Merge branch 'for-rmk' of git://git.pengutronix.de/git/imx/linux-2.6 into fixes
[pandora-kernel.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->bm_write is the number of the last batch successfully written.
31  * conf->bm_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is bm_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "raid5.h"
56 #include "raid0.h"
57 #include "bitmap.h"
58
59 /*
60  * Stripe cache
61  */
62
63 #define NR_STRIPES              256
64 #define STRIPE_SIZE             PAGE_SIZE
65 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
66 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
67 #define IO_THRESHOLD            1
68 #define BYPASS_THRESHOLD        1
69 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
70 #define HASH_MASK               (NR_HASH - 1)
71
72 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
73
74 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
75  * order without overlap.  There may be several bio's per stripe+device, and
76  * a bio could span several devices.
77  * When walking this list for a particular stripe+device, we must never proceed
78  * beyond a bio that extends past this device, as the next bio might no longer
79  * be valid.
80  * This macro is used to determine the 'next' bio in the list, given the sector
81  * of the current stripe+device
82  */
83 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
84 /*
85  * The following can be used to debug the driver
86  */
87 #define RAID5_PARANOIA  1
88 #if RAID5_PARANOIA && defined(CONFIG_SMP)
89 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
90 #else
91 # define CHECK_DEVLOCK()
92 #endif
93
94 #ifdef DEBUG
95 #define inline
96 #define __inline__
97 #endif
98
99 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
100
101 /*
102  * We maintain a biased count of active stripes in the bottom 16 bits of
103  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
104  */
105 static inline int raid5_bi_phys_segments(struct bio *bio)
106 {
107         return bio->bi_phys_segments & 0xffff;
108 }
109
110 static inline int raid5_bi_hw_segments(struct bio *bio)
111 {
112         return (bio->bi_phys_segments >> 16) & 0xffff;
113 }
114
115 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
116 {
117         --bio->bi_phys_segments;
118         return raid5_bi_phys_segments(bio);
119 }
120
121 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
122 {
123         unsigned short val = raid5_bi_hw_segments(bio);
124
125         --val;
126         bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
127         return val;
128 }
129
130 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
131 {
132         bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
133 }
134
135 /* Find first data disk in a raid6 stripe */
136 static inline int raid6_d0(struct stripe_head *sh)
137 {
138         if (sh->ddf_layout)
139                 /* ddf always start from first device */
140                 return 0;
141         /* md starts just after Q block */
142         if (sh->qd_idx == sh->disks - 1)
143                 return 0;
144         else
145                 return sh->qd_idx + 1;
146 }
147 static inline int raid6_next_disk(int disk, int raid_disks)
148 {
149         disk++;
150         return (disk < raid_disks) ? disk : 0;
151 }
152
153 /* When walking through the disks in a raid5, starting at raid6_d0,
154  * We need to map each disk to a 'slot', where the data disks are slot
155  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
156  * is raid_disks-1.  This help does that mapping.
157  */
158 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
159                              int *count, int syndrome_disks)
160 {
161         int slot = *count;
162
163         if (sh->ddf_layout)
164                 (*count)++;
165         if (idx == sh->pd_idx)
166                 return syndrome_disks;
167         if (idx == sh->qd_idx)
168                 return syndrome_disks + 1;
169         if (!sh->ddf_layout)
170                 (*count)++;
171         return slot;
172 }
173
174 static void return_io(struct bio *return_bi)
175 {
176         struct bio *bi = return_bi;
177         while (bi) {
178
179                 return_bi = bi->bi_next;
180                 bi->bi_next = NULL;
181                 bi->bi_size = 0;
182                 bio_endio(bi, 0);
183                 bi = return_bi;
184         }
185 }
186
187 static void print_raid5_conf (raid5_conf_t *conf);
188
189 static int stripe_operations_active(struct stripe_head *sh)
190 {
191         return sh->check_state || sh->reconstruct_state ||
192                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
193                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
194 }
195
196 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
197 {
198         if (atomic_dec_and_test(&sh->count)) {
199                 BUG_ON(!list_empty(&sh->lru));
200                 BUG_ON(atomic_read(&conf->active_stripes)==0);
201                 if (test_bit(STRIPE_HANDLE, &sh->state)) {
202                         if (test_bit(STRIPE_DELAYED, &sh->state)) {
203                                 list_add_tail(&sh->lru, &conf->delayed_list);
204                                 plugger_set_plug(&conf->plug);
205                         } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
206                                    sh->bm_seq - conf->seq_write > 0) {
207                                 list_add_tail(&sh->lru, &conf->bitmap_list);
208                                 plugger_set_plug(&conf->plug);
209                         } else {
210                                 clear_bit(STRIPE_BIT_DELAY, &sh->state);
211                                 list_add_tail(&sh->lru, &conf->handle_list);
212                         }
213                         md_wakeup_thread(conf->mddev->thread);
214                 } else {
215                         BUG_ON(stripe_operations_active(sh));
216                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
217                                 atomic_dec(&conf->preread_active_stripes);
218                                 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
219                                         md_wakeup_thread(conf->mddev->thread);
220                         }
221                         atomic_dec(&conf->active_stripes);
222                         if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
223                                 list_add_tail(&sh->lru, &conf->inactive_list);
224                                 wake_up(&conf->wait_for_stripe);
225                                 if (conf->retry_read_aligned)
226                                         md_wakeup_thread(conf->mddev->thread);
227                         }
228                 }
229         }
230 }
231
232 static void release_stripe(struct stripe_head *sh)
233 {
234         raid5_conf_t *conf = sh->raid_conf;
235         unsigned long flags;
236
237         spin_lock_irqsave(&conf->device_lock, flags);
238         __release_stripe(conf, sh);
239         spin_unlock_irqrestore(&conf->device_lock, flags);
240 }
241
242 static inline void remove_hash(struct stripe_head *sh)
243 {
244         pr_debug("remove_hash(), stripe %llu\n",
245                 (unsigned long long)sh->sector);
246
247         hlist_del_init(&sh->hash);
248 }
249
250 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
251 {
252         struct hlist_head *hp = stripe_hash(conf, sh->sector);
253
254         pr_debug("insert_hash(), stripe %llu\n",
255                 (unsigned long long)sh->sector);
256
257         CHECK_DEVLOCK();
258         hlist_add_head(&sh->hash, hp);
259 }
260
261
262 /* find an idle stripe, make sure it is unhashed, and return it. */
263 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
264 {
265         struct stripe_head *sh = NULL;
266         struct list_head *first;
267
268         CHECK_DEVLOCK();
269         if (list_empty(&conf->inactive_list))
270                 goto out;
271         first = conf->inactive_list.next;
272         sh = list_entry(first, struct stripe_head, lru);
273         list_del_init(first);
274         remove_hash(sh);
275         atomic_inc(&conf->active_stripes);
276 out:
277         return sh;
278 }
279
280 static void shrink_buffers(struct stripe_head *sh)
281 {
282         struct page *p;
283         int i;
284         int num = sh->raid_conf->pool_size;
285
286         for (i = 0; i < num ; i++) {
287                 p = sh->dev[i].page;
288                 if (!p)
289                         continue;
290                 sh->dev[i].page = NULL;
291                 put_page(p);
292         }
293 }
294
295 static int grow_buffers(struct stripe_head *sh)
296 {
297         int i;
298         int num = sh->raid_conf->pool_size;
299
300         for (i = 0; i < num; i++) {
301                 struct page *page;
302
303                 if (!(page = alloc_page(GFP_KERNEL))) {
304                         return 1;
305                 }
306                 sh->dev[i].page = page;
307         }
308         return 0;
309 }
310
311 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
312 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
313                             struct stripe_head *sh);
314
315 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
316 {
317         raid5_conf_t *conf = sh->raid_conf;
318         int i;
319
320         BUG_ON(atomic_read(&sh->count) != 0);
321         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
322         BUG_ON(stripe_operations_active(sh));
323
324         CHECK_DEVLOCK();
325         pr_debug("init_stripe called, stripe %llu\n",
326                 (unsigned long long)sh->sector);
327
328         remove_hash(sh);
329
330         sh->generation = conf->generation - previous;
331         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
332         sh->sector = sector;
333         stripe_set_idx(sector, conf, previous, sh);
334         sh->state = 0;
335
336
337         for (i = sh->disks; i--; ) {
338                 struct r5dev *dev = &sh->dev[i];
339
340                 if (dev->toread || dev->read || dev->towrite || dev->written ||
341                     test_bit(R5_LOCKED, &dev->flags)) {
342                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
343                                (unsigned long long)sh->sector, i, dev->toread,
344                                dev->read, dev->towrite, dev->written,
345                                test_bit(R5_LOCKED, &dev->flags));
346                         BUG();
347                 }
348                 dev->flags = 0;
349                 raid5_build_block(sh, i, previous);
350         }
351         insert_hash(conf, sh);
352 }
353
354 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
355                                          short generation)
356 {
357         struct stripe_head *sh;
358         struct hlist_node *hn;
359
360         CHECK_DEVLOCK();
361         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
362         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
363                 if (sh->sector == sector && sh->generation == generation)
364                         return sh;
365         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
366         return NULL;
367 }
368
369 /*
370  * Need to check if array has failed when deciding whether to:
371  *  - start an array
372  *  - remove non-faulty devices
373  *  - add a spare
374  *  - allow a reshape
375  * This determination is simple when no reshape is happening.
376  * However if there is a reshape, we need to carefully check
377  * both the before and after sections.
378  * This is because some failed devices may only affect one
379  * of the two sections, and some non-in_sync devices may
380  * be insync in the section most affected by failed devices.
381  */
382 static int has_failed(raid5_conf_t *conf)
383 {
384         int degraded;
385         int i;
386         if (conf->mddev->reshape_position == MaxSector)
387                 return conf->mddev->degraded > conf->max_degraded;
388
389         rcu_read_lock();
390         degraded = 0;
391         for (i = 0; i < conf->previous_raid_disks; i++) {
392                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
393                 if (!rdev || test_bit(Faulty, &rdev->flags))
394                         degraded++;
395                 else if (test_bit(In_sync, &rdev->flags))
396                         ;
397                 else
398                         /* not in-sync or faulty.
399                          * If the reshape increases the number of devices,
400                          * this is being recovered by the reshape, so
401                          * this 'previous' section is not in_sync.
402                          * If the number of devices is being reduced however,
403                          * the device can only be part of the array if
404                          * we are reverting a reshape, so this section will
405                          * be in-sync.
406                          */
407                         if (conf->raid_disks >= conf->previous_raid_disks)
408                                 degraded++;
409         }
410         rcu_read_unlock();
411         if (degraded > conf->max_degraded)
412                 return 1;
413         rcu_read_lock();
414         degraded = 0;
415         for (i = 0; i < conf->raid_disks; i++) {
416                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
417                 if (!rdev || test_bit(Faulty, &rdev->flags))
418                         degraded++;
419                 else if (test_bit(In_sync, &rdev->flags))
420                         ;
421                 else
422                         /* not in-sync or faulty.
423                          * If reshape increases the number of devices, this
424                          * section has already been recovered, else it
425                          * almost certainly hasn't.
