Merge branch 'fixes' of http://ftp.arm.linux.org.uk/pub/linux/arm/kernel/git-cur...
[pandora-kernel.git] / drivers / mtd / nand / bcm_umi_nand.c
1 /*****************************************************************************
2 * Copyright 2004 - 2009 Broadcom Corporation.  All rights reserved.
3 *
4 * Unless you and Broadcom execute a separate written software license
5 * agreement governing use of this software, this software is licensed to you
6 * under the terms of the GNU General Public License version 2, available at
7 * http://www.broadcom.com/licenses/GPLv2.php (the "GPL").
8 *
9 * Notwithstanding the above, under no circumstances may you combine this
10 * software in any way with any other Broadcom software provided under a
11 * license other than the GPL, without Broadcom's express prior written
12 * consent.
13 *****************************************************************************/
14
15 /* ---- Include Files ---------------------------------------------------- */
16 #include <linux/module.h>
17 #include <linux/types.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/string.h>
22 #include <linux/ioport.h>
23 #include <linux/device.h>
24 #include <linux/delay.h>
25 #include <linux/err.h>
26 #include <linux/io.h>
27 #include <linux/platform_device.h>
28 #include <linux/mtd/mtd.h>
29 #include <linux/mtd/nand.h>
30 #include <linux/mtd/nand_ecc.h>
31 #include <linux/mtd/partitions.h>
32
33 #include <asm/mach-types.h>
34 #include <asm/system.h>
35
36 #include <mach/reg_nand.h>
37 #include <mach/reg_umi.h>
38
39 #include "nand_bcm_umi.h"
40
41 #include <mach/memory_settings.h>
42
43 #define USE_DMA 1
44 #include <mach/dma.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/completion.h>
47
48 /* ---- External Variable Declarations ----------------------------------- */
49 /* ---- External Function Prototypes ------------------------------------- */
50 /* ---- Public Variables ------------------------------------------------- */
51 /* ---- Private Constants and Types -------------------------------------- */
52 static const __devinitconst char gBanner[] = KERN_INFO \
53         "BCM UMI MTD NAND Driver: 1.00\n";
54
55 #if NAND_ECC_BCH
56 static uint8_t scan_ff_pattern[] = { 0xff };
57
58 static struct nand_bbt_descr largepage_bbt = {
59         .options = 0,
60         .offs = 0,
61         .len = 1,
62         .pattern = scan_ff_pattern
63 };
64 #endif
65
66 /*
67 ** Preallocate a buffer to avoid having to do this every dma operation.
68 ** This is the size of the preallocated coherent DMA buffer.
69 */
70 #if USE_DMA
71 #define DMA_MIN_BUFLEN  512
72 #define DMA_MAX_BUFLEN  PAGE_SIZE
73 #define USE_DIRECT_IO(len)      (((len) < DMA_MIN_BUFLEN) || \
74         ((len) > DMA_MAX_BUFLEN))
75
76 /*
77  * The current NAND data space goes from 0x80001900 to 0x80001FFF,
78  * which is only 0x700 = 1792 bytes long. This is too small for 2K, 4K page
79  * size NAND flash. Need to break the DMA down to multiple 1Ks.
