bcad01ca1a131a841da7dbf00cb1466fb2c51d91
[pandora-kernel.git] / drivers / media / dvb / frontends / drxd_hard.c
1 /*
2  * drxd_hard.c: DVB-T Demodulator Micronas DRX3975D-A2,DRX397xD-B1
3  *
4  * Copyright (C) 2003-2007 Micronas
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * version 2 only, as published by the Free Software Foundation.
9  *
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
20  * 02110-1301, USA
21  * Or, point your browser to http://www.gnu.org/copyleft/gpl.html
22  */
23
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/firmware.h>
30 #include <linux/i2c.h>
31 #include <asm/div64.h>
32
33 #include "dvb_frontend.h"
34 #include "drxd.h"
35 #include "drxd_firm.h"
36
37 #define DRX_FW_FILENAME_A2 "drxd-a2-1.1.fw"
38 #define DRX_FW_FILENAME_B1 "drxd-b1-1.1.fw"
39
40 #define CHUNK_SIZE 48
41
42 #define DRX_I2C_RMW           0x10
43 #define DRX_I2C_BROADCAST     0x20
44 #define DRX_I2C_CLEARCRC      0x80
45 #define DRX_I2C_SINGLE_MASTER 0xC0
46 #define DRX_I2C_MODEFLAGS     0xC0
47 #define DRX_I2C_FLAGS         0xF0
48
49 #ifndef SIZEOF_ARRAY
50 #define SIZEOF_ARRAY(array) (sizeof((array))/sizeof((array)[0]))
51 #endif
52
53 #define DEFAULT_LOCK_TIMEOUT    1100
54
55 #define DRX_CHANNEL_AUTO 0
56 #define DRX_CHANNEL_HIGH 1
57 #define DRX_CHANNEL_LOW  2
58
59 #define DRX_LOCK_MPEG  1
60 #define DRX_LOCK_FEC   2
61 #define DRX_LOCK_DEMOD 4
62
63 /****************************************************************************/
64
65 enum CSCDState {
66         CSCD_INIT = 0,
67         CSCD_SET,
68         CSCD_SAVED
69 };
70
71 enum CDrxdState {
72         DRXD_UNINITIALIZED = 0,
73         DRXD_STOPPED,
74         DRXD_STARTED
75 };
76
77 enum AGC_CTRL_MODE {
78         AGC_CTRL_AUTO = 0,
79         AGC_CTRL_USER,
80         AGC_CTRL_OFF
81 };
82
83 enum OperationMode {
84         OM_Default,
85         OM_DVBT_Diversity_Front,
86         OM_DVBT_Diversity_End
87 };
88
89 struct SCfgAgc {
90         enum AGC_CTRL_MODE ctrlMode;
91         u16 outputLevel;        /* range [0, ... , 1023], 1/n of fullscale range */
92         u16 settleLevel;        /* range [0, ... , 1023], 1/n of fullscale range */
93         u16 minOutputLevel;     /* range [0, ... , 1023], 1/n of fullscale range */
94         u16 maxOutputLevel;     /* range [0, ... , 1023], 1/n of fullscale range */
95         u16 speed;              /* range [0, ... , 1023], 1/n of fullscale range */
96
97         u16 R1;
98         u16 R2;
99         u16 R3;
100 };
101
102 struct SNoiseCal {
103         int cpOpt;
104         u16 cpNexpOfs;
105         u16 tdCal2k;
106         u16 tdCal8k;
107 };
108
109 enum app_env {
110         APPENV_STATIC = 0,
111         APPENV_PORTABLE = 1,
112         APPENV_MOBILE = 2
113 };
114
115 enum EIFFilter {
116         IFFILTER_SAW = 0,
117         IFFILTER_DISCRETE = 1
118 };
119
120 struct drxd_state {
121         struct dvb_frontend frontend;
122         struct dvb_frontend_ops ops;
123         struct dvb_frontend_parameters param;
124
125         const struct firmware *fw;
126         struct device *dev;
127
128         struct i2c_adapter *i2c;
129         void *priv;
130         struct drxd_config config;
131
132         int i2c_access;
133         int init_done;
134         struct mutex mutex;
135
136         u8 chip_adr;
137         u16 hi_cfg_timing_div;
138         u16 hi_cfg_bridge_delay;
139         u16 hi_cfg_wakeup_key;
140         u16 hi_cfg_ctrl;
141
142         u16 intermediate_freq;
143         u16 osc_clock_freq;
144
145         enum CSCDState cscd_state;
146         enum CDrxdState drxd_state;
147
148         u16 sys_clock_freq;
149         s16 osc_clock_deviation;
150         u16 expected_sys_clock_freq;
151
152         u16 insert_rs_byte;
153         u16 enable_parallel;
154
155         int operation_mode;
156
157         struct SCfgAgc if_agc_cfg;
158         struct SCfgAgc rf_agc_cfg;
159
160         struct SNoiseCal noise_cal;
161
162         u32 fe_fs_add_incr;
163         u32 org_fe_fs_add_incr;
164         u16 current_fe_if_incr;
165
166         u16 m_FeAgRegAgPwd;
167         u16 m_FeAgRegAgAgcSio;
168
169         u16 m_EcOcRegOcModeLop;
170         u16 m_EcOcRegSncSncLvl;
171         u8 *m_InitAtomicRead;
172         u8 *m_HiI2cPatch;
173
174         u8 *m_ResetCEFR;
175         u8 *m_InitFE_1;
176         u8 *m_InitFE_2;
177         u8 *m_InitCP;
178         u8 *m_InitCE;
179         u8 *m_InitEQ;
180         u8 *m_InitSC;
181         u8 *m_InitEC;
182         u8 *m_ResetECRAM;
183         u8 *m_InitDiversityFront;
184         u8 *m_InitDiversityEnd;
185         u8 *m_DisableDiversity;
186         u8 *m_StartDiversityFront;
187         u8 *m_StartDiversityEnd;
188
189         u8 *m_DiversityDelay8MHZ;
190         u8 *m_DiversityDelay6MHZ;
191
192         u8 *microcode;
193         u32 microcode_length;
194
195         int type_A;
196         int PGA;
197         int diversity;
198         int tuner_mirrors;
199
200         enum app_env app_env_default;
201         enum app_env app_env_diversity;
202
203 };
204
205 /****************************************************************************/
206 /* I2C **********************************************************************/
207 /****************************************************************************/
208
209 static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 * data, int len)
210 {
211         struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = data, .len = len };
212
213         if (i2c_transfer(adap, &msg, 1) != 1)
214                 return -1;
215         return 0;
216 }
217
218 static int i2c_read(struct i2c_adapter *adap,
219                     u8 adr, u8 *msg, int len, u8 *answ, int alen)
220 {
221         struct i2c_msg msgs[2] = {
222                 {
223                         .addr = adr, .flags = 0,
224                         .buf = msg, .len = len
225                 }, {
226                         .addr = adr, .flags = I2C_M_RD,
227                         .buf = answ, .len = alen
228                 }
229         };
230         if (i2c_transfer(adap, msgs, 2) != 2)
231                 return -1;
232         return 0;
233 }
234
235 static inline u32 MulDiv32(u32 a, u32 b, u32 c)
236 {
237         u64 tmp64;
238
239         tmp64 = (u64)a * (u64)b;
240         do_div(tmp64, c);
241
242         return (u32) tmp64;
243 }
244
245 static int Read16(struct drxd_state *state, u32 reg, u16 *data, u8 flags)
246 {
247         u8 adr = state->config.demod_address;
248         u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
249                 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
250         };
251         u8 mm2[2];
252         if (i2c_read(state->i2c, adr, mm1, 4, mm2, 2) < 0)
253                 return -1;
254         if (data)
255                 *data = mm2[0] | (mm2[1] << 8);
256         return mm2[0] | (mm2[1] << 8);
257 }
258
259 static int Read32(struct drxd_state *state, u32 reg, u32 *data, u8 flags)
260 {
261         u8 adr = state->config.demod_address;
262         u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
263                 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
264         };
265         u8 mm2[4];
266
267         if (i2c_read(state->i2c, adr, mm1, 4, mm2, 4) < 0)
268                 return -1;
269         if (data)
270                 *data =
271                     mm2[0] | (mm2[1] << 8) | (mm2[2] << 16) | (mm2[3] << 24);
272         return 0;
273 }
274
275 static int Write16(struct drxd_state *state, u32 reg, u16 data, u8 flags)
276 {
277         u8 adr = state->config.demod_address;
278         u8 mm[6] = { reg & 0xff, (reg >> 16) & 0xff,
279                 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
280                 data & 0xff, (data >> 8) & 0xff
281         };
282
283         if (i2c_write(state->i2c, adr, mm, 6) < 0)
284                 return -1;
285         return 0;
286 }
287
288 static int Write32(struct drxd_state *state, u32 reg, u32 data, u8 flags)
289 {
290         u8 adr = state->config.demod_address;
291         u8 mm[8] = { reg & 0xff, (reg >> 16) & 0xff,
292                 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
293                 data & 0xff, (data >> 8) & 0xff,
294                 (data >> 16) & 0xff, (data >> 24) & 0xff
295         };
296
297         if (i2c_write(state->i2c, adr, mm, 8) < 0)
298                 return -1;
299         return 0;
300 }
301
302 static int write_chunk(struct drxd_state *state,
303                        u32 reg, u8 *data, u32 len, u8 flags)
304 {
305         u8 adr = state->config.demod_address;
306         u8 mm[CHUNK_SIZE + 4] = { reg & 0xff, (reg >> 16) & 0xff,
307                 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
308         };
309         int i;
310
311         for (i = 0; i < len; i++)
312                 mm[4 + i] = data[i];
313         if (i2c_write(state->i2c, adr, mm, 4 + len) < 0) {
314                 printk(KERN_ERR "error in write_chunk\n");
315                 return -1;
316         }
317         return 0;
318 }
319
320 static int WriteBlock(struct drxd_state *state,
321                       u32 Address, u16 BlockSize, u8 *pBlock, u8 Flags)
322 {
323         while (BlockSize > 0) {
324                 u16 Chunk = BlockSize > CHUNK_SIZE ? CHUNK_SIZE : BlockSize;
325
326                 if (write_chunk(state, Address, pBlock, Chunk, Flags) < 0)
327                         return -1;
328                 pBlock += Chunk;
329                 Address += (Chunk >> 1);
330                 BlockSize -= Chunk;
331         }
332         return 0;
333 }
334
335 static int WriteTable(struct drxd_state *state, u8 * pTable)
336 {
337         int status = 0;
338
339         if (pTable == NULL)
340                 return 0;
341
342         while (!status) {
343                 u16 Length;
344                 u32 Address = pTable[0] | (pTable[1] << 8) |
345                     (pTable[2] << 16) | (pTable[3] << 24);
346
347                 if (Address == 0xFFFFFFFF)
348                         break;
349                 pTable += sizeof(u32);
350
351                 Length = pTable[0] | (pTable[1] << 8);
352                 pTable += sizeof(u16);
353                 if (!Length)
354                         break;
355                 status = WriteBlock(state, Address, Length * 2, pTable, 0);
356                 pTable += (Length * 2);
357         }
358         return status;
359 }
360
361 /****************************************************************************/
362 /****************************************************************************/
363 /****************************************************************************/
364
365 static int ResetCEFR(struct drxd_state *state)
366 {
367         return WriteTable(state, state->m_ResetCEFR);
368 }
369
370 static int InitCP(struct drxd_state *state)
371 {
372         return WriteTable(state, state->m_InitCP);
373 }
374
375 static int InitCE(struct drxd_state *state)
376 {
377         int status;
378         enum app_env AppEnv = state->app_env_default;
379
380         do {
381                 status = WriteTable(state, state->m_InitCE);
382                 if (status < 0)
383                         break;
384
385                 if (state->operation_mode == OM_DVBT_Diversity_Front ||
386                     state->operation_mode == OM_DVBT_Diversity_End) {
387                         AppEnv = state->app_env_diversity;
388                 }
389                 if (AppEnv == APPENV_STATIC) {
390                         status = Write16(state, CE_REG_TAPSET__A, 0x0000, 0);
391                         if (status < 0)
392                                 break;
393                 } else if (AppEnv == APPENV_PORTABLE) {
394                         status = Write16(state, CE_REG_TAPSET__A, 0x0001, 0);
395                         if (status < 0)
396                                 break;
397                 } else if (AppEnv == APPENV_MOBILE && state->type_A) {
398                         status = Write16(state, CE_REG_TAPSET__A, 0x0002, 0);
399                         if (status < 0)
400                                 break;
401                 } else if (AppEnv == APPENV_MOBILE && !state->type_A) {
402                         status = Write16(state, CE_REG_TAPSET__A, 0x0006, 0);
403                         if (status < 0)
404                                 break;
405                 }
406
407                 /* start ce */
408                 status = Write16(state, B_CE_REG_COMM_EXEC__A, 0x0001, 0);
409                 if (status < 0)
410                         break;
411         } while (0);
412         return status;
413 }
414
415 static int StopOC(struct drxd_state *state)
416 {
417         int status = 0;
418         u16 ocSyncLvl = 0;
419         u16 ocModeLop = state->m_EcOcRegOcModeLop;
420         u16 dtoIncLop = 0;
421         u16 dtoIncHip = 0;
422
423         do {
424                 /* Store output configuration */
425                 status = Read16(state, EC_OC_REG_SNC_ISC_LVL__A, &ocSyncLvl, 0);
426                 if (status < 0)
427                         break;
428                 /* CHK_ERROR(Read16(EC_OC_REG_OC_MODE_LOP__A, &ocModeLop)); */
429                 state->m_EcOcRegSncSncLvl = ocSyncLvl;
430                 /* m_EcOcRegOcModeLop = ocModeLop; */
431
432                 /* Flush FIFO (byte-boundary) at fixed rate */
433                 status = Read16(state, EC_OC_REG_RCN_MAP_LOP__A, &dtoIncLop, 0);
434                 if (status < 0)
435                         break;
436                 status = Read16(state, EC_OC_REG_RCN_MAP_HIP__A, &dtoIncHip, 0);
437                 if (status < 0)
438                         break;
439                 status = Write16(state, EC_OC_REG_DTO_INC_LOP__A, dtoIncLop, 0);
440                 if (status < 0)
441                         break;
442                 status = Write16(state, EC_OC_REG_DTO_INC_HIP__A, dtoIncHip, 0);
443                 if (status < 0)
444                         break;
445                 ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC__M);
446                 ocModeLop |= EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC_STATIC;
447                 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
448                 if (status < 0)
449                         break;
450                 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
451                 if (status < 0)
452                         break;
453
454                 msleep(1);
455                 /* Output pins to '0' */
456                 status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS__M, 0);
457                 if (status < 0)
458                         break;
459
460                 /* Force the OC out of sync */
461                 ocSyncLvl &= ~(EC_OC_REG_SNC_ISC_LVL_OSC__M);
462                 status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, ocSyncLvl, 0);
463                 if (status < 0)
464                         break;
465                 ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M);
466                 ocModeLop |= EC_OC_REG_OC_MODE_LOP_PAR_ENA_ENABLE;
