccpos = chip->ecc.layout->eccpos;
1968
1969         /* Software ecc calculation */
1970         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1971                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1972
1973         for (i = 0; i < chip->ecc.total; i++)
1974                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1975
1976         chip->ecc.write_page_raw(mtd, chip, buf);
1977 }
1978
1979 /**
1980  * nand_write_page_hwecc - [REPLACABLE] hardware ecc based page write function
1981  * @mtd:        mtd info structure
1982  * @chip:       nand chip info structure
1983  * @buf:        data buffer
1984  */
1985 static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1986                                   const uint8_t *buf)
1987 {
1988         int i, eccsize = chip->ecc.size;
1989         int eccbytes = chip->ecc.bytes;
1990         int eccsteps = chip->ecc.steps;
1991         uint8_t *ecc_calc = chip->buffers->ecccalc;
1992         const uint8_t *p = buf;
1993         uint32_t *eccpos = chip->ecc.layout->eccpos;
1994
1995         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1996                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1997                 chip->write_buf(mtd, p, eccsize);
1998                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1999         }
2000
2001         for (i = 0; i < chip->ecc.total; i++)
2002                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2003
2004         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2005 }
2006
2007 /**
2008  * nand_write_page_syndrome - [REPLACABLE] hardware ecc syndrom based page write
2009  * @mtd:        mtd info structure
2010  * @chip:       nand chip info structure
2011  * @buf:        data buffer
2012  *
2013  * The hw generator calculates the error syndrome automatically. Therefor
2014  * we need a special oob layout and handling.
2015  */
2016 static void nand_write_page_syndrome(struct mtd_info *mtd,
2017                                     struct nand_chip *chip, const uint8_t *buf)
2018 {
2019         int i, eccsize = chip->ecc.size;
2020         int eccbytes = chip->ecc.bytes;
2021         int eccsteps = chip->ecc.steps;
2022         const uint8_t *p = buf;
2023         uint8_t *oob = chip->oob_poi;
2024
2025         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2026
2027                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2028                 chip->write_buf(mtd, p, eccsize);
2029
2030                 if (chip->ecc.prepad) {
2031                         chip->write_buf(mtd, oob, chip->ecc.prepad);
2032                         oob += chip->ecc.prepad;
2033                 }
2034
2035                 chip->ecc.calculate(mtd, p, oob);
2036                 chip->write_buf(mtd, oob, eccbytes);
2037                 oob += eccbytes;
2038
2039                 if (chip->ecc.postpad) {
2040                         chip->write_buf(mtd, oob, chip->ecc.postpad);
2041                         oob += chip->ecc.postpad;
2042                 }
2043         }
2044
2045         /* Calculate remaining oob bytes */
2046         i = mtd->oobsize - (oob - chip->oob_poi);
2047         if (i)
2048                 chip->write_buf(mtd, oob, i);
2049 }
2050
2051 /**
2052  * nand_write_page - [REPLACEABLE] write one page
2053  * @mtd:        MTD device structure
2054  * @chip:       NAND chip descriptor
2055  * @buf:        the data to write
2056  * @page:       page number to write
2057  * @cached:     cached programming
2058  * @raw:        use _raw version of write_page
2059  */
2060 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2061                            const uint8_t *buf, int page, int cached, int raw)
2062 {
2063         int status;
2064
2065         chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2066
2067         if (unlikely(raw))
2068                 chip->ecc.write_page_raw(mtd, chip, buf);
2069         else
2070                 chip->ecc.write_page(mtd, chip, buf);
2071
2072         /*
2073          * Cached progamming disabled for now, Not sure if its worth the
2074          * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
2075          */
2076         cached = 0;
2077
2078         if (!cached || !(chip->options & NAND_CACHEPRG)) {
2079
2080                 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2081                 status = chip->waitfunc(mtd, chip);
2082                 /*
2083                  * See if operation failed and additional status checks are
2084                  * available
2085                  */
2086                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2087                         status = chip->errstat(mtd, chip, FL_WRITING, status,
2088                                                page);
2089
2090                 if (status & NAND_STATUS_FAIL)
2091                         return -EIO;
2092         } else {
2093                 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2094                 status = chip->waitfunc(mtd, chip);
2095         }
2096
2097 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
2098         /* Send command to read back the data */
2099         chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
2100
2101         if (chip->verify_buf(mtd, buf, mtd->writesize))
2102                 return -EIO;
2103 #endif
2104         return 0;
2105 }
2106
2107 /**
2108  * nand_fill_oob - [Internal] Transfer client buffer to oob
2109  * @chip:       nand chip structure
2110  * @oob:        oob data buffer
2111  * @len:        oob data write length
2112  * @ops:        oob ops structure
2113  */
2114 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len,
2115                                                 struct mtd_oob_ops *ops)
2116 {
2117         switch (ops->mode) {
2118
2119         case MTD_OOB_PLACE:
2120         case MTD_OOB_RAW:
2121                 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2122                 return oob + len;
2123
2124         case MTD_OOB_AUTO: {
2125                 struct nand_oobfree *free = chip->ecc.layout->oobfree;
2126                 uint32_t boffs = 0, woffs = ops->ooboffs;
2127                 size_t bytes = 0;
2128
2129                 for (; free->length && len; free++, len -= bytes) {
2130                         /* Write request not from offset 0 ? */
2131                         if (unlikely(woffs)) {
2132                                 if (woffs >= free->length) {
2133                                         woffs -= free->length;
2134                                         continue;
2135                                 }
2136                                 boffs = free->offset + woffs;
2137                                 bytes = min_t(size_t, len,
2138                                               (free->length - woffs));
2139                                 woffs = 0;
2140                         } else {
2141                                 bytes = min_t(size_t, len, free->length);
2142                                 boffs = free->offset;
2143                         }
2144                         memcpy(chip->oob_poi + boffs, oob, bytes);
2145                         oob += bytes;
2146                 }
2147                 return oob;
2148         }
2149         default:
2150                 BUG();
2151         }
2152         return NULL;
2153 }
2154
2155 #define NOTALIGNED(x)   ((x & (chip->subpagesize - 1)) != 0)
2156
2157 /**
2158  * nand_do_write_ops - [Internal] NAND write with ECC
2159  * @mtd:        MTD device structure
2160  * @to:         offset to write to
2161  * @ops:        oob operations description structure
2162  *
2163  * NAND write with ECC
2164  */
2165 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2166                              struct mtd_oob_ops *ops)
2167 {
2168         int chipnr, realpage, page, blockmask, column;
2169         struct nand_chip *chip = mtd->priv;
2170         uint32_t writelen = ops->len;
2171
2172         uint32_t oobwritelen = ops->ooblen;
2173         uint32_t oobmaxlen = ops->mode == MTD_OOB_AUTO ?
