Merge mulgrave-w:git/scsi-misc-2.6
[pandora-kernel.git] / drivers / mtd / nand / nand_base.c
1 /*
2  *  drivers/mtd/nand.c
3  *
4  *  Overview:
5  *   This is the generic MTD driver for NAND flash devices. It should be
6  *   capable of working with almost all NAND chips currently available.
7  *   Basic support for AG-AND chips is provided.
8  *
9  *      Additional technical information is available on
10  *      http://www.linux-mtd.infradead.org/tech/nand.html
11  *
12  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13  *                2002-2006 Thomas Gleixner (tglx@linutronix.de)
14  *
15  *  Credits:
16  *      David Woodhouse for adding multichip support
17  *
18  *      Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19  *      rework for 2K page size chips
20  *
21  *  TODO:
22  *      Enable cached programming for 2k page size chips
23  *      Check, if mtd->ecctype should be set to MTD_ECC_HW
24  *      if we have HW ecc support.
25  *      The AG-AND chips have nice features for speed improvement,
26  *      which are not supported yet. Read / program 4 pages in one go.
27  *
28  * This program is free software; you can redistribute it and/or modify
29  * it under the terms of the GNU General Public License version 2 as
30  * published by the Free Software Foundation.
31  *
32  */
33
34 #include <linux/module.h>
35 #include <linux/delay.h>
36 #include <linux/errno.h>
37 #include <linux/err.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/types.h>
41 #include <linux/mtd/mtd.h>
42 #include <linux/mtd/nand.h>
43 #include <linux/mtd/nand_ecc.h>
44 #include <linux/mtd/compatmac.h>
45 #include <linux/interrupt.h>
46 #include <linux/bitops.h>
47 #include <linux/leds.h>
48 #include <asm/io.h>
49
50 #ifdef CONFIG_MTD_PARTITIONS
51 #include <linux/mtd/partitions.h>
52 #endif
53
54 /* Define default oob placement schemes for large and small page devices */
55 static struct nand_ecclayout nand_oob_8 = {
56         .eccbytes = 3,
57         .eccpos = {0, 1, 2},
58         .oobfree = {
59                 {.offset = 3,
60                  .length = 2},
61                 {.offset = 6,
62                  .length = 2}}
63 };
64
65 static struct nand_ecclayout nand_oob_16 = {
66         .eccbytes = 6,
67         .eccpos = {0, 1, 2, 3, 6, 7},
68         .oobfree = {
69                 {.offset = 8,
70                  . length = 8}}
71 };
72
73 static struct nand_ecclayout nand_oob_64 = {
74         .eccbytes = 24,
75         .eccpos = {
76                    40, 41, 42, 43, 44, 45, 46, 47,
77                    48, 49, 50, 51, 52, 53, 54, 55,
78                    56, 57, 58, 59, 60, 61, 62, 63},
79         .oobfree = {
80                 {.offset = 2,
81                  .length = 38}}
82 };
83
84 static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
85                            int new_state);
86
87 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
88                              struct mtd_oob_ops *ops);
89
90 /*
91  * For devices which display every fart in the system on a seperate LED. Is
92  * compiled away when LED support is disabled.
93  */
94 DEFINE_LED_TRIGGER(nand_led_trigger);
95
96 /**
97  * nand_release_device - [GENERIC] release chip
98  * @mtd:        MTD device structure
99  *
100  * Deselect, release chip lock and wake up anyone waiting on the device
101  */
102 static void nand_release_device(struct mtd_info *mtd)
103 {
104         struct nand_chip *chip = mtd->priv;
105
106         /* De-select the NAND device */
107         chip->select_chip(mtd, -1);
108
109         /* Release the controller and the chip */
110         spin_lock(&chip->controller->lock);
111         chip->controller->active = NULL;
112         chip->state = FL_READY;
113         wake_up(&chip->controller->wq);
114         spin_unlock(&chip->controller->lock);
115 }
116
117 /**
118  * nand_read_byte - [DEFAULT] read one byte from the chip
119  * @mtd:        MTD device structure
120  *
121  * Default read function for 8bit buswith
122  */
123 static uint8_t nand_read_byte(struct mtd_info *mtd)
124 {
125         struct nand_chip *chip = mtd->priv;
126         return readb(chip->IO_ADDR_R);
127 }
128
129 /**
130  * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
131  * @mtd:        MTD device structure
132  *
133  * Default read function for 16bit buswith with
134  * endianess conversion
135  */
136 static uint8_t nand_read_byte16(struct mtd_info *mtd)
137 {
138         struct nand_chip *chip = mtd->priv;
139         return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
140 }
141
142 /**
143  * nand_read_word - [DEFAULT] read one word from the chip
144  * @mtd:        MTD device structure
145  *
146  * Default read function for 16bit buswith without
147  * endianess conversion
148  */
149 static u16 nand_read_word(struct mtd_info *mtd)
150 {
151         struct nand_chip *chip = mtd->priv;
152         return readw(chip->IO_ADDR_R);
153 }
154
155 /**
156  * nand_select_chip - [DEFAULT] control CE line
157  * @mtd:        MTD device structure
158  * @chipnr:     chipnumber to select, -1 for deselect
159  *
160  * Default select function for 1 chip devices.
161  */
162 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
163 {
164         struct nand_chip *chip = mtd->priv;
165
166         switch (chipnr) {
167         case -1:
168                 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
169                 break;
170         case 0:
171                 break;
172
173         default:
174                 BUG();
175         }
176 }
177
178 /**
179  * nand_write_buf - [DEFAULT] write buffer to chip
180  * @mtd:        MTD device structure
181  * @buf:        data buffer
182  * @len:        number of bytes to write
183  *
184  * Default write function for 8bit buswith
185  */
186 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
187 {
188         int i;
189         struct nand_chip *chip = mtd->priv;
190
191         for (i = 0; i < len; i++)
192                 writeb(buf[i], chip->IO_ADDR_W);
193 }
194
195 /**
196  * nand_read_buf - [DEFAULT] read chip data into buffer
197  * @mtd:        MTD device structure
198  * @buf:        buffer to store date
199  * @len:        number of bytes to read
200  *
201  * Default read function for 8bit buswith
202  */
203 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
204 {
205         int i;
206         struct nand_chip *chip = mtd->priv;
207
208         for (i = 0; i < len; i++)
209                 buf[i] = readb(chip->IO_ADDR_R);
210 }
211
212 /**
213  * nand_verify_buf - [DEFAULT] Verify chip data against buffer
214  * @mtd:        MTD device structure
215  * @buf:        buffer containing the data to compare
216  * @len:        number of bytes to compare
217  *
218  * Default verify function for 8bit buswith
219  */
220 static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
221 {
222         int i;
223         struct nand_chip *chip = mtd->priv;
224
225         for (i = 0; i < len; i++)
226                 if (buf[i] != readb(chip->IO_ADDR_R))
227                         return -EFAULT;
228         return 0;
229 }
230
231 /**
232  * nand_write_buf16 - [DEFAULT] write buffer to chip
233  * @mtd:        MTD device structure
234  * @buf:        data buffer
235  * @len:        number of bytes to write
236  *
237  * Default write function for 16bit buswith
238  */
239 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
240 {
241         int i;
242         struct nand_chip *chip = mtd->priv;
243         u16 *p = (u16 *) buf;
244         len >>= 1;
245
246         for (i = 0; i < len; i++)
247                 writew(p[i], chip->IO_ADDR_W);
248
249 }
250
251 /**
252  * nand_read_buf16 - [DEFAULT] read chip data into buffer
253  * @mtd:        MTD device structure
254  * @buf:        buffer to store date
255  * @len:        number of bytes to read
256  *
257  * Default read function for 16bit buswith
258  */
259 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
260 {
261         int i;
262         struct nand_chip *chip = mtd->priv;
263         u16 *p = (u16 *) buf;
264         len >>= 1;
265
266         for (i = 0; i < len; i++)
267                 p[i] = readw(chip->IO_ADDR_R);
268 }
269
270 /**
271  * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
272  * @mtd:        MTD device structure
273  * @buf:        buffer containing the data to compare
274  * @len:        number of bytes to compare
275  *
276  * Default verify function for 16bit buswith
277  */
278 static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
279 {
280         int i;
281         struct nand_chip *chip = mtd->priv;
282         u16 *p = (u16 *) buf;
283         len >>= 1;
284
285         for (i = 0; i < len; i++)
286                 if (p[i] != readw(chip->IO_ADDR_R))
287                         return -EFAULT;
288
289         return 0;
290 }
291
292 /**
293  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
294  * @mtd:        MTD device structure
295  * @ofs:        offset from device start
296  * @getchip:    0, if the chip is already selected
297  *
298  * Check, if the block is bad.
299  */
300 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
301 {
302         int page, chipnr, res = 0;
303         struct nand_chip *chip = mtd->priv;
304         u16 bad;
305
306         if (getchip) {
307                 page = (int)(ofs >> chip->page_shift);
308                 chipnr = (int)(ofs >> chip->chip_shift);
309
310                 nand_get_device(chip, mtd, FL_READING);
311
312                 /* Select the NAND device */
313                 chip->select_chip(mtd, chipnr);
314         } else
315                 page = (int)ofs;
316
317         if (chip->options & NAND_BUSWIDTH_16) {
318                 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos & 0xFE,
319                               page & chip->pagemask);
320                 bad = cpu_to_le16(chip->read_word(mtd));
321                 if (chip->badblockpos & 0x1)
322                         bad >>= 8;
323                 if ((bad & 0xFF) != 0xff)
324                         res = 1;
325         } else {
326                 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
327                               page & chip->pagemask);
328                 if (chip->read_byte(mtd) != 0xff)
329                         res = 1;
330         }
331
332         if (getchip)
333                 nand_release_device(mtd);
334
335         return res;
336 }
337
338 /**
339  * nand_default_block_markbad - [DEFAULT] mark a block bad
340  * @mtd:        MTD device structure
341  * @ofs:        offset from device start
342  *
343  * This is the default implementation, which can be overridden by
344  * a hardware specific driver.