467                 ocModeLop |= 0x2;       /* Magically-out-of-sync */
468                 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
469                 if (status < 0)
470                         break;
471                 status = Write16(state, EC_OC_REG_COMM_INT_STA__A, 0x0, 0);
472                 if (status < 0)
473                         break;
474                 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
475                 if (status < 0)
476                         break;
477         } while (0);
478
479         return status;
480 }
481
482 static int StartOC(struct drxd_state *state)
483 {
484         int status = 0;
485
486         do {
487                 /* Stop OC */
488                 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
489                 if (status < 0)
490                         break;
491
492                 /* Restore output configuration */
493                 status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, state->m_EcOcRegSncSncLvl, 0);
494                 if (status < 0)
495                         break;
496                 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, state->m_EcOcRegOcModeLop, 0);
497                 if (status < 0)
498                         break;
499
500                 /* Output pins active again */
501                 status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS_INIT, 0);
502                 if (status < 0)
503                         break;
504
505                 /* Start OC */
506                 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
507                 if (status < 0)
508                         break;
509         } while (0);
510         return status;
511 }
512
513 static int InitEQ(struct drxd_state *state)
514 {
515         return WriteTable(state, state->m_InitEQ);
516 }
517
518 static int InitEC(struct drxd_state *state)
519 {
520         return WriteTable(state, state->m_InitEC);
521 }
522
523 static int InitSC(struct drxd_state *state)
524 {
525         return WriteTable(state, state->m_InitSC);
526 }
527
528 static int InitAtomicRead(struct drxd_state *state)
529 {
530         return WriteTable(state, state->m_InitAtomicRead);
531 }
532
533 static int CorrectSysClockDeviation(struct drxd_state *state);
534
535 static int DRX_GetLockStatus(struct drxd_state *state, u32 * pLockStatus)
536 {
537         u16 ScRaRamLock = 0;
538         const u16 mpeg_lock_mask = (SC_RA_RAM_LOCK_MPEG__M |
539                                     SC_RA_RAM_LOCK_FEC__M |
540                                     SC_RA_RAM_LOCK_DEMOD__M);
541         const u16 fec_lock_mask = (SC_RA_RAM_LOCK_FEC__M |
542                                    SC_RA_RAM_LOCK_DEMOD__M);
543         const u16 demod_lock_mask = SC_RA_RAM_LOCK_DEMOD__M;
544
545         int status;
546
547         *pLockStatus = 0;
548
549         status = Read16(state, SC_RA_RAM_LOCK__A, &ScRaRamLock, 0x0000);
550         if (status < 0) {
551                 printk(KERN_ERR "Can't read SC_RA_RAM_LOCK__A status = %08x\n", status);
552                 return status;
553         }
554
555         if (state->drxd_state != DRXD_STARTED)
556                 return 0;
557
558         if ((ScRaRamLock & mpeg_lock_mask) == mpeg_lock_mask) {
559                 *pLockStatus |= DRX_LOCK_MPEG;
560                 CorrectSysClockDeviation(state);
561         }
562
563         if ((ScRaRamLock & fec_lock_mask) == fec_lock_mask)
564                 *pLockStatus |= DRX_LOCK_FEC;
565
566         if ((ScRaRamLock & demod_lock_mask) == demod_lock_mask)
567                 *pLockStatus |= DRX_LOCK_DEMOD;
568         return 0;
569 }
570
571 /****************************************************************************/
572
573 static int SetCfgIfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
574 {
575         int status;
576
577         if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
578                 return -1;
579
580         if (cfg->ctrlMode == AGC_CTRL_USER) {
581                 do {
582                         u16 FeAgRegPm1AgcWri;
583                         u16 FeAgRegAgModeLop;
584
585                         status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
586                         if (status < 0)
587                                 break;
588                         FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
589                         FeAgRegAgModeLop |= FE_AG_REG_AG_MODE_LOP_MODE_4_STATIC;
590                         status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
591                         if (status < 0)
592                                 break;
593
594                         FeAgRegPm1AgcWri = (u16) (cfg->outputLevel &
595                                                   FE_AG_REG_PM1_AGC_WRI__M);
596                         status = Write16(state, FE_AG_REG_PM1_AGC_WRI__A, FeAgRegPm1AgcWri, 0);
597                         if (status < 0)
598                                 break;
599                 } while (0);
600         } else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
601                 if (((cfg->maxOutputLevel) < (cfg->minOutputLevel)) ||
602                     ((cfg->maxOutputLevel) > DRXD_FE_CTRL_MAX) ||
603                     ((cfg->speed) > DRXD_FE_CTRL_MAX) ||
604                     ((cfg->settleLevel) > DRXD_FE_CTRL_MAX)
605                     )
606                         return -1;
607                 do {
608                         u16 FeAgRegAgModeLop;
609                         u16 FeAgRegEgcSetLvl;
610                         u16 slope, offset;
611
612                         /* == Mode == */
613
614                         status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
615                         if (status < 0)
616                                 break;
617                         FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
618                         FeAgRegAgModeLop |=
619                             FE_AG_REG_AG_MODE_LOP_MODE_4_DYNAMIC;
620                         status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
621                         if (status < 0)
622                                 break;
623
624                         /* == Settle level == */
625
626                         FeAgRegEgcSetLvl = (u16) ((cfg->settleLevel >> 1) &
627                                                   FE_AG_REG_EGC_SET_LVL__M);
628                         status = Write16(state, FE_AG_REG_EGC_SET_LVL__A, FeAgRegEgcSetLvl, 0);
629                         if (status < 0)
630                                 break;
631
632                         /* == Min/Max == */
633
634                         slope = (u16) ((cfg->maxOutputLevel -
635                                         cfg->minOutputLevel) / 2);
636                         offset = (u16) ((cfg->maxOutputLevel +
637                                          cfg->minOutputLevel) / 2 - 511);
638
639                         status = Write16(state, FE_AG_REG_GC1_AGC_RIC__A, slope, 0);
640                         if (status < 0)
641                                 break;
642                         status = Write16(state, FE_AG_REG_GC1_AGC_OFF__A, offset, 0);
643                         if (status < 0)
644                                 break;
645
646                         /* == Speed == */
647                         {
648                                 const u16 maxRur = 8;
649                                 const u16 slowIncrDecLUT[] = { 3, 4, 4, 5, 6 };
650                                 const u16 fastIncrDecLUT[] = { 14, 15, 15, 16,
651                                         17, 18, 18, 19,
652                                         20, 21, 22, 23,
653                                         24, 26, 27, 28,
654                                         29, 31
655                                 };
656
657                                 u16 fineSteps = (DRXD_FE_CTRL_MAX + 1) /
658                                     (maxRur + 1);
659                                 u16 fineSpeed = (u16) (cfg->speed -
660                                                        ((cfg->speed /
661                                                          fineSteps) *
662                                                         fineSteps));
663                                 u16 invRurCount = (u16) (cfg->speed /
664                                                          fineSteps);
665                                 u16 rurCount;
666                                 if (invRurCount > maxRur) {
667                                         rurCount = 0;
668                                         fineSpeed += fineSteps;
669                                 } else {
670                                         rurCount = maxRur - invRurCount;
671                                 }
672
673                                 /*
674                                    fastInc = default *
675                                    (2^(fineSpeed/fineSteps))
676                                    => range[default...2*default>
677                                    slowInc = default *
678                                    (2^(fineSpeed/fineSteps))
679                                  */
680                                 {
681                                         u16 fastIncrDec =
682                                             fastIncrDecLUT[fineSpeed /
683                                                            ((fineSteps /
684                                                              (14 + 1)) + 1)];
685                                         u16 slowIncrDec =
686                                             slowIncrDecLUT[fineSpeed /
687                                                            (fineSteps /
688                                                             (3 + 1))];
689
690                                         status = Write16(state, FE_AG_REG_EGC_RUR_CNT__A, rurCount, 0);
691                                         if (status < 0)
692                                                 break;
693                                         status = Write16(state, FE_AG_REG_EGC_FAS_INC__A, fastIncrDec, 0);
694                                         if (status < 0)
695                                                 break;
696                                         status = Write16(state, FE_AG_REG_EGC_FAS_DEC__A, fastIncrDec, 0);
697                                         if (status < 0)
698                                                 break;
699                                         status = Write16(state, FE_AG_REG_EGC_SLO_INC__A, slowIncrDec, 0);
700                                         if (status < 0)
701                                                 break;
702                                         status = Write16(state, FE_AG_REG_EGC_SLO_DEC__A, slowIncrDec, 0);
703                                         if (status < 0)
704                                                 break;
705                                 }
706                         }
707                 } while (0);
708
709         } else {
710                 /* No OFF mode for IF control */
711                 return -1;
712         }
713         return status;
714 }
715
716 static int SetCfgRfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
717 {
718         int status = 0;
719
720         if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
721                 return -1;
722
723         if (cfg->ctrlMode == AGC_CTRL_USER) {
724                 do {
725                         u16 AgModeLop = 0;
726                         u16 level = (cfg->outputLevel);
727
728                         if (level == DRXD_FE_CTRL_MAX)
729                                 level++;
730
731                         status = Write16(state, FE_AG_REG_PM2_AGC_WRI__A, level, 0x0000);
732                         if (status < 0)
733                                 break;
734
735                         /*==== Mode ====*/
736
737                         /* Powerdown PD2, WRI source */
738                         state->m_FeAgRegAgPwd &= ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
739                         state->m_FeAgRegAgPwd |=
740                             FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
741                         status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
742                         if (status < 0)
743                                 break;
744
745                         status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
746                         if (status < 0)
747                                 break;
748                         AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
749                                         FE_AG_REG_AG_MODE_LOP_MODE_E__M));
750                         AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
751                                       FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
752                         status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
753                         if (status < 0)
754                                 break;
755
756                         /* enable AGC2 pin */
757                         {
758                                 u16 FeAgRegAgAgcSio = 0;
759                                 status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
760                                 if (status < 0)
761                                         break;
762                                 FeAgRegAgAgcSio &=
763                                     ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
764                                 FeAgRegAgAgcSio |=
765                                     FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
766                                 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
767                                 if (status < 0)
768                                         break;
769                         }
770
771                 } while (0);
772         } else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
773                 u16 AgModeLop = 0;
774
775                 do {
776                         u16 level;
777                         /* Automatic control */
778                         /* Powerup PD2, AGC2 as output, TGC source */
779                         (state->m_FeAgRegAgPwd) &=
780                             ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
781                         (state->m_FeAgRegAgPwd) |=
782                             FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
783                         status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
784                         if (status < 0)
785                                 break;
786
787                         status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
788                         if (status < 0)
789                                 break;
790                         AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
