Pull acpica into release branch
[pandora-kernel.git] / drivers / media / video / cx88 / cx88-core.c
1 /*
2  *
3  * device driver for Conexant 2388x based TV cards
4  * driver core
5  *
6  * (c) 2003 Gerd Knorr <kraxel@bytesex.org> [SuSE Labs]
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  *  the Free Software Foundation; either version 2 of the License, or
11  *  (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *  GNU General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License
19  *  along with this program; if not, write to the Free Software
20  *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/init.h>
24 #include <linux/list.h>
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/kmod.h>
30 #include <linux/sound.h>
31 #include <linux/interrupt.h>
32 #include <linux/pci.h>
33 #include <linux/delay.h>
34 #include <linux/videodev2.h>
35 #include <linux/mutex.h>
36
37 #include "cx88.h"
38 #include <media/v4l2-common.h>
39
40 MODULE_DESCRIPTION("v4l2 driver module for cx2388x based TV cards");
41 MODULE_AUTHOR("Gerd Knorr <kraxel@bytesex.org> [SuSE Labs]");
42 MODULE_LICENSE("GPL");
43
44 /* ------------------------------------------------------------------ */
45
46 static unsigned int core_debug = 0;
47 module_param(core_debug,int,0644);
48 MODULE_PARM_DESC(core_debug,"enable debug messages [core]");
49
50 static unsigned int latency = UNSET;
51 module_param(latency,int,0444);
52 MODULE_PARM_DESC(latency,"pci latency timer");
53
54 static unsigned int tuner[] = {[0 ... (CX88_MAXBOARDS - 1)] = UNSET };
55 static unsigned int radio[] = {[0 ... (CX88_MAXBOARDS - 1)] = UNSET };
56 static unsigned int card[]  = {[0 ... (CX88_MAXBOARDS - 1)] = UNSET };
57
58 module_param_array(tuner, int, NULL, 0444);
59 module_param_array(radio, int, NULL, 0444);
60 module_param_array(card,  int, NULL, 0444);
61
62 MODULE_PARM_DESC(tuner,"tuner type");
63 MODULE_PARM_DESC(radio,"radio tuner type");
64 MODULE_PARM_DESC(card,"card type");
65
66 static unsigned int nicam = 0;
67 module_param(nicam,int,0644);
68 MODULE_PARM_DESC(nicam,"tv audio is nicam");
69
70 static unsigned int nocomb = 0;
71 module_param(nocomb,int,0644);
72 MODULE_PARM_DESC(nocomb,"disable comb filter");
73
74 #define dprintk(level,fmt, arg...)      if (core_debug >= level)        \
75         printk(KERN_DEBUG "%s: " fmt, core->name , ## arg)
76
77 static unsigned int cx88_devcount;
78 static LIST_HEAD(cx88_devlist);
79 static DEFINE_MUTEX(devlist);
80
81 #define NO_SYNC_LINE (-1U)
82
83 static u32* cx88_risc_field(u32 *rp, struct scatterlist *sglist,
84                             unsigned int offset, u32 sync_line,
85                             unsigned int bpl, unsigned int padding,
86                             unsigned int lines)
87 {
88         struct scatterlist *sg;
89         unsigned int line,todo;
90
91         /* sync instruction */
92         if (sync_line != NO_SYNC_LINE)
93                 *(rp++) = cpu_to_le32(RISC_RESYNC | sync_line);
94
95         /* scan lines */
96         sg = sglist;
97         for (line = 0; line < lines; line++) {
98                 while (offset && offset >= sg_dma_len(sg)) {
99                         offset -= sg_dma_len(sg);
100                         sg++;
101                 }
102                 if (bpl <= sg_dma_len(sg)-offset) {
103                         /* fits into current chunk */
104                         *(rp++)=cpu_to_le32(RISC_WRITE|RISC_SOL|RISC_EOL|bpl);
105                         *(rp++)=cpu_to_le32(sg_dma_address(sg)+offset);
106                         offset+=bpl;
107                 } else {
108                         /* scanline needs to be splitted */
109                         todo = bpl;
110                         *(rp++)=cpu_to_le32(RISC_WRITE|RISC_SOL|
111                                             (sg_dma_len(sg)-offset));
112                         *(rp++)=cpu_to_le32(sg_dma_address(sg)+offset);
113                         todo -= (sg_dma_len(sg)-offset);
114                         offset = 0;
115                         sg++;
116                         while (todo > sg_dma_len(sg)) {
117                                 *(rp++)=cpu_to_le32(RISC_WRITE|
118                                                     sg_dma_len(sg));
119                                 *(rp++)=cpu_to_le32(sg_dma_address(sg));
120                                 todo -= sg_dma_len(sg);
121                                 sg++;
122                         }
123                         *(rp++)=cpu_to_le32(RISC_WRITE|RISC_EOL|todo);
124                         *(rp++)=cpu_to_le32(sg_dma_address(sg));
125                         offset += todo;
126                 }
127                 offset += padding;
128         }
129
130         return rp;
131 }
132
133 int cx88_risc_buffer(struct pci_dev *pci, struct btcx_riscmem *risc,
134                      struct scatterlist *sglist,
135                      unsigned int top_offset, unsigned int bottom_offset,
136                      unsigned int bpl, unsigned int padding, unsigned int lines)
137 {
138         u32 instructions,fields;
139         u32 *rp;
140         int rc;
141
142         fields = 0;
143         if (UNSET != top_offset)
144                 fields++;
145         if (UNSET != bottom_offset)
146                 fields++;
147
148         /* estimate risc mem: worst case is one write per page border +
149            one write per scan line + syncs + jump (all 2 dwords).  Padding
150            can cause next bpl to start close to a page border.  First DMA
151            region may be smaller than PAGE_SIZE */
152         instructions  = fields * (1 + ((bpl + padding) * lines) / PAGE_SIZE + lines);
153         instructions += 2;