2174                                 mtd->oobavail : mtd->oobsize;
2175
2176         uint8_t *oob = ops->oobbuf;
2177         uint8_t *buf = ops->datbuf;
2178         int ret, subpage;
2179
2180         ops->retlen = 0;
2181         if (!writelen)
2182                 return 0;
2183
2184         /* reject writes, which are not page aligned */
2185         if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2186                 printk(KERN_NOTICE "%s: Attempt to write not "
2187                                 "page aligned data\n", __func__);
2188                 return -EINVAL;
2189         }
2190
2191         column = to & (mtd->writesize - 1);
2192         subpage = column || (writelen & (mtd->writesize - 1));
2193
2194         if (subpage && oob)
2195                 return -EINVAL;
2196
2197         chipnr = (int)(to >> chip->chip_shift);
2198         chip->select_chip(mtd, chipnr);
2199
2200         /* Check, if it is write protected */
2201         if (nand_check_wp(mtd))
2202                 return -EIO;
2203
2204         realpage = (int)(to >> chip->page_shift);
2205         page = realpage & chip->pagemask;
2206         blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2207
2208         /* Invalidate the page cache, when we write to the cached page */
2209         if (to <= (chip->pagebuf << chip->page_shift) &&
2210             (chip->pagebuf << chip->page_shift) < (to + ops->len))
2211                 chip->pagebuf = -1;
2212
2213         /* If we're not given explicit OOB data, let it be 0xFF */
2214         if (likely(!oob))
2215                 memset(chip->oob_poi, 0xff, mtd->oobsize);
2216
2217         /* Don't allow multipage oob writes with offset */
2218         if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen))
2219                 return -EINVAL;
2220
2221         while (1) {
2222                 int bytes = mtd->writesize;
2223                 int cached = writelen > bytes && page != blockmask;
2224                 uint8_t *wbuf = buf;
2225
2226                 /* Partial page write ? */
2227                 if (unlikely(column || writelen < (mtd->writesize - 1))) {
2228                         cached = 0;
2229                         bytes = min_t(int, bytes - column, (int) writelen);
2230                         chip->pagebuf = -1;
2231                         memset(chip->buffers->databuf, 0xff, mtd->writesize);
2232                         memcpy(&chip->buffers->databuf[column], buf, bytes);
2233                         wbuf = chip->buffers->databuf;
2234                 }
2235
2236                 if (unlikely(oob)) {
2237                         size_t len = min(oobwritelen, oobmaxlen);
2238                         oob = nand_fill_oob(chip, oob, len, ops);
2239                         oobwritelen -= len;
2240                 }
2241
2242                 ret = chip->write_page(mtd, chip, wbuf, page, cached,
2243                                        (ops->mode == MTD_OOB_RAW));
2244                 if (ret)
2245                         break;
2246
2247                 writelen -= bytes;
2248                 if (!writelen)
2249                         break;
2250
2251                 column = 0;
2252                 buf += bytes;
2253                 realpage++;
2254
2255                 page = realpage & chip->pagemask;
2256                 /* Check, if we cross a chip boundary */
2257                 if (!page) {
2258                         chipnr++;
2259                         chip->select_chip(mtd, -1);
2260                         chip->select_chip(mtd, chipnr);
2261                 }
2262         }
2263
2264         ops->retlen = ops->len - writelen;
2265         if (unlikely(oob))
2266                 ops->oobretlen = ops->ooblen;
2267         return ret;
2268 }
2269
2270 /**
2271  * panic_nand_write - [MTD Interface] NAND write with ECC
2272  * @mtd:        MTD device structure
2273  * @to:         offset to write to
2274  * @len:        number of bytes to write
2275  * @retlen:     pointer to variable to store the number of written bytes
2276  * @buf:        the data to write
2277  *
2278  * NAND write with ECC. Used when performing writes in interrupt context, this
2279  * may for example be called by mtdoops when writing an oops while in panic.
2280  */
2281 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2282                             size_t *retlen, const uint8_t *buf)
2283 {
2284         struct nand_chip *chip = mtd->priv;
2285         int ret;
2286
2287         /* Do not allow reads past end of device */
2288         if ((to + len) > mtd->size)
2289                 return -EINVAL;
2290         if (!len)
2291                 return 0;
2292
2293         /* Wait for the device to get ready.  */
2294         panic_nand_wait(mtd, chip, 400);
2295
2296         /* Grab the device.  */
2297         panic_nand_get_device(chip, mtd, FL_WRITING);
2298
2299         chip->ops.len = len;
2300         chip->ops.datbuf = (uint8_t *)buf;
2301         chip->ops.oobbuf = NULL;
2302
2303         ret = nand_do_write_ops(mtd, to, &chip->ops);
2304
2305         *retlen = chip->ops.retlen;
2306         return ret;
2307 }
2308
2309 /**
2310  * nand_write - [MTD Interface] NAND write with ECC
2311  * @mtd:        MTD device structure
2312  * @to:         offset to write to
2313  * @len:        number of bytes to write
2314  * @retlen:     pointer to variable to store the number of written bytes
2315  * @buf:        the data to write
2316  *
2317  * NAND write with ECC
2318  */
2319 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2320                           size_t *retlen, const uint8_t *buf)
2321 {
2322         struct nand_chip *chip = mtd->priv;
2323         int ret;
2324
2325         /* Do not allow reads past end of device */
2326         if ((to + len) > mtd->size)
2327                 return -EINVAL;
2328         if (!len)
2329                 return 0;
2330
2331         nand_get_device(chip, mtd, FL_WRITING);
2332
2333         chip->ops.len = len;
2334         chip->ops.datbuf = (uint8_t *)buf;
2335         chip->ops.oobbuf = NULL;
2336
2337         ret = nand_do_write_ops(mtd, to, &chip->ops);
2338
2339         *retlen = chip->ops.retlen;
2340
2341         nand_release_device(mtd);
2342
2343         return ret;
2344 }
2345
2346 /**
2347  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2348  * @mtd:        MTD device structure
2349  * @to:         offset to write to
2350  * @ops:        oob operation description structure
2351  *
2352  * NAND write out-of-band
2353  */
2354 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2355                              struct mtd_oob_ops *ops)
2356 {
2357         int chipnr, page, status, len;
2358         struct nand_chip *chip = mtd->priv;
2359
2360         DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n",
2361                          __func__, (unsigned int)to, (int)ops->ooblen);
2362
2363         if (ops->mode == MTD_OOB_AUTO)
2364                 len = chip->ecc.layout->oobavail;
2365         else
2366                 len = mtd->oobsize;
2367
2368         /* Do not allow write past end of page */
2369         if ((ops->ooboffs + ops->ooblen) > len) {
2370                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to write "
2371                                 "past end of page\n", __func__);
2372                 return -EINVAL;
2373         }
2374
2375         if (unlikely(ops->ooboffs >= len)) {
2376                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to start "
2377                                 "write outside oob\n", __func__);
2378                 return -EINVAL;
2379         }
2380
2381         /* Do not allow write past end of device */
2382         if (unlikely(to >= mtd->size ||
2383                      ops->ooboffs + ops->ooblen >
2384                         ((mtd->size >> chip->page_shift) -
2385                          (to >> chip->page_shift)) * len)) {
2386                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt write beyond "
2387                                 "end of device\n", __func__);
2388                 return -EINVAL;
2389         }
2390
2391         chipnr = (int)(to >> chip->chip_shift);
2392         chip->select_chip(mtd, chipnr);
2393
2394         /* Shift to get page */
2395         page = (int)(to >> chip->page_shift);
2396
2397         /*
2398          * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2399          * of my DiskOnChip 2000 test units) will clear the whole data page too
2400          * if we don't do this. I have no clue why, but I seem to have 'fixed'
2401          * it in the doc2000 driver in August 1999.  dwmw2.