345 */
346 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
347 {
348         struct nand_chip *chip = mtd->priv;
349         uint8_t buf[2] = { 0, 0 };
350         int block, ret;
351
352         /* Get block number */
353         block = ((int)ofs) >> chip->bbt_erase_shift;
354         if (chip->bbt)
355                 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
356
357         /* Do we have a flash based bad block table ? */
358         if (chip->options & NAND_USE_FLASH_BBT)
359                 ret = nand_update_bbt(mtd, ofs);
360         else {
361                 /* We write two bytes, so we dont have to mess with 16 bit
362                  * access
363                  */
364                 ofs += mtd->oobsize;
365                 chip->ops.len = 2;
366                 chip->ops.datbuf = NULL;
367                 chip->ops.oobbuf = buf;
368                 chip->ops.ooboffs = chip->badblockpos & ~0x01;
369
370                 ret = nand_do_write_oob(mtd, ofs, &chip->ops);
371         }
372         if (!ret)
373                 mtd->ecc_stats.badblocks++;
374         return ret;
375 }
376
377 /**
378  * nand_check_wp - [GENERIC] check if the chip is write protected
379  * @mtd:        MTD device structure
380  * Check, if the device is write protected
381  *
382  * The function expects, that the device is already selected
383  */
384 static int nand_check_wp(struct mtd_info *mtd)
385 {
386         struct nand_chip *chip = mtd->priv;
387         /* Check the WP bit */
388         chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
389         return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
390 }
391
392 /**
393  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
394  * @mtd:        MTD device structure
395  * @ofs:        offset from device start
396  * @getchip:    0, if the chip is already selected
397  * @allowbbt:   1, if its allowed to access the bbt area
398  *
399  * Check, if the block is bad. Either by reading the bad block table or
400  * calling of the scan function.
401  */
402 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
403                                int allowbbt)
404 {
405         struct nand_chip *chip = mtd->priv;
406
407         if (!chip->bbt)
408                 return chip->block_bad(mtd, ofs, getchip);
409
410         /* Return info from the table */
411         return nand_isbad_bbt(mtd, ofs, allowbbt);
412 }
413
414 /*
415  * Wait for the ready pin, after a command
416  * The timeout is catched later.
417  */
418 static void nand_wait_ready(struct mtd_info *mtd)
419 {
420         struct nand_chip *chip = mtd->priv;
421         unsigned long timeo = jiffies + 2;
422
423         led_trigger_event(nand_led_trigger, LED_FULL);
424         /* wait until command is processed or timeout occures */
425         do {
426                 if (chip->dev_ready(mtd))
427                         break;
428                 touch_softlockup_watchdog();
429         } while (time_before(jiffies, timeo));
430         led_trigger_event(nand_led_trigger, LED_OFF);
431 }
432
433 /**
434  * nand_command - [DEFAULT] Send command to NAND device
435  * @mtd:        MTD device structure
436  * @command:    the command to be sent
437  * @column:     the column address for this command, -1 if none
438  * @page_addr:  the page address for this command, -1 if none
439  *
440  * Send command to NAND device. This function is used for small page
441  * devices (256/512 Bytes per page)
442  */
443 static void nand_command(struct mtd_info *mtd, unsigned int command,
444                          int column, int page_addr)
445 {
446         register struct nand_chip *chip = mtd->priv;
447         int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
448
449         /*
450          * Write out the command to the device.
451          */
452         if (command == NAND_CMD_SEQIN) {
453                 int readcmd;
454
455                 if (column >= mtd->writesize) {
456                         /* OOB area */
457                         column -= mtd->writesize;
458                         readcmd = NAND_CMD_READOOB;
459                 } else if (column < 256) {
460                         /* First 256 bytes --> READ0 */
461                         readcmd = NAND_CMD_READ0;
462                 } else {
463                         column -= 256;
464                         readcmd = NAND_CMD_READ1;
465                 }
466                 chip->cmd_ctrl(mtd, readcmd, ctrl);
467                 ctrl &= ~NAND_CTRL_CHANGE;
468         }
469         chip->cmd_ctrl(mtd, command, ctrl);
470
471         /*
472          * Address cycle, when necessary
473          */
474         ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
475         /* Serially input address */
476         if (column != -1) {
477                 /* Adjust columns for 16 bit buswidth */
478                 if (chip->options & NAND_BUSWIDTH_16)
479                         column >>= 1;
480                 chip->cmd_ctrl(mtd, column, ctrl);
481                 ctrl &= ~NAND_CTRL_CHANGE;
482         }
483         if (page_addr != -1) {
484                 chip->cmd_ctrl(mtd, page_addr, ctrl);
485                 ctrl &= ~NAND_CTRL_CHANGE;
486                 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
487                 /* One more address cycle for devices > 32MiB */
488                 if (chip->chipsize > (32 << 20))
489                         chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
490         }
491         chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
492
493         /*
494          * program and erase have their own busy handlers
495          * status and sequential in needs no delay
496          */
497         switch (command) {
498
499         case NAND_CMD_PAGEPROG:
500         case NAND_CMD_ERASE1:
501         case NAND_CMD_ERASE2:
502         case NAND_CMD_SEQIN:
503         case NAND_CMD_STATUS:
504                 return;
505
506         case NAND_CMD_RESET:
507                 if (chip->dev_ready)
508                         break;
509                 udelay(chip->chip_delay);
510                 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
511                                NAND_CTRL_CLE | NAND_CTRL_CHANGE);
512                 chip->cmd_ctrl(mtd,
513                                NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
514                 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
515                 return;
516
517                 /* This applies to read commands */
518         default:
519                 /*
520                  * If we don't have access to the busy pin, we apply the given
521                  * command delay
522                  */
523                 if (!chip->dev_ready) {
524                         udelay(chip->chip_delay);
525                         return;
526                 }
527         }
528         /* Apply this short delay always to ensure that we do wait tWB in
529          * any case on any machine. */
530         ndelay(100);
531
532         nand_wait_ready(mtd);
533 }
534
535 /**
536  * nand_command_lp - [DEFAULT] Send command to NAND large page device
537  * @mtd:        MTD device structure
538  * @command:    the command to be sent
539  * @column:     the column address for this command, -1 if none
540  * @page_addr:  the page address for this command, -1 if none
541  *
542  * Send command to NAND device. This is the version for the new large page
543  * devices We dont have the separate regions as we have in the small page
544  * devices.  We must emulate NAND_CMD_READOOB to keep the code compatible.
545  */
546 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
547                             int column, int page_addr)
548 {
549         register struct nand_chip *chip = mtd->priv;
550
551         /* Emulate NAND_CMD_READOOB */
552         if (command == NAND_CMD_READOOB) {
553                 column += mtd->writesize;
554                 command = NAND_CMD_READ0;
555         }
556
557         /* Command latch cycle */
558         chip->cmd_ctrl(mtd, command & 0xff,
559                        NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
560
561         if (column != -1 || page_addr != -1) {
562                 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
563
564                 /* Serially input address */
565                 if (column != -1) {
566                         /* Adjust columns for 16 bit buswidth */
567                         if (chip->options & NAND_BUSWIDTH_16)
568                                 column >>= 1;
569                         chip->cmd_ctrl(mtd, column, ctrl);
570                         ctrl &= ~NAND_CTRL_CHANGE;
571                         chip->cmd_ctrl(mtd, column >> 8, ctrl);
572                 }
573                 if (page_addr != -1) {
574                         chip->cmd_ctrl(mtd, page_addr, ctrl);
575                         chip->cmd_ctrl(mtd, page_addr >> 8,
576                                        NAND_NCE | NAND_ALE);
577                         /* One more address cycle for devices > 128MiB */
578                         if (chip->chipsize > (128 << 20))
579                                 chip->cmd_ctrl(mtd, page_addr >> 16,
580                                                NAND_NCE | NAND_ALE);
581                 }
582         }
583         chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
584
585         /*
586          * program and erase have their own busy handlers
587          * status, sequential in, and deplete1 need no delay
588          */
589         switch (command) {
590
591         case NAND_CMD_CACHEDPROG:
592         case NAND_CMD_PAGEPROG:
593         case NAND_CMD_ERASE1:
594         case NAND_CMD_ERASE2:
595         case NAND_CMD_SEQIN:
596         case NAND_CMD_RNDIN:
597         case NAND_CMD_STATUS:
598         case NAND_CMD_DEPLETE1:
599                 return;
600
601                 /*
602                  * read error status commands require only a short delay
603                  */
604         case NAND_CMD_STATUS_ERROR:
605         case NAND_CMD_STATUS_ERROR0:
606         case NAND_CMD_STATUS_ERROR1:
607         case NAND_CMD_STATUS_ERROR2:
608         case NAND_CMD_STATUS_ERROR3:
609                 udelay(chip->chip_delay);
610                 return;
611
612         case NAND_CMD_RESET:
613                 if (chip->dev_ready)
614                         break;
615                 udelay(chip->chip_delay);
616                 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
617                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
618                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
619                                NAND_NCE | NAND_CTRL_CHANGE);
620                 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
621                 return;
622
623         case NAND_CMD_RNDOUT:
624                 /* No ready / busy check necessary */
625                 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
626                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
627                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
628                                NAND_NCE | NAND_CTRL_CHANGE);
629                 return;
630
631         case NAND_CMD_READ0:
632                 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
633                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
634                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
635                                NAND_NCE | NAND_CTRL_CHANGE);
636
637                 /* This applies to read commands */
638         default:
639                 /*
640                  * If we don't have access to the busy pin, we apply the given
641                  * command delay
642                  */
643                 if (!chip->dev_ready) {
644                         udelay(chip->chip_delay);
645                         return;
646                 }
647         }
648
649         /* Apply this short delay always to ensure that we do wait tWB in
650          * any case on any machine. */
651         ndelay(100);
652
653         nand_wait_ready(mtd);
654 }
655
656 /**
657  * nand_get_device - [GENERIC] Get chip for selected access
658  * @chip:       the nand chip descriptor
659  * @mtd:        MTD device structure
660  * @new_state:  the state which is requested
661  *
662  * Get the device and lock it for exclusive access
663  */
664 static int
665 nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state)
666 {
667         spinlock_t *lock = &chip->controller->lock;
668         wait_queue_head_t *wq = &chip->controller->wq;
669         DECLARE_WAITQUEUE(wait, current);
670  retry:
671         spin_lock(lock);
672
673         /* Hardware controller shared among independend devices */
674         /* Hardware controller shared among independend devices */
675         if (!chip->controller->active)
