x86, numa: Fix cpu nodemasks for NUMA emulation and CONFIG_DEBUG_PER_CPU_MAPS
[pandora-kernel.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "raid5.h"
56 #include "raid0.h"
57 #include "bitmap.h"
58
59 /*
60  * Stripe cache
61  */
62
63 #define NR_STRIPES              256
64 #define STRIPE_SIZE             PAGE_SIZE
65 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
66 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
67 #define IO_THRESHOLD            1
68 #define BYPASS_THRESHOLD        1
69 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
70 #define HASH_MASK               (NR_HASH - 1)
71
72 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
73
74 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
75  * order without overlap.  There may be several bio's per stripe+device, and
76  * a bio could span several devices.
77  * When walking this list for a particular stripe+device, we must never proceed
78  * beyond a bio that extends past this device, as the next bio might no longer
79  * be valid.
80  * This macro is used to determine the 'next' bio in the list, given the sector
81  * of the current stripe+device
82  */
83 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
84 /*
85  * The following can be used to debug the driver
86  */
87 #define RAID5_PARANOIA  1
88 #if RAID5_PARANOIA && defined(CONFIG_SMP)
89 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
90 #else
91 # define CHECK_DEVLOCK()
92 #endif
93
94 #ifdef DEBUG
95 #define inline
96 #define __inline__
97 #endif
98
99 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
100
101 /*
102  * We maintain a biased count of active stripes in the bottom 16 bits of
103  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
104  */
105 static inline int raid5_bi_phys_segments(struct bio *bio)
106 {
107         return bio->bi_phys_segments & 0xffff;
108 }
109
110 static inline int raid5_bi_hw_segments(struct bio *bio)
111 {
112         return (bio->bi_phys_segments >> 16) & 0xffff;
113 }
114
115 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
116 {
117         --bio->bi_phys_segments;
118         return raid5_bi_phys_segments(bio);
119 }
120
121 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
122 {
123         unsigned short val = raid5_bi_hw_segments(bio);
124
125         --val;
126         bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
127         return val;
128 }
129
130 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
131 {
132         bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
133 }
134
135 /* Find first data disk in a raid6 stripe */
136 static inline int raid6_d0(struct stripe_head *sh)
137 {
138         if (sh->ddf_layout)
139                 /* ddf always start from first device */
140                 return 0;
141         /* md starts just after Q block */
142         if (sh->qd_idx == sh->disks - 1)
143                 return 0;
144         else
145                 return sh->qd_idx + 1;
146 }
147 static inline int raid6_next_disk(int disk, int raid_disks)
148 {
149         disk++;
150         return (disk < raid_disks) ? disk : 0;
151 }
152
153 /* When walking through the disks in a raid5, starting at raid6_d0,
154  * We need to map each disk to a 'slot', where the data disks are slot
155  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
156  * is raid_disks-1.  This help does that mapping.
157  */
158 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
159                              int *count, int syndrome_disks)
160 {
161         int slot = *count;
162
163         if (sh->ddf_layout)
164                 (*count)++;
165         if (idx == sh->pd_idx)
166                 return syndrome_disks;
167         if (idx == sh->qd_idx)
168                 return syndrome_disks + 1;
169         if (!sh->ddf_layout)
170                 (*count)++;
171         return slot;
172 }
173
174 static void return_io(struct bio *return_bi)
175 {
176         struct bio *bi = return_bi;
177         while (bi) {
178
179                 return_bi = bi->bi_next;
180                 bi->bi_next = NULL;
181                 bi->bi_size = 0;
182                 bio_endio(bi, 0);
183                 bi = return_bi;
184         }
185 }
186
187 static void print_raid5_conf (raid5_conf_t *conf);
188
189 static int stripe_operations_active(struct stripe_head *sh)
190 {
191         return sh->check_state || sh->reconstruct_state ||
192                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
193                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
194 }
195
196 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
197 {
198         if (atomic_dec_and_test(&sh->count)) {
199                 BUG_ON(!list_empty(&sh->lru));
200                 BUG_ON(atomic_read(&conf->active_stripes)==0);
201                 if (test_bit(STRIPE_HANDLE, &sh->state)) {
202                         if (test_bit(STRIPE_DELAYED, &sh->state))
203                                 list_add_tail(&sh->lru, &conf->delayed_list);
204                         else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
205                                    sh->bm_seq - conf->seq_write > 0)
206                                 list_add_tail(&sh->lru, &conf->bitmap_list);
207                         else {
208                                 clear_bit(STRIPE_BIT_DELAY, &sh->state);
209                                 list_add_tail(&sh->lru, &conf->handle_list);
210                         }
211                         md_wakeup_thread(conf->mddev->thread);
212                 } else {
213                         BUG_ON(stripe_operations_active(sh));
214                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
215                                 atomic_dec(&conf->preread_active_stripes);
216                                 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
217                                         md_wakeup_thread(conf->mddev->thread);
218                         }
219                         atomic_dec(&conf->active_stripes);
220                         if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
221                                 list_add_tail(&sh->lru, &conf->inactive_list);
222                                 wake_up(&conf->wait_for_stripe);
223                                 if (conf->retry_read_aligned)
224                                         md_wakeup_thread(conf->mddev->thread);
225                         }
226                 }
227         }
228 }
229
230 static void release_stripe(struct stripe_head *sh)
231 {
232         raid5_conf_t *conf = sh->raid_conf;
233         unsigned long flags;
234
235         spin_lock_irqsave(&conf->device_lock, flags);
236         __release_stripe(conf, sh);
237         spin_unlock_irqrestore(&conf->device_lock, flags);
238 }
239
240 static inline void remove_hash(struct stripe_head *sh)
241 {
242         pr_debug("remove_hash(), stripe %llu\n",
243                 (unsigned long long)sh->sector);
244
245         hlist_del_init(&sh->hash);
246 }
247
248 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
249 {
250         struct hlist_head *hp = stripe_hash(conf, sh->sector);
251
252         pr_debug("insert_hash(), stripe %llu\n",
253                 (unsigned long long)sh->sector);
254
255         CHECK_DEVLOCK();
256         hlist_add_head(&sh->hash, hp);
257 }
258
259
260 /* find an idle stripe, make sure it is unhashed, and return it. */
261 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
262 {
263         struct stripe_head *sh = NULL;
264         struct list_head *first;
265
266         CHECK_DEVLOCK();
267         if (list_empty(&conf->inactive_list))
268                 goto out;
269         first = conf->inactive_list.next;
270         sh = list_entry(first, struct stripe_head, lru);
271         list_del_init(first);
272         remove_hash(sh);
273         atomic_inc(&conf->active_stripes);
274 out:
275         return sh;
276 }
277
278 static void shrink_buffers(struct stripe_head *sh)
279 {
280         struct page *p;
281         int i;
282         int num = sh->raid_conf->pool_size;
283
284         for (i = 0; i < num ; i++) {
285                 p = sh->dev[i].page;
286                 if (!p)
287                         continue;
288                 sh->dev[i].page = NULL;
289                 put_page(p);
290         }
291 }
292
293 static int grow_buffers(struct stripe_head *sh)
294 {
295         int i;
296         int num = sh->raid_conf->pool_size;
297
298         for (i = 0; i < num; i++) {
299                 struct page *page;
300
301                 if (!(page = alloc_page(GFP_KERNEL))) {
302                         return 1;
303                 }
304                 sh->dev[i].page = page;
305         }
306         return 0;
307 }
308
309 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
310 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
311                             struct stripe_head *sh);
312
313 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
314 {
315         raid5_conf_t *conf = sh->raid_conf;
316         int i;
317
318         BUG_ON(atomic_read(&sh->count) != 0);
319         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
320         BUG_ON(stripe_operations_active(sh));
321
322         CHECK_DEVLOCK();
323         pr_debug("init_stripe called, stripe %llu\n",
324                 (unsigned long long)sh->sector);
325
326         remove_hash(sh);
327
328         sh->generation = conf->generation - previous;
329         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
330         sh->sector = sector;
331         stripe_set_idx(sector, conf, previous, sh);
332         sh->state = 0;
333
334
335         for (i = sh->disks; i--; ) {
336                 struct r5dev *dev = &sh->dev[i];
337
338                 if (dev->toread || dev->read || dev->towrite || dev->written ||
339                     test_bit(R5_LOCKED, &dev->flags)) {
340                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
341                                (unsigned long long)sh->sector, i, dev->toread,
342                                dev->read, dev->towrite, dev->written,
343                                test_bit(R5_LOCKED, &dev->flags));
344                         BUG();
345                 }
346                 dev->flags = 0;
347                 raid5_build_block(sh, i, previous);
348         }
349         insert_hash(conf, sh);
350 }
351
352 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
353                                          short generation)
354 {
355         struct stripe_head *sh;
356         struct hlist_node *hn;
357
358         CHECK_DEVLOCK();
359         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
360         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
361                 if (sh->sector == sector && sh->generation == generation)
362                         return sh;
363         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
364         return NULL;
365 }
366
367 /*
368  * Need to check if array has failed when deciding whether to:
369  *  - start an array
370  *  - remove non-faulty devices
371  *  - add a spare
372  *  - allow a reshape
373  * This determination is simple when no reshape is happening.
374  * However if there is a reshape, we need to carefully check
375  * both the before and after sections.
376  * This is because some failed devices may only affect one
377  * of the two sections, and some non-in_sync devices may
378  * be insync in the section most affected by failed devices.
379  */
380 static int has_failed(raid5_conf_t *conf)
381 {
382         int degraded;
383         int i;
384         if (conf->mddev->reshape_position == MaxSector)
385                 return conf->mddev->degraded > conf->max_degraded;
386
387         rcu_read_lock();
388         degraded = 0;
389         for (i = 0; i < conf->previous_raid_disks; i++) {
390                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
391                 if (!rdev || test_bit(Faulty, &rdev->flags))
392                         degraded++;
393                 else if (test_bit(In_sync, &rdev->flags))
394                         ;
395                 else
396                         /* not in-sync or faulty.
397                          * If the reshape increases the number of devices,
398                          * this is being recovered by the reshape, so
399                          * this 'previous' section is not in_sync.
400                          * If the number of devices is being reduced however,
401                          * the device can only be part of the array if
402                          * we are reverting a reshape, so this section will
403                          * be in-sync.
404                          */
405                         if (conf->raid_disks >= conf->previous_raid_disks)
406                                 degraded++;
407         }
408         rcu_read_unlock();
409         if (degraded > conf->max_degraded)
410                 return 1;
411         rcu_read_lock();
412         degraded = 0;
413         for (i = 0; i < conf->raid_disks; i++) {
414                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
415                 if (!rdev || test_bit(Faulty, &rdev->flags))
416                         degraded++;
417                 else if (test_bit(In_sync, &rdev->flags))
418                         ;
419                 else
420                         /* not in-sync or faulty.
421                          * If reshape increases the number of devices, this
422                          * section has already been recovered, else it
423                          * almost certainly hasn't.
424                          */
425                         if (conf->raid_disks <= conf->previous_raid_disks)
426                                 degraded++;
427         }
428         rcu_read_unlock();
429         if (degraded > conf->max_degraded)
430                 return 1;
431         return 0;
432 }
433
434 static struct stripe_head *
435 get_active_stripe(raid5_conf_t *conf, sector_t sector,
436                   int previous, int noblock, int noquiesce)
437 {
438         struct stripe_head *sh;
439
440         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
441
442         spin_lock_irq(&conf->device_lock);
443
444         do {
445                 wait_event_lock_irq(conf->wait_for_stripe,
446                                     conf->quiesce == 0 || noquiesce,
447                                     conf->device_lock, /* nothing */);
448                 sh = __find_stripe(conf, sector, conf->generation - previous);
449                 if (!sh) {
450                         if (!conf->inactive_blocked)
451                                 sh = get_free_stripe(conf);
452                         if (noblock && sh == NULL)
453                                 break;
454                         if (!sh) {
455                                 conf->inactive_blocked = 1;
456                                 wait_event_lock_irq(conf->wait_for_stripe,
457                                                     !list_empty(&conf->inactive_list) &&
458                                                     (atomic_read(&conf->active_stripes)
459                                                      < (conf->max_nr_stripes *3/4)
460                                                      || !conf->inactive_blocked),
461                                                     conf->device_lock,
462                                                     );
463                                 conf->inactive_blocked = 0;
464                         } else
465                                 init_stripe(sh, sector, previous);
466                 } else {
467                         if (atomic_read(&sh->count)) {
468                                 BUG_ON(!list_empty(&sh->lru)
469                                     && !test_bit(STRIPE_EXPANDING, &sh->state));
470                         } else {
471                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
472                                         atomic_inc(&conf->active_stripes);
473                                 if (list_empty(&sh->lru) &&
474                                     !test_bit(STRIPE_EXPANDING, &sh->state))
475                                         BUG();
476                                 list_del_init(&sh->lru);
477                         }
478                 }
479         } while (sh == NULL);
480
481         if (sh)
482                 atomic_inc(&sh->count);
483
484         spin_unlock_irq(&conf->device_lock);
485         return sh;
486 }
487
488 static void
489 raid5_end_read_request(struct bio *bi, int error);
490 static void
491 raid5_end_write_request(struct bio *bi, int error);
492
493 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
494 {
495         raid5_conf_t *conf = sh->raid_conf;
496         int i, disks = sh->disks;
497
498         might_sleep();
499
500         for (i = disks; i--; ) {
501                 int rw;
502                 struct bio *bi;
503                 mdk_rdev_t *rdev;
504                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
505                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
506                                 rw = WRITE_FUA;
507                         else
508                                 rw = WRITE;
509                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
510                         rw = READ;
511                 else
512                         continue;
513
514                 bi = &sh->dev[i].req;
515
516                 bi->bi_rw = rw;
517                 if (rw == WRITE)
518                         bi->bi_end_io = raid5_end_write_request;
519                 else
520                         bi->bi_end_io = raid5_end_read_request;
521
522                 rcu_read_lock();
523                 rdev = rcu_dereference(conf->disks[i].rdev);
524                 if (rdev && test_bit(Faulty, &rdev->flags))
525                         rdev = NULL;
526                 if (rdev)
527                         atomic_inc(&rdev->nr_pending);
528                 rcu_read_unlock();
529
530                 if (rdev) {
531                         if (s->syncing || s->expanding || s->expanded)
532                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
533
534                         set_bit(STRIPE_IO_STARTED, &sh->state);
535
536                         bi->bi_bdev = rdev->bdev;
537                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
538                                 __func__, (unsigned long long)sh->sector,
539                                 bi->bi_rw, i);
540                         atomic_inc(&sh->count);
541                         bi->bi_sector = sh->sector + rdev->data_offset;
542                         bi->bi_flags = 1 << BIO_UPTODATE;
543                         bi->bi_vcnt = 1;
544                         bi->bi_max_vecs = 1;
545                         bi->bi_idx = 0;
546                         bi->bi_io_vec = &sh->dev[i].vec;
547                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
548                         bi->bi_io_vec[0].bv_offset = 0;
549                         bi->bi_size = STRIPE_SIZE;
550                         bi->bi_next = NULL;
551                         if (rw == WRITE &&
552                             test_bit(R5_ReWrite, &sh->dev[i].flags))
553                                 atomic_add(STRIPE_SECTORS,
554                                         &rdev->corrected_errors);
555                         generic_make_request(bi);
556                 } else {
557                         if (rw == WRITE)
558                                 set_bit(STRIPE_DEGRADED, &sh->state);
559                         pr_debug("skip op %ld on disc %d for sector %llu\n",
560                                 bi->bi_rw, i, (unsigned long long)sh->sector);
561                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
562                         set_bit(STRIPE_HANDLE, &sh->state);
563                 }
564         }
565 }
566
567 static struct dma_async_tx_descriptor *
568 async_copy_data(int frombio, struct bio *bio, struct page *page,
569         sector_t sector, struct dma_async_tx_descriptor *tx)
570 {
571         struct bio_vec *bvl;
572         struct page *bio_page;
573         int i;
574         int page_offset;
575         struct async_submit_ctl submit;
576         enum async_tx_flags flags = 0;
577
578         if (bio->bi_sector >= sector)
579                 page_offset = (signed)(bio->bi_sector - sector) * 512;
580         else
581                 page_offset = (signed)(sector - bio->bi_sector) * -512;
582
583         if (frombio)
584                 flags |= ASYNC_TX_FENCE;
585         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
586
587         bio_for_each_segment(bvl, bio, i) {
588                 int len = bio_iovec_idx(bio, i)->bv_len;
589                 int clen;
590                 int b_offset = 0;
591
592                 if (page_offset < 0) {
593                         b_offset = -page_offset;
594                         page_offset += b_offset;
595                         len -= b_offset;
596                 }
597
598                 if (len > 0 && page_offset + len > STRIPE_SIZE)
599                         clen = STRIPE_SIZE - page_offset;
600                 else
601                         clen = len;
602
603                 if (clen > 0) {
604                         b_offset += bio_iovec_idx(bio, i)->bv_offset;
605                         bio_page = bio_iovec_idx(bio, i)->bv_page;
606                         if (frombio)
607                                 tx = async_memcpy(page, bio_page, page_offset,
608                                                   b_offset, clen, &submit);
609                         else
610                                 tx = async_memcpy(bio_page, page, b_offset,
611                                                   page_offset, clen, &submit);
612                 }
613                 /* chain the operations */
614                 submit.depend_tx = tx;
615
616                 if (clen < len) /* hit end of page */
617                         break;
618                 page_offset +=  len;
619         }
620
621         return tx;
622 }
623
624 static void ops_complete_biofill(void *stripe_head_ref)
625 {
626         struct stripe_head *sh = stripe_head_ref;
627         struct bio *return_bi = NULL;
628         raid5_conf_t *conf = sh->raid_conf;
629         int i;
630
631         pr_debug("%s: stripe %llu\n", __func__,
632                 (unsigned long long)sh->sector);
633
634         /* clear completed biofills */
635         spin_lock_irq(&conf->device_lock);
636         for (i = sh->disks; i--; ) {
637                 struct r5dev *dev = &sh->dev[i];
638
639                 /* acknowledge completion of a biofill operation */
640                 /* and check if we need to reply to a read request,
641                  * new R5_Wantfill requests are held off until
642                  * !STRIPE_BIOFILL_RUN
643                  */
644                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
645                         struct bio *rbi, *rbi2;
646
647                         BUG_ON(!dev->read);
648                         rbi = dev->read;
649                         dev->read = NULL;
650                         while (rbi && rbi->bi_sector <
651                                 dev->sector + STRIPE_SECTORS) {
652                                 rbi2 = r5_next_bio(rbi, dev->sector);
653                                 if (!raid5_dec_bi_phys_segments(rbi)) {
654                                         rbi->bi_next = return_bi;
655                                         return_bi = rbi;
656                                 }
657                                 rbi = rbi2;
658                         }
659                 }
660         }
661         spin_unlock_irq(&conf->device_lock);
662         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
663
664         return_io(return_bi);
665
666         set_bit(STRIPE_HANDLE, &sh->state);
667         release_stripe(sh);
668 }
669
670 static void ops_run_biofill(struct stripe_head *sh)
671 {
672         struct dma_async_tx_descriptor *tx = NULL;
673         raid5_conf_t *conf = sh->raid_conf;
674         struct async_submit_ctl submit;
675         int i;
676
677         pr_debug("%s: stripe %llu\n", __func__,
678                 (unsigned long long)sh->sector);
679
680         for (i = sh->disks; i--; ) {
681                 struct r5dev *dev = &sh->dev[i];
682                 if (test_bit(R5_Wantfill, &dev->flags)) {
683                         struct bio *rbi;
684                         spin_lock_irq(&conf->device_lock);
685                         dev->read = rbi = dev->toread;
686                         dev->toread = NULL;
687                         spin_unlock_irq(&conf->device_lock);
688                         while (rbi && rbi->bi_sector <
689                                 dev->sector + STRIPE_SECTORS) {
690                                 tx = async_copy_data(0, rbi, dev->page,
691                                         dev->sector, tx);
692                                 rbi = r5_next_bio(rbi, dev->sector);
693                         }
694                 }
695         }
696
697         atomic_inc(&sh->count);
698         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
699         async_trigger_callback(&submit);
700 }
701
702 static void mark_target_uptodate(struct stripe_head *sh, int target)
703 {
704         struct r5dev *tgt;
705
706         if (target < 0)
707                 return;
708
709         tgt = &sh->dev[target];
710         set_bit(R5_UPTODATE, &tgt->flags);
711         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
712         clear_bit(R5_Wantcompute, &tgt->flags);
713 }
714
715 static void ops_complete_compute(void *stripe_head_ref)
716 {
717         struct stripe_head *sh = stripe_head_ref;
718
719         pr_debug("%s: stripe %llu\n", __func__,
720                 (unsigned long long)sh->sector);
721
722         /* mark the computed target(s) as uptodate */
723         mark_target_uptodate(sh, sh->ops.target);
724         mark_target_uptodate(sh, sh->ops.target2);
725
726         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
727         if (sh->check_state == check_state_compute_run)
728                 sh->check_state = check_state_compute_result;
729         set_bit(STRIPE_HANDLE, &sh->state);
730         release_stripe(sh);
731 }
732
733 /* return a pointer to the address conversion region of the scribble buffer */
734 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
735                                  struct raid5_percpu *percpu)
736 {
737         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
738 }
739
740 static struct dma_async_tx_descriptor *
741 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
742 {
743         int disks = sh->disks;
744         struct page **xor_srcs = percpu->scribble;
745         int target = sh->ops.target;
746         struct r5dev *tgt = &sh->dev[target];
747         struct page *xor_dest = tgt->page;
748         int count = 0;
749         struct dma_async_tx_descriptor *tx;
750         struct async_submit_ctl submit;
751         int i;
752
753         pr_debug("%s: stripe %llu block: %d\n",
754                 __func__, (unsigned long long)sh->sector, target);
755         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
756
757         for (i = disks; i--; )
758                 if (i != target)
759                         xor_srcs[count++] = sh->dev[i].page;
760
761         atomic_inc(&sh->count);
762
763         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
764                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
765         if (unlikely(count == 1))
766                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
767         else
768                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
769
770         return tx;
771 }
772
773 /* set_syndrome_sources - populate source buffers for gen_syndrome
774  * @srcs - (struct page *) array of size sh->disks
775  * @sh - stripe_head to parse
776  *
777  * Populates srcs in proper layout order for the stripe and returns the
778  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
779  * destination buffer is recorded in srcs[count] and the Q destination
780  * is recorded in srcs[count+1]].