2402          */
2403         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2404
2405         /* Check, if it is write protected */
2406         if (nand_check_wp(mtd))
2407                 return -EROFS;
2408
2409         /* Invalidate the page cache, if we write to the cached page */
2410         if (page == chip->pagebuf)
2411                 chip->pagebuf = -1;
2412
2413         memset(chip->oob_poi, 0xff, mtd->oobsize);
2414         nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops);
2415         status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2416         memset(chip->oob_poi, 0xff, mtd->oobsize);
2417
2418         if (status)
2419                 return status;
2420
2421         ops->oobretlen = ops->ooblen;
2422
2423         return 0;
2424 }
2425
2426 /**
2427  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2428  * @mtd:        MTD device structure
2429  * @to:         offset to write to
2430  * @ops:        oob operation description structure
2431  */
2432 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2433                           struct mtd_oob_ops *ops)
2434 {
2435         struct nand_chip *chip = mtd->priv;
2436         int ret = -ENOTSUPP;
2437
2438         ops->retlen = 0;
2439
2440         /* Do not allow writes past end of device */
2441         if (ops->datbuf && (to + ops->len) > mtd->size) {
2442                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt write beyond "
2443                                 "end of device\n", __func__);
2444                 return -EINVAL;
2445         }
2446
2447         nand_get_device(chip, mtd, FL_WRITING);
2448
2449         switch (ops->mode) {
2450         case MTD_OOB_PLACE:
2451         case MTD_OOB_AUTO:
2452         case MTD_OOB_RAW:
2453                 break;
2454
2455         default:
2456                 goto out;
2457         }
2458
2459         if (!ops->datbuf)
2460                 ret = nand_do_write_oob(mtd, to, ops);
2461         else
2462                 ret = nand_do_write_ops(mtd, to, ops);
2463
2464 out:
2465         nand_release_device(mtd);
2466         return ret;
2467 }
2468
2469 /**
2470  * single_erease_cmd - [GENERIC] NAND standard block erase command function
2471  * @mtd:        MTD device structure
2472  * @page:       the page address of the block which will be erased
2473  *
2474  * Standard erase command for NAND chips
2475  */
2476 static void single_erase_cmd(struct mtd_info *mtd, int page)
2477 {
2478         struct nand_chip *chip = mtd->priv;
2479         /* Send commands to erase a block */
2480         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2481         chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2482 }
2483
2484 /**
2485  * multi_erease_cmd - [GENERIC] AND specific block erase command function
2486  * @mtd:        MTD device structure
2487  * @page:       the page address of the block which will be erased
2488  *
2489  * AND multi block erase command function
2490  * Erase 4 consecutive blocks
2491  */
2492 static void multi_erase_cmd(struct mtd_info *mtd, int page)
2493 {
2494         struct nand_chip *chip = mtd->priv;
2495         /* Send commands to erase a block */
2496         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2497         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2498         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2499         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2500         chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2501 }
2502
2503 /**
2504  * nand_erase - [MTD Interface] erase block(s)
2505  * @mtd:        MTD device structure
2506  * @instr:      erase instruction
2507  *
2508  * Erase one ore more blocks
2509  */
2510 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2511 {
2512         return nand_erase_nand(mtd, instr, 0);
2513 }
2514
2515 #define BBT_PAGE_MASK   0xffffff3f
2516 /**
2517  * nand_erase_nand - [Internal] erase block(s)
2518  * @mtd:        MTD device structure
2519  * @instr:      erase instruction
2520  * @allowbbt:   allow erasing the bbt area
2521  *
2522  * Erase one ore more blocks
2523  */
2524 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2525                     int allowbbt)
2526 {
2527         int page, status, pages_per_block, ret, chipnr;
2528         struct nand_chip *chip = mtd->priv;
2529         loff_t rewrite_bbt[NAND_MAX_CHIPS] = {0};
2530         unsigned int bbt_masked_page = 0xffffffff;
2531         loff_t len;
2532
2533         DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
2534                                 __func__, (unsigned long long)instr->addr,
2535                                 (unsigned long long)instr->len);
2536
2537         if (check_offs_len(mtd, instr->addr, instr->len))
2538                 return -EINVAL;
2539
2540         instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2541
2542         /* Grab the lock and see if the device is available */
2543         nand_get_device(chip, mtd, FL_ERASING);
2544
2545         /* Shift to get first page */
2546         page = (int)(instr->addr >> chip->page_shift);
2547         chipnr = (int)(instr->addr >> chip->chip_shift);
2548
2549         /* Calculate pages in each block */
2550         pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2551
2552         /* Select the NAND device */
2553         chip->select_chip(mtd, chipnr);
2554
2555         /* Check, if it is write protected */
2556         if (nand_check_wp(mtd)) {
2557                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
2558                                         __func__);
2559                 instr->state = MTD_ERASE_FAILED;
2560                 goto erase_exit;
2561         }
2562
2563         /*
2564          * If BBT requires refresh, set the BBT page mask to see if the BBT
2565          * should be rewritten. Otherwise the mask is set to 0xffffffff which
2566          * can not be matched. This is also done when the bbt is actually
2567          * erased to avoid recusrsive updates
2568          */
2569         if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
2570                 bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
2571
2572         /* Loop through the pages */
2573         len = instr->len;
2574
2575         instr->state = MTD_ERASING;
2576
2577         while (len) {
2578                 /*
2579                  * heck if we have a bad block, we do not erase bad blocks !
