Merge branch 'x86-spinlocks-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[pandora-kernel.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
53 #include <linux/slab.h>
54 #include <linux/ratelimit.h>
55 #include "md.h"
56 #include "raid5.h"
57 #include "raid0.h"
58 #include "bitmap.h"
59
60 /*
61  * Stripe cache
62  */
63
64 #define NR_STRIPES              256
65 #define STRIPE_SIZE             PAGE_SIZE
66 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
67 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
68 #define IO_THRESHOLD            1
69 #define BYPASS_THRESHOLD        1
70 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
71 #define HASH_MASK               (NR_HASH - 1)
72
73 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
74 {
75         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
76         return &conf->stripe_hashtbl[hash];
77 }
78
79 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
80  * order without overlap.  There may be several bio's per stripe+device, and
81  * a bio could span several devices.
82  * When walking this list for a particular stripe+device, we must never proceed
83  * beyond a bio that extends past this device, as the next bio might no longer
84  * be valid.
85  * This function is used to determine the 'next' bio in the list, given the sector
86  * of the current stripe+device
87  */
88 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
89 {
90         int sectors = bio->bi_size >> 9;
91         if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
92                 return bio->bi_next;
93         else
94                 return NULL;
95 }
96
97 /*
98  * We maintain a biased count of active stripes in the bottom 16 bits of
99  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
100  */
101 static inline int raid5_bi_phys_segments(struct bio *bio)
102 {
103         return bio->bi_phys_segments & 0xffff;
104 }
105
106 static inline int raid5_bi_hw_segments(struct bio *bio)
107 {
108         return (bio->bi_phys_segments >> 16) & 0xffff;
109 }
110
111 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
112 {
113         --bio->bi_phys_segments;
114         return raid5_bi_phys_segments(bio);
115 }
116
117 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
118 {
119         unsigned short val = raid5_bi_hw_segments(bio);
120
121         --val;
122         bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
123         return val;
124 }
125
126 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
127 {
128         bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
129 }
130
131 /* Find first data disk in a raid6 stripe */
132 static inline int raid6_d0(struct stripe_head *sh)
133 {
134         if (sh->ddf_layout)
135                 /* ddf always start from first device */
136                 return 0;
137         /* md starts just after Q block */
138         if (sh->qd_idx == sh->disks - 1)
139                 return 0;
140         else
141                 return sh->qd_idx + 1;
142 }
143 static inline int raid6_next_disk(int disk, int raid_disks)
144 {
145         disk++;
146         return (disk < raid_disks) ? disk : 0;
147 }
148
149 /* When walking through the disks in a raid5, starting at raid6_d0,
150  * We need to map each disk to a 'slot', where the data disks are slot
151  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
152  * is raid_disks-1.  This help does that mapping.
153  */
154 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
155                              int *count, int syndrome_disks)
156 {
157         int slot = *count;
158
159         if (sh->ddf_layout)
160                 (*count)++;
161         if (idx == sh->pd_idx)
162                 return syndrome_disks;
163         if (idx == sh->qd_idx)
164                 return syndrome_disks + 1;
165         if (!sh->ddf_layout)
166                 (*count)++;
167         return slot;
168 }
169
170 static void return_io(struct bio *return_bi)
171 {
172         struct bio *bi = return_bi;
173         while (bi) {
174
175                 return_bi = bi->bi_next;
176                 bi->bi_next = NULL;
177                 bi->bi_size = 0;
178                 bio_endio(bi, 0);
179                 bi = return_bi;
180         }
181 }
182
183 static void print_raid5_conf (struct r5conf *conf);
184
185 static int stripe_operations_active(struct stripe_head *sh)
186 {
187         return sh->check_state || sh->reconstruct_state ||
188                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
189                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
190 }
191
192 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
193 {
194         if (atomic_dec_and_test(&sh->count)) {
195                 BUG_ON(!list_empty(&sh->lru));
196                 BUG_ON(atomic_read(&conf->active_stripes)==0);
197                 if (test_bit(STRIPE_HANDLE, &sh->state)) {
198                         if (test_bit(STRIPE_DELAYED, &sh->state))
199                                 list_add_tail(&sh->lru, &conf->delayed_list);
200                         else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
201                                    sh->bm_seq - conf->seq_write > 0)
202                                 list_add_tail(&sh->lru, &conf->bitmap_list);
203                         else {
204                                 clear_bit(STRIPE_BIT_DELAY, &sh->state);
205                                 list_add_tail(&sh->lru, &conf->handle_list);
206                         }
207                         md_wakeup_thread(conf->mddev->thread);
208                 } else {
209                         BUG_ON(stripe_operations_active(sh));
210                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
211                                 atomic_dec(&conf->preread_active_stripes);
212                                 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
213                                         md_wakeup_thread(conf->mddev->thread);
214                         }
215                         atomic_dec(&conf->active_stripes);
216                         if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
217                                 list_add_tail(&sh->lru, &conf->inactive_list);
218                                 wake_up(&conf->wait_for_stripe);
219                                 if (conf->retry_read_aligned)
220                                         md_wakeup_thread(conf->mddev->thread);
221                         }
222                 }
223         }
224 }
225
226 static void release_stripe(struct stripe_head *sh)
227 {
228         struct r5conf *conf = sh->raid_conf;
229         unsigned long flags;
230
231         spin_lock_irqsave(&conf->device_lock, flags);
232         __release_stripe(conf, sh);
233         spin_unlock_irqrestore(&conf->device_lock, flags);
234 }
235
236 static inline void remove_hash(struct stripe_head *sh)
237 {
238         pr_debug("remove_hash(), stripe %llu\n",
239                 (unsigned long long)sh->sector);
240
241         hlist_del_init(&sh->hash);
242 }
243
244 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
245 {
246         struct hlist_head *hp = stripe_hash(conf, sh->sector);
247
248         pr_debug("insert_hash(), stripe %llu\n",
249                 (unsigned long long)sh->sector);
250
251         hlist_add_head(&sh->hash, hp);
252 }
253
254
255 /* find an idle stripe, make sure it is unhashed, and return it. */
256 static struct stripe_head *get_free_stripe(struct r5conf *conf)
257 {
258         struct stripe_head *sh = NULL;
259         struct list_head *first;
260
261         if (list_empty(&conf->inactive_list))
262                 goto out;
263         first = conf->inactive_list.next;
264         sh = list_entry(first, struct stripe_head, lru);
265         list_del_init(first);
266         remove_hash(sh);
267         atomic_inc(&conf->active_stripes);
268 out:
269         return sh;
270 }
271
272 static void shrink_buffers(struct stripe_head *sh)
273 {
274         struct page *p;
275         int i;
276         int num = sh->raid_conf->pool_size;
277
278         for (i = 0; i < num ; i++) {
279                 p = sh->dev[i].page;
280                 if (!p)
281                         continue;
282                 sh->dev[i].page = NULL;
283                 put_page(p);
284         }
285 }
286
287 static int grow_buffers(struct stripe_head *sh)
288 {
289         int i;
290         int num = sh->raid_conf->pool_size;
291
292         for (i = 0; i < num; i++) {
293                 struct page *page;
294
295                 if (!(page = alloc_page(GFP_KERNEL))) {
296                         return 1;
297                 }
298                 sh->dev[i].page = page;
299         }
300         return 0;
301 }
302
303 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
304 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
305                             struct stripe_head *sh);
306
307 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
308 {
309         struct r5conf *conf = sh->raid_conf;
310         int i;
311
312         BUG_ON(atomic_read(&sh->count) != 0);
313         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
314         BUG_ON(stripe_operations_active(sh));
315
316         pr_debug("init_stripe called, stripe %llu\n",
317                 (unsigned long long)sh->sector);
318
319         remove_hash(sh);
320
321         sh->generation = conf->generation - previous;
322         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
323         sh->sector = sector;
324         stripe_set_idx(sector, conf, previous, sh);
325         sh->state = 0;
326
327
328         for (i = sh->disks; i--; ) {
329                 struct r5dev *dev = &sh->dev[i];
330
331                 if (dev->toread || dev->read || dev->towrite || dev->written ||
332                     test_bit(R5_LOCKED, &dev->flags)) {
333                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
334                                (unsigned long long)sh->sector, i, dev->toread,
335                                dev->read, dev->towrite, dev->written,
336                                test_bit(R5_LOCKED, &dev->flags));
337                         WARN_ON(1);
338                 }
339                 dev->flags = 0;
340                 raid5_build_block(sh, i, previous);
341         }
342         insert_hash(conf, sh);
343 }
344
345 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
346                                          short generation)
347 {
348         struct stripe_head *sh;
349         struct hlist_node *hn;
350
351         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
352         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
353                 if (sh->sector == sector && sh->generation == generation)
354                         return sh;
355         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
356         return NULL;
357 }
358
359 /*
360  * Need to check if array has failed when deciding whether to:
361  *  - start an array
362  *  - remove non-faulty devices
363  *  - add a spare
364  *  - allow a reshape
365  * This determination is simple when no reshape is happening.
366  * However if there is a reshape, we need to carefully check
367  * both the before and after sections.
368  * This is because some failed devices may only affect one
369  * of the two sections, and some non-in_sync devices may
370  * be insync in the section most affected by failed devices.
371  */
372 static int has_failed(struct r5conf *conf)
373 {
374         int degraded;
375         int i;
376         if (conf->mddev->reshape_position == MaxSector)
377                 return conf->mddev->degraded > conf->max_degraded;
378
379         rcu_read_lock();
380         degraded = 0;
381         for (i = 0; i < conf->previous_raid_disks; i++) {
382                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
383                 if (!rdev || test_bit(Faulty, &rdev->flags))
384                         degraded++;
385                 else if (test_bit(In_sync, &rdev->flags))
386                         ;
387                 else
388                         /* not in-sync or faulty.
389                          * If the reshape increases the number of devices,
390                          * this is being recovered by the reshape, so
391                          * this 'previous' section is not in_sync.
392                          * If the number of devices is being reduced however,
393                          * the device can only be part of the array if
394                          * we are reverting a reshape, so this section will
395                          * be in-sync.
396                          */
397                         if (conf->raid_disks >= conf->previous_raid_disks)
398                                 degraded++;
399         }
400         rcu_read_unlock();
401         if (degraded > conf->max_degraded)
402                 return 1;
403         rcu_read_lock();
404         degraded = 0;
405         for (i = 0; i < conf->raid_disks; i++) {
406                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
407                 if (!rdev || test_bit(Faulty, &rdev->flags))
408                         degraded++;
409                 else if (test_bit(In_sync, &rdev->flags))
410                         ;
411                 else
412                         /* not in-sync or faulty.
413                          * If reshape increases the number of devices, this
414                          * section has already been recovered, else it
415                          * almost certainly hasn't.
416                          */
417                         if (conf->raid_disks <= conf->previous_raid_disks)
418                                 degraded++;
419         }
420         rcu_read_unlock();
421         if (degraded > conf->max_degraded)
422                 return 1;
423         return 0;
424 }
425
426 static struct stripe_head *
427 get_active_stripe(struct r5conf *conf, sector_t sector,
428                   int previous, int noblock, int noquiesce)
429 {
430         struct stripe_head *sh;
431
432         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
433
434         spin_lock_irq(&conf->device_lock);
435
436         do {
437                 wait_event_lock_irq(conf->wait_for_stripe,
438                                     conf->quiesce == 0 || noquiesce,
439                                     conf->device_lock, /* nothing */);
440                 sh = __find_stripe(conf, sector, conf->generation - previous);
441                 if (!sh) {
442                         if (!conf->inactive_blocked)
443                                 sh = get_free_stripe(conf);
444                         if (noblock && sh == NULL)
445                                 break;
446                         if (!sh) {
447                                 conf->inactive_blocked = 1;
448                                 wait_event_lock_irq(conf->wait_for_stripe,
449                                                     !list_empty(&conf->inactive_list) &&
450                                                     (atomic_read(&conf->active_stripes)
451                                                      < (conf->max_nr_stripes *3/4)
452                                                      || !conf->inactive_blocked),
453                                                     conf->device_lock,
454                                                     );
455                                 conf->inactive_blocked = 0;
456                         } else
457                                 init_stripe(sh, sector, previous);
458                 } else {
459                         if (atomic_read(&sh->count)) {
460                                 BUG_ON(!list_empty(&sh->lru)
461                                     && !test_bit(STRIPE_EXPANDING, &sh->state));
462                         } else {
463                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
464                                         atomic_inc(&conf->active_stripes);
465                                 if (list_empty(&sh->lru) &&
466                                     !test_bit(STRIPE_EXPANDING, &sh->state))
467                                         BUG();
468                                 list_del_init(&sh->lru);
469                         }
470                 }
471         } while (sh == NULL);
472
473         if (sh)
474                 atomic_inc(&sh->count);
475
476         spin_unlock_irq(&conf->device_lock);
477         return sh;
478 }
479
480 static void
481 raid5_end_read_request(struct bio *bi, int error);
482 static void
483 raid5_end_write_request(struct bio *bi, int error);
484
485 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
486 {
487         struct r5conf *conf = sh->raid_conf;
488         int i, disks = sh->disks;
489
490         might_sleep();
491
492         for (i = disks; i--; ) {
493                 int rw;
494                 struct bio *bi;
495                 struct md_rdev *rdev;
496                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
497                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
498                                 rw = WRITE_FUA;
499                         else
500                                 rw = WRITE;
501                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
502                         rw = READ;
503                 else
504                         continue;
505
506                 bi = &sh->dev[i].req;
507
508                 bi->bi_rw = rw;
509                 if (rw & WRITE)
510                         bi->bi_end_io = raid5_end_write_request;
511                 else
512                         bi->bi_end_io = raid5_end_read_request;
513
514                 rcu_read_lock();
515                 rdev = rcu_dereference(conf->disks[i].rdev);
516                 if (rdev && test_bit(Faulty, &rdev->flags))
517                         rdev = NULL;
518                 if (rdev)
519                         atomic_inc(&rdev->nr_pending);
520                 rcu_read_unlock();
521
522                 /* We have already checked bad blocks for reads.  Now
523                  * need to check for writes.
524                  */
525                 while ((rw & WRITE) && rdev &&
526                        test_bit(WriteErrorSeen, &rdev->flags)) {
527                         sector_t first_bad;
528                         int bad_sectors;
529                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
530                                               &first_bad, &bad_sectors);
531                         if (!bad)
532                                 break;
533
534                         if (bad < 0) {
535                                 set_bit(BlockedBadBlocks, &rdev->flags);
536                                 if (!conf->mddev->external &&
537                                     conf->mddev->flags) {
538                                         /* It is very unlikely, but we might
539                                          * still need to write out the
540                                          * bad block log - better give it
541                                          * a chance*/
542                                         md_check_recovery(conf->mddev);
543                                 }
544                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
545                         } else {
546                                 /* Acknowledged bad block - skip the write */
547                                 rdev_dec_pending(rdev, conf->mddev);
548                                 rdev = NULL;
549                         }
550                 }
551
552                 if (rdev) {
553                         if (s->syncing || s->expanding || s->expanded)
554                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
555
556                         set_bit(STRIPE_IO_STARTED, &sh->state);
557
558                         bi->bi_bdev = rdev->bdev;
559                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
560                                 __func__, (unsigned long long)sh->sector,
561                                 bi->bi_rw, i);
562                         atomic_inc(&sh->count);
563                         bi->bi_sector = sh->sector + rdev->data_offset;
564                         bi->bi_flags = 1 << BIO_UPTODATE;
565                         bi->bi_vcnt = 1;
566                         bi->bi_max_vecs = 1;
567                         bi->bi_idx = 0;
568                         bi->bi_io_vec = &sh->dev[i].vec;
569                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
570                         bi->bi_io_vec[0].bv_offset = 0;
571                         bi->bi_size = STRIPE_SIZE;
572                         bi->bi_next = NULL;
573                         generic_make_request(bi);
574                 } else {
575                         if (rw & WRITE)
576                                 set_bit(STRIPE_DEGRADED, &sh->state);
577                         pr_debug("skip op %ld on disc %d for sector %llu\n",
578                                 bi->bi_rw, i, (unsigned long long)sh->sector);
579                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
580                         set_bit(STRIPE_HANDLE, &sh->state);
581                 }
582         }
583 }
584
585 static struct dma_async_tx_descriptor *
586 async_copy_data(int frombio, struct bio *bio, struct page *page,
587         sector_t sector, struct dma_async_tx_descriptor *tx)
588 {
589         struct bio_vec *bvl;
590         struct page *bio_page;
591         int i;
592         int page_offset;
593         struct async_submit_ctl submit;
594         enum async_tx_flags flags = 0;
595
596         if (bio->bi_sector >= sector)
597                 page_offset = (signed)(bio->bi_sector - sector) * 512;
598         else
599                 page_offset = (signed)(sector - bio->bi_sector) * -512;
600
601         if (frombio)
602                 flags |= ASYNC_TX_FENCE;
603         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
604
605         bio_for_each_segment(bvl, bio, i) {
606                 int len = bvl->bv_len;
607                 int clen;
608                 int b_offset = 0;
609
610                 if (page_offset < 0) {
611                         b_offset = -page_offset;
612                         page_offset += b_offset;
613                         len -= b_offset;
614                 }
615
616                 if (len > 0 && page_offset + len > STRIPE_SIZE)
617                         clen = STRIPE_SIZE - page_offset;
618                 else
619                         clen = len;
620
621                 if (clen > 0) {
622                         b_offset += bvl->bv_offset;
623                         bio_page = bvl->bv_page;
624                         if (frombio)
625                                 tx = async_memcpy(page, bio_page, page_offset,
626                                                   b_offset, clen, &submit);
627                         else
628                                 tx = async_memcpy(bio_page, page, b_offset,
629                                                   page_offset, clen, &submit);
630                 }
631                 /* chain the operations */
632                 submit.depend_tx = tx;
633
634                 if (clen < len) /* hit end of page */
635                         break;
636                 page_offset +=  len;
637         }
638
639         return tx;
640 }
641
642 static void ops_complete_biofill(void *stripe_head_ref)
643 {
644         struct stripe_head *sh = stripe_head_ref;
645         struct bio *return_bi = NULL;
646         struct r5conf *conf = sh->raid_conf;
647         int i;
648
649         pr_debug("%s: stripe %llu\n", __func__,
650                 (unsigned long long)sh->sector);
651
652         /* clear completed biofills */
653         spin_lock_irq(&conf->device_lock);
654         for (i = sh->disks; i--; ) {
655                 struct r5dev *dev = &sh->dev[i];
656
657                 /* acknowledge completion of a biofill operation */
658                 /* and check if we need to reply to a read request,
659                  * new R5_Wantfill requests are held off until
660                  * !STRIPE_BIOFILL_RUN
661                  */
662                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
663                         struct bio *rbi, *rbi2;
664
665                         BUG_ON(!dev->read);
666                         rbi = dev->read;
667                         dev->read = NULL;
668                         while (rbi && rbi->bi_sector <
669                                 dev->sector + STRIPE_SECTORS) {
670                                 rbi2 = r5_next_bio(rbi, dev->sector);
671                                 if (!raid5_dec_bi_phys_segments(rbi)) {
672                                         rbi->bi_next = return_bi;
673                                         return_bi = rbi;
674                                 }
675                                 rbi = rbi2;
676                         }
677                 }
678         }
679         spin_unlock_irq(&conf->device_lock);
680         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
681
682         return_io(return_bi);
683
684         set_bit(STRIPE_HANDLE, &sh->state);
685         release_stripe(sh);
686 }
687
688 static void ops_run_biofill(struct stripe_head *sh)
689 {
690         struct dma_async_tx_descriptor *tx = NULL;
691         struct r5conf *conf = sh->raid_conf;
692         struct async_submit_ctl submit;
693         int i;
694
695         pr_debug("%s: stripe %llu\n", __func__,
696                 (unsigned long long)sh->sector);
697
698         for (i = sh->disks; i--; ) {
699                 struct r5dev *dev = &sh->dev[i];
700                 if (test_bit(R5_Wantfill, &dev->flags)) {
701                         struct bio *rbi;
702                         spin_lock_irq(&conf->device_lock);
703                         dev->read = rbi = dev->toread;
704                         dev->toread = NULL;
705                         spin_unlock_irq(&conf->device_lock);
706                         while (rbi && rbi->bi_sector <
707                                 dev->sector + STRIPE_SECTORS) {
708                                 tx = async_copy_data(0, rbi, dev->page,
709                                         dev->sector, tx);
710                                 rbi = r5_next_bio(rbi, dev->sector);
711                         }
712                 }
713         }
714
715         atomic_inc(&sh->count);
716         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
717         async_trigger_callback(&submit);
718 }
719
720 static void mark_target_uptodate(struct stripe_head *sh, int target)
721 {
722         struct r5dev *tgt;
723
724         if (target < 0)
725                 return;
726
727         tgt = &sh->dev[target];
728         set_bit(R5_UPTODATE, &tgt->flags);
729         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
730         clear_bit(R5_Wantcompute, &tgt->flags);
731 }
732
733 static void ops_complete_compute(void *stripe_head_ref)
734 {
735         struct stripe_head *sh = stripe_head_ref;
736
737         pr_debug("%s: stripe %llu\n", __func__,
738                 (unsigned long long)sh->sector);
739
740         /* mark the computed target(s) as uptodate */
741         mark_target_uptodate(sh, sh->ops.target);
742         mark_target_uptodate(sh, sh->ops.target2);
743
744         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
745         if (sh->check_state == check_state_compute_run)
746                 sh->check_state = check_state_compute_result;
747         set_bit(STRIPE_HANDLE, &sh->state);
748         release_stripe(sh);
749 }
750
751 /* return a pointer to the address conversion region of the scribble buffer */
752 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
753                                  struct raid5_percpu *percpu)
754 {
755         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
756 }
757
758 static struct dma_async_tx_descriptor *
759 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
760 {
761         int disks = sh->disks;
762         struct page **xor_srcs = percpu->scribble;
763         int target = sh->ops.target;
764         struct r5dev *tgt = &sh->dev[target];
765         struct page *xor_dest = tgt->page;
766         int count = 0;
767         struct dma_async_tx_descriptor *tx;
768         struct async_submit_ctl submit;
769         int i;
770
771         pr_debug("%s: stripe %llu block: %d\n",
772                 __func__, (unsigned long long)sh->sector, target);
773         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
774
775         for (i = disks; i--; )
776                 if (i != target)
777                         xor_srcs[count++] = sh->dev[i].page;
778
779         atomic_inc(&sh->count);
780
781         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
782                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
783         if (unlikely(count == 1))
784                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
785         else
786                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
787
788         return tx;
789 }
790
791 /* set_syndrome_sources - populate source buffers for gen_syndrome
792  * @srcs - (struct page *) array of size sh->disks
793  * @sh - stripe_head to parse
794  *
795  * Populates srcs in proper layout order for the stripe and returns the
796  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
797  * destination buffer is recorded in srcs[count] and the Q destination
798  * is recorded in srcs[count+1]].