781  */
782 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
783 {
784         int disks = sh->disks;
785         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
786         int d0_idx = raid6_d0(sh);
787         int count;
788         int i;
789
790         for (i = 0; i < disks; i++)
791                 srcs[i] = NULL;
792
793         count = 0;
794         i = d0_idx;
795         do {
796                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
797
798                 srcs[slot] = sh->dev[i].page;
799                 i = raid6_next_disk(i, disks);
800         } while (i != d0_idx);
801
802         return syndrome_disks;
803 }
804
805 static struct dma_async_tx_descriptor *
806 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
807 {
808         int disks = sh->disks;
809         struct page **blocks = percpu->scribble;
810         int target;
811         int qd_idx = sh->qd_idx;
812         struct dma_async_tx_descriptor *tx;
813         struct async_submit_ctl submit;
814         struct r5dev *tgt;
815         struct page *dest;
816         int i;
817         int count;
818
819         if (sh->ops.target < 0)
820                 target = sh->ops.target2;
821         else if (sh->ops.target2 < 0)
822                 target = sh->ops.target;
823         else
824                 /* we should only have one valid target */
825                 BUG();
826         BUG_ON(target < 0);
827         pr_debug("%s: stripe %llu block: %d\n",
828                 __func__, (unsigned long long)sh->sector, target);
829
830         tgt = &sh->dev[target];
831         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
832         dest = tgt->page;
833
834         atomic_inc(&sh->count);
835
836         if (target == qd_idx) {
837                 count = set_syndrome_sources(blocks, sh);
838                 blocks[count] = NULL; /* regenerating p is not necessary */
839                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
840                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
841                                   ops_complete_compute, sh,
842                                   to_addr_conv(sh, percpu));
843                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
844         } else {
845                 /* Compute any data- or p-drive using XOR */
846                 count = 0;
847                 for (i = disks; i-- ; ) {
848                         if (i == target || i == qd_idx)
849                                 continue;
850                         blocks[count++] = sh->dev[i].page;
851                 }
852
853                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
854                                   NULL, ops_complete_compute, sh,
855                                   to_addr_conv(sh, percpu));
856                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
857         }
858
859         return tx;
860 }
861
862 static struct dma_async_tx_descriptor *
863 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
864 {
865         int i, count, disks = sh->disks;
866         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
867         int d0_idx = raid6_d0(sh);
868         int faila = -1, failb = -1;
869         int target = sh->ops.target;
870         int target2 = sh->ops.target2;
871         struct r5dev *tgt = &sh->dev[target];
872         struct r5dev *tgt2 = &sh->dev[target2];
873         struct dma_async_tx_descriptor *tx;
874         struct page **blocks = percpu->scribble;
875         struct async_submit_ctl submit;
876
877         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
878                  __func__, (unsigned long long)sh->sector, target, target2);
879         BUG_ON(target < 0 || target2 < 0);
880         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
881         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
882
883         /* we need to open-code set_syndrome_sources to handle the
884          * slot number conversion for 'faila' and 'failb'
885          */
886         for (i = 0; i < disks ; i++)
887                 blocks[i] = NULL;
888         count = 0;
889         i = d0_idx;
890         do {
891                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
892
893                 blocks[slot] = sh->dev[i].page;
894
895                 if (i == target)
896                         faila = slot;
897                 if (i == target2)
898                         failb = slot;
899                 i = raid6_next_disk(i, disks);
900         } while (i != d0_idx);
901
902         BUG_ON(faila == failb);
903         if (failb < faila)
904                 swap(faila, failb);
905         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
906                  __func__, (unsigned long long)sh->sector, faila, failb);
907
908         atomic_inc(&sh->count);
909
910         if (failb == syndrome_disks+1) {
911                 /* Q disk is one of the missing disks */
912                 if (faila == syndrome_disks) {
913                         /* Missing P+Q, just recompute */
914                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
915                                           ops_complete_compute, sh,
916                                           to_addr_conv(sh, percpu));
917                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
918                                                   STRIPE_SIZE, &submit);
919                 } else {
920                         struct page *dest;
921                         int data_target;
922                         int qd_idx = sh->qd_idx;
923
924                         /* Missing D+Q: recompute D from P, then recompute Q */
925                         if (target == qd_idx)
926                                 data_target = target2;
927                         else
928                                 data_target = target;
929
930                         count = 0;
931                         for (i = disks; i-- ; ) {
932                                 if (i == data_target || i == qd_idx)
933                                         continue;
934                                 blocks[count++] = sh->dev[i].page;
935                         }
936                         dest = sh->dev[data_target].page;
937                         init_async_submit(&submit,
938                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
939                                           NULL, NULL, NULL,
940                                           to_addr_conv(sh, percpu));
941                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
942                                        &submit);
943
944                         count = set_syndrome_sources(blocks, sh);
945                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
946                                           ops_complete_compute, sh,
947                                           to_addr_conv(sh, percpu));
948                         return async_gen_syndrome(blocks, 0, count+2,
949                                                   STRIPE_SIZE, &submit);
950                 }
951         } else {
952                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
953                                   ops_complete_compute, sh,
954                                   to_addr_conv(sh, percpu));
955                 if (failb == syndrome_disks) {
956                         /* We're missing D+P. */
957                         return async_raid6_datap_recov(syndrome_disks+2,
958                                                        STRIPE_SIZE, faila,
959                                                        blocks, &submit);
960                 } else {
961                         /* We're missing D+D. */
962                         return async_raid6_2data_recov(syndrome_disks+2,
963                                                        STRIPE_SIZE, faila, failb,
964                                                        blocks, &submit);
965                 }
966         }
967 }
968
969
970 static void ops_complete_prexor(void *stripe_head_ref)
971 {
972         struct stripe_head *sh = stripe_head_ref;
973
974         pr_debug("%s: stripe %llu\n", __func__,
975                 (unsigned long long)sh->sector);
976 }
977
978 static struct dma_async_tx_descriptor *
979 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
980                struct dma_async_tx_descriptor *tx)
981 {
982         int disks = sh->disks;
983         struct page **xor_srcs = percpu->scribble;
984         int count = 0, pd_idx = sh->pd_idx, i;
985         struct async_submit_ctl submit;
986
987         /* existing parity data subtracted */
988         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
989
990         pr_debug("%s: stripe %llu\n", __func__,
991                 (unsigned long long)sh->sector);
992
993         for (i = disks; i--; ) {
994                 struct r5dev *dev = &sh->dev[i];
995                 /* Only process blocks that are known to be uptodate */
996                 if (test_bit(R5_Wantdrain, &dev->flags))
997                         xor_srcs[count++] = dev->page;
998         }
999
1000         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1001                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1002         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1003
1004         return tx;
1005 }
1006
1007 static struct dma_async_tx_descriptor *
1008 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1009 {
1010         int disks = sh->disks;
1011         int i;
1012
1013         pr_debug("%s: stripe %llu\n", __func__,
1014                 (unsigned long long)sh->sector);
1015
1016         for (i = disks; i--; ) {
1017                 struct r5dev *dev = &sh->dev[i];
1018                 struct bio *chosen;
1019
1020                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1021                         struct bio *wbi;
1022
1023                         spin_lock(&sh->lock);
1024                         chosen = dev->towrite;
1025                         dev->towrite = NULL;
1026                         BUG_ON(dev->written);
1027                         wbi = dev->written = chosen;
1028                         spin_unlock(&sh->lock);
1029
1030                         while (wbi && wbi->bi_sector <
1031                                 dev->sector + STRIPE_SECTORS) {
1032                                 if (wbi->bi_rw & REQ_FUA)
1033                                         set_bit(R5_WantFUA, &dev->flags);
1034                                 tx = async_copy_data(1, wbi, dev->page,
1035                                         dev->sector, tx);
1036                                 wbi = r5_next_bio(wbi, dev->sector);
1037                         }
1038                 }
1039         }
1040
1041         return tx;
1042 }
1043
1044 static void ops_complete_reconstruct(void *stripe_head_ref)
1045 {
1046         struct stripe_head *sh = stripe_head_ref;
1047         int disks = sh->disks;
1048         int pd_idx = sh->pd_idx;
1049         int qd_idx = sh->qd_idx;
1050         int i;
1051         bool fua = false;
1052
1053         pr_debug("%s: stripe %llu\n", __func__,
1054                 (unsigned long long)sh->sector);
1055
1056         for (i = disks; i--; )
1057                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1058
1059         for (i = disks; i--; ) {
1060                 struct r5dev *dev = &sh->dev[i];
1061
1062                 if (dev->written || i == pd_idx || i == qd_idx) {
1063                         set_bit(R5_UPTODATE, &dev->flags);
1064                         if (fua)
1065                                 set_bit(R5_WantFUA, &dev->flags);
1066                 }
1067         }
1068
1069         if (sh->reconstruct_state == reconstruct_state_drain_run)
1070                 sh->reconstruct_state = reconstruct_state_drain_result;
1071         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1072                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1073         else {
1074                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1075                 sh->reconstruct_state = reconstruct_state_result;
1076         }
1077
1078         set_bit(STRIPE_HANDLE, &sh->state);
1079         release_stripe(sh);
1080 }
1081
1082 static void
1083 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1084                      struct dma_async_tx_descriptor *tx)
1085 {
1086         int disks = sh->disks;
1087         struct page **xor_srcs = percpu->scribble;
1088         struct async_submit_ctl submit;
1089         int count = 0, pd_idx = sh->pd_idx, i;
1090         struct page *xor_dest;
1091         int prexor = 0;
1092         unsigned long flags;
1093
1094         pr_debug("%s: stripe %llu\n", __func__,
1095                 (unsigned long long)sh->sector);
1096
1097         /* check if prexor is active which means only process blocks
1098          * that are part of a read-modify-write (written)
1099          */
1100         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1101                 prexor = 1;
1102                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1103                 for (i = disks; i--; ) {
1104                         struct r5dev *dev = &sh->dev[i];
1105                         if (dev->written)
1106                                 xor_srcs[count++] = dev->page;
1107                 }
1108         } else {
1109                 xor_dest = sh->dev[pd_idx].page;
1110                 for (i = disks; i--; ) {
1111                         struct r5dev *dev = &sh->dev[i];
1112                         if (i != pd_idx)
1113                                 xor_srcs[count++] = dev->page;
1114                 }
1115         }
1116
1117         /* 1/ if we prexor'd then the dest is reused as a source
1118          * 2/ if we did not prexor then we are redoing the parity
1119          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1120          * for the synchronous xor case
1121          */
1122         flags = ASYNC_TX_ACK |
1123                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1124
1125         atomic_inc(&sh->count);
1126
1127         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1128                           to_addr_conv(sh, percpu));
1129         if (unlikely(count == 1))
1130                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1131         else
1132                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1133 }
1134
1135 static void
1136 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1137                      struct dma_async_tx_descriptor *tx)
1138 {
1139         struct async_submit_ctl submit;
1140         struct page **blocks = percpu->scribble;
1141         int count;
1142
1143         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1144
1145         count = set_syndrome_sources(blocks, sh);
1146
1147         atomic_inc(&sh->count);
1148
1149         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1150                           sh, to_addr_conv(sh, percpu));
1151         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1152 }
1153
1154 static void ops_complete_check(void *stripe_head_ref)
1155 {
1156         struct stripe_head *sh = stripe_head_ref;
1157
1158         pr_debug("%s: stripe %llu\n", __func__,
1159                 (unsigned long long)sh->sector);
1160
1161         sh->check_state = check_state_check_result;
1162         set_bit(STRIPE_HANDLE, &sh->state);
1163         release_stripe(sh);
1164 }
1165
1166 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1167 {
1168         int disks = sh->disks;
1169         int pd_idx = sh->pd_idx;
1170         int qd_idx = sh->qd_idx;
1171         struct page *xor_dest;
1172         struct page **xor_srcs = percpu->scribble;
1173         struct dma_async_tx_descriptor *tx;
1174         struct async_submit_ctl submit;
1175         int count;
1176         int i;
1177
1178         pr_debug("%s: stripe %llu\n", __func__,
1179                 (unsigned long long)sh->sector);
1180
1181         count = 0;
1182         xor_dest = sh->dev[pd_idx].page;
1183         xor_srcs[count++] = xor_dest;
1184         for (i = disks; i--; ) {
1185                 if (i == pd_idx || i == qd_idx)
1186                         continue;
1187                 xor_srcs[count++] = sh->dev[i].page;
1188         }
1189
1190         init_async_submit(&submit, 0, NULL, NULL, NULL,
1191                           to_addr_conv(sh, percpu));
1192         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1193                            &sh->ops.zero_sum_result, &submit);
1194
1195         atomic_inc(&sh->count);
1196         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1197         tx = async_trigger_callback(&submit);
1198 }
1199
1200 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1201 {
1202         struct page **srcs = percpu->scribble;
1203         struct async_submit_ctl submit;
1204         int count;
1205
1206         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1207                 (unsigned long long)sh->sector, checkp);
1208
1209         count = set_syndrome_sources(srcs, sh);
1210         if (!checkp)
1211                 srcs[count] = NULL;
1212
1213         atomic_inc(&sh->count);
1214         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1215                           sh, to_addr_conv(sh, percpu));
1216         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1217                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1218 }
1219
1220 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1221 {
1222         int overlap_clear = 0, i, disks = sh->disks;
1223         struct dma_async_tx_descriptor *tx = NULL;
1224         raid5_conf_t *conf = sh->raid_conf;
1225         int level = conf->level;
1226         struct raid5_percpu *percpu;
1227         unsigned long cpu;
1228
1229         cpu = get_cpu();
1230         percpu = per_cpu_ptr(conf->percpu, cpu);
1231         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1232                 ops_run_biofill(sh);
1233                 overlap_clear++;
1234         }
1235
1236         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1237                 if (level < 6)
1238                         tx = ops_run_compute5(sh, percpu);
1239                 else {
1240                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1241                                 tx = ops_run_compute6_1(sh, percpu);
1242                         else
1243                                 tx = ops_run_compute6_2(sh, percpu);
1244                 }
1245                 /* terminate the chain if reconstruct is not set to be run */
1246                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1247                         async_tx_ack(tx);
1248         }
1249
1250         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1251                 tx = ops_run_prexor(sh, percpu, tx);
1252
1253         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1254                 tx = ops_run_biodrain(sh, tx);
1255                 overlap_clear++;
1256         }
1257
1258         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1259                 if (level < 6)
1260                         ops_run_reconstruct5(sh, percpu, tx);
1261                 else
1262                         ops_run_reconstruct6(sh, percpu, tx);
1263         }
1264
1265         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1266                 if (sh->check_state == check_state_run)
1267                         ops_run_check_p(sh, percpu);
1268                 else if (sh->check_state == check_state_run_q)
1269                         ops_run_check_pq(sh, percpu, 0);
1270                 else if (sh->check_state == check_state_run_pq)
1271                         ops_run_check_pq(sh, percpu, 1);
1272                 else
1273                         BUG();
1274         }
1275
1276         if (overlap_clear)
1277                 for (i = disks; i--; ) {
1278                         struct r5dev *dev = &sh->dev[i];
1279                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1280                                 wake_up(&sh->raid_conf->wait_for_overlap);
1281                 }
1282         put_cpu();
1283 }
1284
1285 #ifdef CONFIG_MULTICORE_RAID456
1286 static void async_run_ops(void *param, async_cookie_t cookie)
1287 {
1288         struct stripe_head *sh = param;
1289         unsigned long ops_request = sh->ops.request;
1290
1291         clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1292         wake_up(&sh->ops.wait_for_ops);
1293
1294         __raid_run_ops(sh, ops_request);
1295         release_stripe(sh);
1296 }
1297
1298 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1299 {
1300         /* since handle_stripe can be called outside of raid5d context
1301          * we need to ensure sh->ops.request is de-staged before another
1302          * request arrives
1303          */
1304         wait_event(sh->ops.wait_for_ops,
1305                    !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1306         sh->ops.request = ops_request;
1307
1308         atomic_inc(&sh->count);
1309         async_schedule(async_run_ops, sh);
1310 }
1311 #else
1312 #define raid_run_ops __raid_run_ops
1313 #endif
1314
1315 static int grow_one_stripe(raid5_conf_t *conf)
1316 {
1317         struct stripe_head *sh;
1318         sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
1319         if (!sh)
1320                 return 0;
1321         memset(sh, 0, sizeof(*sh) + (conf->pool_size-1)*sizeof(struct r5dev));
1322         sh->raid_conf = conf;
1323         spin_lock_init(&sh->lock);
1324         #ifdef CONFIG_MULTICORE_RAID456
1325         init_waitqueue_head(&sh->ops.wait_for_ops);
1326         #endif
1327
1328         if (grow_buffers(sh)) {
1329                 shrink_buffers(sh);
1330                 kmem_cache_free(conf->slab_cache, sh);
1331                 return 0;
1332         }
1333         /* we just created an active stripe so... */
1334         atomic_set(&sh->count, 1);
1335         atomic_inc(&conf->active_stripes);
1336         INIT_LIST_HEAD(&sh->lru);
1337         release_stripe(sh);
1338         return 1;
1339 }
1340
1341 static int grow_stripes(raid5_conf_t *conf, int num)
1342 {
1343         struct kmem_cache *sc;
1344         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1345
1346         if (conf->mddev->gendisk)
1347                 sprintf(conf->cache_name[0],
1348                         "raid%d-%s", conf->level, mdname(conf->mddev));
1349         else
1350                 sprintf(conf->cache_name[0],
1351                         "raid%d-%p", conf->level, conf->mddev);
1352         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1353
1354         conf->active_name = 0;
1355         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1356                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1357                                0, 0, NULL);
1358         if (!sc)
1359                 return 1;
1360         conf->slab_cache = sc;
1361         conf->pool_size = devs;
1362         while (num--)
1363                 if (!grow_one_stripe(conf))
1364                         return 1;
1365         return 0;
1366 }
1367
1368 /**
1369  * scribble_len - return the required size of the scribble region
1370  * @num - total number of disks in the array
1371  *
1372  * The size must be enough to contain:
1373  * 1/ a struct page pointer for each device in the array +2
1374  * 2/ room to convert each entry in (1) to its corresponding dma
1375  *    (dma_map_page()) or page (page_address()) address.
1376  *
1377  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1378  * calculate over all devices (not just the data blocks), using zeros in place
1379  * of the P and Q blocks.
1380  */
1381 static size_t scribble_len(int num)
1382 {
1383         size_t len;
1384
1385         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1386
1387         return len;
1388 }
1389
1390 static int resize_stripes(raid5_conf_t *conf, int newsize)
1391 {
1392         /* Make all the stripes able to hold 'newsize' devices.
1393          * New slots in each stripe get 'page' set to a new page.
1394          *
1395          * This happens in stages:
1396          * 1/ create a new kmem_cache and allocate the required number of
1397          *    stripe_heads.
1398          * 2/ gather all the old stripe_heads and tranfer the pages across
1399          *    to the new stripe_heads.  This will have the side effect of
1400          *    freezing the array as once all stripe_heads have been collected,
1401          *    no IO will be possible.  Old stripe heads are freed once their
1402          *    pages have been transferred over, and the old kmem_cache is
1403          *    freed when all stripes are done.
1404          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1405          *    we simple return a failre status - no need to clean anything up.
1406          * 4/ allocate new pages for the new slots in the new stripe_heads.
1407          *    If this fails, we don't bother trying the shrink the
1408          *    stripe_heads down again, we just leave them as they are.
1409          *    As each stripe_head is processed the new one is released into
1410          *    active service.
1411          *
1412          * Once step2 is started, we cannot afford to wait for a write,
1413          * so we use GFP_NOIO allocations.
1414          */
1415         struct stripe_head *osh, *nsh;
1416         LIST_HEAD(newstripes);
1417         struct disk_info *ndisks;
1418         unsigned long cpu;
1419         int err;
1420         struct kmem_cache *sc;
1421         int i;
1422
1423         if (newsize <= conf->pool_size)
1424                 return 0; /* never bother to shrink */
1425
1426         err = md_allow_write(conf->mddev);
1427         if (err)
1428                 return err;
1429
1430         /* Step 1 */
1431         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1432                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1433                                0, 0, NULL);
1434         if (!sc)
1435                 return -ENOMEM;
1436
1437         for (i = conf->max_nr_stripes; i; i--) {
1438                 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1439                 if (!nsh)
1440                         break;
1441
1442                 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1443
1444                 nsh->raid_conf = conf;
1445                 spin_lock_init(&nsh->lock);
1446                 #ifdef CONFIG_MULTICORE_RAID456
1447                 init_waitqueue_head(&nsh->ops.wait_for_ops);
1448                 #endif
1449
1450                 list_add(&nsh->lru, &newstripes);
1451         }
1452         if (i) {
1453                 /* didn't get enough, give up */
1454                 while (!list_empty(&newstripes)) {
1455                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1456                         list_del(&nsh->lru);
1457                         kmem_cache_free(sc, nsh);
1458                 }
1459                 kmem_cache_destroy(sc);
1460                 return -ENOMEM;
1461         }
1462         /* Step 2 - Must use GFP_NOIO now.
1463          * OK, we have enough stripes, start collecting inactive
1464          * stripes and copying them over
1465          */
1466         list_for_each_entry(nsh, &newstripes, lru) {
1467                 spin_lock_irq(&conf->device_lock);
1468                 wait_event_lock_irq(conf->wait_for_stripe,
1469                                     !list_empty(&conf->inactive_list),
1470                                     conf->device_lock,
1471                                     );
1472                 osh = get_free_stripe(conf);
1473                 spin_unlock_irq(&conf->device_lock);
1474                 atomic_set(&nsh->count, 1);
1475                 for(i=0; i<conf->pool_size; i++)
1476                         nsh->dev[i].page = osh->dev[i].page;
1477                 for( ; i<newsize; i++)
1478                         nsh->dev[i].page = NULL;
1479                 kmem_cache_free(conf->slab_cache, osh);
1480         }
1481         kmem_cache_destroy(conf->slab_cache);
1482
1483         /* Step 3.
1484          * At this point, we are holding all the stripes so the array
1485          * is completely stalled, so now is a good time to resize
1486          * conf->disks and the scribble region
1487          */
1488         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1489         if (ndisks) {
1490                 for (i=0; i<conf->raid_disks; i++)
1491                         ndisks[i] = conf->disks[i];
1492                 kfree(conf->disks);
1493                 conf->disks = ndisks;
1494         } else
1495                 err = -ENOMEM;
1496
1497         get_online_cpus();
1498         conf->scribble_len = scribble_len(newsize);
1499         for_each_present_cpu(cpu) {
1500                 struct raid5_percpu *percpu;
1501                 void *scribble;
1502
1503                 percpu = per_cpu_ptr(conf->percpu, cpu);
1504                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1505
1506                 if (scribble) {
1507                         kfree(percpu->scribble);
1508                         percpu->scribble = scribble;
1509                 } else {
1510                         err = -ENOMEM;
1511                         break;
1512                 }
1513         }
1514         put_online_cpus();
1515
1516         /* Step 4, return new stripes to service */
1517         while(!list_empty(&newstripes)) {
1518                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1519                 list_del_init(&nsh->lru);
1520
1521                 for (i=conf->raid_disks; i < newsize; i++)
1522                         if (nsh->dev[i].page == NULL) {
1523                                 struct page *p = alloc_page(GFP_NOIO);
1524                                 nsh->dev[i].page = p;
1525                                 if (!p)
1526                                         err = -ENOMEM;
1527                         }
1528                 release_stripe(nsh);
1529         }
1530         /* critical section pass, GFP_NOIO no longer needed */
1531
1532         conf->slab_cache = sc;
1533         conf->active_name = 1-conf->active_name;
1534         conf->pool_size = newsize;
1535         return err;
1536 }
1537
1538 static int drop_one_stripe(raid5_conf_t *conf)
1539 {
1540         struct stripe_head *sh;
1541
1542         spin_lock_irq(&conf->device_lock);
1543         sh = get_free_stripe(conf);
1544         spin_unlock_irq(&conf->device_lock);
1545         if (!sh)
1546                 return 0;
1547         BUG_ON(atomic_read(&sh->count));
1548         shrink_buffers(sh);
1549         kmem_cache_free(conf->slab_cache, sh);
1550         atomic_dec(&conf->active_stripes);
1551         return 1;
1552 }
1553
1554 static void shrink_stripes(raid5_conf_t *conf)
1555 {
1556         while (drop_one_stripe(conf))
1557                 ;
1558
1559         if (conf->slab_cache)
1560                 kmem_cache_destroy(conf->slab_cache);
1561         conf->slab_cache = NULL;
1562 }
1563
1564 static void raid5_end_read_request(struct bio * bi, int error)
1565 {
1566         struct stripe_head *sh = bi->bi_private;
1567         raid5_conf_t *conf = sh->raid_conf;
1568         int disks = sh->disks, i;
1569         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1570         char b[BDEVNAME_SIZE];
1571         mdk_rdev_t *rdev;
1572
1573
1574         for (i=0 ; i<disks; i++)
1575                 if (bi == &sh->dev[i].req)
1576                         break;
1577
1578         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1579                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1580                 uptodate);
1581         if (i == disks) {
1582                 BUG();
1583                 return;
1584         }
1585
1586         if (uptodate) {
1587                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1588                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1589                         rdev = conf->disks[i].rdev;
1590                         printk_rl(KERN_INFO "md/raid:%s: read error corrected"
1591                                   " (%lu sectors at %llu on %s)\n",
1592                                   mdname(conf->mddev), STRIPE_SECTORS,
1593                                   (unsigned long long)(sh->sector
1594                                                        + rdev->data_offset),
1595                                   bdevname(rdev->bdev, b));
1596                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1597                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1598                 }
1599                 if (atomic_read(&conf->disks[i].rdev->read_errors))
1600                         atomic_set(&conf->disks[i].rdev->read_errors, 0);
1601         } else {
1602                 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1603                 int retry = 0;
1604                 rdev = conf->disks[i].rdev;
1605
1606                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1607                 atomic_inc(&rdev->read_errors);
1608                 if (conf->mddev->degraded >= conf->max_degraded)
1609                         printk_rl(KERN_WARNING
1610                                   "md/raid:%s: read error not correctable "
1611                                   "(sector %llu on %s).\n",
1612                                   mdname(conf->mddev),
1613                                   (unsigned long long)(sh->sector
1614                                                        + rdev->data_offset),
1615                                   bdn);
1616                 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1617                         /* Oh, no!!! */
1618                         printk_rl(KERN_WARNING
1619                                   "md/raid:%s: read error NOT corrected!! "
1620                                   "(sector %llu on %s).\n",
1621                                   mdname(conf->mddev),
1622                                   (unsigned long long)(sh->sector
1623                                                        + rdev->data_offset),
1624                                   bdn);
1625                 else if (atomic_read(&rdev->read_errors)
1626                          > conf->max_nr_stripes)
1627                         printk(KERN_WARNING
1628                                "md/raid:%s: Too many read errors, failing device %s.\n",
1629                                mdname(conf->mddev), bdn);
1630                 else
1631                         retry = 1;
1632                 if (retry)
1633                         set_bit(R5_ReadError, &sh->dev[i].flags);
1634                 else {
1635                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1636                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1637                         md_error(conf->mddev, rdev);
1638                 }
1639         }
1640         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1641         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1642         set_bit(STRIPE_HANDLE, &sh->state);
1643         release_stripe(sh);
1644 }
1645
1646 static void raid5_end_write_request(struct bio *bi, int error)
1647 {
1648         struct stripe_head *sh = bi->bi_private;
1649         raid5_conf_t *conf = sh->raid_conf;
1650         int disks = sh->disks, i;
1651         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1652
1653         for (i=0 ; i<disks; i++)
1654                 if (bi == &sh->dev[i].req)
1655                         break;
1656
1657         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1658                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1659                 uptodate);
1660         if (i == disks) {
1661                 BUG();
1662                 return;
1663         }
1664
1665         if (!uptodate)
1666                 md_error(conf->mddev, conf->disks[i].rdev);
1667
1668         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1669         
1670         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1671         set_bit(STRIPE_HANDLE, &sh->state);
1672         release_stripe(sh);
1673 }
1674
1675
1676 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1677         
1678 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1679 {
1680         struct r5dev *dev = &sh->dev[i];
1681
1682         bio_init(&dev->req);
1683         dev->req.bi_io_vec = &dev->vec;
1684         dev->req.bi_vcnt++;
1685         dev->req.bi_max_vecs++;
1686         dev->vec.bv_page = dev->page;
1687         dev->vec.bv_len = STRIPE_SIZE;
1688         dev->vec.bv_offset = 0;
1689
1690         dev->req.bi_sector = sh->sector;
1691         dev->req.bi_private = sh;
1692
1693         dev->flags = 0;
1694         dev->sector = compute_blocknr(sh, i, previous);
1695 }
1696
1697 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1698 {
1699         char b[BDEVNAME_SIZE];
1700         raid5_conf_t *conf = mddev->private;
1701         pr_debug("raid456: error called\n");
1702
1703         if (!test_bit(Faulty, &rdev->flags)) {
1704                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1705                 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1706                         unsigned long flags;
1707                         spin_lock_irqsave(&conf->device_lock, flags);
1708                         mddev->degraded++;
1709                         spin_unlock_irqrestore(&conf->device_lock, flags);
1710                         /*
1711                          * if recovery was running, make sure it aborts.