2580                  */
2581                 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2582                                         chip->page_shift, 0, allowbbt)) {
2583                         printk(KERN_WARNING "%s: attempt to erase a bad block "
2584                                         "at page 0x%08x\n", __func__, page);
2585                         instr->state = MTD_ERASE_FAILED;
2586                         goto erase_exit;
2587                 }
2588
2589                 /*
2590                  * Invalidate the page cache, if we erase the block which
2591                  * contains the current cached page
2592                  */
2593                 if (page <= chip->pagebuf && chip->pagebuf <
2594                     (page + pages_per_block))
2595                         chip->pagebuf = -1;
2596
2597                 chip->erase_cmd(mtd, page & chip->pagemask);
2598
2599                 status = chip->waitfunc(mtd, chip);
2600
2601                 /*
2602                  * See if operation failed and additional status checks are
2603                  * available
2604                  */
2605                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2606                         status = chip->errstat(mtd, chip, FL_ERASING,
2607                                                status, page);
2608
2609                 /* See if block erase succeeded */
2610                 if (status & NAND_STATUS_FAIL) {
2611                         DEBUG(MTD_DEBUG_LEVEL0, "%s: Failed erase, "
2612                                         "page 0x%08x\n", __func__, page);
2613                         instr->state = MTD_ERASE_FAILED;
2614                         instr->fail_addr =
2615                                 ((loff_t)page << chip->page_shift);
2616                         goto erase_exit;
2617                 }
2618
2619                 /*
2620                  * If BBT requires refresh, set the BBT rewrite flag to the
2621                  * page being erased
2622                  */
2623                 if (bbt_masked_page != 0xffffffff &&
2624                     (page & BBT_PAGE_MASK) == bbt_masked_page)
2625                             rewrite_bbt[chipnr] =
2626                                         ((loff_t)page << chip->page_shift);
2627
2628                 /* Increment page address and decrement length */
2629                 len -= (1 << chip->phys_erase_shift);
2630                 page += pages_per_block;
2631
2632                 /* Check, if we cross a chip boundary */
2633                 if (len && !(page & chip->pagemask)) {
2634                         chipnr++;
2635                         chip->select_chip(mtd, -1);
2636                         chip->select_chip(mtd, chipnr);
2637
2638                         /*
2639                          * If BBT requires refresh and BBT-PERCHIP, set the BBT
2640                          * page mask to see if this BBT should be rewritten
2641                          */
2642                         if (bbt_masked_page != 0xffffffff &&
2643                             (chip->bbt_td->options & NAND_BBT_PERCHIP))
2644                                 bbt_masked_page = chip->bbt_td->pages[chipnr] &
2645                                         BBT_PAGE_MASK;
2646                 }
2647         }
2648         instr->state = MTD_ERASE_DONE;
2649
2650 erase_exit:
2651
2652         ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2653
2654         /* Deselect and wake up anyone waiting on the device */
2655         nand_release_device(mtd);
2656
2657         /* Do call back function */
2658         if (!ret)
2659                 mtd_erase_callback(instr);
2660
2661         /*
2662          * If BBT requires refresh and erase was successful, rewrite any
2663          * selected bad block tables
2664          */
2665         if (bbt_masked_page == 0xffffffff || ret)
2666                 return ret;
2667
2668         for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2669                 if (!rewrite_bbt[chipnr])
2670                         continue;
2671                 /* update the BBT for chip */
2672                 DEBUG(MTD_DEBUG_LEVEL0, "%s: nand_update_bbt "
2673                         "(%d:0x%0llx 0x%0x)\n", __func__, chipnr,
2674                         rewrite_bbt[chipnr], chip->bbt_td->pages[chipnr]);
2675                 nand_update_bbt(mtd, rewrite_bbt[chipnr]);
2676         }
2677
2678         /* Return more or less happy */
2679         return ret;
2680 }
2681
2682 /**
2683  * nand_sync - [MTD Interface] sync
2684  * @mtd:        MTD device structure
2685  *
2686  * Sync is actually a wait for chip ready function
2687  */
2688 static void nand_sync(struct mtd_info *mtd)
2689 {
2690         struct nand_chip *chip = mtd->priv;
2691
2692         DEBUG(MTD_DEBUG_LEVEL3, "%s: called\n", __func__);
2693
2694         /* Grab the lock and see if the device is available */
2695         nand_get_device(chip, mtd, FL_SYNCING);
2696         /* Release it and go back */
2697         nand_release_device(mtd);
2698 }
2699
2700 /**
2701  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2702  * @mtd:        MTD device structure
2703  * @offs:       offset relative to mtd start
2704  */
2705 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2706 {
2707         /* Check for invalid offset */
2708         if (offs > mtd->size)
2709                 return -EINVAL;
2710
2711         return nand_block_checkbad(mtd, offs, 1, 0);
2712 }
2713
2714 /**
2715  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2716  * @mtd:        MTD device structure
2717  * @ofs:        offset relative to mtd start
2718  */
2719 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2720 {
2721         struct nand_chip *chip = mtd->priv;
2722         int ret;
2723
2724         ret = nand_block_isbad(mtd, ofs);
2725         if (ret) {
2726                 /* If it was bad already, return success and do nothing. */
2727                 if (ret > 0)
2728                         return 0;
2729                 return ret;
2730         }
2731
2732         return chip->block_markbad(mtd, ofs);
2733 }
2734
2735 /**
2736  * nand_suspend - [MTD Interface] Suspend the NAND flash
2737  * @mtd:        MTD device structure
2738  */
2739 static int nand_suspend(struct mtd_info *mtd)
2740 {
2741         struct nand_chip *chip = mtd->priv;
2742
2743         return nand_get_device(chip, mtd, FL_PM_SUSPENDED);
2744 }
2745
2746 /**
2747  * nand_resume - [MTD Interface] Resume the NAND flash
2748  * @mtd:        MTD device structure
2749  */
2750 static void nand_resume(struct mtd_info *mtd)
2751 {
2752         struct nand_chip *chip = mtd->priv;
2753
2754         if (chip->state == FL_PM_SUSPENDED)
2755                 nand_release_device(mtd);
2756         else
2757                 printk(KERN_ERR "%s called for a chip which is not "
2758                        "in suspended state\n", __func__);
2759 }
2760
2761 /*
2762  * Set default functions
2763  */
2764 static void nand_set_defaults(struct nand_chip *chip, int busw)
2765 {
2766         /* check for proper chip_delay setup, set 20us if not */
2767         if (!chip->chip_delay)
2768                 chip->chip_delay = 20;
2769
2770         /* check, if a user supplied command function given */
2771         if (chip->cmdfunc == NULL)
2772                 chip->cmdfunc = nand_command;
2773
2774         /* check, if a user supplied wait function given */
2775         if (chip->waitfunc == NULL)
2776                 chip->waitfunc = nand_wait;
2777
2778         if (!chip->select_chip)
2779                 chip->select_chip = nand_select_chip;
2780         if (!chip->read_byte)
2781                 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2782         if (!chip->read_word)
2783                 chip->read_word = nand_read_word;
2784         if (!chip->block_bad)
2785                 chip->block_bad = nand_block_bad;
2786         if (!chip->block_markbad)
2787                 chip->block_markbad = nand_default_block_markbad;
2788         if (!chip->write_buf)
2789                 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2790         if (!chip->read_buf)
2791                 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2792         if (!chip->verify_buf)
2793                 chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2794         if (!chip->scan_bbt)
2795                 chip->scan_bbt = nand_default_bbt;
2796
2797         if (!chip->controller) {
2798                 chip->controller = &chip->hwcontrol;
2799                 spin_lock_init(&chip->controller->lock);
2800                 init_waitqueue_head(&chip->controller->wq);
2801         }
2802
2803 }
2804
2805 /*
2806  * sanitize ONFI strings so we can safely print them
2807  */
2808 static void sanitize_string(uint8_t *s, size_t len)
2809 {
2810         ssize_t i;
2811
2812         /* null terminate */
2813         s[len - 1] = 0;
2814
2815         /* remove non printable chars */
2816         for (i = 0; i < len - 1; i++) {
2817                 if (s[i] < ' ' || s[i] > 127)
2818                         s[i] = '?';
2819         }
2820
2821         /* remove trailing spaces */
2822         strim(s);
2823 }
2824
2825 static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
2826 {
2827         int i;
2828         while (len--) {
2829                 crc ^= *p++ << 8;
2830                 for (i = 0; i < 8; i++)
2831                         crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
2832         }
2833
2834         return crc;
2835 }
2836
2837 /*
2838  * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise
2839  */
2840 static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
2841                                         int busw)
2842 {
2843         struct nand_onfi_params *p = &chip->onfi_params;
2844         int i;
2845         int val;
2846
2847         /* try ONFI for unknow chip or LP */