426                          */
427                         if (conf->raid_disks <= conf->previous_raid_disks)
428                                 degraded++;
429         }
430         rcu_read_unlock();
431         if (degraded > conf->max_degraded)
432                 return 1;
433         return 0;
434 }
435
436 static struct stripe_head *
437 get_active_stripe(raid5_conf_t *conf, sector_t sector,
438                   int previous, int noblock, int noquiesce)
439 {
440         struct stripe_head *sh;
441
442         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
443
444         spin_lock_irq(&conf->device_lock);
445
446         do {
447                 wait_event_lock_irq(conf->wait_for_stripe,
448                                     conf->quiesce == 0 || noquiesce,
449                                     conf->device_lock, /* nothing */);
450                 sh = __find_stripe(conf, sector, conf->generation - previous);
451                 if (!sh) {
452                         if (!conf->inactive_blocked)
453                                 sh = get_free_stripe(conf);
454                         if (noblock && sh == NULL)
455                                 break;
456                         if (!sh) {
457                                 conf->inactive_blocked = 1;
458                                 wait_event_lock_irq(conf->wait_for_stripe,
459                                                     !list_empty(&conf->inactive_list) &&
460                                                     (atomic_read(&conf->active_stripes)
461                                                      < (conf->max_nr_stripes *3/4)
462                                                      || !conf->inactive_blocked),
463                                                     conf->device_lock,
464                                                     md_raid5_kick_device(conf));
465                                 conf->inactive_blocked = 0;
466                         } else
467                                 init_stripe(sh, sector, previous);
468                 } else {
469                         if (atomic_read(&sh->count)) {
470                                 BUG_ON(!list_empty(&sh->lru)
471                                     && !test_bit(STRIPE_EXPANDING, &sh->state));
472                         } else {
473                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
474                                         atomic_inc(&conf->active_stripes);
475                                 if (list_empty(&sh->lru) &&
476                                     !test_bit(STRIPE_EXPANDING, &sh->state))
477                                         BUG();
478                                 list_del_init(&sh->lru);
479                         }
480                 }
481         } while (sh == NULL);
482
483         if (sh)
484                 atomic_inc(&sh->count);
485
486         spin_unlock_irq(&conf->device_lock);
487         return sh;
488 }
489
490 static void
491 raid5_end_read_request(struct bio *bi, int error);
492 static void
493 raid5_end_write_request(struct bio *bi, int error);
494
495 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
496 {
497         raid5_conf_t *conf = sh->raid_conf;
498         int i, disks = sh->disks;
499
500         might_sleep();
501
502         for (i = disks; i--; ) {
503                 int rw;
504                 struct bio *bi;
505                 mdk_rdev_t *rdev;
506                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
507                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
508                                 rw = WRITE_FUA;
509                         else
510                                 rw = WRITE;
511                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
512                         rw = READ;
513                 else
514                         continue;
515
516                 bi = &sh->dev[i].req;
517
518                 bi->bi_rw = rw;
519                 if (rw == WRITE)
520                         bi->bi_end_io = raid5_end_write_request;
521                 else
522                         bi->bi_end_io = raid5_end_read_request;
523
524                 rcu_read_lock();
525                 rdev = rcu_dereference(conf->disks[i].rdev);
526                 if (rdev && test_bit(Faulty, &rdev->flags))
527                         rdev = NULL;
528                 if (rdev)
529                         atomic_inc(&rdev->nr_pending);
530                 rcu_read_unlock();
531
532                 if (rdev) {
533                         if (s->syncing || s->expanding || s->expanded)
534                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
535
536                         set_bit(STRIPE_IO_STARTED, &sh->state);
537
538                         bi->bi_bdev = rdev->bdev;
539                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
540                                 __func__, (unsigned long long)sh->sector,
541                                 bi->bi_rw, i);
542                         atomic_inc(&sh->count);
543                         bi->bi_sector = sh->sector + rdev->data_offset;
544                         bi->bi_flags = 1 << BIO_UPTODATE;
545                         bi->bi_vcnt = 1;
546                         bi->bi_max_vecs = 1;
547                         bi->bi_idx = 0;
548                         bi->bi_io_vec = &sh->dev[i].vec;
549                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
550                         bi->bi_io_vec[0].bv_offset = 0;
551                         bi->bi_size = STRIPE_SIZE;
552                         bi->bi_next = NULL;
553                         if (rw == WRITE &&
554                             test_bit(R5_ReWrite, &sh->dev[i].flags))
555                                 atomic_add(STRIPE_SECTORS,
556                                         &rdev->corrected_errors);
557                         generic_make_request(bi);
558                 } else {
559                         if (rw == WRITE)
560                                 set_bit(STRIPE_DEGRADED, &sh->state);
561                         pr_debug("skip op %ld on disc %d for sector %llu\n",
562                                 bi->bi_rw, i, (unsigned long long)sh->sector);
563                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
564                         set_bit(STRIPE_HANDLE, &sh->state);
565                 }
566         }
567 }
568
569 static struct dma_async_tx_descriptor *
570 async_copy_data(int frombio, struct bio *bio, struct page *page,
571         sector_t sector, struct dma_async_tx_descriptor *tx)
572 {
573         struct bio_vec *bvl;
574         struct page *bio_page;
575         int i;
576         int page_offset;
577         struct async_submit_ctl submit;
578         enum async_tx_flags flags = 0;
579
580         if (bio->bi_sector >= sector)
581                 page_offset = (signed)(bio->bi_sector - sector) * 512;
582         else
583                 page_offset = (signed)(sector - bio->bi_sector) * -512;
584
585         if (frombio)
586                 flags |= ASYNC_TX_FENCE;
587         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
588
589         bio_for_each_segment(bvl, bio, i) {
590                 int len = bio_iovec_idx(bio, i)->bv_len;
591                 int clen;
592                 int b_offset = 0;
593
594                 if (page_offset < 0) {
595                         b_offset = -page_offset;
596                         page_offset += b_offset;
597                         len -= b_offset;
598                 }
599
600                 if (len > 0 && page_offset + len > STRIPE_SIZE)
601                         clen = STRIPE_SIZE - page_offset;
602                 else
603                         clen = len;
604
605                 if (clen > 0) {
606                         b_offset += bio_iovec_idx(bio, i)->bv_offset;
607                         bio_page = bio_iovec_idx(bio, i)->bv_page;
608                         if (frombio)
609                                 tx = async_memcpy(page, bio_page, page_offset,
610                                                   b_offset, clen, &submit);
611                         else
612                                 tx = async_memcpy(bio_page, page, b_offset,
613                                                   page_offset, clen, &submit);
614                 }
615                 /* chain the operations */
616                 submit.depend_tx = tx;
617
618                 if (clen < len) /* hit end of page */
619                         break;
620                 page_offset +=  len;
621         }
622
623         return tx;
624 }
625
626 static void ops_complete_biofill(void *stripe_head_ref)
627 {
628         struct stripe_head *sh = stripe_head_ref;
629         struct bio *return_bi = NULL;
630         raid5_conf_t *conf = sh->raid_conf;
631         int i;
632
633         pr_debug("%s: stripe %llu\n", __func__,
634                 (unsigned long long)sh->sector);
635
636         /* clear completed biofills */
637         spin_lock_irq(&conf->device_lock);
638         for (i = sh->disks; i--; ) {
639                 struct r5dev *dev = &sh->dev[i];
640
641                 /* acknowledge completion of a biofill operation */
642                 /* and check if we need to reply to a read request,
643                  * new R5_Wantfill requests are held off until
644                  * !STRIPE_BIOFILL_RUN
645                  */
646                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
647                         struct bio *rbi, *rbi2;
648
649                         BUG_ON(!dev->read);
650                         rbi = dev->read;
651                         dev->read = NULL;
652                         while (rbi && rbi->bi_sector <
653                                 dev->sector + STRIPE_SECTORS) {
654                                 rbi2 = r5_next_bio(rbi, dev->sector);
655                                 if (!raid5_dec_bi_phys_segments(rbi)) {
656                                         rbi->bi_next = return_bi;
657                                         return_bi = rbi;
658                                 }
659                                 rbi = rbi2;
660                         }
661                 }
662         }
663         spin_unlock_irq(&conf->device_lock);
664         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
665
666         return_io(return_bi);
667
668         set_bit(STRIPE_HANDLE, &sh->state);
669         release_stripe(sh);
670 }
671
672 static void ops_run_biofill(struct stripe_head *sh)
673 {
674         struct dma_async_tx_descriptor *tx = NULL;
675         raid5_conf_t *conf = sh->raid_conf;
676         struct async_submit_ctl submit;
677         int i;
678
679         pr_debug("%s: stripe %llu\n", __func__,
680                 (unsigned long long)sh->sector);
681
682         for (i = sh->disks; i--; ) {
683                 struct r5dev *dev = &sh->dev[i];
684                 if (test_bit(R5_Wantfill, &dev->flags)) {
685                         struct bio *rbi;
686                         spin_lock_irq(&conf->device_lock);
687                         dev->read = rbi = dev->toread;
688                         dev->toread = NULL;
689                         spin_unlock_irq(&conf->device_lock);
690                         while (rbi && rbi->bi_sector <
691                                 dev->sector + STRIPE_SECTORS) {
692                                 tx = async_copy_data(0, rbi, dev->page,
693                                         dev->sector, tx);
694                                 rbi = r5_next_bio(rbi, dev->sector);
695                         }
696                 }
697         }
698
699         atomic_inc(&sh->count);
700         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
701         async_trigger_callback(&submit);
702 }
703
704 static void mark_target_uptodate(struct stripe_head *sh, int target)
705 {
706         struct r5dev *tgt;
707
708         if (target < 0)
709                 return;
710
711         tgt = &sh->dev[target];
712         set_bit(R5_UPTODATE, &tgt->flags);
713         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
714         clear_bit(R5_Wantcompute, &tgt->flags);
715 }
716
717 static void ops_complete_compute(void *stripe_head_ref)
718 {
719         struct stripe_head *sh = stripe_head_ref;
720
721         pr_debug("%s: stripe %llu\n", __func__,
722                 (unsigned long long)sh->sector);
723
724         /* mark the computed target(s) as uptodate */
725         mark_target_uptodate(sh, sh->ops.target);
726         mark_target_uptodate(sh, sh->ops.target2);
727
728         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
729         if (sh->check_state == check_state_compute_run)
730                 sh->check_state = check_state_compute_result;
731         set_bit(STRIPE_HANDLE, &sh->state);
732         release_stripe(sh);
733 }
734
735 /* return a pointer to the address conversion region of the scribble buffer */
736 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
737                                  struct raid5_percpu *percpu)
738 {
739         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
740 }
741
742 static struct dma_async_tx_descriptor *
743 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
744 {
745         int disks = sh->disks;
746         struct page **xor_srcs = percpu->scribble;
747         int target = sh->ops.target;
748         struct r5dev *tgt = &sh->dev[target];
749         struct page *xor_dest = tgt->page;
750         int count = 0;
751         struct dma_async_tx_descriptor *tx;
752         struct async_submit_ctl submit;
753         int i;
754
755         pr_debug("%s: stripe %llu block: %d\n",
756                 __func__, (unsigned long long)sh->sector, target);
757         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
758
759         for (i = disks; i--; )
760                 if (i != target)
761                         xor_srcs[count++] = sh->dev[i].page;
762
763         atomic_inc(&sh->count);
764
765         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
766                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
767         if (unlikely(count == 1))
768                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
769         else
770                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
771
772         return tx;
773 }
774
775 /* set_syndrome_sources - populate source buffers for gen_syndrome
776  * @srcs - (struct page *) array of size sh->disks
777  * @sh - stripe_head to parse
778  *
779  * Populates srcs in proper layout order for the stripe and returns the
780  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
781  * destination buffer is recorded in srcs[count] and the Q destination
782  * is recorded in srcs[count+1]].