676                 chip->controller->active = chip;
677
678         if (chip->controller->active == chip && chip->state == FL_READY) {
679                 chip->state = new_state;
680                 spin_unlock(lock);
681                 return 0;
682         }
683         if (new_state == FL_PM_SUSPENDED) {
684                 spin_unlock(lock);
685                 return (chip->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
686         }
687         set_current_state(TASK_UNINTERRUPTIBLE);
688         add_wait_queue(wq, &wait);
689         spin_unlock(lock);
690         schedule();
691         remove_wait_queue(wq, &wait);
692         goto retry;
693 }
694
695 /**
696  * nand_wait - [DEFAULT]  wait until the command is done
697  * @mtd:        MTD device structure
698  * @chip:       NAND chip structure
699  *
700  * Wait for command done. This applies to erase and program only
701  * Erase can take up to 400ms and program up to 20ms according to
702  * general NAND and SmartMedia specs
703  */
704 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
705 {
706
707         unsigned long timeo = jiffies;
708         int status, state = chip->state;
709
710         if (state == FL_ERASING)
711                 timeo += (HZ * 400) / 1000;
712         else
713                 timeo += (HZ * 20) / 1000;
714
715         led_trigger_event(nand_led_trigger, LED_FULL);
716
717         /* Apply this short delay always to ensure that we do wait tWB in
718          * any case on any machine. */
719         ndelay(100);
720
721         if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
722                 chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
723         else
724                 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
725
726         while (time_before(jiffies, timeo)) {
727                 if (chip->dev_ready) {
728                         if (chip->dev_ready(mtd))
729                                 break;
730                 } else {
731                         if (chip->read_byte(mtd) & NAND_STATUS_READY)
732                                 break;
733                 }
734                 cond_resched();
735         }
736         led_trigger_event(nand_led_trigger, LED_OFF);
737
738         status = (int)chip->read_byte(mtd);
739         return status;
740 }
741
742 /**
743  * nand_read_page_raw - [Intern] read raw page data without ecc
744  * @mtd:        mtd info structure
745  * @chip:       nand chip info structure
746  * @buf:        buffer to store read data
747  */
748 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
749                               uint8_t *buf)
750 {
751         chip->read_buf(mtd, buf, mtd->writesize);
752         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
753         return 0;
754 }
755
756 /**
757  * nand_read_page_swecc - {REPLACABLE] software ecc based page read function
758  * @mtd:        mtd info structure
759  * @chip:       nand chip info structure
760  * @buf:        buffer to store read data
761  */
762 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
763                                 uint8_t *buf)
764 {
765         int i, eccsize = chip->ecc.size;
766         int eccbytes = chip->ecc.bytes;
767         int eccsteps = chip->ecc.steps;
768         uint8_t *p = buf;
769         uint8_t *ecc_calc = chip->buffers.ecccalc;
770         uint8_t *ecc_code = chip->buffers.ecccode;
771         int *eccpos = chip->ecc.layout->eccpos;
772
773         nand_read_page_raw(mtd, chip, buf);
774
775         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
776                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
777
778         for (i = 0; i < chip->ecc.total; i++)
779                 ecc_code[i] = chip->oob_poi[eccpos[i]];
780
781         eccsteps = chip->ecc.steps;
782         p = buf;
783
784         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
785                 int stat;
786
787                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
788                 if (stat == -1)
789                         mtd->ecc_stats.failed++;
790                 else
791                         mtd->ecc_stats.corrected += stat;
792         }
793         return 0;
794 }
795
796 /**
797  * nand_read_page_hwecc - {REPLACABLE] hardware ecc based page read function
798  * @mtd:        mtd info structure
799  * @chip:       nand chip info structure
800  * @buf:        buffer to store read data
801  *
802  * Not for syndrome calculating ecc controllers which need a special oob layout
803  */
804 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
805                                 uint8_t *buf)
806 {
807         int i, eccsize = chip->ecc.size;
808         int eccbytes = chip->ecc.bytes;
809         int eccsteps = chip->ecc.steps;
810         uint8_t *p = buf;
811         uint8_t *ecc_calc = chip->buffers.ecccalc;
812         uint8_t *ecc_code = chip->buffers.ecccode;
813         int *eccpos = chip->ecc.layout->eccpos;
814
815         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
816                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
817                 chip->read_buf(mtd, p, eccsize);
818                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
819         }
820         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
821
822         for (i = 0; i < chip->ecc.total; i++)
823                 ecc_code[i] = chip->oob_poi[eccpos[i]];
824
825         eccsteps = chip->ecc.steps;
826         p = buf;
827
828         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
829                 int stat;
830
831                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
832                 if (stat == -1)
833                         mtd->ecc_stats.failed++;
834                 else
835                         mtd->ecc_stats.corrected += stat;
836         }
837         return 0;
838 }
839
840 /**
841  * nand_read_page_syndrome - {REPLACABLE] hardware ecc syndrom based page read
842  * @mtd:        mtd info structure
843  * @chip:       nand chip info structure
844  * @buf:        buffer to store read data
845  *
846  * The hw generator calculates the error syndrome automatically. Therefor
847  * we need a special oob layout and handling.
848  */
849 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
850                                    uint8_t *buf)
851 {
852         int i, eccsize = chip->ecc.size;
853         int eccbytes = chip->ecc.bytes;
854         int eccsteps = chip->ecc.steps;
855         uint8_t *p = buf;
856         uint8_t *oob = chip->oob_poi;
857
858         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
859                 int stat;
860
861                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
862                 chip->read_buf(mtd, p, eccsize);
863
864                 if (chip->ecc.prepad) {
865                         chip->read_buf(mtd, oob, chip->ecc.prepad);
866                         oob += chip->ecc.prepad;
867                 }
868
869                 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
870                 chip->read_buf(mtd, oob, eccbytes);
871                 stat = chip->ecc.correct(mtd, p, oob, NULL);
872
873                 if (stat == -1)
874                         mtd->ecc_stats.failed++;
875                 else
876                         mtd->ecc_stats.corrected += stat;
877
878                 oob += eccbytes;
879
880                 if (chip->ecc.postpad) {
881                         chip->read_buf(mtd, oob, chip->ecc.postpad);
882                         oob += chip->ecc.postpad;
883                 }
884         }
885
886         /* Calculate remaining oob bytes */
887         i = mtd->oobsize - (oob - chip->oob_poi);
888         if (i)
889                 chip->read_buf(mtd, oob, i);
890
891         return 0;
892 }
893
894 /**
895  * nand_transfer_oob - [Internal] Transfer oob to client buffer
896  * @chip:       nand chip structure
897  * @oob:        oob destination address
898  * @ops:        oob ops structure
899  */
900 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
901                                   struct mtd_oob_ops *ops)
902 {
903         size_t len = ops->ooblen;
904
905         switch(ops->mode) {
906
907         case MTD_OOB_PLACE:
908         case MTD_OOB_RAW:
909                 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
910                 return oob + len;
911
912         case MTD_OOB_AUTO: {
913                 struct nand_oobfree *free = chip->ecc.layout->oobfree;
914                 uint32_t boffs = 0, roffs = ops->ooboffs;
915                 size_t bytes = 0;
916
917                 for(; free->length && len; free++, len -= bytes) {
918                         /* Read request not from offset 0 ? */
919                         if (unlikely(roffs)) {
920                                 if (roffs >= free->length) {
921                                         roffs -= free->length;
922                                         continue;
923                                 }
924                                 boffs = free->offset + roffs;
925                                 bytes = min_t(size_t, len,
926                                               (free->length - roffs));
927                                 roffs = 0;
928                         } else {
929                                 bytes = min_t(size_t, len, free->length);
930                                 boffs = free->offset;
931                         }
932                         memcpy(oob, chip->oob_poi + boffs, bytes);
933                         oob += bytes;
934                 }
935                 return oob;
936         }
937         default:
938                 BUG();
939         }
940         return NULL;
941 }
942
943 /**
944  * nand_do_read_ops - [Internal] Read data with ECC
945  *
946  * @mtd:        MTD device structure
947  * @from:       offset to read from
948  * @ops:        oob ops structure
949  *
950  * Internal function. Called with chip held.
951  */
952 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
953                             struct mtd_oob_ops *ops)
954 {
955         int chipnr, page, realpage, col, bytes, aligned;
956         struct nand_chip *chip = mtd->priv;
957         struct mtd_ecc_stats stats;
958         int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
959         int sndcmd = 1;
960         int ret = 0;
961         uint32_t readlen = ops->len;
962         uint8_t *bufpoi, *oob, *buf;
963
964         stats = mtd->ecc_stats;
965
966         chipnr = (int)(from >> chip->chip_shift);
967         chip->select_chip(mtd, chipnr);
968
969         realpage = (int)(from >> chip->page_shift);
970         page = realpage & chip->pagemask;
971
972         col = (int)(from & (mtd->writesize - 1));
973         chip->oob_poi = chip->buffers.oobrbuf;
974
975         buf = ops->datbuf;
976         oob = ops->oobbuf;
977
978         while(1) {
979                 bytes = min(mtd->writesize - col, readlen);
980                 aligned = (bytes == mtd->writesize);
981
982                 /* Is the current page in the buffer ? */
983                 if (realpage != chip->pagebuf || oob) {
984                         bufpoi = aligned ? buf : chip->buffers.databuf;
985
986                         if (likely(sndcmd)) {
987                                 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
988                                 sndcmd = 0;
989                         }
990
991                         /* Now read the page into the buffer */
992                         ret = chip->ecc.read_page(mtd, chip, bufpoi);
993                         if (ret < 0)
994                                 break;
995
996                         /* Transfer not aligned data */
997                         if (!aligned) {
998                                 chip->pagebuf = realpage;
999                                 memcpy(buf, chip->buffers.databuf + col, bytes);
1000                         }
1001
1002                         buf += bytes;
1003
1004                         if (unlikely(oob)) {
1005                                 /* Raw mode does data:oob:data:oob */
1006                                 if (ops->mode != MTD_OOB_RAW)
1007                                         oob = nand_transfer_oob(chip, oob, ops);
1008                                 else
1009                                         buf = nand_transfer_oob(chip, buf, ops);
1010                         }
1011
1012                         if (!(chip->options & NAND_NO_READRDY)) {
1013                                 /*
1014                                  * Apply delay or wait for ready/busy pin. Do
1015                                  * this before the AUTOINCR check, so no
1016                                  * problems arise if a chip which does auto
1017                                  * increment is marked as NOAUTOINCR by the
1018                                  * board driver.
