Merge branch 'hwmon-for-linus' of git://jdelvare.pck.nerim.net/jdelvare-2.6
[pandora-kernel.git] / drivers / mtd / nand / cafe.c
1 /*
2  * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
3  *
4  * Copyright © 2006 Red Hat, Inc.
5  * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
6  */
7
8 #define DEBUG
9
10 #include <linux/device.h>
11 #undef DEBUG
12 #include <linux/mtd/mtd.h>
13 #include <linux/mtd/nand.h>
14 #include <linux/pci.h>
15 #include <linux/delay.h>
16 #include <linux/interrupt.h>
17 #include <linux/dma-mapping.h>
18 #include <asm/io.h>
19
20 #define CAFE_NAND_CTRL1         0x00
21 #define CAFE_NAND_CTRL2         0x04
22 #define CAFE_NAND_CTRL3         0x08
23 #define CAFE_NAND_STATUS        0x0c
24 #define CAFE_NAND_IRQ           0x10
25 #define CAFE_NAND_IRQ_MASK      0x14
26 #define CAFE_NAND_DATA_LEN      0x18
27 #define CAFE_NAND_ADDR1         0x1c
28 #define CAFE_NAND_ADDR2         0x20
29 #define CAFE_NAND_TIMING1       0x24
30 #define CAFE_NAND_TIMING2       0x28
31 #define CAFE_NAND_TIMING3       0x2c
32 #define CAFE_NAND_NONMEM        0x30
33 #define CAFE_NAND_ECC_RESULT    0x3C
34 #define CAFE_NAND_DMA_CTRL      0x40
35 #define CAFE_NAND_DMA_ADDR0     0x44
36 #define CAFE_NAND_DMA_ADDR1     0x48
37 #define CAFE_NAND_ECC_SYN01     0x50
38 #define CAFE_NAND_ECC_SYN23     0x54
39 #define CAFE_NAND_ECC_SYN45     0x58
40 #define CAFE_NAND_ECC_SYN67     0x5c
41 #define CAFE_NAND_READ_DATA     0x1000
42 #define CAFE_NAND_WRITE_DATA    0x2000
43
44 #define CAFE_GLOBAL_CTRL        0x3004
45 #define CAFE_GLOBAL_IRQ         0x3008
46 #define CAFE_GLOBAL_IRQ_MASK    0x300c
47 #define CAFE_NAND_RESET         0x3034
48
49 int cafe_correct_ecc(unsigned char *buf,
50                      unsigned short *chk_syndrome_list);
51
52 struct cafe_priv {
53         struct nand_chip nand;
54         struct pci_dev *pdev;
55         void __iomem *mmio;
56         uint32_t ctl1;
57         uint32_t ctl2;
58         int datalen;
59         int nr_data;
60         int data_pos;
61         int page_addr;
62         dma_addr_t dmaaddr;
63         unsigned char *dmabuf;
64 };
65
66 static int usedma = 1;
67 module_param(usedma, int, 0644);
68
69 static int skipbbt = 0;
70 module_param(skipbbt, int, 0644);
71
72 static int debug = 0;
73 module_param(debug, int, 0644);
74
75 static int regdebug = 0;
76 module_param(regdebug, int, 0644);
77
78 static int checkecc = 1;
79 module_param(checkecc, int, 0644);
80
81 static int numtimings;
82 static int timing[3];
83 module_param_array(timing, int, &numtimings, 0644);
84
85 /* Hrm. Why isn't this already conditional on something in the struct device? */
86 #define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
87
88 /* Make it easier to switch to PIO if we need to */
89 #define cafe_readl(cafe, addr)                  readl((cafe)->mmio + CAFE_##addr)
90 #define cafe_writel(cafe, datum, addr)          writel(datum, (cafe)->mmio + CAFE_##addr)
91
92 static int cafe_device_ready(struct mtd_info *mtd)
93 {
94         struct cafe_priv *cafe = mtd->priv;
95         int result = !!(cafe_readl(cafe, NAND_STATUS) | 0x40000000);
96         uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
97
98         cafe_writel(cafe, irqs, NAND_IRQ);
99
100         cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
101                 result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ),
102                 cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK));
103
104         return result;
105 }
106
107
108 static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
109 {
110         struct cafe_priv *cafe = mtd->priv;
111
112         if (usedma)
113                 memcpy(cafe->dmabuf + cafe->datalen, buf, len);
114         else
115                 memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
116
117         cafe->datalen += len;
118
119         cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
120                 len, cafe->datalen);
121 }
122
123 static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
124 {
125         struct cafe_priv *cafe = mtd->priv;
126
127         if (usedma)
128                 memcpy(buf, cafe->dmabuf + cafe->datalen, len);
129         else
130                 memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
131
132         cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
133                   len, cafe->datalen);
134         cafe->datalen += len;
135 }
136
137 static uint8_t cafe_read_byte(struct mtd_info *mtd)
138 {
139         struct cafe_priv *cafe = mtd->priv;