783  */
784 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
785 {
786         int disks = sh->disks;
787         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
788         int d0_idx = raid6_d0(sh);
789         int count;
790         int i;
791
792         for (i = 0; i < disks; i++)
793                 srcs[i] = NULL;
794
795         count = 0;
796         i = d0_idx;
797         do {
798                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
799
800                 srcs[slot] = sh->dev[i].page;
801                 i = raid6_next_disk(i, disks);
802         } while (i != d0_idx);
803
804         return syndrome_disks;
805 }
806
807 static struct dma_async_tx_descriptor *
808 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
809 {
810         int disks = sh->disks;
811         struct page **blocks = percpu->scribble;
812         int target;
813         int qd_idx = sh->qd_idx;
814         struct dma_async_tx_descriptor *tx;
815         struct async_submit_ctl submit;
816         struct r5dev *tgt;
817         struct page *dest;
818         int i;
819         int count;
820
821         if (sh->ops.target < 0)
822                 target = sh->ops.target2;
823         else if (sh->ops.target2 < 0)
824                 target = sh->ops.target;
825         else
826                 /* we should only have one valid target */
827                 BUG();
828         BUG_ON(target < 0);
829         pr_debug("%s: stripe %llu block: %d\n",
830                 __func__, (unsigned long long)sh->sector, target);
831
832         tgt = &sh->dev[target];
833         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
834         dest = tgt->page;
835
836         atomic_inc(&sh->count);
837
838         if (target == qd_idx) {
839                 count = set_syndrome_sources(blocks, sh);
840                 blocks[count] = NULL; /* regenerating p is not necessary */
841                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
842                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
843                                   ops_complete_compute, sh,
844                                   to_addr_conv(sh, percpu));
845                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
846         } else {
847                 /* Compute any data- or p-drive using XOR */
848                 count = 0;
849                 for (i = disks; i-- ; ) {
850                         if (i == target || i == qd_idx)
851                                 continue;
852                         blocks[count++] = sh->dev[i].page;
853                 }
854
855                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
856                                   NULL, ops_complete_compute, sh,
857                                   to_addr_conv(sh, percpu));
858                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
859         }
860
861         return tx;
862 }
863
864 static struct dma_async_tx_descriptor *
865 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
866 {
867         int i, count, disks = sh->disks;
868         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
869         int d0_idx = raid6_d0(sh);
870         int faila = -1, failb = -1;
871         int target = sh->ops.target;
872         int target2 = sh->ops.target2;
873         struct r5dev *tgt = &sh->dev[target];
874         struct r5dev *tgt2 = &sh->dev[target2];
875         struct dma_async_tx_descriptor *tx;
876         struct page **blocks = percpu->scribble;
877         struct async_submit_ctl submit;
878
879         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
880                  __func__, (unsigned long long)sh->sector, target, target2);
881         BUG_ON(target < 0 || target2 < 0);
882         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
883         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
884
885         /* we need to open-code set_syndrome_sources to handle the
886          * slot number conversion for 'faila' and 'failb'
887          */
888         for (i = 0; i < disks ; i++)
889                 blocks[i] = NULL;
890         count = 0;
891         i = d0_idx;
892         do {
893                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
894
895                 blocks[slot] = sh->dev[i].page;
896
897                 if (i == target)
898                         faila = slot;
899                 if (i == target2)
900                         failb = slot;
901                 i = raid6_next_disk(i, disks);
902         } while (i != d0_idx);
903
904         BUG_ON(faila == failb);
905         if (failb < faila)
906                 swap(faila, failb);
907         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
908                  __func__, (unsigned long long)sh->sector, faila, failb);
909
910         atomic_inc(&sh->count);
911
912         if (failb == syndrome_disks+1) {
913                 /* Q disk is one of the missing disks */
914                 if (faila == syndrome_disks) {
915                         /* Missing P+Q, just recompute */
916                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
917                                           ops_complete_compute, sh,
918                                           to_addr_conv(sh, percpu));
919                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
920                                                   STRIPE_SIZE, &submit);
921                 } else {
922                         struct page *dest;
923                         int data_target;
924                         int qd_idx = sh->qd_idx;
925
926                         /* Missing D+Q: recompute D from P, then recompute Q */
927                         if (target == qd_idx)
928                                 data_target = target2;
929                         else
930                                 data_target = target;
931
932                         count = 0;
933                         for (i = disks; i-- ; ) {
934                                 if (i == data_target || i == qd_idx)
935                                         continue;
936                                 blocks[count++] = sh->dev[i].page;
937                         }
938                         dest = sh->dev[data_target].page;
939                         init_async_submit(&submit,
940                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
941                                           NULL, NULL, NULL,
942                                           to_addr_conv(sh, percpu));
943                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
944                                        &submit);
945
946                         count = set_syndrome_sources(blocks, sh);
947                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
948                                           ops_complete_compute, sh,
949                                           to_addr_conv(sh, percpu));
950                         return async_gen_syndrome(blocks, 0, count+2,
951                                                   STRIPE_SIZE, &submit);
952                 }
953         } else {
954                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
955                                   ops_complete_compute, sh,
956                                   to_addr_conv(sh, percpu));
957                 if (failb == syndrome_disks) {
958                         /* We're missing D+P. */
959                         return async_raid6_datap_recov(syndrome_disks+2,
960                                                        STRIPE_SIZE, faila,
961                                                        blocks, &submit);
962                 } else {
963                         /* We're missing D+D. */
964                         return async_raid6_2data_recov(syndrome_disks+2,
965                                                        STRIPE_SIZE, faila, failb,
966                                                        blocks, &submit);
967                 }
968         }
969 }
970
971
972 static void ops_complete_prexor(void *stripe_head_ref)
973 {
974         struct stripe_head *sh = stripe_head_ref;
975
976         pr_debug("%s: stripe %llu\n", __func__,
977                 (unsigned long long)sh->sector);
978 }
979
980 static struct dma_async_tx_descriptor *
981 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
982                struct dma_async_tx_descriptor *tx)
983 {
984         int disks = sh->disks;
985         struct page **xor_srcs = percpu->scribble;
986         int count = 0, pd_idx = sh->pd_idx, i;
987         struct async_submit_ctl submit;
988
989         /* existing parity data subtracted */
990         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
991
992         pr_debug("%s: stripe %llu\n", __func__,
993                 (unsigned long long)sh->sector);
994
995         for (i = disks; i--; ) {
996                 struct r5dev *dev = &sh->dev[i];
997                 /* Only process blocks that are known to be uptodate */
998                 if (test_bit(R5_Wantdrain, &dev->flags))
999                         xor_srcs[count++] = dev->page;
1000         }
1001
1002         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1003                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1004         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1005
1006         return tx;
1007 }
1008
1009 static struct dma_async_tx_descriptor *
1010 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1011 {
1012         int disks = sh->disks;
1013         int i;
1014
1015         pr_debug("%s: stripe %llu\n", __func__,
1016                 (unsigned long long)sh->sector);
1017
1018         for (i = disks; i--; ) {
1019                 struct r5dev *dev = &sh->dev[i];
1020                 struct bio *chosen;
1021
1022                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1023                         struct bio *wbi;
1024
1025                         spin_lock(&sh->lock);
1026                         chosen = dev->towrite;
1027                         dev->towrite = NULL;
1028                         BUG_ON(dev->written);
1029                         wbi = dev->written = chosen;
1030                         spin_unlock(&sh->lock);
1031
1032                         while (wbi && wbi->bi_sector <
1033                                 dev->sector + STRIPE_SECTORS) {
1034                                 if (wbi->bi_rw & REQ_FUA)
1035                                         set_bit(R5_WantFUA, &dev->flags);
1036                                 tx = async_copy_data(1, wbi, dev->page,
1037                                         dev->sector, tx);
1038                                 wbi = r5_next_bio(wbi, dev->sector);
1039                         }
1040                 }
1041         }
1042
1043         return tx;
1044 }
1045
1046 static void ops_complete_reconstruct(void *stripe_head_ref)
1047 {
1048         struct stripe_head *sh = stripe_head_ref;
1049         int disks = sh->disks;
1050         int pd_idx = sh->pd_idx;
1051         int qd_idx = sh->qd_idx;
1052         int i;
1053         bool fua = false;
1054
1055         pr_debug("%s: stripe %llu\n", __func__,
1056                 (unsigned long long)sh->sector);
1057
1058         for (i = disks; i--; )
1059                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1060
1061         for (i = disks; i--; ) {
1062                 struct r5dev *dev = &sh->dev[i];
1063
1064                 if (dev->written || i == pd_idx || i == qd_idx) {
1065                         set_bit(R5_UPTODATE, &dev->flags);
1066                         if (fua)
1067                                 set_bit(R5_WantFUA, &dev->flags);
1068                 }
1069         }
1070
1071         if (sh->reconstruct_state == reconstruct_state_drain_run)
1072                 sh->reconstruct_state = reconstruct_state_drain_result;
1073         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1074                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1075         else {
1076                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1077                 sh->reconstruct_state = reconstruct_state_result;
1078         }
1079
1080         set_bit(STRIPE_HANDLE, &sh->state);
1081         release_stripe(sh);
1082 }
1083
1084 static void
1085 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1086                      struct dma_async_tx_descriptor *tx)
1087 {
1088         int disks = sh->disks;
1089         struct page **xor_srcs = percpu->scribble;
1090         struct async_submit_ctl submit;
1091         int count = 0, pd_idx = sh->pd_idx, i;
1092         struct page *xor_dest;
1093         int prexor = 0;
1094         unsigned long flags;
1095
1096         pr_debug("%s: stripe %llu\n", __func__,
1097                 (unsigned long long)sh->sector);
1098
1099         /* check if prexor is active which means only process blocks
1100          * that are part of a read-modify-write (written)
1101          */
1102         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1103                 prexor = 1;
1104                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1105                 for (i = disks; i--; ) {
1106                         struct r5dev *dev = &sh->dev[i];
1107                         if (dev->written)
1108                                 xor_srcs[count++] = dev->page;
1109                 }
1110         } else {
1111                 xor_dest = sh->dev[pd_idx].page;
1112                 for (i = disks; i--; ) {
1113                         struct r5dev *dev = &sh->dev[i];
1114                         if (i != pd_idx)
1115                                 xor_srcs[count++] = dev->page;
1116                 }
1117         }
1118
1119         /* 1/ if we prexor'd then the dest is reused as a source
1120          * 2/ if we did not prexor then we are redoing the parity
1121          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1122          * for the synchronous xor case
1123          */
1124         flags = ASYNC_TX_ACK |
1125                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1126
1127         atomic_inc(&sh->count);
1128
1129         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1130                           to_addr_conv(sh, percpu));
1131         if (unlikely(count == 1))
1132                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1133         else
1134                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1135 }
1136
1137 static void
1138 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1139                      struct dma_async_tx_descriptor *tx)
1140 {
1141         struct async_submit_ctl submit;
1142         struct page **blocks = percpu->scribble;
1143         int count;
1144
1145         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1146
1147         count = set_syndrome_sources(blocks, sh);
1148
1149         atomic_inc(&sh->count);
1150
1151         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1152                           sh, to_addr_conv(sh, percpu));
1153         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1154 }
1155
1156 static void ops_complete_check(void *stripe_head_ref)
1157 {
1158         struct stripe_head *sh = stripe_head_ref;
1159
1160         pr_debug("%s: stripe %llu\n", __func__,
1161                 (unsigned long long)sh->sector);
1162
1163         sh->check_state = check_state_check_result;
1164         set_bit(STRIPE_HANDLE, &sh->state);
1165         release_stripe(sh);
1166 }
1167
1168 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1169 {
1170         int disks = sh->disks;
1171         int pd_idx = sh->pd_idx;
1172         int qd_idx = sh->qd_idx;
1173         struct page *xor_dest;
1174         struct page **xor_srcs = percpu->scribble;
1175         struct dma_async_tx_descriptor *tx;
1176         struct async_submit_ctl submit;
1177         int count;
1178         int i;
1179
1180         pr_debug("%s: stripe %llu\n", __func__,
1181                 (unsigned long long)sh->sector);
1182
1183         count = 0;
1184         xor_dest = sh->dev[pd_idx].page;
1185         xor_srcs[count++] = xor_dest;
1186         for (i = disks; i--; ) {
1187                 if (i == pd_idx || i == qd_idx)
1188                         continue;
1189                 xor_srcs[count++] = sh->dev[i].page;
1190         }
1191
1192         init_async_submit(&submit, 0, NULL, NULL, NULL,
1193                           to_addr_conv(sh, percpu));
1194         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1195                            &sh->ops.zero_sum_result, &submit);
1196
1197         atomic_inc(&sh->count);
1198         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1199         tx = async_trigger_callback(&submit);
1200 }
1201
1202 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1203 {
1204         struct page **srcs = percpu->scribble;
1205         struct async_submit_ctl submit;
1206         int count;
1207
1208         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1209                 (unsigned long long)sh->sector, checkp);
1210
1211         count = set_syndrome_sources(srcs, sh);
1212         if (!checkp)
1213                 srcs[count] = NULL;
1214
1215         atomic_inc(&sh->count);
1216         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1217                           sh, to_addr_conv(sh, percpu));
1218         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1219                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1220 }
1221
1222 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1223 {
1224         int overlap_clear = 0, i, disks = sh->disks;
1225         struct dma_async_tx_descriptor *tx = NULL;
1226         raid5_conf_t *conf = sh->raid_conf;
1227         int level = conf->level;
1228         struct raid5_percpu *percpu;
1229         unsigned long cpu;
1230
1231         cpu = get_cpu();
1232         percpu = per_cpu_ptr(conf->percpu, cpu);
1233         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1234                 ops_run_biofill(sh);
1235                 overlap_clear++;
1236         }
1237
1238         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1239                 if (level < 6)
1240                         tx = ops_run_compute5(sh, percpu);
1241                 else {
1242                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1243                                 tx = ops_run_compute6_1(sh, percpu);
1244                         else
1245                                 tx = ops_run_compute6_2(sh, percpu);
1246                 }
1247                 /* terminate the chain if reconstruct is not set to be run */
1248                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1249                         async_tx_ack(tx);
1250         }
1251
1252         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1253                 tx = ops_run_prexor(sh, percpu, tx);
1254
1255         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1256                 tx = ops_run_biodrain(sh, tx);
1257                 overlap_clear++;
1258         }
1259
1260         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1261                 if (level < 6)
1262                         ops_run_reconstruct5(sh, percpu, tx);
1263                 else
1264                         ops_run_reconstruct6(sh, percpu, tx);
1265         }
1266
1267         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1268                 if (sh->check_state == check_state_run)
1269                         ops_run_check_p(sh, percpu);
1270                 else if (sh->check_state == check_state_run_q)
1271                         ops_run_check_pq(sh, percpu, 0);
1272                 else if (sh->check_state == check_state_run_pq)
1273                         ops_run_check_pq(sh, percpu, 1);
1274                 else
1275                         BUG();
1276         }
1277
1278         if (overlap_clear)
1279                 for (i = disks; i--; ) {
1280                         struct r5dev *dev = &sh->dev[i];
1281                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1282                                 wake_up(&sh->raid_conf->wait_for_overlap);
1283                 }
1284         put_cpu();
1285 }
1286
1287 #ifdef CONFIG_MULTICORE_RAID456
1288 static void async_run_ops(void *param, async_cookie_t cookie)
1289 {
1290         struct stripe_head *sh = param;
1291         unsigned long ops_request = sh->ops.request;
1292
1293         clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1294         wake_up(&sh->ops.wait_for_ops);
1295
1296         __raid_run_ops(sh, ops_request);
1297         release_stripe(sh);
1298 }
1299
1300 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1301 {
1302         /* since handle_stripe can be called outside of raid5d context
1303          * we need to ensure sh->ops.request is de-staged before another
1304          * request arrives
1305          */
1306         wait_event(sh->ops.wait_for_ops,
1307                    !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1308         sh->ops.request = ops_request;
1309
1310         atomic_inc(&sh->count);
1311         async_schedule(async_run_ops, sh);
1312 }
1313 #else
1314 #define raid_run_ops __raid_run_ops
1315 #endif
1316
1317 static int grow_one_stripe(raid5_conf_t *conf)
1318 {
1319         struct stripe_head *sh;
1320         sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
1321         if (!sh)
1322                 return 0;
1323         memset(sh, 0, sizeof(*sh) + (conf->pool_size-1)*sizeof(struct r5dev));
1324         sh->raid_conf = conf;
1325         spin_lock_init(&sh->lock);
1326         #ifdef CONFIG_MULTICORE_RAID456
1327         init_waitqueue_head(&sh->ops.wait_for_ops);
1328         #endif
1329
1330         if (grow_buffers(sh)) {
1331                 shrink_buffers(sh);
1332                 kmem_cache_free(conf->slab_cache, sh);
1333                 return 0;
1334         }
1335         /* we just created an active stripe so... */
1336         atomic_set(&sh->count, 1);
1337         atomic_inc(&conf->active_stripes);
1338         INIT_LIST_HEAD(&sh->lru);
1339         release_stripe(sh);
1340         return 1;
1341 }
1342
1343 static int grow_stripes(raid5_conf_t *conf, int num)
1344 {
1345         struct kmem_cache *sc;
1346         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1347
1348         if (conf->mddev->gendisk)
1349                 sprintf(conf->cache_name[0],
1350                         "raid%d-%s", conf->level, mdname(conf->mddev));
1351         else
1352                 sprintf(conf->cache_name[0],
1353                         "raid%d-%p", conf->level, conf->mddev);
1354         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1355
1356         conf->active_name = 0;
1357         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1358                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1359                                0, 0, NULL);
1360         if (!sc)
1361                 return 1;
1362         conf->slab_cache = sc;
1363         conf->pool_size = devs;
1364         while (num--)
1365                 if (!grow_one_stripe(conf))
1366                         return 1;
1367         return 0;
1368 }
1369
1370 /**
1371  * scribble_len - return the required size of the scribble region
1372  * @num - total number of disks in the array
1373  *
1374  * The size must be enough to contain:
1375  * 1/ a struct page pointer for each device in the array +2
1376  * 2/ room to convert each entry in (1) to its corresponding dma
1377  *    (dma_map_page()) or page (page_address()) address.