2848         chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
2849         if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
2850                 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
2851                 return 0;
2852
2853         printk(KERN_INFO "ONFI flash detected\n");
2854         chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
2855         for (i = 0; i < 3; i++) {
2856                 chip->read_buf(mtd, (uint8_t *)p, sizeof(*p));
2857                 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
2858                                 le16_to_cpu(p->crc)) {
2859                         printk(KERN_INFO "ONFI param page %d valid\n", i);
2860                         break;
2861                 }
2862         }
2863
2864         if (i == 3)
2865                 return 0;
2866
2867         /* check version */
2868         val = le16_to_cpu(p->revision);
2869         if (val & (1 << 5))
2870                 chip->onfi_version = 23;
2871         else if (val & (1 << 4))
2872                 chip->onfi_version = 22;
2873         else if (val & (1 << 3))
2874                 chip->onfi_version = 21;
2875         else if (val & (1 << 2))
2876                 chip->onfi_version = 20;
2877         else if (val & (1 << 1))
2878                 chip->onfi_version = 10;
2879         else
2880                 chip->onfi_version = 0;
2881
2882         if (!chip->onfi_version) {
2883                 printk(KERN_INFO "%s: unsupported ONFI version: %d\n",
2884                                                                 __func__, val);
2885                 return 0;
2886         }
2887
2888         sanitize_string(p->manufacturer, sizeof(p->manufacturer));
2889         sanitize_string(p->model, sizeof(p->model));
2890         if (!mtd->name)
2891                 mtd->name = p->model;
2892         mtd->writesize = le32_to_cpu(p->byte_per_page);
2893         mtd->erasesize = le32_to_cpu(p->pages_per_block) * mtd->writesize;
2894         mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
2895         chip->chipsize = (uint64_t)le32_to_cpu(p->blocks_per_lun) * mtd->erasesize;
2896         busw = 0;
2897         if (le16_to_cpu(p->features) & 1)
2898                 busw = NAND_BUSWIDTH_16;
2899
2900         chip->options &= ~NAND_CHIPOPTIONS_MSK;
2901         chip->options |= (NAND_NO_READRDY |
2902                         NAND_NO_AUTOINCR) & NAND_CHIPOPTIONS_MSK;
2903
2904         return 1;
2905 }
2906
2907 /*
2908  * Get the flash and manufacturer id and lookup if the type is supported
2909  */
2910 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
2911                                                   struct nand_chip *chip,
2912                                                   int busw,
2913                                                   int *maf_id, int *dev_id,
2914                                                   struct nand_flash_dev *type)
2915 {
2916         int i, maf_idx;
2917         u8 id_data[8];
2918         int ret;
2919
2920         /* Select the device */
2921         chip->select_chip(mtd, 0);
2922
2923         /*
2924          * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
2925          * after power-up
2926          */
2927         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2928
2929         /* Send the command for reading device ID */
2930         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2931
2932         /* Read manufacturer and device IDs */
2933         *maf_id = chip->read_byte(mtd);
2934         *dev_id = chip->read_byte(mtd);
2935
2936         /* Try again to make sure, as some systems the bus-hold or other
2937          * interface concerns can cause random data which looks like a
2938          * possibly credible NAND flash to appear. If the two results do
2939          * not match, ignore the device completely.
2940          */
2941
2942         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2943
2944         for (i = 0; i < 2; i++)
2945                 id_data[i] = chip->read_byte(mtd);
2946
2947         if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
2948                 printk(KERN_INFO "%s: second ID read did not match "
2949                        "%02x,%02x against %02x,%02x\n", __func__,
2950                        *maf_id, *dev_id, id_data[0], id_data[1]);
2951                 return ERR_PTR(-ENODEV);
2952         }
2953
2954         if (!type)
2955                 type = nand_flash_ids;
2956
2957         for (; type->name != NULL; type++)
2958                 if (*dev_id == type->id)
2959                         break;
2960
2961         chip->onfi_version = 0;
2962         if (!type->name || !type->pagesize) {
2963                 /* Check is chip is ONFI compliant */
2964                 ret = nand_flash_detect_onfi(mtd, chip, busw);
2965                 if (ret)
2966                         goto ident_done;
2967         }
2968
2969         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2970
2971         /* Read entire ID string */
2972
2973         for (i = 0; i < 8; i++)
2974                 id_data[i] = chip->read_byte(mtd);
2975
2976         if (!type->name)
2977                 return ERR_PTR(-ENODEV);
2978
2979         if (!mtd->name)
2980                 mtd->name = type->name;
2981
2982         chip->chipsize = (uint64_t)type->chipsize << 20;
2983
2984         if (!type->pagesize && chip->init_size) {
2985                 /* set the pagesize, oobsize, erasesize by the driver*/
2986                 busw = chip->init_size(mtd, chip, id_data);
2987         } else if (!type->pagesize) {
2988                 int extid;
2989                 /* The 3rd id byte holds MLC / multichip data */
2990                 chip->cellinfo = id_data[2];
2991                 /* The 4th id byte is the important one */
2992                 extid = id_data[3];
2993
2994                 /*
2995                  * Field definitions are in the following datasheets:
2996                  * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
2997                  * New style   (6 byte ID): Samsung K9GBG08U0M (p.40)
2998                  *
2999                  * Check for wraparound + Samsung ID + nonzero 6th byte
3000                  * to decide what to do.
3001                  */
3002                 if (id_data[0] == id_data[6] && id_data[1] == id_data[7] &&
3003                                 id_data[0] == NAND_MFR_SAMSUNG &&
3004                                 (chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3005                                 id_data[5] != 0x00) {
3006                         /* Calc pagesize */
3007                         mtd->writesize = 2048 << (extid & 0x03);
3008                         extid >>= 2;
3009                         /* Calc oobsize */
3010                         switch (extid & 0x03) {
3011                         case 1:
3012                                 mtd->oobsize = 128;
3013                                 break;
3014                         case 2:
3015                                 mtd->oobsize = 218;
3016                                 break;
3017                         case 3:
3018                                 mtd->oobsize = 400;
3019                                 break;
3020                         default:
3021                                 mtd->oobsize = 436;
3022                                 break;
3023                         }
3024                         extid >>= 2;
3025                         /* Calc blocksize */
3026                         mtd->erasesize = (128 * 1024) <<
3027                                 (((extid >> 1) & 0x04) | (extid & 0x03));
3028                         busw = 0;
3029                 } else {
3030                         /* Calc pagesize */
3031                         mtd->writesize = 1024 << (extid & 0x03);
3032                         extid >>= 2;
3033                         /* Calc oobsize */
3034                         mtd->oobsize = (8 << (extid & 0x01)) *
3035                                 (mtd->writesize >> 9);
3036                         extid >>= 2;
3037                         /* Calc blocksize. Blocksize is multiples of 64KiB */
3038                         mtd->erasesize = (64 * 1024) << (extid & 0x03);
3039                         extid >>= 2;
3040                         /* Get buswidth information */
3041                         busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3042                 }
3043         } else {
3044                 /*
3045                  * Old devices have chip data hardcoded in the device id table
3046                  */
3047                 mtd->erasesize = type->erasesize;
3048                 mtd->writesize = type->pagesize;
3049                 mtd->oobsize = mtd->writesize / 32;
3050                 busw = type->options & NAND_BUSWIDTH_16;
3051
3052                 /*
3053                  * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3054                  * some Spansion chips have erasesize that conflicts with size
3055                  * listed in nand_ids table
3056                  * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3057                  */
3058                 if (*maf_id == NAND_MFR_AMD && id_data[4] != 0x00 &&
3059                                 id_data[5] == 0x00 && id_data[6] == 0x00 &&
3060                                 id_data[7] == 0x00 && mtd->writesize == 512) {
3061                         mtd->erasesize = 128 * 1024;
3062                         mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3063                 }
3064         }
3065         /* Get chip options, preserve non chip based options */
3066         chip->options &= ~NAND_CHIPOPTIONS_MSK;
3067         chip->options |= type->options & NAND_CHIPOPTIONS_MSK;
3068
3069         /* Check if chip is a not a samsung device. Do not clear the
3070          * options for chips which are not having an extended id.