154         if ((rc = btcx_riscmem_alloc(pci,risc,instructions*8)) < 0)
155                 return rc;
156
157         /* write risc instructions */
158         rp = risc->cpu;
159         if (UNSET != top_offset)
160                 rp = cx88_risc_field(rp, sglist, top_offset, 0,
161                                      bpl, padding, lines);
162         if (UNSET != bottom_offset)
163                 rp = cx88_risc_field(rp, sglist, bottom_offset, 0x200,
164                                      bpl, padding, lines);
165
166         /* save pointer to jmp instruction address */
167         risc->jmp = rp;
168         BUG_ON((risc->jmp - risc->cpu + 2) * sizeof (*risc->cpu) > risc->size);
169         return 0;
170 }
171
172 int cx88_risc_databuffer(struct pci_dev *pci, struct btcx_riscmem *risc,
173                          struct scatterlist *sglist, unsigned int bpl,
174                          unsigned int lines)
175 {
176         u32 instructions;
177         u32 *rp;
178         int rc;
179
180         /* estimate risc mem: worst case is one write per page border +
181            one write per scan line + syncs + jump (all 2 dwords).  Here
182            there is no padding and no sync.  First DMA region may be smaller
183            than PAGE_SIZE */
184         instructions  = 1 + (bpl * lines) / PAGE_SIZE + lines;
185         instructions += 1;
186         if ((rc = btcx_riscmem_alloc(pci,risc,instructions*8)) < 0)
187                 return rc;
188
189         /* write risc instructions */
190         rp = risc->cpu;
191         rp = cx88_risc_field(rp, sglist, 0, NO_SYNC_LINE, bpl, 0, lines);
192
193         /* save pointer to jmp instruction address */
194         risc->jmp = rp;
195         BUG_ON((risc->jmp - risc->cpu + 2) * sizeof (*risc->cpu) > risc->size);
196         return 0;
197 }
198
199 int cx88_risc_stopper(struct pci_dev *pci, struct btcx_riscmem *risc,
200                       u32 reg, u32 mask, u32 value)
201 {
202         u32 *rp;
203         int rc;
204
205         if ((rc = btcx_riscmem_alloc(pci, risc, 4*16)) < 0)
206                 return rc;
207
208         /* write risc instructions */
209         rp = risc->cpu;
210         *(rp++) = cpu_to_le32(RISC_WRITECR  | RISC_IRQ2 | RISC_IMM);
211         *(rp++) = cpu_to_le32(reg);
212         *(rp++) = cpu_to_le32(value);
213         *(rp++) = cpu_to_le32(mask);
214         *(rp++) = cpu_to_le32(RISC_JUMP);
215         *(rp++) = cpu_to_le32(risc->dma);
216         return 0;
217 }
218
219 void
220 cx88_free_buffer(struct videobuf_queue *q, struct cx88_buffer *buf)
221 {
222         BUG_ON(in_interrupt());
223         videobuf_waiton(&buf->vb,0,0);
224         videobuf_dma_unmap(q, &buf->vb.dma);
225         videobuf_dma_free(&buf->vb.dma);
226         btcx_riscmem_free((struct pci_dev *)q->dev, &buf->risc);
227         buf->vb.state = STATE_NEEDS_INIT;
228 }
229
230 /* ------------------------------------------------------------------ */
231 /* our SRAM memory layout                                             */
232
233 /* we are going to put all thr risc programs into host memory, so we
234  * can use the whole SDRAM for the DMA fifos.  To simplify things, we
235  * use a static memory layout.  That surely will waste memory in case
236  * we don't use all DMA channels at the same time (which will be the
237  * case most of the time).  But that still gives us enougth FIFO space
238  * to be able to deal with insane long pci latencies ...
239  *
240  * FIFO space allocations:
241  *    channel  21    (y video)  - 10.0k
242  *    channel  22    (u video)  -  2.0k
243  *    channel  23    (v video)  -  2.0k
244  *    channel  24    (vbi)      -  4.0k
245  *    channels 25+26 (audio)    -  4.0k
246  *    channel  28    (mpeg)     -  4.0k
247  *    TOTAL                     = 29.0k
248  *
249  * Every channel has 160 bytes control data (64 bytes instruction
250  * queue and 6 CDT entries), which is close to 2k total.
251  *
252  * Address layout:
253  *    0x0000 - 0x03ff    CMDs / reserved
254  *    0x0400 - 0x0bff    instruction queues + CDs
255  *    0x0c00 -           FIFOs
256  */
257
258 struct sram_channel cx88_sram_channels[] = {
259         [SRAM_CH21] = {
260                 .name       = "video y / packed",
261                 .cmds_start = 0x180040,
262                 .ctrl_start = 0x180400,
263                 .cdt        = 0x180400 + 64,
264                 .fifo_start = 0x180c00,
265                 .fifo_size  = 0x002800,
266                 .ptr1_reg   = MO_DMA21_PTR1,
267                 .ptr2_reg   = MO_DMA21_PTR2,
268                 .cnt1_reg   = MO_DMA21_CNT1,
269                 .cnt2_reg   = MO_DMA21_CNT2,
270         },
271         [SRAM_CH22] = {
272                 .name       = "video u",
273                 .cmds_start = 0x180080,
274                 .ctrl_start = 0x1804a0,
275                 .cdt        = 0x1804a0 + 64,
276                 .fifo_start = 0x183400,
277                 .fifo_size  = 0x000800,
278                 .ptr1_reg   = MO_DMA22_PTR1,
279                 .ptr2_reg   = MO_DMA22_PTR2,
280                 .cnt1_reg   = MO_DMA22_CNT1,
281                 .cnt2_reg   = MO_DMA22_CNT2,
282         },
283         [SRAM_CH23] = {
284                 .name       = "video v",
285                 .cmds_start = 0x1800c0,
286                 .ctrl_start = 0x180540,
287                 .cdt        = 0x180540 + 64,
288                 .fifo_start = 0x183c00,
289                 .fifo_size  = 0x000800,
290                 .ptr1_reg   = MO_DMA23_PTR1,
291                 .ptr2_reg   = MO_DMA23_PTR2,
292                 .cnt1_reg   = MO_DMA23_CNT1,
293                 .cnt2_reg   = MO_DMA23_CNT2,
294         },
295         [SRAM_CH24] = {
296                 .name       = "vbi",