799  */
800 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
801 {
802         int disks = sh->disks;
803         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
804         int d0_idx = raid6_d0(sh);
805         int count;
806         int i;
807
808         for (i = 0; i < disks; i++)
809                 srcs[i] = NULL;
810
811         count = 0;
812         i = d0_idx;
813         do {
814                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
815
816                 srcs[slot] = sh->dev[i].page;
817                 i = raid6_next_disk(i, disks);
818         } while (i != d0_idx);
819
820         return syndrome_disks;
821 }
822
823 static struct dma_async_tx_descriptor *
824 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
825 {
826         int disks = sh->disks;
827         struct page **blocks = percpu->scribble;
828         int target;
829         int qd_idx = sh->qd_idx;
830         struct dma_async_tx_descriptor *tx;
831         struct async_submit_ctl submit;
832         struct r5dev *tgt;
833         struct page *dest;
834         int i;
835         int count;
836
837         if (sh->ops.target < 0)
838                 target = sh->ops.target2;
839         else if (sh->ops.target2 < 0)
840                 target = sh->ops.target;
841         else
842                 /* we should only have one valid target */
843                 BUG();
844         BUG_ON(target < 0);
845         pr_debug("%s: stripe %llu block: %d\n",
846                 __func__, (unsigned long long)sh->sector, target);
847
848         tgt = &sh->dev[target];
849         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
850         dest = tgt->page;
851
852         atomic_inc(&sh->count);
853
854         if (target == qd_idx) {
855                 count = set_syndrome_sources(blocks, sh);
856                 blocks[count] = NULL; /* regenerating p is not necessary */
857                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
858                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
859                                   ops_complete_compute, sh,
860                                   to_addr_conv(sh, percpu));
861                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
862         } else {
863                 /* Compute any data- or p-drive using XOR */
864                 count = 0;
865                 for (i = disks; i-- ; ) {
866                         if (i == target || i == qd_idx)
867                                 continue;
868                         blocks[count++] = sh->dev[i].page;
869                 }
870
871                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
872                                   NULL, ops_complete_compute, sh,
873                                   to_addr_conv(sh, percpu));
874                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
875         }
876
877         return tx;
878 }
879
880 static struct dma_async_tx_descriptor *
881 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
882 {
883         int i, count, disks = sh->disks;
884         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
885         int d0_idx = raid6_d0(sh);
886         int faila = -1, failb = -1;
887         int target = sh->ops.target;
888         int target2 = sh->ops.target2;
889         struct r5dev *tgt = &sh->dev[target];
890         struct r5dev *tgt2 = &sh->dev[target2];
891         struct dma_async_tx_descriptor *tx;
892         struct page **blocks = percpu->scribble;
893         struct async_submit_ctl submit;
894
895         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
896                  __func__, (unsigned long long)sh->sector, target, target2);
897         BUG_ON(target < 0 || target2 < 0);
898         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
899         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
900
901         /* we need to open-code set_syndrome_sources to handle the
902          * slot number conversion for 'faila' and 'failb'
903          */
904         for (i = 0; i < disks ; i++)
905                 blocks[i] = NULL;
906         count = 0;
907         i = d0_idx;
908         do {
909                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
910
911                 blocks[slot] = sh->dev[i].page;
912
913                 if (i == target)
914                         faila = slot;
915                 if (i == target2)
916                         failb = slot;
917                 i = raid6_next_disk(i, disks);
918         } while (i != d0_idx);
919
920         BUG_ON(faila == failb);
921         if (failb < faila)
922                 swap(faila, failb);
923         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
924                  __func__, (unsigned long long)sh->sector, faila, failb);
925
926         atomic_inc(&sh->count);
927
928         if (failb == syndrome_disks+1) {
929                 /* Q disk is one of the missing disks */
930                 if (faila == syndrome_disks) {
931                         /* Missing P+Q, just recompute */
932                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
933                                           ops_complete_compute, sh,
934                                           to_addr_conv(sh, percpu));
935                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
936                                                   STRIPE_SIZE, &submit);
937                 } else {
938                         struct page *dest;
939                         int data_target;
940                         int qd_idx = sh->qd_idx;
941
942                         /* Missing D+Q: recompute D from P, then recompute Q */
943                         if (target == qd_idx)
944                                 data_target = target2;
945                         else
946                                 data_target = target;
947
948                         count = 0;
949                         for (i = disks; i-- ; ) {
950                                 if (i == data_target || i == qd_idx)
951                                         continue;
952                                 blocks[count++] = sh->dev[i].page;
953                         }
954                         dest = sh->dev[data_target].page;
955                         init_async_submit(&submit,
956                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
957                                           NULL, NULL, NULL,
958                                           to_addr_conv(sh, percpu));
959                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
960                                        &submit);
961
962                         count = set_syndrome_sources(blocks, sh);
963                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
964                                           ops_complete_compute, sh,
965                                           to_addr_conv(sh, percpu));
966                         return async_gen_syndrome(blocks, 0, count+2,
967                                                   STRIPE_SIZE, &submit);
968                 }
969         } else {
970                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
971                                   ops_complete_compute, sh,
972                                   to_addr_conv(sh, percpu));
973                 if (failb == syndrome_disks) {
974                         /* We're missing D+P. */
975                         return async_raid6_datap_recov(syndrome_disks+2,
976                                                        STRIPE_SIZE, faila,
977                                                        blocks, &submit);
978                 } else {
979                         /* We're missing D+D. */
980                         return async_raid6_2data_recov(syndrome_disks+2,
981                                                        STRIPE_SIZE, faila, failb,
982                                                        blocks, &submit);
983                 }
984         }
985 }
986
987
988 static void ops_complete_prexor(void *stripe_head_ref)
989 {
990         struct stripe_head *sh = stripe_head_ref;
991
992         pr_debug("%s: stripe %llu\n", __func__,
993                 (unsigned long long)sh->sector);
994 }
995
996 static struct dma_async_tx_descriptor *
997 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
998                struct dma_async_tx_descriptor *tx)
999 {
1000         int disks = sh->disks;
1001         struct page **xor_srcs = percpu->scribble;
1002         int count = 0, pd_idx = sh->pd_idx, i;
1003         struct async_submit_ctl submit;
1004
1005         /* existing parity data subtracted */
1006         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1007
1008         pr_debug("%s: stripe %llu\n", __func__,
1009                 (unsigned long long)sh->sector);
1010
1011         for (i = disks; i--; ) {
1012                 struct r5dev *dev = &sh->dev[i];
1013                 /* Only process blocks that are known to be uptodate */
1014                 if (test_bit(R5_Wantdrain, &dev->flags))
1015                         xor_srcs[count++] = dev->page;
1016         }
1017
1018         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1019                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1020         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1021
1022         return tx;
1023 }
1024
1025 static struct dma_async_tx_descriptor *
1026 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1027 {
1028         int disks = sh->disks;
1029         int i;
1030
1031         pr_debug("%s: stripe %llu\n", __func__,
1032                 (unsigned long long)sh->sector);
1033
1034         for (i = disks; i--; ) {
1035                 struct r5dev *dev = &sh->dev[i];
1036                 struct bio *chosen;
1037
1038                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1039                         struct bio *wbi;
1040
1041                         spin_lock_irq(&sh->raid_conf->device_lock);
1042                         chosen = dev->towrite;
1043                         dev->towrite = NULL;
1044                         BUG_ON(dev->written);
1045                         wbi = dev->written = chosen;
1046                         spin_unlock_irq(&sh->raid_conf->device_lock);
1047
1048                         while (wbi && wbi->bi_sector <
1049                                 dev->sector + STRIPE_SECTORS) {
1050                                 if (wbi->bi_rw & REQ_FUA)
1051                                         set_bit(R5_WantFUA, &dev->flags);
1052                                 tx = async_copy_data(1, wbi, dev->page,
1053                                         dev->sector, tx);
1054                                 wbi = r5_next_bio(wbi, dev->sector);
1055                         }
1056                 }
1057         }
1058
1059         return tx;
1060 }
1061
1062 static void ops_complete_reconstruct(void *stripe_head_ref)
1063 {
1064         struct stripe_head *sh = stripe_head_ref;
1065         int disks = sh->disks;
1066         int pd_idx = sh->pd_idx;
1067         int qd_idx = sh->qd_idx;
1068         int i;
1069         bool fua = false;
1070
1071         pr_debug("%s: stripe %llu\n", __func__,
1072                 (unsigned long long)sh->sector);
1073
1074         for (i = disks; i--; )
1075                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1076
1077         for (i = disks; i--; ) {
1078                 struct r5dev *dev = &sh->dev[i];
1079
1080                 if (dev->written || i == pd_idx || i == qd_idx) {
1081                         set_bit(R5_UPTODATE, &dev->flags);
1082                         if (fua)
1083                                 set_bit(R5_WantFUA, &dev->flags);
1084                 }
1085         }
1086
1087         if (sh->reconstruct_state == reconstruct_state_drain_run)
1088                 sh->reconstruct_state = reconstruct_state_drain_result;
1089         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1090                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1091         else {
1092                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1093                 sh->reconstruct_state = reconstruct_state_result;
1094         }
1095
1096         set_bit(STRIPE_HANDLE, &sh->state);
1097         release_stripe(sh);
1098 }
1099
1100 static void
1101 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1102                      struct dma_async_tx_descriptor *tx)
1103 {
1104         int disks = sh->disks;
1105         struct page **xor_srcs = percpu->scribble;
1106         struct async_submit_ctl submit;
1107         int count = 0, pd_idx = sh->pd_idx, i;
1108         struct page *xor_dest;
1109         int prexor = 0;
1110         unsigned long flags;
1111
1112         pr_debug("%s: stripe %llu\n", __func__,
1113                 (unsigned long long)sh->sector);
1114
1115         /* check if prexor is active which means only process blocks
1116          * that are part of a read-modify-write (written)
1117          */
1118         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1119                 prexor = 1;
1120                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1121                 for (i = disks; i--; ) {
1122                         struct r5dev *dev = &sh->dev[i];
1123                         if (dev->written)
1124                                 xor_srcs[count++] = dev->page;
1125                 }
1126         } else {
1127                 xor_dest = sh->dev[pd_idx].page;
1128                 for (i = disks; i--; ) {
1129                         struct r5dev *dev = &sh->dev[i];
1130                         if (i != pd_idx)
1131                                 xor_srcs[count++] = dev->page;
1132                 }
1133         }
1134
1135         /* 1/ if we prexor'd then the dest is reused as a source
1136          * 2/ if we did not prexor then we are redoing the parity
1137          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1138          * for the synchronous xor case
1139          */
1140         flags = ASYNC_TX_ACK |
1141                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1142
1143         atomic_inc(&sh->count);
1144
1145         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1146                           to_addr_conv(sh, percpu));
1147         if (unlikely(count == 1))
1148                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1149         else
1150                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1151 }
1152
1153 static void
1154 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1155                      struct dma_async_tx_descriptor *tx)
1156 {
1157         struct async_submit_ctl submit;
1158         struct page **blocks = percpu->scribble;
1159         int count;
1160
1161         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1162
1163         count = set_syndrome_sources(blocks, sh);
1164
1165         atomic_inc(&sh->count);
1166
1167         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1168                           sh, to_addr_conv(sh, percpu));
1169         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1170 }
1171
1172 static void ops_complete_check(void *stripe_head_ref)
1173 {
1174         struct stripe_head *sh = stripe_head_ref;
1175
1176         pr_debug("%s: stripe %llu\n", __func__,
1177                 (unsigned long long)sh->sector);
1178
1179         sh->check_state = check_state_check_result;
1180         set_bit(STRIPE_HANDLE, &sh->state);
1181         release_stripe(sh);
1182 }
1183
1184 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1185 {
1186         int disks = sh->disks;
1187         int pd_idx = sh->pd_idx;
1188         int qd_idx = sh->qd_idx;
1189         struct page *xor_dest;
1190         struct page **xor_srcs = percpu->scribble;
1191         struct dma_async_tx_descriptor *tx;
1192         struct async_submit_ctl submit;
1193         int count;
1194         int i;
1195
1196         pr_debug("%s: stripe %llu\n", __func__,
1197                 (unsigned long long)sh->sector);
1198
1199         count = 0;
1200         xor_dest = sh->dev[pd_idx].page;
1201         xor_srcs[count++] = xor_dest;
1202         for (i = disks; i--; ) {
1203                 if (i == pd_idx || i == qd_idx)
1204                         continue;
1205                 xor_srcs[count++] = sh->dev[i].page;
1206         }
1207
1208         init_async_submit(&submit, 0, NULL, NULL, NULL,
1209                           to_addr_conv(sh, percpu));
1210         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1211                            &sh->ops.zero_sum_result, &submit);
1212
1213         atomic_inc(&sh->count);
1214         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1215         tx = async_trigger_callback(&submit);
1216 }
1217
1218 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1219 {
1220         struct page **srcs = percpu->scribble;
1221         struct async_submit_ctl submit;
1222         int count;
1223
1224         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1225                 (unsigned long long)sh->sector, checkp);
1226
1227         count = set_syndrome_sources(srcs, sh);
1228         if (!checkp)
1229                 srcs[count] = NULL;
1230
1231         atomic_inc(&sh->count);
1232         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1233                           sh, to_addr_conv(sh, percpu));
1234         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1235                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1236 }
1237
1238 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1239 {
1240         int overlap_clear = 0, i, disks = sh->disks;
1241         struct dma_async_tx_descriptor *tx = NULL;
1242         struct r5conf *conf = sh->raid_conf;
1243         int level = conf->level;
1244         struct raid5_percpu *percpu;
1245         unsigned long cpu;
1246
1247         cpu = get_cpu();
1248         percpu = per_cpu_ptr(conf->percpu, cpu);
1249         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1250                 ops_run_biofill(sh);
1251                 overlap_clear++;
1252         }
1253
1254         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1255                 if (level < 6)
1256                         tx = ops_run_compute5(sh, percpu);
1257                 else {
1258                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1259                                 tx = ops_run_compute6_1(sh, percpu);
1260                         else
1261                                 tx = ops_run_compute6_2(sh, percpu);
1262                 }
1263                 /* terminate the chain if reconstruct is not set to be run */
1264                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1265                         async_tx_ack(tx);
1266         }
1267
1268         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1269                 tx = ops_run_prexor(sh, percpu, tx);
1270
1271         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1272                 tx = ops_run_biodrain(sh, tx);
1273                 overlap_clear++;
1274         }
1275
1276         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1277                 if (level < 6)
1278                         ops_run_reconstruct5(sh, percpu, tx);
1279                 else
1280                         ops_run_reconstruct6(sh, percpu, tx);
1281         }
1282
1283         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1284                 if (sh->check_state == check_state_run)
1285                         ops_run_check_p(sh, percpu);
1286                 else if (sh->check_state == check_state_run_q)
1287                         ops_run_check_pq(sh, percpu, 0);
1288                 else if (sh->check_state == check_state_run_pq)
1289                         ops_run_check_pq(sh, percpu, 1);
1290                 else
1291                         BUG();
1292         }
1293
1294         if (overlap_clear)
1295                 for (i = disks; i--; ) {
1296                         struct r5dev *dev = &sh->dev[i];
1297                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1298                                 wake_up(&sh->raid_conf->wait_for_overlap);
1299                 }
1300         put_cpu();
1301 }
1302
1303 #ifdef CONFIG_MULTICORE_RAID456
1304 static void async_run_ops(void *param, async_cookie_t cookie)
1305 {
1306         struct stripe_head *sh = param;
1307         unsigned long ops_request = sh->ops.request;
1308
1309         clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1310         wake_up(&sh->ops.wait_for_ops);
1311
1312         __raid_run_ops(sh, ops_request);
1313         release_stripe(sh);
1314 }
1315
1316 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1317 {
1318         /* since handle_stripe can be called outside of raid5d context
1319          * we need to ensure sh->ops.request is de-staged before another
1320          * request arrives
1321          */
1322         wait_event(sh->ops.wait_for_ops,
1323                    !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1324         sh->ops.request = ops_request;
1325
1326         atomic_inc(&sh->count);
1327         async_schedule(async_run_ops, sh);
1328 }
1329 #else
1330 #define raid_run_ops __raid_run_ops
1331 #endif
1332
1333 static int grow_one_stripe(struct r5conf *conf)
1334 {
1335         struct stripe_head *sh;
1336         sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1337         if (!sh)
1338                 return 0;
1339
1340         sh->raid_conf = conf;
1341         #ifdef CONFIG_MULTICORE_RAID456
1342         init_waitqueue_head(&sh->ops.wait_for_ops);
1343         #endif
1344
1345         if (grow_buffers(sh)) {
1346                 shrink_buffers(sh);
1347                 kmem_cache_free(conf->slab_cache, sh);
1348                 return 0;
1349         }
1350         /* we just created an active stripe so... */
1351         atomic_set(&sh->count, 1);
1352         atomic_inc(&conf->active_stripes);
1353         INIT_LIST_HEAD(&sh->lru);
1354         release_stripe(sh);
1355         return 1;
1356 }
1357
1358 static int grow_stripes(struct r5conf *conf, int num)
1359 {
1360         struct kmem_cache *sc;
1361         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1362
1363         if (conf->mddev->gendisk)
1364                 sprintf(conf->cache_name[0],
1365                         "raid%d-%s", conf->level, mdname(conf->mddev));
1366         else
1367                 sprintf(conf->cache_name[0],
1368                         "raid%d-%p", conf->level, conf->mddev);
1369         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1370
1371         conf->active_name = 0;
1372         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1373                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1374                                0, 0, NULL);
1375         if (!sc)
1376                 return 1;
1377         conf->slab_cache = sc;
1378         conf->pool_size = devs;
1379         while (num--)
1380                 if (!grow_one_stripe(conf))
1381                         return 1;
1382         return 0;
1383 }
1384
1385 /**
1386  * scribble_len - return the required size of the scribble region
1387  * @num - total number of disks in the array
1388  *
1389  * The size must be enough to contain:
1390  * 1/ a struct page pointer for each device in the array +2
1391  * 2/ room to convert each entry in (1) to its corresponding dma
1392  *    (dma_map_page()) or page (page_address()) address.
1393  *
1394  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1395  * calculate over all devices (not just the data blocks), using zeros in place
1396  * of the P and Q blocks.
1397  */
1398 static size_t scribble_len(int num)
1399 {
1400         size_t len;
1401
1402         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1403
1404         return len;
1405 }
1406
1407 static int resize_stripes(struct r5conf *conf, int newsize)
1408 {
1409         /* Make all the stripes able to hold 'newsize' devices.
1410          * New slots in each stripe get 'page' set to a new page.
1411          *
1412          * This happens in stages:
1413          * 1/ create a new kmem_cache and allocate the required number of
1414          *    stripe_heads.
1415          * 2/ gather all the old stripe_heads and tranfer the pages across
1416          *    to the new stripe_heads.  This will have the side effect of
1417          *    freezing the array as once all stripe_heads have been collected,
1418          *    no IO will be possible.  Old stripe heads are freed once their
1419          *    pages have been transferred over, and the old kmem_cache is
1420          *    freed when all stripes are done.
1421          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1422          *    we simple return a failre status - no need to clean anything up.
1423          * 4/ allocate new pages for the new slots in the new stripe_heads.
1424          *    If this fails, we don't bother trying the shrink the
1425          *    stripe_heads down again, we just leave them as they are.
1426          *    As each stripe_head is processed the new one is released into
1427          *    active service.
1428          *
1429          * Once step2 is started, we cannot afford to wait for a write,
1430          * so we use GFP_NOIO allocations.
1431          */
1432         struct stripe_head *osh, *nsh;
1433         LIST_HEAD(newstripes);
1434         struct disk_info *ndisks;
1435         unsigned long cpu;
1436         int err;
1437         struct kmem_cache *sc;
1438         int i;
1439
1440         if (newsize <= conf->pool_size)
1441                 return 0; /* never bother to shrink */
1442
1443         err = md_allow_write(conf->mddev);
1444         if (err)
1445                 return err;
1446
1447         /* Step 1 */
1448         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1449                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1450                                0, 0, NULL);
1451         if (!sc)
1452                 return -ENOMEM;
1453
1454         for (i = conf->max_nr_stripes; i; i--) {
1455                 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1456                 if (!nsh)
1457                         break;
1458
1459                 nsh->raid_conf = conf;
1460                 #ifdef CONFIG_MULTICORE_RAID456
1461                 init_waitqueue_head(&nsh->ops.wait_for_ops);
1462                 #endif
1463
1464                 list_add(&nsh->lru, &newstripes);
1465         }
1466         if (i) {
1467                 /* didn't get enough, give up */
1468                 while (!list_empty(&newstripes)) {
1469                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1470                         list_del(&nsh->lru);
1471                         kmem_cache_free(sc, nsh);
1472                 }
1473                 kmem_cache_destroy(sc);
1474                 return -ENOMEM;
1475         }
1476         /* Step 2 - Must use GFP_NOIO now.
1477          * OK, we have enough stripes, start collecting inactive
1478          * stripes and copying them over
1479          */
1480         list_for_each_entry(nsh, &newstripes, lru) {
1481                 spin_lock_irq(&conf->device_lock);
1482                 wait_event_lock_irq(conf->wait_for_stripe,
1483                                     !list_empty(&conf->inactive_list),
1484                                     conf->device_lock,
1485                                     );
1486                 osh = get_free_stripe(conf);
1487                 spin_unlock_irq(&conf->device_lock);
1488                 atomic_set(&nsh->count, 1);
1489                 for(i=0; i<conf->pool_size; i++)
1490                         nsh->dev[i].page = osh->dev[i].page;
1491                 for( ; i<newsize; i++)
1492                         nsh->dev[i].page = NULL;
1493                 kmem_cache_free(conf->slab_cache, osh);
1494         }
1495         kmem_cache_destroy(conf->slab_cache);
1496
1497         /* Step 3.