1378  *
1379  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1380  * calculate over all devices (not just the data blocks), using zeros in place
1381  * of the P and Q blocks.
1382  */
1383 static size_t scribble_len(int num)
1384 {
1385         size_t len;
1386
1387         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1388
1389         return len;
1390 }
1391
1392 static int resize_stripes(raid5_conf_t *conf, int newsize)
1393 {
1394         /* Make all the stripes able to hold 'newsize' devices.
1395          * New slots in each stripe get 'page' set to a new page.
1396          *
1397          * This happens in stages:
1398          * 1/ create a new kmem_cache and allocate the required number of
1399          *    stripe_heads.
1400          * 2/ gather all the old stripe_heads and tranfer the pages across
1401          *    to the new stripe_heads.  This will have the side effect of
1402          *    freezing the array as once all stripe_heads have been collected,
1403          *    no IO will be possible.  Old stripe heads are freed once their
1404          *    pages have been transferred over, and the old kmem_cache is
1405          *    freed when all stripes are done.
1406          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1407          *    we simple return a failre status - no need to clean anything up.
1408          * 4/ allocate new pages for the new slots in the new stripe_heads.
1409          *    If this fails, we don't bother trying the shrink the
1410          *    stripe_heads down again, we just leave them as they are.
1411          *    As each stripe_head is processed the new one is released into
1412          *    active service.
1413          *
1414          * Once step2 is started, we cannot afford to wait for a write,
1415          * so we use GFP_NOIO allocations.
1416          */
1417         struct stripe_head *osh, *nsh;
1418         LIST_HEAD(newstripes);
1419         struct disk_info *ndisks;
1420         unsigned long cpu;
1421         int err;
1422         struct kmem_cache *sc;
1423         int i;
1424
1425         if (newsize <= conf->pool_size)
1426                 return 0; /* never bother to shrink */
1427
1428         err = md_allow_write(conf->mddev);
1429         if (err)
1430                 return err;
1431
1432         /* Step 1 */
1433         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1434                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1435                                0, 0, NULL);
1436         if (!sc)
1437                 return -ENOMEM;
1438
1439         for (i = conf->max_nr_stripes; i; i--) {
1440                 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1441                 if (!nsh)
1442                         break;
1443
1444                 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1445
1446                 nsh->raid_conf = conf;
1447                 spin_lock_init(&nsh->lock);
1448                 #ifdef CONFIG_MULTICORE_RAID456
1449                 init_waitqueue_head(&nsh->ops.wait_for_ops);
1450                 #endif
1451
1452                 list_add(&nsh->lru, &newstripes);
1453         }
1454         if (i) {
1455                 /* didn't get enough, give up */
1456                 while (!list_empty(&newstripes)) {
1457                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1458                         list_del(&nsh->lru);
1459                         kmem_cache_free(sc, nsh);
1460                 }
1461                 kmem_cache_destroy(sc);
1462                 return -ENOMEM;
1463         }
1464         /* Step 2 - Must use GFP_NOIO now.
1465          * OK, we have enough stripes, start collecting inactive
1466          * stripes and copying them over
1467          */
1468         list_for_each_entry(nsh, &newstripes, lru) {
1469                 spin_lock_irq(&conf->device_lock);
1470                 wait_event_lock_irq(conf->wait_for_stripe,
1471                                     !list_empty(&conf->inactive_list),
1472                                     conf->device_lock,
1473                                     blk_flush_plug(current));
1474                 osh = get_free_stripe(conf);
1475                 spin_unlock_irq(&conf->device_lock);
1476                 atomic_set(&nsh->count, 1);
1477                 for(i=0; i<conf->pool_size; i++)
1478                         nsh->dev[i].page = osh->dev[i].page;
1479                 for( ; i<newsize; i++)
1480                         nsh->dev[i].page = NULL;
1481                 kmem_cache_free(conf->slab_cache, osh);
1482         }
1483         kmem_cache_destroy(conf->slab_cache);
1484
1485         /* Step 3.
1486          * At this point, we are holding all the stripes so the array
1487          * is completely stalled, so now is a good time to resize
1488          * conf->disks and the scribble region
1489          */
1490         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1491         if (ndisks) {
1492                 for (i=0; i<conf->raid_disks; i++)
1493                         ndisks[i] = conf->disks[i];
1494                 kfree(conf->disks);
1495                 conf->disks = ndisks;
1496         } else
1497                 err = -ENOMEM;
1498
1499         get_online_cpus();
1500         conf->scribble_len = scribble_len(newsize);
1501         for_each_present_cpu(cpu) {
1502                 struct raid5_percpu *percpu;
1503                 void *scribble;
1504
1505                 percpu = per_cpu_ptr(conf->percpu, cpu);
1506                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1507
1508                 if (scribble) {
1509                         kfree(percpu->scribble);
1510                         percpu->scribble = scribble;
1511                 } else {
1512                         err = -ENOMEM;
1513                         break;
1514                 }
1515         }
1516         put_online_cpus();
1517
1518         /* Step 4, return new stripes to service */
1519         while(!list_empty(&newstripes)) {
1520                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1521                 list_del_init(&nsh->lru);
1522
1523                 for (i=conf->raid_disks; i < newsize; i++)
1524                         if (nsh->dev[i].page == NULL) {
1525                                 struct page *p = alloc_page(GFP_NOIO);
1526                                 nsh->dev[i].page = p;
1527                                 if (!p)
1528                                         err = -ENOMEM;
1529                         }
1530                 release_stripe(nsh);
1531         }
1532         /* critical section pass, GFP_NOIO no longer needed */
1533
1534         conf->slab_cache = sc;
1535         conf->active_name = 1-conf->active_name;
1536         conf->pool_size = newsize;
1537         return err;
1538 }
1539
1540 static int drop_one_stripe(raid5_conf_t *conf)
1541 {
1542         struct stripe_head *sh;
1543
1544         spin_lock_irq(&conf->device_lock);
1545         sh = get_free_stripe(conf);
1546         spin_unlock_irq(&conf->device_lock);
1547         if (!sh)
1548                 return 0;
1549         BUG_ON(atomic_read(&sh->count));
1550         shrink_buffers(sh);
1551         kmem_cache_free(conf->slab_cache, sh);
1552         atomic_dec(&conf->active_stripes);
1553         return 1;
1554 }
1555
1556 static void shrink_stripes(raid5_conf_t *conf)
1557 {
1558         while (drop_one_stripe(conf))
1559                 ;
1560
1561         if (conf->slab_cache)
1562                 kmem_cache_destroy(conf->slab_cache);
1563         conf->slab_cache = NULL;
1564 }
1565
1566 static void raid5_end_read_request(struct bio * bi, int error)
1567 {
1568         struct stripe_head *sh = bi->bi_private;
1569         raid5_conf_t *conf = sh->raid_conf;
1570         int disks = sh->disks, i;
1571         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1572         char b[BDEVNAME_SIZE];
1573         mdk_rdev_t *rdev;
1574
1575
1576         for (i=0 ; i<disks; i++)
1577                 if (bi == &sh->dev[i].req)
1578                         break;
1579
1580         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1581                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1582                 uptodate);
1583         if (i == disks) {
1584                 BUG();
1585                 return;
1586         }
1587
1588         if (uptodate) {
1589                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1590                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1591                         rdev = conf->disks[i].rdev;
1592                         printk_rl(KERN_INFO "md/raid:%s: read error corrected"
1593                                   " (%lu sectors at %llu on %s)\n",
1594                                   mdname(conf->mddev), STRIPE_SECTORS,
1595                                   (unsigned long long)(sh->sector
1596                                                        + rdev->data_offset),
1597                                   bdevname(rdev->bdev, b));
1598                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1599                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1600                 }
1601                 if (atomic_read(&conf->disks[i].rdev->read_errors))
1602                         atomic_set(&conf->disks[i].rdev->read_errors, 0);
1603         } else {
1604                 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1605                 int retry = 0;
1606                 rdev = conf->disks[i].rdev;
1607
1608                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1609                 atomic_inc(&rdev->read_errors);
1610                 if (conf->mddev->degraded >= conf->max_degraded)
1611                         printk_rl(KERN_WARNING
1612                                   "md/raid:%s: read error not correctable "
1613                                   "(sector %llu on %s).\n",
1614                                   mdname(conf->mddev),
1615                                   (unsigned long long)(sh->sector
1616                                                        + rdev->data_offset),
1617                                   bdn);
1618                 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1619                         /* Oh, no!!! */
1620                         printk_rl(KERN_WARNING
1621                                   "md/raid:%s: read error NOT corrected!! "
1622                                   "(sector %llu on %s).\n",
1623                                   mdname(conf->mddev),
1624                                   (unsigned long long)(sh->sector
1625                                                        + rdev->data_offset),
1626                                   bdn);
1627                 else if (atomic_read(&rdev->read_errors)
1628                          > conf->max_nr_stripes)
1629                         printk(KERN_WARNING
1630                                "md/raid:%s: Too many read errors, failing device %s.\n",
1631                                mdname(conf->mddev), bdn);
1632                 else
1633                         retry = 1;
1634                 if (retry)
1635                         set_bit(R5_ReadError, &sh->dev[i].flags);
1636                 else {
1637                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1638                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1639                         md_error(conf->mddev, rdev);
1640                 }
1641         }
1642         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1643         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1644         set_bit(STRIPE_HANDLE, &sh->state);
1645         release_stripe(sh);
1646 }
1647
1648 static void raid5_end_write_request(struct bio *bi, int error)
1649 {
1650         struct stripe_head *sh = bi->bi_private;
1651         raid5_conf_t *conf = sh->raid_conf;
1652         int disks = sh->disks, i;
1653         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1654
1655         for (i=0 ; i<disks; i++)
1656                 if (bi == &sh->dev[i].req)
1657                         break;
1658
1659         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1660                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1661                 uptodate);
1662         if (i == disks) {
1663                 BUG();
1664                 return;
1665         }
1666
1667         if (!uptodate)
1668                 md_error(conf->mddev, conf->disks[i].rdev);
1669
1670         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1671         
1672         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1673         set_bit(STRIPE_HANDLE, &sh->state);
1674         release_stripe(sh);
1675 }
1676
1677
1678 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1679         
1680 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1681 {
1682         struct r5dev *dev = &sh->dev[i];
1683
1684         bio_init(&dev->req);
1685         dev->req.bi_io_vec = &dev->vec;
1686         dev->req.bi_vcnt++;
1687         dev->req.bi_max_vecs++;
1688         dev->vec.bv_page = dev->page;
1689         dev->vec.bv_len = STRIPE_SIZE;
1690         dev->vec.bv_offset = 0;
1691
1692         dev->req.bi_sector = sh->sector;
1693         dev->req.bi_private = sh;
1694
1695         dev->flags = 0;
1696         dev->sector = compute_blocknr(sh, i, previous);
1697 }
1698
1699 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1700 {
1701         char b[BDEVNAME_SIZE];
1702         raid5_conf_t *conf = mddev->private;
1703         pr_debug("raid456: error called\n");
1704
1705         if (!test_bit(Faulty, &rdev->flags)) {
1706                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1707                 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1708                         unsigned long flags;
1709                         spin_lock_irqsave(&conf->device_lock, flags);
1710                         mddev->degraded++;
1711                         spin_unlock_irqrestore(&conf->device_lock, flags);
1712                         /*
1713                          * if recovery was running, make sure it aborts.