297                 .cmds_start = 0x180100,
298                 .ctrl_start = 0x1805e0,
299                 .cdt        = 0x1805e0 + 64,
300                 .fifo_start = 0x184400,
301                 .fifo_size  = 0x001000,
302                 .ptr1_reg   = MO_DMA24_PTR1,
303                 .ptr2_reg   = MO_DMA24_PTR2,
304                 .cnt1_reg   = MO_DMA24_CNT1,
305                 .cnt2_reg   = MO_DMA24_CNT2,
306         },
307         [SRAM_CH25] = {
308                 .name       = "audio from",
309                 .cmds_start = 0x180140,
310                 .ctrl_start = 0x180680,
311                 .cdt        = 0x180680 + 64,
312                 .fifo_start = 0x185400,
313                 .fifo_size  = 0x001000,
314                 .ptr1_reg   = MO_DMA25_PTR1,
315                 .ptr2_reg   = MO_DMA25_PTR2,
316                 .cnt1_reg   = MO_DMA25_CNT1,
317                 .cnt2_reg   = MO_DMA25_CNT2,
318         },
319         [SRAM_CH26] = {
320                 .name       = "audio to",
321                 .cmds_start = 0x180180,
322                 .ctrl_start = 0x180720,
323                 .cdt        = 0x180680 + 64,  /* same as audio IN */
324                 .fifo_start = 0x185400,       /* same as audio IN */
325                 .fifo_size  = 0x001000,       /* same as audio IN */
326                 .ptr1_reg   = MO_DMA26_PTR1,
327                 .ptr2_reg   = MO_DMA26_PTR2,
328                 .cnt1_reg   = MO_DMA26_CNT1,
329                 .cnt2_reg   = MO_DMA26_CNT2,
330         },
331         [SRAM_CH28] = {
332                 .name       = "mpeg",
333                 .cmds_start = 0x180200,
334                 .ctrl_start = 0x1807C0,
335                 .cdt        = 0x1807C0 + 64,
336                 .fifo_start = 0x186400,
337                 .fifo_size  = 0x001000,
338                 .ptr1_reg   = MO_DMA28_PTR1,
339                 .ptr2_reg   = MO_DMA28_PTR2,
340                 .cnt1_reg   = MO_DMA28_CNT1,
341                 .cnt2_reg   = MO_DMA28_CNT2,
342         },
343 };
344
345 int cx88_sram_channel_setup(struct cx88_core *core,
346                             struct sram_channel *ch,
347                             unsigned int bpl, u32 risc)
348 {
349         unsigned int i,lines;
350         u32 cdt;
351
352         bpl   = (bpl + 7) & ~7; /* alignment */
353         cdt   = ch->cdt;
354         lines = ch->fifo_size / bpl;
355         if (lines > 6)
356                 lines = 6;
357         BUG_ON(lines < 2);
358
359         /* write CDT */
360         for (i = 0; i < lines; i++)
361                 cx_write(cdt + 16*i, ch->fifo_start + bpl*i);
362
363         /* write CMDS */
364         cx_write(ch->cmds_start +  0, risc);
365         cx_write(ch->cmds_start +  4, cdt);
366         cx_write(ch->cmds_start +  8, (lines*16) >> 3);
367         cx_write(ch->cmds_start + 12, ch->ctrl_start);
368         cx_write(ch->cmds_start + 16, 64 >> 2);
369         for (i = 20; i < 64; i += 4)
370                 cx_write(ch->cmds_start + i, 0);
371
372         /* fill registers */
373         cx_write(ch->ptr1_reg, ch->fifo_start);
374         cx_write(ch->ptr2_reg, cdt);
375         cx_write(ch->cnt1_reg, (bpl >> 3) -1);
376         cx_write(ch->cnt2_reg, (lines*16) >> 3);
377
378         dprintk(2,"sram setup %s: bpl=%d lines=%d\n", ch->name, bpl, lines);
379         return 0;
380 }
381
382 /* ------------------------------------------------------------------ */
383 /* debug helper code                                                  */
384
385 static int cx88_risc_decode(u32 risc)
386 {
387         static char *instr[16] = {
388                 [ RISC_SYNC    >> 28 ] = "sync",
389                 [ RISC_WRITE   >> 28 ] = "write",
390                 [ RISC_WRITEC  >> 28 ] = "writec",
391                 [ RISC_READ    >> 28 ] = "read",
392                 [ RISC_READC   >> 28 ] = "readc",
393                 [ RISC_JUMP    >> 28 ] = "jump",
394                 [ RISC_SKIP    >> 28 ] = "skip",
395                 [ RISC_WRITERM >> 28 ] = "writerm",
396                 [ RISC_WRITECM >> 28 ] = "writecm",
397                 [ RISC_WRITECR >> 28 ] = "writecr",
398         };
399         static int incr[16] = {
400                 [ RISC_WRITE   >> 28 ] = 2,
401                 [ RISC_JUMP    >> 28 ] = 2,
402                 [ RISC_WRITERM >> 28 ] = 3,
403                 [ RISC_WRITECM >> 28 ] = 3,
404                 [ RISC_WRITECR >> 28 ] = 4,
405         };
406         static char *bits[] = {
407                 "12",   "13",   "14",   "resync",
408                 "cnt0", "cnt1", "18",   "19",
409                 "20",   "21",   "22",   "23",
410                 "irq1", "irq2", "eol",  "sol",
411         };
412         int i;
413
414         printk("0x%08x [ %s", risc,
415                instr[risc >> 28] ? instr[risc >> 28] : "INVALID");
416         for (i = ARRAY_SIZE(bits)-1; i >= 0; i--)
417                 if (risc & (1 << (i + 12)))
418                         printk(" %s",bits[i]);
419         printk(" count=%d ]\n", risc & 0xfff);
420         return incr[risc >> 28] ? incr[risc >> 28] : 1;
421 }
422
423
424 void cx88_sram_channel_dump(struct cx88_core *core,
425                             struct sram_channel *ch)
426 {
427         static char *name[] = {
428                 "initial risc",
429                 "cdt base",
430                 "cdt size",
431                 "iq base",
432                 "iq size",
433                 "risc pc",
434                 "iq wr ptr",
435                 "iq rd ptr",
436                 "cdt current",
437                 "pci target",
438                 "line / byte",
439         };
440         u32 risc;
441         unsigned int i,j,n;