1498          * At this point, we are holding all the stripes so the array
1499          * is completely stalled, so now is a good time to resize
1500          * conf->disks and the scribble region
1501          */
1502         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1503         if (ndisks) {
1504                 for (i=0; i<conf->raid_disks; i++)
1505                         ndisks[i] = conf->disks[i];
1506                 kfree(conf->disks);
1507                 conf->disks = ndisks;
1508         } else
1509                 err = -ENOMEM;
1510
1511         get_online_cpus();
1512         conf->scribble_len = scribble_len(newsize);
1513         for_each_present_cpu(cpu) {
1514                 struct raid5_percpu *percpu;
1515                 void *scribble;
1516
1517                 percpu = per_cpu_ptr(conf->percpu, cpu);
1518                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1519
1520                 if (scribble) {
1521                         kfree(percpu->scribble);
1522                         percpu->scribble = scribble;
1523                 } else {
1524                         err = -ENOMEM;
1525                         break;
1526                 }
1527         }
1528         put_online_cpus();
1529
1530         /* Step 4, return new stripes to service */
1531         while(!list_empty(&newstripes)) {
1532                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1533                 list_del_init(&nsh->lru);
1534
1535                 for (i=conf->raid_disks; i < newsize; i++)
1536                         if (nsh->dev[i].page == NULL) {
1537                                 struct page *p = alloc_page(GFP_NOIO);
1538                                 nsh->dev[i].page = p;
1539                                 if (!p)
1540                                         err = -ENOMEM;
1541                         }
1542                 release_stripe(nsh);
1543         }
1544         /* critical section pass, GFP_NOIO no longer needed */
1545
1546         conf->slab_cache = sc;
1547         conf->active_name = 1-conf->active_name;
1548         conf->pool_size = newsize;
1549         return err;
1550 }
1551
1552 static int drop_one_stripe(struct r5conf *conf)
1553 {
1554         struct stripe_head *sh;
1555
1556         spin_lock_irq(&conf->device_lock);
1557         sh = get_free_stripe(conf);
1558         spin_unlock_irq(&conf->device_lock);
1559         if (!sh)
1560                 return 0;
1561         BUG_ON(atomic_read(&sh->count));
1562         shrink_buffers(sh);
1563         kmem_cache_free(conf->slab_cache, sh);
1564         atomic_dec(&conf->active_stripes);
1565         return 1;
1566 }
1567
1568 static void shrink_stripes(struct r5conf *conf)
1569 {
1570         while (drop_one_stripe(conf))
1571                 ;
1572
1573         if (conf->slab_cache)
1574                 kmem_cache_destroy(conf->slab_cache);
1575         conf->slab_cache = NULL;
1576 }
1577
1578 static void raid5_end_read_request(struct bio * bi, int error)
1579 {
1580         struct stripe_head *sh = bi->bi_private;
1581         struct r5conf *conf = sh->raid_conf;
1582         int disks = sh->disks, i;
1583         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1584         char b[BDEVNAME_SIZE];
1585         struct md_rdev *rdev;
1586
1587
1588         for (i=0 ; i<disks; i++)
1589                 if (bi == &sh->dev[i].req)
1590                         break;
1591
1592         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1593                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1594                 uptodate);
1595         if (i == disks) {
1596                 BUG();
1597                 return;
1598         }
1599
1600         if (uptodate) {
1601                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1602                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1603                         rdev = conf->disks[i].rdev;
1604                         printk_ratelimited(
1605                                 KERN_INFO
1606                                 "md/raid:%s: read error corrected"
1607                                 " (%lu sectors at %llu on %s)\n",
1608                                 mdname(conf->mddev), STRIPE_SECTORS,
1609                                 (unsigned long long)(sh->sector
1610                                                      + rdev->data_offset),
1611                                 bdevname(rdev->bdev, b));
1612                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1613                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1614                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1615                 }
1616                 if (atomic_read(&conf->disks[i].rdev->read_errors))
1617                         atomic_set(&conf->disks[i].rdev->read_errors, 0);
1618         } else {
1619                 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1620                 int retry = 0;
1621                 rdev = conf->disks[i].rdev;
1622
1623                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1624                 atomic_inc(&rdev->read_errors);
1625                 if (conf->mddev->degraded >= conf->max_degraded)
1626                         printk_ratelimited(
1627                                 KERN_WARNING
1628                                 "md/raid:%s: read error not correctable "
1629                                 "(sector %llu on %s).\n",
1630                                 mdname(conf->mddev),
1631                                 (unsigned long long)(sh->sector
1632                                                      + rdev->data_offset),
1633                                 bdn);
1634                 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1635                         /* Oh, no!!! */
1636                         printk_ratelimited(
1637                                 KERN_WARNING
1638                                 "md/raid:%s: read error NOT corrected!! "
1639                                 "(sector %llu on %s).\n",
1640                                 mdname(conf->mddev),
1641                                 (unsigned long long)(sh->sector
1642                                                      + rdev->data_offset),
1643                                 bdn);
1644                 else if (atomic_read(&rdev->read_errors)
1645                          > conf->max_nr_stripes)
1646                         printk(KERN_WARNING
1647                                "md/raid:%s: Too many read errors, failing device %s.\n",
1648                                mdname(conf->mddev), bdn);
1649                 else
1650                         retry = 1;
1651                 if (retry)
1652                         set_bit(R5_ReadError, &sh->dev[i].flags);
1653                 else {
1654                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1655                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1656                         md_error(conf->mddev, rdev);
1657                 }
1658         }
1659         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1660         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1661         set_bit(STRIPE_HANDLE, &sh->state);
1662         release_stripe(sh);
1663 }
1664
1665 static void raid5_end_write_request(struct bio *bi, int error)
1666 {
1667         struct stripe_head *sh = bi->bi_private;
1668         struct r5conf *conf = sh->raid_conf;
1669         int disks = sh->disks, i;
1670         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1671         sector_t first_bad;
1672         int bad_sectors;
1673
1674         for (i=0 ; i<disks; i++)
1675                 if (bi == &sh->dev[i].req)
1676                         break;
1677
1678         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1679                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1680                 uptodate);
1681         if (i == disks) {
1682                 BUG();
1683                 return;
1684         }
1685
1686         if (!uptodate) {
1687                 set_bit(WriteErrorSeen, &conf->disks[i].rdev->flags);
1688                 set_bit(R5_WriteError, &sh->dev[i].flags);
1689         } else if (is_badblock(conf->disks[i].rdev, sh->sector, STRIPE_SECTORS,
1690                                &first_bad, &bad_sectors))
1691                 set_bit(R5_MadeGood, &sh->dev[i].flags);
1692
1693         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1694         
1695         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1696         set_bit(STRIPE_HANDLE, &sh->state);
1697         release_stripe(sh);
1698 }
1699
1700
1701 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1702         
1703 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1704 {
1705         struct r5dev *dev = &sh->dev[i];
1706
1707         bio_init(&dev->req);
1708         dev->req.bi_io_vec = &dev->vec;
1709         dev->req.bi_vcnt++;
1710         dev->req.bi_max_vecs++;
1711         dev->vec.bv_page = dev->page;
1712         dev->vec.bv_len = STRIPE_SIZE;
1713         dev->vec.bv_offset = 0;
1714
1715         dev->req.bi_sector = sh->sector;
1716         dev->req.bi_private = sh;
1717
1718         dev->flags = 0;
1719         dev->sector = compute_blocknr(sh, i, previous);
1720 }
1721
1722 static void error(struct mddev *mddev, struct md_rdev *rdev)
1723 {
1724         char b[BDEVNAME_SIZE];
1725         struct r5conf *conf = mddev->private;
1726         pr_debug("raid456: error called\n");
1727
1728         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1729                 unsigned long flags;
1730                 spin_lock_irqsave(&conf->device_lock, flags);
1731                 mddev->degraded++;
1732                 spin_unlock_irqrestore(&conf->device_lock, flags);
1733                 /*
1734                  * if recovery was running, make sure it aborts.
1735                  */
1736                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1737         }
1738         set_bit(Blocked, &rdev->flags);
1739         set_bit(Faulty, &rdev->flags);
1740         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1741         printk(KERN_ALERT
1742                "md/raid:%s: Disk failure on %s, disabling device.\n"
1743                "md/raid:%s: Operation continuing on %d devices.\n",
1744                mdname(mddev),
1745                bdevname(rdev->bdev, b),
1746                mdname(mddev),
1747                conf->raid_disks - mddev->degraded);
1748 }
1749
1750 /*
1751  * Input: a 'big' sector number,
1752  * Output: index of the data and parity disk, and the sector # in them.
1753  */
1754 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1755                                      int previous, int *dd_idx,
1756                                      struct stripe_head *sh)
1757 {
1758         sector_t stripe, stripe2;
1759         sector_t chunk_number;
1760         unsigned int chunk_offset;
1761         int pd_idx, qd_idx;
1762         int ddf_layout = 0;
1763         sector_t new_sector;
1764         int algorithm = previous ? conf->prev_algo
1765                                  : conf->algorithm;
1766         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1767                                          : conf->chunk_sectors;
1768         int raid_disks = previous ? conf->previous_raid_disks
1769                                   : conf->raid_disks;
1770         int data_disks = raid_disks - conf->max_degraded;
1771
1772         /* First compute the information on this sector */
1773
1774         /*
1775          * Compute the chunk number and the sector offset inside the chunk
1776          */
1777         chunk_offset = sector_div(r_sector, sectors_per_chunk);
1778         chunk_number = r_sector;
1779
1780         /*
1781          * Compute the stripe number
1782          */
1783         stripe = chunk_number;
1784         *dd_idx = sector_div(stripe, data_disks);
1785         stripe2 = stripe;
1786         /*
1787          * Select the parity disk based on the user selected algorithm.
1788          */
1789         pd_idx = qd_idx = -1;
1790         switch(conf->level) {
1791         case 4:
1792                 pd_idx = data_disks;
1793                 break;
1794         case 5:
1795                 switch (algorithm) {
1796                 case ALGORITHM_LEFT_ASYMMETRIC:
1797                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1798                         if (*dd_idx >= pd_idx)
1799                                 (*dd_idx)++;
1800                         break;
1801                 case ALGORITHM_RIGHT_ASYMMETRIC:
1802                         pd_idx = sector_div(stripe2, raid_disks);
1803                         if (*dd_idx >= pd_idx)
1804                                 (*dd_idx)++;
1805                         break;
1806                 case ALGORITHM_LEFT_SYMMETRIC:
1807                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1808                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1809                         break;
1810                 case ALGORITHM_RIGHT_SYMMETRIC:
1811                         pd_idx = sector_div(stripe2, raid_disks);
1812                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1813                         break;
1814                 case ALGORITHM_PARITY_0:
1815                         pd_idx = 0;
1816                         (*dd_idx)++;
1817                         break;
1818                 case ALGORITHM_PARITY_N:
1819                         pd_idx = data_disks;
1820                         break;
1821                 default:
1822                         BUG();
1823                 }
1824                 break;
1825         case 6:
1826
1827                 switch (algorithm) {
1828                 case ALGORITHM_LEFT_ASYMMETRIC:
1829                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1830                         qd_idx = pd_idx + 1;
1831                         if (pd_idx == raid_disks-1) {
1832                                 (*dd_idx)++;    /* Q D D D P */
1833                                 qd_idx = 0;
1834                         } else if (*dd_idx >= pd_idx)
1835                                 (*dd_idx) += 2; /* D D P Q D */
1836                         break;
1837                 case ALGORITHM_RIGHT_ASYMMETRIC:
1838                         pd_idx = sector_div(stripe2, raid_disks);
1839                         qd_idx = pd_idx + 1;
1840                         if (pd_idx == raid_disks-1) {
1841                                 (*dd_idx)++;    /* Q D D D P */
1842                                 qd_idx = 0;
1843                         } else if (*dd_idx >= pd_idx)
1844                                 (*dd_idx) += 2; /* D D P Q D */
1845                         break;
1846                 case ALGORITHM_LEFT_SYMMETRIC:
1847                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1848                         qd_idx = (pd_idx + 1) % raid_disks;
1849                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1850                         break;
1851                 case ALGORITHM_RIGHT_SYMMETRIC:
1852                         pd_idx = sector_div(stripe2, raid_disks);
1853                         qd_idx = (pd_idx + 1) % raid_disks;
1854                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1855                         break;
1856
1857                 case ALGORITHM_PARITY_0:
1858                         pd_idx = 0;
1859                         qd_idx = 1;
1860                         (*dd_idx) += 2;
1861                         break;
1862                 case ALGORITHM_PARITY_N:
1863                         pd_idx = data_disks;
1864                         qd_idx = data_disks + 1;
1865                         break;
1866
1867                 case ALGORITHM_ROTATING_ZERO_RESTART:
1868                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
1869                          * of blocks for computing Q is different.
1870                          */
1871                         pd_idx = sector_div(stripe2, raid_disks);
1872                         qd_idx = pd_idx + 1;
1873                         if (pd_idx == raid_disks-1) {
1874                                 (*dd_idx)++;    /* Q D D D P */
1875                                 qd_idx = 0;
1876                         } else if (*dd_idx >= pd_idx)
1877                                 (*dd_idx) += 2; /* D D P Q D */
1878                         ddf_layout = 1;
1879                         break;
1880
1881                 case ALGORITHM_ROTATING_N_RESTART:
1882                         /* Same a left_asymmetric, by first stripe is
1883                          * D D D P Q  rather than
1884                          * Q D D D P
1885                          */
1886                         stripe2 += 1;
1887                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1888                         qd_idx = pd_idx + 1;
1889                         if (pd_idx == raid_disks-1) {
1890                                 (*dd_idx)++;    /* Q D D D P */
1891                                 qd_idx = 0;
1892                         } else if (*dd_idx >= pd_idx)
1893                                 (*dd_idx) += 2; /* D D P Q D */
1894                         ddf_layout = 1;
1895                         break;
1896
1897                 case ALGORITHM_ROTATING_N_CONTINUE:
1898                         /* Same as left_symmetric but Q is before P */
1899                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1900                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1901                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1902                         ddf_layout = 1;
1903                         break;
1904
1905                 case ALGORITHM_LEFT_ASYMMETRIC_6:
1906                         /* RAID5 left_asymmetric, with Q on last device */
1907                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1908                         if (*dd_idx >= pd_idx)
1909                                 (*dd_idx)++;
1910                         qd_idx = raid_disks - 1;
1911                         break;
1912
1913                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1914                         pd_idx = sector_div(stripe2, raid_disks-1);
1915                         if (*dd_idx >= pd_idx)
1916                                 (*dd_idx)++;
1917                         qd_idx = raid_disks - 1;
1918                         break;
1919
1920                 case ALGORITHM_LEFT_SYMMETRIC_6:
1921                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1922                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1923                         qd_idx = raid_disks - 1;
1924                         break;
1925
1926                 case ALGORITHM_RIGHT_SYMMETRIC_6:
1927                         pd_idx = sector_div(stripe2, raid_disks-1);
1928                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1929                         qd_idx = raid_disks - 1;
1930                         break;
1931
1932                 case ALGORITHM_PARITY_0_6:
1933                         pd_idx = 0;
1934                         (*dd_idx)++;
1935                         qd_idx = raid_disks - 1;
1936                         break;
1937
1938                 default:
1939                         BUG();
1940                 }
1941                 break;
1942         }
1943
1944         if (sh) {
1945                 sh->pd_idx = pd_idx;
1946                 sh->qd_idx = qd_idx;
1947                 sh->ddf_layout = ddf_layout;
1948         }
1949         /*
1950          * Finally, compute the new sector number
1951          */
1952         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1953         return new_sector;
1954 }
1955
1956
1957 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1958 {
1959         struct r5conf *conf = sh->raid_conf;
1960         int raid_disks = sh->disks;
1961         int data_disks = raid_disks - conf->max_degraded;
1962         sector_t new_sector = sh->sector, check;
1963         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1964                                          : conf->chunk_sectors;
1965         int algorithm = previous ? conf->prev_algo
1966                                  : conf->algorithm;
1967         sector_t stripe;
1968         int chunk_offset;
1969         sector_t chunk_number;
1970         int dummy1, dd_idx = i;
1971         sector_t r_sector;
1972         struct stripe_head sh2;
1973
1974
1975         chunk_offset = sector_div(new_sector, sectors_per_chunk);
1976         stripe = new_sector;
1977
1978         if (i == sh->pd_idx)
1979                 return 0;
1980         switch(conf->level) {
1981         case 4: break;
1982         case 5:
1983                 switch (algorithm) {
1984                 case ALGORITHM_LEFT_ASYMMETRIC:
1985                 case ALGORITHM_RIGHT_ASYMMETRIC:
1986                         if (i > sh->pd_idx)
1987                                 i--;
1988                         break;
1989                 case ALGORITHM_LEFT_SYMMETRIC:
1990                 case ALGORITHM_RIGHT_SYMMETRIC:
1991                         if (i < sh->pd_idx)
1992                                 i += raid_disks;
1993                         i -= (sh->pd_idx + 1);
1994                         break;
1995                 case ALGORITHM_PARITY_0:
1996                         i -= 1;
1997                         break;
1998                 case ALGORITHM_PARITY_N:
1999                         break;
2000                 default:
2001                         BUG();
2002                 }
2003                 break;
2004         case 6:
2005                 if (i == sh->qd_idx)
2006                         return 0; /* It is the Q disk */
2007                 switch (algorithm) {
2008                 case ALGORITHM_LEFT_ASYMMETRIC:
2009                 case ALGORITHM_RIGHT_ASYMMETRIC:
2010                 case ALGORITHM_ROTATING_ZERO_RESTART:
2011                 case ALGORITHM_ROTATING_N_RESTART:
2012                         if (sh->pd_idx == raid_disks-1)
2013                                 i--;    /* Q D D D P */
2014                         else if (i > sh->pd_idx)
2015                                 i -= 2; /* D D P Q D */
2016                         break;
2017                 case ALGORITHM_LEFT_SYMMETRIC:
2018                 case ALGORITHM_RIGHT_SYMMETRIC:
2019                         if (sh->pd_idx == raid_disks-1)
2020                                 i--; /* Q D D D P */
2021                         else {
2022                                 /* D D P Q D */
2023                                 if (i < sh->pd_idx)
2024                                         i += raid_disks;
2025                                 i -= (sh->pd_idx + 2);
2026                         }
2027                         break;
2028                 case ALGORITHM_PARITY_0:
2029                         i -= 2;
2030                         break;
2031                 case ALGORITHM_PARITY_N:
2032                         break;
2033                 case ALGORITHM_ROTATING_N_CONTINUE:
2034                         /* Like left_symmetric, but P is before Q */
2035                         if (sh->pd_idx == 0)
2036                                 i--;    /* P D D D Q */
2037                         else {
2038                                 /* D D Q P D */
2039                                 if (i < sh->pd_idx)
2040                                         i += raid_disks;
2041                                 i -= (sh->pd_idx + 1);
2042                         }
2043                         break;
2044                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2045                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2046                         if (i > sh->pd_idx)
2047                                 i--;
2048                         break;
2049                 case ALGORITHM_LEFT_SYMMETRIC_6:
2050                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2051                         if (i < sh->pd_idx)
2052                                 i += data_disks + 1;
2053                         i -= (sh->pd_idx + 1);
2054                         break;
2055                 case ALGORITHM_PARITY_0_6:
2056                         i -= 1;
2057                         break;
2058                 default:
2059                         BUG();
2060                 }
2061                 break;
2062         }
2063
2064         chunk_number = stripe * data_disks + i;
2065         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2066
2067         check = raid5_compute_sector(conf, r_sector,
2068                                      previous, &dummy1, &sh2);
2069         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2070                 || sh2.qd_idx != sh->qd_idx) {
2071                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2072                        mdname(conf->mddev));
2073                 return 0;
2074         }
2075         return r_sector;
2076 }
2077
2078
2079 static void
2080 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2081                          int rcw, int expand)
2082 {
2083         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2084         struct r5conf *conf = sh->raid_conf;
2085         int level = conf->level;
2086
2087         if (rcw) {
2088                 /* if we are not expanding this is a proper write request, and
2089                  * there will be bios with new data to be drained into the
2090                  * stripe cache
2091                  */
2092                 if (!expand) {
2093                         sh->reconstruct_state = reconstruct_state_drain_run;
2094                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2095                 } else
2096                         sh->reconstruct_state = reconstruct_state_run;
2097
2098                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2099
2100                 for (i = disks; i--; ) {
2101                         struct r5dev *dev = &sh->dev[i];
2102
2103                         if (dev->towrite) {
2104                                 set_bit(R5_LOCKED, &dev->flags);
2105                                 set_bit(R5_Wantdrain, &dev->flags);
2106                                 if (!expand)
2107                                         clear_bit(R5_UPTODATE, &dev->flags);
2108                                 s->locked++;
2109                         }
2110                 }
2111                 if (s->locked + conf->max_degraded == disks)
2112                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2113                                 atomic_inc(&conf->pending_full_writes);
2114         } else {
2115                 BUG_ON(level == 6);
2116                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2117                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2118
2119                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2120                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2121                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2122                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2123
2124                 for (i = disks; i--; ) {
2125                         struct r5dev *dev = &sh->dev[i];
2126                         if (i == pd_idx)
2127                                 continue;
2128
2129                         if (dev->towrite &&
2130                             (test_bit(R5_UPTODATE, &dev->flags) ||
2131                              test_bit(R5_Wantcompute, &dev->flags))) {
2132                                 set_bit(R5_Wantdrain, &dev->flags);
2133                                 set_bit(R5_LOCKED, &dev->flags);
2134                                 clear_bit(R5_UPTODATE, &dev->flags);
2135                                 s->locked++;
2136                         }
2137                 }
2138         }
2139
2140         /* keep the parity disk(s) locked while asynchronous operations
2141          * are in flight
2142          */
2143         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2144         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2145         s->locked++;
2146
2147         if (level == 6) {
2148                 int qd_idx = sh->qd_idx;
2149                 struct r5dev *dev = &sh->dev[qd_idx];
2150
2151                 set_bit(R5_LOCKED, &dev->flags);
2152                 clear_bit(R5_UPTODATE, &dev->flags);
2153                 s->locked++;
2154         }
2155
2156         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2157                 __func__, (unsigned long long)sh->sector,
2158                 s->locked, s->ops_request);
2159 }
2160
2161 /*
2162  * Each stripe/dev can have one or more bion attached.
2163  * toread/towrite point to the first in a chain.
2164  * The bi_next chain must be in order.
2165  */
2166 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2167 {
2168         struct bio **bip;
2169         struct r5conf *conf = sh->raid_conf;
2170         int firstwrite=0;
2171
2172         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2173                 (unsigned long long)bi->bi_sector,
2174                 (unsigned long long)sh->sector);
2175
2176
2177         spin_lock_irq(&conf->device_lock);
2178         if (forwrite) {
2179                 bip = &sh->dev[dd_idx].towrite;
2180                 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2181                         firstwrite = 1;
2182         } else
2183                 bip = &sh->dev[dd_idx].toread;
2184         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2185                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2186                         goto overlap;
2187                 bip = & (*bip)->bi_next;
2188         }
2189         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2190                 goto overlap;
2191
2192         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2193         if (*bip)
2194                 bi->bi_next = *bip;
2195         *bip = bi;
2196         bi->bi_phys_segments++;
2197
2198         if (forwrite) {
2199                 /* check if page is covered */
2200                 sector_t sector = sh->dev[dd_idx].sector;
2201                 for (bi=sh->dev[dd_idx].towrite;
2202                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2203                              bi && bi->bi_sector <= sector;
2204                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2205                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2206                                 sector = bi->bi_sector + (bi->bi_size>>9);
2207                 }
2208                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2209                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2210         }
2211         spin_unlock_irq(&conf->device_lock);
2212
2213         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2214                 (unsigned long long)(*bip)->bi_sector,
2215                 (unsigned long long)sh->sector, dd_idx);
2216
2217         if (conf->mddev->bitmap && firstwrite) {
2218                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2219                                   STRIPE_SECTORS, 0);
2220                 sh->bm_seq = conf->seq_flush+1;
2221                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2222         }
2223         return 1;
2224
2225  overlap:
2226         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2227         spin_unlock_irq(&conf->device_lock);
2228         return 0;
2229 }
2230
2231 static void end_reshape(struct r5conf *conf);
2232
2233 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2234                             struct stripe_head *sh)
2235 {
2236         int sectors_per_chunk =
2237                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2238         int dd_idx;
2239         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2240         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2241
2242         raid5_compute_sector(conf,
2243                              stripe * (disks - conf->max_degraded)
2244                              *sectors_per_chunk + chunk_offset,
2245                              previous,
2246                              &dd_idx, sh);
2247 }
2248
2249 static void
2250 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2251                                 struct stripe_head_state *s, int disks,
2252                                 struct bio **return_bi)
2253 {
2254         int i;
2255         for (i = disks; i--; ) {
2256                 struct bio *bi;
2257                 int bitmap_end = 0;
2258
2259                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2260                         struct md_rdev *rdev;
2261                         rcu_read_lock();
2262                         rdev = rcu_dereference(conf->disks[i].rdev);
2263                         if (rdev && test_bit(In_sync, &rdev->flags))
2264                                 atomic_inc(&rdev->nr_pending);
2265                         else
2266                                 rdev = NULL;
2267                         rcu_read_unlock();
2268                         if (rdev) {
2269                                 if (!rdev_set_badblocks(
2270                                             rdev,
2271                                             sh->sector,
2272                                             STRIPE_SECTORS, 0))
2273                                         md_error(conf->mddev, rdev);
2274                                 rdev_dec_pending(rdev, conf->mddev);
2275                         }
2276                 }
2277                 spin_lock_irq(&conf->device_lock);
2278                 /* fail all writes first */
2279                 bi = sh->dev[i].towrite;
2280                 sh->dev[i].towrite = NULL;
2281                 if (bi) {
2282                         s->to_write--;
2283                         bitmap_end = 1;
2284                 }
2285
2286                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2287                         wake_up(&conf->wait_for_overlap);
2288
2289                 while (bi && bi->bi_sector <
2290                         sh->dev[i].sector + STRIPE_SECTORS) {
2291                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2292                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2293                         if (!raid5_dec_bi_phys_segments(bi)) {
2294                                 md_write_end(conf->mddev);
2295                                 bi->bi_next = *return_bi;
2296                                 *return_bi = bi;
2297                         }
2298                         bi = nextbi;
2299                 }
2300                 /* and fail all 'written' */
2301                 bi = sh->dev[i].written;
2302                 sh->dev[i].written = NULL;
2303                 if (bi) bitmap_end = 1;
2304                 while (bi && bi->bi_sector <
2305                        sh->dev[i].sector + STRIPE_SECTORS) {
2306                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2307                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2308                         if (!raid5_dec_bi_phys_segments(bi)) {
2309                                 md_write_end(conf->mddev);
2310                                 bi->bi_next = *return_bi;
2311                                 *return_bi = bi;
2312                         }
2313                         bi = bi2;
2314                 }
2315
2316                 /* fail any reads if this device is non-operational and
2317                  * the data has not reached the cache yet.