1712                          */
1713                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1714                 }
1715                 set_bit(Faulty, &rdev->flags);
1716                 printk(KERN_ALERT
1717                        "md/raid:%s: Disk failure on %s, disabling device.\n"
1718                        "md/raid:%s: Operation continuing on %d devices.\n",
1719                        mdname(mddev),
1720                        bdevname(rdev->bdev, b),
1721                        mdname(mddev),
1722                        conf->raid_disks - mddev->degraded);
1723         }
1724 }
1725
1726 /*
1727  * Input: a 'big' sector number,
1728  * Output: index of the data and parity disk, and the sector # in them.
1729  */
1730 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1731                                      int previous, int *dd_idx,
1732                                      struct stripe_head *sh)
1733 {
1734         sector_t stripe, stripe2;
1735         sector_t chunk_number;
1736         unsigned int chunk_offset;
1737         int pd_idx, qd_idx;
1738         int ddf_layout = 0;
1739         sector_t new_sector;
1740         int algorithm = previous ? conf->prev_algo
1741                                  : conf->algorithm;
1742         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1743                                          : conf->chunk_sectors;
1744         int raid_disks = previous ? conf->previous_raid_disks
1745                                   : conf->raid_disks;
1746         int data_disks = raid_disks - conf->max_degraded;
1747
1748         /* First compute the information on this sector */
1749
1750         /*
1751          * Compute the chunk number and the sector offset inside the chunk
1752          */
1753         chunk_offset = sector_div(r_sector, sectors_per_chunk);
1754         chunk_number = r_sector;
1755
1756         /*
1757          * Compute the stripe number
1758          */
1759         stripe = chunk_number;
1760         *dd_idx = sector_div(stripe, data_disks);
1761         stripe2 = stripe;
1762         /*
1763          * Select the parity disk based on the user selected algorithm.
1764          */
1765         pd_idx = qd_idx = ~0;
1766         switch(conf->level) {
1767         case 4:
1768                 pd_idx = data_disks;
1769                 break;
1770         case 5:
1771                 switch (algorithm) {
1772                 case ALGORITHM_LEFT_ASYMMETRIC:
1773                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1774                         if (*dd_idx >= pd_idx)
1775                                 (*dd_idx)++;
1776                         break;
1777                 case ALGORITHM_RIGHT_ASYMMETRIC:
1778                         pd_idx = sector_div(stripe2, raid_disks);
1779                         if (*dd_idx >= pd_idx)
1780                                 (*dd_idx)++;
1781                         break;
1782                 case ALGORITHM_LEFT_SYMMETRIC:
1783                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1784                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1785                         break;
1786                 case ALGORITHM_RIGHT_SYMMETRIC:
1787                         pd_idx = sector_div(stripe2, raid_disks);
1788                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1789                         break;
1790                 case ALGORITHM_PARITY_0:
1791                         pd_idx = 0;
1792                         (*dd_idx)++;
1793                         break;
1794                 case ALGORITHM_PARITY_N:
1795                         pd_idx = data_disks;
1796                         break;
1797                 default:
1798                         BUG();
1799                 }
1800                 break;
1801         case 6:
1802
1803                 switch (algorithm) {
1804                 case ALGORITHM_LEFT_ASYMMETRIC:
1805                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1806                         qd_idx = pd_idx + 1;
1807                         if (pd_idx == raid_disks-1) {
1808                                 (*dd_idx)++;    /* Q D D D P */
1809                                 qd_idx = 0;
1810                         } else if (*dd_idx >= pd_idx)
1811                                 (*dd_idx) += 2; /* D D P Q D */
1812                         break;
1813                 case ALGORITHM_RIGHT_ASYMMETRIC:
1814                         pd_idx = sector_div(stripe2, raid_disks);
1815                         qd_idx = pd_idx + 1;
1816                         if (pd_idx == raid_disks-1) {
1817                                 (*dd_idx)++;    /* Q D D D P */
1818                                 qd_idx = 0;
1819                         } else if (*dd_idx >= pd_idx)
1820                                 (*dd_idx) += 2; /* D D P Q D */
1821                         break;
1822                 case ALGORITHM_LEFT_SYMMETRIC:
1823                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1824                         qd_idx = (pd_idx + 1) % raid_disks;
1825                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1826                         break;
1827                 case ALGORITHM_RIGHT_SYMMETRIC:
1828                         pd_idx = sector_div(stripe2, raid_disks);
1829                         qd_idx = (pd_idx + 1) % raid_disks;
1830                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1831                         break;
1832
1833                 case ALGORITHM_PARITY_0:
1834                         pd_idx = 0;
1835                         qd_idx = 1;
1836                         (*dd_idx) += 2;
1837                         break;
1838                 case ALGORITHM_PARITY_N:
1839                         pd_idx = data_disks;
1840                         qd_idx = data_disks + 1;
1841                         break;
1842
1843                 case ALGORITHM_ROTATING_ZERO_RESTART:
1844                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
1845                          * of blocks for computing Q is different.
1846                          */
1847                         pd_idx = sector_div(stripe2, raid_disks);
1848                         qd_idx = pd_idx + 1;
1849                         if (pd_idx == raid_disks-1) {
1850                                 (*dd_idx)++;    /* Q D D D P */
1851                                 qd_idx = 0;
1852                         } else if (*dd_idx >= pd_idx)
1853                                 (*dd_idx) += 2; /* D D P Q D */
1854                         ddf_layout = 1;
1855                         break;
1856
1857                 case ALGORITHM_ROTATING_N_RESTART:
1858                         /* Same a left_asymmetric, by first stripe is
1859                          * D D D P Q  rather than
1860                          * Q D D D P
1861                          */
1862                         stripe2 += 1;
1863                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1864                         qd_idx = pd_idx + 1;
1865                         if (pd_idx == raid_disks-1) {
1866                                 (*dd_idx)++;    /* Q D D D P */
1867                                 qd_idx = 0;
1868                         } else if (*dd_idx >= pd_idx)
1869                                 (*dd_idx) += 2; /* D D P Q D */
1870                         ddf_layout = 1;
1871                         break;
1872
1873                 case ALGORITHM_ROTATING_N_CONTINUE:
1874                         /* Same as left_symmetric but Q is before P */
1875                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1876                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1877                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1878                         ddf_layout = 1;
1879                         break;
1880
1881                 case ALGORITHM_LEFT_ASYMMETRIC_6:
1882                         /* RAID5 left_asymmetric, with Q on last device */
1883                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1884                         if (*dd_idx >= pd_idx)
1885                                 (*dd_idx)++;
1886                         qd_idx = raid_disks - 1;
1887                         break;
1888
1889                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1890                         pd_idx = sector_div(stripe2, raid_disks-1);
1891                         if (*dd_idx >= pd_idx)
1892                                 (*dd_idx)++;
1893                         qd_idx = raid_disks - 1;
1894                         break;
1895
1896                 case ALGORITHM_LEFT_SYMMETRIC_6:
1897                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1898                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1899                         qd_idx = raid_disks - 1;
1900                         break;
1901
1902                 case ALGORITHM_RIGHT_SYMMETRIC_6:
1903                         pd_idx = sector_div(stripe2, raid_disks-1);
1904                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1905                         qd_idx = raid_disks - 1;
1906                         break;
1907
1908                 case ALGORITHM_PARITY_0_6:
1909                         pd_idx = 0;
1910                         (*dd_idx)++;
1911                         qd_idx = raid_disks - 1;
1912                         break;
1913
1914                 default:
1915                         BUG();
1916                 }
1917                 break;
1918         }
1919
1920         if (sh) {
1921                 sh->pd_idx = pd_idx;
1922                 sh->qd_idx = qd_idx;
1923                 sh->ddf_layout = ddf_layout;
1924         }
1925         /*
1926          * Finally, compute the new sector number
1927          */
1928         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1929         return new_sector;
1930 }
1931
1932
1933 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1934 {
1935         raid5_conf_t *conf = sh->raid_conf;
1936         int raid_disks = sh->disks;
1937         int data_disks = raid_disks - conf->max_degraded;
1938         sector_t new_sector = sh->sector, check;
1939         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1940                                          : conf->chunk_sectors;
1941         int algorithm = previous ? conf->prev_algo
1942                                  : conf->algorithm;
1943         sector_t stripe;
1944         int chunk_offset;
1945         sector_t chunk_number;
1946         int dummy1, dd_idx = i;
1947         sector_t r_sector;
1948         struct stripe_head sh2;
1949
1950
1951         chunk_offset = sector_div(new_sector, sectors_per_chunk);
1952         stripe = new_sector;
1953
1954         if (i == sh->pd_idx)
1955                 return 0;
1956         switch(conf->level) {
1957         case 4: break;
1958         case 5:
1959                 switch (algorithm) {
1960                 case ALGORITHM_LEFT_ASYMMETRIC:
1961                 case ALGORITHM_RIGHT_ASYMMETRIC:
1962                         if (i > sh->pd_idx)
1963                                 i--;
1964                         break;
1965                 case ALGORITHM_LEFT_SYMMETRIC:
1966                 case ALGORITHM_RIGHT_SYMMETRIC:
1967                         if (i < sh->pd_idx)
1968                                 i += raid_disks;
1969                         i -= (sh->pd_idx + 1);
1970                         break;
1971                 case ALGORITHM_PARITY_0:
1972                         i -= 1;
1973                         break;
1974                 case ALGORITHM_PARITY_N:
1975                         break;
1976                 default:
1977                         BUG();
1978                 }
1979                 break;
1980         case 6:
1981                 if (i == sh->qd_idx)
1982                         return 0; /* It is the Q disk */
1983                 switch (algorithm) {
1984                 case ALGORITHM_LEFT_ASYMMETRIC:
1985                 case ALGORITHM_RIGHT_ASYMMETRIC:
1986                 case ALGORITHM_ROTATING_ZERO_RESTART:
1987                 case ALGORITHM_ROTATING_N_RESTART:
1988                         if (sh->pd_idx == raid_disks-1)
1989                                 i--;    /* Q D D D P */
1990                         else if (i > sh->pd_idx)
1991                                 i -= 2; /* D D P Q D */
1992                         break;
1993                 case ALGORITHM_LEFT_SYMMETRIC:
1994                 case ALGORITHM_RIGHT_SYMMETRIC:
1995                         if (sh->pd_idx == raid_disks-1)
1996                                 i--; /* Q D D D P */
1997                         else {
1998                                 /* D D P Q D */
1999                                 if (i < sh->pd_idx)
2000                                         i += raid_disks;
2001                                 i -= (sh->pd_idx + 2);
2002                         }
2003                         break;
2004                 case ALGORITHM_PARITY_0:
2005                         i -= 2;
2006                         break;
2007                 case ALGORITHM_PARITY_N:
2008                         break;
2009                 case ALGORITHM_ROTATING_N_CONTINUE:
2010                         /* Like left_symmetric, but P is before Q */
2011                         if (sh->pd_idx == 0)
2012                                 i--;    /* P D D D Q */
2013                         else {
2014                                 /* D D Q P D */
2015                                 if (i < sh->pd_idx)
2016                                         i += raid_disks;
2017                                 i -= (sh->pd_idx + 1);
2018                         }
2019                         break;
2020                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2021                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2022                         if (i > sh->pd_idx)
2023                                 i--;
2024                         break;
2025                 case ALGORITHM_LEFT_SYMMETRIC_6:
2026                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2027                         if (i < sh->pd_idx)
2028                                 i += data_disks + 1;
2029                         i -= (sh->pd_idx + 1);
2030                         break;
2031                 case ALGORITHM_PARITY_0_6:
2032                         i -= 1;
2033                         break;
2034                 default:
2035                         BUG();
2036                 }
2037                 break;
2038         }
2039
2040         chunk_number = stripe * data_disks + i;
2041         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2042
2043         check = raid5_compute_sector(conf, r_sector,
2044                                      previous, &dummy1, &sh2);
2045         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2046                 || sh2.qd_idx != sh->qd_idx) {
2047                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2048                        mdname(conf->mddev));
2049                 return 0;
2050         }
2051         return r_sector;
2052 }
2053
2054
2055 static void
2056 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2057                          int rcw, int expand)
2058 {
2059         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2060         raid5_conf_t *conf = sh->raid_conf;
2061         int level = conf->level;
2062
2063         if (rcw) {
2064                 /* if we are not expanding this is a proper write request, and
2065                  * there will be bios with new data to be drained into the
2066                  * stripe cache
2067                  */
2068                 if (!expand) {
2069                         sh->reconstruct_state = reconstruct_state_drain_run;
2070                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2071                 } else
2072                         sh->reconstruct_state = reconstruct_state_run;
2073
2074                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2075
2076                 for (i = disks; i--; ) {
2077                         struct r5dev *dev = &sh->dev[i];
2078
2079                         if (dev->towrite) {
2080                                 set_bit(R5_LOCKED, &dev->flags);
2081                                 set_bit(R5_Wantdrain, &dev->flags);
2082                                 if (!expand)
2083                                         clear_bit(R5_UPTODATE, &dev->flags);
2084                                 s->locked++;
2085                         }
2086                 }
2087                 if (s->locked + conf->max_degraded == disks)
2088                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2089                                 atomic_inc(&conf->pending_full_writes);
2090         } else {
2091                 BUG_ON(level == 6);
2092                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2093                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2094
2095                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2096                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2097                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2098                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2099
2100                 for (i = disks; i--; ) {
2101                         struct r5dev *dev = &sh->dev[i];
2102                         if (i == pd_idx)
2103                                 continue;
2104
2105                         if (dev->towrite &&
2106                             (test_bit(R5_UPTODATE, &dev->flags) ||
2107                              test_bit(R5_Wantcompute, &dev->flags))) {
2108                                 set_bit(R5_Wantdrain, &dev->flags);
2109                                 set_bit(R5_LOCKED, &dev->flags);
2110                                 clear_bit(R5_UPTODATE, &dev->flags);
2111                                 s->locked++;
2112                         }
2113                 }
2114         }
2115
2116         /* keep the parity disk(s) locked while asynchronous operations
2117          * are in flight
2118          */
2119         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2120         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2121         s->locked++;
2122
2123         if (level == 6) {
2124                 int qd_idx = sh->qd_idx;
2125                 struct r5dev *dev = &sh->dev[qd_idx];
2126
2127                 set_bit(R5_LOCKED, &dev->flags);
2128                 clear_bit(R5_UPTODATE, &dev->flags);
2129                 s->locked++;
2130         }
2131
2132         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2133                 __func__, (unsigned long long)sh->sector,
2134                 s->locked, s->ops_request);
2135 }
2136
2137 /*
2138  * Each stripe/dev can have one or more bion attached.
2139  * toread/towrite point to the first in a chain.
2140  * The bi_next chain must be in order.
2141  */
2142 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2143 {
2144         struct bio **bip;
2145         raid5_conf_t *conf = sh->raid_conf;
2146         int firstwrite=0;
2147
2148         pr_debug("adding bh b#%llu to stripe s#%llu\n",
2149                 (unsigned long long)bi->bi_sector,
2150                 (unsigned long long)sh->sector);
2151
2152
2153         spin_lock(&sh->lock);
2154         spin_lock_irq(&conf->device_lock);
2155         if (forwrite) {
2156                 bip = &sh->dev[dd_idx].towrite;
2157                 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2158                         firstwrite = 1;
2159         } else
2160                 bip = &sh->dev[dd_idx].toread;
2161         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2162                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2163                         goto overlap;
2164                 bip = & (*bip)->bi_next;
2165         }
2166         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2167                 goto overlap;
2168
2169         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2170         if (*bip)
2171                 bi->bi_next = *bip;
2172         *bip = bi;
2173         bi->bi_phys_segments++;
2174         spin_unlock_irq(&conf->device_lock);
2175         spin_unlock(&sh->lock);
2176
2177         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2178                 (unsigned long long)bi->bi_sector,
2179                 (unsigned long long)sh->sector, dd_idx);
2180
2181         if (conf->mddev->bitmap && firstwrite) {
2182                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2183                                   STRIPE_SECTORS, 0);
2184                 sh->bm_seq = conf->seq_flush+1;
2185                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2186         }
2187
2188         if (forwrite) {
2189                 /* check if page is covered */
2190                 sector_t sector = sh->dev[dd_idx].sector;
2191                 for (bi=sh->dev[dd_idx].towrite;
2192                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2193                              bi && bi->bi_sector <= sector;
2194                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2195                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2196                                 sector = bi->bi_sector + (bi->bi_size>>9);
2197                 }
2198                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2199                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2200         }
2201         return 1;
2202
2203  overlap:
2204         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2205         spin_unlock_irq(&conf->device_lock);
2206         spin_unlock(&sh->lock);
2207         return 0;
2208 }
2209
2210 static void end_reshape(raid5_conf_t *conf);
2211
2212 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2213                             struct stripe_head *sh)
2214 {
2215         int sectors_per_chunk =
2216                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2217         int dd_idx;
2218         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2219         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2220
2221         raid5_compute_sector(conf,
2222                              stripe * (disks - conf->max_degraded)
2223                              *sectors_per_chunk + chunk_offset,
2224                              previous,
2225                              &dd_idx, sh);
2226 }
2227
2228 static void
2229 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2230                                 struct stripe_head_state *s, int disks,
2231                                 struct bio **return_bi)
2232 {
2233         int i;
2234         for (i = disks; i--; ) {
2235                 struct bio *bi;
2236                 int bitmap_end = 0;
2237
2238                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2239                         mdk_rdev_t *rdev;
2240                         rcu_read_lock();
2241                         rdev = rcu_dereference(conf->disks[i].rdev);
2242                         if (rdev && test_bit(In_sync, &rdev->flags))
2243                                 /* multiple read failures in one stripe */
2244                                 md_error(conf->mddev, rdev);
2245                         rcu_read_unlock();
2246                 }
2247                 spin_lock_irq(&conf->device_lock);
2248                 /* fail all writes first */
2249                 bi = sh->dev[i].towrite;
2250                 sh->dev[i].towrite = NULL;
2251                 if (bi) {
2252                         s->to_write--;
2253                         bitmap_end = 1;
2254                 }
2255
2256                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2257                         wake_up(&conf->wait_for_overlap);
2258
2259                 while (bi && bi->bi_sector <
2260                         sh->dev[i].sector + STRIPE_SECTORS) {
2261                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2262                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2263                         if (!raid5_dec_bi_phys_segments(bi)) {
2264                                 md_write_end(conf->mddev);
2265                                 bi->bi_next = *return_bi;
2266                                 *return_bi = bi;
2267                         }
2268                         bi = nextbi;
2269                 }
2270                 /* and fail all 'written' */
2271                 bi = sh->dev[i].written;
2272                 sh->dev[i].written = NULL;
2273                 if (bi) bitmap_end = 1;
2274                 while (bi && bi->bi_sector <
2275                        sh->dev[i].sector + STRIPE_SECTORS) {
2276                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2277                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2278                         if (!raid5_dec_bi_phys_segments(bi)) {
2279                                 md_write_end(conf->mddev);
2280                                 bi->bi_next = *return_bi;
2281                                 *return_bi = bi;
2282                         }
2283                         bi = bi2;
2284                 }
2285
2286                 /* fail any reads if this device is non-operational and
2287                  * the data has not reached the cache yet.
2288                  */
2289                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2290                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2291                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2292                         bi = sh->dev[i].toread;
2293                         sh->dev[i].toread = NULL;
2294                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2295                                 wake_up(&conf->wait_for_overlap);
2296                         if (bi) s->to_read--;
2297                         while (bi && bi->bi_sector <
2298                                sh->dev[i].sector + STRIPE_SECTORS) {
2299                                 struct bio *nextbi =
2300                                         r5_next_bio(bi, sh->dev[i].sector);
2301                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2302                                 if (!raid5_dec_bi_phys_segments(bi)) {
2303                                         bi->bi_next = *return_bi;
2304                                         *return_bi = bi;
2305                                 }
2306                                 bi = nextbi;
2307                         }
2308                 }
2309                 spin_unlock_irq(&conf->device_lock);
2310                 if (bitmap_end)
2311                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2312                                         STRIPE_SECTORS, 0, 0);
2313         }
2314
2315         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2316                 if (atomic_dec_and_test(&conf->pending_full_writes))
2317                         md_wakeup_thread(conf->mddev->thread);
2318 }
2319
2320 /* fetch_block5 - checks the given member device to see if its data needs
2321  * to be read or computed to satisfy a request.
2322  *
2323  * Returns 1 when no more member devices need to be checked, otherwise returns
2324  * 0 to tell the loop in handle_stripe_fill5 to continue
2325  */
2326 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2327                         int disk_idx, int disks)
2328 {
2329         struct r5dev *dev = &sh->dev[disk_idx];
2330         struct r5dev *failed_dev = &sh->dev[s->failed_num];
2331
2332         /* is the data in this block needed, and can we get it? */
2333         if (!test_bit(R5_LOCKED, &dev->flags) &&
2334             !test_bit(R5_UPTODATE, &dev->flags) &&
2335             (dev->toread ||
2336              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2337              s->syncing || s->expanding ||
2338              (s->failed &&
2339               (failed_dev->toread ||
2340                (failed_dev->towrite &&
2341                 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2342                 /* We would like to get this block, possibly by computing it,
2343                  * otherwise read it if the backing disk is insync
2344                  */
2345                 if ((s->uptodate == disks - 1) &&
2346                     (s->failed && disk_idx == s->failed_num)) {
2347                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2348                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2349                         set_bit(R5_Wantcompute, &dev->flags);
2350                         sh->ops.target = disk_idx;
2351                         sh->ops.target2 = -1;
2352                         s->req_compute = 1;
2353                         /* Careful: from this point on 'uptodate' is in the eye
2354                          * of raid_run_ops which services 'compute' operations
2355                          * before writes. R5_Wantcompute flags a block that will
2356                          * be R5_UPTODATE by the time it is needed for a
2357                          * subsequent operation.
2358                          */
2359                         s->uptodate++;
2360                         return 1; /* uptodate + compute == disks */
2361                 } else if (test_bit(R5_Insync, &dev->flags)) {
2362                         set_bit(R5_LOCKED, &dev->flags);
2363                         set_bit(R5_Wantread, &dev->flags);
2364                         s->locked++;
2365                         pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2366                                 s->syncing);
2367                 }
2368         }
2369
2370         return 0;
2371 }
2372
2373 /**
2374  * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2375  */
2376 static void handle_stripe_fill5(struct stripe_head *sh,
2377                         struct stripe_head_state *s, int disks)
2378 {
2379         int i;
2380
2381         /* look for blocks to read/compute, skip this if a compute
2382          * is already in flight, or if the stripe contents are in the
2383          * midst of changing due to a write
2384          */
2385         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2386             !sh->reconstruct_state)
2387                 for (i = disks; i--; )
2388                         if (fetch_block5(sh, s, i, disks))
2389                                 break;
2390         set_bit(STRIPE_HANDLE, &sh->state);
2391 }
2392
2393 /* fetch_block6 - checks the given member device to see if its data needs
2394  * to be read or computed to satisfy a request.