442
443         printk("%s: %s - dma channel status dump\n",
444                core->name,ch->name);
445         for (i = 0; i < ARRAY_SIZE(name); i++)
446                 printk("%s:   cmds: %-12s: 0x%08x\n",
447                        core->name,name[i],
448                        cx_read(ch->cmds_start + 4*i));
449         for (i = 0; i < 4; i++) {
450                 risc = cx_read(ch->cmds_start + 4 * (i+11));
451                 printk("%s:   risc%d: ", core->name, i);
452                 cx88_risc_decode(risc);
453         }
454         for (i = 0; i < 16; i += n) {
455                 risc = cx_read(ch->ctrl_start + 4 * i);
456                 printk("%s:   iq %x: ", core->name, i);
457                 n = cx88_risc_decode(risc);
458                 for (j = 1; j < n; j++) {
459                         risc = cx_read(ch->ctrl_start + 4 * (i+j));
460                         printk("%s:   iq %x: 0x%08x [ arg #%d ]\n",
461                                core->name, i+j, risc, j);
462                 }
463         }
464
465         printk("%s: fifo: 0x%08x -> 0x%x\n",
466                core->name, ch->fifo_start, ch->fifo_start+ch->fifo_size);
467         printk("%s: ctrl: 0x%08x -> 0x%x\n",
468                core->name, ch->ctrl_start, ch->ctrl_start+6*16);
469         printk("%s:   ptr1_reg: 0x%08x\n",
470                core->name,cx_read(ch->ptr1_reg));
471         printk("%s:   ptr2_reg: 0x%08x\n",
472                core->name,cx_read(ch->ptr2_reg));
473         printk("%s:   cnt1_reg: 0x%08x\n",
474                core->name,cx_read(ch->cnt1_reg));
475         printk("%s:   cnt2_reg: 0x%08x\n",
476                core->name,cx_read(ch->cnt2_reg));
477 }
478
479 static char *cx88_pci_irqs[32] = {
480         "vid", "aud", "ts", "vip", "hst", "5", "6", "tm1",
481         "src_dma", "dst_dma", "risc_rd_err", "risc_wr_err",
482         "brdg_err", "src_dma_err", "dst_dma_err", "ipb_dma_err",
483         "i2c", "i2c_rack", "ir_smp", "gpio0", "gpio1"
484 };
485
486 void cx88_print_irqbits(char *name, char *tag, char **strings,
487                         u32 bits, u32 mask)
488 {
489         unsigned int i;
490
491         printk(KERN_DEBUG "%s: %s [0x%x]", name, tag, bits);
492         for (i = 0; i < 32; i++) {
493                 if (!(bits & (1 << i)))
494                         continue;
495                 if (strings[i])
496                         printk(" %s", strings[i]);
497                 else
498                         printk(" %d", i);
499                 if (!(mask & (1 << i)))
500                         continue;
501                 printk("*");
502         }
503         printk("\n");
504 }
505
506 /* ------------------------------------------------------------------ */
507
508 int cx88_core_irq(struct cx88_core *core, u32 status)
509 {
510         int handled = 0;
511
512         if (status & (1<<18)) {
513                 cx88_ir_irq(core);
514                 handled++;
515         }
516         if (!handled)
517                 cx88_print_irqbits(core->name, "irq pci",
518                                    cx88_pci_irqs, status,
519                                    core->pci_irqmask);
520         return handled;
521 }
522
523 void cx88_wakeup(struct cx88_core *core,
524                  struct cx88_dmaqueue *q, u32 count)
525 {
526         struct cx88_buffer *buf;
527         int bc;
528
529         for (bc = 0;; bc++) {
530                 if (list_empty(&q->active))
531                         break;
532                 buf = list_entry(q->active.next,
533                                  struct cx88_buffer, vb.queue);
534                 /* count comes from the hw and is is 16bit wide --
535                  * this trick handles wrap-arounds correctly for
536                  * up to 32767 buffers in flight... */
537                 if ((s16) (count - buf->count) < 0)
538                         break;
539                 do_gettimeofday(&buf->vb.ts);
540                 dprintk(2,"[%p/%d] wakeup reg=%d buf=%d\n",buf,buf->vb.i,
541                         count, buf->count);
542                 buf->vb.state = STATE_DONE;
543                 list_del(&buf->vb.queue);
544                 wake_up(&buf->vb.done);
545         }
546         if (list_empty(&q->active)) {
547                 del_timer(&q->timeout);
548         } else {
549                 mod_timer(&q->timeout, jiffies+BUFFER_TIMEOUT);
550         }
551         if (bc != 1)
552                 printk("%s: %d buffers handled (should be 1)\n",__FUNCTION__,bc);
553 }
554
555 void cx88_shutdown(struct cx88_core *core)
556 {
557         /* disable RISC controller + IRQs */
558         cx_write(MO_DEV_CNTRL2, 0);
559
560         /* stop dma transfers */
561         cx_write(MO_VID_DMACNTRL, 0x0);
562         cx_write(MO_AUD_DMACNTRL, 0x0);
563         cx_write(MO_TS_DMACNTRL, 0x0);
564         cx_write(MO_VIP_DMACNTRL, 0x0);
565         cx_write(MO_GPHST_DMACNTRL, 0x0);
566
567         /* stop interrupts */
568         cx_write(MO_PCI_INTMSK, 0x0);
569         cx_write(MO_VID_INTMSK, 0x0);
570         cx_write(MO_AUD_INTMSK, 0x0);
571         cx_write(MO_TS_INTMSK, 0x0);
572         cx_write(MO_VIP_INTMSK, 0x0);
573         cx_write(MO_GPHST_INTMSK, 0x0);
574
575         /* stop capturing */
576         cx_write(VID_CAPTURE_CONTROL, 0);
577 }
578
579 int cx88_reset(struct cx88_core *core)
580 {
581         dprintk(1,"%s\n",__FUNCTION__);
582         cx88_shutdown(core);
583
584         /* clear irq status */
585         cx_write(MO_VID_INTSTAT, 0xFFFFFFFF); // Clear PIV int
586         cx_write(MO_PCI_INTSTAT, 0xFFFFFFFF); // Clear PCI int
587         cx_write(MO_INT1_STAT,   0xFFFFFFFF); // Clear RISC int
588
589         /* wait a bit */