2318                  */
2319                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2320                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2321                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2322                         bi = sh->dev[i].toread;
2323                         sh->dev[i].toread = NULL;
2324                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2325                                 wake_up(&conf->wait_for_overlap);
2326                         if (bi) s->to_read--;
2327                         while (bi && bi->bi_sector <
2328                                sh->dev[i].sector + STRIPE_SECTORS) {
2329                                 struct bio *nextbi =
2330                                         r5_next_bio(bi, sh->dev[i].sector);
2331                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2332                                 if (!raid5_dec_bi_phys_segments(bi)) {
2333                                         bi->bi_next = *return_bi;
2334                                         *return_bi = bi;
2335                                 }
2336                                 bi = nextbi;
2337                         }
2338                 }
2339                 spin_unlock_irq(&conf->device_lock);
2340                 if (bitmap_end)
2341                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2342                                         STRIPE_SECTORS, 0, 0);
2343                 /* If we were in the middle of a write the parity block might
2344                  * still be locked - so just clear all R5_LOCKED flags
2345                  */
2346                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2347         }
2348
2349         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2350                 if (atomic_dec_and_test(&conf->pending_full_writes))
2351                         md_wakeup_thread(conf->mddev->thread);
2352 }
2353
2354 static void
2355 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2356                    struct stripe_head_state *s)
2357 {
2358         int abort = 0;
2359         int i;
2360
2361         md_done_sync(conf->mddev, STRIPE_SECTORS, 0);
2362         clear_bit(STRIPE_SYNCING, &sh->state);
2363         s->syncing = 0;
2364         /* There is nothing more to do for sync/check/repair.
2365          * For recover we need to record a bad block on all
2366          * non-sync devices, or abort the recovery
2367          */
2368         if (!test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery))
2369                 return;
2370         /* During recovery devices cannot be removed, so locking and
2371          * refcounting of rdevs is not needed
2372          */
2373         for (i = 0; i < conf->raid_disks; i++) {
2374                 struct md_rdev *rdev = conf->disks[i].rdev;
2375                 if (!rdev
2376                     || test_bit(Faulty, &rdev->flags)
2377                     || test_bit(In_sync, &rdev->flags))
2378                         continue;
2379                 if (!rdev_set_badblocks(rdev, sh->sector,
2380                                         STRIPE_SECTORS, 0))
2381                         abort = 1;
2382         }
2383         if (abort) {
2384                 conf->recovery_disabled = conf->mddev->recovery_disabled;
2385                 set_bit(MD_RECOVERY_INTR, &conf->mddev->recovery);
2386         }
2387 }
2388
2389 /* fetch_block - checks the given member device to see if its data needs
2390  * to be read or computed to satisfy a request.
2391  *
2392  * Returns 1 when no more member devices need to be checked, otherwise returns
2393  * 0 to tell the loop in handle_stripe_fill to continue
2394  */
2395 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2396                        int disk_idx, int disks)
2397 {
2398         struct r5dev *dev = &sh->dev[disk_idx];
2399         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2400                                   &sh->dev[s->failed_num[1]] };
2401
2402         /* is the data in this block needed, and can we get it? */
2403         if (!test_bit(R5_LOCKED, &dev->flags) &&
2404             !test_bit(R5_UPTODATE, &dev->flags) &&
2405             (dev->toread ||
2406              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2407              s->syncing || s->expanding ||
2408              (s->failed >= 1 && fdev[0]->toread) ||
2409              (s->failed >= 2 && fdev[1]->toread) ||
2410              (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2411               !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2412              (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2413                 /* we would like to get this block, possibly by computing it,
2414                  * otherwise read it if the backing disk is insync
2415                  */
2416                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2417                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2418                 if ((s->uptodate == disks - 1) &&
2419                     (s->failed && (disk_idx == s->failed_num[0] ||
2420                                    disk_idx == s->failed_num[1]))) {
2421                         /* have disk failed, and we're requested to fetch it;
2422                          * do compute it
2423                          */
2424                         pr_debug("Computing stripe %llu block %d\n",
2425                                (unsigned long long)sh->sector, disk_idx);
2426                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2427                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2428                         set_bit(R5_Wantcompute, &dev->flags);
2429                         sh->ops.target = disk_idx;
2430                         sh->ops.target2 = -1; /* no 2nd target */
2431                         s->req_compute = 1;
2432                         /* Careful: from this point on 'uptodate' is in the eye
2433                          * of raid_run_ops which services 'compute' operations
2434                          * before writes. R5_Wantcompute flags a block that will
2435                          * be R5_UPTODATE by the time it is needed for a
2436                          * subsequent operation.
2437                          */
2438                         s->uptodate++;
2439                         return 1;
2440                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2441                         /* Computing 2-failure is *very* expensive; only
2442                          * do it if failed >= 2
2443                          */
2444                         int other;
2445                         for (other = disks; other--; ) {
2446                                 if (other == disk_idx)
2447                                         continue;
2448                                 if (!test_bit(R5_UPTODATE,
2449                                       &sh->dev[other].flags))
2450                                         break;
2451                         }
2452                         BUG_ON(other < 0);
2453                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2454                                (unsigned long long)sh->sector,
2455                                disk_idx, other);
2456                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2457                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2458                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2459                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2460                         sh->ops.target = disk_idx;
2461                         sh->ops.target2 = other;
2462                         s->uptodate += 2;
2463                         s->req_compute = 1;
2464                         return 1;
2465                 } else if (test_bit(R5_Insync, &dev->flags)) {
2466                         set_bit(R5_LOCKED, &dev->flags);
2467                         set_bit(R5_Wantread, &dev->flags);
2468                         s->locked++;
2469                         pr_debug("Reading block %d (sync=%d)\n",
2470                                 disk_idx, s->syncing);
2471                 }
2472         }
2473
2474         return 0;
2475 }
2476
2477 /**
2478  * handle_stripe_fill - read or compute data to satisfy pending requests.
2479  */
2480 static void handle_stripe_fill(struct stripe_head *sh,
2481                                struct stripe_head_state *s,
2482                                int disks)
2483 {
2484         int i;
2485
2486         /* look for blocks to read/compute, skip this if a compute
2487          * is already in flight, or if the stripe contents are in the
2488          * midst of changing due to a write
2489          */
2490         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2491             !sh->reconstruct_state)
2492                 for (i = disks; i--; )
2493                         if (fetch_block(sh, s, i, disks))
2494                                 break;
2495         set_bit(STRIPE_HANDLE, &sh->state);
2496 }
2497
2498
2499 /* handle_stripe_clean_event
2500  * any written block on an uptodate or failed drive can be returned.
2501  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2502  * never LOCKED, so we don't need to test 'failed' directly.
2503  */
2504 static void handle_stripe_clean_event(struct r5conf *conf,
2505         struct stripe_head *sh, int disks, struct bio **return_bi)
2506 {
2507         int i;
2508         struct r5dev *dev;
2509
2510         for (i = disks; i--; )
2511                 if (sh->dev[i].written) {
2512                         dev = &sh->dev[i];
2513                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2514                                 test_bit(R5_UPTODATE, &dev->flags)) {
2515                                 /* We can return any write requests */
2516                                 struct bio *wbi, *wbi2;
2517                                 int bitmap_end = 0;
2518                                 pr_debug("Return write for disc %d\n", i);
2519                                 spin_lock_irq(&conf->device_lock);
2520                                 wbi = dev->written;
2521                                 dev->written = NULL;
2522                                 while (wbi && wbi->bi_sector <
2523                                         dev->sector + STRIPE_SECTORS) {
2524                                         wbi2 = r5_next_bio(wbi, dev->sector);
2525                                         if (!raid5_dec_bi_phys_segments(wbi)) {
2526                                                 md_write_end(conf->mddev);
2527                                                 wbi->bi_next = *return_bi;
2528                                                 *return_bi = wbi;
2529                                         }
2530                                         wbi = wbi2;
2531                                 }
2532                                 if (dev->towrite == NULL)
2533                                         bitmap_end = 1;
2534                                 spin_unlock_irq(&conf->device_lock);
2535                                 if (bitmap_end)
2536                                         bitmap_endwrite(conf->mddev->bitmap,
2537                                                         sh->sector,
2538                                                         STRIPE_SECTORS,
2539                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2540                                                         0);
2541                         }
2542                 }
2543
2544         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2545                 if (atomic_dec_and_test(&conf->pending_full_writes))
2546                         md_wakeup_thread(conf->mddev->thread);
2547 }
2548
2549 static void handle_stripe_dirtying(struct r5conf *conf,
2550                                    struct stripe_head *sh,
2551                                    struct stripe_head_state *s,
2552                                    int disks)
2553 {
2554         int rmw = 0, rcw = 0, i;
2555         if (conf->max_degraded == 2) {
2556                 /* RAID6 requires 'rcw' in current implementation
2557                  * Calculate the real rcw later - for now fake it
2558                  * look like rcw is cheaper
2559                  */
2560                 rcw = 1; rmw = 2;
2561         } else for (i = disks; i--; ) {
2562                 /* would I have to read this buffer for read_modify_write */
2563                 struct r5dev *dev = &sh->dev[i];
2564                 if ((dev->towrite || i == sh->pd_idx) &&
2565                     !test_bit(R5_LOCKED, &dev->flags) &&
2566                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2567                       test_bit(R5_Wantcompute, &dev->flags))) {
2568                         if (test_bit(R5_Insync, &dev->flags))
2569                                 rmw++;
2570                         else
2571                                 rmw += 2*disks;  /* cannot read it */
2572                 }
2573                 /* Would I have to read this buffer for reconstruct_write */
2574                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2575                     !test_bit(R5_LOCKED, &dev->flags) &&
2576                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2577                     test_bit(R5_Wantcompute, &dev->flags))) {
2578                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2579                         else
2580                                 rcw += 2*disks;
2581                 }
2582         }
2583         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2584                 (unsigned long long)sh->sector, rmw, rcw);
2585         set_bit(STRIPE_HANDLE, &sh->state);
2586         if (rmw < rcw && rmw > 0)
2587                 /* prefer read-modify-write, but need to get some data */
2588                 for (i = disks; i--; ) {
2589                         struct r5dev *dev = &sh->dev[i];
2590                         if ((dev->towrite || i == sh->pd_idx) &&
2591                             !test_bit(R5_LOCKED, &dev->flags) &&
2592                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2593                             test_bit(R5_Wantcompute, &dev->flags)) &&
2594                             test_bit(R5_Insync, &dev->flags)) {
2595                                 if (
2596                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2597                                         pr_debug("Read_old block "
2598                                                 "%d for r-m-w\n", i);
2599                                         set_bit(R5_LOCKED, &dev->flags);
2600                                         set_bit(R5_Wantread, &dev->flags);
2601                                         s->locked++;
2602                                 } else {
2603                                         set_bit(STRIPE_DELAYED, &sh->state);
2604                                         set_bit(STRIPE_HANDLE, &sh->state);
2605                                 }
2606                         }
2607                 }
2608         if (rcw <= rmw && rcw > 0) {
2609                 /* want reconstruct write, but need to get some data */
2610                 rcw = 0;
2611                 for (i = disks; i--; ) {
2612                         struct r5dev *dev = &sh->dev[i];
2613                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2614                             i != sh->pd_idx && i != sh->qd_idx &&
2615                             !test_bit(R5_LOCKED, &dev->flags) &&
2616                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2617                               test_bit(R5_Wantcompute, &dev->flags))) {
2618                                 rcw++;
2619                                 if (!test_bit(R5_Insync, &dev->flags))
2620                                         continue; /* it's a failed drive */
2621                                 if (
2622                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2623                                         pr_debug("Read_old block "
2624                                                 "%d for Reconstruct\n", i);
2625                                         set_bit(R5_LOCKED, &dev->flags);
2626                                         set_bit(R5_Wantread, &dev->flags);
2627                                         s->locked++;
2628                                 } else {
2629                                         set_bit(STRIPE_DELAYED, &sh->state);
2630                                         set_bit(STRIPE_HANDLE, &sh->state);
2631                                 }
2632                         }
2633                 }
2634         }
2635         /* now if nothing is locked, and if we have enough data,
2636          * we can start a write request
2637          */
2638         /* since handle_stripe can be called at any time we need to handle the
2639          * case where a compute block operation has been submitted and then a
2640          * subsequent call wants to start a write request.  raid_run_ops only
2641          * handles the case where compute block and reconstruct are requested
2642          * simultaneously.  If this is not the case then new writes need to be
2643          * held off until the compute completes.
2644          */
2645         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2646             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2647             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2648                 schedule_reconstruction(sh, s, rcw == 0, 0);
2649 }
2650
2651 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2652                                 struct stripe_head_state *s, int disks)
2653 {
2654         struct r5dev *dev = NULL;
2655
2656         set_bit(STRIPE_HANDLE, &sh->state);
2657
2658         switch (sh->check_state) {
2659         case check_state_idle:
2660                 /* start a new check operation if there are no failures */
2661                 if (s->failed == 0) {
2662                         BUG_ON(s->uptodate != disks);
2663                         sh->check_state = check_state_run;
2664                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2665                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2666                         s->uptodate--;
2667                         break;
2668                 }
2669                 dev = &sh->dev[s->failed_num[0]];
2670                 /* fall through */
2671         case check_state_compute_result:
2672                 sh->check_state = check_state_idle;
2673                 if (!dev)
2674                         dev = &sh->dev[sh->pd_idx];
2675
2676                 /* check that a write has not made the stripe insync */
2677                 if (test_bit(STRIPE_INSYNC, &sh->state))
2678                         break;
2679
2680                 /* either failed parity check, or recovery is happening */
2681                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2682                 BUG_ON(s->uptodate != disks);
2683
2684                 set_bit(R5_LOCKED, &dev->flags);
2685                 s->locked++;
2686                 set_bit(R5_Wantwrite, &dev->flags);
2687
2688                 clear_bit(STRIPE_DEGRADED, &sh->state);
2689                 set_bit(STRIPE_INSYNC, &sh->state);
2690                 break;
2691         case check_state_run:
2692                 break; /* we will be called again upon completion */
2693         case check_state_check_result:
2694                 sh->check_state = check_state_idle;
2695
2696                 /* if a failure occurred during the check operation, leave
2697                  * STRIPE_INSYNC not set and let the stripe be handled again
2698                  */
2699                 if (s->failed)
2700                         break;
2701
2702                 /* handle a successful check operation, if parity is correct
2703                  * we are done.  Otherwise update the mismatch count and repair
2704                  * parity if !MD_RECOVERY_CHECK
2705                  */
2706                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2707                         /* parity is correct (on disc,
2708                          * not in buffer any more)
2709                          */
2710                         set_bit(STRIPE_INSYNC, &sh->state);
2711                 else {
2712                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2713                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2714                                 /* don't try to repair!! */
2715                                 set_bit(STRIPE_INSYNC, &sh->state);
2716                         else {
2717                                 sh->check_state = check_state_compute_run;
2718                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2719                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2720                                 set_bit(R5_Wantcompute,
2721                                         &sh->dev[sh->pd_idx].flags);
2722                                 sh->ops.target = sh->pd_idx;
2723                                 sh->ops.target2 = -1;
2724                                 s->uptodate++;
2725                         }
2726                 }
2727                 break;
2728         case check_state_compute_run:
2729                 break;
2730         default:
2731                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2732                        __func__, sh->check_state,
2733                        (unsigned long long) sh->sector);
2734                 BUG();
2735         }
2736 }
2737
2738
2739 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
2740                                   struct stripe_head_state *s,
2741                                   int disks)
2742 {
2743         int pd_idx = sh->pd_idx;
2744         int qd_idx = sh->qd_idx;
2745         struct r5dev *dev;
2746
2747         set_bit(STRIPE_HANDLE, &sh->state);
2748
2749         BUG_ON(s->failed > 2);
2750
2751         /* Want to check and possibly repair P and Q.
2752          * However there could be one 'failed' device, in which
2753          * case we can only check one of them, possibly using the
2754          * other to generate missing data
2755          */
2756
2757         switch (sh->check_state) {
2758         case check_state_idle:
2759                 /* start a new check operation if there are < 2 failures */
2760                 if (s->failed == s->q_failed) {
2761                         /* The only possible failed device holds Q, so it
2762                          * makes sense to check P (If anything else were failed,
2763                          * we would have used P to recreate it).
2764                          */
2765                         sh->check_state = check_state_run;
2766                 }
2767                 if (!s->q_failed && s->failed < 2) {
2768                         /* Q is not failed, and we didn't use it to generate
2769                          * anything, so it makes sense to check it
2770                          */
2771                         if (sh->check_state == check_state_run)
2772                                 sh->check_state = check_state_run_pq;
2773                         else
2774                                 sh->check_state = check_state_run_q;
2775                 }
2776
2777                 /* discard potentially stale zero_sum_result */
2778                 sh->ops.zero_sum_result = 0;
2779
2780                 if (sh->check_state == check_state_run) {
2781                         /* async_xor_zero_sum destroys the contents of P */
2782                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2783                         s->uptodate--;
2784                 }
2785                 if (sh->check_state >= check_state_run &&
2786                     sh->check_state <= check_state_run_pq) {
2787                         /* async_syndrome_zero_sum preserves P and Q, so
2788                          * no need to mark them !uptodate here
2789                          */
2790                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2791                         break;
2792                 }
2793
2794                 /* we have 2-disk failure */
2795                 BUG_ON(s->failed != 2);
2796                 /* fall through */
2797         case check_state_compute_result:
2798                 sh->check_state = check_state_idle;
2799
2800                 /* check that a write has not made the stripe insync */
2801                 if (test_bit(STRIPE_INSYNC, &sh->state))
2802                         break;
2803
2804                 /* now write out any block on a failed drive,
2805                  * or P or Q if they were recomputed
2806                  */
2807                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2808                 if (s->failed == 2) {
2809                         dev = &sh->dev[s->failed_num[1]];
2810                         s->locked++;
2811                         set_bit(R5_LOCKED, &dev->flags);
2812                         set_bit(R5_Wantwrite, &dev->flags);
2813                 }
2814                 if (s->failed >= 1) {
2815                         dev = &sh->dev[s->failed_num[0]];
2816                         s->locked++;
2817                         set_bit(R5_LOCKED, &dev->flags);
2818                         set_bit(R5_Wantwrite, &dev->flags);
2819                 }
2820                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2821                         dev = &sh->dev[pd_idx];
2822                         s->locked++;
2823                         set_bit(R5_LOCKED, &dev->flags);
2824                         set_bit(R5_Wantwrite, &dev->flags);
2825                 }
2826                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2827                         dev = &sh->dev[qd_idx];
2828                         s->locked++;
2829                         set_bit(R5_LOCKED, &dev->flags);
2830                         set_bit(R5_Wantwrite, &dev->flags);
2831                 }
2832                 clear_bit(STRIPE_DEGRADED, &sh->state);
2833
2834                 set_bit(STRIPE_INSYNC, &sh->state);
2835                 break;
2836         case check_state_run:
2837         case check_state_run_q:
2838         case check_state_run_pq:
2839                 break; /* we will be called again upon completion */
2840         case check_state_check_result:
2841                 sh->check_state = check_state_idle;
2842
2843                 /* handle a successful check operation, if parity is correct
2844                  * we are done.  Otherwise update the mismatch count and repair
2845                  * parity if !MD_RECOVERY_CHECK
2846                  */
2847                 if (sh->ops.zero_sum_result == 0) {
2848                         /* both parities are correct */
2849                         if (!s->failed)
2850                                 set_bit(STRIPE_INSYNC, &sh->state);
2851                         else {
2852                                 /* in contrast to the raid5 case we can validate
2853                                  * parity, but still have a failure to write
2854                                  * back
2855                                  */
2856                                 sh->check_state = check_state_compute_result;
2857                                 /* Returning at this point means that we may go
2858                                  * off and bring p and/or q uptodate again so
2859                                  * we make sure to check zero_sum_result again
2860                                  * to verify if p or q need writeback
2861                                  */
2862                         }
2863                 } else {
2864                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2865                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2866                                 /* don't try to repair!! */
2867                                 set_bit(STRIPE_INSYNC, &sh->state);
2868                         else {
2869                                 int *target = &sh->ops.target;
2870
2871                                 sh->ops.target = -1;
2872                                 sh->ops.target2 = -1;
2873                                 sh->check_state = check_state_compute_run;
2874                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2875                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2876                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2877                                         set_bit(R5_Wantcompute,
2878                                                 &sh->dev[pd_idx].flags);
2879                                         *target = pd_idx;
2880                                         target = &sh->ops.target2;
2881                                         s->uptodate++;
2882                                 }
2883                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2884                                         set_bit(R5_Wantcompute,
2885                                                 &sh->dev[qd_idx].flags);
2886                                         *target = qd_idx;
2887                                         s->uptodate++;
2888                                 }
2889                         }
2890                 }
2891                 break;
2892         case check_state_compute_run:
2893                 break;
2894         default:
2895                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2896                        __func__, sh->check_state,
2897                        (unsigned long long) sh->sector);
2898                 BUG();
2899         }
2900 }
2901
2902 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
2903 {
2904         int i;
2905
2906         /* We have read all the blocks in this stripe and now we need to
2907          * copy some of them into a target stripe for expand.
2908          */
2909         struct dma_async_tx_descriptor *tx = NULL;
2910         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2911         for (i = 0; i < sh->disks; i++)
2912                 if (i != sh->pd_idx && i != sh->qd_idx) {
2913                         int dd_idx, j;
2914                         struct stripe_head *sh2;
2915                         struct async_submit_ctl submit;
2916
2917                         sector_t bn = compute_blocknr(sh, i, 1);
2918                         sector_t s = raid5_compute_sector(conf, bn, 0,
2919                                                           &dd_idx, NULL);
2920                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
2921                         if (sh2 == NULL)
2922                                 /* so far only the early blocks of this stripe
2923                                  * have been requested.  When later blocks
2924                                  * get requested, we will try again
2925                                  */
2926                                 continue;
2927                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2928                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2929                                 /* must have already done this block */
2930                                 release_stripe(sh2);
2931                                 continue;
2932                         }
2933
2934                         /* place all the copies on one channel */
2935                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2936                         tx = async_memcpy(sh2->dev[dd_idx].page,
2937                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
2938                                           &submit);
2939
2940                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2941                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2942                         for (j = 0; j < conf->raid_disks; j++)
2943                                 if (j != sh2->pd_idx &&
2944                                     j != sh2->qd_idx &&
2945                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
2946                                         break;
2947                         if (j == conf->raid_disks) {
2948                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2949                                 set_bit(STRIPE_HANDLE, &sh2->state);
2950                         }
2951                         release_stripe(sh2);
2952
2953                 }
2954         /* done submitting copies, wait for them to complete */
2955         if (tx) {
2956                 async_tx_ack(tx);
2957                 dma_wait_for_async_tx(tx);
2958         }
2959 }
2960
2961
2962 /*
2963  * handle_stripe - do things to a stripe.
2964  *
2965  * We lock the stripe and then examine the state of various bits
2966  * to see what needs to be done.
2967  * Possible results:
2968  *    return some read request which now have data
2969  *    return some write requests which are safely on disc
2970  *    schedule a read on some buffers
2971  *    schedule a write of some buffers
2972  *    return confirmation of parity correctness
2973  *
2974  * buffers are taken off read_list or write_list, and bh_cache buffers
2975  * get BH_Lock set before the stripe lock is released.
