Merge git://git.kernel.org/pub/scm/linux/kernel/git/steve/gfs2-2.6-fixes
[pandora-kernel.git] / drivers / mtd / nand / fsl_elbc_nand.c
1 /* Freescale Enhanced Local Bus Controller NAND driver
2  *
3  * Copyright (c) 2006-2007 Freescale Semiconductor
4  *
5  * Authors: Nick Spence <nick.spence@freescale.com>,
6  *          Scott Wood <scottwood@freescale.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  */
22
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/ioport.h>
29 #include <linux/of_platform.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32
33 #include <linux/mtd/mtd.h>
34 #include <linux/mtd/nand.h>
35 #include <linux/mtd/nand_ecc.h>
36 #include <linux/mtd/partitions.h>
37
38 #include <asm/io.h>
39 #include <asm/fsl_lbc.h>
40
41 #define MAX_BANKS 8
42 #define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
43 #define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
44
45 struct fsl_elbc_ctrl;
46
47 /* mtd information per set */
48
49 struct fsl_elbc_mtd {
50         struct mtd_info mtd;
51         struct nand_chip chip;
52         struct fsl_elbc_ctrl *ctrl;
53
54         struct device *dev;
55         int bank;               /* Chip select bank number           */
56         u8 __iomem *vbase;      /* Chip select base virtual address  */
57         int page_size;          /* NAND page size (0=512, 1=2048)    */
58         unsigned int fmr;       /* FCM Flash Mode Register value     */
59 };
60
61 /* overview of the fsl elbc controller */
62
63 struct fsl_elbc_ctrl {
64         struct nand_hw_control controller;
65         struct fsl_elbc_mtd *chips[MAX_BANKS];
66
67         /* device info */
68         struct device *dev;
69         struct fsl_lbc_regs __iomem *regs;
70         int irq;
71         wait_queue_head_t irq_wait;
72         unsigned int irq_status; /* status read from LTESR by irq handler */
73         u8 __iomem *addr;        /* Address of assigned FCM buffer        */
74         unsigned int page;       /* Last page written to / read from      */
75         unsigned int read_bytes; /* Number of bytes read during command   */
76         unsigned int column;     /* Saved column from SEQIN               */
77         unsigned int index;      /* Pointer to next byte to 'read'        */
78         unsigned int status;     /* status read from LTESR after last op  */
79         unsigned int mdr;        /* UPM/FCM Data Register value           */
80         unsigned int use_mdr;    /* Non zero if the MDR is to be set      */
81         unsigned int oob;        /* Non zero if operating on OOB data     */
82         char *oob_poi;           /* Place to write ECC after read back    */
83 };
84
85 /* These map to the positions used by the FCM hardware ECC generator */
86
87 /* Small Page FLASH with FMR[ECCM] = 0 */
88 static struct nand_ecclayout fsl_elbc_oob_sp_eccm0 = {
89         .eccbytes = 3,
90         .eccpos = {6, 7, 8},
91         .oobfree = { {0, 5}, {9, 7} },
92 };
93
94 /* Small Page FLASH with FMR[ECCM] = 1 */
95 static struct nand_ecclayout fsl_elbc_oob_sp_eccm1 = {
96         .eccbytes = 3,
97         .eccpos = {8, 9, 10},
98         .oobfree = { {0, 5}, {6, 2}, {11, 5} },
99 };
100
101 /* Large Page FLASH with FMR[ECCM] = 0 */
102 static struct nand_ecclayout fsl_elbc_oob_lp_eccm0 = {
103         .eccbytes = 12,
104         .eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56},
105         .oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} },
106 };
107
108 /* Large Page FLASH with FMR[ECCM] = 1 */
109 static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = {
110         .eccbytes = 12,
111         .eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
112         .oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} },
113 };
114
115 /*
116  * fsl_elbc_oob_lp_eccm* specify that LP NAND's OOB free area starts at offset
117  * 1, so we have to adjust bad block pattern. This pattern should be used for
118  * x8 chips only. So far hardware does not support x16 chips anyway.
119  */
120 static u8 scan_ff_pattern[] = { 0xff, };
121
122 static struct nand_bbt_descr largepage_memorybased = {
123         .options = 0,
124         .offs = 0,
125         .len = 1,
126         .pattern = scan_ff_pattern,
127 };
128
129 /*
130  * ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt,
131  * interfere with ECC positions, that's why we implement our own descriptors.
132  * OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0.