590         msleep(100);
591
592         /* init sram */
593         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH21], 720*4, 0);
594         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH22], 128, 0);
595         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH23], 128, 0);
596         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH24], 128, 0);
597         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH25], 128, 0);
598         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH26], 128, 0);
599         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH28], 188*4, 0);
600
601         /* misc init ... */
602         cx_write(MO_INPUT_FORMAT, ((1 << 13) |   // agc enable
603                                    (1 << 12) |   // agc gain
604                                    (1 << 11) |   // adaptibe agc
605                                    (0 << 10) |   // chroma agc
606                                    (0 <<  9) |   // ckillen
607                                    (7)));
608
609         /* setup image format */
610         cx_andor(MO_COLOR_CTRL, 0x4000, 0x4000);
611
612         /* setup FIFO Threshholds */
613         cx_write(MO_PDMA_STHRSH,   0x0807);
614         cx_write(MO_PDMA_DTHRSH,   0x0807);
615
616         /* fixes flashing of image */
617         cx_write(MO_AGC_SYNC_TIP1, 0x0380000F);
618         cx_write(MO_AGC_BACK_VBI,  0x00E00555);
619
620         cx_write(MO_VID_INTSTAT,   0xFFFFFFFF); // Clear PIV int
621         cx_write(MO_PCI_INTSTAT,   0xFFFFFFFF); // Clear PCI int
622         cx_write(MO_INT1_STAT,     0xFFFFFFFF); // Clear RISC int
623
624         /* Reset on-board parts */
625         cx_write(MO_SRST_IO, 0);
626         msleep(10);
627         cx_write(MO_SRST_IO, 1);
628
629         return 0;
630 }
631
632 /* ------------------------------------------------------------------ */
633
634 static unsigned int inline norm_swidth(struct cx88_tvnorm *norm)
635 {
636         return (norm->id & V4L2_STD_625_50) ? 922 : 754;
637 }
638
639 static unsigned int inline norm_hdelay(struct cx88_tvnorm *norm)
640 {
641         return (norm->id & V4L2_STD_625_50) ? 186 : 135;
642 }
643
644 static unsigned int inline norm_vdelay(struct cx88_tvnorm *norm)
645 {
646         return (norm->id & V4L2_STD_625_50) ? 0x24 : 0x18;
647 }
648
649 static unsigned int inline norm_fsc8(struct cx88_tvnorm *norm)
650 {
651         static const unsigned int ntsc = 28636360;
652         static const unsigned int pal  = 35468950;
653         static const unsigned int palm  = 28604892;
654
655         if (norm->id & V4L2_STD_PAL_M)
656                 return palm;
657
658         return (norm->id & V4L2_STD_625_50) ? pal : ntsc;
659 }
660
661 static unsigned int inline norm_notchfilter(struct cx88_tvnorm *norm)
662 {
663         return (norm->id & V4L2_STD_625_50)
664                 ? HLNotchFilter135PAL
665                 : HLNotchFilter135NTSC;
666 }
667
668 static unsigned int inline norm_htotal(struct cx88_tvnorm *norm)
669 {
670         /* Should always be Line Draw Time / (4*FSC) */
671
672         if (norm->id & V4L2_STD_PAL_M)
673                 return 909;
674
675         return (norm->id & V4L2_STD_625_50) ? 1135 : 910;
676 }
677
678 static unsigned int inline norm_vbipack(struct cx88_tvnorm *norm)
679 {
680         return (norm->id & V4L2_STD_625_50) ? 511 : 288;
681 }
682
683 int cx88_set_scale(struct cx88_core *core, unsigned int width, unsigned int height,
684                    enum v4l2_field field)
685 {
686         unsigned int swidth  = norm_swidth(core->tvnorm);
687         unsigned int sheight = norm_maxh(core->tvnorm);
688         u32 value;
689
690         dprintk(1,"set_scale: %dx%d [%s%s,%s]\n", width, height,
691                 V4L2_FIELD_HAS_TOP(field)    ? "T" : "",
692                 V4L2_FIELD_HAS_BOTTOM(field) ? "B" : "",
693                 core->tvnorm->name);
694         if (!V4L2_FIELD_HAS_BOTH(field))
695                 height *= 2;
696
697         // recalc H delay and scale registers
698         value = (width * norm_hdelay(core->tvnorm)) / swidth;
699         value &= 0x3fe;
700         cx_write(MO_HDELAY_EVEN,  value);
701         cx_write(MO_HDELAY_ODD,   value);
702         dprintk(1,"set_scale: hdelay  0x%04x\n", value);
703
704         value = (swidth * 4096 / width) - 4096;
705         cx_write(MO_HSCALE_EVEN,  value);
706         cx_write(MO_HSCALE_ODD,   value);
707         dprintk(1,"set_scale: hscale  0x%04x\n", value);
708
709         cx_write(MO_HACTIVE_EVEN, width);
710         cx_write(MO_HACTIVE_ODD,  width);
711         dprintk(1,"set_scale: hactive 0x%04x\n", width);
712
713         // recalc V scale Register (delay is constant)
714         cx_write(MO_VDELAY_EVEN, norm_vdelay(core->tvnorm));
715         cx_write(MO_VDELAY_ODD,  norm_vdelay(core->tvnorm));
716         dprintk(1,"set_scale: vdelay  0x%04x\n", norm_vdelay(core->tvnorm));
717
718         value = (0x10000 - (sheight * 512 / height - 512)) & 0x1fff;
719         cx_write(MO_VSCALE_EVEN,  value);
720         cx_write(MO_VSCALE_ODD,   value);
721         dprintk(1,"set_scale: vscale  0x%04x\n", value);
722
723         cx_write(MO_VACTIVE_EVEN, sheight);
724         cx_write(MO_VACTIVE_ODD,  sheight);
725         dprintk(1,"set_scale: vactive 0x%04x\n", sheight);
726
727         // setup filters
728         value = 0;
729         value |= (1 << 19);        // CFILT (default)
730         if (core->tvnorm->id & V4L2_STD_SECAM) {
731                 value |= (1 << 15);
732                 value |= (1 << 16);
733         }
734         if (INPUT(core->input)->type == CX88_VMUX_SVIDEO)
735                 value |= (1 << 13) | (1 << 5);
736         if (V4L2_FIELD_INTERLACED == field)
