Merge ../torvalds-2.6/
[pandora-kernel.git] / drivers / media / dvb / frontends / nxt6000.c
1 /*
2         NxtWave Communications - NXT6000 demodulator driver
3
4     Copyright (C) 2002-2003 Florian Schirmer <jolt@tuxbox.org>
5     Copyright (C) 2003 Paul Andreassen <paul@andreassen.com.au>
6
7     This program is free software; you can redistribute it and/or modify
8     it under the terms of the GNU General Public License as published by
9     the Free Software Foundation; either version 2 of the License, or
10     (at your option) any later version.
11
12     This program is distributed in the hope that it will be useful,
13     but WITHOUT ANY WARRANTY; without even the implied warranty of
14     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15     GNU General Public License for more details.
16
17     You should have received a copy of the GNU General Public License
18     along with this program; if not, write to the Free Software
19     Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21
22 #include <linux/init.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/string.h>
26 #include <linux/slab.h>
27
28 #include "dvb_frontend.h"
29 #include "nxt6000_priv.h"
30 #include "nxt6000.h"
31
32
33
34 struct nxt6000_state {
35         struct i2c_adapter* i2c;
36         struct dvb_frontend_ops ops;
37         /* configuration settings */
38         const struct nxt6000_config* config;
39         struct dvb_frontend frontend;
40 };
41
42 static int debug = 0;
43 #define dprintk if (debug) printk
44
45 static int nxt6000_writereg(struct nxt6000_state* state, u8 reg, u8 data)
46 {
47         u8 buf[] = { reg, data };
48         struct i2c_msg msg = {.addr = state->config->demod_address,.flags = 0,.buf = buf,.len = 2 };
49         int ret;
50
51         if ((ret = i2c_transfer(state->i2c, &msg, 1)) != 1)
52                 dprintk("nxt6000: nxt6000_write error (reg: 0x%02X, data: 0x%02X, ret: %d)\n", reg, data, ret);
53
54         return (ret != 1) ? -EFAULT : 0;
55 }
56
57 static u8 nxt6000_readreg(struct nxt6000_state* state, u8 reg)
58 {
59         int ret;
60         u8 b0[] = { reg };
61         u8 b1[] = { 0 };
62         struct i2c_msg msgs[] = {
63                 {.addr = state->config->demod_address,.flags = 0,.buf = b0,.len = 1},
64                 {.addr = state->config->demod_address,.flags = I2C_M_RD,.buf = b1,.len = 1}
65         };
66
67         ret = i2c_transfer(state->i2c, msgs, 2);
68
69         if (ret != 2)
70                 dprintk("nxt6000: nxt6000_read error (reg: 0x%02X, ret: %d)\n", reg, ret);
71
72         return b1[0];
73 }
74
75 static void nxt6000_reset(struct nxt6000_state* state)
76 {
77         u8 val;
78
79         val = nxt6000_readreg(state, OFDM_COR_CTL);
80
81         nxt6000_writereg(state, OFDM_COR_CTL, val & ~COREACT);
82         nxt6000_writereg(state, OFDM_COR_CTL, val | COREACT);
83 }
84
85 static int nxt6000_set_bandwidth(struct nxt6000_state* state, fe_bandwidth_t bandwidth)
86 {
87         u16 nominal_rate;
88         int result;
89
90         switch (bandwidth) {
91
92         case BANDWIDTH_6_MHZ:
93                 nominal_rate = 0x55B7;
94                 break;
95
96         case BANDWIDTH_7_MHZ:
97                 nominal_rate = 0x6400;
98                 break;
99
100         case BANDWIDTH_8_MHZ:
101                 nominal_rate = 0x7249;
102                 break;
103
104         default:
105                 return -EINVAL;
106         }
107
108         if ((result = nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_1, nominal_rate & 0xFF)) < 0)
109                 return result;
110
111         return nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_2, (nominal_rate >> 8) & 0xFF);
112 }
113
114 static int nxt6000_set_guard_interval(struct nxt6000_state* state, fe_guard_interval_t guard_interval)
115 {
116         switch (guard_interval) {
117
118         case GUARD_INTERVAL_1_32:
119                 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x00 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
120
121         case GUARD_INTERVAL_1_16:
122                 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x01 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