2395  *
2396  * Returns 1 when no more member devices need to be checked, otherwise returns
2397  * 0 to tell the loop in handle_stripe_fill6 to continue
2398  */
2399 static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
2400                          struct r6_state *r6s, int disk_idx, int disks)
2401 {
2402         struct r5dev *dev = &sh->dev[disk_idx];
2403         struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
2404                                   &sh->dev[r6s->failed_num[1]] };
2405
2406         if (!test_bit(R5_LOCKED, &dev->flags) &&
2407             !test_bit(R5_UPTODATE, &dev->flags) &&
2408             (dev->toread ||
2409              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2410              s->syncing || s->expanding ||
2411              (s->failed >= 1 &&
2412               (fdev[0]->toread || s->to_write)) ||
2413              (s->failed >= 2 &&
2414               (fdev[1]->toread || s->to_write)))) {
2415                 /* we would like to get this block, possibly by computing it,
2416                  * otherwise read it if the backing disk is insync
2417                  */
2418                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2419                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2420                 if ((s->uptodate == disks - 1) &&
2421                     (s->failed && (disk_idx == r6s->failed_num[0] ||
2422                                    disk_idx == r6s->failed_num[1]))) {
2423                         /* have disk failed, and we're requested to fetch it;
2424                          * do compute it
2425                          */
2426                         pr_debug("Computing stripe %llu block %d\n",
2427                                (unsigned long long)sh->sector, disk_idx);
2428                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2429                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2430                         set_bit(R5_Wantcompute, &dev->flags);
2431                         sh->ops.target = disk_idx;
2432                         sh->ops.target2 = -1; /* no 2nd target */
2433                         s->req_compute = 1;
2434                         s->uptodate++;
2435                         return 1;
2436                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2437                         /* Computing 2-failure is *very* expensive; only
2438                          * do it if failed >= 2
2439                          */
2440                         int other;
2441                         for (other = disks; other--; ) {
2442                                 if (other == disk_idx)
2443                                         continue;
2444                                 if (!test_bit(R5_UPTODATE,
2445                                       &sh->dev[other].flags))
2446                                         break;
2447                         }
2448                         BUG_ON(other < 0);
2449                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2450                                (unsigned long long)sh->sector,
2451                                disk_idx, other);
2452                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2453                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2454                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2455                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2456                         sh->ops.target = disk_idx;
2457                         sh->ops.target2 = other;
2458                         s->uptodate += 2;
2459                         s->req_compute = 1;
2460                         return 1;
2461                 } else if (test_bit(R5_Insync, &dev->flags)) {
2462                         set_bit(R5_LOCKED, &dev->flags);
2463                         set_bit(R5_Wantread, &dev->flags);
2464                         s->locked++;
2465                         pr_debug("Reading block %d (sync=%d)\n",
2466                                 disk_idx, s->syncing);
2467                 }
2468         }
2469
2470         return 0;
2471 }
2472
2473 /**
2474  * handle_stripe_fill6 - read or compute data to satisfy pending requests.
2475  */
2476 static void handle_stripe_fill6(struct stripe_head *sh,
2477                         struct stripe_head_state *s, struct r6_state *r6s,
2478                         int disks)
2479 {
2480         int i;
2481
2482         /* look for blocks to read/compute, skip this if a compute
2483          * is already in flight, or if the stripe contents are in the
2484          * midst of changing due to a write
2485          */
2486         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2487             !sh->reconstruct_state)
2488                 for (i = disks; i--; )
2489                         if (fetch_block6(sh, s, r6s, i, disks))
2490                                 break;
2491         set_bit(STRIPE_HANDLE, &sh->state);
2492 }
2493
2494
2495 /* handle_stripe_clean_event
2496  * any written block on an uptodate or failed drive can be returned.
2497  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2498  * never LOCKED, so we don't need to test 'failed' directly.
2499  */
2500 static void handle_stripe_clean_event(raid5_conf_t *conf,
2501         struct stripe_head *sh, int disks, struct bio **return_bi)
2502 {
2503         int i;
2504         struct r5dev *dev;
2505
2506         for (i = disks; i--; )
2507                 if (sh->dev[i].written) {
2508                         dev = &sh->dev[i];
2509                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2510                                 test_bit(R5_UPTODATE, &dev->flags)) {
2511                                 /* We can return any write requests */
2512                                 struct bio *wbi, *wbi2;
2513                                 int bitmap_end = 0;
2514                                 pr_debug("Return write for disc %d\n", i);
2515                                 spin_lock_irq(&conf->device_lock);
2516                                 wbi = dev->written;
2517                                 dev->written = NULL;
2518                                 while (wbi && wbi->bi_sector <
2519                                         dev->sector + STRIPE_SECTORS) {
2520                                         wbi2 = r5_next_bio(wbi, dev->sector);
2521                                         if (!raid5_dec_bi_phys_segments(wbi)) {
2522                                                 md_write_end(conf->mddev);
2523                                                 wbi->bi_next = *return_bi;
2524                                                 *return_bi = wbi;
2525                                         }
2526                                         wbi = wbi2;
2527                                 }
2528                                 if (dev->towrite == NULL)
2529                                         bitmap_end = 1;
2530                                 spin_unlock_irq(&conf->device_lock);
2531                                 if (bitmap_end)
2532                                         bitmap_endwrite(conf->mddev->bitmap,
2533                                                         sh->sector,
2534                                                         STRIPE_SECTORS,
2535                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2536                                                         0);
2537                         }
2538                 }
2539
2540         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2541                 if (atomic_dec_and_test(&conf->pending_full_writes))
2542                         md_wakeup_thread(conf->mddev->thread);
2543 }
2544
2545 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2546                 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2547 {
2548         int rmw = 0, rcw = 0, i;
2549         for (i = disks; i--; ) {
2550                 /* would I have to read this buffer for read_modify_write */
2551                 struct r5dev *dev = &sh->dev[i];
2552                 if ((dev->towrite || i == sh->pd_idx) &&
2553                     !test_bit(R5_LOCKED, &dev->flags) &&
2554                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2555                       test_bit(R5_Wantcompute, &dev->flags))) {
2556                         if (test_bit(R5_Insync, &dev->flags))
2557                                 rmw++;
2558                         else
2559                                 rmw += 2*disks;  /* cannot read it */
2560                 }
2561                 /* Would I have to read this buffer for reconstruct_write */
2562                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2563                     !test_bit(R5_LOCKED, &dev->flags) &&
2564                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2565                     test_bit(R5_Wantcompute, &dev->flags))) {
2566                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2567                         else
2568                                 rcw += 2*disks;
2569                 }
2570         }
2571         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2572                 (unsigned long long)sh->sector, rmw, rcw);
2573         set_bit(STRIPE_HANDLE, &sh->state);
2574         if (rmw < rcw && rmw > 0)
2575                 /* prefer read-modify-write, but need to get some data */
2576                 for (i = disks; i--; ) {
2577                         struct r5dev *dev = &sh->dev[i];
2578                         if ((dev->towrite || i == sh->pd_idx) &&
2579                             !test_bit(R5_LOCKED, &dev->flags) &&
2580                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2581                             test_bit(R5_Wantcompute, &dev->flags)) &&
2582                             test_bit(R5_Insync, &dev->flags)) {
2583                                 if (
2584                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2585                                         pr_debug("Read_old block "
2586                                                 "%d for r-m-w\n", i);
2587                                         set_bit(R5_LOCKED, &dev->flags);
2588                                         set_bit(R5_Wantread, &dev->flags);
2589                                         s->locked++;
2590                                 } else {
2591                                         set_bit(STRIPE_DELAYED, &sh->state);
2592                                         set_bit(STRIPE_HANDLE, &sh->state);
2593                                 }
2594                         }
2595                 }
2596         if (rcw <= rmw && rcw > 0)
2597                 /* want reconstruct write, but need to get some data */
2598                 for (i = disks; i--; ) {
2599                         struct r5dev *dev = &sh->dev[i];
2600                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2601                             i != sh->pd_idx &&
2602                             !test_bit(R5_LOCKED, &dev->flags) &&
2603                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2604                             test_bit(R5_Wantcompute, &dev->flags)) &&
2605                             test_bit(R5_Insync, &dev->flags)) {
2606                                 if (
2607                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2608                                         pr_debug("Read_old block "
2609                                                 "%d for Reconstruct\n", i);
2610                                         set_bit(R5_LOCKED, &dev->flags);
2611                                         set_bit(R5_Wantread, &dev->flags);
2612                                         s->locked++;
2613                                 } else {
2614                                         set_bit(STRIPE_DELAYED, &sh->state);
2615                                         set_bit(STRIPE_HANDLE, &sh->state);
2616                                 }
2617                         }
2618                 }
2619         /* now if nothing is locked, and if we have enough data,
2620          * we can start a write request
2621          */
2622         /* since handle_stripe can be called at any time we need to handle the
2623          * case where a compute block operation has been submitted and then a
2624          * subsequent call wants to start a write request.  raid_run_ops only
2625          * handles the case where compute block and reconstruct are requested
2626          * simultaneously.  If this is not the case then new writes need to be
2627          * held off until the compute completes.
2628          */
2629         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2630             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2631             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2632                 schedule_reconstruction(sh, s, rcw == 0, 0);
2633 }
2634
2635 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2636                 struct stripe_head *sh, struct stripe_head_state *s,
2637                 struct r6_state *r6s, int disks)
2638 {
2639         int rcw = 0, pd_idx = sh->pd_idx, i;
2640         int qd_idx = sh->qd_idx;
2641
2642         set_bit(STRIPE_HANDLE, &sh->state);
2643         for (i = disks; i--; ) {
2644                 struct r5dev *dev = &sh->dev[i];
2645                 /* check if we haven't enough data */
2646                 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2647                     i != pd_idx && i != qd_idx &&
2648                     !test_bit(R5_LOCKED, &dev->flags) &&
2649                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2650                       test_bit(R5_Wantcompute, &dev->flags))) {
2651                         rcw++;
2652                         if (!test_bit(R5_Insync, &dev->flags))
2653                                 continue; /* it's a failed drive */
2654
2655                         if (
2656                           test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2657                                 pr_debug("Read_old stripe %llu "
2658                                         "block %d for Reconstruct\n",
2659                                      (unsigned long long)sh->sector, i);
2660                                 set_bit(R5_LOCKED, &dev->flags);
2661                                 set_bit(R5_Wantread, &dev->flags);
2662                                 s->locked++;
2663                         } else {
2664                                 pr_debug("Request delayed stripe %llu "
2665                                         "block %d for Reconstruct\n",
2666                                      (unsigned long long)sh->sector, i);
2667                                 set_bit(STRIPE_DELAYED, &sh->state);
2668                                 set_bit(STRIPE_HANDLE, &sh->state);
2669                         }
2670                 }
2671         }
2672         /* now if nothing is locked, and if we have enough data, we can start a
2673          * write request
2674          */
2675         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2676             s->locked == 0 && rcw == 0 &&
2677             !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2678                 schedule_reconstruction(sh, s, 1, 0);
2679         }
2680 }
2681
2682 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2683                                 struct stripe_head_state *s, int disks)
2684 {
2685         struct r5dev *dev = NULL;
2686
2687         set_bit(STRIPE_HANDLE, &sh->state);
2688
2689         switch (sh->check_state) {
2690         case check_state_idle:
2691                 /* start a new check operation if there are no failures */
2692                 if (s->failed == 0) {
2693                         BUG_ON(s->uptodate != disks);
2694                         sh->check_state = check_state_run;
2695                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2696                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2697                         s->uptodate--;
2698                         break;
2699                 }
2700                 dev = &sh->dev[s->failed_num];
2701                 /* fall through */
2702         case check_state_compute_result:
2703                 sh->check_state = check_state_idle;
2704                 if (!dev)
2705                         dev = &sh->dev[sh->pd_idx];
2706
2707                 /* check that a write has not made the stripe insync */
2708                 if (test_bit(STRIPE_INSYNC, &sh->state))
2709                         break;
2710
2711                 /* either failed parity check, or recovery is happening */
2712                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2713                 BUG_ON(s->uptodate != disks);
2714
2715                 set_bit(R5_LOCKED, &dev->flags);
2716                 s->locked++;
2717                 set_bit(R5_Wantwrite, &dev->flags);
2718
2719                 clear_bit(STRIPE_DEGRADED, &sh->state);
2720                 set_bit(STRIPE_INSYNC, &sh->state);
2721                 break;
2722         case check_state_run:
2723                 break; /* we will be called again upon completion */
2724         case check_state_check_result:
2725                 sh->check_state = check_state_idle;
2726
2727                 /* if a failure occurred during the check operation, leave
2728                  * STRIPE_INSYNC not set and let the stripe be handled again
2729                  */
2730                 if (s->failed)
2731                         break;
2732
2733                 /* handle a successful check operation, if parity is correct
2734                  * we are done.  Otherwise update the mismatch count and repair
2735                  * parity if !MD_RECOVERY_CHECK
2736                  */
2737                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2738                         /* parity is correct (on disc,
2739                          * not in buffer any more)
2740                          */
2741                         set_bit(STRIPE_INSYNC, &sh->state);
2742                 else {
2743                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2744                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2745                                 /* don't try to repair!! */
2746                                 set_bit(STRIPE_INSYNC, &sh->state);
2747                         else {
2748                                 sh->check_state = check_state_compute_run;
2749                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2750                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2751                                 set_bit(R5_Wantcompute,
2752                                         &sh->dev[sh->pd_idx].flags);
2753                                 sh->ops.target = sh->pd_idx;
2754                                 sh->ops.target2 = -1;
2755                                 s->uptodate++;
2756                         }
2757                 }
2758                 break;
2759         case check_state_compute_run:
2760                 break;
2761         default:
2762                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2763                        __func__, sh->check_state,
2764                        (unsigned long long) sh->sector);
2765                 BUG();
2766         }
2767 }
2768
2769
2770 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2771                                   struct stripe_head_state *s,
2772                                   struct r6_state *r6s, int disks)
2773 {
2774         int pd_idx = sh->pd_idx;
2775         int qd_idx = sh->qd_idx;
2776         struct r5dev *dev;
2777
2778         set_bit(STRIPE_HANDLE, &sh->state);
2779
2780         BUG_ON(s->failed > 2);
2781
2782         /* Want to check and possibly repair P and Q.
2783          * However there could be one 'failed' device, in which
2784          * case we can only check one of them, possibly using the
2785          * other to generate missing data
2786          */
2787
2788         switch (sh->check_state) {
2789         case check_state_idle:
2790                 /* start a new check operation if there are < 2 failures */
2791                 if (s->failed == r6s->q_failed) {
2792                         /* The only possible failed device holds Q, so it
2793                          * makes sense to check P (If anything else were failed,
2794                          * we would have used P to recreate it).
2795                          */
2796                         sh->check_state = check_state_run;
2797                 }
2798                 if (!r6s->q_failed && s->failed < 2) {
2799                         /* Q is not failed, and we didn't use it to generate
2800                          * anything, so it makes sense to check it
2801                          */
2802                         if (sh->check_state == check_state_run)
2803                                 sh->check_state = check_state_run_pq;
2804                         else
2805                                 sh->check_state = check_state_run_q;
2806                 }
2807
2808                 /* discard potentially stale zero_sum_result */
2809                 sh->ops.zero_sum_result = 0;
2810
2811                 if (sh->check_state == check_state_run) {
2812                         /* async_xor_zero_sum destroys the contents of P */
2813                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2814                         s->uptodate--;
2815                 }
2816                 if (sh->check_state >= check_state_run &&
2817                     sh->check_state <= check_state_run_pq) {
2818                         /* async_syndrome_zero_sum preserves P and Q, so
2819                          * no need to mark them !uptodate here
2820                          */
2821                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2822                         break;
2823                 }
2824
2825                 /* we have 2-disk failure */
2826                 BUG_ON(s->failed != 2);
2827                 /* fall through */
2828         case check_state_compute_result:
2829                 sh->check_state = check_state_idle;
2830
2831                 /* check that a write has not made the stripe insync */
2832                 if (test_bit(STRIPE_INSYNC, &sh->state))
2833                         break;
2834
2835                 /* now write out any block on a failed drive,
2836                  * or P or Q if they were recomputed
2837                  */
2838                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2839                 if (s->failed == 2) {
2840                         dev = &sh->dev[r6s->failed_num[1]];
2841                         s->locked++;
2842                         set_bit(R5_LOCKED, &dev->flags);
2843                         set_bit(R5_Wantwrite, &dev->flags);
2844                 }
2845                 if (s->failed >= 1) {
2846                         dev = &sh->dev[r6s->failed_num[0]];
2847                         s->locked++;
2848                         set_bit(R5_LOCKED, &dev->flags);
2849                         set_bit(R5_Wantwrite, &dev->flags);
2850                 }
2851                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2852                         dev = &sh->dev[pd_idx];
2853                         s->locked++;
2854                         set_bit(R5_LOCKED, &dev->flags);
2855                         set_bit(R5_Wantwrite, &dev->flags);
2856                 }
2857                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2858                         dev = &sh->dev[qd_idx];
2859                         s->locked++;
2860                         set_bit(R5_LOCKED, &dev->flags);
2861                         set_bit(R5_Wantwrite, &dev->flags);
2862                 }
2863                 clear_bit(STRIPE_DEGRADED, &sh->state);
2864
2865                 set_bit(STRIPE_INSYNC, &sh->state);
2866                 break;
2867         case check_state_run:
2868         case check_state_run_q:
2869         case check_state_run_pq:
2870                 break; /* we will be called again upon completion */
2871         case check_state_check_result:
2872                 sh->check_state = check_state_idle;
2873
2874                 /* handle a successful check operation, if parity is correct
2875                  * we are done.  Otherwise update the mismatch count and repair
2876                  * parity if !MD_RECOVERY_CHECK
2877                  */
2878                 if (sh->ops.zero_sum_result == 0) {
2879                         /* both parities are correct */
2880                         if (!s->failed)
2881                                 set_bit(STRIPE_INSYNC, &sh->state);
2882                         else {
2883                                 /* in contrast to the raid5 case we can validate
2884                                  * parity, but still have a failure to write
2885                                  * back
2886                                  */
2887                                 sh->check_state = check_state_compute_result;
2888                                 /* Returning at this point means that we may go
2889                                  * off and bring p and/or q uptodate again so
2890                                  * we make sure to check zero_sum_result again
2891                                  * to verify if p or q need writeback
2892                                  */
2893                         }
2894                 } else {
2895                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2896                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2897                                 /* don't try to repair!! */
2898                                 set_bit(STRIPE_INSYNC, &sh->state);
2899                         else {
2900                                 int *target = &sh->ops.target;
2901
2902                                 sh->ops.target = -1;
2903                                 sh->ops.target2 = -1;
2904                                 sh->check_state = check_state_compute_run;
2905                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2906                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2907                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2908                                         set_bit(R5_Wantcompute,
2909                                                 &sh->dev[pd_idx].flags);
2910                                         *target = pd_idx;
2911                                         target = &sh->ops.target2;
2912                                         s->uptodate++;
2913                                 }
2914                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2915                                         set_bit(R5_Wantcompute,
2916                                                 &sh->dev[qd_idx].flags);
2917                                         *target = qd_idx;
2918                                         s->uptodate++;
2919                                 }
2920                         }
2921                 }
2922                 break;
2923         case check_state_compute_run:
2924                 break;
2925         default:
2926                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2927                        __func__, sh->check_state,
2928                        (unsigned long long) sh->sector);
2929                 BUG();
2930         }
2931 }
2932
2933 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2934                                 struct r6_state *r6s)
2935 {
2936         int i;
2937
2938         /* We have read all the blocks in this stripe and now we need to
2939          * copy some of them into a target stripe for expand.
2940          */
2941         struct dma_async_tx_descriptor *tx = NULL;
2942         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2943         for (i = 0; i < sh->disks; i++)
2944                 if (i != sh->pd_idx && i != sh->qd_idx) {
2945                         int dd_idx, j;
2946                         struct stripe_head *sh2;
2947                         struct async_submit_ctl submit;
2948
2949                         sector_t bn = compute_blocknr(sh, i, 1);
2950                         sector_t s = raid5_compute_sector(conf, bn, 0,
2951                                                           &dd_idx, NULL);
2952                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
2953                         if (sh2 == NULL)
2954                                 /* so far only the early blocks of this stripe
2955                                  * have been requested.  When later blocks
2956                                  * get requested, we will try again
2957                                  */
2958                                 continue;
2959                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2960                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2961                                 /* must have already done this block */
2962                                 release_stripe(sh2);
2963                                 continue;
2964                         }
2965
2966                         /* place all the copies on one channel */
2967                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2968                         tx = async_memcpy(sh2->dev[dd_idx].page,
2969                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
2970                                           &submit);
2971
2972                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2973                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2974                         for (j = 0; j < conf->raid_disks; j++)
2975                                 if (j != sh2->pd_idx &&
2976                                     (!r6s || j != sh2->qd_idx) &&
2977                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
2978                                         break;
2979                         if (j == conf->raid_disks) {
2980                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2981                                 set_bit(STRIPE_HANDLE, &sh2->state);
2982                         }
2983                         release_stripe(sh2);
2984
2985                 }
2986         /* done submitting copies, wait for them to complete */
2987         if (tx) {
2988                 async_tx_ack(tx);
2989                 dma_wait_for_async_tx(tx);
2990         }
2991 }
2992
2993
2994 /*
2995  * handle_stripe - do things to a stripe.
2996  *
2997  * We lock the stripe and then examine the state of various bits
2998  * to see what needs to be done.
2999  * Possible results:
3000  *    return some read request which now have data
3001  *    return some write requests which are safely on disc
3002  *    schedule a read on some buffers
3003  *    schedule a write of some buffers
3004  *    return confirmation of parity correctness
3005  *
3006  * buffers are taken off read_list or write_list, and bh_cache buffers
3007  * get BH_Lock set before the stripe lock is released.
3008  *
3009  */
3010
3011 static void handle_stripe5(struct stripe_head *sh)
3012 {
3013         raid5_conf_t *conf = sh->raid_conf;
3014         int disks = sh->disks, i;
3015         struct bio *return_bi = NULL;
3016         struct stripe_head_state s;
3017         struct r5dev *dev;
3018         mdk_rdev_t *blocked_rdev = NULL;
3019         int prexor;
3020         int dec_preread_active = 0;
3021
3022         memset(&s, 0, sizeof(s));
3023         pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
3024                  "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
3025                  atomic_read(&sh->count), sh->pd_idx, sh->check_state,
3026                  sh->reconstruct_state);
3027
3028         spin_lock(&sh->lock);
3029         clear_bit(STRIPE_HANDLE, &sh->state);
3030         clear_bit(STRIPE_DELAYED, &sh->state);
3031
3032         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3033         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3034         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3035
3036         /* Now to look around and see what can be done */
3037         rcu_read_lock();
3038         for (i=disks; i--; ) {
3039                 mdk_rdev_t *rdev;
3040
3041                 dev = &sh->dev[i];
3042
3043                 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
3044                         "written %p\n", i, dev->flags, dev->toread, dev->read,
3045                         dev->towrite, dev->written);
3046
3047                 /* maybe we can request a biofill operation
3048                  *
3049                  * new wantfill requests are only permitted while
3050                  * ops_complete_biofill is guaranteed to be inactive
3051                  */
3052                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3053                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3054                         set_bit(R5_Wantfill, &dev->flags);
3055
3056                 /* now count some things */
3057                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3058                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3059                 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
3060
3061                 if (test_bit(R5_Wantfill, &dev->flags))
3062                         s.to_fill++;
3063                 else if (dev->toread)
3064                         s.to_read++;
3065                 if (dev->towrite) {
3066                         s.to_write++;
3067                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3068                                 s.non_overwrite++;
3069                 }
3070                 if (dev->written)
3071                         s.written++;
3072                 rdev = rcu_dereference(conf->disks[i].rdev);
3073                 if (blocked_rdev == NULL &&
3074                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3075                         blocked_rdev = rdev;
3076                         atomic_inc(&rdev->nr_pending);
3077                 }
3078                 clear_bit(R5_Insync, &dev->flags);
3079                 if (!rdev)
3080                         /* Not in-sync */;
3081                 else if (test_bit(In_sync, &rdev->flags))
3082                         set_bit(R5_Insync, &dev->flags);
3083                 else {
3084                         /* could be in-sync depending on recovery/reshape status */
3085                         if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3086                                 set_bit(R5_Insync, &dev->flags);
3087                 }
3088                 if (!test_bit(R5_Insync, &dev->flags)) {
3089                         /* The ReadError flag will just be confusing now */
3090                         clear_bit(R5_ReadError, &dev->flags);
3091                         clear_bit(R5_ReWrite, &dev->flags);
3092                 }
3093                 if (test_bit(R5_ReadError, &dev->flags))
3094                         clear_bit(R5_Insync, &dev->flags);
3095                 if (!test_bit(R5_Insync, &dev->flags)) {
3096                         s.failed++;
3097                         s.failed_num = i;
3098                 }
3099         }
3100         rcu_read_unlock();
3101
3102         if (unlikely(blocked_rdev)) {
3103                 if (s.syncing || s.expanding || s.expanded ||
3104                     s.to_write || s.written) {
3105                         set_bit(STRIPE_HANDLE, &sh->state);
3106                         goto unlock;
3107                 }
3108                 /* There is nothing for the blocked_rdev to block */
3109                 rdev_dec_pending(blocked_rdev, conf->mddev);
3110                 blocked_rdev = NULL;
3111         }
3112
3113         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3114                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3115                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3116         }
3117
3118         pr_debug("locked=%d uptodate=%d to_read=%d"
3119                 " to_write=%d failed=%d failed_num=%d\n",
3120                 s.locked, s.uptodate, s.to_read, s.to_write,
3121                 s.failed, s.failed_num);
3122         /* check if the array has lost two devices and, if so, some requests might
3123          * need to be failed
3124          */
3125         if (s.failed > 1 && s.to_read+s.to_write+s.written)
3126                 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3127         if (s.failed > 1 && s.syncing) {
3128                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3129                 clear_bit(STRIPE_SYNCING, &sh->state);
3130                 s.syncing = 0;
3131         }
3132
3133         /* might be able to return some write requests if the parity block
3134          * is safe, or on a failed drive
3135          */
3136         dev = &sh->dev[sh->pd_idx];
3137         if ( s.written &&
3138              ((test_bit(R5_Insync, &dev->flags) &&
3139                !test_bit(R5_LOCKED, &dev->flags) &&
3140                test_bit(R5_UPTODATE, &dev->flags)) ||
3141                (s.failed == 1 && s.failed_num == sh->pd_idx)))
3142                 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3143
3144         /* Now we might consider reading some blocks, either to check/generate
3145          * parity, or to satisfy requests
3146          * or to load a block that is being partially written.