1714                          */
1715                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1716                 }
1717                 set_bit(Faulty, &rdev->flags);
1718                 printk(KERN_ALERT
1719                        "md/raid:%s: Disk failure on %s, disabling device.\n"
1720                        "md/raid:%s: Operation continuing on %d devices.\n",
1721                        mdname(mddev),
1722                        bdevname(rdev->bdev, b),
1723                        mdname(mddev),
1724                        conf->raid_disks - mddev->degraded);
1725         }
1726 }
1727
1728 /*
1729  * Input: a 'big' sector number,
1730  * Output: index of the data and parity disk, and the sector # in them.
1731  */
1732 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1733                                      int previous, int *dd_idx,
1734                                      struct stripe_head *sh)
1735 {
1736         sector_t stripe, stripe2;
1737         sector_t chunk_number;
1738         unsigned int chunk_offset;
1739         int pd_idx, qd_idx;
1740         int ddf_layout = 0;
1741         sector_t new_sector;
1742         int algorithm = previous ? conf->prev_algo
1743                                  : conf->algorithm;
1744         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1745                                          : conf->chunk_sectors;
1746         int raid_disks = previous ? conf->previous_raid_disks
1747                                   : conf->raid_disks;
1748         int data_disks = raid_disks - conf->max_degraded;
1749
1750         /* First compute the information on this sector */
1751
1752         /*
1753          * Compute the chunk number and the sector offset inside the chunk
1754          */
1755         chunk_offset = sector_div(r_sector, sectors_per_chunk);
1756         chunk_number = r_sector;
1757
1758         /*
1759          * Compute the stripe number
1760          */
1761         stripe = chunk_number;
1762         *dd_idx = sector_div(stripe, data_disks);
1763         stripe2 = stripe;
1764         /*
1765          * Select the parity disk based on the user selected algorithm.
1766          */
1767         pd_idx = qd_idx = ~0;
1768         switch(conf->level) {
1769         case 4:
1770                 pd_idx = data_disks;
1771                 break;
1772         case 5:
1773                 switch (algorithm) {
1774                 case ALGORITHM_LEFT_ASYMMETRIC:
1775                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1776                         if (*dd_idx >= pd_idx)
1777                                 (*dd_idx)++;
1778                         break;
1779                 case ALGORITHM_RIGHT_ASYMMETRIC:
1780                         pd_idx = sector_div(stripe2, raid_disks);
1781                         if (*dd_idx >= pd_idx)
1782                                 (*dd_idx)++;
1783                         break;
1784                 case ALGORITHM_LEFT_SYMMETRIC:
1785                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1786                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1787                         break;
1788                 case ALGORITHM_RIGHT_SYMMETRIC:
1789                         pd_idx = sector_div(stripe2, raid_disks);
1790                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1791                         break;
1792                 case ALGORITHM_PARITY_0:
1793                         pd_idx = 0;
1794                         (*dd_idx)++;
1795                         break;
1796                 case ALGORITHM_PARITY_N:
1797                         pd_idx = data_disks;
1798                         break;
1799                 default:
1800                         BUG();
1801                 }
1802                 break;
1803         case 6:
1804
1805                 switch (algorithm) {
1806                 case ALGORITHM_LEFT_ASYMMETRIC:
1807                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1808                         qd_idx = pd_idx + 1;
1809                         if (pd_idx == raid_disks-1) {
1810                                 (*dd_idx)++;    /* Q D D D P */
1811                                 qd_idx = 0;
1812                         } else if (*dd_idx >= pd_idx)
1813                                 (*dd_idx) += 2; /* D D P Q D */
1814                         break;
1815                 case ALGORITHM_RIGHT_ASYMMETRIC:
1816                         pd_idx = sector_div(stripe2, raid_disks);
1817                         qd_idx = pd_idx + 1;
1818                         if (pd_idx == raid_disks-1) {
1819                                 (*dd_idx)++;    /* Q D D D P */
1820                                 qd_idx = 0;
1821                         } else if (*dd_idx >= pd_idx)
1822                                 (*dd_idx) += 2; /* D D P Q D */
1823                         break;
1824                 case ALGORITHM_LEFT_SYMMETRIC:
1825                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1826                         qd_idx = (pd_idx + 1) % raid_disks;
1827                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1828                         break;
1829                 case ALGORITHM_RIGHT_SYMMETRIC:
1830                         pd_idx = sector_div(stripe2, raid_disks);
1831                         qd_idx = (pd_idx + 1) % raid_disks;
1832                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1833                         break;
1834
1835                 case ALGORITHM_PARITY_0:
1836                         pd_idx = 0;
1837                         qd_idx = 1;
1838                         (*dd_idx) += 2;
1839                         break;
1840                 case ALGORITHM_PARITY_N:
1841                         pd_idx = data_disks;
1842                         qd_idx = data_disks + 1;
1843                         break;
1844
1845                 case ALGORITHM_ROTATING_ZERO_RESTART:
1846                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
1847                          * of blocks for computing Q is different.
1848                          */
1849                         pd_idx = sector_div(stripe2, raid_disks);
1850                         qd_idx = pd_idx + 1;
1851                         if (pd_idx == raid_disks-1) {
1852                                 (*dd_idx)++;    /* Q D D D P */
1853                                 qd_idx = 0;
1854                         } else if (*dd_idx >= pd_idx)
1855                                 (*dd_idx) += 2; /* D D P Q D */
1856                         ddf_layout = 1;
1857                         break;
1858
1859                 case ALGORITHM_ROTATING_N_RESTART:
1860                         /* Same a left_asymmetric, by first stripe is
1861                          * D D D P Q  rather than
1862                          * Q D D D P
1863                          */
1864                         stripe2 += 1;
1865                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1866                         qd_idx = pd_idx + 1;
1867                         if (pd_idx == raid_disks-1) {
1868                                 (*dd_idx)++;    /* Q D D D P */
1869                                 qd_idx = 0;
1870                         } else if (*dd_idx >= pd_idx)
1871                                 (*dd_idx) += 2; /* D D P Q D */
1872                         ddf_layout = 1;
1873                         break;
1874
1875                 case ALGORITHM_ROTATING_N_CONTINUE:
1876                         /* Same as left_symmetric but Q is before P */
1877                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1878                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1879                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1880                         ddf_layout = 1;
1881                         break;
1882
1883                 case ALGORITHM_LEFT_ASYMMETRIC_6:
1884                         /* RAID5 left_asymmetric, with Q on last device */
1885                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1886                         if (*dd_idx >= pd_idx)
1887                                 (*dd_idx)++;
1888                         qd_idx = raid_disks - 1;
1889                         break;
1890
1891                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1892                         pd_idx = sector_div(stripe2, raid_disks-1);
1893                         if (*dd_idx >= pd_idx)
1894                                 (*dd_idx)++;
1895                         qd_idx = raid_disks - 1;
1896                         break;
1897
1898                 case ALGORITHM_LEFT_SYMMETRIC_6:
1899                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1900                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1901                         qd_idx = raid_disks - 1;
1902                         break;
1903
1904                 case ALGORITHM_RIGHT_SYMMETRIC_6:
1905                         pd_idx = sector_div(stripe2, raid_disks-1);
1906                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1907                         qd_idx = raid_disks - 1;
1908                         break;
1909
1910                 case ALGORITHM_PARITY_0_6:
1911                         pd_idx = 0;
1912                         (*dd_idx)++;
1913                         qd_idx = raid_disks - 1;
1914                         break;
1915
1916                 default:
1917                         BUG();
1918                 }
1919                 break;
1920         }
1921
1922         if (sh) {
1923                 sh->pd_idx = pd_idx;
1924                 sh->qd_idx = qd_idx;
1925                 sh->ddf_layout = ddf_layout;
1926         }
1927         /*
1928          * Finally, compute the new sector number
1929          */
1930         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1931         return new_sector;
1932 }
1933
1934
1935 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1936 {
1937         raid5_conf_t *conf = sh->raid_conf;
1938         int raid_disks = sh->disks;
1939         int data_disks = raid_disks - conf->max_degraded;
1940         sector_t new_sector = sh->sector, check;
1941         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1942                                          : conf->chunk_sectors;
1943         int algorithm = previous ? conf->prev_algo
1944                                  : conf->algorithm;
1945         sector_t stripe;
1946         int chunk_offset;
1947         sector_t chunk_number;
1948         int dummy1, dd_idx = i;
1949         sector_t r_sector;
1950         struct stripe_head sh2;
1951
1952
1953         chunk_offset = sector_div(new_sector, sectors_per_chunk);
1954         stripe = new_sector;
1955
1956         if (i == sh->pd_idx)
1957                 return 0;
1958         switch(conf->level) {
1959         case 4: break;
1960         case 5:
1961                 switch (algorithm) {
1962                 case ALGORITHM_LEFT_ASYMMETRIC:
1963                 case ALGORITHM_RIGHT_ASYMMETRIC:
1964                         if (i > sh->pd_idx)
1965                                 i--;
1966                         break;
1967                 case ALGORITHM_LEFT_SYMMETRIC:
1968                 case ALGORITHM_RIGHT_SYMMETRIC:
1969                         if (i < sh->pd_idx)
1970                                 i += raid_disks;
1971                         i -= (sh->pd_idx + 1);
1972                         break;
1973                 case ALGORITHM_PARITY_0:
1974                         i -= 1;
1975                         break;
1976                 case ALGORITHM_PARITY_N:
1977                         break;
1978                 default:
1979                         BUG();
1980                 }
1981                 break;
1982         case 6:
1983                 if (i == sh->qd_idx)
1984                         return 0; /* It is the Q disk */
1985                 switch (algorithm) {
1986                 case ALGORITHM_LEFT_ASYMMETRIC:
1987                 case ALGORITHM_RIGHT_ASYMMETRIC:
1988                 case ALGORITHM_ROTATING_ZERO_RESTART:
1989                 case ALGORITHM_ROTATING_N_RESTART:
1990                         if (sh->pd_idx == raid_disks-1)
1991                                 i--;    /* Q D D D P */
1992                         else if (i > sh->pd_idx)
1993                                 i -= 2; /* D D P Q D */
1994                         break;
1995                 case ALGORITHM_LEFT_SYMMETRIC:
1996                 case ALGORITHM_RIGHT_SYMMETRIC:
1997                         if (sh->pd_idx == raid_disks-1)
1998                                 i--; /* Q D D D P */
1999                         else {
2000                                 /* D D P Q D */
2001                                 if (i < sh->pd_idx)
2002                                         i += raid_disks;
2003                                 i -= (sh->pd_idx + 2);
2004                         }
2005                         break;
2006                 case ALGORITHM_PARITY_0:
2007                         i -= 2;
2008                         break;
2009                 case ALGORITHM_PARITY_N:
2010                         break;
2011                 case ALGORITHM_ROTATING_N_CONTINUE:
2012                         /* Like left_symmetric, but P is before Q */
2013                         if (sh->pd_idx == 0)
2014                                 i--;    /* P D D D Q */
2015                         else {
2016                                 /* D D Q P D */
2017                                 if (i < sh->pd_idx)
2018                                         i += raid_disks;
2019                                 i -= (sh->pd_idx + 1);
2020                         }
2021                         break;
2022                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2023                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2024                         if (i > sh->pd_idx)
2025                                 i--;
2026                         break;
2027                 case ALGORITHM_LEFT_SYMMETRIC_6:
2028                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2029                         if (i < sh->pd_idx)
2030                                 i += data_disks + 1;
2031                         i -= (sh->pd_idx + 1);
2032                         break;
2033                 case ALGORITHM_PARITY_0_6:
2034                         i -= 1;
2035                         break;
2036                 default:
2037                         BUG();
2038                 }
2039                 break;
2040         }
2041
2042         chunk_number = stripe * data_disks + i;
2043         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2044
2045         check = raid5_compute_sector(conf, r_sector,
2046                                      previous, &dummy1, &sh2);
2047         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2048                 || sh2.qd_idx != sh->qd_idx) {
2049                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2050                        mdname(conf->mddev));
2051                 return 0;
2052         }
2053         return r_sector;
2054 }
2055
2056
2057 static void
2058 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2059                          int rcw, int expand)
2060 {
2061         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2062         raid5_conf_t *conf = sh->raid_conf;
2063         int level = conf->level;
2064
2065         if (rcw) {
2066                 /* if we are not expanding this is a proper write request, and
2067                  * there will be bios with new data to be drained into the
2068                  * stripe cache
2069                  */
2070                 if (!expand) {
2071                         sh->reconstruct_state = reconstruct_state_drain_run;
2072                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2073                 } else
2074                         sh->reconstruct_state = reconstruct_state_run;
2075
2076                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2077
2078                 for (i = disks; i--; ) {
2079                         struct r5dev *dev = &sh->dev[i];
2080
2081                         if (dev->towrite) {
2082                                 set_bit(R5_LOCKED, &dev->flags);
2083                                 set_bit(R5_Wantdrain, &dev->flags);
2084                                 if (!expand)
2085                                         clear_bit(R5_UPTODATE, &dev->flags);
2086                                 s->locked++;
2087                         }
2088                 }
2089                 if (s->locked + conf->max_degraded == disks)
2090                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2091                                 atomic_inc(&conf->pending_full_writes);
2092         } else {
2093                 BUG_ON(level == 6);
2094                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2095                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2096
2097                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2098                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2099                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2100                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2101
2102                 for (i = disks; i--; ) {
2103                         struct r5dev *dev = &sh->dev[i];
2104                         if (i == pd_idx)
2105                                 continue;
2106
2107                         if (dev->towrite &&
2108                             (test_bit(R5_UPTODATE, &dev->flags) ||
2109                              test_bit(R5_Wantcompute, &dev->flags))) {
2110                                 set_bit(R5_Wantdrain, &dev->flags);
2111                                 set_bit(R5_LOCKED, &dev->flags);
2112                                 clear_bit(R5_UPTODATE, &dev->flags);
2113                                 s->locked++;
2114                         }
2115                 }
2116         }
2117
2118         /* keep the parity disk(s) locked while asynchronous operations
2119          * are in flight
2120          */
2121         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2122         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2123         s->locked++;
2124
2125         if (level == 6) {
2126                 int qd_idx = sh->qd_idx;
2127                 struct r5dev *dev = &sh->dev[qd_idx];
2128
2129                 set_bit(R5_LOCKED, &dev->flags);
2130                 clear_bit(R5_UPTODATE, &dev->flags);
2131                 s->locked++;
2132         }
2133
2134         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2135                 __func__, (unsigned long long)sh->sector,
2136                 s->locked, s->ops_request);
2137 }
2138
2139 /*
2140  * Each stripe/dev can have one or more bion attached.