133  */
134 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
135 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
136
137 static struct nand_bbt_descr bbt_main_descr = {
138         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
139                    NAND_BBT_2BIT | NAND_BBT_VERSION,
140         .offs = 11,
141         .len = 4,
142         .veroffs = 15,
143         .maxblocks = 4,
144         .pattern = bbt_pattern,
145 };
146
147 static struct nand_bbt_descr bbt_mirror_descr = {
148         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
149                    NAND_BBT_2BIT | NAND_BBT_VERSION,
150         .offs = 11,
151         .len = 4,
152         .veroffs = 15,
153         .maxblocks = 4,
154         .pattern = mirror_pattern,
155 };
156
157 /*=================================*/
158
159 /*
160  * Set up the FCM hardware block and page address fields, and the fcm
161  * structure addr field to point to the correct FCM buffer in memory
162  */
163 static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
164 {
165         struct nand_chip *chip = mtd->priv;
166         struct fsl_elbc_mtd *priv = chip->priv;
167         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
168         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
169         int buf_num;
170
171         ctrl->page = page_addr;
172
173         out_be32(&lbc->fbar,
174                  page_addr >> (chip->phys_erase_shift - chip->page_shift));
175
176         if (priv->page_size) {
177                 out_be32(&lbc->fpar,
178                          ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
179                          (oob ? FPAR_LP_MS : 0) | column);
180                 buf_num = (page_addr & 1) << 2;
181         } else {
182                 out_be32(&lbc->fpar,
183                          ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
184                          (oob ? FPAR_SP_MS : 0) | column);
185                 buf_num = page_addr & 7;
186         }
187
188         ctrl->addr = priv->vbase + buf_num * 1024;
189         ctrl->index = column;
190
191         /* for OOB data point to the second half of the buffer */
192         if (oob)
193                 ctrl->index += priv->page_size ? 2048 : 512;
194
195         dev_vdbg(ctrl->dev, "set_addr: bank=%d, ctrl->addr=0x%p (0x%p), "
196                             "index %x, pes %d ps %d\n",
197                  buf_num, ctrl->addr, priv->vbase, ctrl->index,
198                  chip->phys_erase_shift, chip->page_shift);
199 }
200
201 /*
202  * execute FCM command and wait for it to complete
203  */
204 static int fsl_elbc_run_command(struct mtd_info *mtd)
205 {
206         struct nand_chip *chip = mtd->priv;
207         struct fsl_elbc_mtd *priv = chip->priv;
208         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
209         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
210
211         /* Setup the FMR[OP] to execute without write protection */
212         out_be32(&lbc->fmr, priv->fmr | 3);
213         if (ctrl->use_mdr)
214                 out_be32(&lbc->mdr, ctrl->mdr);
215
216         dev_vdbg(ctrl->dev,
217                  "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
218                  in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
219         dev_vdbg(ctrl->dev,
220                  "fsl_elbc_run_command: fbar=%08x fpar=%08x "
221                  "fbcr=%08x bank=%d\n",
222                  in_be32(&lbc->fbar), in_be32(&lbc->fpar),
223                  in_be32(&lbc->fbcr), priv->bank);
224
225         ctrl->irq_status = 0;
226         /* execute special operation */
227         out_be32(&lbc->lsor, priv->bank);
228
229         /* wait for FCM complete flag or timeout */
230         wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
231                            FCM_TIMEOUT_MSECS * HZ/1000);
232         ctrl->status = ctrl->irq_status;
233
234         /* store mdr value in case it was needed */
235         if (ctrl->use_mdr)
236                 ctrl->mdr = in_be32(&lbc->mdr);
237
238         ctrl->use_mdr = 0;
239
240         if (ctrl->status != LTESR_CC) {
241                 dev_info(ctrl->dev,
242                          "command failed: fir %x fcr %x status %x mdr %x\n",
243                          in_be32(&lbc->fir), in_be32(&lbc->fcr),
244                          ctrl->status, ctrl->mdr);
245                 return -EIO;
246         }
247
248         return 0;
249 }
250
251 static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
252 {
253         struct fsl_elbc_mtd *priv = chip->priv;
254         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
255         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
256
257         if (priv->page_size) {
258                 out_be32(&lbc->fir,
259                          (FIR_OP_CM0 << FIR_OP0_SHIFT) |
260                          (FIR_OP_CA  << FIR_OP1_SHIFT) |
261                          (FIR_OP_PA  << FIR_OP2_SHIFT) |
262                          (FIR_OP_CM1 << FIR_OP3_SHIFT) |
263                          (FIR_OP_RBW << FIR_OP4_SHIFT));
264
265                 out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
266                                     (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
267         } else {
268                 out_be32(&lbc->fir,
269                          (FIR_OP_CM0 << FIR_OP0_SHIFT) |