737                 value |= (1 << 3); // VINT (interlaced vertical scaling)
738         if (width < 385)
739                 value |= (1 << 0); // 3-tap interpolation
740         if (width < 193)
741                 value |= (1 << 1); // 5-tap interpolation
742         if (nocomb)
743                 value |= (3 << 5); // disable comb filter
744
745         cx_write(MO_FILTER_EVEN,  value);
746         cx_write(MO_FILTER_ODD,   value);
747         dprintk(1,"set_scale: filter  0x%04x\n", value);
748
749         return 0;
750 }
751
752 static const u32 xtal = 28636363;
753
754 static int set_pll(struct cx88_core *core, int prescale, u32 ofreq)
755 {
756         static u32 pre[] = { 0, 0, 0, 3, 2, 1 };
757         u64 pll;
758         u32 reg;
759         int i;
760
761         if (prescale < 2)
762                 prescale = 2;
763         if (prescale > 5)
764                 prescale = 5;
765
766         pll = ofreq * 8 * prescale * (u64)(1 << 20);
767         do_div(pll,xtal);
768         reg = (pll & 0x3ffffff) | (pre[prescale] << 26);
769         if (((reg >> 20) & 0x3f) < 14) {
770                 printk("%s/0: pll out of range\n",core->name);
771                 return -1;
772         }
773
774         dprintk(1,"set_pll:    MO_PLL_REG       0x%08x [old=0x%08x,freq=%d]\n",
775                 reg, cx_read(MO_PLL_REG), ofreq);
776         cx_write(MO_PLL_REG, reg);
777         for (i = 0; i < 100; i++) {
778                 reg = cx_read(MO_DEVICE_STATUS);
779                 if (reg & (1<<2)) {
780                         dprintk(1,"pll locked [pre=%d,ofreq=%d]\n",
781                                 prescale,ofreq);
782                         return 0;
783                 }
784                 dprintk(1,"pll not locked yet, waiting ...\n");
785                 msleep(10);
786         }
787         dprintk(1,"pll NOT locked [pre=%d,ofreq=%d]\n",prescale,ofreq);
788         return -1;
789 }
790
791 int cx88_start_audio_dma(struct cx88_core *core)
792 {
793         /* constant 128 made buzz in analog Nicam-stereo for bigger fifo_size */
794         int bpl = cx88_sram_channels[SRAM_CH25].fifo_size/4;
795         /* setup fifo + format */
796         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH25], bpl, 0);
797         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH26], bpl, 0);
798
799         cx_write(MO_AUDD_LNGTH, bpl); /* fifo bpl size */
800         cx_write(MO_AUDR_LNGTH, bpl); /* fifo bpl size */
801
802         /* start dma */
803         cx_write(MO_AUD_DMACNTRL, 0x0003); /* Up and Down fifo enable */
804         return 0;
805 }
806
807 int cx88_stop_audio_dma(struct cx88_core *core)
808 {
809         /* stop dma */
810         cx_write(MO_AUD_DMACNTRL, 0x0000);
811
812         return 0;
813 }
814
815 static int set_tvaudio(struct cx88_core *core)
816 {
817         struct cx88_tvnorm *norm = core->tvnorm;
818
819         if (CX88_VMUX_TELEVISION != INPUT(core->input)->type)
820                 return 0;
821
822         if (V4L2_STD_PAL_BG & norm->id) {
823                 core->tvaudio = WW_BG;
824
825         } else if (V4L2_STD_PAL_DK & norm->id) {
826                 core->tvaudio = WW_DK;
827
828         } else if (V4L2_STD_PAL_I & norm->id) {
829                 core->tvaudio = WW_I;
830
831         } else if (V4L2_STD_SECAM_L & norm->id) {
832                 core->tvaudio = WW_L;
833
834         } else if (V4L2_STD_SECAM_DK & norm->id) {
835                 core->tvaudio = WW_DK;
836
837         } else if ((V4L2_STD_NTSC_M & norm->id) ||
838                    (V4L2_STD_PAL_M  & norm->id)) {
839                 core->tvaudio = WW_BTSC;
840
841         } else if (V4L2_STD_NTSC_M_JP & norm->id) {
842                 core->tvaudio = WW_EIAJ;
843
844         } else {
845                 printk("%s/0: tvaudio support needs work for this tv norm [%s], sorry\n",
846                        core->name, norm->name);
847                 core->tvaudio = 0;
848                 return 0;
849         }
850
851         cx_andor(MO_AFECFG_IO, 0x1f, 0x0);
852         cx88_set_tvaudio(core);
853         /* cx88_set_stereo(dev,V4L2_TUNER_MODE_STEREO); */
854
855 /*
856    This should be needed only on cx88-alsa. It seems that some cx88 chips have
857    bugs and does require DMA enabled for it to work.
858  */
859         cx88_start_audio_dma(core);
860         return 0;
861 }
862
863
864
865 int cx88_set_tvnorm(struct cx88_core *core, struct cx88_tvnorm *norm)
866 {
867         u32 fsc8;
868         u32 adc_clock;
869         u32 vdec_clock;
870         u32 step_db,step_dr;
871         u64 tmp64;
872         u32 bdelay,agcdelay,htotal;
873
874         core->tvnorm = norm;
875         fsc8       = norm_fsc8(norm);
876         adc_clock  = xtal;
877         vdec_clock = fsc8;
878         step_db    = fsc8;
879         step_dr    = fsc8;
880
881         if (norm->id & V4L2_STD_SECAM) {
882                 step_db = 4250000 * 8;
883                 step_dr = 4406250 * 8;
884         }
885
886         dprintk(1,"set_tvnorm: \"%s\" fsc8=%d adc=%d vdec=%d db/dr=%d/%d\n",
887                 norm->name, fsc8, adc_clock, vdec_clock, step_db, step_dr);
888         set_pll(core,2,vdec_clock);
889
890         dprintk(1,"set_tvnorm: MO_INPUT_FORMAT  0x%08x [old=0x%08x]\n",
891                 norm->cxiformat, cx_read(MO_INPUT_FORMAT) & 0x0f);
892         cx_andor(MO_INPUT_FORMAT, 0xf, norm->cxiformat);
893
894         // FIXME: as-is from DScaler
895         dprintk(1,"set_tvnorm: MO_OUTPUT_FORMAT 0x%08x [old=0x%08x]\n",
896                 norm->cxoformat, cx_read(MO_OUTPUT_FORMAT));
897         cx_write(MO_OUTPUT_FORMAT, norm->cxoformat);
898
899         // MO_SCONV_REG = adc clock / video dec clock * 2^17
900         tmp64  = adc_clock * (u64)(1 << 17);