3147          */
3148         if (s.to_read || s.non_overwrite ||
3149             (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3150                 handle_stripe_fill5(sh, &s, disks);
3151
3152         /* Now we check to see if any write operations have recently
3153          * completed
3154          */
3155         prexor = 0;
3156         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3157                 prexor = 1;
3158         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3159             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3160                 sh->reconstruct_state = reconstruct_state_idle;
3161
3162                 /* All the 'written' buffers and the parity block are ready to
3163                  * be written back to disk
3164                  */
3165                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3166                 for (i = disks; i--; ) {
3167                         dev = &sh->dev[i];
3168                         if (test_bit(R5_LOCKED, &dev->flags) &&
3169                                 (i == sh->pd_idx || dev->written)) {
3170                                 pr_debug("Writing block %d\n", i);
3171                                 set_bit(R5_Wantwrite, &dev->flags);
3172                                 if (prexor)
3173                                         continue;
3174                                 if (!test_bit(R5_Insync, &dev->flags) ||
3175                                     (i == sh->pd_idx && s.failed == 0))
3176                                         set_bit(STRIPE_INSYNC, &sh->state);
3177                         }
3178                 }
3179                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3180                         dec_preread_active = 1;
3181         }
3182
3183         /* Now to consider new write requests and what else, if anything
3184          * should be read.  We do not handle new writes when:
3185          * 1/ A 'write' operation (copy+xor) is already in flight.
3186          * 2/ A 'check' operation is in flight, as it may clobber the parity
3187          *    block.
3188          */
3189         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3190                 handle_stripe_dirtying5(conf, sh, &s, disks);
3191
3192         /* maybe we need to check and possibly fix the parity for this stripe
3193          * Any reads will already have been scheduled, so we just see if enough
3194          * data is available.  The parity check is held off while parity
3195          * dependent operations are in flight.
3196          */
3197         if (sh->check_state ||
3198             (s.syncing && s.locked == 0 &&
3199              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3200              !test_bit(STRIPE_INSYNC, &sh->state)))
3201                 handle_parity_checks5(conf, sh, &s, disks);
3202
3203         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3204                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3205                 clear_bit(STRIPE_SYNCING, &sh->state);
3206         }
3207
3208         /* If the failed drive is just a ReadError, then we might need to progress
3209          * the repair/check process
3210          */
3211         if (s.failed == 1 && !conf->mddev->ro &&
3212             test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
3213             && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
3214             && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
3215                 ) {
3216                 dev = &sh->dev[s.failed_num];
3217                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3218                         set_bit(R5_Wantwrite, &dev->flags);
3219                         set_bit(R5_ReWrite, &dev->flags);
3220                         set_bit(R5_LOCKED, &dev->flags);
3221                         s.locked++;
3222                 } else {
3223                         /* let's read it back */
3224                         set_bit(R5_Wantread, &dev->flags);
3225                         set_bit(R5_LOCKED, &dev->flags);
3226                         s.locked++;
3227                 }
3228         }
3229
3230         /* Finish reconstruct operations initiated by the expansion process */
3231         if (sh->reconstruct_state == reconstruct_state_result) {
3232                 struct stripe_head *sh2
3233                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3234                 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3235                         /* sh cannot be written until sh2 has been read.
3236                          * so arrange for sh to be delayed a little
3237                          */
3238                         set_bit(STRIPE_DELAYED, &sh->state);
3239                         set_bit(STRIPE_HANDLE, &sh->state);
3240                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3241                                               &sh2->state))
3242                                 atomic_inc(&conf->preread_active_stripes);
3243                         release_stripe(sh2);
3244                         goto unlock;
3245                 }
3246                 if (sh2)
3247                         release_stripe(sh2);
3248
3249                 sh->reconstruct_state = reconstruct_state_idle;
3250                 clear_bit(STRIPE_EXPANDING, &sh->state);
3251                 for (i = conf->raid_disks; i--; ) {
3252                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3253                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3254                         s.locked++;
3255                 }
3256         }
3257
3258         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3259             !sh->reconstruct_state) {
3260                 /* Need to write out all blocks after computing parity */
3261                 sh->disks = conf->raid_disks;
3262                 stripe_set_idx(sh->sector, conf, 0, sh);
3263                 schedule_reconstruction(sh, &s, 1, 1);
3264         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3265                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3266                 atomic_dec(&conf->reshape_stripes);
3267                 wake_up(&conf->wait_for_overlap);
3268                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3269         }
3270
3271         if (s.expanding && s.locked == 0 &&
3272             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3273                 handle_stripe_expansion(conf, sh, NULL);
3274
3275  unlock:
3276         spin_unlock(&sh->lock);
3277
3278         /* wait for this device to become unblocked */
3279         if (unlikely(blocked_rdev))
3280                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3281
3282         if (s.ops_request)
3283                 raid_run_ops(sh, s.ops_request);
3284
3285         ops_run_io(sh, &s);
3286
3287         if (dec_preread_active) {
3288                 /* We delay this until after ops_run_io so that if make_request
3289                  * is waiting on a flush, it won't continue until the writes
3290                  * have actually been submitted.
3291                  */
3292                 atomic_dec(&conf->preread_active_stripes);
3293                 if (atomic_read(&conf->preread_active_stripes) <
3294                     IO_THRESHOLD)
3295                         md_wakeup_thread(conf->mddev->thread);
3296         }
3297         return_io(return_bi);
3298 }
3299
3300 static void handle_stripe6(struct stripe_head *sh)
3301 {
3302         raid5_conf_t *conf = sh->raid_conf;
3303         int disks = sh->disks;
3304         struct bio *return_bi = NULL;
3305         int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3306         struct stripe_head_state s;
3307         struct r6_state r6s;
3308         struct r5dev *dev, *pdev, *qdev;
3309         mdk_rdev_t *blocked_rdev = NULL;
3310         int dec_preread_active = 0;
3311
3312         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3313                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3314                (unsigned long long)sh->sector, sh->state,
3315                atomic_read(&sh->count), pd_idx, qd_idx,
3316                sh->check_state, sh->reconstruct_state);
3317         memset(&s, 0, sizeof(s));
3318
3319         spin_lock(&sh->lock);
3320         clear_bit(STRIPE_HANDLE, &sh->state);
3321         clear_bit(STRIPE_DELAYED, &sh->state);
3322
3323         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3324         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3325         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3326         /* Now to look around and see what can be done */
3327
3328         rcu_read_lock();
3329         for (i=disks; i--; ) {
3330                 mdk_rdev_t *rdev;
3331                 dev = &sh->dev[i];
3332
3333                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3334                         i, dev->flags, dev->toread, dev->towrite, dev->written);
3335                 /* maybe we can reply to a read
3336                  *
3337                  * new wantfill requests are only permitted while
3338                  * ops_complete_biofill is guaranteed to be inactive
3339                  */
3340                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3341                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3342                         set_bit(R5_Wantfill, &dev->flags);
3343
3344                 /* now count some things */
3345                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3346                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3347                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3348                         s.compute++;
3349                         BUG_ON(s.compute > 2);
3350                 }
3351
3352                 if (test_bit(R5_Wantfill, &dev->flags)) {
3353                         s.to_fill++;
3354                 } else if (dev->toread)
3355                         s.to_read++;
3356                 if (dev->towrite) {
3357                         s.to_write++;
3358                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3359                                 s.non_overwrite++;
3360                 }
3361                 if (dev->written)
3362                         s.written++;
3363                 rdev = rcu_dereference(conf->disks[i].rdev);
3364                 if (blocked_rdev == NULL &&
3365                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3366                         blocked_rdev = rdev;
3367                         atomic_inc(&rdev->nr_pending);
3368                 }
3369                 clear_bit(R5_Insync, &dev->flags);
3370                 if (!rdev)
3371                         /* Not in-sync */;
3372                 else if (test_bit(In_sync, &rdev->flags))
3373                         set_bit(R5_Insync, &dev->flags);
3374                 else {
3375                         /* in sync if before recovery_offset */
3376                         if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3377                                 set_bit(R5_Insync, &dev->flags);
3378                 }
3379                 if (!test_bit(R5_Insync, &dev->flags)) {
3380                         /* The ReadError flag will just be confusing now */
3381                         clear_bit(R5_ReadError, &dev->flags);
3382                         clear_bit(R5_ReWrite, &dev->flags);
3383                 }
3384                 if (test_bit(R5_ReadError, &dev->flags))
3385                         clear_bit(R5_Insync, &dev->flags);
3386                 if (!test_bit(R5_Insync, &dev->flags)) {
3387                         if (s.failed < 2)
3388                                 r6s.failed_num[s.failed] = i;
3389                         s.failed++;
3390                 }
3391         }
3392         rcu_read_unlock();
3393
3394         if (unlikely(blocked_rdev)) {
3395                 if (s.syncing || s.expanding || s.expanded ||
3396                     s.to_write || s.written) {
3397                         set_bit(STRIPE_HANDLE, &sh->state);
3398                         goto unlock;
3399                 }
3400                 /* There is nothing for the blocked_rdev to block */
3401                 rdev_dec_pending(blocked_rdev, conf->mddev);
3402                 blocked_rdev = NULL;
3403         }
3404
3405         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3406                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3407                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3408         }
3409
3410         pr_debug("locked=%d uptodate=%d to_read=%d"
3411                " to_write=%d failed=%d failed_num=%d,%d\n",
3412                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3413                r6s.failed_num[0], r6s.failed_num[1]);
3414         /* check if the array has lost >2 devices and, if so, some requests
3415          * might need to be failed
3416          */
3417         if (s.failed > 2 && s.to_read+s.to_write+s.written)
3418                 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3419         if (s.failed > 2 && s.syncing) {
3420                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3421                 clear_bit(STRIPE_SYNCING, &sh->state);
3422                 s.syncing = 0;
3423         }
3424
3425         /*
3426          * might be able to return some write requests if the parity blocks
3427          * are safe, or on a failed drive
3428          */
3429         pdev = &sh->dev[pd_idx];
3430         r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3431                 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3432         qdev = &sh->dev[qd_idx];
3433         r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3434                 || (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3435
3436         if ( s.written &&
3437              ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3438                              && !test_bit(R5_LOCKED, &pdev->flags)
3439                              && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3440              ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3441                              && !test_bit(R5_LOCKED, &qdev->flags)
3442                              && test_bit(R5_UPTODATE, &qdev->flags)))))
3443                 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3444
3445         /* Now we might consider reading some blocks, either to check/generate
3446          * parity, or to satisfy requests
3447          * or to load a block that is being partially written.
3448          */
3449         if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3450             (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3451                 handle_stripe_fill6(sh, &s, &r6s, disks);
3452
3453         /* Now we check to see if any write operations have recently
3454          * completed
3455          */
3456         if (sh->reconstruct_state == reconstruct_state_drain_result) {
3457
3458                 sh->reconstruct_state = reconstruct_state_idle;
3459                 /* All the 'written' buffers and the parity blocks are ready to
3460                  * be written back to disk
3461                  */
3462                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3463                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
3464                 for (i = disks; i--; ) {
3465                         dev = &sh->dev[i];
3466                         if (test_bit(R5_LOCKED, &dev->flags) &&
3467                             (i == sh->pd_idx || i == qd_idx ||
3468                              dev->written)) {
3469                                 pr_debug("Writing block %d\n", i);
3470                                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3471                                 set_bit(R5_Wantwrite, &dev->flags);
3472                                 if (!test_bit(R5_Insync, &dev->flags) ||
3473                                     ((i == sh->pd_idx || i == qd_idx) &&
3474                                       s.failed == 0))
3475                                         set_bit(STRIPE_INSYNC, &sh->state);
3476                         }
3477                 }
3478                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3479                         dec_preread_active = 1;
3480         }
3481
3482         /* Now to consider new write requests and what else, if anything
3483          * should be read.  We do not handle new writes when:
3484          * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
3485          * 2/ A 'check' operation is in flight, as it may clobber the parity
3486          *    block.
3487          */
3488         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3489                 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3490
3491         /* maybe we need to check and possibly fix the parity for this stripe
3492          * Any reads will already have been scheduled, so we just see if enough
3493          * data is available.  The parity check is held off while parity
3494          * dependent operations are in flight.
3495          */
3496         if (sh->check_state ||
3497             (s.syncing && s.locked == 0 &&
3498              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3499              !test_bit(STRIPE_INSYNC, &sh->state)))
3500                 handle_parity_checks6(conf, sh, &s, &r6s, disks);
3501
3502         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3503                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3504                 clear_bit(STRIPE_SYNCING, &sh->state);
3505         }
3506
3507         /* If the failed drives are just a ReadError, then we might need
3508          * to progress the repair/check process
3509          */
3510         if (s.failed <= 2 && !conf->mddev->ro)
3511                 for (i = 0; i < s.failed; i++) {
3512                         dev = &sh->dev[r6s.failed_num[i]];
3513                         if (test_bit(R5_ReadError, &dev->flags)
3514                             && !test_bit(R5_LOCKED, &dev->flags)
3515                             && test_bit(R5_UPTODATE, &dev->flags)
3516                                 ) {
3517                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3518                                         set_bit(R5_Wantwrite, &dev->flags);
3519                                         set_bit(R5_ReWrite, &dev->flags);
3520                                         set_bit(R5_LOCKED, &dev->flags);
3521                                         s.locked++;
3522                                 } else {
3523                                         /* let's read it back */
3524                                         set_bit(R5_Wantread, &dev->flags);
3525                                         set_bit(R5_LOCKED, &dev->flags);
3526                                         s.locked++;
3527                                 }
3528                         }
3529                 }
3530
3531         /* Finish reconstruct operations initiated by the expansion process */
3532         if (sh->reconstruct_state == reconstruct_state_result) {
3533                 sh->reconstruct_state = reconstruct_state_idle;
3534                 clear_bit(STRIPE_EXPANDING, &sh->state);
3535                 for (i = conf->raid_disks; i--; ) {
3536                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3537                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3538                         s.locked++;
3539                 }
3540         }
3541
3542         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3543             !sh->reconstruct_state) {
3544                 struct stripe_head *sh2
3545                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3546                 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3547                         /* sh cannot be written until sh2 has been read.
3548                          * so arrange for sh to be delayed a little
3549                          */
3550                         set_bit(STRIPE_DELAYED, &sh->state);
3551                         set_bit(STRIPE_HANDLE, &sh->state);
3552                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3553                                               &sh2->state))
3554                                 atomic_inc(&conf->preread_active_stripes);
3555                         release_stripe(sh2);
3556                         goto unlock;
3557                 }
3558                 if (sh2)
3559                         release_stripe(sh2);
3560
3561                 /* Need to write out all blocks after computing P&Q */
3562                 sh->disks = conf->raid_disks;
3563                 stripe_set_idx(sh->sector, conf, 0, sh);
3564                 schedule_reconstruction(sh, &s, 1, 1);
3565         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3566                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3567                 atomic_dec(&conf->reshape_stripes);
3568                 wake_up(&conf->wait_for_overlap);
3569                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3570         }
3571
3572         if (s.expanding && s.locked == 0 &&
3573             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3574                 handle_stripe_expansion(conf, sh, &r6s);
3575
3576  unlock:
3577         spin_unlock(&sh->lock);
3578
3579         /* wait for this device to become unblocked */
3580         if (unlikely(blocked_rdev))
3581                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3582
3583         if (s.ops_request)
3584                 raid_run_ops(sh, s.ops_request);
3585
3586         ops_run_io(sh, &s);
3587
3588
3589         if (dec_preread_active) {
3590                 /* We delay this until after ops_run_io so that if make_request
3591                  * is waiting on a flush, it won't continue until the writes
3592                  * have actually been submitted.
3593                  */
3594                 atomic_dec(&conf->preread_active_stripes);
3595                 if (atomic_read(&conf->preread_active_stripes) <
3596                     IO_THRESHOLD)
3597                         md_wakeup_thread(conf->mddev->thread);
3598         }
3599
3600         return_io(return_bi);
3601 }
3602
3603 static void handle_stripe(struct stripe_head *sh)
3604 {
3605         if (sh->raid_conf->level == 6)
3606                 handle_stripe6(sh);
3607         else
3608                 handle_stripe5(sh);
3609 }
3610
3611 static void raid5_activate_delayed(raid5_conf_t *conf)
3612 {
3613         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3614                 while (!list_empty(&conf->delayed_list)) {
3615                         struct list_head *l = conf->delayed_list.next;
3616                         struct stripe_head *sh;
3617                         sh = list_entry(l, struct stripe_head, lru);
3618                         list_del_init(l);
3619                         clear_bit(STRIPE_DELAYED, &sh->state);
3620                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3621                                 atomic_inc(&conf->preread_active_stripes);
3622                         list_add_tail(&sh->lru, &conf->hold_list);
3623                 }
3624         }
3625 }
3626
3627 static void activate_bit_delay(raid5_conf_t *conf)
3628 {
3629         /* device_lock is held */
3630         struct list_head head;
3631         list_add(&head, &conf->bitmap_list);
3632         list_del_init(&conf->bitmap_list);
3633         while (!list_empty(&head)) {
3634                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3635                 list_del_init(&sh->lru);
3636                 atomic_inc(&sh->count);
3637                 __release_stripe(conf, sh);
3638         }
3639 }
3640
3641 int md_raid5_congested(mddev_t *mddev, int bits)
3642 {
3643         raid5_conf_t *conf = mddev->private;
3644
3645         /* No difference between reads and writes.  Just check
3646          * how busy the stripe_cache is
3647          */
3648
3649         if (conf->inactive_blocked)
3650                 return 1;
3651         if (conf->quiesce)
3652                 return 1;
3653         if (list_empty_careful(&conf->inactive_list))
3654                 return 1;
3655
3656         return 0;
3657 }
3658 EXPORT_SYMBOL_GPL(md_raid5_congested);
3659
3660 static int raid5_congested(void *data, int bits)
3661 {
3662         mddev_t *mddev = data;
3663
3664         return mddev_congested(mddev, bits) ||
3665                 md_raid5_congested(mddev, bits);
3666 }
3667
3668 /* We want read requests to align with chunks where possible,
3669  * but write requests don't need to.
3670  */
3671 static int raid5_mergeable_bvec(struct request_queue *q,
3672                                 struct bvec_merge_data *bvm,
3673                                 struct bio_vec *biovec)
3674 {
3675         mddev_t *mddev = q->queuedata;
3676         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3677         int max;
3678         unsigned int chunk_sectors = mddev->chunk_sectors;
3679         unsigned int bio_sectors = bvm->bi_size >> 9;
3680
3681         if ((bvm->bi_rw & 1) == WRITE)
3682                 return biovec->bv_len; /* always allow writes to be mergeable */
3683
3684         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3685                 chunk_sectors = mddev->new_chunk_sectors;
3686         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3687         if (max < 0) max = 0;
3688         if (max <= biovec->bv_len && bio_sectors == 0)
3689                 return biovec->bv_len;
3690         else
3691                 return max;
3692 }
3693
3694
3695 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3696 {
3697         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3698         unsigned int chunk_sectors = mddev->chunk_sectors;
3699         unsigned int bio_sectors = bio->bi_size >> 9;
3700
3701         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3702                 chunk_sectors = mddev->new_chunk_sectors;
3703         return  chunk_sectors >=
3704                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3705 }
3706
3707 /*
3708  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3709  *  later sampled by raid5d.
3710  */
3711 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3712 {
3713         unsigned long flags;
3714
3715         spin_lock_irqsave(&conf->device_lock, flags);
3716
3717         bi->bi_next = conf->retry_read_aligned_list;
3718         conf->retry_read_aligned_list = bi;
3719
3720         spin_unlock_irqrestore(&conf->device_lock, flags);
3721         md_wakeup_thread(conf->mddev->thread);
3722 }
3723
3724
3725 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3726 {
3727         struct bio *bi;
3728
3729         bi = conf->retry_read_aligned;
3730         if (bi) {
3731                 conf->retry_read_aligned = NULL;
3732                 return bi;
3733         }
3734         bi = conf->retry_read_aligned_list;
3735         if(bi) {
3736                 conf->retry_read_aligned_list = bi->bi_next;
3737                 bi->bi_next = NULL;
3738                 /*
3739                  * this sets the active strip count to 1 and the processed
3740                  * strip count to zero (upper 8 bits)
3741                  */
3742                 bi->bi_phys_segments = 1; /* biased count of active stripes */
3743         }
3744
3745         return bi;
3746 }
3747
3748
3749 /*
3750  *  The "raid5_align_endio" should check if the read succeeded and if it
3751  *  did, call bio_endio on the original bio (having bio_put the new bio
3752  *  first).
3753  *  If the read failed..
3754  */
3755 static void raid5_align_endio(struct bio *bi, int error)
3756 {
3757         struct bio* raid_bi  = bi->bi_private;
3758         mddev_t *mddev;
3759         raid5_conf_t *conf;
3760         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3761         mdk_rdev_t *rdev;
3762
3763         bio_put(bi);
3764
3765         rdev = (void*)raid_bi->bi_next;
3766         raid_bi->bi_next = NULL;
3767         mddev = rdev->mddev;
3768         conf = mddev->private;
3769
3770         rdev_dec_pending(rdev, conf->mddev);
3771
3772         if (!error && uptodate) {
3773                 bio_endio(raid_bi, 0);
3774                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3775                         wake_up(&conf->wait_for_stripe);
3776                 return;
3777         }
3778
3779
3780         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3781
3782         add_bio_to_retry(raid_bi, conf);
3783 }
3784
3785 static int bio_fits_rdev(struct bio *bi)
3786 {
3787         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3788
3789         if ((bi->bi_size>>9) > queue_max_sectors(q))
3790                 return 0;
3791         blk_recount_segments(q, bi);
3792         if (bi->bi_phys_segments > queue_max_segments(q))
3793                 return 0;
3794
3795         if (q->merge_bvec_fn)
3796                 /* it's too hard to apply the merge_bvec_fn at this stage,
3797                  * just just give up
3798                  */
3799                 return 0;
3800
3801         return 1;
3802 }
3803
3804
3805 static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3806 {
3807         raid5_conf_t *conf = mddev->private;
3808         int dd_idx;
3809         struct bio* align_bi;
3810         mdk_rdev_t *rdev;
3811
3812         if (!in_chunk_boundary(mddev, raid_bio)) {
3813                 pr_debug("chunk_aligned_read : non aligned\n");
3814                 return 0;
3815         }
3816         /*
3817          * use bio_clone_mddev to make a copy of the bio
3818          */
3819         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3820         if (!align_bi)
3821                 return 0;
3822         /*
3823          *   set bi_end_io to a new function, and set bi_private to the
3824          *     original bio.
3825          */
3826         align_bi->bi_end_io  = raid5_align_endio;
3827         align_bi->bi_private = raid_bio;
3828         /*
3829          *      compute position
3830          */
3831         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3832                                                     0,
3833                                                     &dd_idx, NULL);
3834
3835         rcu_read_lock();
3836         rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3837         if (rdev && test_bit(In_sync, &rdev->flags)) {
3838                 atomic_inc(&rdev->nr_pending);
3839                 rcu_read_unlock();
3840                 raid_bio->bi_next = (void*)rdev;
3841                 align_bi->bi_bdev =  rdev->bdev;
3842                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3843                 align_bi->bi_sector += rdev->data_offset;
3844
3845                 if (!bio_fits_rdev(align_bi)) {
3846                         /* too big in some way */
3847                         bio_put(align_bi);
3848                         rdev_dec_pending(rdev, mddev);
3849                         return 0;
3850                 }
3851
3852                 spin_lock_irq(&conf->device_lock);
3853                 wait_event_lock_irq(conf->wait_for_stripe,
3854                                     conf->quiesce == 0,
3855                                     conf->device_lock, /* nothing */);
3856                 atomic_inc(&conf->active_aligned_reads);
3857                 spin_unlock_irq(&conf->device_lock);
3858
3859                 generic_make_request(align_bi);
3860                 return 1;
3861         } else {
3862                 rcu_read_unlock();
3863                 bio_put(align_bi);
3864                 return 0;
3865         }
3866 }
3867
3868 /* __get_priority_stripe - get the next stripe to process
3869  *
3870  * Full stripe writes are allowed to pass preread active stripes up until
3871  * the bypass_threshold is exceeded.  In general the bypass_count
3872  * increments when the handle_list is handled before the hold_list; however, it
3873  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3874  * stripe with in flight i/o.  The bypass_count will be reset when the
3875  * head of the hold_list has changed, i.e. the head was promoted to the
3876  * handle_list.