270                          (FIR_OP_CA  << FIR_OP1_SHIFT) |
271                          (FIR_OP_PA  << FIR_OP2_SHIFT) |
272                          (FIR_OP_RBW << FIR_OP3_SHIFT));
273
274                 if (oob)
275                         out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
276                 else
277                         out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
278         }
279 }
280
281 /* cmdfunc send commands to the FCM */
282 static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
283                              int column, int page_addr)
284 {
285         struct nand_chip *chip = mtd->priv;
286         struct fsl_elbc_mtd *priv = chip->priv;
287         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
288         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
289
290         ctrl->use_mdr = 0;
291
292         /* clear the read buffer */
293         ctrl->read_bytes = 0;
294         if (command != NAND_CMD_PAGEPROG)
295                 ctrl->index = 0;
296
297         switch (command) {
298         /* READ0 and READ1 read the entire buffer to use hardware ECC. */
299         case NAND_CMD_READ1:
300                 column += 256;
301
302         /* fall-through */
303         case NAND_CMD_READ0:
304                 dev_dbg(ctrl->dev,
305                         "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
306                         " 0x%x, column: 0x%x.\n", page_addr, column);
307
308
309                 out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
310                 set_addr(mtd, 0, page_addr, 0);
311
312                 ctrl->read_bytes = mtd->writesize + mtd->oobsize;
313                 ctrl->index += column;
314
315                 fsl_elbc_do_read(chip, 0);
316                 fsl_elbc_run_command(mtd);
317                 return;
318
319         /* READOOB reads only the OOB because no ECC is performed. */
320         case NAND_CMD_READOOB:
321                 dev_vdbg(ctrl->dev,
322                          "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
323                          " 0x%x, column: 0x%x.\n", page_addr, column);
324
325                 out_be32(&lbc->fbcr, mtd->oobsize - column);
326                 set_addr(mtd, column, page_addr, 1);
327
328                 ctrl->read_bytes = mtd->writesize + mtd->oobsize;
329
330                 fsl_elbc_do_read(chip, 1);
331                 fsl_elbc_run_command(mtd);
332                 return;
333
334         /* READID must read all 5 possible bytes while CEB is active */
335         case NAND_CMD_READID:
336                 dev_vdbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_READID.\n");
337
338                 out_be32(&lbc->fir, (FIR_OP_CM0 << FIR_OP0_SHIFT) |
339                                     (FIR_OP_UA  << FIR_OP1_SHIFT) |
340                                     (FIR_OP_RBW << FIR_OP2_SHIFT));
341                 out_be32(&lbc->fcr, NAND_CMD_READID << FCR_CMD0_SHIFT);
342                 /* 5 bytes for manuf, device and exts */
343                 out_be32(&lbc->fbcr, 5);
344                 ctrl->read_bytes = 5;
345                 ctrl->use_mdr = 1;
346                 ctrl->mdr = 0;
347
348                 set_addr(mtd, 0, 0, 0);
349                 fsl_elbc_run_command(mtd);
350                 return;
351
352         /* ERASE1 stores the block and page address */
353         case NAND_CMD_ERASE1:
354                 dev_vdbg(ctrl->dev,
355                          "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
356                          "page_addr: 0x%x.\n", page_addr);
357                 set_addr(mtd, 0, page_addr, 0);
358                 return;
359
360         /* ERASE2 uses the block and page address from ERASE1 */
361         case NAND_CMD_ERASE2:
362                 dev_vdbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
363
364                 out_be32(&lbc->fir,
365                          (FIR_OP_CM0 << FIR_OP0_SHIFT) |
366                          (FIR_OP_PA  << FIR_OP1_SHIFT) |
367                          (FIR_OP_CM2 << FIR_OP2_SHIFT) |
368                          (FIR_OP_CW1 << FIR_OP3_SHIFT) |
369                          (FIR_OP_RS  << FIR_OP4_SHIFT));
370
371                 out_be32(&lbc->fcr,
372                          (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
373                          (NAND_CMD_STATUS << FCR_CMD1_SHIFT) |
374                          (NAND_CMD_ERASE2 << FCR_CMD2_SHIFT));
375
376                 out_be32(&lbc->fbcr, 0);
377                 ctrl->read_bytes = 0;
378                 ctrl->use_mdr = 1;
379
380                 fsl_elbc_run_command(mtd);
381                 return;
382
383         /* SEQIN sets up the addr buffer and all registers except the length */
384         case NAND_CMD_SEQIN: {
385                 __be32 fcr;
386                 dev_vdbg(ctrl->dev,
387                          "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
388                          "page_addr: 0x%x, column: 0x%x.\n",
389                          page_addr, column);
390
391                 ctrl->column = column;
392                 ctrl->oob = 0;
393                 ctrl->use_mdr = 1;
394
395                 fcr = (NAND_CMD_STATUS   << FCR_CMD1_SHIFT) |
396                       (NAND_CMD_SEQIN    << FCR_CMD2_SHIFT) |
397                       (NAND_CMD_PAGEPROG << FCR_CMD3_SHIFT);