80  *
81  * Need to make sure REG_NAND_DATA_PADDR + DMA_MAX_LEN < 0x80002000
82  */
83 #define DMA_MAX_LEN             1024
84
85 #else /* !USE_DMA */
86 #define DMA_MIN_BUFLEN          0
87 #define DMA_MAX_BUFLEN          0
88 #define USE_DIRECT_IO(len)      1
89 #endif
90 /* ---- Private Function Prototypes -------------------------------------- */
91 static void bcm_umi_nand_read_buf(struct mtd_info *mtd, u_char * buf, int len);
92 static void bcm_umi_nand_write_buf(struct mtd_info *mtd, const u_char * buf,
93                                    int len);
94
95 /* ---- Private Variables ------------------------------------------------ */
96 static struct mtd_info *board_mtd;
97 static void __iomem *bcm_umi_io_base;
98 static void *virtPtr;
99 static dma_addr_t physPtr;
100 static struct completion nand_comp;
101
102 /* ---- Private Functions ------------------------------------------------ */
103 #if NAND_ECC_BCH
104 #include "bcm_umi_bch.c"
105 #else
106 #include "bcm_umi_hamming.c"
107 #endif
108
109 #if USE_DMA
110
111 /* Handler called when the DMA finishes. */
112 static void nand_dma_handler(DMA_Device_t dev, int reason, void *userData)
113 {
114         complete(&nand_comp);
115 }
116
117 static int nand_dma_init(void)
118 {
119         int rc;
120
121         rc = dma_set_device_handler(DMA_DEVICE_NAND_MEM_TO_MEM,
122                 nand_dma_handler, NULL);
123         if (rc != 0) {
124                 printk(KERN_ERR "dma_set_device_handler failed: %d\n", rc);
125                 return rc;
126         }
127
128         virtPtr =
129             dma_alloc_coherent(NULL, DMA_MAX_BUFLEN, &physPtr, GFP_KERNEL);
130         if (virtPtr == NULL) {
131                 printk(KERN_ERR "NAND - Failed to allocate memory for DMA buffer\n");
132                 return -ENOMEM;
133         }
134
135         return 0;
136 }
137
138 static void nand_dma_term(void)
139 {
140         if (virtPtr != NULL)
141                 dma_free_coherent(NULL, DMA_MAX_BUFLEN, virtPtr, physPtr);
142 }
143
144 static void nand_dma_read(void *buf, int len)
145 {
146         int offset = 0;
147         int tmp_len = 0;
148         int len_left = len;
149         DMA_Handle_t hndl;
150
151         if (virtPtr == NULL)
152                 panic("nand_dma_read: virtPtr == NULL\n");
153
154         if ((void *)physPtr == NULL)
155                 panic("nand_dma_read: physPtr == NULL\n");
156
157         hndl = dma_request_channel(DMA_DEVICE_NAND_MEM_TO_MEM);
158         if (hndl < 0) {
159                 printk(KERN_ERR
160                        "nand_dma_read: unable to allocate dma channel: %d\n",
161                        (int)hndl);
162                 panic("\n");
163         }
164
165         while (len_left > 0) {
166                 if (len_left > DMA_MAX_LEN) {
167                         tmp_len = DMA_MAX_LEN;
168                         len_left -= DMA_MAX_LEN;
169                 } else {
170                         tmp_len = len_left;
171                         len_left = 0;
172                 }
173
174                 init_completion(&nand_comp);
175                 dma_transfer_mem_to_mem(hndl, REG_NAND_DATA_PADDR,
176                                         physPtr + offset, tmp_len);
177                 wait_for_completion(&nand_comp);
178
179                 offset += tmp_len;
180         }
181
182         dma_free_channel(hndl);
183
184         if (buf != NULL)
185                 memcpy(buf, virtPtr, len);
186 }
187
188 static void nand_dma_write(const void *buf, int len)
189 {
190         int offset = 0;
191         int tmp_len = 0;
192         int len_left = len;
193         DMA_Handle_t hndl;
194
195         if (buf == NULL)
196                 panic("nand_dma_write: buf == NULL\n");
197
198         if (virtPtr == NULL)
199                 panic("nand_dma_write: virtPtr == NULL\n");
200
201         if ((void *)physPtr == NULL)
202                 panic("nand_dma_write: physPtr == NULL\n");
203
204         memcpy(virtPtr, buf, len);
205
206
207         hndl = dma_request_channel(DMA_DEVICE_NAND_MEM_TO_MEM);
208         if (hndl < 0) {
209                 printk(KERN_ERR
210                        "nand_dma_write: unable to allocate dma channel: %d\n",
211                        (int)hndl);
212                 panic("\n");
213         }
214
215         while (len_left > 0) {
216                 if (len_left > DMA_MAX_LEN) {
217                         tmp_len = DMA_MAX_LEN;
218                         len_left -= DMA_MAX_LEN;
219                 } else {
220                         tmp_len = len_left;
221                         len_left = 0;
222                 }
223
224                 init_completion(&nand_comp);
225                 dma_transfer_mem_to_mem(hndl, physPtr + offset,
226                                         REG_NAND_DATA_PADDR, tmp_len);
227                 wait_for_completion(&nand_comp);
228
229                 offset += tmp_len;
230         }
231
232         dma_free_channel(hndl);
233 }
234
235 #endif
236
237 static int nand_dev_ready(struct mtd_info *mtd)
238 {
239         return nand_bcm_umi_dev_ready();
240 }
241
242 /****************************************************************************
243 *
244 *  bcm_umi_nand_inithw
245 *
246 *   This routine does the necessary hardware (board-specific)
247 *   initializations.  This includes setting up the timings, etc.