123
124         case GUARD_INTERVAL_AUTO:
125         case GUARD_INTERVAL_1_8:
126                 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x02 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
127
128         case GUARD_INTERVAL_1_4:
129                 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x03 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
130
131         default:
132                 return -EINVAL;
133         }
134 }
135
136 static int nxt6000_set_inversion(struct nxt6000_state* state, fe_spectral_inversion_t inversion)
137 {
138         switch (inversion) {
139
140         case INVERSION_OFF:
141                 return nxt6000_writereg(state, OFDM_ITB_CTL, 0x00);
142
143         case INVERSION_ON:
144                 return nxt6000_writereg(state, OFDM_ITB_CTL, ITBINV);
145
146         default:
147                 return -EINVAL;
148
149         }
150 }
151
152 static int nxt6000_set_transmission_mode(struct nxt6000_state* state, fe_transmit_mode_t transmission_mode)
153 {
154         int result;
155
156         switch (transmission_mode) {
157
158         case TRANSMISSION_MODE_2K:
159                 if ((result = nxt6000_writereg(state, EN_DMD_RACQ, 0x00 | (nxt6000_readreg(state, EN_DMD_RACQ) & ~0x03))) < 0)
160                         return result;
161
162                 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, (0x00 << 2) | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x04));
163
164         case TRANSMISSION_MODE_8K:
165         case TRANSMISSION_MODE_AUTO:
166                 if ((result = nxt6000_writereg(state, EN_DMD_RACQ, 0x02 | (nxt6000_readreg(state, EN_DMD_RACQ) & ~0x03))) < 0)
167                         return result;
168
169                 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, (0x01 << 2) | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x04));
170
171         default:
172                 return -EINVAL;
173
174         }
175 }
176
177 static void nxt6000_setup(struct dvb_frontend* fe)
178 {
179         struct nxt6000_state* state = fe->demodulator_priv;
180
181         nxt6000_writereg(state, RS_COR_SYNC_PARAM, SYNC_PARAM);
182         nxt6000_writereg(state, BER_CTRL, /*(1 << 2) | */ (0x01 << 1) | 0x01);
183         nxt6000_writereg(state, VIT_BERTIME_2, 0x00);  // BER Timer = 0x000200 * 256 = 131072 bits
184         nxt6000_writereg(state, VIT_BERTIME_1, 0x02);  //
185         nxt6000_writereg(state, VIT_BERTIME_0, 0x00);  //
186         nxt6000_writereg(state, VIT_COR_INTEN, 0x98); // Enable BER interrupts
187         nxt6000_writereg(state, VIT_COR_CTL, 0x82);   // Enable BER measurement
188         nxt6000_writereg(state, VIT_COR_CTL, VIT_COR_RESYNC | 0x02 );
189         nxt6000_writereg(state, OFDM_COR_CTL, (0x01 << 5) | (nxt6000_readreg(state, OFDM_COR_CTL) & 0x0F));
190         nxt6000_writereg(state, OFDM_COR_MODEGUARD, FORCEMODE8K | 0x02);
191         nxt6000_writereg(state, OFDM_AGC_CTL, AGCLAST | INITIAL_AGC_BW);
192         nxt6000_writereg(state, OFDM_ITB_FREQ_1, 0x06);
193         nxt6000_writereg(state, OFDM_ITB_FREQ_2, 0x31);
194         nxt6000_writereg(state, OFDM_CAS_CTL, (0x01 << 7) | (0x02 << 3) | 0x04);
195         nxt6000_writereg(state, CAS_FREQ, 0xBB);        /* CHECKME */
196         nxt6000_writereg(state, OFDM_SYR_CTL, 1 << 2);
197         nxt6000_writereg(state, OFDM_PPM_CTL_1, PPM256);
198         nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_1, 0x49);
199         nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_2, 0x72);
200         nxt6000_writereg(state, ANALOG_CONTROL_0, 1 << 5);
201         nxt6000_writereg(state, EN_DMD_RACQ, (1 << 7) | (3 << 4) | 2);
202         nxt6000_writereg(state, DIAG_CONFIG, TB_SET);
203
204         if (state->config->clock_inversion)
205                 nxt6000_writereg(state, SUB_DIAG_MODE_SEL, CLKINVERSION);
206         else
207                 nxt6000_writereg(state, SUB_DIAG_MODE_SEL, 0);
208
209         nxt6000_writereg(state, TS_FORMAT, 0);
210
211         if (state->config->pll_init) {
212                 nxt6000_writereg(state, ENABLE_TUNER_IIC, 0x01);        /* open i2c bus switch */
213                 state->config->pll_init(fe);
