mtd: davinci_nand don't specify default parsing options
[pandora-kernel.git] / drivers / mtd / nand / davinci_nand.c
1 /*
2  * davinci_nand.c - NAND Flash Driver for DaVinci family chips
3  *
4  * Copyright © 2006 Texas Instruments.
5  *
6  * Port to 2.6.23 Copyright © 2008 by:
7  *   Sander Huijsen <Shuijsen@optelecom-nkf.com>
8  *   Troy Kisky <troy.kisky@boundarydevices.com>
9  *   Dirk Behme <Dirk.Behme@gmail.com>
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24  */
25
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/platform_device.h>
30 #include <linux/err.h>
31 #include <linux/clk.h>
32 #include <linux/io.h>
33 #include <linux/mtd/nand.h>
34 #include <linux/mtd/partitions.h>
35 #include <linux/slab.h>
36
37 #include <mach/nand.h>
38 #include <mach/aemif.h>
39
40 /*
41  * This is a device driver for the NAND flash controller found on the
42  * various DaVinci family chips.  It handles up to four SoC chipselects,
43  * and some flavors of secondary chipselect (e.g. based on A12) as used
44  * with multichip packages.
45  *
46  * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
47  * available on chips like the DM355 and OMAP-L137 and needed with the
48  * more error-prone MLC NAND chips.
49  *
50  * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
51  * outputs in a "wire-AND" configuration, with no per-chip signals.
52  */
53 struct davinci_nand_info {
54         struct mtd_info         mtd;
55         struct nand_chip        chip;
56         struct nand_ecclayout   ecclayout;
57
58         struct device           *dev;
59         struct clk              *clk;
60         bool                    partitioned;
61
62         bool                    is_readmode;
63
64         void __iomem            *base;
65         void __iomem            *vaddr;
66
67         uint32_t                ioaddr;
68         uint32_t                current_cs;
69
70         uint32_t                mask_chipsel;
71         uint32_t                mask_ale;
72         uint32_t                mask_cle;
73
74         uint32_t                core_chipsel;
75
76         struct davinci_aemif_timing     *timing;
77 };
78
79 static DEFINE_SPINLOCK(davinci_nand_lock);
80 static bool ecc4_busy;
81
82 #define to_davinci_nand(m) container_of(m, struct davinci_nand_info, mtd)
83
84
85 static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
86                 int offset)
87 {
88         return __raw_readl(info->base + offset);
89 }
90
91 static inline void davinci_nand_writel(struct davinci_nand_info *info,
92                 int offset, unsigned long value)
93 {
94         __raw_writel(value, info->base + offset);
95 }
96
97 /*----------------------------------------------------------------------*/
98
99 /*
100  * Access to hardware control lines:  ALE, CLE, secondary chipselect.
101  */
102
103 static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
104                                    unsigned int ctrl)
105 {
106         struct davinci_nand_info        *info = to_davinci_nand(mtd);
107         uint32_t                        addr = info->current_cs;
108         struct nand_chip                *nand = mtd->priv;
109
110         /* Did the control lines change? */
111         if (ctrl & NAND_CTRL_CHANGE) {
112                 if ((ctrl & NAND_CTRL_CLE) == NAND_CTRL_CLE)
113                         addr |= info->mask_cle;
114                 else if ((ctrl & NAND_CTRL_ALE) == NAND_CTRL_ALE)
115                         addr |= info->mask_ale;
116
117                 nand->IO_ADDR_W = (void __iomem __force *)addr;
118         }
119
120         if (cmd != NAND_CMD_NONE)
121                 iowrite8(cmd, nand->IO_ADDR_W);
122 }
123
124 static void nand_davinci_select_chip(struct mtd_info *mtd, int chip)
125 {
126         struct davinci_nand_info        *info = to_davinci_nand(mtd);
127         uint32_t                        addr = info->ioaddr;
128
129         /* maybe kick in a second chipselect */
130         if (chip > 0)
131                 addr |= info->mask_chipsel;
132         info->current_cs = addr;
133
134         info->chip.IO_ADDR_W = (void __iomem __force *)addr;
135         info->chip.IO_ADDR_R = info->chip.IO_ADDR_W;
136 }
137
138 /*----------------------------------------------------------------------*/
139
140 /*
141  * 1-bit hardware ECC ... context maintained for each core chipselect
142  */
143
144 static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
145 {
146         struct davinci_nand_info *info = to_davinci_nand(mtd);
147
148         return davinci_nand_readl(info, NANDF1ECC_OFFSET
149                         + 4 * info->core_chipsel);
150 }
151
152 static void nand_davinci_hwctl_1bit(struct mtd_info *mtd, int mode)
153 {
154         struct davinci_nand_info *info;
155         uint32_t nandcfr;
156         unsigned long flags;
157