398
399                 if (priv->page_size) {
400                         out_be32(&lbc->fir,
401                                  (FIR_OP_CM2 << FIR_OP0_SHIFT) |
402                                  (FIR_OP_CA  << FIR_OP1_SHIFT) |
403                                  (FIR_OP_PA  << FIR_OP2_SHIFT) |
404                                  (FIR_OP_WB  << FIR_OP3_SHIFT) |
405                                  (FIR_OP_CM3 << FIR_OP4_SHIFT) |
406                                  (FIR_OP_CW1 << FIR_OP5_SHIFT) |
407                                  (FIR_OP_RS  << FIR_OP6_SHIFT));
408                 } else {
409                         out_be32(&lbc->fir,
410                                  (FIR_OP_CM0 << FIR_OP0_SHIFT) |
411                                  (FIR_OP_CM2 << FIR_OP1_SHIFT) |
412                                  (FIR_OP_CA  << FIR_OP2_SHIFT) |
413                                  (FIR_OP_PA  << FIR_OP3_SHIFT) |
414                                  (FIR_OP_WB  << FIR_OP4_SHIFT) |
415                                  (FIR_OP_CM3 << FIR_OP5_SHIFT) |
416                                  (FIR_OP_CW1 << FIR_OP6_SHIFT) |
417                                  (FIR_OP_RS  << FIR_OP7_SHIFT));
418
419                         if (column >= mtd->writesize) {
420                                 /* OOB area --> READOOB */
421                                 column -= mtd->writesize;
422                                 fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
423                                 ctrl->oob = 1;
424                         } else {
425                                 WARN_ON(column != 0);
426                                 /* First 256 bytes --> READ0 */
427                                 fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
428                         }
429                 }
430
431                 out_be32(&lbc->fcr, fcr);
432                 set_addr(mtd, column, page_addr, ctrl->oob);
433                 return;
434         }
435
436         /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
437         case NAND_CMD_PAGEPROG: {
438                 int full_page;
439                 dev_vdbg(ctrl->dev,
440                          "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
441                          "writing %d bytes.\n", ctrl->index);
442
443                 /* if the write did not start at 0 or is not a full page
444                  * then set the exact length, otherwise use a full page
445                  * write so the HW generates the ECC.
446                  */
447                 if (ctrl->oob || ctrl->column != 0 ||
448                     ctrl->index != mtd->writesize + mtd->oobsize) {
449                         out_be32(&lbc->fbcr, ctrl->index);
450                         full_page = 0;
451                 } else {
452                         out_be32(&lbc->fbcr, 0);
453                         full_page = 1;
454                 }
455
456                 fsl_elbc_run_command(mtd);
457
458                 /* Read back the page in order to fill in the ECC for the
459                  * caller.  Is this really needed?
460                  */
461                 if (full_page && ctrl->oob_poi) {
462                         out_be32(&lbc->fbcr, 3);
463                         set_addr(mtd, 6, page_addr, 1);
464
465                         ctrl->read_bytes = mtd->writesize + 9;
466
467                         fsl_elbc_do_read(chip, 1);
468                         fsl_elbc_run_command(mtd);
469
470                         memcpy_fromio(ctrl->oob_poi + 6,
471                                       &ctrl->addr[ctrl->index], 3);
472                         ctrl->index += 3;
473                 }
474
475                 ctrl->oob_poi = NULL;
476                 return;
477         }
478
479         /* CMD_STATUS must read the status byte while CEB is active */
480         /* Note - it does not wait for the ready line */
481         case NAND_CMD_STATUS:
482                 out_be32(&lbc->fir,
483                          (FIR_OP_CM0 << FIR_OP0_SHIFT) |
484                          (FIR_OP_RBW << FIR_OP1_SHIFT));
485                 out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
486                 out_be32(&lbc->fbcr, 1);
487                 set_addr(mtd, 0, 0, 0);
488                 ctrl->read_bytes = 1;
489
490                 fsl_elbc_run_command(mtd);
491
492                 /* The chip always seems to report that it is
493                  * write-protected, even when it is not.
494                  */
495                 setbits8(ctrl->addr, NAND_STATUS_WP);
496                 return;
497
498         /* RESET without waiting for the ready line */
499         case NAND_CMD_RESET:
500                 dev_dbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
501                 out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
502                 out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
503                 fsl_elbc_run_command(mtd);
504                 return;
505
506         default:
507                 dev_err(ctrl->dev,
508                         "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
509                         command);
510         }
511 }
512
513 static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
514 {
515         /* The hardware does not seem to support multiple
516          * chips per bank.