214                 nxt6000_writereg(state, ENABLE_TUNER_IIC, 0x00);        /* close i2c bus switch */
215         }
216 }
217
218 static void nxt6000_dump_status(struct nxt6000_state *state)
219 {
220         u8 val;
221
222 /*
223         printk("RS_COR_STAT: 0x%02X\n", nxt6000_readreg(fe, RS_COR_STAT));
224         printk("VIT_SYNC_STATUS: 0x%02X\n", nxt6000_readreg(fe, VIT_SYNC_STATUS));
225         printk("OFDM_COR_STAT: 0x%02X\n", nxt6000_readreg(fe, OFDM_COR_STAT));
226         printk("OFDM_SYR_STAT: 0x%02X\n", nxt6000_readreg(fe, OFDM_SYR_STAT));
227         printk("OFDM_TPS_RCVD_1: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_1));
228         printk("OFDM_TPS_RCVD_2: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_2));
229         printk("OFDM_TPS_RCVD_3: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_3));
230         printk("OFDM_TPS_RCVD_4: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_4));
231         printk("OFDM_TPS_RESERVED_1: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RESERVED_1));
232         printk("OFDM_TPS_RESERVED_2: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RESERVED_2));
233 */
234         printk("NXT6000 status:");
235
236         val = nxt6000_readreg(state, RS_COR_STAT);
237
238         printk(" DATA DESCR LOCK: %d,", val & 0x01);
239         printk(" DATA SYNC LOCK: %d,", (val >> 1) & 0x01);
240
241         val = nxt6000_readreg(state, VIT_SYNC_STATUS);
242
243         printk(" VITERBI LOCK: %d,", (val >> 7) & 0x01);
244
245         switch ((val >> 4) & 0x07) {
246
247         case 0x00:
248                 printk(" VITERBI CODERATE: 1/2,");
249                 break;
250
251         case 0x01:
252                 printk(" VITERBI CODERATE: 2/3,");
253                 break;
254
255         case 0x02:
256                 printk(" VITERBI CODERATE: 3/4,");
257                 break;
258
259         case 0x03:
260                 printk(" VITERBI CODERATE: 5/6,");
261                 break;
262
263         case 0x04:
264                 printk(" VITERBI CODERATE: 7/8,");
265                 break;
266
267         default:
268                 printk(" VITERBI CODERATE: Reserved,");
269
270         }
271
272         val = nxt6000_readreg(state, OFDM_COR_STAT);
273
274         printk(" CHCTrack: %d,", (val >> 7) & 0x01);
275         printk(" TPSLock: %d,", (val >> 6) & 0x01);
276         printk(" SYRLock: %d,", (val >> 5) & 0x01);
277         printk(" AGCLock: %d,", (val >> 4) & 0x01);
278
279         switch (val & 0x0F) {
280
281         case 0x00:
282                 printk(" CoreState: IDLE,");
283                 break;
284
285         case 0x02:
286                 printk(" CoreState: WAIT_AGC,");
287                 break;
288
289         case 0x03:
290                 printk(" CoreState: WAIT_SYR,");
291                 break;
292
293         case 0x04:
294                 printk(" CoreState: WAIT_PPM,");
295                 break;
296
297         case 0x01:
298                 printk(" CoreState: WAIT_TRL,");
299                 break;
300
301         case 0x05:
302                 printk(" CoreState: WAIT_TPS,");
303                 break;
304
305         case 0x06:
306                 printk(" CoreState: MONITOR_TPS,");
307                 break;
308
309         default:
310                 printk(" CoreState: Reserved,");
311
312         }
313
314         val = nxt6000_readreg(state, OFDM_SYR_STAT);
315
316         printk(" SYRLock: %d,", (val >> 4) & 0x01);
317         printk(" SYRMode: %s,", (val >> 2) & 0x01 ? "8K" : "2K");
318
319         switch ((val >> 4) & 0x03) {
320
321         case 0x00:
322                 printk(" SYRGuard: 1/32,");
323                 break;
324
325         case 0x01:
326                 printk(" SYRGuard: 1/16,");
327                 break;
328
329         case 0x02:
330                 printk(" SYRGuard: 1/8,");
331                 break;
332
333         case 0x03:
334                 printk(" SYRGuard: 1/4,");
335                 break;
336         }
337
338         val = nxt6000_readreg(state, OFDM_TPS_RCVD_3);
339
340         switch ((val >> 4) & 0x07) {
341
342         case 0x00:
343                 printk(" TPSLP: 1/2,");