140         uint8_t d;
141
142         cafe_read_buf(mtd, &d, 1);
143         cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
144
145         return d;
146 }
147
148 static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
149                               int column, int page_addr)
150 {
151         struct cafe_priv *cafe = mtd->priv;
152         int adrbytes = 0;
153         uint32_t ctl1;
154         uint32_t doneint = 0x80000000;
155
156         cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
157                 command, column, page_addr);
158
159         if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
160                 /* Second half of a command we already calculated */
161                 cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2);
162                 ctl1 = cafe->ctl1;
163                 cafe->ctl2 &= ~(1<<30);
164                 cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
165                           cafe->ctl1, cafe->nr_data);
166                 goto do_command;
167         }
168         /* Reset ECC engine */
169         cafe_writel(cafe, 0, NAND_CTRL2);
170
171         /* Emulate NAND_CMD_READOOB on large-page chips */
172         if (mtd->writesize > 512 &&
173             command == NAND_CMD_READOOB) {
174                 column += mtd->writesize;
175                 command = NAND_CMD_READ0;
176         }
177
178         /* FIXME: Do we need to send read command before sending data
179            for small-page chips, to position the buffer correctly? */
180
181         if (column != -1) {
182                 cafe_writel(cafe, column, NAND_ADDR1);
183                 adrbytes = 2;
184                 if (page_addr != -1)
185                         goto write_adr2;
186         } else if (page_addr != -1) {
187                 cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1);
188                 page_addr >>= 16;
189         write_adr2:
190                 cafe_writel(cafe, page_addr, NAND_ADDR2);
191                 adrbytes += 2;
192                 if (mtd->size > mtd->writesize << 16)
193                         adrbytes++;
194         }
195
196         cafe->data_pos = cafe->datalen = 0;
197
198         /* Set command valid bit */
199         ctl1 = 0x80000000 | command;
200
201         /* Set RD or WR bits as appropriate */
202         if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
203                 ctl1 |= (1<<26); /* rd */
204                 /* Always 5 bytes, for now */
205                 cafe->datalen = 4;
206                 /* And one address cycle -- even for STATUS, since the controller doesn't work without */
207                 adrbytes = 1;
208         } else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
209                    command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
210                 ctl1 |= 1<<26; /* rd */
211                 /* For now, assume just read to end of page */
212                 cafe->datalen = mtd->writesize + mtd->oobsize - column;
213         } else if (command == NAND_CMD_SEQIN)
214                 ctl1 |= 1<<25; /* wr */
215
216         /* Set number of address bytes */
217         if (adrbytes)
218                 ctl1 |= ((adrbytes-1)|8) << 27;
219
220         if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
221                 /* Ignore the first command of a pair; the hardware
222                    deals with them both at once, later */
223                 cafe->ctl1 = ctl1;
224                 cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
225                           cafe->ctl1, cafe->datalen);
226                 return;
227         }
228         /* RNDOUT and READ0 commands need a following byte */
229         if (command == NAND_CMD_RNDOUT)
230                 cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2);
231         else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
232                 cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2);
233
234  do_command:
235         cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
236                 cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2));
237
238         /* NB: The datasheet lies -- we really should be subtracting 1 here */
239         cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN);
240         cafe_writel(cafe, 0x90000000, NAND_IRQ);
241         if (usedma && (ctl1 & (3<<25))) {
242                 uint32_t dmactl = 0xc0000000 + cafe->datalen;