158         info = to_davinci_nand(mtd);
159
160         /* Reset ECC hardware */
161         nand_davinci_readecc_1bit(mtd);
162
163         spin_lock_irqsave(&davinci_nand_lock, flags);
164
165         /* Restart ECC hardware */
166         nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
167         nandcfr |= BIT(8 + info->core_chipsel);
168         davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);
169
170         spin_unlock_irqrestore(&davinci_nand_lock, flags);
171 }
172
173 /*
174  * Read hardware ECC value and pack into three bytes
175  */
176 static int nand_davinci_calculate_1bit(struct mtd_info *mtd,
177                                       const u_char *dat, u_char *ecc_code)
178 {
179         unsigned int ecc_val = nand_davinci_readecc_1bit(mtd);
180         unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);
181
182         /* invert so that erased block ecc is correct */
183         ecc24 = ~ecc24;
184         ecc_code[0] = (u_char)(ecc24);
185         ecc_code[1] = (u_char)(ecc24 >> 8);
186         ecc_code[2] = (u_char)(ecc24 >> 16);
187
188         return 0;
189 }
190
191 static int nand_davinci_correct_1bit(struct mtd_info *mtd, u_char *dat,
192                                      u_char *read_ecc, u_char *calc_ecc)
193 {
194         struct nand_chip *chip = mtd->priv;
195         uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
196                                           (read_ecc[2] << 16);
197         uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
198                                           (calc_ecc[2] << 16);
199         uint32_t diff = eccCalc ^ eccNand;
200
201         if (diff) {
202                 if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
203                         /* Correctable error */
204                         if ((diff >> (12 + 3)) < chip->ecc.size) {
205                                 dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
206                                 return 1;
207                         } else {
208                                 return -1;
209                         }
210                 } else if (!(diff & (diff - 1))) {
211                         /* Single bit ECC error in the ECC itself,
212                          * nothing to fix */
213                         return 1;
214                 } else {
215                         /* Uncorrectable error */
216                         return -1;
217                 }
218
219         }
220         return 0;
221 }
222
223 /*----------------------------------------------------------------------*/
224
225 /*
226  * 4-bit hardware ECC ... context maintained over entire AEMIF
227  *
228  * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME
229  * since that forces use of a problematic "infix OOB" layout.
230  * Among other things, it trashes manufacturer bad block markers.
231  * Also, and specific to this hardware, it ECC-protects the "prepad"
232  * in the OOB ... while having ECC protection for parts of OOB would
233  * seem useful, the current MTD stack sometimes wants to update the
234  * OOB without recomputing ECC.
235  */
236
237 static void nand_davinci_hwctl_4bit(struct mtd_info *mtd, int mode)
238 {
239         struct davinci_nand_info *info = to_davinci_nand(mtd);
240         unsigned long flags;
241         u32 val;
242
243         spin_lock_irqsave(&davinci_nand_lock, flags);
244
245         /* Start 4-bit ECC calculation for read/write */
246         val = davinci_nand_readl(info, NANDFCR_OFFSET);
247         val &= ~(0x03 << 4);
248         val |= (info->core_chipsel << 4) | BIT(12);
249         davinci_nand_writel(info, NANDFCR_OFFSET, val);
250
251         info->is_readmode = (mode == NAND_ECC_READ);
252
253         spin_unlock_irqrestore(&davinci_nand_lock, flags);
254 }
255
256 /* Read raw ECC code after writing to NAND. */
257 static void
258 nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
259 {
260         const u32 mask = 0x03ff03ff;
261
262         code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
263         code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
264         code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
265         code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
266 }
267
268 /* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
269 static int nand_davinci_calculate_4bit(struct mtd_info *mtd,
270                 const u_char *dat, u_char *ecc_code)
271 {
272         struct davinci_nand_info *info = to_davinci_nand(mtd);
273         u32 raw_ecc[4], *p;
274         unsigned i;
275
276         /* After a read, terminate ECC calculation by a dummy read
277          * of some 4-bit ECC register.  ECC covers everything that
278          * was read; correct() just uses the hardware state, so
279          * ecc_code is not needed.