1019                                  */
1020                                 if (!chip->dev_ready)
1021                                         udelay(chip->chip_delay);
1022                                 else
1023                                         nand_wait_ready(mtd);
1024                         }
1025                 } else {
1026                         memcpy(buf, chip->buffers.databuf + col, bytes);
1027                         buf += bytes;
1028                 }
1029
1030                 readlen -= bytes;
1031
1032                 if (!readlen)
1033                         break;
1034
1035                 /* For subsequent reads align to page boundary. */
1036                 col = 0;
1037                 /* Increment page address */
1038                 realpage++;
1039
1040                 page = realpage & chip->pagemask;
1041                 /* Check, if we cross a chip boundary */
1042                 if (!page) {
1043                         chipnr++;
1044                         chip->select_chip(mtd, -1);
1045                         chip->select_chip(mtd, chipnr);
1046                 }
1047
1048                 /* Check, if the chip supports auto page increment
1049                  * or if we have hit a block boundary.
1050                  */
1051                 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1052                         sndcmd = 1;
1053         }
1054
1055         ops->retlen = ops->len - (size_t) readlen;
1056
1057         if (ret)
1058                 return ret;
1059
1060         if (mtd->ecc_stats.failed - stats.failed)
1061                 return -EBADMSG;
1062
1063         return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1064 }
1065
1066 /**
1067  * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
1068  * @mtd:        MTD device structure
1069  * @from:       offset to read from
1070  * @len:        number of bytes to read
1071  * @retlen:     pointer to variable to store the number of read bytes
1072  * @buf:        the databuffer to put data
1073  *
1074  * Get hold of the chip and call nand_do_read
1075  */
1076 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1077                      size_t *retlen, uint8_t *buf)
1078 {
1079         struct nand_chip *chip = mtd->priv;
1080         int ret;
1081
1082         /* Do not allow reads past end of device */
1083         if ((from + len) > mtd->size)
1084                 return -EINVAL;
1085         if (!len)
1086                 return 0;
1087
1088         nand_get_device(chip, mtd, FL_READING);
1089
1090         chip->ops.len = len;
1091         chip->ops.datbuf = buf;
1092         chip->ops.oobbuf = NULL;
1093
1094         ret = nand_do_read_ops(mtd, from, &chip->ops);
1095
1096         *retlen = chip->ops.retlen;
1097
1098         nand_release_device(mtd);
1099
1100         return ret;
1101 }
1102
1103 /**
1104  * nand_read_oob_std - [REPLACABLE] the most common OOB data read function
1105  * @mtd:        mtd info structure
1106  * @chip:       nand chip info structure
1107  * @page:       page number to read
1108  * @sndcmd:     flag whether to issue read command or not
1109  */
1110 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1111                              int page, int sndcmd)
1112 {
1113         if (sndcmd) {
1114                 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1115                 sndcmd = 0;
1116         }
1117         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1118         return sndcmd;
1119 }
1120
1121 /**
1122  * nand_read_oob_syndrome - [REPLACABLE] OOB data read function for HW ECC
1123  *                          with syndromes
1124  * @mtd:        mtd info structure
1125  * @chip:       nand chip info structure
1126  * @page:       page number to read
1127  * @sndcmd:     flag whether to issue read command or not
1128  */
1129 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1130                                   int page, int sndcmd)
1131 {
1132         uint8_t *buf = chip->oob_poi;
1133         int length = mtd->oobsize;
1134         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1135         int eccsize = chip->ecc.size;
1136         uint8_t *bufpoi = buf;
1137         int i, toread, sndrnd = 0, pos;
1138
1139         chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1140         for (i = 0; i < chip->ecc.steps; i++) {
1141                 if (sndrnd) {
1142                         pos = eccsize + i * (eccsize + chunk);
1143                         if (mtd->writesize > 512)
1144                                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1145                         else
1146                                 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1147                 } else
1148                         sndrnd = 1;
1149                 toread = min_t(int, length, chunk);
1150                 chip->read_buf(mtd, bufpoi, toread);
1151                 bufpoi += toread;
1152                 length -= toread;
1153         }
1154         if (length > 0)
1155                 chip->read_buf(mtd, bufpoi, length);
1156
1157         return 1;
1158 }
1159
1160 /**
1161  * nand_write_oob_std - [REPLACABLE] the most common OOB data write function
1162  * @mtd:        mtd info structure
1163  * @chip:       nand chip info structure
1164  * @page:       page number to write
1165  */
1166 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1167                               int page)
1168 {
1169         int status = 0;
1170         const uint8_t *buf = chip->oob_poi;
1171         int length = mtd->oobsize;
1172
1173         chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1174         chip->write_buf(mtd, buf, length);
1175         /* Send command to program the OOB data */
1176         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1177
1178         status = chip->waitfunc(mtd, chip);
1179
1180         return status & NAND_STATUS_FAIL ? -EIO : 0;
1181 }
1182
1183 /**
1184  * nand_write_oob_syndrome - [REPLACABLE] OOB data write function for HW ECC
1185  *                           with syndrome - only for large page flash !
1186  * @mtd:        mtd info structure
1187  * @chip:       nand chip info structure
1188  * @page:       page number to write
1189  */
1190 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1191                                    struct nand_chip *chip, int page)
1192 {
1193         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1194         int eccsize = chip->ecc.size, length = mtd->oobsize;
1195         int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1196         const uint8_t *bufpoi = chip->oob_poi;
1197
1198         /*
1199          * data-ecc-data-ecc ... ecc-oob
1200          * or
1201          * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1202          */
1203         if (!chip->ecc.prepad && !chip->ecc.postpad) {
1204                 pos = steps * (eccsize + chunk);
1205                 steps = 0;
1206         } else
1207                 pos = eccsize;
1208
1209         chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1210         for (i = 0; i < steps; i++) {
1211                 if (sndcmd) {
1212                         if (mtd->writesize <= 512) {
1213                                 uint32_t fill = 0xFFFFFFFF;
1214
1215                                 len = eccsize;
1216                                 while (len > 0) {
1217                                         int num = min_t(int, len, 4);
1218                                         chip->write_buf(mtd, (uint8_t *)&fill,
1219                                                         num);
1220                                         len -= num;
1221                                 }
1222                         } else {
1223                                 pos = eccsize + i * (eccsize + chunk);
1224                                 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1225                         }
1226                 } else
1227                         sndcmd = 1;
1228                 len = min_t(int, length, chunk);
1229                 chip->write_buf(mtd, bufpoi, len);
1230                 bufpoi += len;
1231                 length -= len;
1232         }
1233         if (length > 0)
1234                 chip->write_buf(mtd, bufpoi, length);
1235
1236         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1237         status = chip->waitfunc(mtd, chip);
1238
1239         return status & NAND_STATUS_FAIL ? -EIO : 0;
1240 }
1241
1242 /**
1243  * nand_do_read_oob - [Intern] NAND read out-of-band
1244  * @mtd:        MTD device structure
1245  * @from:       offset to read from
1246  * @ops:        oob operations description structure
1247  *
1248  * NAND read out-of-band data from the spare area
1249  */
1250 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1251                             struct mtd_oob_ops *ops)
1252 {
1253         int page, realpage, chipnr, sndcmd = 1;
1254         struct nand_chip *chip = mtd->priv;
1255         int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1256         int readlen = ops->len;
1257         uint8_t *buf = ops->oobbuf;
1258
1259         DEBUG(MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08Lx, len = %i\n",
1260               (unsigned long long)from, readlen);
1261
1262         chipnr = (int)(from >> chip->chip_shift);
1263         chip->select_chip(mtd, chipnr);
1264
1265         /* Shift to get page */
1266         realpage = (int)(from >> chip->page_shift);
1267         page = realpage & chip->pagemask;
1268
1269         chip->oob_poi = chip->buffers.oobrbuf;
1270
1271         while(1) {
1272                 sndcmd = chip->ecc.read_oob(mtd, chip, page, sndcmd);
1273                 buf = nand_transfer_oob(chip, buf, ops);
1274
1275                 if (!(chip->options & NAND_NO_READRDY)) {
1276                         /*
1277                          * Apply delay or wait for ready/busy pin. Do this
1278                          * before the AUTOINCR check, so no problems arise if a
1279                          * chip which does auto increment is marked as
1280                          * NOAUTOINCR by the board driver.
1281                          */
1282                         if (!chip->dev_ready)
1283                                 udelay(chip->chip_delay);
1284                         else
1285                                 nand_wait_ready(mtd);
1286                 }
1287
1288                 readlen -= ops->ooblen;
1289                 if (!readlen)
1290                         break;
1291
1292                 /* Increment page address */
1293                 realpage++;
1294
1295                 page = realpage & chip->pagemask;
1296                 /* Check, if we cross a chip boundary */
1297                 if (!page) {
1298                         chipnr++;
1299                         chip->select_chip(mtd, -1);
1300                         chip->select_chip(mtd, chipnr);
1301                 }
1302
1303                 /* Check, if the chip supports auto page increment
1304                  * or if we have hit a block boundary.