517          */
518 }
519
520 /*
521  * Write buf to the FCM Controller Data Buffer
522  */
523 static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
524 {
525         struct nand_chip *chip = mtd->priv;
526         struct fsl_elbc_mtd *priv = chip->priv;
527         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
528         unsigned int bufsize = mtd->writesize + mtd->oobsize;
529
530         if (len <= 0) {
531                 dev_err(ctrl->dev, "write_buf of %d bytes", len);
532                 ctrl->status = 0;
533                 return;
534         }
535
536         if ((unsigned int)len > bufsize - ctrl->index) {
537                 dev_err(ctrl->dev,
538                         "write_buf beyond end of buffer "
539                         "(%d requested, %u available)\n",
540                         len, bufsize - ctrl->index);
541                 len = bufsize - ctrl->index;
542         }
543
544         memcpy_toio(&ctrl->addr[ctrl->index], buf, len);
545         /*
546          * This is workaround for the weird elbc hangs during nand write,
547          * Scott Wood says: "...perhaps difference in how long it takes a
548          * write to make it through the localbus compared to a write to IMMR
549          * is causing problems, and sync isn't helping for some reason."
550          * Reading back the last byte helps though.
551          */
552         in_8(&ctrl->addr[ctrl->index] + len - 1);
553
554         ctrl->index += len;
555 }
556
557 /*
558  * read a byte from either the FCM hardware buffer if it has any data left
559  * otherwise issue a command to read a single byte.
560  */
561 static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
562 {
563         struct nand_chip *chip = mtd->priv;
564         struct fsl_elbc_mtd *priv = chip->priv;
565         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
566
567         /* If there are still bytes in the FCM, then use the next byte. */
568         if (ctrl->index < ctrl->read_bytes)
569                 return in_8(&ctrl->addr[ctrl->index++]);
570
571         dev_err(ctrl->dev, "read_byte beyond end of buffer\n");
572         return ERR_BYTE;
573 }
574
575 /*
576  * Read from the FCM Controller Data Buffer
577  */
578 static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
579 {
580         struct nand_chip *chip = mtd->priv;
581         struct fsl_elbc_mtd *priv = chip->priv;
582         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
583         int avail;
584
585         if (len < 0)
586                 return;
587
588         avail = min((unsigned int)len, ctrl->read_bytes - ctrl->index);
589         memcpy_fromio(buf, &ctrl->addr[ctrl->index], avail);
590         ctrl->index += avail;
591
592         if (len > avail)
593                 dev_err(ctrl->dev,
594                         "read_buf beyond end of buffer "
595                         "(%d requested, %d available)\n",
596                         len, avail);
597 }
598
599 /*
600  * Verify buffer against the FCM Controller Data Buffer
601  */
602 static int fsl_elbc_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
603 {
604         struct nand_chip *chip = mtd->priv;
605         struct fsl_elbc_mtd *priv = chip->priv;
606         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
607         int i;
608
609         if (len < 0) {
610                 dev_err(ctrl->dev, "write_buf of %d bytes", len);
611                 return -EINVAL;
612         }
613
614         if ((unsigned int)len > ctrl->read_bytes - ctrl->index) {
615                 dev_err(ctrl->dev,
616                         "verify_buf beyond end of buffer "
617                         "(%d requested, %u available)\n",
618                         len, ctrl->read_bytes - ctrl->index);
619
620                 ctrl->index = ctrl->read_bytes;
621                 return -EINVAL;
622         }
623
624         for (i = 0; i < len; i++)
625                 if (in_8(&ctrl->addr[ctrl->index + i]) != buf[i])
626                         break;
627
628         ctrl->index += len;
629         return i == len && ctrl->status == LTESR_CC ? 0 : -EIO;
630 }
631
632 /* This function is called after Program and Erase Operations to
633  * check for success or failure.
634  */
635 static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
636 {
637         struct fsl_elbc_mtd *priv = chip->priv;
638         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
639
640         if (ctrl->status != LTESR_CC)
641                 return NAND_STATUS_FAIL;
642
643         /* The chip always seems to report that it is
644          * write-protected, even when it is not.