791                                         FE_AG_REG_AG_MODE_LOP_MODE_E__M));
792                         AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
793                                       FE_AG_REG_AG_MODE_LOP_MODE_E_DYNAMIC);
794                         status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
795                         if (status < 0)
796                                 break;
797                         /* Settle level */
798                         level = (((cfg->settleLevel) >> 4) &
799                                  FE_AG_REG_TGC_SET_LVL__M);
800                         status = Write16(state, FE_AG_REG_TGC_SET_LVL__A, level, 0x0000);
801                         if (status < 0)
802                                 break;
803
804                         /* Min/max: don't care */
805
806                         /* Speed: TODO */
807
808                         /* enable AGC2 pin */
809                         {
810                                 u16 FeAgRegAgAgcSio = 0;
811                                 status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
812                                 if (status < 0)
813                                         break;
814                                 FeAgRegAgAgcSio &=
815                                     ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
816                                 FeAgRegAgAgcSio |=
817                                     FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
818                                 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
819                                 if (status < 0)
820                                         break;
821                         }
822
823                 } while (0);
824         } else {
825                 u16 AgModeLop = 0;
826
827                 do {
828                         /* No RF AGC control */
829                         /* Powerdown PD2, AGC2 as output, WRI source */
830                         (state->m_FeAgRegAgPwd) &=
831                             ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
832                         (state->m_FeAgRegAgPwd) |=
833                             FE_AG_REG_AG_PWD_PWD_PD2_ENABLE;
834                         status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
835                         if (status < 0)
836                                 break;
837
838                         status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
839                         if (status < 0)
840                                 break;
841                         AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
842                                         FE_AG_REG_AG_MODE_LOP_MODE_E__M));
843                         AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
844                                       FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
845                         status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
846                         if (status < 0)
847                                 break;
848
849                         /* set FeAgRegAgAgcSio AGC2 (RF) as input */
850                         {
851                                 u16 FeAgRegAgAgcSio = 0;
852                                 status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
853                                 if (status < 0)
854                                         break;
855                                 FeAgRegAgAgcSio &=
856                                     ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
857                                 FeAgRegAgAgcSio |=
858                                     FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_INPUT;
859                                 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
860                                 if (status < 0)
861                                         break;
862                         }
863                 } while (0);
864         }
865         return status;
866 }
867
868 static int ReadIFAgc(struct drxd_state *state, u32 * pValue)
869 {
870         int status = 0;
871
872         *pValue = 0;
873         if (state->if_agc_cfg.ctrlMode != AGC_CTRL_OFF) {
874                 u16 Value;
875                 status = Read16(state, FE_AG_REG_GC1_AGC_DAT__A, &Value, 0);
876                 Value &= FE_AG_REG_GC1_AGC_DAT__M;
877                 if (status >= 0) {
878                         /*           3.3V
879                            |
880                            R1
881                            |
882                            Vin - R3 - * -- Vout
883                            |
884                            R2
885                            |
886                            GND
887                          */
888                         u32 R1 = state->if_agc_cfg.R1;
889                         u32 R2 = state->if_agc_cfg.R2;
890                         u32 R3 = state->if_agc_cfg.R3;
891
892                         u32 Vmax, Rpar, Vmin, Vout;
893
894                         if (R2 == 0 && (R1 == 0 || R3 == 0))
895                                 return 0;
896
897                         Vmax = (3300 * R2) / (R1 + R2);
898                         Rpar = (R2 * R3) / (R3 + R2);
899                         Vmin = (3300 * Rpar) / (R1 + Rpar);
900                         Vout = Vmin + ((Vmax - Vmin) * Value) / 1024;
901
902                         *pValue = Vout;
903                 }
904         }
905         return status;
906 }
907
908 static int load_firmware(struct drxd_state *state, const char *fw_name)
909 {
910         const struct firmware *fw;
911
912         if (request_firmware(&fw, fw_name, state->dev) < 0) {
913                 printk(KERN_ERR "drxd: firmware load failure [%s]\n", fw_name);
914                 return -EIO;
915         }
916
917         state->microcode = kmalloc(fw->size, GFP_KERNEL);
918         if (state->microcode == NULL) {
919                 release_firmware(fw);
920                 printk(KERN_ERR "drxd: firmware load failure: no memory\n");
921                 return -ENOMEM;
922         }
923
924         memcpy(state->microcode, fw->data, fw->size);
925         state->microcode_length = fw->size;
926         release_firmware(fw);
927         return 0;
928 }
929
930 static int DownloadMicrocode(struct drxd_state *state,
931                              const u8 *pMCImage, u32 Length)
932 {
933         u8 *pSrc;
934         u16 Flags;
935         u32 Address;
936         u16 nBlocks;
937         u16 BlockSize;
938         u16 BlockCRC;
939         u32 offset = 0;
940         int i, status = 0;
941
942         pSrc = (u8 *) pMCImage;
943         Flags = (pSrc[0] << 8) | pSrc[1];
944         pSrc += sizeof(u16);
945         offset += sizeof(u16);
946         nBlocks = (pSrc[0] << 8) | pSrc[1];
947         pSrc += sizeof(u16);
948         offset += sizeof(u16);
949
950         for (i = 0; i < nBlocks; i++) {
951                 Address = (pSrc[0] << 24) | (pSrc[1] << 16) |
952                     (pSrc[2] << 8) | pSrc[3];
953                 pSrc += sizeof(u32);
954                 offset += sizeof(u32);
955
956                 BlockSize = ((pSrc[0] << 8) | pSrc[1]) * sizeof(u16);
957                 pSrc += sizeof(u16);
958                 offset += sizeof(u16);
959
960                 Flags = (pSrc[0] << 8) | pSrc[1];
961                 pSrc += sizeof(u16);
962                 offset += sizeof(u16);
963
964                 BlockCRC = (pSrc[0] << 8) | pSrc[1];
965                 pSrc += sizeof(u16);
966                 offset += sizeof(u16);
967
968                 status = WriteBlock(state, Address, BlockSize,
969                                     pSrc, DRX_I2C_CLEARCRC);
970                 if (status < 0)
971                         break;
972                 pSrc += BlockSize;
973                 offset += BlockSize;
974         }
975
976         return status;
977 }
978
979 static int HI_Command(struct drxd_state *state, u16 cmd, u16 * pResult)
980 {
981         u32 nrRetries = 0;
982         u16 waitCmd;
983         int status;
984
985         status = Write16(state, HI_RA_RAM_SRV_CMD__A, cmd, 0);
986         if (status < 0)
987                 return status;
988
989         do {
990                 nrRetries += 1;
991                 if (nrRetries > DRXD_MAX_RETRIES) {
992                         status = -1;
993                         break;
994                 };
995                 status = Read16(state, HI_RA_RAM_SRV_CMD__A, &waitCmd, 0);
996         } while (waitCmd != 0);
997
998         if (status >= 0)
999                 status = Read16(state, HI_RA_RAM_SRV_RES__A, pResult, 0);
1000         return status;
1001 }
1002
1003 static int HI_CfgCommand(struct drxd_state *state)
1004 {
1005         int status = 0;
1006
1007         mutex_lock(&state->mutex);
1008         Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1009         Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, state->hi_cfg_timing_div, 0);
1010         Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, state->hi_cfg_bridge_delay, 0);
1011         Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, state->hi_cfg_wakeup_key, 0);
1012         Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, state->hi_cfg_ctrl, 0);
1013
1014         Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1015
1016         if ((state->hi_cfg_ctrl & HI_RA_RAM_SRV_CFG_ACT_PWD_EXE) ==
1017             HI_RA_RAM_SRV_CFG_ACT_PWD_EXE)
1018                 status = Write16(state, HI_RA_RAM_SRV_CMD__A,
1019                                  HI_RA_RAM_SRV_CMD_CONFIG, 0);
1020         else
1021                 status = HI_Command(state, HI_RA_RAM_SRV_CMD_CONFIG, 0);
1022         mutex_unlock(&state->mutex);
1023         return status;
1024 }
1025
1026 static int InitHI(struct drxd_state *state)
1027 {
1028         state->hi_cfg_wakeup_key = (state->chip_adr);
1029         /* port/bridge/power down ctrl */
1030         state->hi_cfg_ctrl = HI_RA_RAM_SRV_CFG_ACT_SLV0_ON;
1031         return HI_CfgCommand(state);
1032 }
1033
1034 static int HI_ResetCommand(struct drxd_state *state)
1035 {
1036         int status;
1037
1038         mutex_lock(&state->mutex);
1039         status = Write16(state, HI_RA_RAM_SRV_RST_KEY__A,
1040                          HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1041         if (status == 0)
1042                 status = HI_Command(state, HI_RA_RAM_SRV_CMD_RESET, 0);
1043         mutex_unlock(&state->mutex);
1044         msleep(1);
1045         return status;
1046 }
1047
1048 static int DRX_ConfigureI2CBridge(struct drxd_state *state, int bEnableBridge)
1049 {
1050         state->hi_cfg_ctrl &= (~HI_RA_RAM_SRV_CFG_ACT_BRD__M);
1051         if (bEnableBridge)
1052                 state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_ON;
1053         else
1054                 state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_OFF;
1055
1056         return HI_CfgCommand(state);
1057 }
1058
1059 #define HI_TR_WRITE      0x9
1060 #define HI_TR_READ       0xA
1061 #define HI_TR_READ_WRITE 0xB
1062 #define HI_TR_BROADCAST  0x4
1063
1064 #if 0
1065 static int AtomicReadBlock(struct drxd_state *state,
1066                            u32 Addr, u16 DataSize, u8 *pData, u8 Flags)
1067 {
1068         int status;
1069         int i = 0;
1070
1071         /* Parameter check */
1072         if ((!pData) || ((DataSize & 1) != 0))
1073                 return -1;
1074
1075         mutex_lock(&state->mutex);
1076
1077         do {
1078                 /* Instruct HI to read n bytes */
1079                 /* TODO use proper names forthese egisters */
1080                 status = Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, (HI_TR_FUNC_ADDR & 0xFFFF), 0);
1081                 if (status < 0)
1082                         break;
1083                 status = Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, (u16) (Addr >> 16), 0);
1084                 if (status < 0)
1085                         break;
1086                 status = Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, (u16) (Addr & 0xFFFF), 0);
1087                 if (status < 0)
1088                         break;
1089                 status = Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, (u16) ((DataSize / 2) - 1), 0);
1090                 if (status < 0)
1091                         break;
1092                 status = Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, HI_TR_READ, 0);
1093                 if (status < 0)
1094                         break;
1095
1096                 status = HI_Command(state, HI_RA_RAM_SRV_CMD_EXECUTE, 0);
1097                 if (status < 0)
1098                         break;
1099
1100         } while (0);
1101
1102         if (status >= 0) {
1103                 for (i = 0; i < (DataSize / 2); i += 1) {
1104                         u16 word;
1105
1106                         status = Read16(state, (HI_RA_RAM_USR_BEGIN__A + i),
1107                                         &word, 0);
1108                         if (status < 0)
1109                                 break;
1110                         pData[2 * i] = (u8) (word & 0xFF);
1111                         pData[(2 * i) + 1] = (u8) (word >> 8);
1112                 }
1113         }
1114         mutex_unlock(&state->mutex);
1115         return status;
1116 }
1117
1118 static int AtomicReadReg32(struct drxd_state *state,
1119                            u32 Addr, u32 *pData, u8 Flags)
1120 {
1121         u8 buf[sizeof(u32)];
1122         int status;
1123
1124         if (!pData)
1125                 return -1;
1126         status = AtomicReadBlock(state, Addr, sizeof(u32), buf, Flags);
1127         *pData = (((u32) buf[0]) << 0) +
1128             (((u32) buf[1]) << 8) +
1129             (((u32) buf[2]) << 16) + (((u32) buf[3]) << 24);
1130         return status;
1131 }
1132 #endif
1133
1134 static int StopAllProcessors(struct drxd_state *state)
1135 {
1136         return Write16(state, HI_COMM_EXEC__A,
1137                        SC_COMM_EXEC_CTL_STOP, DRX_I2C_BROADCAST);
1138 }
1139
1140 static int EnableAndResetMB(struct drxd_state *state)
1141 {
1142         if (state->type_A) {
1143                 /* disable? monitor bus observe @ EC_OC */
1144                 Write16(state, EC_OC_REG_OC_MON_SIO__A, 0x0000, 0x0000);
1145         }
1146
1147         /* do inverse broadcast, followed by explicit write to HI */
1148         Write16(state, HI_COMM_MB__A, 0x0000, DRX_I2C_BROADCAST);
1149         Write16(state, HI_COMM_MB__A, 0x0000, 0x0000);
1150         return 0;
1151 }
1152
1153 static int InitCC(struct drxd_state *state)
1154 {
1155         if (state->osc_clock_freq == 0 ||
1156             state->osc_clock_freq > 20000 ||
1157             (state->osc_clock_freq % 4000) != 0) {
1158                 printk(KERN_ERR "invalid osc frequency %d\n", state->osc_clock_freq);
1159                 return -1;
1160         }
1161
1162         Write16(state, CC_REG_OSC_MODE__A, CC_REG_OSC_MODE_M20, 0);