901         do_div(tmp64, vdec_clock);
902         dprintk(1,"set_tvnorm: MO_SCONV_REG     0x%08x [old=0x%08x]\n",
903                 (u32)tmp64, cx_read(MO_SCONV_REG));
904         cx_write(MO_SCONV_REG, (u32)tmp64);
905
906         // MO_SUB_STEP = 8 * fsc / video dec clock * 2^22
907         tmp64  = step_db * (u64)(1 << 22);
908         do_div(tmp64, vdec_clock);
909         dprintk(1,"set_tvnorm: MO_SUB_STEP      0x%08x [old=0x%08x]\n",
910                 (u32)tmp64, cx_read(MO_SUB_STEP));
911         cx_write(MO_SUB_STEP, (u32)tmp64);
912
913         // MO_SUB_STEP_DR = 8 * 4406250 / video dec clock * 2^22
914         tmp64  = step_dr * (u64)(1 << 22);
915         do_div(tmp64, vdec_clock);
916         dprintk(1,"set_tvnorm: MO_SUB_STEP_DR   0x%08x [old=0x%08x]\n",
917                 (u32)tmp64, cx_read(MO_SUB_STEP_DR));
918         cx_write(MO_SUB_STEP_DR, (u32)tmp64);
919
920         // bdelay + agcdelay
921         bdelay   = vdec_clock * 65 / 20000000 + 21;
922         agcdelay = vdec_clock * 68 / 20000000 + 15;
923         dprintk(1,"set_tvnorm: MO_AGC_BURST     0x%08x [old=0x%08x,bdelay=%d,agcdelay=%d]\n",
924                 (bdelay << 8) | agcdelay, cx_read(MO_AGC_BURST), bdelay, agcdelay);
925         cx_write(MO_AGC_BURST, (bdelay << 8) | agcdelay);
926
927         // htotal
928         tmp64 = norm_htotal(norm) * (u64)vdec_clock;
929         do_div(tmp64, fsc8);
930         htotal = (u32)tmp64 | (norm_notchfilter(norm) << 11);
931         dprintk(1,"set_tvnorm: MO_HTOTAL        0x%08x [old=0x%08x,htotal=%d]\n",
932                 htotal, cx_read(MO_HTOTAL), (u32)tmp64);
933         cx_write(MO_HTOTAL, htotal);
934
935         // vbi stuff
936         cx_write(MO_VBI_PACKET, ((1 << 11) | /* (norm_vdelay(norm)   << 11) | */
937                                  norm_vbipack(norm)));
938
939         // this is needed as well to set all tvnorm parameter
940         cx88_set_scale(core, 320, 240, V4L2_FIELD_INTERLACED);
941
942         // audio
943         set_tvaudio(core);
944
945         // tell i2c chips
946         cx88_call_i2c_clients(core,VIDIOC_S_STD,&norm->id);
947
948         // done
949         return 0;
950 }
951
952 /* ------------------------------------------------------------------ */
953
954 static int cx88_pci_quirks(char *name, struct pci_dev *pci)
955 {
956         unsigned int lat = UNSET;
957         u8 ctrl = 0;
958         u8 value;
959
960         /* check pci quirks */
961         if (pci_pci_problems & PCIPCI_TRITON) {
962                 printk(KERN_INFO "%s: quirk: PCIPCI_TRITON -- set TBFX\n",
963                        name);
964                 ctrl |= CX88X_EN_TBFX;
965         }
966         if (pci_pci_problems & PCIPCI_NATOMA) {
967                 printk(KERN_INFO "%s: quirk: PCIPCI_NATOMA -- set TBFX\n",
968                        name);
969                 ctrl |= CX88X_EN_TBFX;
970         }
971         if (pci_pci_problems & PCIPCI_VIAETBF) {
972                 printk(KERN_INFO "%s: quirk: PCIPCI_VIAETBF -- set TBFX\n",
973                        name);
974                 ctrl |= CX88X_EN_TBFX;
975         }
976         if (pci_pci_problems & PCIPCI_VSFX) {
977                 printk(KERN_INFO "%s: quirk: PCIPCI_VSFX -- set VSFX\n",
978                        name);
979                 ctrl |= CX88X_EN_VSFX;
980         }
981 #ifdef PCIPCI_ALIMAGIK
982         if (pci_pci_problems & PCIPCI_ALIMAGIK) {
983                 printk(KERN_INFO "%s: quirk: PCIPCI_ALIMAGIK -- latency fixup\n",
984                        name);
985                 lat = 0x0A;
986         }
987 #endif
988
989         /* check insmod options */
990         if (UNSET != latency)
991                 lat = latency;
992
993         /* apply stuff */
994         if (ctrl) {
995                 pci_read_config_byte(pci, CX88X_DEVCTRL, &value);
996                 value |= ctrl;
997                 pci_write_config_byte(pci, CX88X_DEVCTRL, value);
998         }
999         if (UNSET != lat) {
1000                 printk(KERN_INFO "%s: setting pci latency timer to %d\n",
1001                        name, latency);
1002                 pci_write_config_byte(pci, PCI_LATENCY_TIMER, latency);
1003         }
1004         return 0;
1005 }
1006
1007 /* ------------------------------------------------------------------ */
1008
1009 struct video_device *cx88_vdev_init(struct cx88_core *core,
1010                                     struct pci_dev *pci,
1011                                     struct video_device *template,
1012                                     char *type)
1013 {
1014         struct video_device *vfd;
1015
1016         vfd = video_device_alloc();
1017         if (NULL == vfd)
1018                 return NULL;
1019         *vfd = *template;
1020         vfd->minor   = -1;
1021         vfd->dev     = &pci->dev;
1022         vfd->release = video_device_release;
1023         snprintf(vfd->name, sizeof(vfd->name), "%s %s (%s)",
1024                  core->name, type, cx88_boards[core->board].name);
1025         return vfd;
1026 }
1027
1028 static int get_ressources(struct cx88_core *core, struct pci_dev *pci)
1029 {
1030         if (request_mem_region(pci_resource_start(pci,0),
1031                                pci_resource_len(pci,0),
1032                                core->name))
1033                 return 0;
1034         printk(KERN_ERR "%s: can't get MMIO memory @ 0x%lx\n",
1035                core->name,pci_resource_start(pci,0));
1036         return -EBUSY;
1037 }
1038
1039 struct cx88_core* cx88_core_get(struct pci_dev *pci)
1040 {
1041         struct cx88_core *core;
1042         struct list_head *item;
1043         int i;
1044
1045         mutex_lock(&devlist);
1046         list_for_each(item,&cx88_devlist) {