344                 break;
345
346         case 0x01:
347                 printk(" TPSLP: 2/3,");
348                 break;
349
350         case 0x02:
351                 printk(" TPSLP: 3/4,");
352                 break;
353
354         case 0x03:
355                 printk(" TPSLP: 5/6,");
356                 break;
357
358         case 0x04:
359                 printk(" TPSLP: 7/8,");
360                 break;
361
362         default:
363                 printk(" TPSLP: Reserved,");
364
365         }
366
367         switch (val & 0x07) {
368
369         case 0x00:
370                 printk(" TPSHP: 1/2,");
371                 break;
372
373         case 0x01:
374                 printk(" TPSHP: 2/3,");
375                 break;
376
377         case 0x02:
378                 printk(" TPSHP: 3/4,");
379                 break;
380
381         case 0x03:
382                 printk(" TPSHP: 5/6,");
383                 break;
384
385         case 0x04:
386                 printk(" TPSHP: 7/8,");
387                 break;
388
389         default:
390                 printk(" TPSHP: Reserved,");
391
392         }
393
394         val = nxt6000_readreg(state, OFDM_TPS_RCVD_4);
395
396         printk(" TPSMode: %s,", val & 0x01 ? "8K" : "2K");
397
398         switch ((val >> 4) & 0x03) {
399
400         case 0x00:
401                 printk(" TPSGuard: 1/32,");
402                 break;
403
404         case 0x01:
405                 printk(" TPSGuard: 1/16,");
406                 break;
407
408         case 0x02:
409                 printk(" TPSGuard: 1/8,");
410                 break;
411
412         case 0x03:
413                 printk(" TPSGuard: 1/4,");
414                 break;
415
416         }
417
418         /* Strange magic required to gain access to RF_AGC_STATUS */
419         nxt6000_readreg(state, RF_AGC_VAL_1);
420         val = nxt6000_readreg(state, RF_AGC_STATUS);
421         val = nxt6000_readreg(state, RF_AGC_STATUS);
422
423         printk(" RF AGC LOCK: %d,", (val >> 4) & 0x01);
424         printk("\n");
425 }
426
427 static int nxt6000_read_status(struct dvb_frontend* fe, fe_status_t* status)
428 {
429         u8 core_status;
430         struct nxt6000_state* state = fe->demodulator_priv;
431
432         *status = 0;
433
434         core_status = nxt6000_readreg(state, OFDM_COR_STAT);
435
436         if (core_status & AGCLOCKED)
437                 *status |= FE_HAS_SIGNAL;
438
439         if (nxt6000_readreg(state, OFDM_SYR_STAT) & GI14_SYR_LOCK)
440                 *status |= FE_HAS_CARRIER;
441
442         if (nxt6000_readreg(state, VIT_SYNC_STATUS) & VITINSYNC)
443                 *status |= FE_HAS_VITERBI;
444
445         if (nxt6000_readreg(state, RS_COR_STAT) & RSCORESTATUS)
446                 *status |= FE_HAS_SYNC;
447
448         if ((core_status & TPSLOCKED) && (*status == (FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC)))
449                 *status |= FE_HAS_LOCK;
450
451         if (debug)
452                 nxt6000_dump_status(state);
453
454         return 0;
455 }
456
457 static int nxt6000_init(struct dvb_frontend* fe)
458 {
459         struct nxt6000_state* state = fe->demodulator_priv;
460
461         nxt6000_reset(state);
462         nxt6000_setup(fe);
463
464         return 0;
465 }
466
467 static int nxt6000_set_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *param)
468 {
469         struct nxt6000_state* state = fe->demodulator_priv;
470         int result;
471
472         nxt6000_writereg(state, ENABLE_TUNER_IIC, 0x01);        /* open i2c bus switch */
473         state->config->pll_set(fe, param);
474         nxt6000_writereg(state, ENABLE_TUNER_IIC, 0x00);        /* close i2c bus switch */
475
476         if ((result = nxt6000_set_bandwidth(state, param->u.ofdm.bandwidth)) < 0)
477                 return result;
478         if ((result = nxt6000_set_guard_interval(state, param->u.ofdm.guard_interval)) < 0)
479                 return result;
480         if ((result = nxt6000_set_transmission_mode(state, param->u.ofdm.transmission_mode)) < 0)
481                 return result;
482         if ((result = nxt6000_set_inversion(state, param->inversion)) < 0)