1163         Write16(state, CC_REG_PLL_MODE__A, CC_REG_PLL_MODE_BYPASS_PLL |
1164                 CC_REG_PLL_MODE_PUMP_CUR_12, 0);
1165         Write16(state, CC_REG_REF_DIVIDE__A, state->osc_clock_freq / 4000, 0);
1166         Write16(state, CC_REG_PWD_MODE__A, CC_REG_PWD_MODE_DOWN_PLL, 0);
1167         Write16(state, CC_REG_UPDATE__A, CC_REG_UPDATE_KEY, 0);
1168
1169         return 0;
1170 }
1171
1172 static int ResetECOD(struct drxd_state *state)
1173 {
1174         int status = 0;
1175
1176         if (state->type_A)
1177                 status = Write16(state, EC_OD_REG_SYNC__A, 0x0664, 0);
1178         else
1179                 status = Write16(state, B_EC_OD_REG_SYNC__A, 0x0664, 0);
1180
1181         if (!(status < 0))
1182                 status = WriteTable(state, state->m_ResetECRAM);
1183         if (!(status < 0))
1184                 status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0001, 0);
1185         return status;
1186 }
1187
1188 /* Configure PGA switch */
1189
1190 static int SetCfgPga(struct drxd_state *state, int pgaSwitch)
1191 {
1192         int status;
1193         u16 AgModeLop = 0;
1194         u16 AgModeHip = 0;
1195         do {
1196                 if (pgaSwitch) {
1197                         /* PGA on */
1198                         /* fine gain */
1199                         status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
1200                         if (status < 0)
1201                                 break;
1202                         AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
1203                         AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_DYNAMIC;
1204                         status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
1205                         if (status < 0)
1206                                 break;
1207
1208                         /* coarse gain */
1209                         status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
1210                         if (status < 0)
1211                                 break;
1212                         AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
1213                         AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_DYNAMIC;
1214                         status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
1215                         if (status < 0)
1216                                 break;
1217
1218                         /* enable fine and coarse gain, enable AAF,
1219                            no ext resistor */
1220                         status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFY_PCY_AFY_REN, 0x0000);
1221                         if (status < 0)
1222                                 break;
1223                 } else {
1224                         /* PGA off, bypass */
1225
1226                         /* fine gain */
1227                         status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
1228                         if (status < 0)
1229                                 break;
1230                         AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
1231                         AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_STATIC;
1232                         status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
1233                         if (status < 0)
1234                                 break;
1235
1236                         /* coarse gain */
1237                         status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
1238                         if (status < 0)
1239                                 break;
1240                         AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
1241                         AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_STATIC;
1242                         status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
1243                         if (status < 0)
1244                                 break;
1245
1246                         /* disable fine and coarse gain, enable AAF,
1247                            no ext resistor */
1248                         status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN, 0x0000);
1249                         if (status < 0)
1250                                 break;
1251                 }
1252         } while (0);
1253         return status;
1254 }
1255
1256 static int InitFE(struct drxd_state *state)
1257 {
1258         int status;
1259
1260         do {
1261                 status = WriteTable(state, state->m_InitFE_1);
1262                 if (status < 0)
1263                         break;
1264
1265                 if (state->type_A) {
1266                         status = Write16(state, FE_AG_REG_AG_PGA_MODE__A,
1267                                          FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
1268                                          0);
1269                 } else {
1270                         if (state->PGA)
1271                                 status = SetCfgPga(state, 0);
1272                         else
1273                                 status =
1274                                     Write16(state, B_FE_AG_REG_AG_PGA_MODE__A,
1275                                             B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
1276                                             0);
1277                 }
1278
1279                 if (status < 0)
1280                         break;
1281                 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, state->m_FeAgRegAgAgcSio, 0x0000);
1282                 if (status < 0)
1283                         break;
1284                 status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
1285                 if (status < 0)
1286                         break;
1287
1288                 status = WriteTable(state, state->m_InitFE_2);
1289                 if (status < 0)
1290                         break;
1291
1292         } while (0);
1293
1294         return status;
1295 }
1296
1297 static int InitFT(struct drxd_state *state)
1298 {
1299         /*
1300            norm OFFSET,  MB says =2 voor 8K en =3 voor 2K waarschijnlijk
1301            SC stuff
1302          */
1303         return Write16(state, FT_REG_COMM_EXEC__A, 0x0001, 0x0000);
1304 }
1305
1306 static int SC_WaitForReady(struct drxd_state *state)
1307 {
1308         u16 curCmd;
1309         int i;
1310
1311         for (i = 0; i < DRXD_MAX_RETRIES; i += 1) {
1312                 int status = Read16(state, SC_RA_RAM_CMD__A, &curCmd, 0);
1313                 if (status == 0 || curCmd == 0)
1314                         return status;
1315         }
1316         return -1;
1317 }
1318
1319 static int SC_SendCommand(struct drxd_state *state, u16 cmd)
1320 {
1321         int status = 0;
1322         u16 errCode;
1323
1324         Write16(state, SC_RA_RAM_CMD__A, cmd, 0);
1325         SC_WaitForReady(state);
1326
1327         Read16(state, SC_RA_RAM_CMD_ADDR__A, &errCode, 0);
1328
1329         if (errCode == 0xFFFF) {
1330                 printk(KERN_ERR "Command Error\n");
1331                 status = -1;
1332         }
1333
1334         return status;
1335 }
1336
1337 static int SC_ProcStartCommand(struct drxd_state *state,
1338                                u16 subCmd, u16 param0, u16 param1)
1339 {
1340         int status = 0;
1341         u16 scExec;
1342
1343         mutex_lock(&state->mutex);
1344         do {
1345                 Read16(state, SC_COMM_EXEC__A, &scExec, 0);
1346                 if (scExec != 1) {
1347                         status = -1;
1348                         break;
1349                 }
1350                 SC_WaitForReady(state);
1351                 Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
1352                 Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
1353                 Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
1354
1355                 SC_SendCommand(state, SC_RA_RAM_CMD_PROC_START);
1356         } while (0);
1357         mutex_unlock(&state->mutex);
1358         return status;
1359 }
1360
1361 static int SC_SetPrefParamCommand(struct drxd_state *state,
1362                                   u16 subCmd, u16 param0, u16 param1)
1363 {
1364         int status;
1365
1366         mutex_lock(&state->mutex);
1367         do {
1368                 status = SC_WaitForReady(state);
1369                 if (status < 0)
1370                         break;
1371                 status = Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
1372                 if (status < 0)
1373                         break;
1374                 status = Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
1375                 if (status < 0)
1376                         break;
1377                 status = Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
1378                 if (status < 0)
1379                         break;
1380
1381                 status = SC_SendCommand(state, SC_RA_RAM_CMD_SET_PREF_PARAM);
1382                 if (status < 0)
1383                         break;
1384         } while (0);
1385         mutex_unlock(&state->mutex);
1386         return status;
1387 }
1388
1389 #if 0
1390 static int SC_GetOpParamCommand(struct drxd_state *state, u16 * result)
1391 {
1392         int status = 0;
1393
1394         mutex_lock(&state->mutex);
1395         do {
1396                 status = SC_WaitForReady(state);
1397                 if (status < 0)
1398                         break;
1399                 status = SC_SendCommand(state, SC_RA_RAM_CMD_GET_OP_PARAM);
1400                 if (status < 0)
1401                         break;
1402                 status = Read16(state, SC_RA_RAM_PARAM0__A, result, 0);
1403                 if (status < 0)
1404                         break;
1405         } while (0);
1406         mutex_unlock(&state->mutex);
1407         return status;
1408 }
1409 #endif
1410
1411 static int ConfigureMPEGOutput(struct drxd_state *state, int bEnableOutput)
1412 {
1413         int status;
1414
1415         do {
1416                 u16 EcOcRegIprInvMpg = 0;
1417                 u16 EcOcRegOcModeLop = 0;
1418                 u16 EcOcRegOcModeHip = 0;
1419                 u16 EcOcRegOcMpgSio = 0;
1420
1421                 /*CHK_ERROR(Read16(state, EC_OC_REG_OC_MODE_LOP__A, &EcOcRegOcModeLop, 0)); */
1422
1423                 if (state->operation_mode == OM_DVBT_Diversity_Front) {
1424                         if (bEnableOutput) {
1425                                 EcOcRegOcModeHip |=
1426                                     B_EC_OC_REG_OC_MODE_HIP_MPG_BUS_SRC_MONITOR;
1427                         } else
1428                                 EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
1429                         EcOcRegOcModeLop |=
1430                             EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
1431                 } else {
1432                         EcOcRegOcModeLop = state->m_EcOcRegOcModeLop;
1433
1434                         if (bEnableOutput)
1435                                 EcOcRegOcMpgSio &= (~(EC_OC_REG_OC_MPG_SIO__M));
1436                         else
1437                                 EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
1438
1439                         /* Don't Insert RS Byte */
1440                         if (state->insert_rs_byte) {
1441                                 EcOcRegOcModeLop &=
1442                                     (~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M));
1443                                 EcOcRegOcModeHip &=
1444                                     (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
1445                                 EcOcRegOcModeHip |=
1446                                     EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_ENABLE;
1447                         } else {
1448                                 EcOcRegOcModeLop |=
1449                                     EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
1450                                 EcOcRegOcModeHip &=
1451                                     (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
1452                                 EcOcRegOcModeHip |=
1453                                     EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_DISABLE;
1454                         }
1455
1456                         /* Mode = Parallel */
1457                         if (state->enable_parallel)
1458                                 EcOcRegOcModeLop &=
1459                                     (~(EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE__M));
1460                         else
1461                                 EcOcRegOcModeLop |=
1462                                     EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE_SERIAL;
1463                 }
1464                 /* Invert Data */
1465                 /* EcOcRegIprInvMpg |= 0x00FF; */
1466                 EcOcRegIprInvMpg &= (~(0x00FF));
1467
1468                 /* Invert Error ( we don't use the pin ) */
1469                 /*  EcOcRegIprInvMpg |= 0x0100; */
1470                 EcOcRegIprInvMpg &= (~(0x0100));
1471
1472                 /* Invert Start ( we don't use the pin ) */
1473                 /* EcOcRegIprInvMpg |= 0x0200; */
1474                 EcOcRegIprInvMpg &= (~(0x0200));
1475
1476                 /* Invert Valid ( we don't use the pin ) */
1477                 /* EcOcRegIprInvMpg |= 0x0400; */
1478                 EcOcRegIprInvMpg &= (~(0x0400));
1479
1480                 /* Invert Clock */
1481                 /* EcOcRegIprInvMpg |= 0x0800; */
1482                 EcOcRegIprInvMpg &= (~(0x0800));
1483
1484                 /* EcOcRegOcModeLop =0x05; */
1485                 status = Write16(state, EC_OC_REG_IPR_INV_MPG__A, EcOcRegIprInvMpg, 0);
1486                 if (status < 0)
1487                         break;
1488                 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, EcOcRegOcModeLop, 0);
1489                 if (status < 0)
1490                         break;
1491                 status = Write16(state, EC_OC_REG_OC_MODE_HIP__A, EcOcRegOcModeHip, 0x0000);
1492                 if (status < 0)
1493                         break;
1494                 status = Write16(state, EC_OC_REG_OC_MPG_SIO__A, EcOcRegOcMpgSio, 0);
1495                 if (status < 0)
1496                         break;
1497         } while (0);
1498         return status;
1499 }
1500
1501 static int SetDeviceTypeId(struct drxd_state *state)
1502 {
1503         int status = 0;
1504         u16 deviceId = 0;
1505
1506         do {
1507                 status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
1508                 if (status < 0)
1509                         break;
1510                 /* TODO: why twice? */
1511                 status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
1512                 if (status < 0)
1513                         break;
1514                 printk(KERN_INFO "drxd: deviceId = %04x\n", deviceId);