3071          */
3072         if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3073                 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3074 ident_done:
3075
3076         /*
3077          * Set chip as a default. Board drivers can override it, if necessary
3078          */
3079         chip->options |= NAND_NO_AUTOINCR;
3080
3081         /* Try to identify manufacturer */
3082         for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
3083                 if (nand_manuf_ids[maf_idx].id == *maf_id)
3084                         break;
3085         }
3086
3087         /*
3088          * Check, if buswidth is correct. Hardware drivers should set
3089          * chip correct !
3090          */
3091         if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3092                 printk(KERN_INFO "NAND device: Manufacturer ID:"
3093                        " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
3094                        *dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
3095                 printk(KERN_WARNING "NAND bus width %d instead %d bit\n",
3096                        (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3097                        busw ? 16 : 8);
3098                 return ERR_PTR(-EINVAL);
3099         }
3100
3101         /* Calculate the address shift from the page size */
3102         chip->page_shift = ffs(mtd->writesize) - 1;
3103         /* Convert chipsize to number of pages per chip -1. */
3104         chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
3105
3106         chip->bbt_erase_shift = chip->phys_erase_shift =
3107                 ffs(mtd->erasesize) - 1;
3108         if (chip->chipsize & 0xffffffff)
3109                 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
3110         else {
3111                 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3112                 chip->chip_shift += 32 - 1;
3113         }
3114
3115         /* Set the bad block position */
3116         if (mtd->writesize > 512 || (busw & NAND_BUSWIDTH_16))
3117                 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3118         else
3119                 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3120
3121         /*
3122          * Bad block marker is stored in the last page of each block
3123          * on Samsung and Hynix MLC devices; stored in first two pages
3124          * of each block on Micron devices with 2KiB pages and on
3125          * SLC Samsung, Hynix, Toshiba and AMD/Spansion. All others scan
3126          * only the first page.
3127          */
3128         if ((chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3129                         (*maf_id == NAND_MFR_SAMSUNG ||
3130                          *maf_id == NAND_MFR_HYNIX))
3131                 chip->options |= NAND_BBT_SCANLASTPAGE;
3132         else if ((!(chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3133                                 (*maf_id == NAND_MFR_SAMSUNG ||
3134                                  *maf_id == NAND_MFR_HYNIX ||
3135                                  *maf_id == NAND_MFR_TOSHIBA ||
3136                                  *maf_id == NAND_MFR_AMD)) ||
3137                         (mtd->writesize == 2048 &&
3138                          *maf_id == NAND_MFR_MICRON))
3139                 chip->options |= NAND_BBT_SCAN2NDPAGE;
3140
3141         /*
3142          * Numonyx/ST 2K pages, x8 bus use BOTH byte 1 and 6
3143          */
3144         if (!(busw & NAND_BUSWIDTH_16) &&
3145                         *maf_id == NAND_MFR_STMICRO &&
3146                         mtd->writesize == 2048) {
3147                 chip->options |= NAND_BBT_SCANBYTE1AND6;
3148                 chip->badblockpos = 0;
3149         }
3150
3151         /* Check for AND chips with 4 page planes */
3152         if (chip->options & NAND_4PAGE_ARRAY)
3153                 chip->erase_cmd = multi_erase_cmd;
3154         else
3155                 chip->erase_cmd = single_erase_cmd;
3156
3157         /* Do not replace user supplied command function ! */
3158         if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3159                 chip->cmdfunc = nand_command_lp;
3160
3161         /* TODO onfi flash name */
3162         printk(KERN_INFO "NAND device: Manufacturer ID:"
3163                 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, *dev_id,
3164                 nand_manuf_ids[maf_idx].name,
3165                 chip->onfi_version ? chip->onfi_params.model : type->name);
3166
3167         return type;
3168 }
3169
3170 /**
3171  * nand_scan_ident - [NAND Interface] Scan for the NAND device
3172  * @mtd:             MTD device structure
3173  * @maxchips:        Number of chips to scan for
3174  * @table:           Alternative NAND ID table
3175  *
3176  * This is the first phase of the normal nand_scan() function. It
3177  * reads the flash ID and sets up MTD fields accordingly.
3178  *
3179  * The mtd->owner field must be set to the module of the caller.
3180  */
3181 int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3182                     struct nand_flash_dev *table)
3183 {
3184         int i, busw, nand_maf_id, nand_dev_id;
3185         struct nand_chip *chip = mtd->priv;
3186         struct nand_flash_dev *type;
3187
3188         /* Get buswidth to select the correct functions */
3189         busw = chip->options & NAND_BUSWIDTH_16;
3190         /* Set the default functions */
3191         nand_set_defaults(chip, busw);
3192
3193         /* Read the flash type */
3194         type = nand_get_flash_type(mtd, chip, busw,
3195                                 &nand_maf_id, &nand_dev_id, table);
3196
3197         if (IS_ERR(type)) {
3198                 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
3199                         printk(KERN_WARNING "No NAND device found.\n");
3200                 chip->select_chip(mtd, -1);
3201                 return PTR_ERR(type);
3202         }
3203
3204         /* Check for a chip array */
3205         for (i = 1; i < maxchips; i++) {
3206                 chip->select_chip(mtd, i);
3207                 /* See comment in nand_get_flash_type for reset */
3208                 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3209                 /* Send the command for reading device ID */
3210                 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3211                 /* Read manufacturer and device IDs */
3212                 if (nand_maf_id != chip->read_byte(mtd) ||
3213                     nand_dev_id != chip->read_byte(mtd))
3214                         break;
3215         }
3216         if (i > 1)
3217                 printk(KERN_INFO "%d NAND chips detected\n", i);
3218
3219         /* Store the number of chips and calc total size for mtd */
3220         chip->numchips = i;
3221         mtd->size = i * chip->chipsize;
3222
3223         return 0;
3224 }
3225 EXPORT_SYMBOL(nand_scan_ident);
3226
3227
3228 /**
3229  * nand_scan_tail - [NAND Interface] Scan for the NAND device
3230  * @mtd:            MTD device structure
3231  *
3232  * This is the second phase of the normal nand_scan() function. It
3233  * fills out all the uninitialized function pointers with the defaults
3234  * and scans for a bad block table if appropriate.