2141  * toread/towrite point to the first in a chain.
2142  * The bi_next chain must be in order.
2143  */
2144 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2145 {
2146         struct bio **bip;
2147         raid5_conf_t *conf = sh->raid_conf;
2148         int firstwrite=0;
2149
2150         pr_debug("adding bh b#%llu to stripe s#%llu\n",
2151                 (unsigned long long)bi->bi_sector,
2152                 (unsigned long long)sh->sector);
2153
2154
2155         spin_lock(&sh->lock);
2156         spin_lock_irq(&conf->device_lock);
2157         if (forwrite) {
2158                 bip = &sh->dev[dd_idx].towrite;
2159                 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2160                         firstwrite = 1;
2161         } else
2162                 bip = &sh->dev[dd_idx].toread;
2163         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2164                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2165                         goto overlap;
2166                 bip = & (*bip)->bi_next;
2167         }
2168         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2169                 goto overlap;
2170
2171         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2172         if (*bip)
2173                 bi->bi_next = *bip;
2174         *bip = bi;
2175         bi->bi_phys_segments++;
2176         spin_unlock_irq(&conf->device_lock);
2177         spin_unlock(&sh->lock);
2178
2179         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2180                 (unsigned long long)bi->bi_sector,
2181                 (unsigned long long)sh->sector, dd_idx);
2182
2183         if (conf->mddev->bitmap && firstwrite) {
2184                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2185                                   STRIPE_SECTORS, 0);
2186                 sh->bm_seq = conf->seq_flush+1;
2187                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2188         }
2189
2190         if (forwrite) {
2191                 /* check if page is covered */
2192                 sector_t sector = sh->dev[dd_idx].sector;
2193                 for (bi=sh->dev[dd_idx].towrite;
2194                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2195                              bi && bi->bi_sector <= sector;
2196                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2197                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2198                                 sector = bi->bi_sector + (bi->bi_size>>9);
2199                 }
2200                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2201                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2202         }
2203         return 1;
2204
2205  overlap:
2206         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2207         spin_unlock_irq(&conf->device_lock);
2208         spin_unlock(&sh->lock);
2209         return 0;
2210 }
2211
2212 static void end_reshape(raid5_conf_t *conf);
2213
2214 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2215                             struct stripe_head *sh)
2216 {
2217         int sectors_per_chunk =
2218                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2219         int dd_idx;
2220         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2221         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2222
2223         raid5_compute_sector(conf,
2224                              stripe * (disks - conf->max_degraded)
2225                              *sectors_per_chunk + chunk_offset,
2226                              previous,
2227                              &dd_idx, sh);
2228 }
2229
2230 static void
2231 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2232                                 struct stripe_head_state *s, int disks,
2233                                 struct bio **return_bi)
2234 {
2235         int i;
2236         for (i = disks; i--; ) {
2237                 struct bio *bi;
2238                 int bitmap_end = 0;
2239
2240                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2241                         mdk_rdev_t *rdev;
2242                         rcu_read_lock();
2243                         rdev = rcu_dereference(conf->disks[i].rdev);
2244                         if (rdev && test_bit(In_sync, &rdev->flags))
2245                                 /* multiple read failures in one stripe */
2246                                 md_error(conf->mddev, rdev);
2247                         rcu_read_unlock();
2248                 }
2249                 spin_lock_irq(&conf->device_lock);
2250                 /* fail all writes first */
2251                 bi = sh->dev[i].towrite;
2252                 sh->dev[i].towrite = NULL;
2253                 if (bi) {
2254                         s->to_write--;
2255                         bitmap_end = 1;
2256                 }
2257
2258                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2259                         wake_up(&conf->wait_for_overlap);
2260
2261                 while (bi && bi->bi_sector <
2262                         sh->dev[i].sector + STRIPE_SECTORS) {
2263                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2264                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2265                         if (!raid5_dec_bi_phys_segments(bi)) {
2266                                 md_write_end(conf->mddev);
2267                                 bi->bi_next = *return_bi;
2268                                 *return_bi = bi;
2269                         }
2270                         bi = nextbi;
2271                 }
2272                 /* and fail all 'written' */
2273                 bi = sh->dev[i].written;
2274                 sh->dev[i].written = NULL;
2275                 if (bi) bitmap_end = 1;
2276                 while (bi && bi->bi_sector <
2277                        sh->dev[i].sector + STRIPE_SECTORS) {
2278                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2279                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2280                         if (!raid5_dec_bi_phys_segments(bi)) {
2281                                 md_write_end(conf->mddev);
2282                                 bi->bi_next = *return_bi;
2283                                 *return_bi = bi;
2284                         }
2285                         bi = bi2;
2286                 }
2287
2288                 /* fail any reads if this device is non-operational and
2289                  * the data has not reached the cache yet.
2290                  */
2291                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2292                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2293                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2294                         bi = sh->dev[i].toread;
2295                         sh->dev[i].toread = NULL;
2296                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2297                                 wake_up(&conf->wait_for_overlap);
2298                         if (bi) s->to_read--;
2299                         while (bi && bi->bi_sector <
2300                                sh->dev[i].sector + STRIPE_SECTORS) {
2301                                 struct bio *nextbi =
2302                                         r5_next_bio(bi, sh->dev[i].sector);
2303                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2304                                 if (!raid5_dec_bi_phys_segments(bi)) {
2305                                         bi->bi_next = *return_bi;
2306                                         *return_bi = bi;
2307                                 }
2308                                 bi = nextbi;
2309                         }
2310                 }
2311                 spin_unlock_irq(&conf->device_lock);
2312                 if (bitmap_end)
2313                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2314                                         STRIPE_SECTORS, 0, 0);
2315         }
2316
2317         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2318                 if (atomic_dec_and_test(&conf->pending_full_writes))
2319                         md_wakeup_thread(conf->mddev->thread);
2320 }
2321
2322 /* fetch_block5 - checks the given member device to see if its data needs
2323  * to be read or computed to satisfy a request.
2324  *
2325  * Returns 1 when no more member devices need to be checked, otherwise returns
2326  * 0 to tell the loop in handle_stripe_fill5 to continue
2327  */
2328 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2329                         int disk_idx, int disks)
2330 {
2331         struct r5dev *dev = &sh->dev[disk_idx];
2332         struct r5dev *failed_dev = &sh->dev[s->failed_num];
2333
2334         /* is the data in this block needed, and can we get it? */
2335         if (!test_bit(R5_LOCKED, &dev->flags) &&
2336             !test_bit(R5_UPTODATE, &dev->flags) &&
2337             (dev->toread ||
2338              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2339              s->syncing || s->expanding ||
2340              (s->failed &&
2341               (failed_dev->toread ||
2342                (failed_dev->towrite &&
2343                 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2344                 /* We would like to get this block, possibly by computing it,
2345                  * otherwise read it if the backing disk is insync
2346                  */
2347                 if ((s->uptodate == disks - 1) &&
2348                     (s->failed && disk_idx == s->failed_num)) {
2349                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2350                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2351                         set_bit(R5_Wantcompute, &dev->flags);
2352                         sh->ops.target = disk_idx;
2353                         sh->ops.target2 = -1;
2354                         s->req_compute = 1;
2355                         /* Careful: from this point on 'uptodate' is in the eye
2356                          * of raid_run_ops which services 'compute' operations
2357                          * before writes. R5_Wantcompute flags a block that will
2358                          * be R5_UPTODATE by the time it is needed for a
2359                          * subsequent operation.
2360                          */
2361                         s->uptodate++;
2362                         return 1; /* uptodate + compute == disks */
2363                 } else if (test_bit(R5_Insync, &dev->flags)) {
2364                         set_bit(R5_LOCKED, &dev->flags);
2365                         set_bit(R5_Wantread, &dev->flags);
2366                         s->locked++;
2367                         pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2368                                 s->syncing);
2369                 }
2370         }
2371
2372         return 0;
2373 }
2374
2375 /**
2376  * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2377  */
2378 static void handle_stripe_fill5(struct stripe_head *sh,
2379                         struct stripe_head_state *s, int disks)
2380 {
2381         int i;
2382
2383         /* look for blocks to read/compute, skip this if a compute
2384          * is already in flight, or if the stripe contents are in the
2385          * midst of changing due to a write
2386          */
2387         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2388             !sh->reconstruct_state)
2389                 for (i = disks; i--; )
2390                         if (fetch_block5(sh, s, i, disks))
2391                                 break;
2392         set_bit(STRIPE_HANDLE, &sh->state);
2393 }
2394
2395 /* fetch_block6 - checks the given member device to see if its data needs
2396  * to be read or computed to satisfy a request.
2397  *
2398  * Returns 1 when no more member devices need to be checked, otherwise returns
2399  * 0 to tell the loop in handle_stripe_fill6 to continue
2400  */
2401 static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
2402                          struct r6_state *r6s, int disk_idx, int disks)
2403 {
2404         struct r5dev *dev = &sh->dev[disk_idx];
2405         struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
2406                                   &sh->dev[r6s->failed_num[1]] };
2407
2408         if (!test_bit(R5_LOCKED, &dev->flags) &&
2409             !test_bit(R5_UPTODATE, &dev->flags) &&
2410             (dev->toread ||
2411              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2412              s->syncing || s->expanding ||
2413              (s->failed >= 1 &&
2414               (fdev[0]->toread || s->to_write)) ||
2415              (s->failed >= 2 &&
2416               (fdev[1]->toread || s->to_write)))) {
2417                 /* we would like to get this block, possibly by computing it,
2418                  * otherwise read it if the backing disk is insync
2419                  */
2420                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2421                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2422                 if ((s->uptodate == disks - 1) &&
2423                     (s->failed && (disk_idx == r6s->failed_num[0] ||
2424                                    disk_idx == r6s->failed_num[1]))) {
2425                         /* have disk failed, and we're requested to fetch it;
2426                          * do compute it
2427                          */
2428                         pr_debug("Computing stripe %llu block %d\n",
2429                                (unsigned long long)sh->sector, disk_idx);
2430                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2431                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2432                         set_bit(R5_Wantcompute, &dev->flags);
2433                         sh->ops.target = disk_idx;
2434                         sh->ops.target2 = -1; /* no 2nd target */
2435                         s->req_compute = 1;
2436                         s->uptodate++;
2437                         return 1;
2438                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2439                         /* Computing 2-failure is *very* expensive; only
2440                          * do it if failed >= 2
2441                          */
2442                         int other;
2443                         for (other = disks; other--; ) {
2444                                 if (other == disk_idx)
2445                                         continue;
2446                                 if (!test_bit(R5_UPTODATE,
2447                                       &sh->dev[other].flags))
2448                                         break;
2449                         }
2450                         BUG_ON(other < 0);
2451                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2452                                (unsigned long long)sh->sector,
2453                                disk_idx, other);
2454                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2455                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2456                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2457                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2458                         sh->ops.target = disk_idx;
2459                         sh->ops.target2 = other;
2460                         s->uptodate += 2;
2461                         s->req_compute = 1;
2462                         return 1;
2463                 } else if (test_bit(R5_Insync, &dev->flags)) {
2464                         set_bit(R5_LOCKED, &dev->flags);
2465                         set_bit(R5_Wantread, &dev->flags);
2466                         s->locked++;
2467                         pr_debug("Reading block %d (sync=%d)\n",
2468                                 disk_idx, s->syncing);
2469                 }
2470         }
2471
2472         return 0;
2473 }
2474
2475 /**
2476  * handle_stripe_fill6 - read or compute data to satisfy pending requests.