1305                  */
1306                 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1307                         sndcmd = 1;
1308         }
1309
1310         ops->retlen = ops->len;
1311         return 0;
1312 }
1313
1314 /**
1315  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1316  * @mtd:        MTD device structure
1317  * @from:       offset to read from
1318  * @ops:        oob operation description structure
1319  *
1320  * NAND read data and/or out-of-band data
1321  */
1322 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1323                          struct mtd_oob_ops *ops)
1324 {
1325         int (*read_page)(struct mtd_info *mtd, struct nand_chip *chip,
1326                          uint8_t *buf) = NULL;
1327         struct nand_chip *chip = mtd->priv;
1328         int ret = -ENOTSUPP;
1329
1330         ops->retlen = 0;
1331
1332         /* Do not allow reads past end of device */
1333         if ((from + ops->len) > mtd->size) {
1334                 DEBUG(MTD_DEBUG_LEVEL0, "nand_read_oob: "
1335                       "Attempt read beyond end of device\n");
1336                 return -EINVAL;
1337         }
1338
1339         nand_get_device(chip, mtd, FL_READING);
1340
1341         switch(ops->mode) {
1342         case MTD_OOB_PLACE:
1343         case MTD_OOB_AUTO:
1344                 break;
1345
1346         case MTD_OOB_RAW:
1347                 /* Replace the read_page algorithm temporary */
1348                 read_page = chip->ecc.read_page;
1349                 chip->ecc.read_page = nand_read_page_raw;
1350                 break;
1351
1352         default:
1353                 goto out;
1354         }
1355
1356         if (!ops->datbuf)
1357                 ret = nand_do_read_oob(mtd, from, ops);
1358         else
1359                 ret = nand_do_read_ops(mtd, from, ops);
1360
1361         if (unlikely(ops->mode == MTD_OOB_RAW))
1362                 chip->ecc.read_page = read_page;
1363  out:
1364         nand_release_device(mtd);
1365         return ret;
1366 }
1367
1368
1369 /**
1370  * nand_write_page_raw - [Intern] raw page write function
1371  * @mtd:        mtd info structure
1372  * @chip:       nand chip info structure
1373  * @buf:        data buffer
1374  */
1375 static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1376                                 const uint8_t *buf)
1377 {
1378         chip->write_buf(mtd, buf, mtd->writesize);
1379         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1380 }
1381
1382 /**
1383  * nand_write_page_swecc - {REPLACABLE] software ecc based page write function
1384  * @mtd:        mtd info structure
1385  * @chip:       nand chip info structure
1386  * @buf:        data buffer
1387  */
1388 static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1389                                   const uint8_t *buf)
1390 {
1391         int i, eccsize = chip->ecc.size;
1392         int eccbytes = chip->ecc.bytes;
1393         int eccsteps = chip->ecc.steps;
1394         uint8_t *ecc_calc = chip->buffers.ecccalc;
1395         const uint8_t *p = buf;
1396         int *eccpos = chip->ecc.layout->eccpos;
1397
1398         /* Software ecc calculation */
1399         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1400                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1401
1402         for (i = 0; i < chip->ecc.total; i++)
1403                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1404
1405         nand_write_page_raw(mtd, chip, buf);
1406 }
1407
1408 /**
1409  * nand_write_page_hwecc - {REPLACABLE] hardware ecc based page write function
1410  * @mtd:        mtd info structure
1411  * @chip:       nand chip info structure
1412  * @buf:        data buffer
1413  */
1414 static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1415                                   const uint8_t *buf)
1416 {
1417         int i, eccsize = chip->ecc.size;
1418         int eccbytes = chip->ecc.bytes;
1419         int eccsteps = chip->ecc.steps;
1420         uint8_t *ecc_calc = chip->buffers.ecccalc;
1421         const uint8_t *p = buf;
1422         int *eccpos = chip->ecc.layout->eccpos;
1423
1424         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1425                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1426                 chip->write_buf(mtd, p, eccsize);
1427                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1428         }
1429
1430         for (i = 0; i < chip->ecc.total; i++)
1431                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1432
1433         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1434 }
1435
1436 /**
1437  * nand_write_page_syndrome - {REPLACABLE] hardware ecc syndrom based page write
1438  * @mtd:        mtd info structure
1439  * @chip:       nand chip info structure
1440  * @buf:        data buffer
1441  *
1442  * The hw generator calculates the error syndrome automatically. Therefor
1443  * we need a special oob layout and handling.
1444  */
1445 static void nand_write_page_syndrome(struct mtd_info *mtd,
1446                                     struct nand_chip *chip, const uint8_t *buf)
1447 {
1448         int i, eccsize = chip->ecc.size;
1449         int eccbytes = chip->ecc.bytes;
1450         int eccsteps = chip->ecc.steps;
1451         const uint8_t *p = buf;
1452         uint8_t *oob = chip->oob_poi;
1453
1454         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1455
1456                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1457                 chip->write_buf(mtd, p, eccsize);
1458
1459                 if (chip->ecc.prepad) {
1460                         chip->write_buf(mtd, oob, chip->ecc.prepad);
1461                         oob += chip->ecc.prepad;
1462                 }
1463
1464                 chip->ecc.calculate(mtd, p, oob);
1465                 chip->write_buf(mtd, oob, eccbytes);
1466                 oob += eccbytes;
1467
1468                 if (chip->ecc.postpad) {
1469                         chip->write_buf(mtd, oob, chip->ecc.postpad);
1470                         oob += chip->ecc.postpad;
1471                 }
1472         }
1473
1474         /* Calculate remaining oob bytes */
1475         i = mtd->oobsize - (oob - chip->oob_poi);
1476         if (i)
1477                 chip->write_buf(mtd, oob, i);
1478 }
1479
1480 /**
1481  * nand_write_page - [INTERNAL] write one page
1482  * @mtd:        MTD device structure
1483  * @chip:       NAND chip descriptor
1484  * @buf:        the data to write
1485  * @page:       page number to write
1486  * @cached:     cached programming
1487  */
1488 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1489                            const uint8_t *buf, int page, int cached)
1490 {
1491         int status;
1492
1493         chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
1494
1495         chip->ecc.write_page(mtd, chip, buf);
1496
1497         /*
1498          * Cached progamming disabled for now, Not sure if its worth the
1499          * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
1500          */
1501         cached = 0;
1502
1503         if (!cached || !(chip->options & NAND_CACHEPRG)) {
1504
1505                 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1506                 status = chip->waitfunc(mtd, chip);
1507                 /*
1508                  * See if operation failed and additional status checks are
1509                  * available
1510                  */
1511                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
1512                         status = chip->errstat(mtd, chip, FL_WRITING, status,
1513                                                page);
1514
1515                 if (status & NAND_STATUS_FAIL)
1516                         return -EIO;
1517         } else {
1518                 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
1519                 status = chip->waitfunc(mtd, chip);
1520         }
1521
1522 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
1523         /* Send command to read back the data */
1524         chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1525
1526         if (chip->verify_buf(mtd, buf, mtd->writesize))
1527                 return -EIO;
1528 #endif
1529         return 0;
1530 }
1531
1532 /**
1533  * nand_fill_oob - [Internal] Transfer client buffer to oob
1534  * @chip:       nand chip structure
1535  * @oob:        oob data buffer
1536  * @ops:        oob ops structure
1537  */
1538 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob,
1539                                   struct mtd_oob_ops *ops)
1540 {
1541         size_t len = ops->ooblen;
1542
1543         switch(ops->mode) {
1544
1545         case MTD_OOB_PLACE:
1546         case MTD_OOB_RAW:
1547                 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
1548                 return oob + len;
1549
1550         case MTD_OOB_AUTO: {
1551                 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1552                 uint32_t boffs = 0, woffs = ops->ooboffs;
1553                 size_t bytes = 0;
1554
1555                 for(; free->length && len; free++, len -= bytes) {
1556                         /* Write request not from offset 0 ? */
1557                         if (unlikely(woffs)) {
1558                                 if (woffs >= free->length) {
1559                                         woffs -= free->length;
1560                                         continue;
1561                                 }
1562                                 boffs = free->offset + woffs;
1563                                 bytes = min_t(size_t, len,
1564                                               (free->length - woffs));
1565                                 woffs = 0;
1566                         } else {
1567                                 bytes = min_t(size_t, len, free->length);
1568                                 boffs = free->offset;
1569                         }
1570                         memcpy(chip->oob_poi + boffs, oob, bytes);
1571                         oob += bytes;
1572                 }
1573                 return oob;
1574         }
1575         default:
1576                 BUG();
1577         }
1578         return NULL;
1579 }
1580
1581 #define NOTALIGNED(x) (x & (mtd->writesize-1)) != 0
1582
1583 /**
1584  * nand_do_write_ops - [Internal] NAND write with ECC
1585  * @mtd:        MTD device structure
1586  * @to:         offset to write to
1587  * @ops:        oob operations description structure
1588  *
1589  * NAND write with ECC
1590  */
1591 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
1592                              struct mtd_oob_ops *ops)
1593 {
1594         int chipnr, realpage, page, blockmask;
1595         struct nand_chip *chip = mtd->priv;
1596         uint32_t writelen = ops->len;
1597         uint8_t *oob = ops->oobbuf;
1598         uint8_t *buf = ops->datbuf;
1599         int bytes = mtd->writesize;
1600         int ret;
1601
1602         ops->retlen = 0;
1603
1604         /* reject writes, which are not page aligned */
1605         if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
1606                 printk(KERN_NOTICE "nand_write: "
1607                        "Attempt to write not page aligned data\n");
1608                 return -EINVAL;
1609         }
1610
1611         if (!writelen)
1612                 return 0;
1613
1614         chipnr = (int)(to >> chip->chip_shift);
1615         chip->select_chip(mtd, chipnr);
1616
1617         /* Check, if it is write protected */
1618         if (nand_check_wp(mtd))
1619                 return -EIO;
1620
1621         realpage = (int)(to >> chip->page_shift);
1622         page = realpage & chip->pagemask;
1623         blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1624
1625         /* Invalidate the page cache, when we write to the cached page */
1626         if (to <= (chip->pagebuf << chip->page_shift) &&
1627             (chip->pagebuf << chip->page_shift) < (to + ops->len))
1628                 chip->pagebuf = -1;
1629
1630         chip->oob_poi = chip->buffers.oobwbuf;
1631
1632         while(1) {
1633                 int cached = writelen > bytes && page != blockmask;
1634
1635                 if (unlikely(oob))
1636                         oob = nand_fill_oob(chip, oob, ops);
1637
1638                 ret = nand_write_page(mtd, chip, buf, page, cached);
1639                 if (ret)
1640                         break;
1641
1642                 writelen -= bytes;
1643                 if (!writelen)
1644                         break;
1645
1646                 buf += bytes;
1647                 realpage++;
1648
1649                 page = realpage & chip->pagemask;
1650                 /* Check, if we cross a chip boundary */
1651                 if (!page) {
1652                         chipnr++;
1653                         chip->select_chip(mtd, -1);
1654                         chip->select_chip(mtd, chipnr);
1655                 }
1656         }
1657
1658         if (unlikely(oob))
1659                 memset(chip->oob_poi, 0xff, mtd->oobsize);
1660
1661         ops->retlen = ops->len - writelen;
1662         return ret;
1663 }
1664
1665 /**
1666  * nand_write - [MTD Interface] NAND write with ECC
1667  * @mtd:        MTD device structure
1668  * @to:         offset to write to
1669  * @len:        number of bytes to write
1670  * @retlen:     pointer to variable to store the number of written bytes
1671  * @buf:        the data to write
1672  *
1673  * NAND write with ECC
1674  */
1675 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
1676                           size_t *retlen, const uint8_t *buf)
1677 {
1678         struct nand_chip *chip = mtd->priv;
1679         int ret;
1680
1681         /* Do not allow reads past end of device */
1682         if ((to + len) > mtd->size)
1683                 return -EINVAL;
1684         if (!len)
1685                 return 0;
1686
1687         nand_get_device(chip, mtd, FL_WRITING);
1688
1689         chip->ops.len = len;
1690         chip->ops.datbuf = (uint8_t *)buf;
1691         chip->ops.oobbuf = NULL;
1692
1693         ret = nand_do_write_ops(mtd, to, &chip->ops);
1694
1695         *retlen = chip->ops.retlen;
1696
1697         nand_release_device(mtd);
1698
1699         return ret;
1700 }
1701
1702 /**
1703  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
1704  * @mtd:        MTD device structure
1705  * @to:         offset to write to
1706  * @ops:        oob operation description structure
1707  *
1708  * NAND write out-of-band
1709  */
1710 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
1711                              struct mtd_oob_ops *ops)
1712 {
1713         int chipnr, page, status;
1714         struct nand_chip *chip = mtd->priv;
1715
1716         DEBUG(MTD_DEBUG_LEVEL3, "nand_write_oob: to = 0x%08x, len = %i\n",
1717               (unsigned int)to, (int)ops->len);
1718
1719         /* Do not allow write past end of page */
1720         if ((ops->ooboffs + ops->len) > mtd->oobsize) {
1721                 DEBUG(MTD_DEBUG_LEVEL0, "nand_write_oob: "
1722                       "Attempt to write past end of page\n");
1723                 return -EINVAL;
1724         }
1725
1726         chipnr = (int)(to >> chip->chip_shift);
1727         chip->select_chip(mtd, chipnr);
1728
1729         /* Shift to get page */
1730         page = (int)(to >> chip->page_shift);
1731
1732         /*
1733          * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
1734          * of my DiskOnChip 2000 test units) will clear the whole data page too
1735          * if we don't do this. I have no clue why, but I seem to have 'fixed'
1736          * it in the doc2000 driver in August 1999.  dwmw2.