483                 return result;
484
485         msleep(500);
486         return 0;
487 }
488
489 static void nxt6000_release(struct dvb_frontend* fe)
490 {
491         struct nxt6000_state* state = fe->demodulator_priv;
492         kfree(state);
493 }
494
495 static int nxt6000_read_snr(struct dvb_frontend* fe, u16* snr)
496 {
497         struct nxt6000_state* state = fe->demodulator_priv;
498
499         *snr = nxt6000_readreg( state, OFDM_CHC_SNR) / 8;
500
501         return 0;
502 }
503
504 static int nxt6000_read_ber(struct dvb_frontend* fe, u32* ber)
505 {
506         struct nxt6000_state* state = fe->demodulator_priv;
507
508         nxt6000_writereg( state, VIT_COR_INTSTAT, 0x18 );
509
510         *ber = (nxt6000_readreg( state, VIT_BER_1 ) << 8 ) |
511                 nxt6000_readreg( state, VIT_BER_0 );
512
513         nxt6000_writereg( state, VIT_COR_INTSTAT, 0x18); // Clear BER Done interrupts
514
515         return 0;
516 }
517
518 static int nxt6000_read_signal_strength(struct dvb_frontend* fe, u16* signal_strength)
519 {
520         struct nxt6000_state* state = fe->demodulator_priv;
521
522         *signal_strength = (short) (511 -
523                 (nxt6000_readreg(state, AGC_GAIN_1) +
524                 ((nxt6000_readreg(state, AGC_GAIN_2) & 0x03) << 8)));
525
526         return 0;
527 }
528
529 static int nxt6000_fe_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings *tune)
530 {
531         tune->min_delay_ms = 500;
532         return 0;
533 }
534
535 static struct dvb_frontend_ops nxt6000_ops;
536
537 struct dvb_frontend* nxt6000_attach(const struct nxt6000_config* config,
538                                     struct i2c_adapter* i2c)
539 {
540         struct nxt6000_state* state = NULL;
541
542         /* allocate memory for the internal state */
543         state = kmalloc(sizeof(struct nxt6000_state), GFP_KERNEL);
544         if (state == NULL) goto error;
545
546         /* setup the state */
547         state->config = config;
548         state->i2c = i2c;
549         memcpy(&state->ops, &nxt6000_ops, sizeof(struct dvb_frontend_ops));
550
551         /* check if the demod is there */
552         if (nxt6000_readreg(state, OFDM_MSC_REV) != NXT6000ASICDEVICE) goto error;
553
554         /* create dvb_frontend */
555         state->frontend.ops = &state->ops;
556         state->frontend.demodulator_priv = state;
557         return &state->frontend;
558
559 error:
560         kfree(state);
561         return NULL;
562 }
563
564 static struct dvb_frontend_ops nxt6000_ops = {
565
566         .info = {
567                 .name = "NxtWave NXT6000 DVB-T",
568                 .type = FE_OFDM,
569                 .frequency_min = 0,
570                 .frequency_max = 863250000,
571                 .frequency_stepsize = 62500,
572                 /*.frequency_tolerance = *//* FIXME: 12% of SR */
573                 .symbol_rate_min = 0,   /* FIXME */
574                 .symbol_rate_max = 9360000,     /* FIXME */
575                 .symbol_rate_tolerance = 4000,
576                 .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
577                         FE_CAN_FEC_4_5 | FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 |
578                         FE_CAN_FEC_7_8 | FE_CAN_FEC_8_9 | FE_CAN_FEC_AUTO |
579                         FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
580                         FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO |
581                         FE_CAN_HIERARCHY_AUTO,
582         },
583
584         .release = nxt6000_release,
585
586         .init = nxt6000_init,
587
588         .get_tune_settings = nxt6000_fe_get_tune_settings,
589
590         .set_frontend = nxt6000_set_frontend,
591
592         .read_status = nxt6000_read_status,
593         .read_ber = nxt6000_read_ber,
594         .read_signal_strength = nxt6000_read_signal_strength,
595         .read_snr = nxt6000_read_snr,
596 };
597
598 module_param(debug, int, 0644);
599 MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
600
601 MODULE_DESCRIPTION("NxtWave NXT6000 DVB-T demodulator driver");
602 MODULE_AUTHOR("Florian Schirmer");
603 MODULE_LICENSE("GPL");
604
605 EXPORT_SYMBOL(nxt6000_attach);