2477  */
2478 static void handle_stripe_fill6(struct stripe_head *sh,
2479                         struct stripe_head_state *s, struct r6_state *r6s,
2480                         int disks)
2481 {
2482         int i;
2483
2484         /* look for blocks to read/compute, skip this if a compute
2485          * is already in flight, or if the stripe contents are in the
2486          * midst of changing due to a write
2487          */
2488         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2489             !sh->reconstruct_state)
2490                 for (i = disks; i--; )
2491                         if (fetch_block6(sh, s, r6s, i, disks))
2492                                 break;
2493         set_bit(STRIPE_HANDLE, &sh->state);
2494 }
2495
2496
2497 /* handle_stripe_clean_event
2498  * any written block on an uptodate or failed drive can be returned.
2499  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2500  * never LOCKED, so we don't need to test 'failed' directly.
2501  */
2502 static void handle_stripe_clean_event(raid5_conf_t *conf,
2503         struct stripe_head *sh, int disks, struct bio **return_bi)
2504 {
2505         int i;
2506         struct r5dev *dev;
2507
2508         for (i = disks; i--; )
2509                 if (sh->dev[i].written) {
2510                         dev = &sh->dev[i];
2511                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2512                                 test_bit(R5_UPTODATE, &dev->flags)) {
2513                                 /* We can return any write requests */
2514                                 struct bio *wbi, *wbi2;
2515                                 int bitmap_end = 0;
2516                                 pr_debug("Return write for disc %d\n", i);
2517                                 spin_lock_irq(&conf->device_lock);
2518                                 wbi = dev->written;
2519                                 dev->written = NULL;
2520                                 while (wbi && wbi->bi_sector <
2521                                         dev->sector + STRIPE_SECTORS) {
2522                                         wbi2 = r5_next_bio(wbi, dev->sector);
2523                                         if (!raid5_dec_bi_phys_segments(wbi)) {
2524                                                 md_write_end(conf->mddev);
2525                                                 wbi->bi_next = *return_bi;
2526                                                 *return_bi = wbi;
2527                                         }
2528                                         wbi = wbi2;
2529                                 }
2530                                 if (dev->towrite == NULL)
2531                                         bitmap_end = 1;
2532                                 spin_unlock_irq(&conf->device_lock);
2533                                 if (bitmap_end)
2534                                         bitmap_endwrite(conf->mddev->bitmap,
2535                                                         sh->sector,
2536                                                         STRIPE_SECTORS,
2537                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2538                                                         0);
2539                         }
2540                 }
2541
2542         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2543                 if (atomic_dec_and_test(&conf->pending_full_writes))
2544                         md_wakeup_thread(conf->mddev->thread);
2545 }
2546
2547 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2548                 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2549 {
2550         int rmw = 0, rcw = 0, i;
2551         for (i = disks; i--; ) {
2552                 /* would I have to read this buffer for read_modify_write */
2553                 struct r5dev *dev = &sh->dev[i];
2554                 if ((dev->towrite || i == sh->pd_idx) &&
2555                     !test_bit(R5_LOCKED, &dev->flags) &&
2556                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2557                       test_bit(R5_Wantcompute, &dev->flags))) {
2558                         if (test_bit(R5_Insync, &dev->flags))
2559                                 rmw++;
2560                         else
2561                                 rmw += 2*disks;  /* cannot read it */
2562                 }
2563                 /* Would I have to read this buffer for reconstruct_write */
2564                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2565                     !test_bit(R5_LOCKED, &dev->flags) &&
2566                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2567                     test_bit(R5_Wantcompute, &dev->flags))) {
2568                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2569                         else
2570                                 rcw += 2*disks;
2571                 }
2572         }
2573         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2574                 (unsigned long long)sh->sector, rmw, rcw);
2575         set_bit(STRIPE_HANDLE, &sh->state);
2576         if (rmw < rcw && rmw > 0)
2577                 /* prefer read-modify-write, but need to get some data */
2578                 for (i = disks; i--; ) {
2579                         struct r5dev *dev = &sh->dev[i];
2580                         if ((dev->towrite || i == sh->pd_idx) &&
2581                             !test_bit(R5_LOCKED, &dev->flags) &&
2582                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2583                             test_bit(R5_Wantcompute, &dev->flags)) &&
2584                             test_bit(R5_Insync, &dev->flags)) {
2585                                 if (
2586                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2587                                         pr_debug("Read_old block "
2588                                                 "%d for r-m-w\n", i);
2589                                         set_bit(R5_LOCKED, &dev->flags);
2590                                         set_bit(R5_Wantread, &dev->flags);
2591                                         s->locked++;
2592                                 } else {
2593                                         set_bit(STRIPE_DELAYED, &sh->state);
2594                                         set_bit(STRIPE_HANDLE, &sh->state);
2595                                 }
2596                         }
2597                 }
2598         if (rcw <= rmw && rcw > 0)
2599                 /* want reconstruct write, but need to get some data */
2600                 for (i = disks; i--; ) {
2601                         struct r5dev *dev = &sh->dev[i];
2602                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2603                             i != sh->pd_idx &&
2604                             !test_bit(R5_LOCKED, &dev->flags) &&
2605                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2606                             test_bit(R5_Wantcompute, &dev->flags)) &&
2607                             test_bit(R5_Insync, &dev->flags)) {
2608                                 if (
2609                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2610                                         pr_debug("Read_old block "
2611                                                 "%d for Reconstruct\n", i);
2612                                         set_bit(R5_LOCKED, &dev->flags);
2613                                         set_bit(R5_Wantread, &dev->flags);
2614                                         s->locked++;
2615                                 } else {
2616                                         set_bit(STRIPE_DELAYED, &sh->state);
2617                                         set_bit(STRIPE_HANDLE, &sh->state);
2618                                 }
2619                         }
2620                 }
2621         /* now if nothing is locked, and if we have enough data,
2622          * we can start a write request
2623          */
2624         /* since handle_stripe can be called at any time we need to handle the
2625          * case where a compute block operation has been submitted and then a
2626          * subsequent call wants to start a write request.  raid_run_ops only
2627          * handles the case where compute block and reconstruct are requested
2628          * simultaneously.  If this is not the case then new writes need to be
2629          * held off until the compute completes.
2630          */
2631         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2632             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2633             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2634                 schedule_reconstruction(sh, s, rcw == 0, 0);
2635 }
2636
2637 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2638                 struct stripe_head *sh, struct stripe_head_state *s,
2639                 struct r6_state *r6s, int disks)
2640 {
2641         int rcw = 0, pd_idx = sh->pd_idx, i;
2642         int qd_idx = sh->qd_idx;
2643
2644         set_bit(STRIPE_HANDLE, &sh->state);
2645         for (i = disks; i--; ) {
2646                 struct r5dev *dev = &sh->dev[i];
2647                 /* check if we haven't enough data */
2648                 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2649                     i != pd_idx && i != qd_idx &&
2650                     !test_bit(R5_LOCKED, &dev->flags) &&
2651                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2652                       test_bit(R5_Wantcompute, &dev->flags))) {
2653                         rcw++;
2654                         if (!test_bit(R5_Insync, &dev->flags))
2655                                 continue; /* it's a failed drive */
2656
2657                         if (
2658                           test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2659                                 pr_debug("Read_old stripe %llu "
2660                                         "block %d for Reconstruct\n",
2661                                      (unsigned long long)sh->sector, i);
2662                                 set_bit(R5_LOCKED, &dev->flags);
2663                                 set_bit(R5_Wantread, &dev->flags);
2664                                 s->locked++;
2665                         } else {
2666                                 pr_debug("Request delayed stripe %llu "
2667                                         "block %d for Reconstruct\n",
2668                                      (unsigned long long)sh->sector, i);
2669                                 set_bit(STRIPE_DELAYED, &sh->state);
2670                                 set_bit(STRIPE_HANDLE, &sh->state);
2671                         }
2672                 }
2673         }
2674         /* now if nothing is locked, and if we have enough data, we can start a
2675          * write request
2676          */
2677         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2678             s->locked == 0 && rcw == 0 &&
2679             !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2680                 schedule_reconstruction(sh, s, 1, 0);
2681         }
2682 }
2683
2684 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2685                                 struct stripe_head_state *s, int disks)
2686 {
2687         struct r5dev *dev = NULL;
2688
2689         set_bit(STRIPE_HANDLE, &sh->state);
2690
2691         switch (sh->check_state) {
2692         case check_state_idle:
2693                 /* start a new check operation if there are no failures */
2694                 if (s->failed == 0) {
2695                         BUG_ON(s->uptodate != disks);
2696                         sh->check_state = check_state_run;
2697                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2698                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2699                         s->uptodate--;
2700                         break;
2701                 }
2702                 dev = &sh->dev[s->failed_num];
2703                 /* fall through */
2704         case check_state_compute_result:
2705                 sh->check_state = check_state_idle;
2706                 if (!dev)
2707                         dev = &sh->dev[sh->pd_idx];
2708
2709                 /* check that a write has not made the stripe insync */
2710                 if (test_bit(STRIPE_INSYNC, &sh->state))
2711                         break;
2712
2713                 /* either failed parity check, or recovery is happening */
2714                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2715                 BUG_ON(s->uptodate != disks);
2716
2717                 set_bit(R5_LOCKED, &dev->flags);
2718                 s->locked++;
2719                 set_bit(R5_Wantwrite, &dev->flags);
2720
2721                 clear_bit(STRIPE_DEGRADED, &sh->state);
2722                 set_bit(STRIPE_INSYNC, &sh->state);
2723                 break;
2724         case check_state_run:
2725                 break; /* we will be called again upon completion */
2726         case check_state_check_result:
2727                 sh->check_state = check_state_idle;
2728
2729                 /* if a failure occurred during the check operation, leave
2730                  * STRIPE_INSYNC not set and let the stripe be handled again
2731                  */
2732                 if (s->failed)
2733                         break;
2734
2735                 /* handle a successful check operation, if parity is correct
2736                  * we are done.  Otherwise update the mismatch count and repair
2737                  * parity if !MD_RECOVERY_CHECK
2738                  */
2739                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2740                         /* parity is correct (on disc,
2741                          * not in buffer any more)
2742                          */
2743                         set_bit(STRIPE_INSYNC, &sh->state);
2744                 else {
2745                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2746                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2747                                 /* don't try to repair!! */
2748                                 set_bit(STRIPE_INSYNC, &sh->state);
2749                         else {
2750                                 sh->check_state = check_state_compute_run;
2751                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2752                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2753                                 set_bit(R5_Wantcompute,
2754                                         &sh->dev[sh->pd_idx].flags);
2755                                 sh->ops.target = sh->pd_idx;
2756                                 sh->ops.target2 = -1;
2757                                 s->uptodate++;
2758                         }
2759                 }
2760                 break;
2761         case check_state_compute_run:
2762                 break;
2763         default:
2764                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2765                        __func__, sh->check_state,
2766                        (unsigned long long) sh->sector);
2767                 BUG();
2768         }
2769 }
2770
2771
2772 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2773                                   struct stripe_head_state *s,
2774                                   struct r6_state *r6s, int disks)
2775 {
2776         int pd_idx = sh->pd_idx;
2777         int qd_idx = sh->qd_idx;
2778         struct r5dev *dev;
2779
2780         set_bit(STRIPE_HANDLE, &sh->state);
2781
2782         BUG_ON(s->failed > 2);
2783
2784         /* Want to check and possibly repair P and Q.