280          */
281         if (info->is_readmode) {
282                 davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
283                 return 0;
284         }
285
286         /* Pack eight raw 10-bit ecc values into ten bytes, making
287          * two passes which each convert four values (in upper and
288          * lower halves of two 32-bit words) into five bytes.  The
289          * ROM boot loader uses this same packing scheme.
290          */
291         nand_davinci_readecc_4bit(info, raw_ecc);
292         for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
293                 *ecc_code++ =   p[0]        & 0xff;
294                 *ecc_code++ = ((p[0] >>  8) & 0x03) | ((p[0] >> 14) & 0xfc);
295                 *ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] <<  4) & 0xf0);
296                 *ecc_code++ = ((p[1] >>  4) & 0x3f) | ((p[1] >> 10) & 0xc0);
297                 *ecc_code++ =  (p[1] >> 18) & 0xff;
298         }
299
300         return 0;
301 }
302
303 /* Correct up to 4 bits in data we just read, using state left in the
304  * hardware plus the ecc_code computed when it was first written.
305  */
306 static int nand_davinci_correct_4bit(struct mtd_info *mtd,
307                 u_char *data, u_char *ecc_code, u_char *null)
308 {
309         int i;
310         struct davinci_nand_info *info = to_davinci_nand(mtd);
311         unsigned short ecc10[8];
312         unsigned short *ecc16;
313         u32 syndrome[4];
314         u32 ecc_state;
315         unsigned num_errors, corrected;
316         unsigned long timeo;
317
318         /* All bytes 0xff?  It's an erased page; ignore its ECC. */
319         for (i = 0; i < 10; i++) {
320                 if (ecc_code[i] != 0xff)
321                         goto compare;
322         }
323         return 0;
324
325 compare:
326         /* Unpack ten bytes into eight 10 bit values.  We know we're
327          * little-endian, and use type punning for less shifting/masking.
328          */
329         if (WARN_ON(0x01 & (unsigned) ecc_code))
330                 return -EINVAL;
331         ecc16 = (unsigned short *)ecc_code;
332
333         ecc10[0] =  (ecc16[0] >>  0) & 0x3ff;
334         ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
335         ecc10[2] =  (ecc16[1] >>  4) & 0x3ff;
336         ecc10[3] = ((ecc16[1] >> 14) & 0x3)  | ((ecc16[2] << 2) & 0x3fc);
337         ecc10[4] =  (ecc16[2] >>  8)         | ((ecc16[3] << 8) & 0x300);
338         ecc10[5] =  (ecc16[3] >>  2) & 0x3ff;
339         ecc10[6] = ((ecc16[3] >> 12) & 0xf)  | ((ecc16[4] << 4) & 0x3f0);
340         ecc10[7] =  (ecc16[4] >>  6) & 0x3ff;
341
342         /* Tell ECC controller about the expected ECC codes. */
343         for (i = 7; i >= 0; i--)
344                 davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);
345
346         /* Allow time for syndrome calculation ... then read it.
347          * A syndrome of all zeroes 0 means no detected errors.
348          */
349         davinci_nand_readl(info, NANDFSR_OFFSET);
350         nand_davinci_readecc_4bit(info, syndrome);
351         if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
352                 return 0;
353
354         /*
355          * Clear any previous address calculation by doing a dummy read of an
356          * error address register.
357          */
358         davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);
359
360         /* Start address calculation, and wait for it to complete.
361          * We _could_ start reading more data while this is working,
362          * to speed up the overall page read.
363          */
364         davinci_nand_writel(info, NANDFCR_OFFSET,
365                         davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
366
367         /*
368          * ECC_STATE field reads 0x3 (Error correction complete) immediately
369          * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
370          * begin trying to poll for the state, you may fall right out of your
371          * loop without any of the correction calculations having taken place.
372          * The recommendation from the hardware team is to initially delay as
373          * long as ECC_STATE reads less than 4. After that, ECC HW has entered
374          * correction state.