2976  *
2977  */
2978
2979 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
2980 {
2981         struct r5conf *conf = sh->raid_conf;
2982         int disks = sh->disks;
2983         struct r5dev *dev;
2984         int i;
2985
2986         memset(s, 0, sizeof(*s));
2987
2988         s->syncing = test_bit(STRIPE_SYNCING, &sh->state);
2989         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2990         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2991         s->failed_num[0] = -1;
2992         s->failed_num[1] = -1;
2993
2994         /* Now to look around and see what can be done */
2995         rcu_read_lock();
2996         spin_lock_irq(&conf->device_lock);
2997         for (i=disks; i--; ) {
2998                 struct md_rdev *rdev;
2999                 sector_t first_bad;
3000                 int bad_sectors;
3001                 int is_bad = 0;
3002
3003                 dev = &sh->dev[i];
3004
3005                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3006                         i, dev->flags, dev->toread, dev->towrite, dev->written);
3007                 /* maybe we can reply to a read
3008                  *
3009                  * new wantfill requests are only permitted while
3010                  * ops_complete_biofill is guaranteed to be inactive
3011                  */
3012                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3013                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3014                         set_bit(R5_Wantfill, &dev->flags);
3015
3016                 /* now count some things */
3017                 if (test_bit(R5_LOCKED, &dev->flags))
3018                         s->locked++;
3019                 if (test_bit(R5_UPTODATE, &dev->flags))
3020                         s->uptodate++;
3021                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3022                         s->compute++;
3023                         BUG_ON(s->compute > 2);
3024                 }
3025
3026                 if (test_bit(R5_Wantfill, &dev->flags))
3027                         s->to_fill++;
3028                 else if (dev->toread)
3029                         s->to_read++;
3030                 if (dev->towrite) {
3031                         s->to_write++;
3032                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3033                                 s->non_overwrite++;
3034                 }
3035                 if (dev->written)
3036                         s->written++;
3037                 rdev = rcu_dereference(conf->disks[i].rdev);
3038                 if (rdev) {
3039                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3040                                              &first_bad, &bad_sectors);
3041                         if (s->blocked_rdev == NULL
3042                             && (test_bit(Blocked, &rdev->flags)
3043                                 || is_bad < 0)) {
3044                                 if (is_bad < 0)
3045                                         set_bit(BlockedBadBlocks,
3046                                                 &rdev->flags);
3047                                 s->blocked_rdev = rdev;
3048                                 atomic_inc(&rdev->nr_pending);
3049                         }
3050                 }
3051                 clear_bit(R5_Insync, &dev->flags);
3052                 if (!rdev)
3053                         /* Not in-sync */;
3054                 else if (is_bad) {
3055                         /* also not in-sync */
3056                         if (!test_bit(WriteErrorSeen, &rdev->flags)) {
3057                                 /* treat as in-sync, but with a read error
3058                                  * which we can now try to correct
3059                                  */
3060                                 set_bit(R5_Insync, &dev->flags);
3061                                 set_bit(R5_ReadError, &dev->flags);
3062                         }
3063                 } else if (test_bit(In_sync, &rdev->flags))
3064                         set_bit(R5_Insync, &dev->flags);
3065                 else if (!test_bit(Faulty, &rdev->flags)) {
3066                         /* in sync if before recovery_offset */
3067                         if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3068                                 set_bit(R5_Insync, &dev->flags);
3069                 }
3070                 if (test_bit(R5_WriteError, &dev->flags)) {
3071                         clear_bit(R5_Insync, &dev->flags);
3072                         if (!test_bit(Faulty, &rdev->flags)) {
3073                                 s->handle_bad_blocks = 1;
3074                                 atomic_inc(&rdev->nr_pending);
3075                         } else
3076                                 clear_bit(R5_WriteError, &dev->flags);
3077                 }
3078                 if (test_bit(R5_MadeGood, &dev->flags)) {
3079                         if (!test_bit(Faulty, &rdev->flags)) {
3080                                 s->handle_bad_blocks = 1;
3081                                 atomic_inc(&rdev->nr_pending);
3082                         } else
3083                                 clear_bit(R5_MadeGood, &dev->flags);
3084                 }
3085                 if (!test_bit(R5_Insync, &dev->flags)) {
3086                         /* The ReadError flag will just be confusing now */
3087                         clear_bit(R5_ReadError, &dev->flags);
3088                         clear_bit(R5_ReWrite, &dev->flags);
3089                 }
3090                 if (test_bit(R5_ReadError, &dev->flags))
3091                         clear_bit(R5_Insync, &dev->flags);
3092                 if (!test_bit(R5_Insync, &dev->flags)) {
3093                         if (s->failed < 2)
3094                                 s->failed_num[s->failed] = i;
3095                         s->failed++;
3096                 }
3097         }
3098         spin_unlock_irq(&conf->device_lock);
3099         rcu_read_unlock();
3100 }
3101
3102 static void handle_stripe(struct stripe_head *sh)
3103 {
3104         struct stripe_head_state s;
3105         struct r5conf *conf = sh->raid_conf;
3106         int i;
3107         int prexor;
3108         int disks = sh->disks;
3109         struct r5dev *pdev, *qdev;
3110
3111         clear_bit(STRIPE_HANDLE, &sh->state);
3112         if (test_and_set_bit(STRIPE_ACTIVE, &sh->state)) {
3113                 /* already being handled, ensure it gets handled
3114                  * again when current action finishes */
3115                 set_bit(STRIPE_HANDLE, &sh->state);
3116                 return;
3117         }
3118
3119         if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3120                 set_bit(STRIPE_SYNCING, &sh->state);
3121                 clear_bit(STRIPE_INSYNC, &sh->state);
3122         }
3123         clear_bit(STRIPE_DELAYED, &sh->state);
3124
3125         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3126                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3127                (unsigned long long)sh->sector, sh->state,
3128                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3129                sh->check_state, sh->reconstruct_state);
3130
3131         analyse_stripe(sh, &s);
3132
3133         if (s.handle_bad_blocks) {
3134                 set_bit(STRIPE_HANDLE, &sh->state);
3135                 goto finish;
3136         }
3137
3138         if (unlikely(s.blocked_rdev)) {
3139                 if (s.syncing || s.expanding || s.expanded ||
3140                     s.to_write || s.written) {
3141                         set_bit(STRIPE_HANDLE, &sh->state);
3142                         goto finish;
3143                 }
3144                 /* There is nothing for the blocked_rdev to block */
3145                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3146                 s.blocked_rdev = NULL;
3147         }
3148
3149         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3150                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3151                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3152         }
3153
3154         pr_debug("locked=%d uptodate=%d to_read=%d"
3155                " to_write=%d failed=%d failed_num=%d,%d\n",
3156                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3157                s.failed_num[0], s.failed_num[1]);
3158         /* check if the array has lost more than max_degraded devices and,
3159          * if so, some requests might need to be failed.
3160          */
3161         if (s.failed > conf->max_degraded && s.to_read+s.to_write+s.written)
3162                 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3163         if (s.failed > conf->max_degraded && s.syncing)
3164                 handle_failed_sync(conf, sh, &s);
3165
3166         /*
3167          * might be able to return some write requests if the parity blocks
3168          * are safe, or on a failed drive
3169          */
3170         pdev = &sh->dev[sh->pd_idx];
3171         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3172                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3173         qdev = &sh->dev[sh->qd_idx];
3174         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3175                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3176                 || conf->level < 6;
3177
3178         if (s.written &&
3179             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3180                              && !test_bit(R5_LOCKED, &pdev->flags)
3181                              && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3182             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3183                              && !test_bit(R5_LOCKED, &qdev->flags)
3184                              && test_bit(R5_UPTODATE, &qdev->flags)))))
3185                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3186
3187         /* Now we might consider reading some blocks, either to check/generate
3188          * parity, or to satisfy requests
3189          * or to load a block that is being partially written.
3190          */
3191         if (s.to_read || s.non_overwrite
3192             || (conf->level == 6 && s.to_write && s.failed)
3193             || (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3194                 handle_stripe_fill(sh, &s, disks);
3195
3196         /* Now we check to see if any write operations have recently
3197          * completed
3198          */
3199         prexor = 0;
3200         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3201                 prexor = 1;
3202         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3203             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3204                 sh->reconstruct_state = reconstruct_state_idle;
3205
3206                 /* All the 'written' buffers and the parity block are ready to
3207                  * be written back to disk
3208                  */
3209                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3210                 BUG_ON(sh->qd_idx >= 0 &&
3211                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
3212                 for (i = disks; i--; ) {
3213                         struct r5dev *dev = &sh->dev[i];
3214                         if (test_bit(R5_LOCKED, &dev->flags) &&
3215                                 (i == sh->pd_idx || i == sh->qd_idx ||
3216                                  dev->written)) {
3217                                 pr_debug("Writing block %d\n", i);
3218                                 set_bit(R5_Wantwrite, &dev->flags);
3219                                 if (prexor)
3220                                         continue;
3221                                 if (!test_bit(R5_Insync, &dev->flags) ||
3222                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
3223                                      s.failed == 0))
3224                                         set_bit(STRIPE_INSYNC, &sh->state);
3225                         }
3226                 }
3227                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3228                         s.dec_preread_active = 1;
3229         }
3230
3231         /* Now to consider new write requests and what else, if anything
3232          * should be read.  We do not handle new writes when:
3233          * 1/ A 'write' operation (copy+xor) is already in flight.
3234          * 2/ A 'check' operation is in flight, as it may clobber the parity
3235          *    block.
3236          */
3237         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3238                 handle_stripe_dirtying(conf, sh, &s, disks);
3239
3240         /* maybe we need to check and possibly fix the parity for this stripe
3241          * Any reads will already have been scheduled, so we just see if enough
3242          * data is available.  The parity check is held off while parity
3243          * dependent operations are in flight.
3244          */
3245         if (sh->check_state ||
3246             (s.syncing && s.locked == 0 &&
3247              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3248              !test_bit(STRIPE_INSYNC, &sh->state))) {
3249                 if (conf->level == 6)
3250                         handle_parity_checks6(conf, sh, &s, disks);
3251                 else
3252                         handle_parity_checks5(conf, sh, &s, disks);
3253         }
3254
3255         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3256                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3257                 clear_bit(STRIPE_SYNCING, &sh->state);
3258         }
3259
3260         /* If the failed drives are just a ReadError, then we might need
3261          * to progress the repair/check process
3262          */
3263         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3264                 for (i = 0; i < s.failed; i++) {
3265                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
3266                         if (test_bit(R5_ReadError, &dev->flags)
3267                             && !test_bit(R5_LOCKED, &dev->flags)
3268                             && test_bit(R5_UPTODATE, &dev->flags)
3269                                 ) {
3270                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3271                                         set_bit(R5_Wantwrite, &dev->flags);
3272                                         set_bit(R5_ReWrite, &dev->flags);
3273                                         set_bit(R5_LOCKED, &dev->flags);
3274                                         s.locked++;
3275                                 } else {
3276                                         /* let's read it back */
3277                                         set_bit(R5_Wantread, &dev->flags);
3278                                         set_bit(R5_LOCKED, &dev->flags);
3279                                         s.locked++;
3280                                 }
3281                         }
3282                 }
3283
3284
3285         /* Finish reconstruct operations initiated by the expansion process */
3286         if (sh->reconstruct_state == reconstruct_state_result) {
3287                 struct stripe_head *sh_src
3288                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3289                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3290                         /* sh cannot be written until sh_src has been read.
3291                          * so arrange for sh to be delayed a little
3292                          */
3293                         set_bit(STRIPE_DELAYED, &sh->state);
3294                         set_bit(STRIPE_HANDLE, &sh->state);
3295                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3296                                               &sh_src->state))
3297                                 atomic_inc(&conf->preread_active_stripes);
3298                         release_stripe(sh_src);
3299                         goto finish;
3300                 }
3301                 if (sh_src)
3302                         release_stripe(sh_src);
3303
3304                 sh->reconstruct_state = reconstruct_state_idle;
3305                 clear_bit(STRIPE_EXPANDING, &sh->state);
3306                 for (i = conf->raid_disks; i--; ) {
3307                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3308                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3309                         s.locked++;
3310                 }
3311         }
3312
3313         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3314             !sh->reconstruct_state) {
3315                 /* Need to write out all blocks after computing parity */
3316                 sh->disks = conf->raid_disks;
3317                 stripe_set_idx(sh->sector, conf, 0, sh);
3318                 schedule_reconstruction(sh, &s, 1, 1);
3319         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3320                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3321                 atomic_dec(&conf->reshape_stripes);
3322                 wake_up(&conf->wait_for_overlap);
3323                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3324         }
3325
3326         if (s.expanding && s.locked == 0 &&
3327             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3328                 handle_stripe_expansion(conf, sh);
3329
3330 finish:
3331         /* wait for this device to become unblocked */
3332         if (conf->mddev->external && unlikely(s.blocked_rdev))
3333                 md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
3334
3335         if (s.handle_bad_blocks)
3336                 for (i = disks; i--; ) {
3337                         struct md_rdev *rdev;
3338                         struct r5dev *dev = &sh->dev[i];
3339                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3340                                 /* We own a safe reference to the rdev */
3341                                 rdev = conf->disks[i].rdev;
3342                                 if (!rdev_set_badblocks(rdev, sh->sector,
3343                                                         STRIPE_SECTORS, 0))
3344                                         md_error(conf->mddev, rdev);
3345                                 rdev_dec_pending(rdev, conf->mddev);
3346                         }
3347                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3348                                 rdev = conf->disks[i].rdev;
3349                                 rdev_clear_badblocks(rdev, sh->sector,
3350                                                      STRIPE_SECTORS);
3351                                 rdev_dec_pending(rdev, conf->mddev);
3352                         }
3353                 }
3354
3355         if (s.ops_request)
3356                 raid_run_ops(sh, s.ops_request);
3357
3358         ops_run_io(sh, &s);
3359
3360         if (s.dec_preread_active) {
3361                 /* We delay this until after ops_run_io so that if make_request
3362                  * is waiting on a flush, it won't continue until the writes
3363                  * have actually been submitted.
3364                  */
3365                 atomic_dec(&conf->preread_active_stripes);
3366                 if (atomic_read(&conf->preread_active_stripes) <
3367                     IO_THRESHOLD)
3368                         md_wakeup_thread(conf->mddev->thread);
3369         }
3370
3371         return_io(s.return_bi);
3372
3373         clear_bit(STRIPE_ACTIVE, &sh->state);
3374 }
3375
3376 static void raid5_activate_delayed(struct r5conf *conf)
3377 {
3378         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3379                 while (!list_empty(&conf->delayed_list)) {
3380                         struct list_head *l = conf->delayed_list.next;
3381                         struct stripe_head *sh;
3382                         sh = list_entry(l, struct stripe_head, lru);
3383                         list_del_init(l);
3384                         clear_bit(STRIPE_DELAYED, &sh->state);
3385                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3386                                 atomic_inc(&conf->preread_active_stripes);
3387                         list_add_tail(&sh->lru, &conf->hold_list);
3388                 }
3389         }
3390 }
3391
3392 static void activate_bit_delay(struct r5conf *conf)
3393 {
3394         /* device_lock is held */
3395         struct list_head head;
3396         list_add(&head, &conf->bitmap_list);
3397         list_del_init(&conf->bitmap_list);
3398         while (!list_empty(&head)) {
3399                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3400                 list_del_init(&sh->lru);
3401                 atomic_inc(&sh->count);
3402                 __release_stripe(conf, sh);
3403         }
3404 }
3405
3406 int md_raid5_congested(struct mddev *mddev, int bits)
3407 {
3408         struct r5conf *conf = mddev->private;
3409
3410         /* No difference between reads and writes.  Just check
3411          * how busy the stripe_cache is
3412          */
3413
3414         if (conf->inactive_blocked)
3415                 return 1;
3416         if (conf->quiesce)
3417                 return 1;
3418         if (list_empty_careful(&conf->inactive_list))
3419                 return 1;
3420
3421         return 0;
3422 }
3423 EXPORT_SYMBOL_GPL(md_raid5_congested);
3424
3425 static int raid5_congested(void *data, int bits)
3426 {
3427         struct mddev *mddev = data;
3428
3429         return mddev_congested(mddev, bits) ||
3430                 md_raid5_congested(mddev, bits);
3431 }
3432
3433 /* We want read requests to align with chunks where possible,
3434  * but write requests don't need to.
3435  */
3436 static int raid5_mergeable_bvec(struct request_queue *q,
3437                                 struct bvec_merge_data *bvm,
3438                                 struct bio_vec *biovec)
3439 {
3440         struct mddev *mddev = q->queuedata;
3441         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3442         int max;
3443         unsigned int chunk_sectors = mddev->chunk_sectors;
3444         unsigned int bio_sectors = bvm->bi_size >> 9;
3445
3446         if ((bvm->bi_rw & 1) == WRITE)
3447                 return biovec->bv_len; /* always allow writes to be mergeable */
3448
3449         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3450                 chunk_sectors = mddev->new_chunk_sectors;
3451         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3452         if (max < 0) max = 0;
3453         if (max <= biovec->bv_len && bio_sectors == 0)
3454                 return biovec->bv_len;
3455         else
3456                 return max;
3457 }
3458
3459
3460 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3461 {
3462         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3463         unsigned int chunk_sectors = mddev->chunk_sectors;
3464         unsigned int bio_sectors = bio->bi_size >> 9;
3465
3466         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3467                 chunk_sectors = mddev->new_chunk_sectors;
3468         return  chunk_sectors >=
3469                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3470 }
3471
3472 /*
3473  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3474  *  later sampled by raid5d.
3475  */
3476 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3477 {
3478         unsigned long flags;
3479
3480         spin_lock_irqsave(&conf->device_lock, flags);
3481
3482         bi->bi_next = conf->retry_read_aligned_list;
3483         conf->retry_read_aligned_list = bi;
3484
3485         spin_unlock_irqrestore(&conf->device_lock, flags);
3486         md_wakeup_thread(conf->mddev->thread);
3487 }
3488
3489
3490 static struct bio *remove_bio_from_retry(struct r5conf *conf)
3491 {
3492         struct bio *bi;
3493
3494         bi = conf->retry_read_aligned;
3495         if (bi) {
3496                 conf->retry_read_aligned = NULL;
3497                 return bi;
3498         }
3499         bi = conf->retry_read_aligned_list;
3500         if(bi) {
3501                 conf->retry_read_aligned_list = bi->bi_next;
3502                 bi->bi_next = NULL;
3503                 /*
3504                  * this sets the active strip count to 1 and the processed
3505                  * strip count to zero (upper 8 bits)
3506                  */
3507                 bi->bi_phys_segments = 1; /* biased count of active stripes */
3508         }
3509
3510         return bi;
3511 }
3512
3513
3514 /*
3515  *  The "raid5_align_endio" should check if the read succeeded and if it
3516  *  did, call bio_endio on the original bio (having bio_put the new bio
3517  *  first).
3518  *  If the read failed..
3519  */
3520 static void raid5_align_endio(struct bio *bi, int error)
3521 {
3522         struct bio* raid_bi  = bi->bi_private;
3523         struct mddev *mddev;
3524         struct r5conf *conf;
3525         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3526         struct md_rdev *rdev;
3527
3528         bio_put(bi);
3529
3530         rdev = (void*)raid_bi->bi_next;
3531         raid_bi->bi_next = NULL;
3532         mddev = rdev->mddev;
3533         conf = mddev->private;
3534
3535         rdev_dec_pending(rdev, conf->mddev);
3536
3537         if (!error && uptodate) {
3538                 bio_endio(raid_bi, 0);
3539                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3540                         wake_up(&conf->wait_for_stripe);
3541                 return;
3542         }
3543
3544
3545         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3546
3547         add_bio_to_retry(raid_bi, conf);
3548 }
3549
3550 static int bio_fits_rdev(struct bio *bi)
3551 {
3552         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3553
3554         if ((bi->bi_size>>9) > queue_max_sectors(q))
3555                 return 0;
3556         blk_recount_segments(q, bi);
3557         if (bi->bi_phys_segments > queue_max_segments(q))
3558                 return 0;
3559
3560         if (q->merge_bvec_fn)
3561                 /* it's too hard to apply the merge_bvec_fn at this stage,
3562                  * just just give up
3563                  */
3564                 return 0;
3565
3566         return 1;
3567 }
3568
3569
3570 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3571 {
3572         struct r5conf *conf = mddev->private;
3573         int dd_idx;
3574         struct bio* align_bi;
3575         struct md_rdev *rdev;
3576
3577         if (!in_chunk_boundary(mddev, raid_bio)) {
3578                 pr_debug("chunk_aligned_read : non aligned\n");
3579                 return 0;
3580         }
3581         /*
3582          * use bio_clone_mddev to make a copy of the bio
3583          */
3584         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3585         if (!align_bi)
3586                 return 0;
3587         /*
3588          *   set bi_end_io to a new function, and set bi_private to the
3589          *     original bio.
3590          */
3591         align_bi->bi_end_io  = raid5_align_endio;
3592         align_bi->bi_private = raid_bio;
3593         /*
3594          *      compute position
3595          */
3596         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3597                                                     0,
3598                                                     &dd_idx, NULL);
3599
3600         rcu_read_lock();
3601         rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3602         if (rdev && test_bit(In_sync, &rdev->flags)) {
3603                 sector_t first_bad;
3604                 int bad_sectors;
3605
3606                 atomic_inc(&rdev->nr_pending);
3607                 rcu_read_unlock();
3608                 raid_bio->bi_next = (void*)rdev;
3609                 align_bi->bi_bdev =  rdev->bdev;
3610                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3611                 align_bi->bi_sector += rdev->data_offset;
3612
3613                 if (!bio_fits_rdev(align_bi) ||
3614                     is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
3615                                 &first_bad, &bad_sectors)) {
3616                         /* too big in some way, or has a known bad block */
3617                         bio_put(align_bi);
3618                         rdev_dec_pending(rdev, mddev);
3619                         return 0;
3620                 }
3621
3622                 spin_lock_irq(&conf->device_lock);
3623                 wait_event_lock_irq(conf->wait_for_stripe,
3624                                     conf->quiesce == 0,
3625                                     conf->device_lock, /* nothing */);
3626                 atomic_inc(&conf->active_aligned_reads);
3627                 spin_unlock_irq(&conf->device_lock);
3628
3629                 generic_make_request(align_bi);
3630                 return 1;
3631         } else {
3632                 rcu_read_unlock();
3633                 bio_put(align_bi);
3634                 return 0;
3635         }
3636 }
3637
3638 /* __get_priority_stripe - get the next stripe to process
3639  *
3640  * Full stripe writes are allowed to pass preread active stripes up until
3641  * the bypass_threshold is exceeded.  In general the bypass_count
3642  * increments when the handle_list is handled before the hold_list; however, it
3643  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3644  * stripe with in flight i/o.  The bypass_count will be reset when the
3645  * head of the hold_list has changed, i.e. the head was promoted to the
3646  * handle_list.