248 *
249 ***************************************************************************/
250 int bcm_umi_nand_inithw(void)
251 {
252         /* Configure nand timing parameters */
253         REG_UMI_NAND_TCR &= ~0x7ffff;
254         REG_UMI_NAND_TCR |= HW_CFG_NAND_TCR;
255
256 #if !defined(CONFIG_MTD_NAND_BCM_UMI_HWCS)
257         /* enable software control of CS */
258         REG_UMI_NAND_TCR |= REG_UMI_NAND_TCR_CS_SWCTRL;
259 #endif
260
261         /* keep NAND chip select asserted */
262         REG_UMI_NAND_RCSR |= REG_UMI_NAND_RCSR_CS_ASSERTED;
263
264         REG_UMI_NAND_TCR &= ~REG_UMI_NAND_TCR_WORD16;
265         /* enable writes to flash */
266         REG_UMI_MMD_ICR |= REG_UMI_MMD_ICR_FLASH_WP;
267
268         writel(NAND_CMD_RESET, bcm_umi_io_base + REG_NAND_CMD_OFFSET);
269         nand_bcm_umi_wait_till_ready();
270
271 #if NAND_ECC_BCH
272         nand_bcm_umi_bch_config_ecc(NAND_ECC_NUM_BYTES);
273 #endif
274
275         return 0;
276 }
277
278 /* Used to turn latch the proper register for access. */
279 static void bcm_umi_nand_hwcontrol(struct mtd_info *mtd, int cmd,
280                                    unsigned int ctrl)
281 {
282         /* send command to hardware */
283         struct nand_chip *chip = mtd->priv;
284         if (ctrl & NAND_CTRL_CHANGE) {
285                 if (ctrl & NAND_CLE) {
286                         chip->IO_ADDR_W = bcm_umi_io_base + REG_NAND_CMD_OFFSET;
287                         goto CMD;
288                 }
289                 if (ctrl & NAND_ALE) {
290                         chip->IO_ADDR_W =
291                             bcm_umi_io_base + REG_NAND_ADDR_OFFSET;
292                         goto CMD;
293                 }
294                 chip->IO_ADDR_W = bcm_umi_io_base + REG_NAND_DATA8_OFFSET;
295         }
296
297 CMD:
298         /* Send command to chip directly */
299         if (cmd != NAND_CMD_NONE)
300                 writeb(cmd, chip->IO_ADDR_W);
301 }
302
303 static void bcm_umi_nand_write_buf(struct mtd_info *mtd, const u_char * buf,
304                                    int len)
305 {
306         if (USE_DIRECT_IO(len)) {
307                 /* Do it the old way if the buffer is small or too large.