375          */
376         timeo = jiffies + usecs_to_jiffies(100);
377         do {
378                 ecc_state = (davinci_nand_readl(info,
379                                 NANDFSR_OFFSET) >> 8) & 0x0f;
380                 cpu_relax();
381         } while ((ecc_state < 4) && time_before(jiffies, timeo));
382
383         for (;;) {
384                 u32     fsr = davinci_nand_readl(info, NANDFSR_OFFSET);
385
386                 switch ((fsr >> 8) & 0x0f) {
387                 case 0:         /* no error, should not happen */
388                         davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
389                         return 0;
390                 case 1:         /* five or more errors detected */
391                         davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
392                         return -EIO;
393                 case 2:         /* error addresses computed */
394                 case 3:
395                         num_errors = 1 + ((fsr >> 16) & 0x03);
396                         goto correct;
397                 default:        /* still working on it */
398                         cpu_relax();
399                         continue;
400                 }
401         }
402
403 correct:
404         /* correct each error */
405         for (i = 0, corrected = 0; i < num_errors; i++) {
406                 int error_address, error_value;
407
408                 if (i > 1) {
409                         error_address = davinci_nand_readl(info,
410                                                 NAND_ERR_ADD2_OFFSET);
411                         error_value = davinci_nand_readl(info,
412                                                 NAND_ERR_ERRVAL2_OFFSET);
413                 } else {
414                         error_address = davinci_nand_readl(info,
415                                                 NAND_ERR_ADD1_OFFSET);
416                         error_value = davinci_nand_readl(info,
417                                                 NAND_ERR_ERRVAL1_OFFSET);
418                 }
419
420                 if (i & 1) {
421                         error_address >>= 16;
422                         error_value >>= 16;
423                 }
424                 error_address &= 0x3ff;
425                 error_address = (512 + 7) - error_address;
426
427                 if (error_address < 512) {
428                         data[error_address] ^= error_value;
429                         corrected++;
430                 }
431         }
432
433         return corrected;
434 }
435
436 /*----------------------------------------------------------------------*/
437
438 /*
439  * NOTE:  NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's
440  * how these chips are normally wired.  This translates to both 8 and 16
441  * bit busses using ALE == BIT(3) in byte addresses, and CLE == BIT(4).
442  *
443  * For now we assume that configuration, or any other one which ignores
444  * the two LSBs for NAND access ... so we can issue 32-bit reads/writes
445  * and have that transparently morphed into multiple NAND operations.
446  */
447 static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
448 {
449         struct nand_chip *chip = mtd->priv;
450
451         if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
452                 ioread32_rep(chip->IO_ADDR_R, buf, len >> 2);
453         else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
454                 ioread16_rep(chip->IO_ADDR_R, buf, len >> 1);
455         else
456                 ioread8_rep(chip->IO_ADDR_R, buf, len);
457 }
458
459 static void nand_davinci_write_buf(struct mtd_info *mtd,
460                 const uint8_t *buf, int len)
461 {
462         struct nand_chip *chip = mtd->priv;
463
464         if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
465                 iowrite32_rep(chip->IO_ADDR_R, buf, len >> 2);
466         else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
467                 iowrite16_rep(chip->IO_ADDR_R, buf, len >> 1);
468         else
469                 iowrite8_rep(chip->IO_ADDR_R, buf, len);
470 }
471
472 /*
473  * Check hardware register for wait status. Returns 1 if device is ready,
474  * 0 if it is still busy.
475  */
476 static int nand_davinci_dev_ready(struct mtd_info *mtd)
477 {
478         struct davinci_nand_info *info = to_davinci_nand(mtd);
479
480         return davinci_nand_readl(info, NANDFSR_OFFSET) & BIT(0);
481 }
482
483 /*----------------------------------------------------------------------*/
484
485 /* An ECC layout for using 4-bit ECC with small-page flash, storing
486  * ten ECC bytes plus the manufacturer's bad block marker byte, and
487  * and not overlapping the default BBT markers.
488  */
489 static struct nand_ecclayout hwecc4_small __initconst = {
490         .eccbytes = 10,
491         .eccpos = { 0, 1, 2, 3, 4,
492                 /* offset 5 holds the badblock marker */
493                 6, 7,
494                 13, 14, 15, },
495         .oobfree = {
496                 {.offset = 8, .length = 5, },
497                 {.offset = 16, },
498         },
499 };
500
501 /* An ECC layout for using 4-bit ECC with large-page (2048bytes) flash,
502  * storing ten ECC bytes plus the manufacturer's bad block marker byte,
503  * and not overlapping the default BBT markers.