1737          */
1738         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1739
1740         /* Check, if it is write protected */
1741         if (nand_check_wp(mtd))
1742                 return -EROFS;
1743
1744         /* Invalidate the page cache, if we write to the cached page */
1745         if (page == chip->pagebuf)
1746                 chip->pagebuf = -1;
1747
1748         chip->oob_poi = chip->buffers.oobwbuf;
1749         memset(chip->oob_poi, 0xff, mtd->oobsize);
1750         nand_fill_oob(chip, ops->oobbuf, ops);
1751         status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
1752         memset(chip->oob_poi, 0xff, mtd->oobsize);
1753
1754         if (status)
1755                 return status;
1756
1757         ops->retlen = ops->len;
1758
1759         return 0;
1760 }
1761
1762 /**
1763  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
1764  * @mtd:        MTD device structure
1765  * @to:         offset to write to
1766  * @ops:        oob operation description structure
1767  */
1768 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
1769                           struct mtd_oob_ops *ops)
1770 {
1771         void (*write_page)(struct mtd_info *mtd, struct nand_chip *chip,
1772                           const uint8_t *buf) = NULL;
1773         struct nand_chip *chip = mtd->priv;
1774         int ret = -ENOTSUPP;
1775
1776         ops->retlen = 0;
1777
1778         /* Do not allow writes past end of device */
1779         if ((to + ops->len) > mtd->size) {
1780                 DEBUG(MTD_DEBUG_LEVEL0, "nand_read_oob: "
1781                       "Attempt read beyond end of device\n");
1782                 return -EINVAL;
1783         }
1784
1785         nand_get_device(chip, mtd, FL_WRITING);
1786
1787         switch(ops->mode) {
1788         case MTD_OOB_PLACE:
1789         case MTD_OOB_AUTO:
1790                 break;
1791
1792         case MTD_OOB_RAW:
1793                 /* Replace the write_page algorithm temporary */
1794                 write_page = chip->ecc.write_page;
1795                 chip->ecc.write_page = nand_write_page_raw;
1796                 break;
1797
1798         default:
1799                 goto out;
1800         }
1801
1802         if (!ops->datbuf)
1803                 ret = nand_do_write_oob(mtd, to, ops);
1804         else
1805                 ret = nand_do_write_ops(mtd, to, ops);
1806
1807         if (unlikely(ops->mode == MTD_OOB_RAW))
1808                 chip->ecc.write_page = write_page;
1809  out:
1810         nand_release_device(mtd);
1811         return ret;
1812 }
1813
1814 /**
1815  * single_erease_cmd - [GENERIC] NAND standard block erase command function
1816  * @mtd:        MTD device structure
1817  * @page:       the page address of the block which will be erased
1818  *
1819  * Standard erase command for NAND chips
1820  */
1821 static void single_erase_cmd(struct mtd_info *mtd, int page)
1822 {
1823         struct nand_chip *chip = mtd->priv;
1824         /* Send commands to erase a block */
1825         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
1826         chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1827 }
1828
1829 /**
1830  * multi_erease_cmd - [GENERIC] AND specific block erase command function
1831  * @mtd:        MTD device structure
1832  * @page:       the page address of the block which will be erased
1833  *
1834  * AND multi block erase command function
1835  * Erase 4 consecutive blocks
1836  */
1837 static void multi_erase_cmd(struct mtd_info *mtd, int page)
1838 {
1839         struct nand_chip *chip = mtd->priv;
1840         /* Send commands to erase a block */
1841         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
1842         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
1843         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
1844         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
1845         chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1846 }
1847
1848 /**
1849  * nand_erase - [MTD Interface] erase block(s)
1850  * @mtd:        MTD device structure
1851  * @instr:      erase instruction
1852  *
1853  * Erase one ore more blocks
1854  */
1855 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
1856 {
1857         return nand_erase_nand(mtd, instr, 0);
1858 }
1859
1860 #define BBT_PAGE_MASK   0xffffff3f
1861 /**
1862  * nand_erase_nand - [Internal] erase block(s)
1863  * @mtd:        MTD device structure
1864  * @instr:      erase instruction
1865  * @allowbbt:   allow erasing the bbt area
1866  *
1867  * Erase one ore more blocks
1868  */
1869 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
1870                     int allowbbt)
1871 {
1872         int page, len, status, pages_per_block, ret, chipnr;
1873         struct nand_chip *chip = mtd->priv;
1874         int rewrite_bbt[NAND_MAX_CHIPS]={0};
1875         unsigned int bbt_masked_page = 0xffffffff;
1876
1877         DEBUG(MTD_DEBUG_LEVEL3, "nand_erase: start = 0x%08x, len = %i\n",
1878               (unsigned int)instr->addr, (unsigned int)instr->len);
1879
1880         /* Start address must align on block boundary */
1881         if (instr->addr & ((1 << chip->phys_erase_shift) - 1)) {
1882                 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: Unaligned address\n");
1883                 return -EINVAL;
1884         }
1885
1886         /* Length must align on block boundary */
1887         if (instr->len & ((1 << chip->phys_erase_shift) - 1)) {
1888                 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
1889                       "Length not block aligned\n");
1890                 return -EINVAL;
1891         }
1892
1893         /* Do not allow erase past end of device */
1894         if ((instr->len + instr->addr) > mtd->size) {
1895                 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
1896                       "Erase past end of device\n");
1897                 return -EINVAL;
1898         }
1899
1900         instr->fail_addr = 0xffffffff;
1901
1902         /* Grab the lock and see if the device is available */
1903         nand_get_device(chip, mtd, FL_ERASING);
1904
1905         /* Shift to get first page */
1906         page = (int)(instr->addr >> chip->page_shift);
1907         chipnr = (int)(instr->addr >> chip->chip_shift);
1908
1909         /* Calculate pages in each block */
1910         pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
1911
1912         /* Select the NAND device */
1913         chip->select_chip(mtd, chipnr);
1914
1915         /* Check, if it is write protected */
1916         if (nand_check_wp(mtd)) {
1917                 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
1918                       "Device is write protected!!!\n");
1919                 instr->state = MTD_ERASE_FAILED;
1920                 goto erase_exit;
1921         }
1922
1923         /*
1924          * If BBT requires refresh, set the BBT page mask to see if the BBT
1925          * should be rewritten. Otherwise the mask is set to 0xffffffff which
1926          * can not be matched. This is also done when the bbt is actually
1927          * erased to avoid recusrsive updates
1928          */
1929         if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
1930                 bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
1931
1932         /* Loop through the pages */
1933         len = instr->len;
1934
1935         instr->state = MTD_ERASING;
1936
1937         while (len) {
1938                 /*
1939                  * heck if we have a bad block, we do not erase bad blocks !