3877  */
3878 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3879 {
3880         struct stripe_head *sh;
3881
3882         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3883                   __func__,
3884                   list_empty(&conf->handle_list) ? "empty" : "busy",
3885                   list_empty(&conf->hold_list) ? "empty" : "busy",
3886                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
3887
3888         if (!list_empty(&conf->handle_list)) {
3889                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3890
3891                 if (list_empty(&conf->hold_list))
3892                         conf->bypass_count = 0;
3893                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3894                         if (conf->hold_list.next == conf->last_hold)
3895                                 conf->bypass_count++;
3896                         else {
3897                                 conf->last_hold = conf->hold_list.next;
3898                                 conf->bypass_count -= conf->bypass_threshold;
3899                                 if (conf->bypass_count < 0)
3900                                         conf->bypass_count = 0;
3901                         }
3902                 }
3903         } else if (!list_empty(&conf->hold_list) &&
3904                    ((conf->bypass_threshold &&
3905                      conf->bypass_count > conf->bypass_threshold) ||
3906                     atomic_read(&conf->pending_full_writes) == 0)) {
3907                 sh = list_entry(conf->hold_list.next,
3908                                 typeof(*sh), lru);
3909                 conf->bypass_count -= conf->bypass_threshold;
3910                 if (conf->bypass_count < 0)
3911                         conf->bypass_count = 0;
3912         } else
3913                 return NULL;
3914
3915         list_del_init(&sh->lru);
3916         atomic_inc(&sh->count);
3917         BUG_ON(atomic_read(&sh->count) != 1);
3918         return sh;
3919 }
3920
3921 static int make_request(mddev_t *mddev, struct bio * bi)
3922 {
3923         raid5_conf_t *conf = mddev->private;
3924         int dd_idx;
3925         sector_t new_sector;
3926         sector_t logical_sector, last_sector;
3927         struct stripe_head *sh;
3928         const int rw = bio_data_dir(bi);
3929         int remaining;
3930         int plugged;
3931
3932         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3933                 md_flush_request(mddev, bi);
3934                 return 0;
3935         }
3936
3937         md_write_start(mddev, bi);
3938
3939         if (rw == READ &&
3940              mddev->reshape_position == MaxSector &&
3941              chunk_aligned_read(mddev,bi))
3942                 return 0;
3943
3944         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3945         last_sector = bi->bi_sector + (bi->bi_size>>9);
3946         bi->bi_next = NULL;
3947         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
3948
3949         plugged = mddev_check_plugged(mddev);
3950         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3951                 DEFINE_WAIT(w);
3952                 int disks, data_disks;
3953                 int previous;
3954
3955         retry:
3956                 previous = 0;
3957                 disks = conf->raid_disks;
3958                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3959                 if (unlikely(conf->reshape_progress != MaxSector)) {
3960                         /* spinlock is needed as reshape_progress may be
3961                          * 64bit on a 32bit platform, and so it might be
3962                          * possible to see a half-updated value
3963                          * Ofcourse reshape_progress could change after
3964                          * the lock is dropped, so once we get a reference
3965                          * to the stripe that we think it is, we will have
3966                          * to check again.
3967                          */
3968                         spin_lock_irq(&conf->device_lock);
3969                         if (mddev->delta_disks < 0
3970                             ? logical_sector < conf->reshape_progress
3971                             : logical_sector >= conf->reshape_progress) {
3972                                 disks = conf->previous_raid_disks;
3973                                 previous = 1;
3974                         } else {
3975                                 if (mddev->delta_disks < 0
3976                                     ? logical_sector < conf->reshape_safe
3977                                     : logical_sector >= conf->reshape_safe) {
3978                                         spin_unlock_irq(&conf->device_lock);
3979                                         schedule();
3980                                         goto retry;
3981                                 }
3982                         }
3983                         spin_unlock_irq(&conf->device_lock);
3984                 }
3985                 data_disks = disks - conf->max_degraded;
3986
3987                 new_sector = raid5_compute_sector(conf, logical_sector,
3988                                                   previous,
3989                                                   &dd_idx, NULL);
3990                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
3991                         (unsigned long long)new_sector, 
3992                         (unsigned long long)logical_sector);
3993
3994                 sh = get_active_stripe(conf, new_sector, previous,
3995                                        (bi->bi_rw&RWA_MASK), 0);
3996                 if (sh) {
3997                         if (unlikely(previous)) {
3998                                 /* expansion might have moved on while waiting for a
3999                                  * stripe, so we must do the range check again.
4000                                  * Expansion could still move past after this
4001                                  * test, but as we are holding a reference to
4002                                  * 'sh', we know that if that happens,
4003                                  *  STRIPE_EXPANDING will get set and the expansion
4004                                  * won't proceed until we finish with the stripe.
4005                                  */
4006                                 int must_retry = 0;
4007                                 spin_lock_irq(&conf->device_lock);
4008                                 if (mddev->delta_disks < 0
4009                                     ? logical_sector >= conf->reshape_progress
4010                                     : logical_sector < conf->reshape_progress)
4011                                         /* mismatch, need to try again */
4012                                         must_retry = 1;
4013                                 spin_unlock_irq(&conf->device_lock);
4014                                 if (must_retry) {
4015                                         release_stripe(sh);
4016                                         schedule();
4017                                         goto retry;
4018                                 }
4019                         }
4020
4021                         if (bio_data_dir(bi) == WRITE &&
4022                             logical_sector >= mddev->suspend_lo &&
4023                             logical_sector < mddev->suspend_hi) {
4024                                 release_stripe(sh);
4025                                 /* As the suspend_* range is controlled by
4026                                  * userspace, we want an interruptible
4027                                  * wait.
4028                                  */
4029                                 flush_signals(current);
4030                                 prepare_to_wait(&conf->wait_for_overlap,
4031                                                 &w, TASK_INTERRUPTIBLE);
4032                                 if (logical_sector >= mddev->suspend_lo &&
4033                                     logical_sector < mddev->suspend_hi)
4034                                         schedule();
4035                                 goto retry;
4036                         }
4037
4038                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4039                             !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
4040                                 /* Stripe is busy expanding or
4041                                  * add failed due to overlap.  Flush everything
4042                                  * and wait a while
4043                                  */
4044                                 md_wakeup_thread(mddev->thread);
4045                                 release_stripe(sh);
4046                                 schedule();
4047                                 goto retry;
4048                         }
4049                         finish_wait(&conf->wait_for_overlap, &w);
4050                         set_bit(STRIPE_HANDLE, &sh->state);
4051                         clear_bit(STRIPE_DELAYED, &sh->state);
4052                         if ((bi->bi_rw & REQ_SYNC) &&
4053                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4054                                 atomic_inc(&conf->preread_active_stripes);
4055                         release_stripe(sh);
4056                 } else {
4057                         /* cannot get stripe for read-ahead, just give-up */
4058                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
4059                         finish_wait(&conf->wait_for_overlap, &w);
4060                         break;
4061                 }
4062                         
4063         }
4064         if (!plugged)
4065                 md_wakeup_thread(mddev->thread);
4066
4067         spin_lock_irq(&conf->device_lock);
4068         remaining = raid5_dec_bi_phys_segments(bi);
4069         spin_unlock_irq(&conf->device_lock);
4070         if (remaining == 0) {
4071
4072                 if ( rw == WRITE )
4073                         md_write_end(mddev);
4074
4075                 bio_endio(bi, 0);
4076         }
4077
4078         return 0;
4079 }
4080
4081 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
4082
4083 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
4084 {
4085         /* reshaping is quite different to recovery/resync so it is
4086          * handled quite separately ... here.
4087          *
4088          * On each call to sync_request, we gather one chunk worth of
4089          * destination stripes and flag them as expanding.
4090          * Then we find all the source stripes and request reads.
4091          * As the reads complete, handle_stripe will copy the data
4092          * into the destination stripe and release that stripe.
4093          */
4094         raid5_conf_t *conf = mddev->private;
4095         struct stripe_head *sh;
4096         sector_t first_sector, last_sector;
4097         int raid_disks = conf->previous_raid_disks;
4098         int data_disks = raid_disks - conf->max_degraded;
4099         int new_data_disks = conf->raid_disks - conf->max_degraded;
4100         int i;
4101         int dd_idx;
4102         sector_t writepos, readpos, safepos;
4103         sector_t stripe_addr;
4104         int reshape_sectors;
4105         struct list_head stripes;
4106
4107         if (sector_nr == 0) {
4108                 /* If restarting in the middle, skip the initial sectors */
4109                 if (mddev->delta_disks < 0 &&
4110                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4111                         sector_nr = raid5_size(mddev, 0, 0)
4112                                 - conf->reshape_progress;
4113                 } else if (mddev->delta_disks >= 0 &&
4114                            conf->reshape_progress > 0)
4115                         sector_nr = conf->reshape_progress;
4116                 sector_div(sector_nr, new_data_disks);
4117                 if (sector_nr) {
4118                         mddev->curr_resync_completed = sector_nr;
4119                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4120                         *skipped = 1;
4121                         return sector_nr;
4122                 }
4123         }
4124
4125         /* We need to process a full chunk at a time.
4126          * If old and new chunk sizes differ, we need to process the
4127          * largest of these
4128          */
4129         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4130                 reshape_sectors = mddev->new_chunk_sectors;
4131         else
4132                 reshape_sectors = mddev->chunk_sectors;
4133
4134         /* we update the metadata when there is more than 3Meg
4135          * in the block range (that is rather arbitrary, should
4136          * probably be time based) or when the data about to be
4137          * copied would over-write the source of the data at
4138          * the front of the range.
4139          * i.e. one new_stripe along from reshape_progress new_maps
4140          * to after where reshape_safe old_maps to
4141          */
4142         writepos = conf->reshape_progress;
4143         sector_div(writepos, new_data_disks);
4144         readpos = conf->reshape_progress;
4145         sector_div(readpos, data_disks);
4146         safepos = conf->reshape_safe;
4147         sector_div(safepos, data_disks);
4148         if (mddev->delta_disks < 0) {
4149                 writepos -= min_t(sector_t, reshape_sectors, writepos);
4150                 readpos += reshape_sectors;
4151                 safepos += reshape_sectors;
4152         } else {
4153                 writepos += reshape_sectors;
4154                 readpos -= min_t(sector_t, reshape_sectors, readpos);
4155                 safepos -= min_t(sector_t, reshape_sectors, safepos);
4156         }
4157
4158         /* 'writepos' is the most advanced device address we might write.
4159          * 'readpos' is the least advanced device address we might read.
4160          * 'safepos' is the least address recorded in the metadata as having
4161          *     been reshaped.
4162          * If 'readpos' is behind 'writepos', then there is no way that we can
4163          * ensure safety in the face of a crash - that must be done by userspace
4164          * making a backup of the data.  So in that case there is no particular
4165          * rush to update metadata.
4166          * Otherwise if 'safepos' is behind 'writepos', then we really need to
4167          * update the metadata to advance 'safepos' to match 'readpos' so that
4168          * we can be safe in the event of a crash.
4169          * So we insist on updating metadata if safepos is behind writepos and
4170          * readpos is beyond writepos.
4171          * In any case, update the metadata every 10 seconds.
4172          * Maybe that number should be configurable, but I'm not sure it is
4173          * worth it.... maybe it could be a multiple of safemode_delay???
4174          */
4175         if ((mddev->delta_disks < 0
4176              ? (safepos > writepos && readpos < writepos)
4177              : (safepos < writepos && readpos > writepos)) ||
4178             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4179                 /* Cannot proceed until we've updated the superblock... */
4180                 wait_event(conf->wait_for_overlap,
4181                            atomic_read(&conf->reshape_stripes)==0);
4182                 mddev->reshape_position = conf->reshape_progress;
4183                 mddev->curr_resync_completed = sector_nr;
4184                 conf->reshape_checkpoint = jiffies;
4185                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4186                 md_wakeup_thread(mddev->thread);
4187                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4188                            kthread_should_stop());
4189                 spin_lock_irq(&conf->device_lock);
4190                 conf->reshape_safe = mddev->reshape_position;
4191                 spin_unlock_irq(&conf->device_lock);
4192                 wake_up(&conf->wait_for_overlap);
4193                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4194         }
4195
4196         if (mddev->delta_disks < 0) {
4197                 BUG_ON(conf->reshape_progress == 0);
4198                 stripe_addr = writepos;
4199                 BUG_ON((mddev->dev_sectors &
4200                         ~((sector_t)reshape_sectors - 1))
4201                        - reshape_sectors - stripe_addr
4202                        != sector_nr);
4203         } else {
4204                 BUG_ON(writepos != sector_nr + reshape_sectors);
4205                 stripe_addr = sector_nr;
4206         }
4207         INIT_LIST_HEAD(&stripes);
4208         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4209                 int j;
4210                 int skipped_disk = 0;
4211                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4212                 set_bit(STRIPE_EXPANDING, &sh->state);
4213                 atomic_inc(&conf->reshape_stripes);
4214                 /* If any of this stripe is beyond the end of the old
4215                  * array, then we need to zero those blocks
4216                  */
4217                 for (j=sh->disks; j--;) {
4218                         sector_t s;
4219                         if (j == sh->pd_idx)
4220                                 continue;
4221                         if (conf->level == 6 &&
4222                             j == sh->qd_idx)
4223                                 continue;
4224                         s = compute_blocknr(sh, j, 0);
4225                         if (s < raid5_size(mddev, 0, 0)) {
4226                                 skipped_disk = 1;
4227                                 continue;
4228                         }
4229                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4230                         set_bit(R5_Expanded, &sh->dev[j].flags);
4231                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
4232                 }
4233                 if (!skipped_disk) {
4234                         set_bit(STRIPE_EXPAND_READY, &sh->state);
4235                         set_bit(STRIPE_HANDLE, &sh->state);
4236                 }
4237                 list_add(&sh->lru, &stripes);
4238         }
4239         spin_lock_irq(&conf->device_lock);
4240         if (mddev->delta_disks < 0)
4241                 conf->reshape_progress -= reshape_sectors * new_data_disks;
4242         else
4243                 conf->reshape_progress += reshape_sectors * new_data_disks;
4244         spin_unlock_irq(&conf->device_lock);
4245         /* Ok, those stripe are ready. We can start scheduling
4246          * reads on the source stripes.
4247          * The source stripes are determined by mapping the first and last
4248          * block on the destination stripes.
4249          */
4250         first_sector =
4251                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4252                                      1, &dd_idx, NULL);
4253         last_sector =
4254                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4255                                             * new_data_disks - 1),
4256                                      1, &dd_idx, NULL);
4257         if (last_sector >= mddev->dev_sectors)
4258                 last_sector = mddev->dev_sectors - 1;
4259         while (first_sector <= last_sector) {
4260                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4261                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4262                 set_bit(STRIPE_HANDLE, &sh->state);
4263                 release_stripe(sh);
4264                 first_sector += STRIPE_SECTORS;
4265         }
4266         /* Now that the sources are clearly marked, we can release
4267          * the destination stripes
4268          */
4269         while (!list_empty(&stripes)) {
4270                 sh = list_entry(stripes.next, struct stripe_head, lru);
4271                 list_del_init(&sh->lru);
4272                 release_stripe(sh);
4273         }
4274         /* If this takes us to the resync_max point where we have to pause,
4275          * then we need to write out the superblock.
4276          */
4277         sector_nr += reshape_sectors;
4278         if ((sector_nr - mddev->curr_resync_completed) * 2
4279             >= mddev->resync_max - mddev->curr_resync_completed) {
4280                 /* Cannot proceed until we've updated the superblock... */
4281                 wait_event(conf->wait_for_overlap,
4282                            atomic_read(&conf->reshape_stripes) == 0);
4283                 mddev->reshape_position = conf->reshape_progress;
4284                 mddev->curr_resync_completed = sector_nr;
4285                 conf->reshape_checkpoint = jiffies;
4286                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4287                 md_wakeup_thread(mddev->thread);
4288                 wait_event(mddev->sb_wait,
4289                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4290                            || kthread_should_stop());
4291                 spin_lock_irq(&conf->device_lock);
4292                 conf->reshape_safe = mddev->reshape_position;
4293                 spin_unlock_irq(&conf->device_lock);
4294                 wake_up(&conf->wait_for_overlap);
4295                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4296         }
4297         return reshape_sectors;
4298 }
4299
4300 /* FIXME go_faster isn't used */
4301 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4302 {
4303         raid5_conf_t *conf = mddev->private;
4304         struct stripe_head *sh;
4305         sector_t max_sector = mddev->dev_sectors;
4306         sector_t sync_blocks;
4307         int still_degraded = 0;
4308         int i;
4309
4310         if (sector_nr >= max_sector) {
4311                 /* just being told to finish up .. nothing much to do */
4312
4313                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4314                         end_reshape(conf);
4315                         return 0;
4316                 }
4317
4318                 if (mddev->curr_resync < max_sector) /* aborted */
4319                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4320                                         &sync_blocks, 1);
4321                 else /* completed sync */
4322                         conf->fullsync = 0;
4323                 bitmap_close_sync(mddev->bitmap);
4324
4325                 return 0;
4326         }
4327
4328         /* Allow raid5_quiesce to complete */
4329         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4330
4331         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4332                 return reshape_request(mddev, sector_nr, skipped);
4333
4334         /* No need to check resync_max as we never do more than one
4335          * stripe, and as resync_max will always be on a chunk boundary,
4336          * if the check in md_do_sync didn't fire, there is no chance
4337          * of overstepping resync_max here
4338          */
4339
4340         /* if there is too many failed drives and we are trying
4341          * to resync, then assert that we are finished, because there is
4342          * nothing we can do.
4343          */
4344         if (mddev->degraded >= conf->max_degraded &&
4345             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4346                 sector_t rv = mddev->dev_sectors - sector_nr;
4347                 *skipped = 1;
4348                 return rv;
4349         }
4350         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4351             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4352             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4353                 /* we can skip this block, and probably more */
4354                 sync_blocks /= STRIPE_SECTORS;
4355                 *skipped = 1;
4356                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4357         }
4358
4359
4360         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4361
4362         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4363         if (sh == NULL) {
4364                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4365                 /* make sure we don't swamp the stripe cache if someone else
4366                  * is trying to get access
4367                  */
4368                 schedule_timeout_uninterruptible(1);
4369         }
4370         /* Need to check if array will still be degraded after recovery/resync
4371          * We don't need to check the 'failed' flag as when that gets set,
4372          * recovery aborts.
4373          */
4374         for (i = 0; i < conf->raid_disks; i++)
4375                 if (conf->disks[i].rdev == NULL)
4376                         still_degraded = 1;
4377
4378         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4379
4380         spin_lock(&sh->lock);
4381         set_bit(STRIPE_SYNCING, &sh->state);
4382         clear_bit(STRIPE_INSYNC, &sh->state);
4383         spin_unlock(&sh->lock);
4384
4385         handle_stripe(sh);
4386         release_stripe(sh);
4387
4388         return STRIPE_SECTORS;
4389 }
4390
4391 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4392 {
4393         /* We may not be able to submit a whole bio at once as there
4394          * may not be enough stripe_heads available.
4395          * We cannot pre-allocate enough stripe_heads as we may need
4396          * more than exist in the cache (if we allow ever large chunks).
4397          * So we do one stripe head at a time and record in
4398          * ->bi_hw_segments how many have been done.
4399          *
4400          * We *know* that this entire raid_bio is in one chunk, so
4401          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4402          */
4403         struct stripe_head *sh;
4404         int dd_idx;
4405         sector_t sector, logical_sector, last_sector;
4406         int scnt = 0;
4407         int remaining;
4408         int handled = 0;
4409
4410         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4411         sector = raid5_compute_sector(conf, logical_sector,
4412                                       0, &dd_idx, NULL);
4413         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4414
4415         for (; logical_sector < last_sector;
4416              logical_sector += STRIPE_SECTORS,
4417                      sector += STRIPE_SECTORS,
4418                      scnt++) {
4419
4420                 if (scnt < raid5_bi_hw_segments(raid_bio))
4421                         /* already done this stripe */
4422                         continue;
4423
4424                 sh = get_active_stripe(conf, sector, 0, 1, 0);
4425
4426                 if (!sh) {
4427                         /* failed to get a stripe - must wait */
4428                         raid5_set_bi_hw_segments(raid_bio, scnt);
4429                         conf->retry_read_aligned = raid_bio;
4430                         return handled;
4431                 }
4432
4433                 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4434                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4435                         release_stripe(sh);
4436                         raid5_set_bi_hw_segments(raid_bio, scnt);
4437                         conf->retry_read_aligned = raid_bio;
4438                         return handled;
4439                 }
4440
4441                 handle_stripe(sh);
4442                 release_stripe(sh);
4443                 handled++;
4444         }
4445         spin_lock_irq(&conf->device_lock);
4446         remaining = raid5_dec_bi_phys_segments(raid_bio);
4447         spin_unlock_irq(&conf->device_lock);
4448         if (remaining == 0)
4449                 bio_endio(raid_bio, 0);
4450         if (atomic_dec_and_test(&conf->active_aligned_reads))
4451                 wake_up(&conf->wait_for_stripe);
4452         return handled;
4453 }
4454
4455
4456 /*
4457  * This is our raid5 kernel thread.
4458  *
4459  * We scan the hash table for stripes which can be handled now.
4460  * During the scan, completed stripes are saved for us by the interrupt
4461  * handler, so that they will not have to wait for our next wakeup.