504  */
505 static struct nand_ecclayout hwecc4_2048 __initconst = {
506         .eccbytes = 40,
507         .eccpos = {
508                 /* at the end of spare sector */
509                 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
510                 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
511                 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
512                 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
513                 },
514         .oobfree = {
515                 /* 2 bytes at offset 0 hold manufacturer badblock markers */
516                 {.offset = 2, .length = 22, },
517                 /* 5 bytes at offset 8 hold BBT markers */
518                 /* 8 bytes at offset 16 hold JFFS2 clean markers */
519         },
520 };
521
522 static int __init nand_davinci_probe(struct platform_device *pdev)
523 {
524         struct davinci_nand_pdata       *pdata = pdev->dev.platform_data;
525         struct davinci_nand_info        *info;
526         struct resource                 *res1;
527         struct resource                 *res2;
528         void __iomem                    *vaddr;
529         void __iomem                    *base;
530         int                             ret;
531         uint32_t                        val;
532         nand_ecc_modes_t                ecc_mode;
533         struct mtd_partition            *mtd_parts = NULL;
534         int                             mtd_parts_nb = 0;
535
536         /* insist on board-specific configuration */
537         if (!pdata)
538                 return -ENODEV;
539
540         /* which external chipselect will we be managing? */
541         if (pdev->id < 0 || pdev->id > 3)
542                 return -ENODEV;
543
544         info = kzalloc(sizeof(*info), GFP_KERNEL);
545         if (!info) {
546                 dev_err(&pdev->dev, "unable to allocate memory\n");
547                 ret = -ENOMEM;
548                 goto err_nomem;
549         }
550
551         platform_set_drvdata(pdev, info);
552
553         res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
554         res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
555         if (!res1 || !res2) {
556                 dev_err(&pdev->dev, "resource missing\n");
557                 ret = -EINVAL;
558                 goto err_nomem;
559         }
560
561         vaddr = ioremap(res1->start, resource_size(res1));
562         base = ioremap(res2->start, resource_size(res2));
563         if (!vaddr || !base) {
564                 dev_err(&pdev->dev, "ioremap failed\n");
565                 ret = -EINVAL;
566                 goto err_ioremap;
567         }
568
569         info->dev               = &pdev->dev;
570         info->base              = base;
571         info->vaddr             = vaddr;
572
573         info->mtd.priv          = &info->chip;
574         info->mtd.name          = dev_name(&pdev->dev);
575         info->mtd.owner         = THIS_MODULE;
576
577         info->mtd.dev.parent    = &pdev->dev;
578
579         info->chip.IO_ADDR_R    = vaddr;
580         info->chip.IO_ADDR_W    = vaddr;
581         info->chip.chip_delay   = 0;
582         info->chip.select_chip  = nand_davinci_select_chip;
583
584         /* options such as NAND_BBT_USE_FLASH */
585         info->chip.bbt_options  = pdata->bbt_options;
586         /* options such as 16-bit widths */
587         info->chip.options      = pdata->options;
588         info->chip.bbt_td       = pdata->bbt_td;
589         info->chip.bbt_md       = pdata->bbt_md;
590         info->timing            = pdata->timing;
591
592         info->ioaddr            = (uint32_t __force) vaddr;
593
594         info->current_cs        = info->ioaddr;
595         info->core_chipsel      = pdev->id;
596         info->mask_chipsel      = pdata->mask_chipsel;
597
598         /* use nandboot-capable ALE/CLE masks by default */
599         info->mask_ale          = pdata->mask_ale ? : MASK_ALE;
600         info->mask_cle          = pdata->mask_cle ? : MASK_CLE;
601
602         /* Set address of hardware control function */
603         info->chip.cmd_ctrl     = nand_davinci_hwcontrol;
604         info->chip.dev_ready    = nand_davinci_dev_ready;
605
606         /* Speed up buffer I/O */
607         info->chip.read_buf     = nand_davinci_read_buf;
608         info->chip.write_buf    = nand_davinci_write_buf;
609
610         /* Use board-specific ECC config */
611         ecc_mode                = pdata->ecc_mode;
612
613         ret = -EINVAL;
614         switch (ecc_mode) {
615         case NAND_ECC_NONE:
616         case NAND_ECC_SOFT:
617                 pdata->ecc_bits = 0;
618                 break;
619         case NAND_ECC_HW:
620                 if (pdata->ecc_bits == 4) {
621                         /* No sanity checks:  CPUs must support this,
622                          * and the chips may not use NAND_BUSWIDTH_16.