308                  * Probably quicker than starting and checking dma. */
309                 int i;
310                 struct nand_chip *this = mtd->priv;
311
312                 for (i = 0; i < len; i++)
313                         writeb(buf[i], this->IO_ADDR_W);
314         }
315 #if USE_DMA
316         else
317                 nand_dma_write(buf, len);
318 #endif
319 }
320
321 static void bcm_umi_nand_read_buf(struct mtd_info *mtd, u_char * buf, int len)
322 {
323         if (USE_DIRECT_IO(len)) {
324                 int i;
325                 struct nand_chip *this = mtd->priv;
326
327                 for (i = 0; i < len; i++)
328                         buf[i] = readb(this->IO_ADDR_R);
329         }
330 #if USE_DMA
331         else
332                 nand_dma_read(buf, len);
333 #endif
334 }
335
336 static uint8_t readbackbuf[NAND_MAX_PAGESIZE];
337 static int bcm_umi_nand_verify_buf(struct mtd_info *mtd, const u_char * buf,
338                                    int len)
339 {
340         /*
341          * Try to readback page with ECC correction. This is necessary
342          * for MLC parts which may have permanently stuck bits.
343          */
344         struct nand_chip *chip = mtd->priv;
345         int ret = chip->ecc.read_page(mtd, chip, readbackbuf, 0);
346         if (ret < 0)
347                 return -EFAULT;
348         else {
349                 if (memcmp(readbackbuf, buf, len) == 0)
350                         return 0;
351
352                 return -EFAULT;
353         }
354         return 0;
355 }
356
357 static int __devinit bcm_umi_nand_probe(struct platform_device *pdev)
358 {
359         struct nand_chip *this;
360         struct resource *r;
361         int err = 0;
362
363         printk(gBanner);
364
365         /* Allocate memory for MTD device structure and private data */
366         board_mtd =
367             kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip),
368                     GFP_KERNEL);
369         if (!board_mtd) {
370                 printk(KERN_WARNING
371                        "Unable to allocate NAND MTD device structure.\n");
372                 return -ENOMEM;
373         }
374
375         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
376
377         if (!r) {
378                 err = -ENXIO;
379                 goto out_free;
380         }
381
382         /* map physical address */
383         bcm_umi_io_base = ioremap(r->start, resource_size(r));
384
385         if (!bcm_umi_io_base) {
386                 printk(KERN_ERR "ioremap to access BCM UMI NAND chip failed\n");
387                 err = -EIO;
388                 goto out_free;
389         }
390
391         /* Get pointer to private data */
392         this = (struct nand_chip *)(&board_mtd[1]);
393
394         /* Initialize structures */
395         memset((char *)board_mtd, 0, sizeof(struct mtd_info));
396         memset((char *)this, 0, sizeof(struct nand_chip));
397
398         /* Link the private data with the MTD structure */
399         board_mtd->priv = this;
400
401         /* Initialize the NAND hardware.  */
402         if (bcm_umi_nand_inithw() < 0) {
403                 printk(KERN_ERR "BCM UMI NAND chip could not be initialized\n");
404                 err = -EIO;
405                 goto out_unmap;
406         }
407
408         /* Set address of NAND IO lines */
409         this->IO_ADDR_W = bcm_umi_io_base + REG_NAND_DATA8_OFFSET;
410         this->IO_ADDR_R = bcm_umi_io_base + REG_NAND_DATA8_OFFSET;
411
412         /* Set command delay time, see datasheet for correct value */
413         this->chip_delay = 0;
414         /* Assign the device ready function, if available */
415         this->dev_ready = nand_dev_ready;
416         this->options = 0;
417
418         this->write_buf = bcm_umi_nand_write_buf;
419         this->read_buf = bcm_umi_nand_read_buf;
420         this->verify_buf = bcm_umi_nand_verify_buf;
421
422         this->cmd_ctrl = bcm_umi_nand_hwcontrol;
423         this->ecc.mode = NAND_ECC_HW;
424         this->ecc.size = 512;
425         this->ecc.bytes = NAND_ECC_NUM_BYTES;
426 #if NAND_ECC_BCH
427         this->ecc.read_page = bcm_umi_bch_read_page_hwecc;
428         this->ecc.write_page = bcm_umi_bch_write_page_hwecc;
429 #else
430         this->ecc.correct = nand_correct_data512;
431         this->ecc.calculate = bcm_umi_hamming_get_hw_ecc;
432         this->ecc.hwctl = bcm_umi_hamming_enable_hwecc;
433 #endif
434
435 #if USE_DMA
436         err = nand_dma_init();
437         if (err != 0)
438                 goto out_unmap;
439 #endif
440
441         /* Figure out the size of the device that we have.