243                 /* If WR or RD bits set, set up DMA */
244                 if (ctl1 & (1<<26)) {
245                         /* It's a read */
246                         dmactl |= (1<<29);
247                         /* ... so it's done when the DMA is done, not just
248                            the command. */
249                         doneint = 0x10000000;
250                 }
251                 cafe_writel(cafe, dmactl, NAND_DMA_CTRL);
252         }
253         cafe->datalen = 0;
254
255         if (unlikely(regdebug)) {
256                 int i;
257                 printk("About to write command %08x to register 0\n", ctl1);
258                 for (i=4; i< 0x5c; i+=4)
259                         printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
260         }
261
262         cafe_writel(cafe, ctl1, NAND_CTRL1);
263         /* Apply this short delay always to ensure that we do wait tWB in
264          * any case on any machine. */
265         ndelay(100);
266
267         if (1) {
268                 int c;
269                 uint32_t irqs;
270
271                 for (c = 500000; c != 0; c--) {
272                         irqs = cafe_readl(cafe, NAND_IRQ);
273                         if (irqs & doneint)
274                                 break;
275                         udelay(1);
276                         if (!(c % 100000))
277                                 cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
278                         cpu_relax();
279                 }
280                 cafe_writel(cafe, doneint, NAND_IRQ);
281                 cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n",
282                              command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ));
283         }
284
285         WARN_ON(cafe->ctl2 & (1<<30));
286
287         switch (command) {
288
289         case NAND_CMD_CACHEDPROG:
290         case NAND_CMD_PAGEPROG:
291         case NAND_CMD_ERASE1:
292         case NAND_CMD_ERASE2:
293         case NAND_CMD_SEQIN:
294         case NAND_CMD_RNDIN:
295         case NAND_CMD_STATUS:
296         case NAND_CMD_DEPLETE1:
297         case NAND_CMD_RNDOUT:
298         case NAND_CMD_STATUS_ERROR:
299         case NAND_CMD_STATUS_ERROR0:
300         case NAND_CMD_STATUS_ERROR1:
301         case NAND_CMD_STATUS_ERROR2:
302         case NAND_CMD_STATUS_ERROR3:
303                 cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
304                 return;
305         }
306         nand_wait_ready(mtd);
307         cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
308 }
309
310 static void cafe_select_chip(struct mtd_info *mtd, int chipnr)
311 {
312         //struct cafe_priv *cafe = mtd->priv;
313         //      cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
314 }
315
316 static int cafe_nand_interrupt(int irq, void *id)
317 {
318         struct mtd_info *mtd = id;
319         struct cafe_priv *cafe = mtd->priv;
320         uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
321         cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ);
322         if (!irqs)
323                 return IRQ_NONE;
324
325         cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ));
326         return IRQ_HANDLED;
327 }
328
329 static void cafe_nand_bug(struct mtd_info *mtd)
330 {
331         BUG();
332 }
333
334 static int cafe_nand_write_oob(struct mtd_info *mtd,
335                                struct nand_chip *chip, int page)
336 {
337         int status = 0;
338
339         chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
340         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
341         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
342         status = chip->waitfunc(mtd, chip);
343
344         return status & NAND_STATUS_FAIL ? -EIO : 0;
345 }
346
347 /* Don't use -- use nand_read_oob_std for now */
348 static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
349                               int page, int sndcmd)
350 {
351         chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
352         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
353         return 1;
354 }
355 /**
356  * cafe_nand_read_page_syndrome - {REPLACABLE] hardware ecc syndrom based page read
357  * @mtd:        mtd info structure
358  * @chip:       nand chip info structure
359  * @buf:        buffer to store read data
360  *
361  * The hw generator calculates the error syndrome automatically. Therefor
362  * we need a special oob layout and handling.