3647  */
3648 static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
3649 {
3650         struct stripe_head *sh;
3651
3652         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3653                   __func__,
3654                   list_empty(&conf->handle_list) ? "empty" : "busy",
3655                   list_empty(&conf->hold_list) ? "empty" : "busy",
3656                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
3657
3658         if (!list_empty(&conf->handle_list)) {
3659                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3660
3661                 if (list_empty(&conf->hold_list))
3662                         conf->bypass_count = 0;
3663                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3664                         if (conf->hold_list.next == conf->last_hold)
3665                                 conf->bypass_count++;
3666                         else {
3667                                 conf->last_hold = conf->hold_list.next;
3668                                 conf->bypass_count -= conf->bypass_threshold;
3669                                 if (conf->bypass_count < 0)
3670                                         conf->bypass_count = 0;
3671                         }
3672                 }
3673         } else if (!list_empty(&conf->hold_list) &&
3674                    ((conf->bypass_threshold &&
3675                      conf->bypass_count > conf->bypass_threshold) ||
3676                     atomic_read(&conf->pending_full_writes) == 0)) {
3677                 sh = list_entry(conf->hold_list.next,
3678                                 typeof(*sh), lru);
3679                 conf->bypass_count -= conf->bypass_threshold;
3680                 if (conf->bypass_count < 0)
3681                         conf->bypass_count = 0;
3682         } else
3683                 return NULL;
3684
3685         list_del_init(&sh->lru);
3686         atomic_inc(&sh->count);
3687         BUG_ON(atomic_read(&sh->count) != 1);
3688         return sh;
3689 }
3690
3691 static int make_request(struct mddev *mddev, struct bio * bi)
3692 {
3693         struct r5conf *conf = mddev->private;
3694         int dd_idx;
3695         sector_t new_sector;
3696         sector_t logical_sector, last_sector;
3697         struct stripe_head *sh;
3698         const int rw = bio_data_dir(bi);
3699         int remaining;
3700         int plugged;
3701
3702         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3703                 md_flush_request(mddev, bi);
3704                 return 0;
3705         }
3706
3707         md_write_start(mddev, bi);
3708
3709         if (rw == READ &&
3710              mddev->reshape_position == MaxSector &&
3711              chunk_aligned_read(mddev,bi))
3712                 return 0;
3713
3714         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3715         last_sector = bi->bi_sector + (bi->bi_size>>9);
3716         bi->bi_next = NULL;
3717         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
3718
3719         plugged = mddev_check_plugged(mddev);
3720         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3721                 DEFINE_WAIT(w);
3722                 int disks, data_disks;
3723                 int previous;
3724
3725         retry:
3726                 previous = 0;
3727                 disks = conf->raid_disks;
3728                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3729                 if (unlikely(conf->reshape_progress != MaxSector)) {
3730                         /* spinlock is needed as reshape_progress may be
3731                          * 64bit on a 32bit platform, and so it might be
3732                          * possible to see a half-updated value
3733                          * Of course reshape_progress could change after
3734                          * the lock is dropped, so once we get a reference
3735                          * to the stripe that we think it is, we will have
3736                          * to check again.
3737                          */
3738                         spin_lock_irq(&conf->device_lock);
3739                         if (mddev->delta_disks < 0
3740                             ? logical_sector < conf->reshape_progress
3741                             : logical_sector >= conf->reshape_progress) {
3742                                 disks = conf->previous_raid_disks;
3743                                 previous = 1;
3744                         } else {
3745                                 if (mddev->delta_disks < 0
3746                                     ? logical_sector < conf->reshape_safe
3747                                     : logical_sector >= conf->reshape_safe) {
3748                                         spin_unlock_irq(&conf->device_lock);
3749                                         schedule();
3750                                         goto retry;
3751                                 }
3752                         }
3753                         spin_unlock_irq(&conf->device_lock);
3754                 }
3755                 data_disks = disks - conf->max_degraded;
3756
3757                 new_sector = raid5_compute_sector(conf, logical_sector,
3758                                                   previous,
3759                                                   &dd_idx, NULL);
3760                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
3761                         (unsigned long long)new_sector, 
3762                         (unsigned long long)logical_sector);
3763
3764                 sh = get_active_stripe(conf, new_sector, previous,
3765                                        (bi->bi_rw&RWA_MASK), 0);
3766                 if (sh) {
3767                         if (unlikely(previous)) {
3768                                 /* expansion might have moved on while waiting for a
3769                                  * stripe, so we must do the range check again.
3770                                  * Expansion could still move past after this
3771                                  * test, but as we are holding a reference to
3772                                  * 'sh', we know that if that happens,
3773                                  *  STRIPE_EXPANDING will get set and the expansion
3774                                  * won't proceed until we finish with the stripe.
3775                                  */
3776                                 int must_retry = 0;
3777                                 spin_lock_irq(&conf->device_lock);
3778                                 if (mddev->delta_disks < 0
3779                                     ? logical_sector >= conf->reshape_progress
3780                                     : logical_sector < conf->reshape_progress)
3781                                         /* mismatch, need to try again */
3782                                         must_retry = 1;
3783                                 spin_unlock_irq(&conf->device_lock);
3784                                 if (must_retry) {
3785                                         release_stripe(sh);
3786                                         schedule();
3787                                         goto retry;
3788                                 }
3789                         }
3790
3791                         if (rw == WRITE &&
3792                             logical_sector >= mddev->suspend_lo &&
3793                             logical_sector < mddev->suspend_hi) {
3794                                 release_stripe(sh);
3795                                 /* As the suspend_* range is controlled by
3796                                  * userspace, we want an interruptible
3797                                  * wait.
3798                                  */
3799                                 flush_signals(current);
3800                                 prepare_to_wait(&conf->wait_for_overlap,
3801                                                 &w, TASK_INTERRUPTIBLE);
3802                                 if (logical_sector >= mddev->suspend_lo &&
3803                                     logical_sector < mddev->suspend_hi)
3804                                         schedule();
3805                                 goto retry;
3806                         }
3807
3808                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3809                             !add_stripe_bio(sh, bi, dd_idx, rw)) {
3810                                 /* Stripe is busy expanding or
3811                                  * add failed due to overlap.  Flush everything
3812                                  * and wait a while
3813                                  */
3814                                 md_wakeup_thread(mddev->thread);
3815                                 release_stripe(sh);
3816                                 schedule();
3817                                 goto retry;
3818                         }
3819                         finish_wait(&conf->wait_for_overlap, &w);
3820                         set_bit(STRIPE_HANDLE, &sh->state);
3821                         clear_bit(STRIPE_DELAYED, &sh->state);
3822                         if ((bi->bi_rw & REQ_SYNC) &&
3823                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3824                                 atomic_inc(&conf->preread_active_stripes);
3825                         release_stripe(sh);
3826                 } else {
3827                         /* cannot get stripe for read-ahead, just give-up */
3828                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3829                         finish_wait(&conf->wait_for_overlap, &w);
3830                         break;
3831                 }
3832                         
3833         }
3834         if (!plugged)
3835                 md_wakeup_thread(mddev->thread);
3836
3837         spin_lock_irq(&conf->device_lock);
3838         remaining = raid5_dec_bi_phys_segments(bi);
3839         spin_unlock_irq(&conf->device_lock);
3840         if (remaining == 0) {
3841
3842                 if ( rw == WRITE )
3843                         md_write_end(mddev);
3844
3845                 bio_endio(bi, 0);
3846         }
3847
3848         return 0;
3849 }
3850
3851 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
3852
3853 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
3854 {
3855         /* reshaping is quite different to recovery/resync so it is
3856          * handled quite separately ... here.
3857          *
3858          * On each call to sync_request, we gather one chunk worth of
3859          * destination stripes and flag them as expanding.
3860          * Then we find all the source stripes and request reads.
3861          * As the reads complete, handle_stripe will copy the data
3862          * into the destination stripe and release that stripe.
3863          */
3864         struct r5conf *conf = mddev->private;
3865         struct stripe_head *sh;
3866         sector_t first_sector, last_sector;
3867         int raid_disks = conf->previous_raid_disks;
3868         int data_disks = raid_disks - conf->max_degraded;
3869         int new_data_disks = conf->raid_disks - conf->max_degraded;
3870         int i;
3871         int dd_idx;
3872         sector_t writepos, readpos, safepos;
3873         sector_t stripe_addr;
3874         int reshape_sectors;
3875         struct list_head stripes;
3876
3877         if (sector_nr == 0) {
3878                 /* If restarting in the middle, skip the initial sectors */
3879                 if (mddev->delta_disks < 0 &&
3880                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
3881                         sector_nr = raid5_size(mddev, 0, 0)
3882                                 - conf->reshape_progress;
3883                 } else if (mddev->delta_disks >= 0 &&
3884                            conf->reshape_progress > 0)
3885                         sector_nr = conf->reshape_progress;
3886                 sector_div(sector_nr, new_data_disks);
3887                 if (sector_nr) {
3888                         mddev->curr_resync_completed = sector_nr;
3889                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3890                         *skipped = 1;
3891                         return sector_nr;
3892                 }
3893         }
3894
3895         /* We need to process a full chunk at a time.
3896          * If old and new chunk sizes differ, we need to process the
3897          * largest of these
3898          */
3899         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
3900                 reshape_sectors = mddev->new_chunk_sectors;
3901         else
3902                 reshape_sectors = mddev->chunk_sectors;
3903
3904         /* we update the metadata when there is more than 3Meg
3905          * in the block range (that is rather arbitrary, should
3906          * probably be time based) or when the data about to be
3907          * copied would over-write the source of the data at
3908          * the front of the range.
3909          * i.e. one new_stripe along from reshape_progress new_maps
3910          * to after where reshape_safe old_maps to
3911          */
3912         writepos = conf->reshape_progress;
3913         sector_div(writepos, new_data_disks);
3914         readpos = conf->reshape_progress;
3915         sector_div(readpos, data_disks);
3916         safepos = conf->reshape_safe;
3917         sector_div(safepos, data_disks);
3918         if (mddev->delta_disks < 0) {
3919                 writepos -= min_t(sector_t, reshape_sectors, writepos);
3920                 readpos += reshape_sectors;
3921                 safepos += reshape_sectors;
3922         } else {
3923                 writepos += reshape_sectors;
3924                 readpos -= min_t(sector_t, reshape_sectors, readpos);
3925                 safepos -= min_t(sector_t, reshape_sectors, safepos);
3926         }
3927
3928         /* 'writepos' is the most advanced device address we might write.
3929          * 'readpos' is the least advanced device address we might read.
3930          * 'safepos' is the least address recorded in the metadata as having
3931          *     been reshaped.
3932          * If 'readpos' is behind 'writepos', then there is no way that we can
3933          * ensure safety in the face of a crash - that must be done by userspace
3934          * making a backup of the data.  So in that case there is no particular
3935          * rush to update metadata.
3936          * Otherwise if 'safepos' is behind 'writepos', then we really need to
3937          * update the metadata to advance 'safepos' to match 'readpos' so that
3938          * we can be safe in the event of a crash.
3939          * So we insist on updating metadata if safepos is behind writepos and
3940          * readpos is beyond writepos.
3941          * In any case, update the metadata every 10 seconds.
3942          * Maybe that number should be configurable, but I'm not sure it is
3943          * worth it.... maybe it could be a multiple of safemode_delay???
3944          */
3945         if ((mddev->delta_disks < 0
3946              ? (safepos > writepos && readpos < writepos)
3947              : (safepos < writepos && readpos > writepos)) ||
3948             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
3949                 /* Cannot proceed until we've updated the superblock... */
3950                 wait_event(conf->wait_for_overlap,
3951                            atomic_read(&conf->reshape_stripes)==0);
3952                 mddev->reshape_position = conf->reshape_progress;
3953                 mddev->curr_resync_completed = sector_nr;
3954                 conf->reshape_checkpoint = jiffies;
3955                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3956                 md_wakeup_thread(mddev->thread);
3957                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3958                            kthread_should_stop());
3959                 spin_lock_irq(&conf->device_lock);
3960                 conf->reshape_safe = mddev->reshape_position;
3961                 spin_unlock_irq(&conf->device_lock);
3962                 wake_up(&conf->wait_for_overlap);
3963                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3964         }
3965
3966         if (mddev->delta_disks < 0) {
3967                 BUG_ON(conf->reshape_progress == 0);
3968                 stripe_addr = writepos;
3969                 BUG_ON((mddev->dev_sectors &
3970                         ~((sector_t)reshape_sectors - 1))
3971                        - reshape_sectors - stripe_addr
3972                        != sector_nr);
3973         } else {
3974                 BUG_ON(writepos != sector_nr + reshape_sectors);
3975                 stripe_addr = sector_nr;
3976         }
3977         INIT_LIST_HEAD(&stripes);
3978         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
3979                 int j;
3980                 int skipped_disk = 0;
3981                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
3982                 set_bit(STRIPE_EXPANDING, &sh->state);
3983                 atomic_inc(&conf->reshape_stripes);
3984                 /* If any of this stripe is beyond the end of the old
3985                  * array, then we need to zero those blocks
3986                  */
3987                 for (j=sh->disks; j--;) {
3988                         sector_t s;
3989                         if (j == sh->pd_idx)
3990                                 continue;
3991                         if (conf->level == 6 &&
3992                             j == sh->qd_idx)
3993                                 continue;
3994                         s = compute_blocknr(sh, j, 0);
3995                         if (s < raid5_size(mddev, 0, 0)) {
3996                                 skipped_disk = 1;
3997                                 continue;
3998                         }
3999                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4000                         set_bit(R5_Expanded, &sh->dev[j].flags);
4001                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
4002                 }
4003                 if (!skipped_disk) {
4004                         set_bit(STRIPE_EXPAND_READY, &sh->state);
4005                         set_bit(STRIPE_HANDLE, &sh->state);
4006                 }
4007                 list_add(&sh->lru, &stripes);
4008         }
4009         spin_lock_irq(&conf->device_lock);
4010         if (mddev->delta_disks < 0)
4011                 conf->reshape_progress -= reshape_sectors * new_data_disks;
4012         else
4013                 conf->reshape_progress += reshape_sectors * new_data_disks;
4014         spin_unlock_irq(&conf->device_lock);
4015         /* Ok, those stripe are ready. We can start scheduling
4016          * reads on the source stripes.
4017          * The source stripes are determined by mapping the first and last
4018          * block on the destination stripes.
4019          */
4020         first_sector =
4021                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4022                                      1, &dd_idx, NULL);
4023         last_sector =
4024                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4025                                             * new_data_disks - 1),
4026                                      1, &dd_idx, NULL);
4027         if (last_sector >= mddev->dev_sectors)
4028                 last_sector = mddev->dev_sectors - 1;
4029         while (first_sector <= last_sector) {
4030                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4031                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4032                 set_bit(STRIPE_HANDLE, &sh->state);
4033                 release_stripe(sh);
4034                 first_sector += STRIPE_SECTORS;
4035         }
4036         /* Now that the sources are clearly marked, we can release
4037          * the destination stripes
4038          */
4039         while (!list_empty(&stripes)) {
4040                 sh = list_entry(stripes.next, struct stripe_head, lru);
4041                 list_del_init(&sh->lru);
4042                 release_stripe(sh);
4043         }
4044         /* If this takes us to the resync_max point where we have to pause,
4045          * then we need to write out the superblock.
4046          */
4047         sector_nr += reshape_sectors;
4048         if ((sector_nr - mddev->curr_resync_completed) * 2
4049             >= mddev->resync_max - mddev->curr_resync_completed) {
4050                 /* Cannot proceed until we've updated the superblock... */
4051                 wait_event(conf->wait_for_overlap,
4052                            atomic_read(&conf->reshape_stripes) == 0);
4053                 mddev->reshape_position = conf->reshape_progress;
4054                 mddev->curr_resync_completed = sector_nr;
4055                 conf->reshape_checkpoint = jiffies;
4056                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4057                 md_wakeup_thread(mddev->thread);
4058                 wait_event(mddev->sb_wait,
4059                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4060                            || kthread_should_stop());
4061                 spin_lock_irq(&conf->device_lock);
4062                 conf->reshape_safe = mddev->reshape_position;
4063                 spin_unlock_irq(&conf->device_lock);
4064                 wake_up(&conf->wait_for_overlap);
4065                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4066         }
4067         return reshape_sectors;
4068 }
4069
4070 /* FIXME go_faster isn't used */
4071 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4072 {
4073         struct r5conf *conf = mddev->private;
4074         struct stripe_head *sh;
4075         sector_t max_sector = mddev->dev_sectors;
4076         sector_t sync_blocks;
4077         int still_degraded = 0;
4078         int i;
4079
4080         if (sector_nr >= max_sector) {
4081                 /* just being told to finish up .. nothing much to do */
4082
4083                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4084                         end_reshape(conf);
4085                         return 0;
4086                 }
4087
4088                 if (mddev->curr_resync < max_sector) /* aborted */
4089                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4090                                         &sync_blocks, 1);
4091                 else /* completed sync */
4092                         conf->fullsync = 0;
4093                 bitmap_close_sync(mddev->bitmap);
4094
4095                 return 0;
4096         }
4097
4098         /* Allow raid5_quiesce to complete */
4099         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4100
4101         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4102                 return reshape_request(mddev, sector_nr, skipped);
4103
4104         /* No need to check resync_max as we never do more than one
4105          * stripe, and as resync_max will always be on a chunk boundary,
4106          * if the check in md_do_sync didn't fire, there is no chance
4107          * of overstepping resync_max here
4108          */
4109
4110         /* if there is too many failed drives and we are trying
4111          * to resync, then assert that we are finished, because there is
4112          * nothing we can do.
4113          */
4114         if (mddev->degraded >= conf->max_degraded &&
4115             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4116                 sector_t rv = mddev->dev_sectors - sector_nr;
4117                 *skipped = 1;
4118                 return rv;
4119         }
4120         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4121             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4122             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4123                 /* we can skip this block, and probably more */
4124                 sync_blocks /= STRIPE_SECTORS;
4125                 *skipped = 1;
4126                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4127         }
4128
4129
4130         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4131
4132         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4133         if (sh == NULL) {
4134                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4135                 /* make sure we don't swamp the stripe cache if someone else
4136                  * is trying to get access
4137                  */
4138                 schedule_timeout_uninterruptible(1);
4139         }
4140         /* Need to check if array will still be degraded after recovery/resync
4141          * We don't need to check the 'failed' flag as when that gets set,
4142          * recovery aborts.
4143          */
4144         for (i = 0; i < conf->raid_disks; i++)
4145                 if (conf->disks[i].rdev == NULL)
4146                         still_degraded = 1;
4147
4148         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4149
4150         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4151
4152         handle_stripe(sh);
4153         release_stripe(sh);
4154
4155         return STRIPE_SECTORS;
4156 }
4157
4158 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4159 {
4160         /* We may not be able to submit a whole bio at once as there
4161          * may not be enough stripe_heads available.
4162          * We cannot pre-allocate enough stripe_heads as we may need
4163          * more than exist in the cache (if we allow ever large chunks).
4164          * So we do one stripe head at a time and record in
4165          * ->bi_hw_segments how many have been done.
4166          *
4167          * We *know* that this entire raid_bio is in one chunk, so
4168          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4169          */
4170         struct stripe_head *sh;
4171         int dd_idx;
4172         sector_t sector, logical_sector, last_sector;
4173         int scnt = 0;
4174         int remaining;
4175         int handled = 0;
4176
4177         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4178         sector = raid5_compute_sector(conf, logical_sector,
4179                                       0, &dd_idx, NULL);
4180         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4181
4182         for (; logical_sector < last_sector;
4183              logical_sector += STRIPE_SECTORS,
4184                      sector += STRIPE_SECTORS,
4185                      scnt++) {
4186
4187                 if (scnt < raid5_bi_hw_segments(raid_bio))
4188                         /* already done this stripe */
4189                         continue;
4190
4191                 sh = get_active_stripe(conf, sector, 0, 1, 0);
4192
4193                 if (!sh) {
4194                         /* failed to get a stripe - must wait */
4195                         raid5_set_bi_hw_segments(raid_bio, scnt);
4196                         conf->retry_read_aligned = raid_bio;
4197                         return handled;
4198                 }
4199
4200                 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4201                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4202                         release_stripe(sh);
4203                         raid5_set_bi_hw_segments(raid_bio, scnt);
4204                         conf->retry_read_aligned = raid_bio;
4205                         return handled;
4206                 }
4207
4208                 handle_stripe(sh);
4209                 release_stripe(sh);
4210                 handled++;
4211         }
4212         spin_lock_irq(&conf->device_lock);
4213         remaining = raid5_dec_bi_phys_segments(raid_bio);
4214         spin_unlock_irq(&conf->device_lock);
4215         if (remaining == 0)
4216                 bio_endio(raid_bio, 0);
4217         if (atomic_dec_and_test(&conf->active_aligned_reads))
4218                 wake_up(&conf->wait_for_stripe);
4219         return handled;
4220 }
4221
4222
4223 /*
4224  * This is our raid5 kernel thread.
4225  *
4226  * We scan the hash table for stripes which can be handled now.
4227  * During the scan, completed stripes are saved for us by the interrupt
4228  * handler, so that they will not have to wait for our next wakeup.