1515
1516                 state->type_A = 0;
1517                 state->PGA = 0;
1518                 state->diversity = 0;
1519                 if (deviceId == 0) {    /* on A2 only 3975 available */
1520                         state->type_A = 1;
1521                         printk(KERN_INFO "DRX3975D-A2\n");
1522                 } else {
1523                         deviceId >>= 12;
1524                         printk(KERN_INFO "DRX397%dD-B1\n", deviceId);
1525                         switch (deviceId) {
1526                         case 4:
1527                                 state->diversity = 1;
1528                         case 3:
1529                         case 7:
1530                                 state->PGA = 1;
1531                                 break;
1532                         case 6:
1533                                 state->diversity = 1;
1534                         case 5:
1535                         case 8:
1536                                 break;
1537                         default:
1538                                 status = -1;
1539                                 break;
1540                         }
1541                 }
1542         } while (0);
1543
1544         if (status < 0)
1545                 return status;
1546
1547         /* Init Table selection */
1548         state->m_InitAtomicRead = DRXD_InitAtomicRead;
1549         state->m_InitSC = DRXD_InitSC;
1550         state->m_ResetECRAM = DRXD_ResetECRAM;
1551         if (state->type_A) {
1552                 state->m_ResetCEFR = DRXD_ResetCEFR;
1553                 state->m_InitFE_1 = DRXD_InitFEA2_1;
1554                 state->m_InitFE_2 = DRXD_InitFEA2_2;
1555                 state->m_InitCP = DRXD_InitCPA2;
1556                 state->m_InitCE = DRXD_InitCEA2;
1557                 state->m_InitEQ = DRXD_InitEQA2;
1558                 state->m_InitEC = DRXD_InitECA2;
1559                 if (load_firmware(state, DRX_FW_FILENAME_A2))
1560                         return -EIO;
1561         } else {
1562                 state->m_ResetCEFR = NULL;
1563                 state->m_InitFE_1 = DRXD_InitFEB1_1;
1564                 state->m_InitFE_2 = DRXD_InitFEB1_2;
1565                 state->m_InitCP = DRXD_InitCPB1;
1566                 state->m_InitCE = DRXD_InitCEB1;
1567                 state->m_InitEQ = DRXD_InitEQB1;
1568                 state->m_InitEC = DRXD_InitECB1;
1569                 if (load_firmware(state, DRX_FW_FILENAME_B1))
1570                         return -EIO;
1571         }
1572         if (state->diversity) {
1573                 state->m_InitDiversityFront = DRXD_InitDiversityFront;
1574                 state->m_InitDiversityEnd = DRXD_InitDiversityEnd;
1575                 state->m_DisableDiversity = DRXD_DisableDiversity;
1576                 state->m_StartDiversityFront = DRXD_StartDiversityFront;
1577                 state->m_StartDiversityEnd = DRXD_StartDiversityEnd;
1578                 state->m_DiversityDelay8MHZ = DRXD_DiversityDelay8MHZ;
1579                 state->m_DiversityDelay6MHZ = DRXD_DiversityDelay6MHZ;
1580         } else {
1581                 state->m_InitDiversityFront = NULL;
1582                 state->m_InitDiversityEnd = NULL;
1583                 state->m_DisableDiversity = NULL;
1584                 state->m_StartDiversityFront = NULL;
1585                 state->m_StartDiversityEnd = NULL;
1586                 state->m_DiversityDelay8MHZ = NULL;
1587                 state->m_DiversityDelay6MHZ = NULL;
1588         }
1589
1590         return status;
1591 }
1592
1593 static int CorrectSysClockDeviation(struct drxd_state *state)
1594 {
1595         int status;
1596         s32 incr = 0;
1597         s32 nomincr = 0;
1598         u32 bandwidth = 0;
1599         u32 sysClockInHz = 0;
1600         u32 sysClockFreq = 0;   /* in kHz */
1601         s16 oscClockDeviation;
1602         s16 Diff;
1603
1604         do {
1605                 /* Retrieve bandwidth and incr, sanity check */
1606
1607                 /* These accesses should be AtomicReadReg32, but that
1608                    causes trouble (at least for diversity */
1609                 status = Read32(state, LC_RA_RAM_IFINCR_NOM_L__A, ((u32 *) &nomincr), 0);
1610                 if (status < 0)
1611                         break;
1612                 status = Read32(state, FE_IF_REG_INCR0__A, (u32 *) &incr, 0);
1613                 if (status < 0)
1614                         break;
1615
1616                 if (state->type_A) {
1617                         if ((nomincr - incr < -500) || (nomincr - incr > 500))
1618                                 break;
1619                 } else {
1620                         if ((nomincr - incr < -2000) || (nomincr - incr > 2000))
1621                                 break;
1622                 }
1623
1624                 switch (state->param.u.ofdm.bandwidth) {
1625                 case BANDWIDTH_8_MHZ:
1626                         bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
1627                         break;
1628                 case BANDWIDTH_7_MHZ:
1629                         bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
1630                         break;
1631                 case BANDWIDTH_6_MHZ:
1632                         bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
1633                         break;
1634                 default:
1635                         return -1;
1636                         break;
1637                 }
1638
1639                 /* Compute new sysclock value
1640                    sysClockFreq = (((incr + 2^23)*bandwidth)/2^21)/1000 */
1641                 incr += (1 << 23);
1642                 sysClockInHz = MulDiv32(incr, bandwidth, 1 << 21);
1643                 sysClockFreq = (u32) (sysClockInHz / 1000);
1644                 /* rounding */
1645                 if ((sysClockInHz % 1000) > 500)
1646                         sysClockFreq++;
1647
1648                 /* Compute clock deviation in ppm */
1649                 oscClockDeviation = (u16) ((((s32) (sysClockFreq) -
1650                                              (s32)
1651                                              (state->expected_sys_clock_freq)) *
1652                                             1000000L) /
1653                                            (s32)
1654                                            (state->expected_sys_clock_freq));
1655
1656                 Diff = oscClockDeviation - state->osc_clock_deviation;
1657                 /*printk(KERN_INFO "sysclockdiff=%d\n", Diff); */
1658                 if (Diff >= -200 && Diff <= 200) {
1659                         state->sys_clock_freq = (u16) sysClockFreq;
1660                         if (oscClockDeviation != state->osc_clock_deviation) {
1661                                 if (state->config.osc_deviation) {
1662                                         state->config.osc_deviation(state->priv,
1663                                                                     oscClockDeviation,
1664                                                                     1);
1665                                         state->osc_clock_deviation =
1666                                             oscClockDeviation;
1667                                 }
1668                         }
1669                         /* switch OFF SRMM scan in SC */
1670                         status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DONT_SCAN, 0);
1671                         if (status < 0)
1672                                 break;
1673                         /* overrule FE_IF internal value for
1674                            proper re-locking */
1675                         status = Write16(state, SC_RA_RAM_IF_SAVE__AX, state->current_fe_if_incr, 0);
1676                         if (status < 0)
1677                                 break;
1678                         state->cscd_state = CSCD_SAVED;
1679                 }
1680         } while (0);
1681
1682         return status;
1683 }
1684
1685 static int DRX_Stop(struct drxd_state *state)
1686 {
1687         int status;
1688
1689         if (state->drxd_state != DRXD_STARTED)
1690                 return 0;
1691
1692         do {
1693                 if (state->cscd_state != CSCD_SAVED) {
1694                         u32 lock;
1695                         status = DRX_GetLockStatus(state, &lock);
1696                         if (status < 0)
1697                                 break;
1698                 }
1699
1700                 status = StopOC(state);
1701                 if (status < 0)
1702                         break;
1703
1704                 state->drxd_state = DRXD_STOPPED;
1705
1706                 status = ConfigureMPEGOutput(state, 0);
1707                 if (status < 0)
1708                         break;
1709
1710                 if (state->type_A) {
1711                         /* Stop relevant processors off the device */
1712                         status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0x0000);
1713                         if (status < 0)
1714                                 break;
1715
1716                         status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1717                         if (status < 0)
1718                                 break;
1719                         status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1720                         if (status < 0)
1721                                 break;
1722                 } else {
1723                         /* Stop all processors except HI & CC & FE */
1724                         status = Write16(state, B_SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1725                         if (status < 0)
1726                                 break;
1727                         status = Write16(state, B_LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1728                         if (status < 0)
1729                                 break;
1730                         status = Write16(state, B_FT_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1731                         if (status < 0)
1732                                 break;
1733                         status = Write16(state, B_CP_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1734                         if (status < 0)
1735                                 break;
1736                         status = Write16(state, B_CE_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1737                         if (status < 0)
1738                                 break;
1739                         status = Write16(state, B_EQ_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1740                         if (status < 0)
1741                                 break;
1742                         status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0);
1743                         if (status < 0)
1744                                 break;
1745                 }
1746
1747         } while (0);
1748         return status;
1749 }
1750
1751 int SetOperationMode(struct drxd_state *state, int oMode)
1752 {
1753         int status;
1754
1755         do {
1756                 if (state->drxd_state != DRXD_STOPPED) {
1757                         status = -1;
1758                         break;
1759                 }
1760
1761                 if (oMode == state->operation_mode) {
1762                         status = 0;
1763                         break;
1764                 }
1765
1766                 if (oMode != OM_Default && !state->diversity) {
1767                         status = -1;
1768                         break;
1769                 }
1770
1771                 switch (oMode) {
1772                 case OM_DVBT_Diversity_Front:
1773                         status = WriteTable(state, state->m_InitDiversityFront);
1774                         break;
1775                 case OM_DVBT_Diversity_End:
1776                         status = WriteTable(state, state->m_InitDiversityEnd);
1777                         break;
1778                 case OM_Default:
1779                         /* We need to check how to
1780                            get DRXD out of diversity */
1781                 default:
1782                         status = WriteTable(state, state->m_DisableDiversity);
1783                         break;
1784                 }
1785         } while (0);
1786
1787         if (!status)
1788                 state->operation_mode = oMode;
1789         return status;
1790 }
1791
1792 static int StartDiversity(struct drxd_state *state)
1793 {
1794         int status = 0;
1795         u16 rcControl;
1796
1797         do {
1798                 if (state->operation_mode == OM_DVBT_Diversity_Front) {
1799                         status = WriteTable(state, state->m_StartDiversityFront);
1800                         if (status < 0)
1801                                 break;
1802                 } else if (state->operation_mode == OM_DVBT_Diversity_End) {
1803                         status = WriteTable(state, state->m_StartDiversityEnd);
1804                         if (status < 0)
1805                                 break;
1806                         if (state->param.u.ofdm.bandwidth == BANDWIDTH_8_MHZ) {
1807                                 status = WriteTable(state, state->m_DiversityDelay8MHZ);
1808                                 if (status < 0)
1809                                         break;
1810                         } else {
1811                                 status = WriteTable(state, state->m_DiversityDelay6MHZ);
1812                                 if (status < 0)
1813                                         break;
1814                         }
1815
1816                         status = Read16(state, B_EQ_REG_RC_SEL_CAR__A, &rcControl, 0);
1817                         if (status < 0)
1818                                 break;
1819                         rcControl &= ~(B_EQ_REG_RC_SEL_CAR_FFTMODE__M);
1820                         rcControl |= B_EQ_REG_RC_SEL_CAR_DIV_ON |
1821                             /*  combining enabled */
1822                             B_EQ_REG_RC_SEL_CAR_MEAS_A_CC |
1823                             B_EQ_REG_RC_SEL_CAR_PASS_A_CC |
1824                             B_EQ_REG_RC_SEL_CAR_LOCAL_A_CC;
1825                         status = Write16(state, B_EQ_REG_RC_SEL_CAR__A, rcControl, 0);
1826                         if (status < 0)
1827                                 break;
1828                 }
1829         } while (0);
1830         return status;
1831 }
1832
1833 static int SetFrequencyShift(struct drxd_state *state,
1834                              u32 offsetFreq, int channelMirrored)
1835 {
1836         int negativeShift = (state->tuner_mirrors == channelMirrored);
1837
1838         /* Handle all mirroring
1839          *
1840          * Note: ADC mirroring (aliasing) is implictly handled by limiting
1841          * feFsRegAddInc to 28 bits below
1842          * (if the result before masking is more than 28 bits, this means
1843          *  that the ADC is mirroring.