363  */
364 static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
365                                uint8_t *buf)
366 {
367         struct cafe_priv *cafe = mtd->priv;
368
369         cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
370                      cafe_readl(cafe, NAND_ECC_RESULT),
371                      cafe_readl(cafe, NAND_ECC_SYN01));
372
373         chip->read_buf(mtd, buf, mtd->writesize);
374         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
375
376         if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) {
377                 unsigned short syn[8];
378                 int i;
379
380                 for (i=0; i<8; i+=2) {
381                         uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2));
382                         syn[i] = tmp & 0xfff;
383                         syn[i+1] = (tmp >> 16) & 0xfff;
384                 }
385
386                 if ((i = cafe_correct_ecc(buf, syn)) < 0) {
387                         dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n",
388                                 cafe_readl(cafe, NAND_ADDR2) * 2048);
389                         for (i=0; i< 0x5c; i+=4)
390                                 printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
391                         mtd->ecc_stats.failed++;
392                 } else {
393                         dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", i);
394                         mtd->ecc_stats.corrected += i;
395                 }
396         }
397
398
399         return 0;
400 }
401
402 static struct nand_ecclayout cafe_oobinfo_2048 = {
403         .eccbytes = 14,
404         .eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
405         .oobfree = {{14, 50}}
406 };
407
408 /* Ick. The BBT code really ought to be able to work this bit out
409    for itself from the above, at least for the 2KiB case */
410 static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
411 static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };
412
413 static uint8_t cafe_bbt_pattern_512[] = { 0xBB };
414 static uint8_t cafe_mirror_pattern_512[] = { 0xBC };
415
416
417 static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
418         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
419                 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
420         .offs = 14,
421         .len = 4,
422         .veroffs = 18,
423         .maxblocks = 4,
424         .pattern = cafe_bbt_pattern_2048
425 };
426
427 static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
428         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
429                 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
430         .offs = 14,
431         .len = 4,
432         .veroffs = 18,
433         .maxblocks = 4,
434         .pattern = cafe_mirror_pattern_2048
435 };
436
437 static struct nand_ecclayout cafe_oobinfo_512 = {
438         .eccbytes = 14,
439         .eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
440         .oobfree = {{14, 2}}
441 };
442
443 static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
444         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
445                 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
446         .offs = 14,
447         .len = 1,
448         .veroffs = 15,
449         .maxblocks = 4,
450         .pattern = cafe_bbt_pattern_512
451 };
452
453 static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
454         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
455                 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
456         .offs = 14,
457         .len = 1,
458         .veroffs = 15,
459         .maxblocks = 4,
460         .pattern = cafe_mirror_pattern_512
461 };
462
463
464 static void cafe_nand_write_page_lowlevel(struct mtd_info *mtd,
465                                           struct nand_chip *chip, const uint8_t *buf)
466 {
467         struct cafe_priv *cafe = mtd->priv;
468
469         chip->write_buf(mtd, buf, mtd->writesize);
470         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
471
472         /* Set up ECC autogeneration */
473         cafe->ctl2 |= (1<<30);
474 }
475
476 static int cafe_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
477                                 const uint8_t *buf, int page, int cached, int raw)
478 {
479         int status;
480
481         chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
482
483         if (unlikely(raw))
484                 chip->ecc.write_page_raw(mtd, chip, buf);
485         else
486                 chip->ecc.write_page(mtd, chip, buf);
487
488         /*
489          * Cached progamming disabled for now, Not sure if its worth the
490          * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
491          */
492         cached = 0;
493
494         if (!cached || !(chip->options & NAND_CACHEPRG)) {
495
496                 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
497                 status = chip->waitfunc(mtd, chip);