623                          */
624
625                         /* No sharing 4-bit hardware between chipselects yet */
626                         spin_lock_irq(&davinci_nand_lock);
627                         if (ecc4_busy)
628                                 ret = -EBUSY;
629                         else
630                                 ecc4_busy = true;
631                         spin_unlock_irq(&davinci_nand_lock);
632
633                         if (ret == -EBUSY)
634                                 goto err_ecc;
635
636                         info->chip.ecc.calculate = nand_davinci_calculate_4bit;
637                         info->chip.ecc.correct = nand_davinci_correct_4bit;
638                         info->chip.ecc.hwctl = nand_davinci_hwctl_4bit;
639                         info->chip.ecc.bytes = 10;
640                 } else {
641                         info->chip.ecc.calculate = nand_davinci_calculate_1bit;
642                         info->chip.ecc.correct = nand_davinci_correct_1bit;
643                         info->chip.ecc.hwctl = nand_davinci_hwctl_1bit;
644                         info->chip.ecc.bytes = 3;
645                 }
646                 info->chip.ecc.size = 512;
647                 break;
648         default:
649                 ret = -EINVAL;
650                 goto err_ecc;
651         }
652         info->chip.ecc.mode = ecc_mode;
653
654         info->clk = clk_get(&pdev->dev, "aemif");
655         if (IS_ERR(info->clk)) {
656                 ret = PTR_ERR(info->clk);
657                 dev_dbg(&pdev->dev, "unable to get AEMIF clock, err %d\n", ret);
658                 goto err_clk;
659         }
660
661         ret = clk_enable(info->clk);
662         if (ret < 0) {
663                 dev_dbg(&pdev->dev, "unable to enable AEMIF clock, err %d\n",
664                         ret);
665                 goto err_clk_enable;
666         }
667
668         /*
669          * Setup Async configuration register in case we did not boot from
670          * NAND and so bootloader did not bother to set it up.
671          */
672         val = davinci_nand_readl(info, A1CR_OFFSET + info->core_chipsel * 4);
673
674         /* Extended Wait is not valid and Select Strobe mode is not used */
675         val &= ~(ACR_ASIZE_MASK | ACR_EW_MASK | ACR_SS_MASK);
676         if (info->chip.options & NAND_BUSWIDTH_16)
677                 val |= 0x1;
678
679         davinci_nand_writel(info, A1CR_OFFSET + info->core_chipsel * 4, val);
680
681         ret = davinci_aemif_setup_timing(info->timing, info->base,
682                                                         info->core_chipsel);
683         if (ret < 0) {
684                 dev_dbg(&pdev->dev, "NAND timing values setup fail\n");
685                 goto err_timing;
686         }
687
688         spin_lock_irq(&davinci_nand_lock);
689
690         /* put CSxNAND into NAND mode */
691         val = davinci_nand_readl(info, NANDFCR_OFFSET);
692         val |= BIT(info->core_chipsel);
693         davinci_nand_writel(info, NANDFCR_OFFSET, val);
694
695         spin_unlock_irq(&davinci_nand_lock);
696
697         /* Scan to find existence of the device(s) */
698         ret = nand_scan_ident(&info->mtd, pdata->mask_chipsel ? 2 : 1, NULL);
699         if (ret < 0) {
700                 dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
701                 goto err_scan;
702         }
703
704         /* Update ECC layout if needed ... for 1-bit HW ECC, the default
705          * is OK, but it allocates 6 bytes when only 3 are needed (for
706          * each 512 bytes).  For the 4-bit HW ECC, that default is not
707          * usable:  10 bytes are needed, not 6.
708          */
709         if (pdata->ecc_bits == 4) {
710                 int     chunks = info->mtd.writesize / 512;
711
712                 if (!chunks || info->mtd.oobsize < 16) {
713                         dev_dbg(&pdev->dev, "too small\n");
714                         ret = -EINVAL;
715                         goto err_scan;
716                 }
717
718                 /* For small page chips, preserve the manufacturer's
719                  * badblock marking data ... and make sure a flash BBT
720                  * table marker fits in the free bytes.