1940                  */
1941                 if (nand_block_checkbad(mtd, ((loff_t) page) <<
1942                                         chip->page_shift, 0, allowbbt)) {
1943                         printk(KERN_WARNING "nand_erase: attempt to erase a "
1944                                "bad block at page 0x%08x\n", page);
1945                         instr->state = MTD_ERASE_FAILED;
1946                         goto erase_exit;
1947                 }
1948
1949                 /*
1950                  * Invalidate the page cache, if we erase the block which
1951                  * contains the current cached page
1952                  */
1953                 if (page <= chip->pagebuf && chip->pagebuf <
1954                     (page + pages_per_block))
1955                         chip->pagebuf = -1;
1956
1957                 chip->erase_cmd(mtd, page & chip->pagemask);
1958
1959                 status = chip->waitfunc(mtd, chip);
1960
1961                 /*
1962                  * See if operation failed and additional status checks are
1963                  * available
1964                  */
1965                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
1966                         status = chip->errstat(mtd, chip, FL_ERASING,
1967                                                status, page);
1968
1969                 /* See if block erase succeeded */
1970                 if (status & NAND_STATUS_FAIL) {
1971                         DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
1972                               "Failed erase, page 0x%08x\n", page);
1973                         instr->state = MTD_ERASE_FAILED;
1974                         instr->fail_addr = (page << chip->page_shift);
1975                         goto erase_exit;
1976                 }
1977
1978                 /*
1979                  * If BBT requires refresh, set the BBT rewrite flag to the
1980                  * page being erased
1981                  */
1982                 if (bbt_masked_page != 0xffffffff &&
1983                     (page & BBT_PAGE_MASK) == bbt_masked_page)
1984                             rewrite_bbt[chipnr] = (page << chip->page_shift);
1985
1986                 /* Increment page address and decrement length */
1987                 len -= (1 << chip->phys_erase_shift);
1988                 page += pages_per_block;
1989
1990                 /* Check, if we cross a chip boundary */
1991                 if (len && !(page & chip->pagemask)) {
1992                         chipnr++;
1993                         chip->select_chip(mtd, -1);
1994                         chip->select_chip(mtd, chipnr);
1995
1996                         /*
1997                          * If BBT requires refresh and BBT-PERCHIP, set the BBT
1998                          * page mask to see if this BBT should be rewritten
1999                          */
2000                         if (bbt_masked_page != 0xffffffff &&
2001                             (chip->bbt_td->options & NAND_BBT_PERCHIP))
2002                                 bbt_masked_page = chip->bbt_td->pages[chipnr] &
2003                                         BBT_PAGE_MASK;
2004                 }
2005         }
2006         instr->state = MTD_ERASE_DONE;
2007
2008  erase_exit:
2009
2010         ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2011         /* Do call back function */
2012         if (!ret)
2013                 mtd_erase_callback(instr);
2014
2015         /* Deselect and wake up anyone waiting on the device */
2016         nand_release_device(mtd);
2017
2018         /*
2019          * If BBT requires refresh and erase was successful, rewrite any
2020          * selected bad block tables
2021          */
2022         if (bbt_masked_page == 0xffffffff || ret)
2023                 return ret;
2024
2025         for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2026                 if (!rewrite_bbt[chipnr])
2027                         continue;
2028                 /* update the BBT for chip */
2029                 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase_nand: nand_update_bbt "
2030                       "(%d:0x%0x 0x%0x)\n", chipnr, rewrite_bbt[chipnr],
2031                       chip->bbt_td->pages[chipnr]);
2032                 nand_update_bbt(mtd, rewrite_bbt[chipnr]);
2033         }
2034
2035         /* Return more or less happy */
2036         return ret;
2037 }
2038
2039 /**
2040  * nand_sync - [MTD Interface] sync
2041  * @mtd:        MTD device structure
2042  *
2043  * Sync is actually a wait for chip ready function
2044  */
2045 static void nand_sync(struct mtd_info *mtd)
2046 {
2047         struct nand_chip *chip = mtd->priv;
2048
2049         DEBUG(MTD_DEBUG_LEVEL3, "nand_sync: called\n");
2050
2051         /* Grab the lock and see if the device is available */
2052         nand_get_device(chip, mtd, FL_SYNCING);
2053         /* Release it and go back */
2054         nand_release_device(mtd);
2055 }
2056
2057 /**
2058  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2059  * @mtd:        MTD device structure
2060  * @offs:       offset relative to mtd start
2061  */
2062 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2063 {
2064         /* Check for invalid offset */
2065         if (offs > mtd->size)
2066                 return -EINVAL;
2067
2068         return nand_block_checkbad(mtd, offs, 1, 0);
2069 }
2070
2071 /**
2072  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2073  * @mtd:        MTD device structure
2074  * @ofs:        offset relative to mtd start
2075  */
2076 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2077 {
2078         struct nand_chip *chip = mtd->priv;
2079         int ret;
2080
2081         if ((ret = nand_block_isbad(mtd, ofs))) {
2082                 /* If it was bad already, return success and do nothing. */
2083                 if (ret > 0)
2084                         return 0;
2085                 return ret;
2086         }
2087
2088         return chip->block_markbad(mtd, ofs);
2089 }
2090
2091 /**
2092  * nand_suspend - [MTD Interface] Suspend the NAND flash
2093  * @mtd:        MTD device structure
2094  */
2095 static int nand_suspend(struct mtd_info *mtd)
2096 {
2097         struct nand_chip *chip = mtd->priv;
2098
2099         return nand_get_device(chip, mtd, FL_PM_SUSPENDED);
2100 }
2101
2102 /**
2103  * nand_resume - [MTD Interface] Resume the NAND flash
2104  * @mtd:        MTD device structure
2105  */
2106 static void nand_resume(struct mtd_info *mtd)
2107 {
2108         struct nand_chip *chip = mtd->priv;
2109
2110         if (chip->state == FL_PM_SUSPENDED)
2111                 nand_release_device(mtd);
2112         else
2113                 printk(KERN_ERR "nand_resume() called for a chip which is not "
2114                        "in suspended state\n");
2115 }
2116
2117 /*
2118  * Set default functions
2119  */
2120 static void nand_set_defaults(struct nand_chip *chip, int busw)
2121 {
2122         /* check for proper chip_delay setup, set 20us if not */
2123         if (!chip->chip_delay)
2124                 chip->chip_delay = 20;
2125
2126         /* check, if a user supplied command function given */
2127         if (chip->cmdfunc == NULL)
2128                 chip->cmdfunc = nand_command;
2129
2130         /* check, if a user supplied wait function given */
2131         if (chip->waitfunc == NULL)
2132                 chip->waitfunc = nand_wait;
2133
2134         if (!chip->select_chip)
2135                 chip->select_chip = nand_select_chip;
2136         if (!chip->read_byte)
2137                 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2138         if (!chip->read_word)
2139                 chip->read_word = nand_read_word;
2140         if (!chip->block_bad)
2141                 chip->block_bad = nand_block_bad;
2142         if (!chip->block_markbad)
2143                 chip->block_markbad = nand_default_block_markbad;
2144         if (!chip->write_buf)
2145                 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2146         if (!chip->read_buf)
2147                 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2148         if (!chip->verify_buf)
2149                 chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2150         if (!chip->scan_bbt)
2151                 chip->scan_bbt = nand_default_bbt;
2152
2153         if (!chip->controller) {
2154                 chip->controller = &chip->hwcontrol;
2155                 spin_lock_init(&chip->controller->lock);
2156                 init_waitqueue_head(&chip->controller->wq);
2157         }
2158
2159 }
2160
2161 /*
2162  * Get the flash and manufacturer id and lookup if the type is supported
2163  */
2164 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
2165                                                   struct nand_chip *chip,
2166                                                   int busw, int *maf_id)
2167 {
2168         struct nand_flash_dev *type = NULL;
2169         int i, dev_id, maf_idx;
2170
2171         /* Select the device */
2172         chip->select_chip(mtd, 0);
2173
2174         /* Send the command for reading device ID */
2175         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2176
2177         /* Read manufacturer and device IDs */
2178         *maf_id = chip->read_byte(mtd);
2179         dev_id = chip->read_byte(mtd);
2180
2181         /* Lookup the flash id */
2182         for (i = 0; nand_flash_ids[i].name != NULL; i++) {
2183                 if (dev_id == nand_flash_ids[i].id) {
2184                         type =  &nand_flash_ids[i];
2185                         break;
2186                 }
2187         }
2188
2189         if (!type)
2190                 return ERR_PTR(-ENODEV);
2191
2192         if (!mtd->name)
2193                 mtd->name = type->name;
2194
2195         chip->chipsize = type->chipsize << 20;
2196
2197         /* Newer devices have all the information in additional id bytes */
2198         if (!type->pagesize) {
2199                 int extid;
2200                 /* The 3rd id byte contains non relevant data ATM */
2201                 extid = chip->read_byte(mtd);
2202                 /* The 4th id byte is the important one */
2203                 extid = chip->read_byte(mtd);
2204                 /* Calc pagesize */
2205                 mtd->writesize = 1024 << (extid & 0x3);
2206                 extid >>= 2;
2207                 /* Calc oobsize */
2208                 mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
2209                 extid >>= 2;
2210                 /* Calc blocksize. Blocksize is multiples of 64KiB */
2211                 mtd->erasesize = (64 * 1024) << (extid & 0x03);
2212                 extid >>= 2;
2213                 /* Get buswidth information */
2214                 busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
2215
2216         } else {
2217                 /*
2218                  * Old devices have chip data hardcoded in the device id table
2219                  */
2220                 mtd->erasesize = type->erasesize;
2221                 mtd->writesize = type->pagesize;
2222                 mtd->oobsize = mtd->writesize / 32;
2223                 busw = type->options & NAND_BUSWIDTH_16;
2224         }
2225
2226         /* Try to identify manufacturer */
2227         for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
2228                 if (nand_manuf_ids[maf_idx].id == *maf_id)
2229                         break;
2230         }
2231
2232         /*
2233          * Check, if buswidth is correct. Hardware drivers should set
2234          * chip correct !
2235          */
2236         if (busw != (chip->options & NAND_BUSWIDTH_16)) {
2237                 printk(KERN_INFO "NAND device: Manufacturer ID:"
2238                        " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
2239                        dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
2240                 printk(KERN_WARNING "NAND bus width %d instead %d bit\n",
2241                        (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
2242                        busw ? 16 : 8);
2243                 return ERR_PTR(-EINVAL);
2244         }
2245
2246         /* Calculate the address shift from the page size */
2247         chip->page_shift = ffs(mtd->writesize) - 1;
2248         /* Convert chipsize to number of pages per chip -1. */
2249         chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2250
2251         chip->bbt_erase_shift = chip->phys_erase_shift =
2252                 ffs(mtd->erasesize) - 1;
2253         chip->chip_shift = ffs(chip->chipsize) - 1;
2254
2255         /* Set the bad block position */
2256         chip->badblockpos = mtd->writesize > 512 ?
2257                 NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;
2258
2259         /* Get chip options, preserve non chip based options */
2260         chip->options &= ~NAND_CHIPOPTIONS_MSK;
2261         chip->options |= type->options & NAND_CHIPOPTIONS_MSK;
2262
2263         /*
2264          * Set chip as a default. Board drivers can override it, if necessary
2265          */
2266         chip->options |= NAND_NO_AUTOINCR;
2267
2268         /* Check if chip is a not a samsung device. Do not clear the
2269          * options for chips which are not having an extended id.