498                 /*
499                  * See if operation failed and additional status checks are
500                  * available
501                  */
502                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
503                         status = chip->errstat(mtd, chip, FL_WRITING, status,
504                                                page);
505
506                 if (status & NAND_STATUS_FAIL)
507                         return -EIO;
508         } else {
509                 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
510                 status = chip->waitfunc(mtd, chip);
511         }
512
513 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
514         /* Send command to read back the data */
515         chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
516
517         if (chip->verify_buf(mtd, buf, mtd->writesize))
518                 return -EIO;
519 #endif
520         return 0;
521 }
522
523 static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
524 {
525         return 0;
526 }
527
528 static int __devinit cafe_nand_probe(struct pci_dev *pdev,
529                                      const struct pci_device_id *ent)
530 {
531         struct mtd_info *mtd;
532         struct cafe_priv *cafe;
533         uint32_t timing1, timing2, timing3;
534         uint32_t ctrl;
535         int err = 0;
536
537         err = pci_enable_device(pdev);
538         if (err)
539                 return err;
540
541         pci_set_master(pdev);
542
543         mtd = kzalloc(sizeof(*mtd) + sizeof(struct cafe_priv), GFP_KERNEL);
544         if (!mtd) {
545                 dev_warn(&pdev->dev, "failed to alloc mtd_info\n");
546                 return  -ENOMEM;
547         }
548         cafe = (void *)(&mtd[1]);
549
550         mtd->priv = cafe;
551         mtd->owner = THIS_MODULE;
552
553         cafe->pdev = pdev;
554         cafe->mmio = pci_iomap(pdev, 0, 0);
555         if (!cafe->mmio) {
556                 dev_warn(&pdev->dev, "failed to iomap\n");
557                 err = -ENOMEM;
558                 goto out_free_mtd;
559         }
560         cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112 + sizeof(struct nand_buffers),
561                                           &cafe->dmaaddr, GFP_KERNEL);
562         if (!cafe->dmabuf) {
563                 err = -ENOMEM;
564                 goto out_ior;
565         }
566         cafe->nand.buffers = (void *)cafe->dmabuf + 2112;
567
568         cafe->nand.cmdfunc = cafe_nand_cmdfunc;
569         cafe->nand.dev_ready = cafe_device_ready;
570         cafe->nand.read_byte = cafe_read_byte;
571         cafe->nand.read_buf = cafe_read_buf;
572         cafe->nand.write_buf = cafe_write_buf;
573         cafe->nand.select_chip = cafe_select_chip;
574
575         cafe->nand.chip_delay = 0;
576
577         /* Enable the following for a flash based bad block table */
578         cafe->nand.options = NAND_USE_FLASH_BBT | NAND_NO_AUTOINCR | NAND_OWN_BUFFERS;
579
580         if (skipbbt) {
581                 cafe->nand.options |= NAND_SKIP_BBTSCAN;
582                 cafe->nand.block_bad = cafe_nand_block_bad;
583         }
584
585         if (numtimings && numtimings != 3) {
586                 dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings);
587         }
588
589         if (numtimings == 3) {
590                 timing1 = timing[0];
591                 timing2 = timing[1];
592                 timing3 = timing[2];
593                 cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n",
594                              timing1, timing2, timing3);
595         } else {
596                 timing1 = cafe_readl(cafe, NAND_TIMING1);
597                 timing2 = cafe_readl(cafe, NAND_TIMING2);
598                 timing3 = cafe_readl(cafe, NAND_TIMING3);
599
600                 if (timing1 | timing2 | timing3) {
601                         cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n", timing1, timing2, timing3);
602                 } else {
603                         dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n");
604                         timing1 = timing2 = timing3 = 0xffffffff;
605                 }
606         }
607
608         /* Start off by resetting the NAND controller completely */
609         cafe_writel(cafe, 1, NAND_RESET);
610         cafe_writel(cafe, 0, NAND_RESET);
611
612         cafe_writel(cafe, timing1, NAND_TIMING1);
613         cafe_writel(cafe, timing2, NAND_TIMING2);
614         cafe_writel(cafe, timing3, NAND_TIMING3);
615
616         cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
617         err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED,
618                           "CAFE NAND", mtd);
619         if (err) {
620                 dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
621                 goto out_free_dma;
622         }
623
624         /* Disable master reset, enable NAND clock */
625         ctrl = cafe_readl(cafe, GLOBAL_CTRL);
626         ctrl &= 0xffffeff0;
627         ctrl |= 0x00007000;