1844          * The masking is in fact the aliasing of the ADC)
1845          *
1846          */
1847
1848         /* Compute register value, unsigned computation */
1849         state->fe_fs_add_incr = MulDiv32(state->intermediate_freq +
1850                                          offsetFreq,
1851                                          1 << 28, state->sys_clock_freq);
1852         /* Remove integer part */
1853         state->fe_fs_add_incr &= 0x0FFFFFFFL;
1854         if (negativeShift)
1855                 state->fe_fs_add_incr = ((1 << 28) - state->fe_fs_add_incr);
1856
1857         /* Save the frequency shift without tunerOffset compensation
1858            for CtrlGetChannel. */
1859         state->org_fe_fs_add_incr = MulDiv32(state->intermediate_freq,
1860                                              1 << 28, state->sys_clock_freq);
1861         /* Remove integer part */
1862         state->org_fe_fs_add_incr &= 0x0FFFFFFFL;
1863         if (negativeShift)
1864                 state->org_fe_fs_add_incr = ((1L << 28) -
1865                                              state->org_fe_fs_add_incr);
1866
1867         return Write32(state, FE_FS_REG_ADD_INC_LOP__A,
1868                        state->fe_fs_add_incr, 0);
1869 }
1870
1871 static int SetCfgNoiseCalibration(struct drxd_state *state,
1872                                   struct SNoiseCal *noiseCal)
1873 {
1874         u16 beOptEna;
1875         int status = 0;
1876
1877         do {
1878                 status = Read16(state, SC_RA_RAM_BE_OPT_ENA__A, &beOptEna, 0);
1879                 if (status < 0)
1880                         break;
1881                 if (noiseCal->cpOpt) {
1882                         beOptEna |= (1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
1883                 } else {
1884                         beOptEna &= ~(1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
1885                         status = Write16(state, CP_REG_AC_NEXP_OFFS__A, noiseCal->cpNexpOfs, 0);
1886                         if (status < 0)
1887                                 break;
1888                 }
1889                 status = Write16(state, SC_RA_RAM_BE_OPT_ENA__A, beOptEna, 0);
1890                 if (status < 0)
1891                         break;
1892
1893                 if (!state->type_A) {
1894                         status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_2K__A, noiseCal->tdCal2k, 0);
1895                         if (status < 0)
1896                                 break;
1897                         status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_8K__A, noiseCal->tdCal8k, 0);
1898                         if (status < 0)
1899                                 break;
1900                 }
1901         } while (0);
1902
1903         return status;
1904 }
1905
1906 static int DRX_Start(struct drxd_state *state, s32 off)
1907 {
1908         struct dvb_ofdm_parameters *p = &state->param.u.ofdm;
1909         int status;
1910
1911         u16 transmissionParams = 0;
1912         u16 operationMode = 0;
1913         u16 qpskTdTpsPwr = 0;
1914         u16 qam16TdTpsPwr = 0;
1915         u16 qam64TdTpsPwr = 0;
1916         u32 feIfIncr = 0;
1917         u32 bandwidth = 0;
1918         int mirrorFreqSpect;
1919
1920         u16 qpskSnCeGain = 0;
1921         u16 qam16SnCeGain = 0;
1922         u16 qam64SnCeGain = 0;
1923         u16 qpskIsGainMan = 0;
1924         u16 qam16IsGainMan = 0;
1925         u16 qam64IsGainMan = 0;
1926         u16 qpskIsGainExp = 0;
1927         u16 qam16IsGainExp = 0;
1928         u16 qam64IsGainExp = 0;
1929         u16 bandwidthParam = 0;
1930
1931         if (off < 0)
1932                 off = (off - 500) / 1000;
1933         else
1934                 off = (off + 500) / 1000;
1935
1936         do {
1937                 if (state->drxd_state != DRXD_STOPPED)
1938                         return -1;
1939                 status = ResetECOD(state);
1940                 if (status < 0)
1941                         break;
1942                 if (state->type_A) {
1943                         status = InitSC(state);
1944                         if (status < 0)
1945                                 break;
1946                 } else {
1947                         status = InitFT(state);
1948                         if (status < 0)
1949                                 break;
1950                         status = InitCP(state);
1951                         if (status < 0)
1952                                 break;
1953                         status = InitCE(state);
1954                         if (status < 0)
1955                                 break;
1956                         status = InitEQ(state);
1957                         if (status < 0)
1958                                 break;
1959                         status = InitSC(state);
1960                         if (status < 0)
1961                                 break;
1962                 }
1963
1964                 /* Restore current IF & RF AGC settings */
1965
1966                 status = SetCfgIfAgc(state, &state->if_agc_cfg);
1967                 if (status < 0)
1968                         break;
1969                 status = SetCfgRfAgc(state, &state->rf_agc_cfg);
1970                 if (status < 0)
1971                         break;
1972
1973                 mirrorFreqSpect = (state->param.inversion == INVERSION_ON);
1974
1975                 switch (p->transmission_mode) {
1976                 default:        /* Not set, detect it automatically */
1977                         operationMode |= SC_RA_RAM_OP_AUTO_MODE__M;
1978                         /* fall through , try first guess DRX_FFTMODE_8K */
1979                 case TRANSMISSION_MODE_8K:
1980                         transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_8K;
1981                         if (state->type_A) {
1982                                 status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_8K, 0x0000);
1983                                 if (status < 0)
1984                                         break;
1985                                 qpskSnCeGain = 99;
1986                                 qam16SnCeGain = 83;
1987                                 qam64SnCeGain = 67;
1988                         }
1989                         break;
1990                 case TRANSMISSION_MODE_2K:
1991                         transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_2K;
1992                         if (state->type_A) {
1993                                 status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_2K, 0x0000);
1994                                 if (status < 0)
1995                                         break;
1996                                 qpskSnCeGain = 97;
1997                                 qam16SnCeGain = 71;
1998                                 qam64SnCeGain = 65;
1999                         }
2000                         break;
2001                 }
2002
2003                 switch (p->guard_interval) {
2004                 case GUARD_INTERVAL_1_4:
2005                         transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
2006                         break;
2007                 case GUARD_INTERVAL_1_8:
2008                         transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_8;
2009                         break;
2010                 case GUARD_INTERVAL_1_16:
2011                         transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_16;
2012                         break;
2013                 case GUARD_INTERVAL_1_32:
2014                         transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_32;
2015                         break;
2016                 default:        /* Not set, detect it automatically */
2017                         operationMode |= SC_RA_RAM_OP_AUTO_GUARD__M;
2018                         /* try first guess 1/4 */
2019                         transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
2020                         break;
2021                 }
2022
2023                 switch (p->hierarchy_information) {
2024                 case HIERARCHY_1:
2025                         transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A1;
2026                         if (state->type_A) {
2027                                 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0001, 0x0000);
2028                                 if (status < 0)
2029                                         break;
2030                                 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0001, 0x0000);
2031                                 if (status < 0)
2032                                         break;
2033
2034                                 qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2035                                 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA1;
2036                                 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA1;
2037
2038                                 qpskIsGainMan =
2039                                     SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2040                                 qam16IsGainMan =
2041                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
2042                                 qam64IsGainMan =
2043                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
2044
2045                                 qpskIsGainExp =
2046                                     SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2047                                 qam16IsGainExp =
2048                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
2049                                 qam64IsGainExp =
2050                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
2051                         }
2052                         break;
2053
2054                 case HIERARCHY_2:
2055                         transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A2;
2056                         if (state->type_A) {
2057                                 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0002, 0x0000);
2058                                 if (status < 0)
2059                                         break;
2060                                 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0002, 0x0000);
2061                                 if (status < 0)
2062                                         break;
2063
2064                                 qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2065                                 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA2;
2066                                 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA2;
2067
2068                                 qpskIsGainMan =
2069                                     SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2070                                 qam16IsGainMan =
2071                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_MAN__PRE;
2072                                 qam64IsGainMan =
2073                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_MAN__PRE;
2074
2075                                 qpskIsGainExp =
2076                                     SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2077                                 qam16IsGainExp =
2078                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_EXP__PRE;
2079                                 qam64IsGainExp =
2080                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_EXP__PRE;
2081                         }
2082                         break;
2083                 case HIERARCHY_4:
2084                         transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A4;
2085                         if (state->type_A) {
2086                                 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0003, 0x0000);
2087                                 if (status < 0)
2088                                         break;
2089                                 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0003, 0x0000);
2090                                 if (status < 0)
2091                                         break;
2092
2093                                 qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2094                                 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA4;
2095                                 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA4;
2096
2097                                 qpskIsGainMan =
2098                                     SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2099                                 qam16IsGainMan =
2100                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_MAN__PRE;
2101                                 qam64IsGainMan =
2102                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_MAN__PRE;
2103
2104                                 qpskIsGainExp =
2105                                     SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2106                                 qam16IsGainExp =
2107                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_EXP__PRE;
2108                                 qam64IsGainExp =
2109                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_EXP__PRE;
2110                         }
2111                         break;
2112                 case HIERARCHY_AUTO:
2113                 default:
2114                         /* Not set, detect it automatically, start with none */
2115                         operationMode |= SC_RA_RAM_OP_AUTO_HIER__M;
2116                         transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_NO;
2117                         if (state->type_A) {
2118                                 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0000, 0x0000);
2119                                 if (status < 0)
2120                                         break;
2121                                 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0000, 0x0000);
2122                                 if (status < 0)
2123                                         break;
2124
2125                                 qpskTdTpsPwr = EQ_TD_TPS_PWR_QPSK;
2126                                 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHAN;
2127                                 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHAN;
2128
2129                                 qpskIsGainMan =
2130                                     SC_RA_RAM_EQ_IS_GAIN_QPSK_MAN__PRE;
2131                                 qam16IsGainMan =
2132                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
2133                                 qam64IsGainMan =
2134                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
2135
2136                                 qpskIsGainExp =
2137                                     SC_RA_RAM_EQ_IS_GAIN_QPSK_EXP__PRE;
2138                                 qam16IsGainExp =
2139                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
2140                                 qam64IsGainExp =
2141                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
2142                         }
2143                         break;
2144                 }
2145                 status = status;
2146                 if (status < 0)
2147                         break;
2148
2149                 switch (p->constellation) {
2150                 default:
2151                         operationMode |= SC_RA_RAM_OP_AUTO_CONST__M;
2152                         /* fall through , try first guess
2153                            DRX_CONSTELLATION_QAM64 */
2154                 case QAM_64:
2155                         transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM64;
2156                         if (state->type_A) {
2157                                 status = Write16(state, EQ_REG_OT_CONST__A, 0x0002, 0x0000);
2158                                 if (status < 0)
2159                                         break;
2160                                 status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_64QAM, 0x0000);
2161                                 if (status < 0)
2162                                         break;
2163                                 status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0020, 0x0000);
2164                                 if (status < 0)
2165                                         break;
2166                                 status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0008, 0x0000);
2167                                 if (status < 0)
2168                                         break;
2169                                 status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0002, 0x0000);
2170                                 if (status < 0)
2171                                         break;
2172
2173                                 status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam64TdTpsPwr, 0x0000);
2174                                 if (status < 0)
2175                                         break;
2176                                 status = Write16(state, EQ_REG_SN_CEGAIN__A, qam64SnCeGain, 0x0000);
2177                                 if (status < 0)
2178                                         break;
2179                                 status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam64IsGainMan, 0x0000);
2180                                 if (status < 0)
2181                                         break;
2182                                 status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam64IsGainExp, 0x0000);
2183                                 if (status < 0)
2184                                         break;
2185                         }
2186                         break;
2187                 case QPSK:
2188                         transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QPSK;