442          * We need to do this to figure out which ECC
443          * layout we'll be using.
444          */
445
446         err = nand_scan_ident(board_mtd, 1, NULL);
447         if (err) {
448                 printk(KERN_ERR "nand_scan failed: %d\n", err);
449                 goto out_unmap;
450         }
451
452         /* Now that we know the nand size, we can setup the ECC layout */
453
454         switch (board_mtd->writesize) { /* writesize is the pagesize */
455         case 4096:
456                 this->ecc.layout = &nand_hw_eccoob_4096;
457                 break;
458         case 2048:
459                 this->ecc.layout = &nand_hw_eccoob_2048;
460                 break;
461         case 512:
462                 this->ecc.layout = &nand_hw_eccoob_512;
463                 break;
464         default:
465                 {
466                         printk(KERN_ERR "NAND - Unrecognized pagesize: %d\n",
467                                          board_mtd->writesize);
468                         err = -EINVAL;
469                         goto out_unmap;
470                 }
471         }
472
473 #if NAND_ECC_BCH
474         if (board_mtd->writesize > 512) {
475                 if (this->bbt_options & NAND_BBT_USE_FLASH)
476                         largepage_bbt.options = NAND_BBT_SCAN2NDPAGE;
477                 this->badblock_pattern = &largepage_bbt;
478         }
479 #endif
480
481         /* Now finish off the scan, now that ecc.layout has been initialized. */
482
483         err = nand_scan_tail(board_mtd);
484         if (err) {
485                 printk(KERN_ERR "nand_scan failed: %d\n", err);
486                 goto out_unmap;
487         }
488
489         /* Register the partitions */
490         board_mtd->name = "bcm_umi-nand";
491         mtd_device_parse_register(board_mtd, NULL, 0, NULL, 0);
492
493         /* Return happy */
494         return 0;
495 out_unmap:
496         iounmap(bcm_umi_io_base);
497 out_free:
498         kfree(board_mtd);
499         return err;
500 }
501
502 static int bcm_umi_nand_remove(struct platform_device *pdev)
503 {
504 #if USE_DMA
505         nand_dma_term();
506 #endif
507
508         /* Release resources, unregister device */
509         nand_release(board_mtd);
510
511         /* unmap physical address */
512         iounmap(bcm_umi_io_base);
513
514         /* Free the MTD device structure */
515         kfree(board_mtd);
516
517         return 0;
518 }
519
520 #ifdef CONFIG_PM
521 static int bcm_umi_nand_suspend(struct platform_device *pdev,
522                                 pm_message_t state)
523 {
524         printk(KERN_ERR "MTD NAND suspend is being called\n");
525         return 0;
526 }
527
528 static int bcm_umi_nand_resume(struct platform_device *pdev)
529 {
530         printk(KERN_ERR "MTD NAND resume is being called\n");
531         return 0;
532 }
533 #else
534 #define bcm_umi_nand_suspend   NULL
535 #define bcm_umi_nand_resume    NULL
536 #endif
537
538 static struct platform_driver nand_driver = {
539         .driver = {
540                    .name = "bcm-nand",
541                    .owner = THIS_MODULE,
542                    },
543         .probe = bcm_umi_nand_probe,
544         .remove = bcm_umi_nand_remove,
545         .suspend = bcm_umi_nand_suspend,
546         .resume = bcm_umi_nand_resume,
547 };
548
549 static int __init nand_init(void)
550 {
551         return platform_driver_register(&nand_driver);
552 }
553
554 static void __exit nand_exit(void)
555 {
556         platform_driver_unregister(&nand_driver);
557 }
558
559 module_init(nand_init);
560 module_exit(nand_exit);
561
562 MODULE_LICENSE("GPL");
563 MODULE_AUTHOR("Broadcom");
564 MODULE_DESCRIPTION("BCM UMI MTD NAND driver");