1047                 core = list_entry(item, struct cx88_core, devlist);
1048                 if (pci->bus->number != core->pci_bus)
1049                         continue;
1050                 if (PCI_SLOT(pci->devfn) != core->pci_slot)
1051                         continue;
1052
1053                 if (0 != get_ressources(core,pci))
1054                         goto fail_unlock;
1055                 atomic_inc(&core->refcount);
1056                 mutex_unlock(&devlist);
1057                 return core;
1058         }
1059         core = kzalloc(sizeof(*core),GFP_KERNEL);
1060         if (NULL == core)
1061                 goto fail_unlock;
1062
1063         atomic_inc(&core->refcount);
1064         core->pci_bus  = pci->bus->number;
1065         core->pci_slot = PCI_SLOT(pci->devfn);
1066         core->pci_irqmask = 0x00fc00;
1067         mutex_init(&core->lock);
1068
1069         core->nr = cx88_devcount++;
1070         sprintf(core->name,"cx88[%d]",core->nr);
1071         if (0 != get_ressources(core,pci)) {
1072                 printk(KERN_ERR "CORE %s No more PCI ressources for "
1073                         "subsystem: %04x:%04x, board: %s\n",
1074                         core->name,pci->subsystem_vendor,
1075                         pci->subsystem_device,
1076                         cx88_boards[core->board].name);
1077
1078                 cx88_devcount--;
1079                 goto fail_free;
1080         }
1081         list_add_tail(&core->devlist,&cx88_devlist);
1082
1083         /* PCI stuff */
1084         cx88_pci_quirks(core->name, pci);
1085         core->lmmio = ioremap(pci_resource_start(pci,0),
1086                               pci_resource_len(pci,0));
1087         core->bmmio = (u8 __iomem *)core->lmmio;
1088
1089         /* board config */
1090         core->board = UNSET;
1091         if (card[core->nr] < cx88_bcount)
1092                 core->board = card[core->nr];
1093         for (i = 0; UNSET == core->board  &&  i < cx88_idcount; i++)
1094                 if (pci->subsystem_vendor == cx88_subids[i].subvendor &&
1095                     pci->subsystem_device == cx88_subids[i].subdevice)
1096                         core->board = cx88_subids[i].card;
1097         if (UNSET == core->board) {
1098                 core->board = CX88_BOARD_UNKNOWN;
1099                 cx88_card_list(core,pci);
1100         }
1101         printk(KERN_INFO "CORE %s: subsystem: %04x:%04x, board: %s [card=%d,%s]\n",
1102                 core->name,pci->subsystem_vendor,
1103                 pci->subsystem_device,cx88_boards[core->board].name,
1104                 core->board, card[core->nr] == core->board ?
1105                 "insmod option" : "autodetected");
1106
1107         core->tuner_type = tuner[core->nr];
1108         core->radio_type = radio[core->nr];
1109         if (UNSET == core->tuner_type)
1110                 core->tuner_type = cx88_boards[core->board].tuner_type;
1111         if (UNSET == core->radio_type)
1112                 core->radio_type = cx88_boards[core->board].radio_type;
1113         if (!core->tuner_addr)
1114                 core->tuner_addr = cx88_boards[core->board].tuner_addr;
1115         if (!core->radio_addr)
1116                 core->radio_addr = cx88_boards[core->board].radio_addr;
1117
1118         printk(KERN_INFO "TV tuner %d at 0x%02x, Radio tuner %d at 0x%02x\n",
1119                 core->tuner_type, core->tuner_addr<<1,
1120                 core->radio_type, core->radio_addr<<1);
1121
1122         core->tda9887_conf = cx88_boards[core->board].tda9887_conf;
1123
1124         /* init hardware */
1125         cx88_reset(core);
1126         cx88_i2c_init(core,pci);
1127         cx88_call_i2c_clients (core, TUNER_SET_STANDBY, NULL);
1128         cx88_card_setup(core);
1129         cx88_ir_init(core,pci);
1130
1131         mutex_unlock(&devlist);
1132         return core;
1133
1134 fail_free:
1135         kfree(core);
1136 fail_unlock:
1137         mutex_unlock(&devlist);
1138         return NULL;
1139 }
1140
1141 void cx88_core_put(struct cx88_core *core, struct pci_dev *pci)
1142 {
1143         release_mem_region(pci_resource_start(pci,0),
1144                            pci_resource_len(pci,0));
1145
1146         if (!atomic_dec_and_test(&core->refcount))
1147                 return;
1148
1149         mutex_lock(&devlist);
1150         cx88_ir_fini(core);
1151         if (0 == core->i2c_rc)
1152                 i2c_bit_del_bus(&core->i2c_adap);
1153         list_del(&core->devlist);
1154         iounmap(core->lmmio);
1155         cx88_devcount--;
1156         mutex_unlock(&devlist);
1157         kfree(core);
1158 }
1159
1160 /* ------------------------------------------------------------------ */
1161
1162 EXPORT_SYMBOL(cx88_print_irqbits);
1163
1164 EXPORT_SYMBOL(cx88_core_irq);
1165 EXPORT_SYMBOL(cx88_wakeup);
1166 EXPORT_SYMBOL(cx88_reset);
1167 EXPORT_SYMBOL(cx88_shutdown);
1168
1169 EXPORT_SYMBOL(cx88_risc_buffer);
1170 EXPORT_SYMBOL(cx88_risc_databuffer);
1171 EXPORT_SYMBOL(cx88_risc_stopper);
1172 EXPORT_SYMBOL(cx88_free_buffer);
1173
1174 EXPORT_SYMBOL(cx88_sram_channels);
1175 EXPORT_SYMBOL(cx88_sram_channel_setup);
1176 EXPORT_SYMBOL(cx88_sram_channel_dump);
1177
1178 EXPORT_SYMBOL(cx88_set_tvnorm);
1179 EXPORT_SYMBOL(cx88_set_scale);
1180
1181 EXPORT_SYMBOL(cx88_vdev_init);
1182 EXPORT_SYMBOL(cx88_core_get);
1183 EXPORT_SYMBOL(cx88_core_put);
1184 EXPORT_SYMBOL(cx88_start_audio_dma);
1185 EXPORT_SYMBOL(cx88_stop_audio_dma);
1186
1187 /*
1188  * Local variables:
1189  * c-basic-offset: 8
1190  * End:
1191  * kate: eol "unix"; indent-width 3; remove-trailing-space on; replace-trailing-space-save on; tab-width 8; replace-tabs off; space-indent off; mixed-indent off
1192  */