2270          */
2271         if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
2272                 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
2273
2274         /* Check for AND chips with 4 page planes */
2275         if (chip->options & NAND_4PAGE_ARRAY)
2276                 chip->erase_cmd = multi_erase_cmd;
2277         else
2278                 chip->erase_cmd = single_erase_cmd;
2279
2280         /* Do not replace user supplied command function ! */
2281         if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
2282                 chip->cmdfunc = nand_command_lp;
2283
2284         printk(KERN_INFO "NAND device: Manufacturer ID:"
2285                " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, dev_id,
2286                nand_manuf_ids[maf_idx].name, type->name);
2287
2288         return type;
2289 }
2290
2291 /* module_text_address() isn't exported, and it's mostly a pointless
2292    test if this is a module _anyway_ -- they'd have to try _really_ hard
2293    to call us from in-kernel code if the core NAND support is modular. */
2294 #ifdef MODULE
2295 #define caller_is_module() (1)
2296 #else
2297 #define caller_is_module() \
2298         module_text_address((unsigned long)__builtin_return_address(0))
2299 #endif
2300
2301 /**
2302  * nand_scan - [NAND Interface] Scan for the NAND device
2303  * @mtd:        MTD device structure
2304  * @maxchips:   Number of chips to scan for
2305  *
2306  * This fills out all the uninitialized function pointers
2307  * with the defaults.
2308  * The flash ID is read and the mtd/chip structures are
2309  * filled with the appropriate values.
2310  * The mtd->owner field must be set to the module of the caller
2311  *
2312  */
2313 int nand_scan(struct mtd_info *mtd, int maxchips)
2314 {
2315         int i, busw, nand_maf_id;
2316         struct nand_chip *chip = mtd->priv;
2317         struct nand_flash_dev *type;
2318
2319         /* Many callers got this wrong, so check for it for a while... */
2320         if (!mtd->owner && caller_is_module()) {
2321                 printk(KERN_CRIT "nand_scan() called with NULL mtd->owner!\n");
2322                 BUG();
2323         }
2324
2325         /* Get buswidth to select the correct functions */
2326         busw = chip->options & NAND_BUSWIDTH_16;
2327         /* Set the default functions */
2328         nand_set_defaults(chip, busw);
2329
2330         /* Read the flash type */
2331         type = nand_get_flash_type(mtd, chip, busw, &nand_maf_id);
2332
2333         if (IS_ERR(type)) {
2334                 printk(KERN_WARNING "No NAND device found!!!\n");
2335                 chip->select_chip(mtd, -1);
2336                 return PTR_ERR(type);
2337         }
2338
2339         /* Check for a chip array */
2340         for (i = 1; i < maxchips; i++) {
2341                 chip->select_chip(mtd, i);
2342                 /* Send the command for reading device ID */
2343                 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2344                 /* Read manufacturer and device IDs */
2345                 if (nand_maf_id != chip->read_byte(mtd) ||
2346                     type->id != chip->read_byte(mtd))
2347                         break;
2348         }
2349         if (i > 1)
2350                 printk(KERN_INFO "%d NAND chips detected\n", i);
2351
2352         /* Store the number of chips and calc total size for mtd */
2353         chip->numchips = i;
2354         mtd->size = i * chip->chipsize;
2355
2356         /* Preset the internal oob write buffer */
2357         memset(chip->buffers.oobwbuf, 0xff, mtd->oobsize);
2358
2359         /*
2360          * If no default placement scheme is given, select an appropriate one
2361          */
2362         if (!chip->ecc.layout) {
2363                 switch (mtd->oobsize) {
2364                 case 8:
2365                         chip->ecc.layout = &nand_oob_8;
2366                         break;
2367                 case 16:
2368                         chip->ecc.layout = &nand_oob_16;
2369                         break;
2370                 case 64:
2371                         chip->ecc.layout = &nand_oob_64;
2372                         break;
2373                 default:
2374                         printk(KERN_WARNING "No oob scheme defined for "
2375                                "oobsize %d\n", mtd->oobsize);
2376                         BUG();
2377                 }
2378         }
2379
2380         /*
2381          * check ECC mode, default to software if 3byte/512byte hardware ECC is
2382          * selected and we have 256 byte pagesize fallback to software ECC
2383          */
2384         switch (chip->ecc.mode) {
2385         case NAND_ECC_HW:
2386                 /* Use standard hwecc read page function ? */
2387                 if (!chip->ecc.read_page)
2388                         chip->ecc.read_page = nand_read_page_hwecc;
2389                 if (!chip->ecc.write_page)
2390                         chip->ecc.write_page = nand_write_page_hwecc;
2391                 if (!chip->ecc.read_oob)
2392                         chip->ecc.read_oob = nand_read_oob_std;
2393                 if (!chip->ecc.write_oob)
2394                         chip->ecc.write_oob = nand_write_oob_std;
2395
2396         case NAND_ECC_HW_SYNDROME:
2397                 if (!chip->ecc.calculate || !chip->ecc.correct ||
2398                     !chip->ecc.hwctl) {
2399                         printk(KERN_WARNING "No ECC functions supplied, "
2400                                "Hardware ECC not possible\n");
2401                         BUG();
2402                 }
2403                 /* Use standard syndrome read/write page function ? */
2404                 if (!chip->ecc.read_page)
2405                         chip->ecc.read_page = nand_read_page_syndrome;
2406                 if (!chip->ecc.write_page)
2407                         chip->ecc.write_page = nand_write_page_syndrome;
2408                 if (!chip->ecc.read_oob)
2409                         chip->ecc.read_oob = nand_read_oob_syndrome;
2410                 if (!chip->ecc.write_oob)
2411                         chip->ecc.write_oob = nand_write_oob_syndrome;
2412
2413                 if (mtd->writesize >= chip->ecc.size)
2414                         break;
2415                 printk(KERN_WARNING "%d byte HW ECC not possible on "
2416                        "%d byte page size, fallback to SW ECC\n",
2417                        chip->ecc.size, mtd->writesize);
2418                 chip->ecc.mode = NAND_ECC_SOFT;
2419
2420         case NAND_ECC_SOFT:
2421                 chip->ecc.calculate = nand_calculate_ecc;
2422                 chip->ecc.correct = nand_correct_data;
2423                 chip->ecc.read_page = nand_read_page_swecc;
2424                 chip->ecc.write_page = nand_write_page_swecc;
2425                 chip->ecc.read_oob = nand_read_oob_std;
2426                 chip->ecc.write_oob = nand_write_oob_std;
2427                 chip->ecc.size = 256;
2428                 chip->ecc.bytes = 3;
2429                 break;
2430
2431         case NAND_ECC_NONE:
2432                 printk(KERN_WARNING "NAND_ECC_NONE selected by board driver. "
2433                        "This is not recommended !!\n");
2434                 chip->ecc.read_page = nand_read_page_raw;
2435                 chip->ecc.write_page = nand_write_page_raw;
2436                 chip->ecc.read_oob = nand_read_oob_std;
2437                 chip->ecc.write_oob = nand_write_oob_std;
2438                 chip->ecc.size = mtd->writesize;
2439                 chip->ecc.bytes = 0;
2440                 break;
2441         default:
2442                 printk(KERN_WARNING "Invalid NAND_ECC_MODE %d\n",
2443                        chip->ecc.mode);
2444                 BUG();
2445         }
2446
2447         /*
2448          * The number of bytes available for a client to place data into
2449          * the out of band area
2450          */
2451         chip->ecc.layout->oobavail = 0;
2452         for (i = 0; chip->ecc.layout->oobfree[i].length; i++)
2453                 chip->ecc.layout->oobavail +=
2454                         chip->ecc.layout->oobfree[i].length;
2455
2456         /*
2457          * Set the number of read / write steps for one page depending on ECC
2458          * mode
2459          */
2460         chip->ecc.steps = mtd->writesize / chip->ecc.size;
2461         if(chip->ecc.steps * chip->ecc.size != mtd->writesize) {
2462                 printk(KERN_WARNING "Invalid ecc parameters\n");
2463                 BUG();
2464         }
2465         chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
2466
2467         /* Initialize state */
2468         chip->state = FL_READY;
2469
2470         /* De-select the device */
2471         chip->select_chip(mtd, -1);
2472
2473         /* Invalidate the pagebuffer reference */
2474         chip->pagebuf = -1;
2475
2476         /* Fill in remaining MTD driver data */
2477         mtd->type = MTD_NANDFLASH;
2478         mtd->flags = MTD_CAP_NANDFLASH;
2479         mtd->ecctype = MTD_ECC_SW;
2480         mtd->erase = nand_erase;
2481         mtd->point = NULL;
2482         mtd->unpoint = NULL;
2483         mtd->read = nand_read;
2484         mtd->write = nand_write;
2485         mtd->read_oob = nand_read_oob;
2486         mtd->write_oob = nand_write_oob;
2487         mtd->sync = nand_sync;
2488         mtd->lock = NULL;
2489         mtd->unlock = NULL;
2490         mtd->suspend = nand_suspend;
2491         mtd->resume = nand_resume;
2492         mtd->block_isbad = nand_block_isbad;
2493         mtd->block_markbad = nand_block_markbad;
2494
2495         /* propagate ecc.layout to mtd_info */
2496         mtd->ecclayout = chip->ecc.layout;
2497
2498         /* Check, if we should skip the bad block table scan */
2499         if (chip->options & NAND_SKIP_BBTSCAN)
2500                 return 0;
2501
2502         /* Build bad block table */
2503         return chip->scan_bbt(mtd);
2504 }
2505
2506 /**
2507  * nand_release - [NAND Interface] Free resources held by the NAND device
2508  * @mtd:        MTD device structure
2509 */
2510 void nand_release(struct mtd_info *mtd)
2511 {
2512         struct nand_chip *chip = mtd->priv;
2513
2514 #ifdef CONFIG_MTD_PARTITIONS
2515         /* Deregister partitions */
2516         del_mtd_partitions(mtd);
2517 #endif
2518         /* Deregister the device */
2519         del_mtd_device(mtd);
2520
2521         /* Free bad block table memory */
2522         kfree(chip->bbt);
2523 }
2524
2525 EXPORT_SYMBOL_GPL(nand_scan);
2526 EXPORT_SYMBOL_GPL(nand_release);
2527
2528 static int __init nand_base_init(void)
2529 {
2530         led_trigger_register_simple("nand-disk", &nand_led_trigger);
2531         return 0;
2532 }
2533
2534 static void __exit nand_base_exit(void)
2535 {
2536         led_trigger_unregister_simple(nand_led_trigger);
2537 }
2538
2539 module_init(nand_base_init);
2540 module_exit(nand_base_exit);
2541
2542 MODULE_LICENSE("GPL");
2543 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
2544 MODULE_DESCRIPTION("Generic NAND flash driver code");