3235  */
3236 int nand_scan_tail(struct mtd_info *mtd)
3237 {
3238         int i;
3239         struct nand_chip *chip = mtd->priv;
3240
3241         if (!(chip->options & NAND_OWN_BUFFERS))
3242                 chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
3243         if (!chip->buffers)
3244                 return -ENOMEM;
3245
3246         /* Set the internal oob buffer location, just after the page data */
3247         chip->oob_poi = chip->buffers->databuf + mtd->writesize;
3248
3249         /*
3250          * If no default placement scheme is given, select an appropriate one
3251          */
3252         if (!chip->ecc.layout && (chip->ecc.mode != NAND_ECC_SOFT_BCH)) {
3253                 switch (mtd->oobsize) {
3254                 case 8:
3255                         chip->ecc.layout = &nand_oob_8;
3256                         break;
3257                 case 16:
3258                         chip->ecc.layout = &nand_oob_16;
3259                         break;
3260                 case 64:
3261                         chip->ecc.layout = &nand_oob_64;
3262                         break;
3263                 case 128:
3264                         chip->ecc.layout = &nand_oob_128;
3265                         break;
3266                 default:
3267                         printk(KERN_WARNING "No oob scheme defined for "
3268                                "oobsize %d\n", mtd->oobsize);
3269                         BUG();
3270                 }
3271         }
3272
3273         if (!chip->write_page)
3274                 chip->write_page = nand_write_page;
3275
3276         /*
3277          * check ECC mode, default to software if 3byte/512byte hardware ECC is
3278          * selected and we have 256 byte pagesize fallback to software ECC
3279          */
3280
3281         switch (chip->ecc.mode) {
3282         case NAND_ECC_HW_OOB_FIRST:
3283                 /* Similar to NAND_ECC_HW, but a separate read_page handle */
3284                 if (!chip->ecc.calculate || !chip->ecc.correct ||
3285                      !chip->ecc.hwctl) {
3286                         printk(KERN_WARNING "No ECC functions supplied; "
3287                                "Hardware ECC not possible\n");
3288                         BUG();
3289                 }
3290                 if (!chip->ecc.read_page)
3291                         chip->ecc.read_page = nand_read_page_hwecc_oob_first;
3292
3293         case NAND_ECC_HW:
3294                 /* Use standard hwecc read page function ? */
3295                 if (!chip->ecc.read_page)
3296                         chip->ecc.read_page = nand_read_page_hwecc;
3297                 if (!chip->ecc.write_page)
3298                         chip->ecc.write_page = nand_write_page_hwecc;
3299                 if (!chip->ecc.read_page_raw)
3300                         chip->ecc.read_page_raw = nand_read_page_raw;
3301                 if (!chip->ecc.write_page_raw)
3302                         chip->ecc.write_page_raw = nand_write_page_raw;
3303                 if (!chip->ecc.read_oob)
3304                         chip->ecc.read_oob = nand_read_oob_std;
3305                 if (!chip->ecc.write_oob)
3306                         chip->ecc.write_oob = nand_write_oob_std;
3307
3308         case NAND_ECC_HW_SYNDROME:
3309                 if ((!chip->ecc.calculate || !chip->ecc.correct ||
3310                      !chip->ecc.hwctl) &&
3311                     (!chip->ecc.read_page ||
3312                      chip->ecc.read_page == nand_read_page_hwecc ||
3313                      !chip->ecc.write_page ||
3314                      chip->ecc.write_page == nand_write_page_hwecc)) {
3315                         printk(KERN_WARNING "No ECC functions supplied; "
3316                                "Hardware ECC not possible\n");
3317                         BUG();
3318                 }
3319                 /* Use standard syndrome read/write page function ? */
3320                 if (!chip->ecc.read_page)
3321                         chip->ecc.read_page = nand_read_page_syndrome;
3322                 if (!chip->ecc.write_page)
3323                         chip->ecc.write_page = nand_write_page_syndrome;
3324                 if (!chip->ecc.read_page_raw)
3325                         chip->ecc.read_page_raw = nand_read_page_raw_syndrome;
3326                 if (!chip->ecc.write_page_raw)
3327                         chip->ecc.write_page_raw = nand_write_page_raw_syndrome;
3328                 if (!chip->ecc.read_oob)
3329                         chip->ecc.read_oob = nand_read_oob_syndrome;
3330                 if (!chip->ecc.write_oob)
3331                         chip->ecc.write_oob = nand_write_oob_syndrome;
3332
3333                 if (mtd->writesize >= chip->ecc.size)
3334                         break;
3335                 printk(KERN_WARNING "%d byte HW ECC not possible on "
3336                        "%d byte page size, fallback to SW ECC\n",
3337                        chip->ecc.size, mtd->writesize);
3338                 chip->ecc.mode = NAND_ECC_SOFT;
3339
3340         case NAND_ECC_SOFT:
3341                 chip->ecc.calculate = nand_calculate_ecc;
3342                 chip->ecc.correct = nand_correct_data;
3343                 chip->ecc.read_page = nand_read_page_swecc;
3344                 chip->ecc.read_subpage = nand_read_subpage;
3345                 chip->ecc.write_page = nand_write_page_swecc;
3346                 chip->ecc.read_page_raw = nand_read_page_raw;
3347                 chip->ecc.write_page_raw = nand_write_page_raw;
3348                 chip->ecc.read_oob = nand_read_oob_std;
3349                 chip->ecc.write_oob = nand_write_oob_std;
3350                 if (!chip->ecc.size)
3351                         chip->ecc.size = 256;
3352                 chip->ecc.bytes = 3;
3353                 break;
3354
3355         case NAND_ECC_SOFT_BCH:
3356                 if (!mtd_nand_has_bch()) {
3357                         printk(KERN_WARNING "CONFIG_MTD_ECC_BCH not enabled\n");
3358                         BUG();
3359                 }
3360                 chip->ecc.calculate = nand_bch_calculate_ecc;
3361                 chip->ecc.correct = nand_bch_correct_data;
3362                 chip->ecc.read_page = nand_read_page_swecc;
3363                 chip->ecc.read_subpage = nand_read_subpage;
3364                 chip->ecc.write_page = nand_write_page_swecc;
3365                 chip->ecc.read_page_raw = nand_read_page_raw;
3366                 chip->ecc.write_page_raw = nand_write_page_raw;
3367                 chip->ecc.read_oob = nand_read_oob_std;
3368                 chip->ecc.write_oob = nand_write_oob_std;
3369                 /*
3370                  * Board driver should supply ecc.size and ecc.bytes values to
3371                  * select how many bits are correctable; see nand_bch_init()
3372                  * for details.