645          */
646         return (ctrl->mdr & 0xff) | NAND_STATUS_WP;
647 }
648
649 static int fsl_elbc_chip_init_tail(struct mtd_info *mtd)
650 {
651         struct nand_chip *chip = mtd->priv;
652         struct fsl_elbc_mtd *priv = chip->priv;
653         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
654         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
655         unsigned int al;
656
657         /* calculate FMR Address Length field */
658         al = 0;
659         if (chip->pagemask & 0xffff0000)
660                 al++;
661         if (chip->pagemask & 0xff000000)
662                 al++;
663
664         /* add to ECCM mode set in fsl_elbc_init */
665         priv->fmr |= (12 << FMR_CWTO_SHIFT) |  /* Timeout > 12 ms */
666                      (al << FMR_AL_SHIFT);
667
668         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->numchips = %d\n",
669                 chip->numchips);
670         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chipsize = %lld\n",
671                 chip->chipsize);
672         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
673                 chip->pagemask);
674         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chip_delay = %d\n",
675                 chip->chip_delay);
676         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
677                 chip->badblockpos);
678         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
679                 chip->chip_shift);
680         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->page_shift = %d\n",
681                 chip->page_shift);
682         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
683                 chip->phys_erase_shift);
684         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecclayout = %p\n",
685                 chip->ecclayout);
686         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.mode = %d\n",
687                 chip->ecc.mode);
688         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
689                 chip->ecc.steps);
690         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
691                 chip->ecc.bytes);
692         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
693                 chip->ecc.total);
694         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.layout = %p\n",
695                 chip->ecc.layout);
696         dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
697         dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->size = %lld\n", mtd->size);
698         dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
699                 mtd->erasesize);
700         dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->writesize = %d\n",
701                 mtd->writesize);
702         dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
703                 mtd->oobsize);
704
705         /* adjust Option Register and ECC to match Flash page size */
706         if (mtd->writesize == 512) {
707                 priv->page_size = 0;
708                 clrbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
709         } else if (mtd->writesize == 2048) {
710                 priv->page_size = 1;
711                 setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
712                 /* adjust ecc setup if needed */
713                 if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
714                     BR_DECC_CHK_GEN) {
715                         chip->ecc.size = 512;
716                         chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
717                                            &fsl_elbc_oob_lp_eccm1 :
718                                            &fsl_elbc_oob_lp_eccm0;
719                         chip->badblock_pattern = &largepage_memorybased;
720                 }
721         } else {
722                 dev_err(ctrl->dev,
723                         "fsl_elbc_init: page size %d is not supported\n",
724                         mtd->writesize);
725                 return -1;
726         }
727
728         return 0;
729 }
730
731 static int fsl_elbc_read_page(struct mtd_info *mtd,
732                               struct nand_chip *chip,
733                               uint8_t *buf,
734                               int page)
735 {
736         fsl_elbc_read_buf(mtd, buf, mtd->writesize);
737         fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
738
739         if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
740                 mtd->ecc_stats.failed++;
741
742         return 0;
743 }
744
745 /* ECC will be calculated automatically, and errors will be detected in
746  * waitfunc.
747  */
748 static void fsl_elbc_write_page(struct mtd_info *mtd,
749                                 struct nand_chip *chip,
750                                 const uint8_t *buf)
751 {
752         struct fsl_elbc_mtd *priv = chip->priv;
753         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
754
755         fsl_elbc_write_buf(mtd, buf, mtd->writesize);
756         fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
757
758         ctrl->oob_poi = chip->oob_poi;
759 }
760
761 static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
762 {
763         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
764         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
765         struct nand_chip *chip = &priv->chip;
766
767         dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);
768
769         /* Fill in fsl_elbc_mtd structure */
770         priv->mtd.priv = chip;
771         priv->mtd.owner = THIS_MODULE;
772
773         /* Set the ECCM according to the settings in bootloader.*/
774         priv->fmr = in_be32(&lbc->fmr) & FMR_ECCM;
775
776         /* fill in nand_chip structure */
777         /* set up function call table */
778         chip->read_byte = fsl_elbc_read_byte;
779         chip->write_buf = fsl_elbc_write_buf;
780         chip->read_buf = fsl_elbc_read_buf;
781         chip->verify_buf = fsl_elbc_verify_buf;
782         chip->select_chip = fsl_elbc_select_chip;
783         chip->cmdfunc = fsl_elbc_cmdfunc;
784         chip->waitfunc = fsl_elbc_wait;
785
786         chip->bbt_td = &bbt_main_descr;
787         chip->bbt_md = &bbt_mirror_descr;
788
789         /* set up nand options */
790         chip->options = NAND_NO_READRDY | NAND_NO_AUTOINCR |
791                         NAND_USE_FLASH_BBT;
792
793         chip->controller = &ctrl->controller;