4462  */
4463 static void raid5d(mddev_t *mddev)
4464 {
4465         struct stripe_head *sh;
4466         raid5_conf_t *conf = mddev->private;
4467         int handled;
4468         struct blk_plug plug;
4469
4470         pr_debug("+++ raid5d active\n");
4471
4472         md_check_recovery(mddev);
4473
4474         blk_start_plug(&plug);
4475         handled = 0;
4476         spin_lock_irq(&conf->device_lock);
4477         while (1) {
4478                 struct bio *bio;
4479
4480                 if (atomic_read(&mddev->plug_cnt) == 0 &&
4481                     !list_empty(&conf->bitmap_list)) {
4482                         /* Now is a good time to flush some bitmap updates */
4483                         conf->seq_flush++;
4484                         spin_unlock_irq(&conf->device_lock);
4485                         bitmap_unplug(mddev->bitmap);
4486                         spin_lock_irq(&conf->device_lock);
4487                         conf->seq_write = conf->seq_flush;
4488                         activate_bit_delay(conf);
4489                 }
4490                 if (atomic_read(&mddev->plug_cnt) == 0)
4491                         raid5_activate_delayed(conf);
4492
4493                 while ((bio = remove_bio_from_retry(conf))) {
4494                         int ok;
4495                         spin_unlock_irq(&conf->device_lock);
4496                         ok = retry_aligned_read(conf, bio);
4497                         spin_lock_irq(&conf->device_lock);
4498                         if (!ok)
4499                                 break;
4500                         handled++;
4501                 }
4502
4503                 sh = __get_priority_stripe(conf);
4504
4505                 if (!sh)
4506                         break;
4507                 spin_unlock_irq(&conf->device_lock);
4508                 
4509                 handled++;
4510                 handle_stripe(sh);
4511                 release_stripe(sh);
4512                 cond_resched();
4513
4514                 spin_lock_irq(&conf->device_lock);
4515         }
4516         pr_debug("%d stripes handled\n", handled);
4517
4518         spin_unlock_irq(&conf->device_lock);
4519
4520         async_tx_issue_pending_all();
4521         blk_finish_plug(&plug);
4522
4523         pr_debug("--- raid5d inactive\n");
4524 }
4525
4526 static ssize_t
4527 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4528 {
4529         raid5_conf_t *conf = mddev->private;
4530         if (conf)
4531                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4532         else
4533                 return 0;
4534 }
4535
4536 int
4537 raid5_set_cache_size(mddev_t *mddev, int size)
4538 {
4539         raid5_conf_t *conf = mddev->private;
4540         int err;
4541
4542         if (size <= 16 || size > 32768)
4543                 return -EINVAL;
4544         while (size < conf->max_nr_stripes) {
4545                 if (drop_one_stripe(conf))
4546                         conf->max_nr_stripes--;
4547                 else
4548                         break;
4549         }
4550         err = md_allow_write(mddev);
4551         if (err)
4552                 return err;
4553         while (size > conf->max_nr_stripes) {
4554                 if (grow_one_stripe(conf))
4555                         conf->max_nr_stripes++;
4556                 else break;
4557         }
4558         return 0;
4559 }
4560 EXPORT_SYMBOL(raid5_set_cache_size);
4561
4562 static ssize_t
4563 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4564 {
4565         raid5_conf_t *conf = mddev->private;
4566         unsigned long new;
4567         int err;
4568
4569         if (len >= PAGE_SIZE)
4570                 return -EINVAL;
4571         if (!conf)
4572                 return -ENODEV;
4573
4574         if (strict_strtoul(page, 10, &new))
4575                 return -EINVAL;
4576         err = raid5_set_cache_size(mddev, new);
4577         if (err)
4578                 return err;
4579         return len;
4580 }
4581
4582 static struct md_sysfs_entry
4583 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4584                                 raid5_show_stripe_cache_size,
4585                                 raid5_store_stripe_cache_size);
4586
4587 static ssize_t
4588 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4589 {
4590         raid5_conf_t *conf = mddev->private;
4591         if (conf)
4592                 return sprintf(page, "%d\n", conf->bypass_threshold);
4593         else
4594                 return 0;
4595 }
4596
4597 static ssize_t
4598 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4599 {
4600         raid5_conf_t *conf = mddev->private;
4601         unsigned long new;
4602         if (len >= PAGE_SIZE)
4603                 return -EINVAL;
4604         if (!conf)
4605                 return -ENODEV;
4606
4607         if (strict_strtoul(page, 10, &new))
4608                 return -EINVAL;
4609         if (new > conf->max_nr_stripes)
4610                 return -EINVAL;
4611         conf->bypass_threshold = new;
4612         return len;
4613 }
4614
4615 static struct md_sysfs_entry
4616 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4617                                         S_IRUGO | S_IWUSR,
4618                                         raid5_show_preread_threshold,
4619                                         raid5_store_preread_threshold);
4620
4621 static ssize_t
4622 stripe_cache_active_show(mddev_t *mddev, char *page)
4623 {
4624         raid5_conf_t *conf = mddev->private;
4625         if (conf)
4626                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4627         else
4628                 return 0;
4629 }
4630
4631 static struct md_sysfs_entry
4632 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4633
4634 static struct attribute *raid5_attrs[] =  {
4635         &raid5_stripecache_size.attr,
4636         &raid5_stripecache_active.attr,
4637         &raid5_preread_bypass_threshold.attr,
4638         NULL,
4639 };
4640 static struct attribute_group raid5_attrs_group = {
4641         .name = NULL,
4642         .attrs = raid5_attrs,
4643 };
4644
4645 static sector_t
4646 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4647 {
4648         raid5_conf_t *conf = mddev->private;
4649
4650         if (!sectors)
4651                 sectors = mddev->dev_sectors;
4652         if (!raid_disks)
4653                 /* size is defined by the smallest of previous and new size */
4654                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4655
4656         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4657         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4658         return sectors * (raid_disks - conf->max_degraded);
4659 }
4660
4661 static void raid5_free_percpu(raid5_conf_t *conf)
4662 {
4663         struct raid5_percpu *percpu;
4664         unsigned long cpu;
4665
4666         if (!conf->percpu)
4667                 return;
4668
4669         get_online_cpus();
4670         for_each_possible_cpu(cpu) {
4671                 percpu = per_cpu_ptr(conf->percpu, cpu);
4672                 safe_put_page(percpu->spare_page);
4673                 kfree(percpu->scribble);
4674         }
4675 #ifdef CONFIG_HOTPLUG_CPU
4676         unregister_cpu_notifier(&conf->cpu_notify);
4677 #endif
4678         put_online_cpus();
4679
4680         free_percpu(conf->percpu);
4681 }
4682
4683 static void free_conf(raid5_conf_t *conf)
4684 {
4685         shrink_stripes(conf);
4686         raid5_free_percpu(conf);
4687         kfree(conf->disks);
4688         kfree(conf->stripe_hashtbl);
4689         kfree(conf);
4690 }
4691
4692 #ifdef CONFIG_HOTPLUG_CPU
4693 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4694                               void *hcpu)
4695 {
4696         raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4697         long cpu = (long)hcpu;
4698         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4699
4700         switch (action) {
4701         case CPU_UP_PREPARE:
4702         case CPU_UP_PREPARE_FROZEN:
4703                 if (conf->level == 6 && !percpu->spare_page)
4704                         percpu->spare_page = alloc_page(GFP_KERNEL);
4705                 if (!percpu->scribble)
4706                         percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4707
4708                 if (!percpu->scribble ||
4709                     (conf->level == 6 && !percpu->spare_page)) {
4710                         safe_put_page(percpu->spare_page);
4711                         kfree(percpu->scribble);
4712                         pr_err("%s: failed memory allocation for cpu%ld\n",
4713                                __func__, cpu);
4714                         return notifier_from_errno(-ENOMEM);
4715                 }
4716                 break;
4717         case CPU_DEAD:
4718         case CPU_DEAD_FROZEN:
4719                 safe_put_page(percpu->spare_page);
4720                 kfree(percpu->scribble);
4721                 percpu->spare_page = NULL;
4722                 percpu->scribble = NULL;
4723                 break;
4724         default:
4725                 break;
4726         }
4727         return NOTIFY_OK;
4728 }
4729 #endif
4730
4731 static int raid5_alloc_percpu(raid5_conf_t *conf)
4732 {
4733         unsigned long cpu;
4734         struct page *spare_page;
4735         struct raid5_percpu __percpu *allcpus;
4736         void *scribble;
4737         int err;
4738
4739         allcpus = alloc_percpu(struct raid5_percpu);
4740         if (!allcpus)
4741                 return -ENOMEM;
4742         conf->percpu = allcpus;
4743
4744         get_online_cpus();
4745         err = 0;
4746         for_each_present_cpu(cpu) {
4747                 if (conf->level == 6) {
4748                         spare_page = alloc_page(GFP_KERNEL);
4749                         if (!spare_page) {
4750                                 err = -ENOMEM;
4751                                 break;
4752                         }
4753                         per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4754                 }
4755                 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4756                 if (!scribble) {
4757                         err = -ENOMEM;
4758                         break;
4759                 }
4760                 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4761         }
4762 #ifdef CONFIG_HOTPLUG_CPU
4763         conf->cpu_notify.notifier_call = raid456_cpu_notify;
4764         conf->cpu_notify.priority = 0;
4765         if (err == 0)
4766                 err = register_cpu_notifier(&conf->cpu_notify);
4767 #endif
4768         put_online_cpus();
4769
4770         return err;
4771 }
4772
4773 static raid5_conf_t *setup_conf(mddev_t *mddev)
4774 {
4775         raid5_conf_t *conf;
4776         int raid_disk, memory, max_disks;
4777         mdk_rdev_t *rdev;
4778         struct disk_info *disk;
4779
4780         if (mddev->new_level != 5
4781             && mddev->new_level != 4
4782             && mddev->new_level != 6) {
4783                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4784                        mdname(mddev), mddev->new_level);
4785                 return ERR_PTR(-EIO);
4786         }
4787         if ((mddev->new_level == 5
4788              && !algorithm_valid_raid5(mddev->new_layout)) ||
4789             (mddev->new_level == 6
4790              && !algorithm_valid_raid6(mddev->new_layout))) {
4791                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4792                        mdname(mddev), mddev->new_layout);
4793                 return ERR_PTR(-EIO);
4794         }
4795         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4796                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4797                        mdname(mddev), mddev->raid_disks);
4798                 return ERR_PTR(-EINVAL);
4799         }
4800
4801         if (!mddev->new_chunk_sectors ||
4802             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4803             !is_power_of_2(mddev->new_chunk_sectors)) {
4804                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4805                        mdname(mddev), mddev->new_chunk_sectors << 9);
4806                 return ERR_PTR(-EINVAL);
4807         }
4808
4809         conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4810         if (conf == NULL)
4811                 goto abort;
4812         spin_lock_init(&conf->device_lock);
4813         init_waitqueue_head(&conf->wait_for_stripe);
4814         init_waitqueue_head(&conf->wait_for_overlap);
4815         INIT_LIST_HEAD(&conf->handle_list);
4816         INIT_LIST_HEAD(&conf->hold_list);
4817         INIT_LIST_HEAD(&conf->delayed_list);
4818         INIT_LIST_HEAD(&conf->bitmap_list);
4819         INIT_LIST_HEAD(&conf->inactive_list);
4820         atomic_set(&conf->active_stripes, 0);
4821         atomic_set(&conf->preread_active_stripes, 0);
4822         atomic_set(&conf->active_aligned_reads, 0);
4823         conf->bypass_threshold = BYPASS_THRESHOLD;
4824
4825         conf->raid_disks = mddev->raid_disks;
4826         if (mddev->reshape_position == MaxSector)
4827                 conf->previous_raid_disks = mddev->raid_disks;
4828         else
4829                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4830         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4831         conf->scribble_len = scribble_len(max_disks);
4832
4833         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4834                               GFP_KERNEL);
4835         if (!conf->disks)
4836                 goto abort;
4837
4838         conf->mddev = mddev;
4839
4840         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4841                 goto abort;
4842
4843         conf->level = mddev->new_level;
4844         if (raid5_alloc_percpu(conf) != 0)
4845                 goto abort;
4846
4847         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4848
4849         list_for_each_entry(rdev, &mddev->disks, same_set) {
4850                 raid_disk = rdev->raid_disk;
4851                 if (raid_disk >= max_disks
4852                     || raid_disk < 0)
4853                         continue;
4854                 disk = conf->disks + raid_disk;
4855
4856                 disk->rdev = rdev;
4857
4858                 if (test_bit(In_sync, &rdev->flags)) {
4859                         char b[BDEVNAME_SIZE];
4860                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4861                                " disk %d\n",
4862                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4863                 } else
4864                         /* Cannot rely on bitmap to complete recovery */
4865                         conf->fullsync = 1;
4866         }
4867
4868         conf->chunk_sectors = mddev->new_chunk_sectors;
4869         conf->level = mddev->new_level;
4870         if (conf->level == 6)
4871                 conf->max_degraded = 2;
4872         else
4873                 conf->max_degraded = 1;
4874         conf->algorithm = mddev->new_layout;
4875         conf->max_nr_stripes = NR_STRIPES;
4876         conf->reshape_progress = mddev->reshape_position;
4877         if (conf->reshape_progress != MaxSector) {
4878                 conf->prev_chunk_sectors = mddev->chunk_sectors;
4879                 conf->prev_algo = mddev->layout;
4880         }
4881
4882         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4883                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4884         if (grow_stripes(conf, conf->max_nr_stripes)) {
4885                 printk(KERN_ERR
4886                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
4887                        mdname(mddev), memory);
4888                 goto abort;
4889         } else
4890                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4891                        mdname(mddev), memory);
4892
4893         conf->thread = md_register_thread(raid5d, mddev, NULL);
4894         if (!conf->thread) {
4895                 printk(KERN_ERR
4896                        "md/raid:%s: couldn't allocate thread.\n",
4897                        mdname(mddev));
4898                 goto abort;
4899         }
4900
4901         return conf;
4902
4903  abort:
4904         if (conf) {
4905                 free_conf(conf);
4906                 return ERR_PTR(-EIO);
4907         } else
4908                 return ERR_PTR(-ENOMEM);
4909 }
4910
4911
4912 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4913 {
4914         switch (algo) {
4915         case ALGORITHM_PARITY_0:
4916                 if (raid_disk < max_degraded)
4917                         return 1;
4918                 break;
4919         case ALGORITHM_PARITY_N:
4920                 if (raid_disk >= raid_disks - max_degraded)
4921                         return 1;
4922                 break;
4923         case ALGORITHM_PARITY_0_6:
4924                 if (raid_disk == 0 || 
4925                     raid_disk == raid_disks - 1)
4926                         return 1;
4927                 break;
4928         case ALGORITHM_LEFT_ASYMMETRIC_6:
4929         case ALGORITHM_RIGHT_ASYMMETRIC_6:
4930         case ALGORITHM_LEFT_SYMMETRIC_6:
4931         case ALGORITHM_RIGHT_SYMMETRIC_6:
4932                 if (raid_disk == raid_disks - 1)
4933                         return 1;
4934         }
4935         return 0;
4936 }
4937
4938 static int run(mddev_t *mddev)
4939 {
4940         raid5_conf_t *conf;
4941         int working_disks = 0;
4942         int dirty_parity_disks = 0;
4943         mdk_rdev_t *rdev;
4944         sector_t reshape_offset = 0;
4945
4946         if (mddev->recovery_cp != MaxSector)
4947                 printk(KERN_NOTICE "md/raid:%s: not clean"
4948                        " -- starting background reconstruction\n",
4949                        mdname(mddev));
4950         if (mddev->reshape_position != MaxSector) {
4951                 /* Check that we can continue the reshape.
4952                  * Currently only disks can change, it must
4953                  * increase, and we must be past the point where
4954                  * a stripe over-writes itself
4955                  */
4956                 sector_t here_new, here_old;
4957                 int old_disks;
4958                 int max_degraded = (mddev->level == 6 ? 2 : 1);
4959
4960                 if (mddev->new_level != mddev->level) {
4961                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
4962                                "required - aborting.\n",
4963                                mdname(mddev));
4964                         return -EINVAL;
4965                 }
4966                 old_disks = mddev->raid_disks - mddev->delta_disks;
4967                 /* reshape_position must be on a new-stripe boundary, and one
4968                  * further up in new geometry must map after here in old
4969                  * geometry.
4970                  */
4971                 here_new = mddev->reshape_position;
4972                 if (sector_div(here_new, mddev->new_chunk_sectors *
4973                                (mddev->raid_disks - max_degraded))) {
4974                         printk(KERN_ERR "md/raid:%s: reshape_position not "
4975                                "on a stripe boundary\n", mdname(mddev));
4976                         return -EINVAL;
4977                 }
4978                 reshape_offset = here_new * mddev->new_chunk_sectors;
4979                 /* here_new is the stripe we will write to */
4980                 here_old = mddev->reshape_position;
4981                 sector_div(here_old, mddev->chunk_sectors *
4982                            (old_disks-max_degraded));
4983                 /* here_old is the first stripe that we might need to read
4984                  * from */
4985                 if (mddev->delta_disks == 0) {
4986                         /* We cannot be sure it is safe to start an in-place
4987                          * reshape.  It is only safe if user-space if monitoring
4988                          * and taking constant backups.
4989                          * mdadm always starts a situation like this in
4990                          * readonly mode so it can take control before
4991                          * allowing any writes.  So just check for that.
4992                          */
4993                         if ((here_new * mddev->new_chunk_sectors != 
4994                              here_old * mddev->chunk_sectors) ||
4995                             mddev->ro == 0) {
4996                                 printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
4997                                        " in read-only mode - aborting\n",
4998                                        mdname(mddev));
4999                                 return -EINVAL;
5000                         }
5001                 } else if (mddev->delta_disks < 0
5002                     ? (here_new * mddev->new_chunk_sectors <=
5003                        here_old * mddev->chunk_sectors)
5004                     : (here_new * mddev->new_chunk_sectors >=
5005                        here_old * mddev->chunk_sectors)) {
5006                         /* Reading from the same stripe as writing to - bad */
5007                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5008                                "auto-recovery - aborting.\n",
5009                                mdname(mddev));
5010                         return -EINVAL;
5011                 }
5012                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5013                        mdname(mddev));
5014                 /* OK, we should be able to continue; */
5015         } else {
5016                 BUG_ON(mddev->level != mddev->new_level);
5017                 BUG_ON(mddev->layout != mddev->new_layout);
5018                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5019                 BUG_ON(mddev->delta_disks != 0);
5020         }
5021
5022         if (mddev->private == NULL)
5023                 conf = setup_conf(mddev);
5024         else
5025                 conf = mddev->private;
5026
5027         if (IS_ERR(conf))
5028                 return PTR_ERR(conf);
5029
5030         mddev->thread = conf->thread;
5031         conf->thread = NULL;
5032         mddev->private = conf;
5033
5034         /*
5035          * 0 for a fully functional array, 1 or 2 for a degraded array.
5036          */
5037         list_for_each_entry(rdev, &mddev->disks, same_set) {
5038                 if (rdev->raid_disk < 0)
5039                         continue;
5040                 if (test_bit(In_sync, &rdev->flags)) {
5041                         working_disks++;
5042                         continue;
5043                 }
5044                 /* This disc is not fully in-sync.  However if it
5045                  * just stored parity (beyond the recovery_offset),
5046                  * when we don't need to be concerned about the
5047                  * array being dirty.
5048                  * When reshape goes 'backwards', we never have
5049                  * partially completed devices, so we only need
5050                  * to worry about reshape going forwards.
5051                  */
5052                 /* Hack because v0.91 doesn't store recovery_offset properly. */
5053                 if (mddev->major_version == 0 &&
5054                     mddev->minor_version > 90)
5055                         rdev->recovery_offset = reshape_offset;
5056                         
5057                 if (rdev->recovery_offset < reshape_offset) {
5058                         /* We need to check old and new layout */
5059                         if (!only_parity(rdev->raid_disk,
5060                                          conf->algorithm,
5061                                          conf->raid_disks,
5062                                          conf->max_degraded))
5063                                 continue;
5064                 }
5065                 if (!only_parity(rdev->raid_disk,
5066                                  conf->prev_algo,
5067                                  conf->previous_raid_disks,
5068                                  conf->max_degraded))
5069                         continue;
5070                 dirty_parity_disks++;
5071         }
5072
5073         mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
5074                            - working_disks);
5075
5076         if (has_failed(conf)) {
5077                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
5078                         " (%d/%d failed)\n",
5079                         mdname(mddev), mddev->degraded, conf->raid_disks);
5080                 goto abort;
5081         }
5082
5083         /* device size must be a multiple of chunk size */
5084         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5085         mddev->resync_max_sectors = mddev->dev_sectors;
5086
5087         if (mddev->degraded > dirty_parity_disks &&
5088             mddev->recovery_cp != MaxSector) {
5089                 if (mddev->ok_start_degraded)
5090                         printk(KERN_WARNING
5091                                "md/raid:%s: starting dirty degraded array"
5092                                " - data corruption possible.\n",
5093                                mdname(mddev));
5094                 else {
5095                         printk(KERN_ERR
5096                                "md/raid:%s: cannot start dirty degraded array.\n",
5097                                mdname(mddev));
5098                         goto abort;
5099                 }
5100         }
5101
5102         if (mddev->degraded == 0)
5103                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5104                        " devices, algorithm %d\n", mdname(mddev), conf->level,
5105                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5106                        mddev->new_layout);
5107         else
5108                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5109                        " out of %d devices, algorithm %d\n",
5110                        mdname(mddev), conf->level,
5111                        mddev->raid_disks - mddev->degraded,
5112                        mddev->raid_disks, mddev->new_layout);
5113
5114         print_raid5_conf(conf);
5115
5116         if (conf->reshape_progress != MaxSector) {
5117                 conf->reshape_safe = conf->reshape_progress;
5118                 atomic_set(&conf->reshape_stripes, 0);
5119                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5120                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5121                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5122                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5123                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5124                                                         "reshape");
5125         }
5126
5127
5128         /* Ok, everything is just fine now */
5129         if (mddev->to_remove == &raid5_attrs_group)
5130                 mddev->to_remove = NULL;
5131         else if (mddev->kobj.sd &&
5132             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5133                 printk(KERN_WARNING
5134                        "raid5: failed to create sysfs attributes for %s\n",
5135                        mdname(mddev));
5136         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5137
5138         if (mddev->queue) {
5139                 int chunk_size;
5140                 /* read-ahead size must cover two whole stripes, which
5141                  * is 2 * (datadisks) * chunksize where 'n' is the
5142                  * number of raid devices
5143                  */
5144                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5145                 int stripe = data_disks *
5146                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5147                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5148                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5149
5150                 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5151
5152                 mddev->queue->backing_dev_info.congested_data = mddev;
5153                 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5154
5155                 chunk_size = mddev->chunk_sectors << 9;
5156                 blk_queue_io_min(mddev->queue, chunk_size);
5157                 blk_queue_io_opt(mddev->queue, chunk_size *
5158                                  (conf->raid_disks - conf->max_degraded));
5159
5160                 list_for_each_entry(rdev, &mddev->disks, same_set)
5161                         disk_stack_limits(mddev->gendisk, rdev->bdev,
5162                                           rdev->data_offset << 9);
5163         }
5164
5165         return 0;
5166 abort:
5167         md_unregister_thread(mddev->thread);
5168         mddev->thread = NULL;
5169         if (conf) {
5170                 print_raid5_conf(conf);
5171                 free_conf(conf);
5172         }
5173         mddev->private = NULL;
5174         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5175         return -EIO;
5176 }
5177
5178 static int stop(mddev_t *mddev)
5179 {
5180         raid5_conf_t *conf = mddev->private;
5181
5182         md_unregister_thread(mddev->thread);
5183         mddev->thread = NULL;
5184         if (mddev->queue)
5185                 mddev->queue->backing_dev_info.congested_fn = NULL;
5186         free_conf(conf);
5187         mddev->private = NULL;
5188         mddev->to_remove = &raid5_attrs_group;
5189         return 0;
5190 }
5191
5192 #ifdef DEBUG
5193 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
5194 {
5195         int i;
5196
5197         seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
5198                    (unsigned long long)sh->sector, sh->pd_idx, sh->state);
5199         seq_printf(seq, "sh %llu,  count %d.\n",
5200                    (unsigned long long)sh->sector, atomic_read(&sh->count));
5201         seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5202         for (i = 0; i < sh->disks; i++) {
5203                 seq_printf(seq, "(cache%d: %p %ld) ",
5204                            i, sh->dev[i].page, sh->dev[i].flags);
5205         }
5206         seq_printf(seq, "\n");
5207 }
5208
5209 static void printall(struct seq_file *seq, raid5_conf_t *conf)
5210 {
5211         struct stripe_head *sh;
5212         struct hlist_node *hn;
5213         int i;
5214
5215         spin_lock_irq(&conf->device_lock);
5216         for (i = 0; i < NR_HASH; i++) {
5217                 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
5218                         if (sh->raid_conf != conf)
5219                                 continue;
5220                         print_sh(seq, sh);
5221                 }
5222         }
5223         spin_unlock_irq(&conf->device_lock);
5224 }
5225 #endif
5226
5227 static void status(struct seq_file *seq, mddev_t *mddev)
5228 {
5229         raid5_conf_t *conf = mddev->private;
5230         int i;
5231
5232         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5233                 mddev->chunk_sectors / 2, mddev->layout);
5234         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5235         for (i = 0; i < conf->raid_disks; i++)
5236                 seq_printf (seq, "%s",
5237                                conf->disks[i].rdev &&
5238                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5239         seq_printf (seq, "]");
5240 #ifdef DEBUG
5241         seq_printf (seq, "\n");
5242         printall(seq, conf);
5243 #endif
5244 }
5245
5246 static void print_raid5_conf (raid5_conf_t *conf)
5247 {
5248         int i;
5249         struct disk_info *tmp;
5250
5251         printk(KERN_DEBUG "RAID conf printout:\n");
5252         if (!conf) {
5253                 printk("(conf==NULL)\n");
5254                 return;
5255         }
5256         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5257                conf->raid_disks,
5258                conf->raid_disks - conf->mddev->degraded);
5259
5260         for (i = 0; i < conf->raid_disks; i++) {
5261                 char b[BDEVNAME_SIZE];
5262                 tmp = conf->disks + i;
5263                 if (tmp->rdev)
5264                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5265                                i, !test_bit(Faulty, &tmp->rdev->flags),
5266                                bdevname(tmp->rdev->bdev, b));
5267         }
5268 }
5269
5270 static int raid5_spare_active(mddev_t *mddev)
5271 {
5272         int i;
5273         raid5_conf_t *conf = mddev->private;
5274         struct disk_info *tmp;
5275         int count = 0;
5276         unsigned long flags;
5277
5278         for (i = 0; i < conf->raid_disks; i++) {
5279                 tmp = conf->disks + i;
5280                 if (tmp->rdev
5281                     && tmp->rdev->recovery_offset == MaxSector
5282                     && !test_bit(Faulty, &tmp->rdev->flags)
5283                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5284                         count++;
5285                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5286                 }
5287         }
5288         spin_lock_irqsave(&conf->device_lock, flags);
5289         mddev->degraded -= count;
5290         spin_unlock_irqrestore(&conf->device_lock, flags);
5291         print_raid5_conf(conf);
5292         return count;
5293 }
5294
5295 static int raid5_remove_disk(mddev_t *mddev, int number)
5296 {
5297         raid5_conf_t *conf = mddev->private;
5298         int err = 0;
5299         mdk_rdev_t *rdev;
5300         struct disk_info *p = conf->disks + number;
5301
5302         print_raid5_conf(conf);
5303         rdev = p->rdev;
5304         if (rdev) {
5305                 if (number >= conf->raid_disks &&
5306                     conf->reshape_progress == MaxSector)
5307                         clear_bit(In_sync, &rdev->flags);
5308
5309                 if (test_bit(In_sync, &rdev->flags) ||
5310                     atomic_read(&rdev->nr_pending)) {
5311                         err = -EBUSY;
5312                         goto abort;
5313                 }
5314                 /* Only remove non-faulty devices if recovery
5315                  * isn't possible.