3373                  * Otherwise, default to 4 bits for large page devices
3374                  */
3375                 if (!chip->ecc.size && (mtd->oobsize >= 64)) {
3376                         chip->ecc.size = 512;
3377                         chip->ecc.bytes = 7;
3378                 }
3379                 chip->ecc.priv = nand_bch_init(mtd,
3380                                                chip->ecc.size,
3381                                                chip->ecc.bytes,
3382                                                &chip->ecc.layout);
3383                 if (!chip->ecc.priv) {
3384                         printk(KERN_WARNING "BCH ECC initialization failed!\n");
3385                         BUG();
3386                 }
3387                 break;
3388
3389         case NAND_ECC_NONE:
3390                 printk(KERN_WARNING "NAND_ECC_NONE selected by board driver. "
3391                        "This is not recommended !!\n");
3392                 chip->ecc.read_page = nand_read_page_raw;
3393                 chip->ecc.write_page = nand_write_page_raw;
3394                 chip->ecc.read_oob = nand_read_oob_std;
3395                 chip->ecc.read_page_raw = nand_read_page_raw;
3396                 chip->ecc.write_page_raw = nand_write_page_raw;
3397                 chip->ecc.write_oob = nand_write_oob_std;
3398                 chip->ecc.size = mtd->writesize;
3399                 chip->ecc.bytes = 0;
3400                 break;
3401
3402         default:
3403                 printk(KERN_WARNING "Invalid NAND_ECC_MODE %d\n",
3404                        chip->ecc.mode);
3405                 BUG();
3406         }
3407
3408         /*
3409          * The number of bytes available for a client to place data into
3410          * the out of band area
3411          */
3412         chip->ecc.layout->oobavail = 0;
3413         for (i = 0; chip->ecc.layout->oobfree[i].length
3414                         && i < ARRAY_SIZE(chip->ecc.layout->oobfree); i++)
3415                 chip->ecc.layout->oobavail +=
3416                         chip->ecc.layout->oobfree[i].length;
3417         mtd->oobavail = chip->ecc.layout->oobavail;
3418
3419         /*
3420          * Set the number of read / write steps for one page depending on ECC
3421          * mode
3422          */
3423         chip->ecc.steps = mtd->writesize / chip->ecc.size;
3424         if (chip->ecc.steps * chip->ecc.size != mtd->writesize) {
3425                 printk(KERN_WARNING "Invalid ecc parameters\n");
3426                 BUG();
3427         }
3428         chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
3429
3430         /*
3431          * Allow subpage writes up to ecc.steps. Not possible for MLC
3432          * FLASH.
3433          */
3434         if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
3435             !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
3436                 switch (chip->ecc.steps) {
3437                 case 2:
3438                         mtd->subpage_sft = 1;
3439                         break;
3440                 case 4:
3441                 case 8:
3442                 case 16:
3443                         mtd->subpage_sft = 2;
3444                         break;
3445                 }
3446         }
3447         chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
3448
3449         /* Initialize state */
3450         chip->state = FL_READY;
3451
3452         /* De-select the device */
3453         chip->select_chip(mtd, -1);
3454
3455         /* Invalidate the pagebuffer reference */
3456         chip->pagebuf = -1;
3457
3458         /* Fill in remaining MTD driver data */
3459         mtd->type = MTD_NANDFLASH;
3460         mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
3461                                                 MTD_CAP_NANDFLASH;
3462         mtd->erase = nand_erase;
3463         mtd->point = NULL;
3464         mtd->unpoint = NULL;
3465         mtd->read = nand_read;
3466         mtd->write = nand_write;
3467         mtd->panic_write = panic_nand_write;
3468         mtd->read_oob = nand_read_oob;
3469         mtd->write_oob = nand_write_oob;
3470         mtd->sync = nand_sync;
3471         mtd->lock = NULL;
3472         mtd->unlock = NULL;
3473         mtd->suspend = nand_suspend;
3474         mtd->resume = nand_resume;
3475         mtd->block_isbad = nand_block_isbad;
3476         mtd->block_markbad = nand_block_markbad;
3477         mtd->writebufsize = mtd->writesize;
3478
3479         /* propagate ecc.layout to mtd_info */
3480         mtd->ecclayout = chip->ecc.layout;
3481
3482         /* Check, if we should skip the bad block table scan */
3483         if (chip->options & NAND_SKIP_BBTSCAN)
3484                 return 0;
3485
3486         /* Build bad block table */
3487         return chip->scan_bbt(mtd);
3488 }
3489 EXPORT_SYMBOL(nand_scan_tail);
3490
3491 /* is_module_text_address() isn't exported, and it's mostly a pointless
3492  * test if this is a module _anyway_ -- they'd have to try _really_ hard
3493  * to call us from in-kernel code if the core NAND support is modular. */
3494 #ifdef MODULE
3495 #define caller_is_module() (1)
3496 #else
3497 #define caller_is_module() \
3498         is_module_text_address((unsigned long)__builtin_return_address(0))
3499 #endif
3500
3501 /**
3502  * nand_scan - [NAND Interface] Scan for the NAND device
3503  * @mtd:        MTD device structure
3504  * @maxchips:   Number of chips to scan for
3505  *
3506  * This fills out all the uninitialized function pointers
3507  * with the defaults.
3508  * The flash ID is read and the mtd/chip structures are
3509  * filled with the appropriate values.
3510  * The mtd->owner field must be set to the module of the caller
3511  *
3512  */
3513 int nand_scan(struct mtd_info *mtd, int maxchips)
3514 {
3515         int ret;
3516
3517         /* Many callers got this wrong, so check for it for a while... */
3518         if (!mtd->owner && caller_is_module()) {
3519                 printk(KERN_CRIT "%s called with NULL mtd->owner!\n",
3520                                 __func__);
3521                 BUG();
3522         }
3523
3524         ret = nand_scan_ident(mtd, maxchips, NULL);
3525         if (!ret)
3526                 ret = nand_scan_tail(mtd);
3527         return ret;
3528 }
3529 EXPORT_SYMBOL(nand_scan);
3530
3531 /**
3532  * nand_release - [NAND Interface] Free resources held by the NAND device
3533  * @mtd:        MTD device structure
3534 */
3535 void nand_release(struct mtd_info *mtd)
3536 {
3537         struct nand_chip *chip = mtd->priv;
3538
3539         if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
3540                 nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
3541
3542 #ifdef CONFIG_MTD_PARTITIONS
3543         /* Deregister partitions */
3544         del_mtd_partitions(mtd);
3545 #endif
3546         /* Deregister the device */
3547         del_mtd_device(mtd);
3548
3549         /* Free bad block table memory */
3550         kfree(chip->bbt);
3551         if (!(chip->options & NAND_OWN_BUFFERS))
3552                 kfree(chip->buffers);
3553
3554         /* Free bad block descriptor memory */
3555         if (chip->badblock_pattern && chip->badblock_pattern->options
3556                         & NAND_BBT_DYNAMICSTRUCT)
3557                 kfree(chip->badblock_pattern);
3558 }
3559 EXPORT_SYMBOL_GPL(nand_release);
3560
3561 static int __init nand_base_init(void)
3562 {
3563         led_trigger_register_simple("nand-disk", &nand_led_trigger);
3564         return 0;
3565 }
3566
3567 static void __exit nand_base_exit(void)
3568 {
3569         led_trigger_unregister_simple(nand_led_trigger);
3570 }
3571
3572 module_init(nand_base_init);
3573 module_exit(nand_base_exit);
3574
3575 MODULE_LICENSE("GPL");
3576 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
3577 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
3578 MODULE_DESCRIPTION("Generic NAND flash driver code");