4229  */
4230 static void raid5d(struct mddev *mddev)
4231 {
4232         struct stripe_head *sh;
4233         struct r5conf *conf = mddev->private;
4234         int handled;
4235         struct blk_plug plug;
4236
4237         pr_debug("+++ raid5d active\n");
4238
4239         md_check_recovery(mddev);
4240
4241         blk_start_plug(&plug);
4242         handled = 0;
4243         spin_lock_irq(&conf->device_lock);
4244         while (1) {
4245                 struct bio *bio;
4246
4247                 if (atomic_read(&mddev->plug_cnt) == 0 &&
4248                     !list_empty(&conf->bitmap_list)) {
4249                         /* Now is a good time to flush some bitmap updates */
4250                         conf->seq_flush++;
4251                         spin_unlock_irq(&conf->device_lock);
4252                         bitmap_unplug(mddev->bitmap);
4253                         spin_lock_irq(&conf->device_lock);
4254                         conf->seq_write = conf->seq_flush;
4255                         activate_bit_delay(conf);
4256                 }
4257                 if (atomic_read(&mddev->plug_cnt) == 0)
4258                         raid5_activate_delayed(conf);
4259
4260                 while ((bio = remove_bio_from_retry(conf))) {
4261                         int ok;
4262                         spin_unlock_irq(&conf->device_lock);
4263                         ok = retry_aligned_read(conf, bio);
4264                         spin_lock_irq(&conf->device_lock);
4265                         if (!ok)
4266                                 break;
4267                         handled++;
4268                 }
4269
4270                 sh = __get_priority_stripe(conf);
4271
4272                 if (!sh)
4273                         break;
4274                 spin_unlock_irq(&conf->device_lock);
4275                 
4276                 handled++;
4277                 handle_stripe(sh);
4278                 release_stripe(sh);
4279                 cond_resched();
4280
4281                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
4282                         md_check_recovery(mddev);
4283
4284                 spin_lock_irq(&conf->device_lock);
4285         }
4286         pr_debug("%d stripes handled\n", handled);
4287
4288         spin_unlock_irq(&conf->device_lock);
4289
4290         async_tx_issue_pending_all();
4291         blk_finish_plug(&plug);
4292
4293         pr_debug("--- raid5d inactive\n");
4294 }
4295
4296 static ssize_t
4297 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4298 {
4299         struct r5conf *conf = mddev->private;
4300         if (conf)
4301                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4302         else
4303                 return 0;
4304 }
4305
4306 int
4307 raid5_set_cache_size(struct mddev *mddev, int size)
4308 {
4309         struct r5conf *conf = mddev->private;
4310         int err;
4311
4312         if (size <= 16 || size > 32768)
4313                 return -EINVAL;
4314         while (size < conf->max_nr_stripes) {
4315                 if (drop_one_stripe(conf))
4316                         conf->max_nr_stripes--;
4317                 else
4318                         break;
4319         }
4320         err = md_allow_write(mddev);
4321         if (err)
4322                 return err;
4323         while (size > conf->max_nr_stripes) {
4324                 if (grow_one_stripe(conf))
4325                         conf->max_nr_stripes++;
4326                 else break;
4327         }
4328         return 0;
4329 }
4330 EXPORT_SYMBOL(raid5_set_cache_size);
4331
4332 static ssize_t
4333 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4334 {
4335         struct r5conf *conf = mddev->private;
4336         unsigned long new;
4337         int err;
4338
4339         if (len >= PAGE_SIZE)
4340                 return -EINVAL;
4341         if (!conf)
4342                 return -ENODEV;
4343
4344         if (strict_strtoul(page, 10, &new))
4345                 return -EINVAL;
4346         err = raid5_set_cache_size(mddev, new);
4347         if (err)
4348                 return err;
4349         return len;
4350 }
4351
4352 static struct md_sysfs_entry
4353 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4354                                 raid5_show_stripe_cache_size,
4355                                 raid5_store_stripe_cache_size);
4356
4357 static ssize_t
4358 raid5_show_preread_threshold(struct mddev *mddev, char *page)
4359 {
4360         struct r5conf *conf = mddev->private;
4361         if (conf)
4362                 return sprintf(page, "%d\n", conf->bypass_threshold);
4363         else
4364                 return 0;
4365 }
4366
4367 static ssize_t
4368 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4369 {
4370         struct r5conf *conf = mddev->private;
4371         unsigned long new;
4372         if (len >= PAGE_SIZE)
4373                 return -EINVAL;
4374         if (!conf)
4375                 return -ENODEV;
4376
4377         if (strict_strtoul(page, 10, &new))
4378                 return -EINVAL;
4379         if (new > conf->max_nr_stripes)
4380                 return -EINVAL;
4381         conf->bypass_threshold = new;
4382         return len;
4383 }
4384
4385 static struct md_sysfs_entry
4386 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4387                                         S_IRUGO | S_IWUSR,
4388                                         raid5_show_preread_threshold,
4389                                         raid5_store_preread_threshold);
4390
4391 static ssize_t
4392 stripe_cache_active_show(struct mddev *mddev, char *page)
4393 {
4394         struct r5conf *conf = mddev->private;
4395         if (conf)
4396                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4397         else
4398                 return 0;
4399 }
4400
4401 static struct md_sysfs_entry
4402 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4403
4404 static struct attribute *raid5_attrs[] =  {
4405         &raid5_stripecache_size.attr,
4406         &raid5_stripecache_active.attr,
4407         &raid5_preread_bypass_threshold.attr,
4408         NULL,
4409 };
4410 static struct attribute_group raid5_attrs_group = {
4411         .name = NULL,
4412         .attrs = raid5_attrs,
4413 };
4414
4415 static sector_t
4416 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
4417 {
4418         struct r5conf *conf = mddev->private;
4419
4420         if (!sectors)
4421                 sectors = mddev->dev_sectors;
4422         if (!raid_disks)
4423                 /* size is defined by the smallest of previous and new size */
4424                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4425
4426         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4427         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4428         return sectors * (raid_disks - conf->max_degraded);
4429 }
4430
4431 static void raid5_free_percpu(struct r5conf *conf)
4432 {
4433         struct raid5_percpu *percpu;
4434         unsigned long cpu;
4435
4436         if (!conf->percpu)
4437                 return;
4438
4439         get_online_cpus();
4440         for_each_possible_cpu(cpu) {
4441                 percpu = per_cpu_ptr(conf->percpu, cpu);
4442                 safe_put_page(percpu->spare_page);
4443                 kfree(percpu->scribble);
4444         }
4445 #ifdef CONFIG_HOTPLUG_CPU
4446         unregister_cpu_notifier(&conf->cpu_notify);
4447 #endif
4448         put_online_cpus();
4449
4450         free_percpu(conf->percpu);
4451 }
4452
4453 static void free_conf(struct r5conf *conf)
4454 {
4455         shrink_stripes(conf);
4456         raid5_free_percpu(conf);
4457         kfree(conf->disks);
4458         kfree(conf->stripe_hashtbl);
4459         kfree(conf);
4460 }
4461
4462 #ifdef CONFIG_HOTPLUG_CPU
4463 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4464                               void *hcpu)
4465 {
4466         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
4467         long cpu = (long)hcpu;
4468         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4469
4470         switch (action) {
4471         case CPU_UP_PREPARE:
4472         case CPU_UP_PREPARE_FROZEN:
4473                 if (conf->level == 6 && !percpu->spare_page)
4474                         percpu->spare_page = alloc_page(GFP_KERNEL);
4475                 if (!percpu->scribble)
4476                         percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4477
4478                 if (!percpu->scribble ||
4479                     (conf->level == 6 && !percpu->spare_page)) {
4480                         safe_put_page(percpu->spare_page);
4481                         kfree(percpu->scribble);
4482                         pr_err("%s: failed memory allocation for cpu%ld\n",
4483                                __func__, cpu);
4484                         return notifier_from_errno(-ENOMEM);
4485                 }
4486                 break;
4487         case CPU_DEAD:
4488         case CPU_DEAD_FROZEN:
4489                 safe_put_page(percpu->spare_page);
4490                 kfree(percpu->scribble);
4491                 percpu->spare_page = NULL;
4492                 percpu->scribble = NULL;
4493                 break;
4494         default:
4495                 break;
4496         }
4497         return NOTIFY_OK;
4498 }
4499 #endif
4500
4501 static int raid5_alloc_percpu(struct r5conf *conf)
4502 {
4503         unsigned long cpu;
4504         struct page *spare_page;
4505         struct raid5_percpu __percpu *allcpus;
4506         void *scribble;
4507         int err;
4508
4509         allcpus = alloc_percpu(struct raid5_percpu);
4510         if (!allcpus)
4511                 return -ENOMEM;
4512         conf->percpu = allcpus;
4513
4514         get_online_cpus();
4515         err = 0;
4516         for_each_present_cpu(cpu) {
4517                 if (conf->level == 6) {
4518                         spare_page = alloc_page(GFP_KERNEL);
4519                         if (!spare_page) {
4520                                 err = -ENOMEM;
4521                                 break;
4522                         }
4523                         per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4524                 }
4525                 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4526                 if (!scribble) {
4527                         err = -ENOMEM;
4528                         break;
4529                 }
4530                 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4531         }
4532 #ifdef CONFIG_HOTPLUG_CPU
4533         conf->cpu_notify.notifier_call = raid456_cpu_notify;
4534         conf->cpu_notify.priority = 0;
4535         if (err == 0)
4536                 err = register_cpu_notifier(&conf->cpu_notify);
4537 #endif
4538         put_online_cpus();
4539
4540         return err;
4541 }
4542
4543 static struct r5conf *setup_conf(struct mddev *mddev)
4544 {
4545         struct r5conf *conf;
4546         int raid_disk, memory, max_disks;
4547         struct md_rdev *rdev;
4548         struct disk_info *disk;
4549
4550         if (mddev->new_level != 5
4551             && mddev->new_level != 4
4552             && mddev->new_level != 6) {
4553                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4554                        mdname(mddev), mddev->new_level);
4555                 return ERR_PTR(-EIO);
4556         }
4557         if ((mddev->new_level == 5
4558              && !algorithm_valid_raid5(mddev->new_layout)) ||
4559             (mddev->new_level == 6
4560              && !algorithm_valid_raid6(mddev->new_layout))) {
4561                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4562                        mdname(mddev), mddev->new_layout);
4563                 return ERR_PTR(-EIO);
4564         }
4565         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4566                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4567                        mdname(mddev), mddev->raid_disks);
4568                 return ERR_PTR(-EINVAL);
4569         }
4570
4571         if (!mddev->new_chunk_sectors ||
4572             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4573             !is_power_of_2(mddev->new_chunk_sectors)) {
4574                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4575                        mdname(mddev), mddev->new_chunk_sectors << 9);
4576                 return ERR_PTR(-EINVAL);
4577         }
4578
4579         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
4580         if (conf == NULL)
4581                 goto abort;
4582         spin_lock_init(&conf->device_lock);
4583         init_waitqueue_head(&conf->wait_for_stripe);
4584         init_waitqueue_head(&conf->wait_for_overlap);
4585         INIT_LIST_HEAD(&conf->handle_list);
4586         INIT_LIST_HEAD(&conf->hold_list);
4587         INIT_LIST_HEAD(&conf->delayed_list);
4588         INIT_LIST_HEAD(&conf->bitmap_list);
4589         INIT_LIST_HEAD(&conf->inactive_list);
4590         atomic_set(&conf->active_stripes, 0);
4591         atomic_set(&conf->preread_active_stripes, 0);
4592         atomic_set(&conf->active_aligned_reads, 0);
4593         conf->bypass_threshold = BYPASS_THRESHOLD;
4594         conf->recovery_disabled = mddev->recovery_disabled - 1;
4595
4596         conf->raid_disks = mddev->raid_disks;
4597         if (mddev->reshape_position == MaxSector)
4598                 conf->previous_raid_disks = mddev->raid_disks;
4599         else
4600                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4601         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4602         conf->scribble_len = scribble_len(max_disks);
4603
4604         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4605                               GFP_KERNEL);
4606         if (!conf->disks)
4607                 goto abort;
4608
4609         conf->mddev = mddev;
4610
4611         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4612                 goto abort;
4613
4614         conf->level = mddev->new_level;
4615         if (raid5_alloc_percpu(conf) != 0)
4616                 goto abort;
4617
4618         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4619
4620         list_for_each_entry(rdev, &mddev->disks, same_set) {
4621                 raid_disk = rdev->raid_disk;
4622                 if (raid_disk >= max_disks
4623                     || raid_disk < 0)
4624                         continue;
4625                 disk = conf->disks + raid_disk;
4626
4627                 disk->rdev = rdev;
4628
4629                 if (test_bit(In_sync, &rdev->flags)) {
4630                         char b[BDEVNAME_SIZE];
4631                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4632                                " disk %d\n",
4633                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4634                 } else if (rdev->saved_raid_disk != raid_disk)
4635                         /* Cannot rely on bitmap to complete recovery */
4636                         conf->fullsync = 1;
4637         }
4638
4639         conf->chunk_sectors = mddev->new_chunk_sectors;
4640         conf->level = mddev->new_level;
4641         if (conf->level == 6)
4642                 conf->max_degraded = 2;
4643         else
4644                 conf->max_degraded = 1;
4645         conf->algorithm = mddev->new_layout;
4646         conf->max_nr_stripes = NR_STRIPES;
4647         conf->reshape_progress = mddev->reshape_position;
4648         if (conf->reshape_progress != MaxSector) {
4649                 conf->prev_chunk_sectors = mddev->chunk_sectors;
4650                 conf->prev_algo = mddev->layout;
4651         }
4652
4653         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4654                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4655         if (grow_stripes(conf, conf->max_nr_stripes)) {
4656                 printk(KERN_ERR
4657                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
4658                        mdname(mddev), memory);
4659                 goto abort;
4660         } else
4661                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4662                        mdname(mddev), memory);
4663
4664         conf->thread = md_register_thread(raid5d, mddev, NULL);
4665         if (!conf->thread) {
4666                 printk(KERN_ERR
4667                        "md/raid:%s: couldn't allocate thread.\n",
4668                        mdname(mddev));
4669                 goto abort;
4670         }
4671
4672         return conf;
4673
4674  abort:
4675         if (conf) {
4676                 free_conf(conf);
4677                 return ERR_PTR(-EIO);
4678         } else
4679                 return ERR_PTR(-ENOMEM);
4680 }
4681
4682
4683 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4684 {
4685         switch (algo) {
4686         case ALGORITHM_PARITY_0:
4687                 if (raid_disk < max_degraded)
4688                         return 1;
4689                 break;
4690         case ALGORITHM_PARITY_N:
4691                 if (raid_disk >= raid_disks - max_degraded)
4692                         return 1;
4693                 break;
4694         case ALGORITHM_PARITY_0_6:
4695                 if (raid_disk == 0 || 
4696                     raid_disk == raid_disks - 1)
4697                         return 1;
4698                 break;
4699         case ALGORITHM_LEFT_ASYMMETRIC_6:
4700         case ALGORITHM_RIGHT_ASYMMETRIC_6:
4701         case ALGORITHM_LEFT_SYMMETRIC_6:
4702         case ALGORITHM_RIGHT_SYMMETRIC_6:
4703                 if (raid_disk == raid_disks - 1)
4704                         return 1;
4705         }
4706         return 0;
4707 }
4708
4709 static int run(struct mddev *mddev)
4710 {
4711         struct r5conf *conf;
4712         int working_disks = 0;
4713         int dirty_parity_disks = 0;
4714         struct md_rdev *rdev;
4715         sector_t reshape_offset = 0;
4716
4717         if (mddev->recovery_cp != MaxSector)
4718                 printk(KERN_NOTICE "md/raid:%s: not clean"
4719                        " -- starting background reconstruction\n",
4720                        mdname(mddev));
4721         if (mddev->reshape_position != MaxSector) {
4722                 /* Check that we can continue the reshape.
4723                  * Currently only disks can change, it must
4724                  * increase, and we must be past the point where
4725                  * a stripe over-writes itself
4726                  */
4727                 sector_t here_new, here_old;
4728                 int old_disks;
4729                 int max_degraded = (mddev->level == 6 ? 2 : 1);
4730
4731                 if (mddev->new_level != mddev->level) {
4732                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
4733                                "required - aborting.\n",
4734                                mdname(mddev));
4735                         return -EINVAL;
4736                 }
4737                 old_disks = mddev->raid_disks - mddev->delta_disks;
4738                 /* reshape_position must be on a new-stripe boundary, and one
4739                  * further up in new geometry must map after here in old
4740                  * geometry.
4741                  */
4742                 here_new = mddev->reshape_position;
4743                 if (sector_div(here_new, mddev->new_chunk_sectors *
4744                                (mddev->raid_disks - max_degraded))) {
4745                         printk(KERN_ERR "md/raid:%s: reshape_position not "
4746                                "on a stripe boundary\n", mdname(mddev));
4747                         return -EINVAL;
4748                 }
4749                 reshape_offset = here_new * mddev->new_chunk_sectors;
4750                 /* here_new is the stripe we will write to */
4751                 here_old = mddev->reshape_position;
4752                 sector_div(here_old, mddev->chunk_sectors *
4753                            (old_disks-max_degraded));
4754                 /* here_old is the first stripe that we might need to read
4755                  * from */
4756                 if (mddev->delta_disks == 0) {
4757                         /* We cannot be sure it is safe to start an in-place
4758                          * reshape.  It is only safe if user-space if monitoring
4759                          * and taking constant backups.
4760                          * mdadm always starts a situation like this in
4761                          * readonly mode so it can take control before
4762                          * allowing any writes.  So just check for that.
4763                          */
4764                         if ((here_new * mddev->new_chunk_sectors != 
4765                              here_old * mddev->chunk_sectors) ||
4766                             mddev->ro == 0) {
4767                                 printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
4768                                        " in read-only mode - aborting\n",
4769                                        mdname(mddev));
4770                                 return -EINVAL;
4771                         }
4772                 } else if (mddev->delta_disks < 0
4773                     ? (here_new * mddev->new_chunk_sectors <=
4774                        here_old * mddev->chunk_sectors)
4775                     : (here_new * mddev->new_chunk_sectors >=
4776                        here_old * mddev->chunk_sectors)) {
4777                         /* Reading from the same stripe as writing to - bad */
4778                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
4779                                "auto-recovery - aborting.\n",
4780                                mdname(mddev));
4781                         return -EINVAL;
4782                 }
4783                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
4784                        mdname(mddev));
4785                 /* OK, we should be able to continue; */
4786         } else {
4787                 BUG_ON(mddev->level != mddev->new_level);
4788                 BUG_ON(mddev->layout != mddev->new_layout);
4789                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
4790                 BUG_ON(mddev->delta_disks != 0);
4791         }
4792
4793         if (mddev->private == NULL)
4794                 conf = setup_conf(mddev);
4795         else
4796                 conf = mddev->private;
4797
4798         if (IS_ERR(conf))
4799                 return PTR_ERR(conf);
4800
4801         mddev->thread = conf->thread;
4802         conf->thread = NULL;
4803         mddev->private = conf;
4804
4805         /*
4806          * 0 for a fully functional array, 1 or 2 for a degraded array.
4807          */
4808         list_for_each_entry(rdev, &mddev->disks, same_set) {
4809                 if (rdev->raid_disk < 0)
4810                         continue;
4811                 if (test_bit(In_sync, &rdev->flags)) {
4812                         working_disks++;
4813                         continue;
4814                 }
4815                 /* This disc is not fully in-sync.  However if it
4816                  * just stored parity (beyond the recovery_offset),
4817                  * when we don't need to be concerned about the
4818                  * array being dirty.
4819                  * When reshape goes 'backwards', we never have
4820                  * partially completed devices, so we only need
4821                  * to worry about reshape going forwards.
4822                  */
4823                 /* Hack because v0.91 doesn't store recovery_offset properly. */
4824                 if (mddev->major_version == 0 &&
4825                     mddev->minor_version > 90)
4826                         rdev->recovery_offset = reshape_offset;
4827                         
4828                 if (rdev->recovery_offset < reshape_offset) {
4829                         /* We need to check old and new layout */
4830                         if (!only_parity(rdev->raid_disk,
4831                                          conf->algorithm,
4832                                          conf->raid_disks,
4833                                          conf->max_degraded))
4834                                 continue;
4835                 }
4836                 if (!only_parity(rdev->raid_disk,
4837                                  conf->prev_algo,
4838                                  conf->previous_raid_disks,
4839                                  conf->max_degraded))
4840                         continue;
4841                 dirty_parity_disks++;
4842         }
4843
4844         mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
4845                            - working_disks);
4846
4847         if (has_failed(conf)) {
4848                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
4849                         " (%d/%d failed)\n",
4850                         mdname(mddev), mddev->degraded, conf->raid_disks);
4851                 goto abort;
4852         }
4853
4854         /* device size must be a multiple of chunk size */
4855         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
4856         mddev->resync_max_sectors = mddev->dev_sectors;
4857
4858         if (mddev->degraded > dirty_parity_disks &&
4859             mddev->recovery_cp != MaxSector) {
4860                 if (mddev->ok_start_degraded)
4861                         printk(KERN_WARNING
4862                                "md/raid:%s: starting dirty degraded array"
4863                                " - data corruption possible.\n",
4864                                mdname(mddev));
4865                 else {
4866                         printk(KERN_ERR
4867                                "md/raid:%s: cannot start dirty degraded array.\n",
4868                                mdname(mddev));
4869                         goto abort;
4870                 }
4871         }
4872
4873         if (mddev->degraded == 0)
4874                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
4875                        " devices, algorithm %d\n", mdname(mddev), conf->level,
4876                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4877                        mddev->new_layout);
4878         else
4879                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
4880                        " out of %d devices, algorithm %d\n",
4881                        mdname(mddev), conf->level,
4882                        mddev->raid_disks - mddev->degraded,
4883                        mddev->raid_disks, mddev->new_layout);
4884
4885         print_raid5_conf(conf);
4886
4887         if (conf->reshape_progress != MaxSector) {
4888                 conf->reshape_safe = conf->reshape_progress;
4889                 atomic_set(&conf->reshape_stripes, 0);
4890                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4891                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4892                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4893                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4894                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4895                                                         "reshape");
4896         }
4897
4898
4899         /* Ok, everything is just fine now */
4900         if (mddev->to_remove == &raid5_attrs_group)
4901                 mddev->to_remove = NULL;
4902         else if (mddev->kobj.sd &&
4903             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4904                 printk(KERN_WARNING
4905                        "raid5: failed to create sysfs attributes for %s\n",
4906                        mdname(mddev));
4907         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4908
4909         if (mddev->queue) {
4910                 int chunk_size;
4911                 /* read-ahead size must cover two whole stripes, which
4912                  * is 2 * (datadisks) * chunksize where 'n' is the
4913                  * number of raid devices
4914                  */
4915                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4916                 int stripe = data_disks *
4917                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
4918                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4919                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4920
4921                 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4922
4923                 mddev->queue->backing_dev_info.congested_data = mddev;
4924                 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4925
4926                 chunk_size = mddev->chunk_sectors << 9;
4927                 blk_queue_io_min(mddev->queue, chunk_size);
4928                 blk_queue_io_opt(mddev->queue, chunk_size *
4929                                  (conf->raid_disks - conf->max_degraded));
4930
4931                 list_for_each_entry(rdev, &mddev->disks, same_set)
4932                         disk_stack_limits(mddev->gendisk, rdev->bdev,
4933                                           rdev->data_offset << 9);
4934         }
4935
4936         return 0;
4937 abort:
4938         md_unregister_thread(&mddev->thread);
4939         print_raid5_conf(conf);
4940         free_conf(conf);
4941         mddev->private = NULL;
4942         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
4943         return -EIO;
4944 }
4945
4946 static int stop(struct mddev *mddev)
4947 {
4948         struct r5conf *conf = mddev->private;
4949
4950         md_unregister_thread(&mddev->thread);
4951         if (mddev->queue)
4952                 mddev->queue->backing_dev_info.congested_fn = NULL;
4953         free_conf(conf);
4954         mddev->private = NULL;
4955         mddev->to_remove = &raid5_attrs_group;
4956         return 0;
4957 }
4958
4959 static void status(struct seq_file *seq, struct mddev *mddev)
4960 {
4961         struct r5conf *conf = mddev->private;
4962         int i;
4963
4964         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
4965                 mddev->chunk_sectors / 2, mddev->layout);
4966         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4967         for (i = 0; i < conf->raid_disks; i++)
4968                 seq_printf (seq, "%s",
4969                                conf->disks[i].rdev &&
4970                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4971         seq_printf (seq, "]");
4972 }
4973
4974 static void print_raid5_conf (struct r5conf *conf)
4975 {
4976         int i;
4977         struct disk_info *tmp;
4978
4979         printk(KERN_DEBUG "RAID conf printout:\n");
4980         if (!conf) {
4981                 printk("(conf==NULL)\n");
4982                 return;
4983         }
4984         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
4985                conf->raid_disks,
4986                conf->raid_disks - conf->mddev->degraded);
4987
4988         for (i = 0; i < conf->raid_disks; i++) {
4989                 char b[BDEVNAME_SIZE];
4990                 tmp = conf->disks + i;
4991                 if (tmp->rdev)
4992                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
4993                                i, !test_bit(Faulty, &tmp->rdev->flags),
4994                                bdevname(tmp->rdev->bdev, b));
4995         }
4996 }
4997
4998 static int raid5_spare_active(struct mddev *mddev)
4999 {
5000         int i;
5001         struct r5conf *conf = mddev->private;
5002         struct disk_info *tmp;
5003         int count = 0;
5004         unsigned long flags;
5005
5006         for (i = 0; i < conf->raid_disks; i++) {
5007                 tmp = conf->disks + i;
5008                 if (tmp->rdev
5009                     && tmp->rdev->recovery_offset == MaxSector
5010                     && !test_bit(Faulty, &tmp->rdev->flags)
5011                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5012                         count++;
5013                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5014                 }
5015         }
5016         spin_lock_irqsave(&conf->device_lock, flags);
5017         mddev->degraded -= count;
5018         spin_unlock_irqrestore(&conf->device_lock, flags);
5019         print_raid5_conf(conf);
5020         return count;
5021 }
5022
5023 static int raid5_remove_disk(struct mddev *mddev, int number)
5024 {
5025         struct r5conf *conf = mddev->private;
5026         int err = 0;
5027         struct md_rdev *rdev;
5028         struct disk_info *p = conf->disks + number;
5029
5030         print_raid5_conf(conf);
5031         rdev = p->rdev;
5032         if (rdev) {
5033                 if (number >= conf->raid_disks &&
5034                     conf->reshape_progress == MaxSector)
5035                         clear_bit(In_sync, &rdev->flags);
5036
5037                 if (test_bit(In_sync, &rdev->flags) ||
5038                     atomic_read(&rdev->nr_pending)) {
5039                         err = -EBUSY;
5040                         goto abort;
5041                 }
5042                 /* Only remove non-faulty devices if recovery
5043                  * isn't possible.
5044                  */
5045                 if (!test_bit(Faulty, &rdev->flags) &&
5046                     mddev->recovery_disabled != conf->recovery_disabled &&
5047                     !has_failed(conf) &&
5048                     number < conf->raid_disks) {
5049                         err = -EBUSY;
5050                         goto abort;
5051                 }
5052                 p->rdev = NULL;
5053                 synchronize_rcu();
5054                 if (atomic_read(&rdev->nr_pending)) {
5055                         /* lost the race, try later */
5056                         err = -EBUSY;
5057                         p->rdev = rdev;
5058                 }
5059         }
5060 abort:
5061
5062         print_raid5_conf(conf);
5063         return err;
5064 }
5065
5066 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
5067 {
5068         struct r5conf *conf = mddev->private;
5069         int err = -EEXIST;
5070         int disk;
5071         struct disk_info *p;
5072         int first = 0;
5073         int last = conf->raid_disks - 1;
5074
5075         if (mddev->recovery_disabled == conf->recovery_disabled)
5076                 return -EBUSY;
5077
5078         if (has_failed(conf))
5079                 /* no point adding a device */
5080                 return -EINVAL;
5081
5082         if (rdev->raid_disk >= 0)
5083                 first = last = rdev->raid_disk;
5084
5085         /*
5086          * find the disk ... but prefer rdev->saved_raid_disk
5087          * if possible.