721                  */
722                 if (chunks == 1) {
723                         info->ecclayout = hwecc4_small;
724                         info->ecclayout.oobfree[1].length =
725                                 info->mtd.oobsize - 16;
726                         goto syndrome_done;
727                 }
728                 if (chunks == 4) {
729                         info->ecclayout = hwecc4_2048;
730                         info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST;
731                         goto syndrome_done;
732                 }
733
734                 /* 4KiB page chips are not yet supported. The eccpos from
735                  * nand_ecclayout cannot hold 80 bytes and change to eccpos[]
736                  * breaks userspace ioctl interface with mtd-utils. Once we
737                  * resolve this issue, NAND_ECC_HW_OOB_FIRST mode can be used
738                  * for the 4KiB page chips.
739                  *
740                  * TODO: Note that nand_ecclayout has now been expanded and can
741                  *  hold plenty of OOB entries.
742                  */
743                 dev_warn(&pdev->dev, "no 4-bit ECC support yet "
744                                 "for 4KiB-page NAND\n");
745                 ret = -EIO;
746                 goto err_scan;
747
748 syndrome_done:
749                 info->chip.ecc.layout = &info->ecclayout;
750         }
751
752         ret = nand_scan_tail(&info->mtd);
753         if (ret < 0)
754                 goto err_scan;
755
756         mtd_parts_nb = parse_mtd_partitions(&info->mtd, NULL, &mtd_parts, 0);
757
758         if (mtd_parts_nb <= 0) {
759                 mtd_parts = pdata->parts;
760                 mtd_parts_nb = pdata->nr_parts;
761         }
762
763         /* Register any partitions */
764         if (mtd_parts_nb > 0) {
765                 ret = mtd_device_register(&info->mtd, mtd_parts,
766                                           mtd_parts_nb);
767                 if (ret == 0)
768                         info->partitioned = true;
769         }
770
771         /* If there's no partition info, just package the whole chip
772          * as a single MTD device.
773          */
774         if (!info->partitioned)
775                 ret = mtd_device_register(&info->mtd, NULL, 0) ? -ENODEV : 0;
776
777         if (ret < 0)
778                 goto err_scan;
779
780         val = davinci_nand_readl(info, NRCSR_OFFSET);
781         dev_info(&pdev->dev, "controller rev. %d.%d\n",
782                (val >> 8) & 0xff, val & 0xff);
783
784         return 0;
785
786 err_scan:
787 err_timing:
788         clk_disable(info->clk);
789
790 err_clk_enable:
791         clk_put(info->clk);
792
793         spin_lock_irq(&davinci_nand_lock);
794         if (ecc_mode == NAND_ECC_HW_SYNDROME)
795                 ecc4_busy = false;
796         spin_unlock_irq(&davinci_nand_lock);
797
798 err_ecc:
799 err_clk:
800 err_ioremap:
801         if (base)
802                 iounmap(base);
803         if (vaddr)
804                 iounmap(vaddr);
805
806 err_nomem:
807         kfree(info);
808         return ret;
809 }
810
811 static int __exit nand_davinci_remove(struct platform_device *pdev)
812 {
813         struct davinci_nand_info *info = platform_get_drvdata(pdev);
814         int status;
815
816         status = mtd_device_unregister(&info->mtd);
817
818         spin_lock_irq(&davinci_nand_lock);
819         if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME)
820                 ecc4_busy = false;
821         spin_unlock_irq(&davinci_nand_lock);
822
823         iounmap(info->base);
824         iounmap(info->vaddr);
825
826         nand_release(&info->mtd);
827
828         clk_disable(info->clk);
829         clk_put(info->clk);
830
831         kfree(info);
832
833         return 0;
834 }
835
836 static struct platform_driver nand_davinci_driver = {
837         .remove         = __exit_p(nand_davinci_remove),
838         .driver         = {
839                 .name   = "davinci_nand",
840         },
841 };
842 MODULE_ALIAS("platform:davinci_nand");
843
844 static int __init nand_davinci_init(void)
845 {
846         return platform_driver_probe(&nand_davinci_driver, nand_davinci_probe);
847 }
848 module_init(nand_davinci_init);
849
850 static void __exit nand_davinci_exit(void)
851 {
852         platform_driver_unregister(&nand_davinci_driver);
853 }
854 module_exit(nand_davinci_exit);
855
856 MODULE_LICENSE("GPL");
857 MODULE_AUTHOR("Texas Instruments");
858 MODULE_DESCRIPTION("Davinci NAND flash driver");
859