628         cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
629         cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
630         cafe_writel(cafe, 0, NAND_DMA_CTRL);
631
632         cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
633         cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
634
635         /* Set up DMA address */
636         cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
637         if (sizeof(cafe->dmaaddr) > 4)
638                 /* Shift in two parts to shut the compiler up */
639                 cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
640         else
641                 cafe_writel(cafe, 0, NAND_DMA_ADDR1);
642
643         cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
644                 cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf);
645
646         /* Enable NAND IRQ in global IRQ mask register */
647         cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
648         cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
649                 cafe_readl(cafe, GLOBAL_CTRL), cafe_readl(cafe, GLOBAL_IRQ_MASK));
650
651         /* Scan to find existence of the device */
652         if (nand_scan_ident(mtd, 1)) {
653                 err = -ENXIO;
654                 goto out_irq;
655         }
656
657         cafe->ctl2 = 1<<27; /* Reed-Solomon ECC */
658         if (mtd->writesize == 2048)
659                 cafe->ctl2 |= 1<<29; /* 2KiB page size */
660
661         /* Set up ECC according to the type of chip we found */
662         if (mtd->writesize == 2048) {
663                 cafe->nand.ecc.layout = &cafe_oobinfo_2048;
664                 cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
665                 cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
666         } else if (mtd->writesize == 512) {
667                 cafe->nand.ecc.layout = &cafe_oobinfo_512;
668                 cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
669                 cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
670         } else {
671                 printk(KERN_WARNING "Unexpected NAND flash writesize %d. Aborting\n",
672                        mtd->writesize);
673                 goto out_irq;
674         }
675         cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
676         cafe->nand.ecc.size = mtd->writesize;
677         cafe->nand.ecc.bytes = 14;
678         cafe->nand.ecc.hwctl  = (void *)cafe_nand_bug;
679         cafe->nand.ecc.calculate = (void *)cafe_nand_bug;
680         cafe->nand.ecc.correct  = (void *)cafe_nand_bug;
681         cafe->nand.write_page = cafe_nand_write_page;
682         cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
683         cafe->nand.ecc.write_oob = cafe_nand_write_oob;
684         cafe->nand.ecc.read_page = cafe_nand_read_page;
685         cafe->nand.ecc.read_oob = cafe_nand_read_oob;
686
687         err = nand_scan_tail(mtd);
688         if (err)
689                 goto out_irq;
690
691         pci_set_drvdata(pdev, mtd);
692         add_mtd_device(mtd);
693         goto out;
694
695  out_irq:
696         /* Disable NAND IRQ in global IRQ mask register */
697         cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
698         free_irq(pdev->irq, mtd);
699  out_free_dma:
700         dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
701  out_ior:
702         pci_iounmap(pdev, cafe->mmio);
703  out_free_mtd:
704         kfree(mtd);
705  out:
706         return err;
707 }
708
709 static void __devexit cafe_nand_remove(struct pci_dev *pdev)
710 {
711         struct mtd_info *mtd = pci_get_drvdata(pdev);
712         struct cafe_priv *cafe = mtd->priv;
713
714         del_mtd_device(mtd);
715         /* Disable NAND IRQ in global IRQ mask register */
716         cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
717         free_irq(pdev->irq, mtd);
718         nand_release(mtd);
719         pci_iounmap(pdev, cafe->mmio);
720         dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
721         kfree(mtd);
722 }
723
724 static struct pci_device_id cafe_nand_tbl[] = {
725         { 0x11ab, 0x4100, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MEMORY_FLASH << 8, 0xFFFF0 }
726 };
727
728 MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
729
730 static struct pci_driver cafe_nand_pci_driver = {
731         .name = "CAFÉ NAND",
732         .id_table = cafe_nand_tbl,
733         .probe = cafe_nand_probe,
734         .remove = __devexit_p(cafe_nand_remove),
735 #ifdef CONFIG_PMx
736         .suspend = cafe_nand_suspend,
737         .resume = cafe_nand_resume,
738 #endif
739 };
740
741 static int cafe_nand_init(void)
742 {
743         return pci_register_driver(&cafe_nand_pci_driver);
744 }
745
746 static void cafe_nand_exit(void)
747 {
748         pci_unregister_driver(&cafe_nand_pci_driver);
749 }
750 module_init(cafe_nand_init);
751 module_exit(cafe_nand_exit);
752
753 MODULE_LICENSE("GPL");
754 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
755 MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");