5088          */
5089         if (rdev->saved_raid_disk >= 0 &&
5090             rdev->saved_raid_disk >= first &&
5091             conf->disks[rdev->saved_raid_disk].rdev == NULL)
5092                 disk = rdev->saved_raid_disk;
5093         else
5094                 disk = first;
5095         for ( ; disk <= last ; disk++)
5096                 if ((p=conf->disks + disk)->rdev == NULL) {
5097                         clear_bit(In_sync, &rdev->flags);
5098                         rdev->raid_disk = disk;
5099                         err = 0;
5100                         if (rdev->saved_raid_disk != disk)
5101                                 conf->fullsync = 1;
5102                         rcu_assign_pointer(p->rdev, rdev);
5103                         break;
5104                 }
5105         print_raid5_conf(conf);
5106         return err;
5107 }
5108
5109 static int raid5_resize(struct mddev *mddev, sector_t sectors)
5110 {
5111         /* no resync is happening, and there is enough space
5112          * on all devices, so we can resize.
5113          * We need to make sure resync covers any new space.
5114          * If the array is shrinking we should possibly wait until
5115          * any io in the removed space completes, but it hardly seems
5116          * worth it.
5117          */
5118         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5119         md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5120                                                mddev->raid_disks));
5121         if (mddev->array_sectors >
5122             raid5_size(mddev, sectors, mddev->raid_disks))
5123                 return -EINVAL;
5124         set_capacity(mddev->gendisk, mddev->array_sectors);
5125         revalidate_disk(mddev->gendisk);
5126         if (sectors > mddev->dev_sectors &&
5127             mddev->recovery_cp > mddev->dev_sectors) {
5128                 mddev->recovery_cp = mddev->dev_sectors;
5129                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5130         }
5131         mddev->dev_sectors = sectors;
5132         mddev->resync_max_sectors = sectors;
5133         return 0;
5134 }
5135
5136 static int check_stripe_cache(struct mddev *mddev)
5137 {
5138         /* Can only proceed if there are plenty of stripe_heads.
5139          * We need a minimum of one full stripe,, and for sensible progress
5140          * it is best to have about 4 times that.
5141          * If we require 4 times, then the default 256 4K stripe_heads will
5142          * allow for chunk sizes up to 256K, which is probably OK.
5143          * If the chunk size is greater, user-space should request more
5144          * stripe_heads first.
5145          */
5146         struct r5conf *conf = mddev->private;
5147         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5148             > conf->max_nr_stripes ||
5149             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5150             > conf->max_nr_stripes) {
5151                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5152                        mdname(mddev),
5153                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5154                         / STRIPE_SIZE)*4);
5155                 return 0;
5156         }
5157         return 1;
5158 }
5159
5160 static int check_reshape(struct mddev *mddev)
5161 {
5162         struct r5conf *conf = mddev->private;
5163
5164         if (mddev->delta_disks == 0 &&
5165             mddev->new_layout == mddev->layout &&
5166             mddev->new_chunk_sectors == mddev->chunk_sectors)
5167                 return 0; /* nothing to do */
5168         if (mddev->bitmap)
5169                 /* Cannot grow a bitmap yet */
5170                 return -EBUSY;
5171         if (has_failed(conf))
5172                 return -EINVAL;
5173         if (mddev->delta_disks < 0) {
5174                 /* We might be able to shrink, but the devices must
5175                  * be made bigger first.
5176                  * For raid6, 4 is the minimum size.
5177                  * Otherwise 2 is the minimum
5178                  */
5179                 int min = 2;
5180                 if (mddev->level == 6)
5181                         min = 4;
5182                 if (mddev->raid_disks + mddev->delta_disks < min)
5183                         return -EINVAL;
5184         }
5185
5186         if (!check_stripe_cache(mddev))
5187                 return -ENOSPC;
5188
5189         return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5190 }
5191
5192 static int raid5_start_reshape(struct mddev *mddev)
5193 {
5194         struct r5conf *conf = mddev->private;
5195         struct md_rdev *rdev;
5196         int spares = 0;
5197         unsigned long flags;
5198
5199         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5200                 return -EBUSY;
5201
5202         if (!check_stripe_cache(mddev))
5203                 return -ENOSPC;
5204
5205         list_for_each_entry(rdev, &mddev->disks, same_set)
5206                 if (!test_bit(In_sync, &rdev->flags)
5207                     && !test_bit(Faulty, &rdev->flags))
5208                         spares++;
5209
5210         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5211                 /* Not enough devices even to make a degraded array
5212                  * of that size
5213                  */
5214                 return -EINVAL;
5215
5216         /* Refuse to reduce size of the array.  Any reductions in
5217          * array size must be through explicit setting of array_size
5218          * attribute.
5219          */
5220         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5221             < mddev->array_sectors) {
5222                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5223                        "before number of disks\n", mdname(mddev));
5224                 return -EINVAL;
5225         }
5226
5227         atomic_set(&conf->reshape_stripes, 0);
5228         spin_lock_irq(&conf->device_lock);
5229         conf->previous_raid_disks = conf->raid_disks;
5230         conf->raid_disks += mddev->delta_disks;
5231         conf->prev_chunk_sectors = conf->chunk_sectors;
5232         conf->chunk_sectors = mddev->new_chunk_sectors;
5233         conf->prev_algo = conf->algorithm;
5234         conf->algorithm = mddev->new_layout;
5235         if (mddev->delta_disks < 0)
5236                 conf->reshape_progress = raid5_size(mddev, 0, 0);
5237         else
5238                 conf->reshape_progress = 0;
5239         conf->reshape_safe = conf->reshape_progress;
5240         conf->generation++;
5241         spin_unlock_irq(&conf->device_lock);
5242
5243         /* Add some new drives, as many as will fit.
5244          * We know there are enough to make the newly sized array work.
5245          * Don't add devices if we are reducing the number of
5246          * devices in the array.  This is because it is not possible
5247          * to correctly record the "partially reconstructed" state of
5248          * such devices during the reshape and confusion could result.
5249          */
5250         if (mddev->delta_disks >= 0) {
5251                 int added_devices = 0;
5252                 list_for_each_entry(rdev, &mddev->disks, same_set)
5253                         if (rdev->raid_disk < 0 &&
5254                             !test_bit(Faulty, &rdev->flags)) {
5255                                 if (raid5_add_disk(mddev, rdev) == 0) {
5256                                         if (rdev->raid_disk
5257                                             >= conf->previous_raid_disks) {
5258                                                 set_bit(In_sync, &rdev->flags);
5259                                                 added_devices++;
5260                                         } else
5261                                                 rdev->recovery_offset = 0;
5262
5263                                         if (sysfs_link_rdev(mddev, rdev))
5264                                                 /* Failure here is OK */;
5265                                 }
5266                         } else if (rdev->raid_disk >= conf->previous_raid_disks
5267                                    && !test_bit(Faulty, &rdev->flags)) {
5268                                 /* This is a spare that was manually added */
5269                                 set_bit(In_sync, &rdev->flags);
5270                                 added_devices++;
5271                         }
5272
5273                 /* When a reshape changes the number of devices,
5274                  * ->degraded is measured against the larger of the
5275                  * pre and post number of devices.
5276                  */
5277                 spin_lock_irqsave(&conf->device_lock, flags);
5278                 mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5279                         - added_devices;
5280                 spin_unlock_irqrestore(&conf->device_lock, flags);
5281         }
5282         mddev->raid_disks = conf->raid_disks;
5283         mddev->reshape_position = conf->reshape_progress;
5284         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5285
5286         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5287         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5288         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5289         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5290         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5291                                                 "reshape");
5292         if (!mddev->sync_thread) {
5293                 mddev->recovery = 0;
5294                 spin_lock_irq(&conf->device_lock);
5295                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5296                 conf->reshape_progress = MaxSector;
5297                 spin_unlock_irq(&conf->device_lock);
5298                 return -EAGAIN;
5299         }
5300         conf->reshape_checkpoint = jiffies;
5301         md_wakeup_thread(mddev->sync_thread);
5302         md_new_event(mddev);
5303         return 0;
5304 }
5305
5306 /* This is called from the reshape thread and should make any
5307  * changes needed in 'conf'
5308  */
5309 static void end_reshape(struct r5conf *conf)
5310 {
5311
5312         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5313
5314                 spin_lock_irq(&conf->device_lock);
5315                 conf->previous_raid_disks = conf->raid_disks;
5316                 conf->reshape_progress = MaxSector;
5317                 spin_unlock_irq(&conf->device_lock);
5318                 wake_up(&conf->wait_for_overlap);
5319
5320                 /* read-ahead size must cover two whole stripes, which is
5321                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5322                  */
5323                 if (conf->mddev->queue) {
5324                         int data_disks = conf->raid_disks - conf->max_degraded;
5325                         int stripe = data_disks * ((conf->chunk_sectors << 9)
5326                                                    / PAGE_SIZE);
5327                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5328                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5329                 }
5330         }
5331 }
5332
5333 /* This is called from the raid5d thread with mddev_lock held.
5334  * It makes config changes to the device.
5335  */
5336 static void raid5_finish_reshape(struct mddev *mddev)
5337 {
5338         struct r5conf *conf = mddev->private;
5339
5340         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5341
5342                 if (mddev->delta_disks > 0) {
5343                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5344                         set_capacity(mddev->gendisk, mddev->array_sectors);
5345                         revalidate_disk(mddev->gendisk);
5346                 } else {
5347                         int d;
5348                         mddev->degraded = conf->raid_disks;
5349                         for (d = 0; d < conf->raid_disks ; d++)
5350                                 if (conf->disks[d].rdev &&
5351                                     test_bit(In_sync,
5352                                              &conf->disks[d].rdev->flags))
5353                                         mddev->degraded--;
5354                         for (d = conf->raid_disks ;
5355                              d < conf->raid_disks - mddev->delta_disks;
5356                              d++) {
5357                                 struct md_rdev *rdev = conf->disks[d].rdev;
5358                                 if (rdev && raid5_remove_disk(mddev, d) == 0) {
5359                                         sysfs_unlink_rdev(mddev, rdev);
5360                                         rdev->raid_disk = -1;
5361                                 }
5362                         }
5363                 }
5364                 mddev->layout = conf->algorithm;
5365                 mddev->chunk_sectors = conf->chunk_sectors;
5366                 mddev->reshape_position = MaxSector;
5367                 mddev->delta_disks = 0;
5368         }
5369 }
5370
5371 static void raid5_quiesce(struct mddev *mddev, int state)
5372 {
5373         struct r5conf *conf = mddev->private;
5374
5375         switch(state) {
5376         case 2: /* resume for a suspend */
5377                 wake_up(&conf->wait_for_overlap);
5378                 break;
5379
5380         case 1: /* stop all writes */
5381                 spin_lock_irq(&conf->device_lock);
5382                 /* '2' tells resync/reshape to pause so that all
5383                  * active stripes can drain
5384                  */
5385                 conf->quiesce = 2;
5386                 wait_event_lock_irq(conf->wait_for_stripe,
5387                                     atomic_read(&conf->active_stripes) == 0 &&
5388                                     atomic_read(&conf->active_aligned_reads) == 0,
5389                                     conf->device_lock, /* nothing */);
5390                 conf->quiesce = 1;
5391                 spin_unlock_irq(&conf->device_lock);
5392                 /* allow reshape to continue */
5393                 wake_up(&conf->wait_for_overlap);
5394                 break;
5395
5396         case 0: /* re-enable writes */
5397                 spin_lock_irq(&conf->device_lock);
5398                 conf->quiesce = 0;
5399                 wake_up(&conf->wait_for_stripe);
5400                 wake_up(&conf->wait_for_overlap);
5401                 spin_unlock_irq(&conf->device_lock);
5402                 break;
5403         }
5404 }
5405
5406
5407 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
5408 {
5409         struct r0conf *raid0_conf = mddev->private;
5410         sector_t sectors;
5411
5412         /* for raid0 takeover only one zone is supported */
5413         if (raid0_conf->nr_strip_zones > 1) {
5414                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5415                        mdname(mddev));
5416                 return ERR_PTR(-EINVAL);
5417         }
5418
5419         sectors = raid0_conf->strip_zone[0].zone_end;
5420         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
5421         mddev->dev_sectors = sectors;
5422         mddev->new_level = level;
5423         mddev->new_layout = ALGORITHM_PARITY_N;
5424         mddev->new_chunk_sectors = mddev->chunk_sectors;
5425         mddev->raid_disks += 1;
5426         mddev->delta_disks = 1;
5427         /* make sure it will be not marked as dirty */
5428         mddev->recovery_cp = MaxSector;
5429
5430         return setup_conf(mddev);
5431 }
5432
5433
5434 static void *raid5_takeover_raid1(struct mddev *mddev)
5435 {
5436         int chunksect;
5437
5438         if (mddev->raid_disks != 2 ||
5439             mddev->degraded > 1)
5440                 return ERR_PTR(-EINVAL);
5441
5442         /* Should check if there are write-behind devices? */
5443
5444         chunksect = 64*2; /* 64K by default */
5445
5446         /* The array must be an exact multiple of chunksize */
5447         while (chunksect && (mddev->array_sectors & (chunksect-1)))
5448                 chunksect >>= 1;
5449
5450         if ((chunksect<<9) < STRIPE_SIZE)
5451                 /* array size does not allow a suitable chunk size */
5452                 return ERR_PTR(-EINVAL);
5453
5454         mddev->new_level = 5;
5455         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5456         mddev->new_chunk_sectors = chunksect;
5457
5458         return setup_conf(mddev);
5459 }
5460
5461 static void *raid5_takeover_raid6(struct mddev *mddev)
5462 {
5463         int new_layout;
5464
5465         switch (mddev->layout) {
5466         case ALGORITHM_LEFT_ASYMMETRIC_6:
5467                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5468                 break;
5469         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5470                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5471                 break;
5472         case ALGORITHM_LEFT_SYMMETRIC_6:
5473                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5474                 break;
5475         case ALGORITHM_RIGHT_SYMMETRIC_6:
5476                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5477                 break;
5478         case ALGORITHM_PARITY_0_6:
5479                 new_layout = ALGORITHM_PARITY_0;
5480                 break;
5481         case ALGORITHM_PARITY_N:
5482                 new_layout = ALGORITHM_PARITY_N;
5483                 break;
5484         default:
5485                 return ERR_PTR(-EINVAL);
5486         }
5487         mddev->new_level = 5;
5488         mddev->new_layout = new_layout;
5489         mddev->delta_disks = -1;
5490         mddev->raid_disks -= 1;
5491         return setup_conf(mddev);
5492 }
5493
5494
5495 static int raid5_check_reshape(struct mddev *mddev)
5496 {
5497         /* For a 2-drive array, the layout and chunk size can be changed
5498          * immediately as not restriping is needed.
5499          * For larger arrays we record the new value - after validation
5500          * to be used by a reshape pass.
5501          */
5502         struct r5conf *conf = mddev->private;
5503         int new_chunk = mddev->new_chunk_sectors;
5504
5505         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5506                 return -EINVAL;
5507         if (new_chunk > 0) {
5508                 if (!is_power_of_2(new_chunk))
5509                         return -EINVAL;
5510                 if (new_chunk < (PAGE_SIZE>>9))
5511                         return -EINVAL;
5512                 if (mddev->array_sectors & (new_chunk-1))
5513                         /* not factor of array size */
5514                         return -EINVAL;
5515         }
5516
5517         /* They look valid */
5518
5519         if (mddev->raid_disks == 2) {
5520                 /* can make the change immediately */
5521                 if (mddev->new_layout >= 0) {
5522                         conf->algorithm = mddev->new_layout;
5523                         mddev->layout = mddev->new_layout;
5524                 }
5525                 if (new_chunk > 0) {
5526                         conf->chunk_sectors = new_chunk ;
5527                         mddev->chunk_sectors = new_chunk;
5528                 }
5529                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5530                 md_wakeup_thread(mddev->thread);
5531         }
5532         return check_reshape(mddev);
5533 }
5534
5535 static int raid6_check_reshape(struct mddev *mddev)
5536 {
5537         int new_chunk = mddev->new_chunk_sectors;
5538
5539         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5540                 return -EINVAL;
5541         if (new_chunk > 0) {
5542                 if (!is_power_of_2(new_chunk))
5543                         return -EINVAL;
5544                 if (new_chunk < (PAGE_SIZE >> 9))
5545                         return -EINVAL;
5546                 if (mddev->array_sectors & (new_chunk-1))
5547                         /* not factor of array size */
5548                         return -EINVAL;
5549         }
5550
5551         /* They look valid */
5552         return check_reshape(mddev);
5553 }
5554
5555 static void *raid5_takeover(struct mddev *mddev)
5556 {
5557         /* raid5 can take over:
5558          *  raid0 - if there is only one strip zone - make it a raid4 layout
5559          *  raid1 - if there are two drives.  We need to know the chunk size
5560          *  raid4 - trivial - just use a raid4 layout.
5561          *  raid6 - Providing it is a *_6 layout
5562          */
5563         if (mddev->level == 0)
5564                 return raid45_takeover_raid0(mddev, 5);
5565         if (mddev->level == 1)
5566                 return raid5_takeover_raid1(mddev);
5567         if (mddev->level == 4) {
5568                 mddev->new_layout = ALGORITHM_PARITY_N;
5569                 mddev->new_level = 5;
5570                 return setup_conf(mddev);
5571         }
5572         if (mddev->level == 6)
5573                 return raid5_takeover_raid6(mddev);
5574
5575         return ERR_PTR(-EINVAL);
5576 }
5577
5578 static void *raid4_takeover(struct mddev *mddev)
5579 {
5580         /* raid4 can take over:
5581          *  raid0 - if there is only one strip zone
5582          *  raid5 - if layout is right
5583          */
5584         if (mddev->level == 0)
5585                 return raid45_takeover_raid0(mddev, 4);
5586         if (mddev->level == 5 &&
5587             mddev->layout == ALGORITHM_PARITY_N) {
5588                 mddev->new_layout = 0;
5589                 mddev->new_level = 4;
5590                 return setup_conf(mddev);
5591         }
5592         return ERR_PTR(-EINVAL);
5593 }
5594
5595 static struct md_personality raid5_personality;
5596
5597 static void *raid6_takeover(struct mddev *mddev)
5598 {
5599         /* Currently can only take over a raid5.  We map the
5600          * personality to an equivalent raid6 personality
5601          * with the Q block at the end.
5602          */
5603         int new_layout;
5604
5605         if (mddev->pers != &raid5_personality)
5606                 return ERR_PTR(-EINVAL);
5607         if (mddev->degraded > 1)
5608                 return ERR_PTR(-EINVAL);
5609         if (mddev->raid_disks > 253)
5610                 return ERR_PTR(-EINVAL);
5611         if (mddev->raid_disks < 3)
5612                 return ERR_PTR(-EINVAL);
5613
5614         switch (mddev->layout) {
5615         case ALGORITHM_LEFT_ASYMMETRIC:
5616                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5617                 break;
5618         case ALGORITHM_RIGHT_ASYMMETRIC:
5619                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5620                 break;
5621         case ALGORITHM_LEFT_SYMMETRIC:
5622                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5623                 break;
5624         case ALGORITHM_RIGHT_SYMMETRIC:
5625                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5626                 break;
5627         case ALGORITHM_PARITY_0:
5628                 new_layout = ALGORITHM_PARITY_0_6;
5629                 break;
5630         case ALGORITHM_PARITY_N:
5631                 new_layout = ALGORITHM_PARITY_N;
5632                 break;
5633         default:
5634                 return ERR_PTR(-EINVAL);
5635         }
5636         mddev->new_level = 6;
5637         mddev->new_layout = new_layout;
5638         mddev->delta_disks = 1;
5639         mddev->raid_disks += 1;
5640         return setup_conf(mddev);
5641 }
5642
5643
5644 static struct md_personality raid6_personality =
5645 {
5646         .name           = "raid6",
5647         .level          = 6,
5648         .owner          = THIS_MODULE,
5649         .make_request   = make_request,
5650         .run            = run,
5651         .stop           = stop,
5652         .status         = status,
5653         .error_handler  = error,
5654         .hot_add_disk   = raid5_add_disk,
5655         .hot_remove_disk= raid5_remove_disk,
5656         .spare_active   = raid5_spare_active,
5657         .sync_request   = sync_request,
5658         .resize         = raid5_resize,
5659         .size           = raid5_size,
5660         .check_reshape  = raid6_check_reshape,
5661         .start_reshape  = raid5_start_reshape,
5662         .finish_reshape = raid5_finish_reshape,
5663         .quiesce        = raid5_quiesce,
5664         .takeover       = raid6_takeover,
5665 };
5666 static struct md_personality raid5_personality =
5667 {
5668         .name           = "raid5",
5669         .level          = 5,
5670         .owner          = THIS_MODULE,
5671         .make_request   = make_request,
5672         .run            = run,
5673         .stop           = stop,
5674         .status         = status,
5675         .error_handler  = error,
5676         .hot_add_disk   = raid5_add_disk,
5677         .hot_remove_disk= raid5_remove_disk,
5678         .spare_active   = raid5_spare_active,
5679         .sync_request   = sync_request,
5680         .resize         = raid5_resize,
5681         .size           = raid5_size,
5682         .check_reshape  = raid5_check_reshape,
5683         .start_reshape  = raid5_start_reshape,
5684         .finish_reshape = raid5_finish_reshape,
5685         .quiesce        = raid5_quiesce,
5686         .takeover       = raid5_takeover,
5687 };
5688
5689 static struct md_personality raid4_personality =
5690 {
5691         .name           = "raid4",
5692         .level          = 4,
5693         .owner          = THIS_MODULE,
5694         .make_request   = make_request,
5695         .run            = run,
5696         .stop           = stop,
5697         .status         = status,
5698         .error_handler  = error,
5699         .hot_add_disk   = raid5_add_disk,
5700         .hot_remove_disk= raid5_remove_disk,
5701         .spare_active   = raid5_spare_active,
5702         .sync_request   = sync_request,
5703         .resize         = raid5_resize,
5704         .size           = raid5_size,
5705         .check_reshape  = raid5_check_reshape,
5706         .start_reshape  = raid5_start_reshape,
5707         .finish_reshape = raid5_finish_reshape,
5708         .quiesce        = raid5_quiesce,
5709         .takeover       = raid4_takeover,
5710 };
5711
5712 static int __init raid5_init(void)
5713 {
5714         register_md_personality(&raid6_personality);
5715         register_md_personality(&raid5_personality);
5716         register_md_personality(&raid4_personality);
5717         return 0;
5718 }
5719
5720 static void raid5_exit(void)
5721 {
5722         unregister_md_personality(&raid6_personality);
5723         unregister_md_personality(&raid5_personality);
5724         unregister_md_personality(&raid4_personality);
5725 }
5726
5727 module_init(raid5_init);
5728 module_exit(raid5_exit);
5729 MODULE_LICENSE("GPL");
5730 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
5731 MODULE_ALIAS("md-personality-4"); /* RAID5 */
5732 MODULE_ALIAS("md-raid5");
5733 MODULE_ALIAS("md-raid4");
5734 MODULE_ALIAS("md-level-5");
5735 MODULE_ALIAS("md-level-4");
5736 MODULE_ALIAS("md-personality-8"); /* RAID6 */
5737 MODULE_ALIAS("md-raid6");
5738 MODULE_ALIAS("md-level-6");
5739
5740 /* This used to be two separate modules, they were: */
5741 MODULE_ALIAS("raid5");
5742 MODULE_ALIAS("raid6");