5316                  */
5317                 if (!test_bit(Faulty, &rdev->flags) &&
5318                     !has_failed(conf) &&
5319                     number < conf->raid_disks) {
5320                         err = -EBUSY;
5321                         goto abort;
5322                 }
5323                 p->rdev = NULL;
5324                 synchronize_rcu();
5325                 if (atomic_read(&rdev->nr_pending)) {
5326                         /* lost the race, try later */
5327                         err = -EBUSY;
5328                         p->rdev = rdev;
5329                 }
5330         }
5331 abort:
5332
5333         print_raid5_conf(conf);
5334         return err;
5335 }
5336
5337 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5338 {
5339         raid5_conf_t *conf = mddev->private;
5340         int err = -EEXIST;
5341         int disk;
5342         struct disk_info *p;
5343         int first = 0;
5344         int last = conf->raid_disks - 1;
5345
5346         if (has_failed(conf))
5347                 /* no point adding a device */
5348                 return -EINVAL;
5349
5350         if (rdev->raid_disk >= 0)
5351                 first = last = rdev->raid_disk;
5352
5353         /*
5354          * find the disk ... but prefer rdev->saved_raid_disk
5355          * if possible.
5356          */
5357         if (rdev->saved_raid_disk >= 0 &&
5358             rdev->saved_raid_disk >= first &&
5359             conf->disks[rdev->saved_raid_disk].rdev == NULL)
5360                 disk = rdev->saved_raid_disk;
5361         else
5362                 disk = first;
5363         for ( ; disk <= last ; disk++)
5364                 if ((p=conf->disks + disk)->rdev == NULL) {
5365                         clear_bit(In_sync, &rdev->flags);
5366                         rdev->raid_disk = disk;
5367                         err = 0;
5368                         if (rdev->saved_raid_disk != disk)
5369                                 conf->fullsync = 1;
5370                         rcu_assign_pointer(p->rdev, rdev);
5371                         break;
5372                 }
5373         print_raid5_conf(conf);
5374         return err;
5375 }
5376
5377 static int raid5_resize(mddev_t *mddev, sector_t sectors)
5378 {
5379         /* no resync is happening, and there is enough space
5380          * on all devices, so we can resize.
5381          * We need to make sure resync covers any new space.
5382          * If the array is shrinking we should possibly wait until
5383          * any io in the removed space completes, but it hardly seems
5384          * worth it.
5385          */
5386         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5387         md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5388                                                mddev->raid_disks));
5389         if (mddev->array_sectors >
5390             raid5_size(mddev, sectors, mddev->raid_disks))
5391                 return -EINVAL;
5392         set_capacity(mddev->gendisk, mddev->array_sectors);
5393         revalidate_disk(mddev->gendisk);
5394         if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
5395                 mddev->recovery_cp = mddev->dev_sectors;
5396                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5397         }
5398         mddev->dev_sectors = sectors;
5399         mddev->resync_max_sectors = sectors;
5400         return 0;
5401 }
5402
5403 static int check_stripe_cache(mddev_t *mddev)
5404 {
5405         /* Can only proceed if there are plenty of stripe_heads.
5406          * We need a minimum of one full stripe,, and for sensible progress
5407          * it is best to have about 4 times that.
5408          * If we require 4 times, then the default 256 4K stripe_heads will
5409          * allow for chunk sizes up to 256K, which is probably OK.
5410          * If the chunk size is greater, user-space should request more
5411          * stripe_heads first.
5412          */
5413         raid5_conf_t *conf = mddev->private;
5414         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5415             > conf->max_nr_stripes ||
5416             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5417             > conf->max_nr_stripes) {
5418                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5419                        mdname(mddev),
5420                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5421                         / STRIPE_SIZE)*4);
5422                 return 0;
5423         }
5424         return 1;
5425 }
5426
5427 static int check_reshape(mddev_t *mddev)
5428 {
5429         raid5_conf_t *conf = mddev->private;
5430
5431         if (mddev->delta_disks == 0 &&
5432             mddev->new_layout == mddev->layout &&
5433             mddev->new_chunk_sectors == mddev->chunk_sectors)
5434                 return 0; /* nothing to do */
5435         if (mddev->bitmap)
5436                 /* Cannot grow a bitmap yet */
5437                 return -EBUSY;
5438         if (has_failed(conf))
5439                 return -EINVAL;
5440         if (mddev->delta_disks < 0) {
5441                 /* We might be able to shrink, but the devices must
5442                  * be made bigger first.
5443                  * For raid6, 4 is the minimum size.
5444                  * Otherwise 2 is the minimum
5445                  */
5446                 int min = 2;
5447                 if (mddev->level == 6)
5448                         min = 4;
5449                 if (mddev->raid_disks + mddev->delta_disks < min)
5450                         return -EINVAL;
5451         }
5452
5453         if (!check_stripe_cache(mddev))
5454                 return -ENOSPC;
5455
5456         return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5457 }
5458
5459 static int raid5_start_reshape(mddev_t *mddev)
5460 {
5461         raid5_conf_t *conf = mddev->private;
5462         mdk_rdev_t *rdev;
5463         int spares = 0;
5464         unsigned long flags;
5465
5466         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5467                 return -EBUSY;
5468
5469         if (!check_stripe_cache(mddev))
5470                 return -ENOSPC;
5471
5472         list_for_each_entry(rdev, &mddev->disks, same_set)
5473                 if (!test_bit(In_sync, &rdev->flags)
5474                     && !test_bit(Faulty, &rdev->flags))
5475                         spares++;
5476
5477         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5478                 /* Not enough devices even to make a degraded array
5479                  * of that size
5480                  */
5481                 return -EINVAL;
5482
5483         /* Refuse to reduce size of the array.  Any reductions in
5484          * array size must be through explicit setting of array_size
5485          * attribute.
5486          */
5487         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5488             < mddev->array_sectors) {
5489                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5490                        "before number of disks\n", mdname(mddev));
5491                 return -EINVAL;
5492         }
5493
5494         atomic_set(&conf->reshape_stripes, 0);
5495         spin_lock_irq(&conf->device_lock);
5496         conf->previous_raid_disks = conf->raid_disks;
5497         conf->raid_disks += mddev->delta_disks;
5498         conf->prev_chunk_sectors = conf->chunk_sectors;
5499         conf->chunk_sectors = mddev->new_chunk_sectors;
5500         conf->prev_algo = conf->algorithm;
5501         conf->algorithm = mddev->new_layout;
5502         if (mddev->delta_disks < 0)
5503                 conf->reshape_progress = raid5_size(mddev, 0, 0);
5504         else
5505                 conf->reshape_progress = 0;
5506         conf->reshape_safe = conf->reshape_progress;
5507         conf->generation++;
5508         spin_unlock_irq(&conf->device_lock);
5509
5510         /* Add some new drives, as many as will fit.
5511          * We know there are enough to make the newly sized array work.
5512          * Don't add devices if we are reducing the number of
5513          * devices in the array.  This is because it is not possible
5514          * to correctly record the "partially reconstructed" state of
5515          * such devices during the reshape and confusion could result.
5516          */
5517         if (mddev->delta_disks >= 0) {
5518                 int added_devices = 0;
5519                 list_for_each_entry(rdev, &mddev->disks, same_set)
5520                         if (rdev->raid_disk < 0 &&
5521                             !test_bit(Faulty, &rdev->flags)) {
5522                                 if (raid5_add_disk(mddev, rdev) == 0) {
5523                                         char nm[20];
5524                                         if (rdev->raid_disk
5525                                             >= conf->previous_raid_disks) {
5526                                                 set_bit(In_sync, &rdev->flags);
5527                                                 added_devices++;
5528                                         } else
5529                                                 rdev->recovery_offset = 0;
5530                                         sprintf(nm, "rd%d", rdev->raid_disk);
5531                                         if (sysfs_create_link(&mddev->kobj,
5532                                                               &rdev->kobj, nm))
5533                                                 /* Failure here is OK */;
5534                                 }
5535                         } else if (rdev->raid_disk >= conf->previous_raid_disks
5536                                    && !test_bit(Faulty, &rdev->flags)) {
5537                                 /* This is a spare that was manually added */
5538                                 set_bit(In_sync, &rdev->flags);
5539                                 added_devices++;
5540                         }
5541
5542                 /* When a reshape changes the number of devices,
5543                  * ->degraded is measured against the larger of the
5544                  * pre and post number of devices.
5545                  */
5546                 spin_lock_irqsave(&conf->device_lock, flags);
5547                 mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5548                         - added_devices;
5549                 spin_unlock_irqrestore(&conf->device_lock, flags);
5550         }
5551         mddev->raid_disks = conf->raid_disks;
5552         mddev->reshape_position = conf->reshape_progress;
5553         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5554
5555         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5556         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5557         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5558         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5559         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5560                                                 "reshape");
5561         if (!mddev->sync_thread) {
5562                 mddev->recovery = 0;
5563                 spin_lock_irq(&conf->device_lock);
5564                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5565                 conf->reshape_progress = MaxSector;
5566                 spin_unlock_irq(&conf->device_lock);
5567                 return -EAGAIN;
5568         }
5569         conf->reshape_checkpoint = jiffies;
5570         md_wakeup_thread(mddev->sync_thread);
5571         md_new_event(mddev);
5572         return 0;
5573 }
5574
5575 /* This is called from the reshape thread and should make any
5576  * changes needed in 'conf'
5577  */
5578 static void end_reshape(raid5_conf_t *conf)
5579 {
5580
5581         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5582
5583                 spin_lock_irq(&conf->device_lock);
5584                 conf->previous_raid_disks = conf->raid_disks;
5585                 conf->reshape_progress = MaxSector;
5586                 spin_unlock_irq(&conf->device_lock);
5587                 wake_up(&conf->wait_for_overlap);
5588
5589                 /* read-ahead size must cover two whole stripes, which is
5590                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5591                  */
5592                 if (conf->mddev->queue) {
5593                         int data_disks = conf->raid_disks - conf->max_degraded;
5594                         int stripe = data_disks * ((conf->chunk_sectors << 9)
5595                                                    / PAGE_SIZE);
5596                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5597                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5598                 }
5599         }
5600 }
5601
5602 /* This is called from the raid5d thread with mddev_lock held.
5603  * It makes config changes to the device.
5604  */
5605 static void raid5_finish_reshape(mddev_t *mddev)
5606 {
5607         raid5_conf_t *conf = mddev->private;
5608
5609         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5610
5611                 if (mddev->delta_disks > 0) {
5612                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5613                         set_capacity(mddev->gendisk, mddev->array_sectors);
5614                         revalidate_disk(mddev->gendisk);
5615                 } else {
5616                         int d;
5617                         mddev->degraded = conf->raid_disks;
5618                         for (d = 0; d < conf->raid_disks ; d++)
5619                                 if (conf->disks[d].rdev &&
5620                                     test_bit(In_sync,
5621                                              &conf->disks[d].rdev->flags))
5622                                         mddev->degraded--;
5623                         for (d = conf->raid_disks ;
5624                              d < conf->raid_disks - mddev->delta_disks;
5625                              d++) {
5626                                 mdk_rdev_t *rdev = conf->disks[d].rdev;
5627                                 if (rdev && raid5_remove_disk(mddev, d) == 0) {
5628                                         char nm[20];
5629                                         sprintf(nm, "rd%d", rdev->raid_disk);
5630                                         sysfs_remove_link(&mddev->kobj, nm);
5631                                         rdev->raid_disk = -1;
5632                                 }
5633                         }
5634                 }
5635                 mddev->layout = conf->algorithm;
5636                 mddev->chunk_sectors = conf->chunk_sectors;
5637                 mddev->reshape_position = MaxSector;
5638                 mddev->delta_disks = 0;
5639         }
5640 }
5641
5642 static void raid5_quiesce(mddev_t *mddev, int state)
5643 {
5644         raid5_conf_t *conf = mddev->private;
5645
5646         switch(state) {
5647         case 2: /* resume for a suspend */
5648                 wake_up(&conf->wait_for_overlap);
5649                 break;
5650
5651         case 1: /* stop all writes */
5652                 spin_lock_irq(&conf->device_lock);
5653                 /* '2' tells resync/reshape to pause so that all
5654                  * active stripes can drain
5655                  */
5656                 conf->quiesce = 2;
5657                 wait_event_lock_irq(conf->wait_for_stripe,
5658                                     atomic_read(&conf->active_stripes) == 0 &&
5659                                     atomic_read(&conf->active_aligned_reads) == 0,
5660                                     conf->device_lock, /* nothing */);
5661                 conf->quiesce = 1;
5662                 spin_unlock_irq(&conf->device_lock);
5663                 /* allow reshape to continue */
5664                 wake_up(&conf->wait_for_overlap);
5665                 break;
5666
5667         case 0: /* re-enable writes */
5668                 spin_lock_irq(&conf->device_lock);
5669                 conf->quiesce = 0;
5670                 wake_up(&conf->wait_for_stripe);
5671                 wake_up(&conf->wait_for_overlap);
5672                 spin_unlock_irq(&conf->device_lock);
5673                 break;
5674         }
5675 }
5676
5677
5678 static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5679 {
5680         struct raid0_private_data *raid0_priv = mddev->private;
5681         unsigned long long sectors;
5682
5683         /* for raid0 takeover only one zone is supported */
5684         if (raid0_priv->nr_strip_zones > 1) {
5685                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5686                        mdname(mddev));
5687                 return ERR_PTR(-EINVAL);
5688         }
5689
5690         sectors = raid0_priv->strip_zone[0].zone_end;
5691         sector_div(sectors, raid0_priv->strip_zone[0].nb_dev);
5692         mddev->dev_sectors = sectors;
5693         mddev->new_level = level;
5694         mddev->new_layout = ALGORITHM_PARITY_N;
5695         mddev->new_chunk_sectors = mddev->chunk_sectors;
5696         mddev->raid_disks += 1;
5697         mddev->delta_disks = 1;
5698         /* make sure it will be not marked as dirty */
5699         mddev->recovery_cp = MaxSector;
5700
5701         return setup_conf(mddev);
5702 }
5703
5704
5705 static void *raid5_takeover_raid1(mddev_t *mddev)
5706 {
5707         int chunksect;
5708
5709         if (mddev->raid_disks != 2 ||
5710             mddev->degraded > 1)
5711                 return ERR_PTR(-EINVAL);
5712
5713         /* Should check if there are write-behind devices? */
5714
5715         chunksect = 64*2; /* 64K by default */
5716
5717         /* The array must be an exact multiple of chunksize */
5718         while (chunksect && (mddev->array_sectors & (chunksect-1)))
5719                 chunksect >>= 1;
5720
5721         if ((chunksect<<9) < STRIPE_SIZE)
5722                 /* array size does not allow a suitable chunk size */
5723                 return ERR_PTR(-EINVAL);
5724
5725         mddev->new_level = 5;
5726         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5727         mddev->new_chunk_sectors = chunksect;
5728
5729         return setup_conf(mddev);
5730 }
5731
5732 static void *raid5_takeover_raid6(mddev_t *mddev)
5733 {
5734         int new_layout;
5735
5736         switch (mddev->layout) {
5737         case ALGORITHM_LEFT_ASYMMETRIC_6:
5738                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5739                 break;
5740         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5741                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5742                 break;
5743         case ALGORITHM_LEFT_SYMMETRIC_6:
5744                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5745                 break;
5746         case ALGORITHM_RIGHT_SYMMETRIC_6:
5747                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5748                 break;
5749         case ALGORITHM_PARITY_0_6:
5750                 new_layout = ALGORITHM_PARITY_0;
5751                 break;
5752         case ALGORITHM_PARITY_N:
5753                 new_layout = ALGORITHM_PARITY_N;
5754                 break;
5755         default:
5756                 return ERR_PTR(-EINVAL);
5757         }
5758         mddev->new_level = 5;
5759         mddev->new_layout = new_layout;
5760         mddev->delta_disks = -1;
5761         mddev->raid_disks -= 1;
5762         return setup_conf(mddev);
5763 }
5764
5765
5766 static int raid5_check_reshape(mddev_t *mddev)
5767 {
5768         /* For a 2-drive array, the layout and chunk size can be changed
5769          * immediately as not restriping is needed.
5770          * For larger arrays we record the new value - after validation
5771          * to be used by a reshape pass.
5772          */
5773         raid5_conf_t *conf = mddev->private;
5774         int new_chunk = mddev->new_chunk_sectors;
5775
5776         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5777                 return -EINVAL;
5778         if (new_chunk > 0) {
5779                 if (!is_power_of_2(new_chunk))
5780                         return -EINVAL;
5781                 if (new_chunk < (PAGE_SIZE>>9))
5782                         return -EINVAL;
5783                 if (mddev->array_sectors & (new_chunk-1))
5784                         /* not factor of array size */
5785                         return -EINVAL;
5786         }
5787
5788         /* They look valid */
5789
5790         if (mddev->raid_disks == 2) {
5791                 /* can make the change immediately */
5792                 if (mddev->new_layout >= 0) {
5793                         conf->algorithm = mddev->new_layout;
5794                         mddev->layout = mddev->new_layout;
5795                 }
5796                 if (new_chunk > 0) {
5797                         conf->chunk_sectors = new_chunk ;
5798                         mddev->chunk_sectors = new_chunk;
5799                 }
5800                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5801                 md_wakeup_thread(mddev->thread);
5802         }
5803         return check_reshape(mddev);
5804 }
5805
5806 static int raid6_check_reshape(mddev_t *mddev)
5807 {
5808         int new_chunk = mddev->new_chunk_sectors;
5809
5810         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5811                 return -EINVAL;
5812         if (new_chunk > 0) {
5813                 if (!is_power_of_2(new_chunk))
5814                         return -EINVAL;
5815                 if (new_chunk < (PAGE_SIZE >> 9))
5816                         return -EINVAL;
5817                 if (mddev->array_sectors & (new_chunk-1))
5818                         /* not factor of array size */
5819                         return -EINVAL;
5820         }
5821
5822         /* They look valid */
5823         return check_reshape(mddev);
5824 }
5825
5826 static void *raid5_takeover(mddev_t *mddev)
5827 {
5828         /* raid5 can take over:
5829          *  raid0 - if there is only one strip zone - make it a raid4 layout
5830          *  raid1 - if there are two drives.  We need to know the chunk size
5831          *  raid4 - trivial - just use a raid4 layout.
5832          *  raid6 - Providing it is a *_6 layout
5833          */
5834         if (mddev->level == 0)
5835                 return raid45_takeover_raid0(mddev, 5);
5836         if (mddev->level == 1)
5837                 return raid5_takeover_raid1(mddev);
5838         if (mddev->level == 4) {
5839                 mddev->new_layout = ALGORITHM_PARITY_N;
5840                 mddev->new_level = 5;
5841                 return setup_conf(mddev);
5842         }
5843         if (mddev->level == 6)
5844                 return raid5_takeover_raid6(mddev);
5845
5846         return ERR_PTR(-EINVAL);
5847 }
5848
5849 static void *raid4_takeover(mddev_t *mddev)
5850 {
5851         /* raid4 can take over:
5852          *  raid0 - if there is only one strip zone
5853          *  raid5 - if layout is right
5854          */
5855         if (mddev->level == 0)
5856                 return raid45_takeover_raid0(mddev, 4);
5857         if (mddev->level == 5 &&
5858             mddev->layout == ALGORITHM_PARITY_N) {
5859                 mddev->new_layout = 0;
5860                 mddev->new_level = 4;
5861                 return setup_conf(mddev);
5862         }
5863         return ERR_PTR(-EINVAL);
5864 }
5865
5866 static struct mdk_personality raid5_personality;
5867
5868 static void *raid6_takeover(mddev_t *mddev)
5869 {
5870         /* Currently can only take over a raid5.  We map the
5871          * personality to an equivalent raid6 personality
5872          * with the Q block at the end.
5873          */
5874         int new_layout;
5875
5876         if (mddev->pers != &raid5_personality)
5877                 return ERR_PTR(-EINVAL);
5878         if (mddev->degraded > 1)
5879                 return ERR_PTR(-EINVAL);
5880         if (mddev->raid_disks > 253)
5881                 return ERR_PTR(-EINVAL);
5882         if (mddev->raid_disks < 3)
5883                 return ERR_PTR(-EINVAL);
5884
5885         switch (mddev->layout) {
5886         case ALGORITHM_LEFT_ASYMMETRIC:
5887                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5888                 break;
5889         case ALGORITHM_RIGHT_ASYMMETRIC:
5890                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5891                 break;
5892         case ALGORITHM_LEFT_SYMMETRIC:
5893                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5894                 break;
5895         case ALGORITHM_RIGHT_SYMMETRIC:
5896                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5897                 break;
5898         case ALGORITHM_PARITY_0:
5899                 new_layout = ALGORITHM_PARITY_0_6;
5900                 break;
5901         case ALGORITHM_PARITY_N:
5902                 new_layout = ALGORITHM_PARITY_N;
5903                 break;
5904         default:
5905                 return ERR_PTR(-EINVAL);
5906         }
5907         mddev->new_level = 6;
5908         mddev->new_layout = new_layout;
5909         mddev->delta_disks = 1;
5910         mddev->raid_disks += 1;
5911         return setup_conf(mddev);
5912 }
5913
5914
5915 static struct mdk_personality raid6_personality =
5916 {
5917         .name           = "raid6",
5918         .level          = 6,
5919         .owner          = THIS_MODULE,
5920         .make_request   = make_request,
5921         .run            = run,
5922         .stop           = stop,
5923         .status         = status,
5924         .error_handler  = error,
5925         .hot_add_disk   = raid5_add_disk,
5926         .hot_remove_disk= raid5_remove_disk,
5927         .spare_active   = raid5_spare_active,
5928         .sync_request   = sync_request,
5929         .resize         = raid5_resize,
5930         .size           = raid5_size,
5931         .check_reshape  = raid6_check_reshape,
5932         .start_reshape  = raid5_start_reshape,
5933         .finish_reshape = raid5_finish_reshape,
5934         .quiesce        = raid5_quiesce,
5935         .takeover       = raid6_takeover,
5936 };
5937 static struct mdk_personality raid5_personality =
5938 {
5939         .name           = "raid5",
5940         .level          = 5,
5941         .owner          = THIS_MODULE,
5942         .make_request   = make_request,
5943         .run            = run,
5944         .stop           = stop,
5945         .status         = status,
5946         .error_handler  = error,
5947         .hot_add_disk   = raid5_add_disk,
5948         .hot_remove_disk= raid5_remove_disk,
5949         .spare_active   = raid5_spare_active,
5950         .sync_request   = sync_request,
5951         .resize         = raid5_resize,
5952         .size           = raid5_size,
5953         .check_reshape  = raid5_check_reshape,
5954         .start_reshape  = raid5_start_reshape,
5955         .finish_reshape = raid5_finish_reshape,
5956         .quiesce        = raid5_quiesce,
5957         .takeover       = raid5_takeover,
5958 };
5959
5960 static struct mdk_personality raid4_personality =
5961 {
5962         .name           = "raid4",
5963         .level          = 4,
5964         .owner          = THIS_MODULE,
5965         .make_request   = make_request,
5966         .run            = run,
5967         .stop           = stop,
5968         .status         = status,
5969         .error_handler  = error,
5970         .hot_add_disk   = raid5_add_disk,
5971         .hot_remove_disk= raid5_remove_disk,
5972         .spare_active   = raid5_spare_active,
5973         .sync_request   = sync_request,
5974         .resize         = raid5_resize,
5975         .size           = raid5_size,
5976         .check_reshape  = raid5_check_reshape,
5977         .start_reshape  = raid5_start_reshape,
5978         .finish_reshape = raid5_finish_reshape,
5979         .quiesce        = raid5_quiesce,
5980         .takeover       = raid4_takeover,
5981 };
5982
5983 static int __init raid5_init(void)
5984 {
5985         register_md_personality(&raid6_personality);
5986         register_md_personality(&raid5_personality);
5987         register_md_personality(&raid4_personality);
5988         return 0;
5989 }
5990
5991 static void raid5_exit(void)
5992 {
5993         unregister_md_personality(&raid6_personality);
5994         unregister_md_personality(&raid5_personality);
5995         unregister_md_personality(&raid4_personality);
5996 }
5997
5998 module_init(raid5_init);
5999 module_exit(raid5_exit);
6000 MODULE_LICENSE("GPL");
6001 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6002 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6003 MODULE_ALIAS("md-raid5");
6004 MODULE_ALIAS("md-raid4");
6005 MODULE_ALIAS("md-level-5");
6006 MODULE_ALIAS("md-level-4");
6007 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6008 MODULE_ALIAS("md-raid6");
6009 MODULE_ALIAS("md-level-6");
6010
6011 /* This used to be two separate modules, they were: */
6012 MODULE_ALIAS("raid5");
6013 MODULE_ALIAS("raid6");