2189                         if (state->type_A) {
2190                                 status = Write16(state, EQ_REG_OT_CONST__A, 0x0000, 0x0000);
2191                                 if (status < 0)
2192                                         break;
2193                                 status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_QPSK, 0x0000);
2194                                 if (status < 0)
2195                                         break;
2196                                 status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
2197                                 if (status < 0)
2198                                         break;
2199                                 status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0000, 0x0000);
2200                                 if (status < 0)
2201                                         break;
2202                                 status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
2203                                 if (status < 0)
2204                                         break;
2205
2206                                 status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qpskTdTpsPwr, 0x0000);
2207                                 if (status < 0)
2208                                         break;
2209                                 status = Write16(state, EQ_REG_SN_CEGAIN__A, qpskSnCeGain, 0x0000);
2210                                 if (status < 0)
2211                                         break;
2212                                 status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qpskIsGainMan, 0x0000);
2213                                 if (status < 0)
2214                                         break;
2215                                 status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qpskIsGainExp, 0x0000);
2216                                 if (status < 0)
2217                                         break;
2218                         }
2219                         break;
2220
2221                 case QAM_16:
2222                         transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM16;
2223                         if (state->type_A) {
2224                                 status = Write16(state, EQ_REG_OT_CONST__A, 0x0001, 0x0000);
2225                                 if (status < 0)
2226                                         break;
2227                                 status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_16QAM, 0x0000);
2228                                 if (status < 0)
2229                                         break;
2230                                 status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
2231                                 if (status < 0)
2232                                         break;
2233                                 status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0004, 0x0000);
2234                                 if (status < 0)
2235                                         break;
2236                                 status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
2237                                 if (status < 0)
2238                                         break;
2239
2240                                 status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam16TdTpsPwr, 0x0000);
2241                                 if (status < 0)
2242                                         break;
2243                                 status = Write16(state, EQ_REG_SN_CEGAIN__A, qam16SnCeGain, 0x0000);
2244                                 if (status < 0)
2245                                         break;
2246                                 status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam16IsGainMan, 0x0000);
2247                                 if (status < 0)
2248                                         break;
2249                                 status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam16IsGainExp, 0x0000);
2250                                 if (status < 0)
2251                                         break;
2252                         }
2253                         break;
2254
2255                 }
2256                 status = status;
2257                 if (status < 0)
2258                         break;
2259
2260                 switch (DRX_CHANNEL_HIGH) {
2261                 default:
2262                 case DRX_CHANNEL_AUTO:
2263                 case DRX_CHANNEL_LOW:
2264                         transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_LO;
2265                         status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_LO, 0x0000);
2266                         if (status < 0)
2267                                 break;
2268                         break;
2269                 case DRX_CHANNEL_HIGH:
2270                         transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_HI;
2271                         status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_HI, 0x0000);
2272                         if (status < 0)
2273                                 break;
2274                         break;
2275
2276                 }
2277
2278                 switch (p->code_rate_HP) {
2279                 case FEC_1_2:
2280                         transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_1_2;
2281                         if (state->type_A) {
2282                                 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C1_2, 0x0000);
2283                                 if (status < 0)
2284                                         break;
2285                         }
2286                         break;
2287                 default:
2288                         operationMode |= SC_RA_RAM_OP_AUTO_RATE__M;
2289                 case FEC_2_3:
2290                         transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_2_3;
2291                         if (state->type_A) {
2292                                 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C2_3, 0x0000);
2293                                 if (status < 0)
2294                                         break;
2295                         }
2296                         break;
2297                 case FEC_3_4:
2298                         transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_3_4;
2299                         if (state->type_A) {
2300                                 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C3_4, 0x0000);
2301                                 if (status < 0)
2302                                         break;
2303                         }
2304                         break;
2305                 case FEC_5_6:
2306                         transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_5_6;
2307                         if (state->type_A) {
2308                                 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C5_6, 0x0000);
2309                                 if (status < 0)
2310                                         break;
2311                         }
2312                         break;
2313                 case FEC_7_8:
2314                         transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_7_8;
2315                         if (state->type_A) {
2316                                 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C7_8, 0x0000);
2317                                 if (status < 0)
2318                                         break;
2319                         }
2320                         break;
2321                 }
2322                 status = status;
2323                 if (status < 0)
2324                         break;
2325
2326                 /* First determine real bandwidth (Hz) */
2327                 /* Also set delay for impulse noise cruncher (only A2) */
2328                 /* Also set parameters for EC_OC fix, note
2329                    EC_OC_REG_TMD_HIL_MAR is changed
2330                    by SC for fix for some 8K,1/8 guard but is restored by
2331                    InitEC and ResetEC
2332                    functions */
2333                 switch (p->bandwidth) {
2334                 case BANDWIDTH_AUTO:
2335                 case BANDWIDTH_8_MHZ:
2336                         /* (64/7)*(8/8)*1000000 */
2337                         bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
2338
2339                         bandwidthParam = 0;
2340                         status = Write16(state,
2341                                          FE_AG_REG_IND_DEL__A, 50, 0x0000);
2342                         break;
2343                 case BANDWIDTH_7_MHZ:
2344                         /* (64/7)*(7/8)*1000000 */
2345                         bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
2346                         bandwidthParam = 0x4807;        /*binary:0100 1000 0000 0111 */
2347                         status = Write16(state,
2348                                          FE_AG_REG_IND_DEL__A, 59, 0x0000);
2349                         break;
2350                 case BANDWIDTH_6_MHZ:
2351                         /* (64/7)*(6/8)*1000000 */
2352                         bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
2353                         bandwidthParam = 0x0F07;        /*binary: 0000 1111 0000 0111 */
2354                         status = Write16(state,
2355                                          FE_AG_REG_IND_DEL__A, 71, 0x0000);
2356                         break;
2357                 default:
2358                         status = -EINVAL;
2359                 }
2360                 if (status < 0)
2361                         break;
2362
2363                 status = Write16(state, SC_RA_RAM_BAND__A, bandwidthParam, 0x0000);
2364                 if (status < 0)
2365                         break;
2366
2367                 {
2368                         u16 sc_config;
2369                         status = Read16(state, SC_RA_RAM_CONFIG__A, &sc_config, 0);
2370                         if (status < 0)
2371                                 break;
2372
2373                         /* enable SLAVE mode in 2k 1/32 to
2374                            prevent timing change glitches */
2375                         if ((p->transmission_mode == TRANSMISSION_MODE_2K) &&
2376                             (p->guard_interval == GUARD_INTERVAL_1_32)) {
2377                                 /* enable slave */
2378                                 sc_config |= SC_RA_RAM_CONFIG_SLAVE__M;
2379                         } else {
2380                                 /* disable slave */
2381                                 sc_config &= ~SC_RA_RAM_CONFIG_SLAVE__M;
2382                         }
2383                         status = Write16(state, SC_RA_RAM_CONFIG__A, sc_config, 0);
2384                         if (status < 0)
2385                                 break;
2386                 }
2387
2388                 status = SetCfgNoiseCalibration(state, &state->noise_cal);
2389                 if (status < 0)
2390                         break;
2391
2392                 if (state->cscd_state == CSCD_INIT) {
2393                         /* switch on SRMM scan in SC */
2394                         status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DO_SCAN, 0x0000);
2395                         if (status < 0)
2396                                 break;
2397 /*            CHK_ERROR(Write16(SC_RA_RAM_SAMPLE_RATE_STEP__A, DRXD_OSCDEV_STEP, 0x0000));*/
2398                         state->cscd_state = CSCD_SET;
2399                 }
2400
2401                 /* Now compute FE_IF_REG_INCR */
2402                 /*((( SysFreq/BandWidth)/2)/2) -1) * 2^23) =>
2403                    ((SysFreq / BandWidth) * (2^21) ) - (2^23) */
2404                 feIfIncr = MulDiv32(state->sys_clock_freq * 1000,
2405                                     (1ULL << 21), bandwidth) - (1 << 23);
2406                 status = Write16(state, FE_IF_REG_INCR0__A, (u16) (feIfIncr & FE_IF_REG_INCR0__M), 0x0000);
2407                 if (status < 0)
2408                         break;
2409                 status = Write16(state, FE_IF_REG_INCR1__A, (u16) ((feIfIncr >> FE_IF_REG_INCR0__W) & FE_IF_REG_INCR1__M), 0x0000);
2410                 if (status < 0)
2411                         break;
2412                 /* Bandwidth setting done */
2413
2414                 /* Mirror & frequency offset */
2415                 SetFrequencyShift(state, off, mirrorFreqSpect);
2416
2417                 /* Start SC, write channel settings to SC */
2418
2419                 /* Enable SC after setting all other parameters */
2420                 status = Write16(state, SC_COMM_STATE__A, 0, 0x0000);
2421                 if (status < 0)
2422                         break;
2423                 status = Write16(state, SC_COMM_EXEC__A, 1, 0x0000);
2424                 if (status < 0)
2425                         break;
2426
2427                 /* Write SC parameter registers, operation mode */
2428 #if 1
2429                 operationMode = (SC_RA_RAM_OP_AUTO_MODE__M |
2430                                  SC_RA_RAM_OP_AUTO_GUARD__M |
2431                                  SC_RA_RAM_OP_AUTO_CONST__M |
2432                                  SC_RA_RAM_OP_AUTO_HIER__M |
2433                                  SC_RA_RAM_OP_AUTO_RATE__M);
2434 #endif
2435                 status = SC_SetPrefParamCommand(state, 0x0000, transmissionParams, operationMode);
2436                 if (status < 0)
2437                         break;
2438
2439                 /* Start correct processes to get in lock */
2440                 status = SC_ProcStartCommand(state, SC_RA_RAM_PROC_LOCKTRACK, SC_RA_RAM_SW_EVENT_RUN_NMASK__M, SC_RA_RAM_LOCKTRACK_MIN);
2441                 if (status < 0)
2442                         break;
2443
2444                 status = StartOC(state);
2445                 if (status < 0)
2446                         break;
2447
2448                 if (state->operation_mode != OM_Default) {
2449                         status = StartDiversity(state);
2450                         if (status < 0)
2451                                 break;
2452                 }
2453
2454                 state->drxd_state = DRXD_STARTED;
2455         } while (0);
2456
2457         return status;
2458 }
2459
2460 static int CDRXD(struct drxd_state *state, u32 IntermediateFrequency)
2461 {
2462         u32 ulRfAgcOutputLevel = 0xffffffff;
2463         u32 ulRfAgcSettleLevel = 528;   /* Optimum value for MT2060 */
2464         u32 ulRfAgcMinLevel = 0;        /* Currently unused */
2465         u32 ulRfAgcMaxLevel = DRXD_FE_CTRL_MAX; /* Currently unused */
2466         u32 ulRfAgcSpeed = 0;   /* Currently unused */
2467         u32 ulRfAgcMode = 0;    /*2;   Off */
2468         u32 ulRfAgcR1 = 820;
2469         u32 ulRfAgcR2 = 2200;
2470         u32 ulRfAgcR3 = 150;
2471         u32 ulIfAgcMode = 0;    /* Auto */
2472         u32 ulIfAgcOutputLevel = 0xffffffff;
2473         u32 ulIfAgcSettleLevel = 0xffffffff;
2474         u32 ulIfAgcMinLevel = 0xffffffff;
2475         u32 ulIfAgcMaxLevel = 0xffffffff;
2476         u32 ulIfAgcSpeed = 0xffffffff;
2477         u32 ulIfAgcR1 = 820;
2478         u32 ulIfAgcR2 = 2200;
2479         u32 ulIfAgcR3 = 150;
2480         u32 ulClock = state->config.clock;
2481         u32 ulSerialMode = 0;
2482         u32 ulEcOcRegOcModeLop = 4;     /* Dynamic DTO source */
2483         u32 ulHiI2cDelay = HI_I2C_DELAY;
2484         u32 ulHiI2cBridgeDelay = HI_I2C_BRIDGE_DELAY;
2485         u32 ulHiI2cPatch = 0;
2486         u32 ulEnvironment = APPENV_PORTABLE;
2487         u32 ulEnvironmentDiversity = APPENV_MOBILE;
2488         u32 ulIFFilter = IFFILTER_SAW;
2489
2490         state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2491         state->if_agc_cfg.outputLevel = 0;
2492         state->if_agc_cfg.settleLevel = 140;
2493         state->if_agc_cfg.minOutputLevel = 0;
2494         state->if_agc_cfg.maxOutputLevel = 1023;
2495         state->if_agc_cfg.speed = 904;
2496
2497         if (ulIfAgcMode == 1 && ulIfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
2498                 state->if_agc_cfg.ctrlMode = AGC_CTRL_USER;
2499                 state->if_agc_cfg.outputLevel = (u16) (ulIfAgcOutputLevel);
2500         }
2501
2502         if (ulIfAgcMode == 0 &&
2503             ulIfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
2504             ulIfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
2505             ulIfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
2506             ulIfAgcSpeed <= DRXD_FE_CTRL_MAX) {
2507                 state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2508                 state->if_agc_cfg.settleLevel = (u16) (ulIfAgcSettleLevel);
2509                 state->if_agc_cfg.minOutputLevel = (u16) (ulIfAgcMinLevel);
2510                 state->if_agc_cfg.maxOutputLevel = (u16) (ulIfAgcMaxLevel);
2511                 state->if_agc_cfg.speed = (u16) (ulIfAgcSpeed);
2512         }
2513
2514         state->if_agc_cfg.R1 = (u16) (ulIfAgcR1);
2515         state->if_agc_cfg.R2 = (u16) (ulIfAgcR2);
2516         state->if_agc_cfg.R3 = (u16) (ulIfAgcR3);
2517
2518         state->rf_agc_cfg.R1 = (u16) (ulRfAgcR1);
2519         state->rf_agc_cfg.R2 = (u16) (ulRfAgcR2);
2520         state->rf_agc_cfg.R3 = (u16) (ulRfAgcR3);
2521
2522         state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2523         /* rest of the RFAgcCfg structure currently unused */
2524         if (ulRfAgcMode == 1 && ulRfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
2525                 state->rf_agc_cfg.ctrlMode = AGC_CTRL_USER;
2526                 state->rf_agc_cfg.outputLevel = (u16) (ulRfAgcOutputLevel);
2527         }
2528
2529         if (ulRfAgcMode == 0 &&
2530             ulRfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
2531             ulRfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
2532             ulRfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