794         chip->priv = priv;
795
796         chip->ecc.read_page = fsl_elbc_read_page;
797         chip->ecc.write_page = fsl_elbc_write_page;
798
799         /* If CS Base Register selects full hardware ECC then use it */
800         if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
801             BR_DECC_CHK_GEN) {
802                 chip->ecc.mode = NAND_ECC_HW;
803                 /* put in small page settings and adjust later if needed */
804                 chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
805                                 &fsl_elbc_oob_sp_eccm1 : &fsl_elbc_oob_sp_eccm0;
806                 chip->ecc.size = 512;
807                 chip->ecc.bytes = 3;
808         } else {
809                 /* otherwise fall back to default software ECC */
810                 chip->ecc.mode = NAND_ECC_SOFT;
811         }
812
813         return 0;
814 }
815
816 static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
817 {
818         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
819
820         nand_release(&priv->mtd);
821
822         kfree(priv->mtd.name);
823
824         if (priv->vbase)
825                 iounmap(priv->vbase);
826
827         ctrl->chips[priv->bank] = NULL;
828         kfree(priv);
829
830         return 0;
831 }
832
833 static int __devinit fsl_elbc_chip_probe(struct fsl_elbc_ctrl *ctrl,
834                                          struct device_node *node)
835 {
836         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
837         struct fsl_elbc_mtd *priv;
838         struct resource res;
839 #ifdef CONFIG_MTD_PARTITIONS
840         static const char *part_probe_types[]
841                 = { "cmdlinepart", "RedBoot", NULL };
842         struct mtd_partition *parts;
843 #endif
844         int ret;
845         int bank;
846
847         /* get, allocate and map the memory resource */
848         ret = of_address_to_resource(node, 0, &res);
849         if (ret) {
850                 dev_err(ctrl->dev, "failed to get resource\n");
851                 return ret;
852         }
853
854         /* find which chip select it is connected to */
855         for (bank = 0; bank < MAX_BANKS; bank++)
856                 if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
857                     (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
858                     (in_be32(&lbc->bank[bank].br) &
859                      in_be32(&lbc->bank[bank].or) & BR_BA)
860                      == res.start)
861                         break;
862
863         if (bank >= MAX_BANKS) {
864                 dev_err(ctrl->dev, "address did not match any chip selects\n");
865                 return -ENODEV;
866         }
867
868         priv = kzalloc(sizeof(*priv), GFP_KERNEL);
869         if (!priv)
870                 return -ENOMEM;
871
872         ctrl->chips[bank] = priv;
873         priv->bank = bank;
874         priv->ctrl = ctrl;
875         priv->dev = ctrl->dev;
876
877         priv->vbase = ioremap(res.start, resource_size(&res));
878         if (!priv->vbase) {
879                 dev_err(ctrl->dev, "failed to map chip region\n");
880                 ret = -ENOMEM;
881                 goto err;
882         }
883
884         priv->mtd.name = kasprintf(GFP_KERNEL, "%x.flash", (unsigned)res.start);
885         if (!priv->mtd.name) {
886                 ret = -ENOMEM;
887                 goto err;
888         }
889
890         ret = fsl_elbc_chip_init(priv);
891         if (ret)
892                 goto err;
893
894         ret = nand_scan_ident(&priv->mtd, 1, NULL);
895         if (ret)
896                 goto err;
897
898         ret = fsl_elbc_chip_init_tail(&priv->mtd);
899         if (ret)
900                 goto err;
901
902         ret = nand_scan_tail(&priv->mtd);
903         if (ret)
904                 goto err;
905
906 #ifdef CONFIG_MTD_PARTITIONS
907         /* First look for RedBoot table or partitions on the command
908          * line, these take precedence over device tree information */
909         ret = parse_mtd_partitions(&priv->mtd, part_probe_types, &parts, 0);
910         if (ret < 0)
911                 goto err;
912
913 #ifdef CONFIG_MTD_OF_PARTS
914         if (ret == 0) {
915                 ret = of_mtd_parse_partitions(priv->dev, node, &parts);
916                 if (ret < 0)
917                         goto err;
918         }
919 #endif
920
921         if (ret > 0)
922                 add_mtd_partitions(&priv->mtd, parts, ret);
923         else
924 #endif
925                 add_mtd_device(&priv->mtd);
926
927         printk(KERN_INFO "eLBC NAND device at 0x%llx, bank %d\n",
928                (unsigned long long)res.start, priv->bank);
929         return 0;
930
931 err:
932         fsl_elbc_chip_remove(priv);
933         return ret;
934 }
935
936 static int __devinit fsl_elbc_ctrl_init(struct fsl_elbc_ctrl *ctrl)
937 {
938         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
939
940         /*
941          * NAND transactions can tie up the bus for a long time, so set the
942          * bus timeout to max by clearing LBCR[BMT] (highest base counter
943          * value) and setting LBCR[BMTPS] to the highest prescaler value.
944          */
945         clrsetbits_be32(&lbc->lbcr, LBCR_BMT, 15);
946
947         /* clear event registers */
948         setbits32(&lbc->ltesr, LTESR_NAND_MASK);
949         out_be32(&lbc->lteatr, 0);
950
951         /* Enable interrupts for any detected events */
952         out_be32(&lbc->lteir, LTESR_NAND_MASK);
953
954         ctrl->read_bytes = 0;
955         ctrl->index = 0;
956         ctrl->addr = NULL;
957
958         return 0;
959 }
960
961 static int fsl_elbc_ctrl_remove(struct of_device *ofdev)
962 {
963         struct fsl_elbc_ctrl *ctrl = dev_get_drvdata(&ofdev->dev);
964         int i;
965
966         for (i = 0; i < MAX_BANKS; i++)
967                 if (ctrl->chips[i])
968                         fsl_elbc_chip_remove(ctrl->chips[i]);
969
970         if (ctrl->irq)
971                 free_irq(ctrl->irq, ctrl);
972
973         if (ctrl->regs)
974                 iounmap(ctrl->regs);
975
976         dev_set_drvdata(&ofdev->dev, NULL);
977         kfree(ctrl);
978         return 0;
979 }
980
981 /* NOTE: This interrupt is also used to report other localbus events,
982  * such as transaction errors on other chipselects.  If we want to
983  * capture those, we'll need to move the IRQ code into a shared
984  * LBC driver.