2533             ulRfAgcSpeed <= DRXD_FE_CTRL_MAX) {
2534                 state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2535                 state->rf_agc_cfg.settleLevel = (u16) (ulRfAgcSettleLevel);
2536                 state->rf_agc_cfg.minOutputLevel = (u16) (ulRfAgcMinLevel);
2537                 state->rf_agc_cfg.maxOutputLevel = (u16) (ulRfAgcMaxLevel);
2538                 state->rf_agc_cfg.speed = (u16) (ulRfAgcSpeed);
2539         }
2540
2541         if (ulRfAgcMode == 2)
2542                 state->rf_agc_cfg.ctrlMode = AGC_CTRL_OFF;
2543
2544         if (ulEnvironment <= 2)
2545                 state->app_env_default = (enum app_env)
2546                     (ulEnvironment);
2547         if (ulEnvironmentDiversity <= 2)
2548                 state->app_env_diversity = (enum app_env)
2549                     (ulEnvironmentDiversity);
2550
2551         if (ulIFFilter == IFFILTER_DISCRETE) {
2552                 /* discrete filter */
2553                 state->noise_cal.cpOpt = 0;
2554                 state->noise_cal.cpNexpOfs = 40;
2555                 state->noise_cal.tdCal2k = -40;
2556                 state->noise_cal.tdCal8k = -24;
2557         } else {
2558                 /* SAW filter */
2559                 state->noise_cal.cpOpt = 1;
2560                 state->noise_cal.cpNexpOfs = 0;
2561                 state->noise_cal.tdCal2k = -21;
2562                 state->noise_cal.tdCal8k = -24;
2563         }
2564         state->m_EcOcRegOcModeLop = (u16) (ulEcOcRegOcModeLop);
2565
2566         state->chip_adr = (state->config.demod_address << 1) | 1;
2567         switch (ulHiI2cPatch) {
2568         case 1:
2569                 state->m_HiI2cPatch = DRXD_HiI2cPatch_1;
2570                 break;
2571         case 3:
2572                 state->m_HiI2cPatch = DRXD_HiI2cPatch_3;
2573                 break;
2574         default:
2575                 state->m_HiI2cPatch = NULL;
2576         }
2577
2578         /* modify tuner and clock attributes */
2579         state->intermediate_freq = (u16) (IntermediateFrequency / 1000);
2580         /* expected system clock frequency in kHz */
2581         state->expected_sys_clock_freq = 48000;
2582         /* real system clock frequency in kHz */
2583         state->sys_clock_freq = 48000;
2584         state->osc_clock_freq = (u16) ulClock;
2585         state->osc_clock_deviation = 0;
2586         state->cscd_state = CSCD_INIT;
2587         state->drxd_state = DRXD_UNINITIALIZED;
2588
2589         state->PGA = 0;
2590         state->type_A = 0;
2591         state->tuner_mirrors = 0;
2592
2593         /* modify MPEG output attributes */
2594         state->insert_rs_byte = state->config.insert_rs_byte;
2595         state->enable_parallel = (ulSerialMode != 1);
2596
2597         /* Timing div, 250ns/Psys */
2598         /* Timing div, = ( delay (nano seconds) * sysclk (kHz) )/ 1000 */
2599
2600         state->hi_cfg_timing_div = (u16) ((state->sys_clock_freq / 1000) *
2601                                           ulHiI2cDelay) / 1000;
2602         /* Bridge delay, uses oscilator clock */
2603         /* Delay = ( delay (nano seconds) * oscclk (kHz) )/ 1000 */
2604         state->hi_cfg_bridge_delay = (u16) ((state->osc_clock_freq / 1000) *
2605                                             ulHiI2cBridgeDelay) / 1000;
2606
2607         state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
2608         /* state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO; */
2609         state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
2610         return 0;
2611 }
2612
2613 int DRXD_init(struct drxd_state *state, const u8 * fw, u32 fw_size)
2614 {
2615         int status = 0;
2616         u32 driverVersion;
2617
2618         if (state->init_done)
2619                 return 0;
2620
2621         CDRXD(state, state->config.IF ? state->config.IF : 36000000);
2622
2623         do {
2624                 state->operation_mode = OM_Default;
2625
2626                 status = SetDeviceTypeId(state);
2627                 if (status < 0)
2628                         break;
2629
2630                 /* Apply I2c address patch to B1 */
2631                 if (!state->type_A && state->m_HiI2cPatch != NULL)
2632                         status = WriteTable(state, state->m_HiI2cPatch);
2633                         if (status < 0)
2634                                 break;
2635
2636                 if (state->type_A) {
2637                         /* HI firmware patch for UIO readout,
2638                            avoid clearing of result register */
2639                         status = Write16(state, 0x43012D, 0x047f, 0);
2640                         if (status < 0)
2641                                 break;
2642                 }
2643
2644                 status = HI_ResetCommand(state);
2645                 if (status < 0)
2646                         break;
2647
2648                 status = StopAllProcessors(state);
2649                 if (status < 0)
2650                         break;
2651                 status = InitCC(state);
2652                 if (status < 0)
2653                         break;
2654
2655                 state->osc_clock_deviation = 0;
2656
2657                 if (state->config.osc_deviation)
2658                         state->osc_clock_deviation =
2659                             state->config.osc_deviation(state->priv, 0, 0);
2660                 {
2661                         /* Handle clock deviation */
2662                         s32 devB;
2663                         s32 devA = (s32) (state->osc_clock_deviation) *
2664                             (s32) (state->expected_sys_clock_freq);
2665                         /* deviation in kHz */
2666                         s32 deviation = (devA / (1000000L));
2667                         /* rounding, signed */
2668                         if (devA > 0)
2669                                 devB = (2);
2670                         else
2671                                 devB = (-2);
2672                         if ((devB * (devA % 1000000L) > 1000000L)) {
2673                                 /* add +1 or -1 */
2674                                 deviation += (devB / 2);
2675                         }
2676
2677                         state->sys_clock_freq =
2678                             (u16) ((state->expected_sys_clock_freq) +
2679                                    deviation);
2680                 }
2681                 status = InitHI(state);
2682                 if (status < 0)
2683                         break;
2684                 status = InitAtomicRead(state);
2685                 if (status < 0)
2686                         break;
2687
2688                 status = EnableAndResetMB(state);
2689                 if (status < 0)
2690                         break;
2691                 if (state->type_A)
2692                         status = ResetCEFR(state);
2693                         if (status < 0)
2694                                 break;
2695
2696                 if (fw) {
2697                         status = DownloadMicrocode(state, fw, fw_size);
2698                         if (status < 0)
2699                                 break;
2700                 } else {
2701                         status = DownloadMicrocode(state, state->microcode, state->microcode_length);
2702                         if (status < 0)
2703                                 break;
2704                 }
2705
2706                 if (state->PGA) {
2707                         state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO;
2708                         SetCfgPga(state, 0);    /* PGA = 0 dB */
2709                 } else {
2710                         state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
2711                 }
2712
2713                 state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
2714
2715                 status = InitFE(state);
2716                 if (status < 0)
2717                         break;
2718                 status = InitFT(state);
2719                 if (status < 0)
2720                         break;
2721                 status = InitCP(state);
2722                 if (status < 0)
2723                         break;
2724                 status = InitCE(state);
2725                 if (status < 0)
2726                         break;
2727                 status = InitEQ(state);
2728                 if (status < 0)
2729                         break;
2730                 status = InitEC(state);
2731                 if (status < 0)
2732                         break;
2733                 status = InitSC(state);
2734                 if (status < 0)
2735                         break;
2736
2737                 status = SetCfgIfAgc(state, &state->if_agc_cfg);
2738                 if (status < 0)
2739                         break;
2740                 status = SetCfgRfAgc(state, &state->rf_agc_cfg);
2741                 if (status < 0)
2742                         break;
2743
2744                 state->cscd_state = CSCD_INIT;
2745                 status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
2746                 if (status < 0)
2747                         break;
2748                 status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
2749                 if (status < 0)
2750                         break;
2751
2752                 driverVersion = (((VERSION_MAJOR / 10) << 4) +
2753                                  (VERSION_MAJOR % 10)) << 24;
2754                 driverVersion += (((VERSION_MINOR / 10) << 4) +
2755                                   (VERSION_MINOR % 10)) << 16;
2756                 driverVersion += ((VERSION_PATCH / 1000) << 12) +
2757                     ((VERSION_PATCH / 100) << 8) +
2758                     ((VERSION_PATCH / 10) << 4) + (VERSION_PATCH % 10);
2759
2760                 status = Write32(state, SC_RA_RAM_DRIVER_VERSION__AX, driverVersion, 0);
2761                 if (status < 0)
2762                         break;
2763
2764                 status = StopOC(state);
2765                 if (status < 0)
2766                         break;
2767
2768                 state->drxd_state = DRXD_STOPPED;
2769                 state->init_done = 1;
2770                 status = 0;
2771         } while (0);
2772         return status;
2773 }
2774
2775 int DRXD_status(struct drxd_state *state, u32 * pLockStatus)
2776 {
2777         DRX_GetLockStatus(state, pLockStatus);
2778
2779         /*if (*pLockStatus&DRX_LOCK_MPEG) */
2780         if (*pLockStatus & DRX_LOCK_FEC) {
2781                 ConfigureMPEGOutput(state, 1);
2782                 /* Get status again, in case we have MPEG lock now */
2783                 /*DRX_GetLockStatus(state, pLockStatus); */
2784         }
2785
2786         return 0;
2787 }
2788
2789 /****************************************************************************/
2790 /****************************************************************************/
2791 /****************************************************************************/
2792
2793 static int drxd_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
2794 {
2795         struct drxd_state *state = fe->demodulator_priv;
2796         u32 value;
2797         int res;
2798
2799         res = ReadIFAgc(state, &value);
2800         if (res < 0)
2801                 *strength = 0;
2802         else
2803                 *strength = 0xffff - (value << 4);
2804         return 0;
2805 }
2806
2807 static int drxd_read_status(struct dvb_frontend *fe, fe_status_t * status)
2808 {
2809         struct drxd_state *state = fe->demodulator_priv;
2810         u32 lock;
2811
2812         DRXD_status(state, &lock);
2813         *status = 0;
2814         /* No MPEG lock in V255 firmware, bug ? */
2815 #if 1
2816         if (lock & DRX_LOCK_MPEG)
2817                 *status |= FE_HAS_LOCK;
2818 #else
2819         if (lock & DRX_LOCK_FEC)
2820                 *status |= FE_HAS_LOCK;
2821 #endif
2822         if (lock & DRX_LOCK_FEC)
2823                 *status |= FE_HAS_VITERBI | FE_HAS_SYNC;
2824         if (lock & DRX_LOCK_DEMOD)
2825                 *status |= FE_HAS_CARRIER | FE_HAS_SIGNAL;
2826
2827         return 0;
2828 }
2829
2830 static int drxd_init(struct dvb_frontend *fe)
2831 {
2832         struct drxd_state *state = fe->demodulator_priv;
2833         int err = 0;
2834
2835 /*      if (request_firmware(&state->fw, "drxd.fw", state->dev)<0) */
2836         return DRXD_init(state, 0, 0);
2837
2838         err = DRXD_init(state, state->fw->data, state->fw->size);
2839         release_firmware(state->fw);
2840         return err;
2841 }
2842
2843 int drxd_config_i2c(struct dvb_frontend *fe, int onoff)
2844 {
2845         struct drxd_state *state = fe->demodulator_priv;
2846
2847         if (state->config.disable_i2c_gate_ctrl == 1)
2848                 return 0;
2849
2850         return DRX_ConfigureI2CBridge(state, onoff);
2851 }
2852 EXPORT_SYMBOL(drxd_config_i2c);
2853
2854 static int drxd_get_tune_settings(struct dvb_frontend *fe,
2855                                   struct dvb_frontend_tune_settings *sets)
2856 {
2857         sets->min_delay_ms = 10000;
2858         sets->max_drift = 0;
2859         sets->step_size = 0;
2860         return 0;
2861 }
2862
2863 static int drxd_read_ber(struct dvb_frontend *fe, u32 * ber)
2864 {
2865         *ber = 0;
2866         return 0;
2867 }
2868
2869 static int drxd_read_snr(struct dvb_frontend *fe, u16 * snr)
2870 {
2871         *snr = 0;
2872         return 0;
2873 }
2874
2875 static int drxd_read_ucblocks(struct dvb_frontend *fe, u32 * ucblocks)
2876 {
2877         *ucblocks = 0;
2878         return 0;
2879 }
2880
2881 static int drxd_sleep(struct dvb_frontend *fe)
2882 {
2883         struct drxd_state *state = fe->demodulator_priv;
2884
2885         ConfigureMPEGOutput(state, 0);
2886         return 0;
2887 }
2888
2889 static int drxd_get_frontend(struct dvb_frontend *fe,
2890                              struct dvb_frontend_parameters *param)
2891 {
2892         return 0;
2893 }
2894
2895 static int drxd_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
2896 {
2897         return drxd_config_i2c(fe, enable);
2898 }
2899
2900 static int drxd_set_frontend(struct dvb_frontend *fe,
2901                              struct dvb_frontend_parameters *param)
2902 {
2903         struct drxd_state *state = fe->demodulator_priv;
2904         s32 off = 0;
2905
2906         state->param = *param;
2907         DRX_Stop(state);
2908
2909         if (fe->ops.tuner_ops.set_params) {
2910                 fe->ops.tuner_ops.set_params(fe, param);
2911                 if (fe->ops.i2c_gate_ctrl)
2912                         fe->ops.i2c_gate_ctrl(fe, 0);
2913         }
2914
2915         /* FIXME: move PLL drivers */
2916         if (state->config.pll_set &&
2917             state->config.pll_set(state->priv, param,
2918                                   state->config.pll_address,
2919                                   state->config.demoda_address, &off) < 0) {
2920                 printk(KERN_ERR "Error in pll_set\n");
2921                 return -1;
2922         }
2923
2924         msleep(200);
2925
2926         return DRX_Start(state, off);
2927 }
2928
2929 static void drxd_release(struct dvb_frontend *fe)
2930 {
2931         struct drxd_state *state = fe->demodulator_priv;
2932
2933         kfree(state);
2934 }
2935
2936 static struct dvb_frontend_ops drxd_ops = {
2937
2938         .info = {
2939                  .name = "Micronas DRXD DVB-T",
2940                  .type = FE_OFDM,
2941                  .frequency_min = 47125000,
2942                  .frequency_max = 855250000,
2943                  .frequency_stepsize = 166667,
2944                  .frequency_tolerance = 0,
2945                  .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
2946                  FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 |
2947                  FE_CAN_FEC_AUTO |
2948                  FE_CAN_QAM_16 | FE_CAN_QAM_64 |
2949                  FE_CAN_QAM_AUTO |
2950                  FE_CAN_TRANSMISSION_MODE_AUTO |
2951                  FE_CAN_GUARD_INTERVAL_AUTO |
2952                  FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER | FE_CAN_MUTE_TS},
2953
2954         .release = drxd_release,
2955         .init = drxd_init,
2956         .sleep = drxd_sleep,
2957         .i2c_gate_ctrl = drxd_i2c_gate_ctrl,
2958
2959         .set_frontend = drxd_set_frontend,
2960         .get_frontend = drxd_get_frontend,
2961         .get_tune_settings = drxd_get_tune_settings,
2962
2963         .read_status = drxd_read_status,
2964         .read_ber = drxd_read_ber,
2965         .read_signal_strength = drxd_read_signal_strength,
2966         .read_snr = drxd_read_snr,
2967         .read_ucblocks = drxd_read_ucblocks,
2968 };
2969
2970 struct dvb_frontend *drxd_attach(const struct drxd_config *config,
2971                                  void *priv, struct i2c_adapter *i2c,
2972                                  struct device *dev)
2973 {
2974         struct drxd_state *state = NULL;
2975
2976         state = kmalloc(sizeof(struct drxd_state), GFP_KERNEL);
2977         if (!state)
2978                 return NULL;
2979         memset(state, 0, sizeof(*state));
2980
2981         memcpy(&state->ops, &drxd_ops, sizeof(struct dvb_frontend_ops));
2982         state->dev = dev;
2983         state->config = *config;
2984         state->i2c = i2c;
2985         state->priv = priv;
2986
2987         mutex_init(&state->mutex);
2988
2989         if (Read16(state, 0, 0, 0) < 0)
2990                 goto error;
2991
2992         memcpy(&state->frontend.ops, &drxd_ops,
2993                sizeof(struct dvb_frontend_ops));
2994         state->frontend.demodulator_priv = state;
2995         ConfigureMPEGOutput(state, 0);
2996         return &state->frontend;
2997
2998 error:
2999         printk(KERN_ERR "drxd: not found\n");
3000         kfree(state);
3001         return NULL;
3002 }
3003 EXPORT_SYMBOL(drxd_attach);
3004
3005 MODULE_DESCRIPTION("DRXD driver");
3006 MODULE_AUTHOR("Micronas");
3007 MODULE_LICENSE("GPL");