985  */
986
987 static irqreturn_t fsl_elbc_ctrl_irq(int irqno, void *data)
988 {
989         struct fsl_elbc_ctrl *ctrl = data;
990         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
991         __be32 status = in_be32(&lbc->ltesr) & LTESR_NAND_MASK;
992
993         if (status) {
994                 out_be32(&lbc->ltesr, status);
995                 out_be32(&lbc->lteatr, 0);
996
997                 ctrl->irq_status = status;
998                 smp_wmb();
999                 wake_up(&ctrl->irq_wait);
1000
1001                 return IRQ_HANDLED;
1002         }
1003
1004         return IRQ_NONE;
1005 }
1006
1007 /* fsl_elbc_ctrl_probe
1008  *
1009  * called by device layer when it finds a device matching
1010  * one our driver can handled. This code allocates all of
1011  * the resources needed for the controller only.  The
1012  * resources for the NAND banks themselves are allocated
1013  * in the chip probe function.
1014 */
1015
1016 static int __devinit fsl_elbc_ctrl_probe(struct of_device *ofdev,
1017                                          const struct of_device_id *match)
1018 {
1019         struct device_node *child;
1020         struct fsl_elbc_ctrl *ctrl;
1021         int ret;
1022
1023         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1024         if (!ctrl)
1025                 return -ENOMEM;
1026
1027         dev_set_drvdata(&ofdev->dev, ctrl);
1028
1029         spin_lock_init(&ctrl->controller.lock);
1030         init_waitqueue_head(&ctrl->controller.wq);
1031         init_waitqueue_head(&ctrl->irq_wait);
1032
1033         ctrl->regs = of_iomap(ofdev->dev.of_node, 0);
1034         if (!ctrl->regs) {
1035                 dev_err(&ofdev->dev, "failed to get memory region\n");
1036                 ret = -ENODEV;
1037                 goto err;
1038         }
1039
1040         ctrl->irq = of_irq_to_resource(ofdev->dev.of_node, 0, NULL);
1041         if (ctrl->irq == NO_IRQ) {
1042                 dev_err(&ofdev->dev, "failed to get irq resource\n");
1043                 ret = -ENODEV;
1044                 goto err;
1045         }
1046
1047         ctrl->dev = &ofdev->dev;
1048
1049         ret = fsl_elbc_ctrl_init(ctrl);
1050         if (ret < 0)
1051                 goto err;
1052
1053         ret = request_irq(ctrl->irq, fsl_elbc_ctrl_irq, 0, "fsl-elbc", ctrl);
1054         if (ret != 0) {
1055                 dev_err(&ofdev->dev, "failed to install irq (%d)\n",
1056                         ctrl->irq);
1057                 ret = ctrl->irq;
1058                 goto err;
1059         }
1060
1061         for_each_child_of_node(ofdev->dev.of_node, child)
1062                 if (of_device_is_compatible(child, "fsl,elbc-fcm-nand"))
1063                         fsl_elbc_chip_probe(ctrl, child);
1064
1065         return 0;
1066
1067 err:
1068         fsl_elbc_ctrl_remove(ofdev);
1069         return ret;
1070 }
1071
1072 static const struct of_device_id fsl_elbc_match[] = {
1073         {
1074                 .compatible = "fsl,elbc",
1075         },
1076         {}
1077 };
1078
1079 static struct of_platform_driver fsl_elbc_ctrl_driver = {
1080         .driver = {
1081                 .name = "fsl-elbc",
1082                 .owner = THIS_MODULE,
1083                 .of_match_table = fsl_elbc_match,
1084         },
1085         .probe = fsl_elbc_ctrl_probe,
1086         .remove = fsl_elbc_ctrl_remove,
1087 };
1088
1089 static int __init fsl_elbc_init(void)
1090 {
1091         return of_register_platform_driver(&fsl_elbc_ctrl_driver);
1092 }
1093
1094 static void __exit fsl_elbc_exit(void)
1095 {
1096         of_unregister_platform_driver(&fsl_elbc_ctrl_driver);
1097 }
1098
1099 module_init(fsl_elbc_init);
1100 module_exit(fsl_elbc_exit);
1101
1102 MODULE_LICENSE("GPL");
1103 MODULE_AUTHOR("Freescale");
1104 MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");