2785          * However there could be one 'failed' device, in which
2786          * case we can only check one of them, possibly using the
2787          * other to generate missing data
2788          */
2789
2790         switch (sh->check_state) {
2791         case check_state_idle:
2792                 /* start a new check operation if there are < 2 failures */
2793                 if (s->failed == r6s->q_failed) {
2794                         /* The only possible failed device holds Q, so it
2795                          * makes sense to check P (If anything else were failed,
2796                          * we would have used P to recreate it).
2797                          */
2798                         sh->check_state = check_state_run;
2799                 }
2800                 if (!r6s->q_failed && s->failed < 2) {
2801                         /* Q is not failed, and we didn't use it to generate
2802                          * anything, so it makes sense to check it
2803                          */
2804                         if (sh->check_state == check_state_run)
2805                                 sh->check_state = check_state_run_pq;
2806                         else
2807                                 sh->check_state = check_state_run_q;
2808                 }
2809
2810                 /* discard potentially stale zero_sum_result */
2811                 sh->ops.zero_sum_result = 0;
2812
2813                 if (sh->check_state == check_state_run) {
2814                         /* async_xor_zero_sum destroys the contents of P */
2815                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2816                         s->uptodate--;
2817                 }
2818                 if (sh->check_state >= check_state_run &&
2819                     sh->check_state <= check_state_run_pq) {
2820                         /* async_syndrome_zero_sum preserves P and Q, so
2821                          * no need to mark them !uptodate here
2822                          */
2823                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2824                         break;
2825                 }
2826
2827                 /* we have 2-disk failure */
2828                 BUG_ON(s->failed != 2);
2829                 /* fall through */
2830         case check_state_compute_result:
2831                 sh->check_state = check_state_idle;
2832
2833                 /* check that a write has not made the stripe insync */
2834                 if (test_bit(STRIPE_INSYNC, &sh->state))
2835                         break;
2836
2837                 /* now write out any block on a failed drive,
2838                  * or P or Q if they were recomputed
2839                  */
2840                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2841                 if (s->failed == 2) {
2842                         dev = &sh->dev[r6s->failed_num[1]];
2843                         s->locked++;
2844                         set_bit(R5_LOCKED, &dev->flags);
2845                         set_bit(R5_Wantwrite, &dev->flags);
2846                 }
2847                 if (s->failed >= 1) {
2848                         dev = &sh->dev[r6s->failed_num[0]];
2849                         s->locked++;
2850                         set_bit(R5_LOCKED, &dev->flags);
2851                         set_bit(R5_Wantwrite, &dev->flags);
2852                 }
2853                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2854                         dev = &sh->dev[pd_idx];
2855                         s->locked++;
2856                         set_bit(R5_LOCKED, &dev->flags);
2857                         set_bit(R5_Wantwrite, &dev->flags);
2858                 }
2859                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2860                         dev = &sh->dev[qd_idx];
2861                         s->locked++;
2862                         set_bit(R5_LOCKED, &dev->flags);
2863                         set_bit(R5_Wantwrite, &dev->flags);
2864                 }
2865                 clear_bit(STRIPE_DEGRADED, &sh->state);
2866
2867                 set_bit(STRIPE_INSYNC, &sh->state);
2868                 break;
2869         case check_state_run:
2870         case check_state_run_q:
2871         case check_state_run_pq:
2872                 break; /* we will be called again upon completion */
2873         case check_state_check_result:
2874                 sh->check_state = check_state_idle;
2875
2876                 /* handle a successful check operation, if parity is correct
2877                  * we are done.  Otherwise update the mismatch count and repair
2878                  * parity if !MD_RECOVERY_CHECK
2879                  */
2880                 if (sh->ops.zero_sum_result == 0) {
2881                         /* both parities are correct */
2882                         if (!s->failed)
2883                                 set_bit(STRIPE_INSYNC, &sh->state);
2884                         else {
2885                                 /* in contrast to the raid5 case we can validate
2886                                  * parity, but still have a failure to write
2887                                  * back
2888                                  */
2889                                 sh->check_state = check_state_compute_result;
2890                                 /* Returning at this point means that we may go
2891                                  * off and bring p and/or q uptodate again so
2892                                  * we make sure to check zero_sum_result again
2893                                  * to verify if p or q need writeback
2894                                  */
2895                         }
2896                 } else {
2897                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2898                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2899                                 /* don't try to repair!! */
2900                                 set_bit(STRIPE_INSYNC, &sh->state);
2901                         else {
2902                                 int *target = &sh->ops.target;
2903
2904                                 sh->ops.target = -1;
2905                                 sh->ops.target2 = -1;
2906                                 sh->check_state = check_state_compute_run;
2907                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2908                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2909                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2910                                         set_bit(R5_Wantcompute,
2911                                                 &sh->dev[pd_idx].flags);
2912                                         *target = pd_idx;
2913                                         target = &sh->ops.target2;
2914                                         s->uptodate++;
2915                                 }
2916                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2917                                         set_bit(R5_Wantcompute,
2918                                                 &sh->dev[qd_idx].flags);
2919                                         *target = qd_idx;
2920                                         s->uptodate++;
2921                                 }
2922                         }
2923                 }
2924                 break;
2925         case check_state_compute_run:
2926                 break;
2927         default:
2928                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2929                        __func__, sh->check_state,
2930                        (unsigned long long) sh->sector);
2931                 BUG();
2932         }
2933 }
2934
2935 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2936                                 struct r6_state *r6s)
2937 {
2938         int i;
2939
2940         /* We have read all the blocks in this stripe and now we need to
2941          * copy some of them into a target stripe for expand.
2942          */
2943         struct dma_async_tx_descriptor *tx = NULL;
2944         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2945         for (i = 0; i < sh->disks; i++)
2946                 if (i != sh->pd_idx && i != sh->qd_idx) {
2947                         int dd_idx, j;
2948                         struct stripe_head *sh2;
2949                         struct async_submit_ctl submit;
2950
2951                         sector_t bn = compute_blocknr(sh, i, 1);
2952                         sector_t s = raid5_compute_sector(conf, bn, 0,
2953                                                           &dd_idx, NULL);
2954                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
2955                         if (sh2 == NULL)
2956                                 /* so far only the early blocks of this stripe
2957                                  * have been requested.  When later blocks
2958                                  * get requested, we will try again
2959                                  */
2960                                 continue;
2961                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2962                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2963                                 /* must have already done this block */
2964                                 release_stripe(sh2);
2965                                 continue;
2966                         }
2967
2968                         /* place all the copies on one channel */
2969                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2970                         tx = async_memcpy(sh2->dev[dd_idx].page,
2971                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
2972                                           &submit);
2973
2974                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2975                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2976                         for (j = 0; j < conf->raid_disks; j++)
2977                                 if (j != sh2->pd_idx &&
2978                                     (!r6s || j != sh2->qd_idx) &&
2979                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
2980                                         break;
2981                         if (j == conf->raid_disks) {
2982                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2983                                 set_bit(STRIPE_HANDLE, &sh2->state);
2984                         }
2985                         release_stripe(sh2);
2986
2987                 }
2988         /* done submitting copies, wait for them to complete */
2989         if (tx) {
2990                 async_tx_ack(tx);
2991                 dma_wait_for_async_tx(tx);
2992         }
2993 }
2994
2995
2996 /*
2997  * handle_stripe - do things to a stripe.
2998  *
2999  * We lock the stripe and then examine the state of various bits
3000  * to see what needs to be done.
3001  * Possible results:
3002  *    return some read request which now have data
3003  *    return some write requests which are safely on disc
3004  *    schedule a read on some buffers
3005  *    schedule a write of some buffers
3006  *    return confirmation of parity correctness
3007  *
3008  * buffers are taken off read_list or write_list, and bh_cache buffers
3009  * get BH_Lock set before the stripe lock is released.
3010  *
3011  */
3012
3013 static void handle_stripe5(struct stripe_head *sh)
3014 {
3015         raid5_conf_t *conf = sh->raid_conf;
3016         int disks = sh->disks, i;
3017         struct bio *return_bi = NULL;
3018         struct stripe_head_state s;
3019         struct r5dev *dev;
3020         mdk_rdev_t *blocked_rdev = NULL;
3021         int prexor;
3022         int dec_preread_active = 0;
3023
3024         memset(&s, 0, sizeof(s));
3025         pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
3026                  "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
3027                  atomic_read(&sh->count), sh->pd_idx, sh->check_state,
3028                  sh->reconstruct_state);
3029
3030         spin_lock(&sh->lock);
3031         clear_bit(STRIPE_HANDLE, &sh->state);
3032         clear_bit(STRIPE_DELAYED, &sh->state);
3033
3034         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3035         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3036         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3037
3038         /* Now to look around and see what can be done */
3039         rcu_read_lock();
3040         for (i=disks; i--; ) {
3041                 mdk_rdev_t *rdev;
3042
3043                 dev = &sh->dev[i];
3044
3045                 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
3046                         "written %p\n", i, dev->flags, dev->toread, dev->read,
3047                         dev->towrite, dev->written);
3048
3049                 /* maybe we can request a biofill operation
3050                  *
3051                  * new wantfill requests are only permitted while
3052                  * ops_complete_biofill is guaranteed to be inactive
3053                  */
3054                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3055                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3056                         set_bit(R5_Wantfill, &dev->flags);
3057
3058                 /* now count some things */
3059                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3060                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3061                 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
3062
3063                 if (test_bit(R5_Wantfill, &dev->flags))
3064                         s.to_fill++;
3065                 else if (dev->toread)
3066                         s.to_read++;
3067                 if (dev->towrite) {
3068                         s.to_write++;
3069                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3070                                 s.non_overwrite++;
3071                 }
3072                 if (dev->written)
3073                         s.written++;
3074                 rdev = rcu_dereference(conf->disks[i].rdev);
3075                 if (blocked_rdev == NULL &&
3076                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3077                         blocked_rdev = rdev;
3078                         atomic_inc(&rdev->nr_pending);
3079                 }
3080                 clear_bit(R5_Insync, &dev->flags);
3081                 if (!rdev)
3082                         /* Not in-sync */;
3083                 else if (test_bit(In_sync, &rdev->flags))
3084                         set_bit(R5_Insync, &dev->flags);
3085                 else {
3086                         /* could be in-sync depending on recovery/reshape status */
3087                         if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3088                                 set_bit(R5_Insync, &dev->flags);
3089                 }
3090                 if (!test_bit(R5_Insync, &dev->flags)) {
3091                         /* The ReadError flag will just be confusing now */
3092                         clear_bit(R5_ReadError, &dev->flags);
3093                         clear_bit(R5_ReWrite, &dev->flags);
3094                 }
3095                 if (test_bit(R5_ReadError, &dev->flags))
3096                         clear_bit(R5_Insync, &dev->flags);
3097                 if (!test_bit(R5_Insync, &dev->flags)) {
3098                         s.failed++;
3099                         s.failed_num = i;
3100                 }
3101         }
3102         rcu_read_unlock();
3103
3104         if (unlikely(blocked_rdev)) {
3105                 if (s.syncing || s.expanding || s.expanded ||
3106                     s.to_write || s.written) {
3107                         set_bit(STRIPE_HANDLE, &sh->state);
3108                         goto unlock;
3109                 }
3110                 /* There is nothing for the blocked_rdev to block */
3111                 rdev_dec_pending(blocked_rdev, conf->mddev);
3112                 blocked_rdev = NULL;
3113         }
3114
3115         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3116                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3117                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3118         }
3119
3120         pr_debug("locked=%d uptodate=%d to_read=%d"
3121                 " to_write=%d failed=%d failed_num=%d\n",
3122                 s.locked, s.uptodate, s.to_read, s.to_write,
3123                 s.failed, s.failed_num);
3124         /* check if the array has lost two devices and, if so, some requests might
3125          * need to be failed
3126          */
3127         if (s.failed > 1 && s.to_read+s.to_write+s.written)
3128                 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3129         if (s.failed > 1 && s.syncing) {
3130                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3131                 clear_bit(STRIPE_SYNCING, &sh->state);
3132                 s.syncing = 0;
3133         }
3134
3135         /* might be able to return some write requests if the parity block
3136          * is safe, or on a failed drive
3137          */
3138         dev = &sh->dev[sh->pd_idx];
3139         if ( s.written &&
3140              ((test_bit(R5_Insync, &dev->flags) &&
3141                !test_bit(R5_LOCKED, &dev->flags) &&
3142                test_bit(R5_UPTODATE, &dev->flags)) ||
3143                (s.failed == 1 && s.failed_num == sh->pd_idx)))
3144                 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3145
3146         /* Now we might consider reading some blocks, either to check/generate
3147          * parity, or to satisfy requests
3148          * or to load a block that is being partially written.
3149          */
3150         if (s.to_read || s.non_overwrite ||
3151             (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3152                 handle_stripe_fill5(sh, &s, disks);
3153
3154         /* Now we check to see if any write operations have recently
3155          * completed
3156          */
3157         prexor = 0;
3158         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3159                 prexor = 1;
3160         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3161             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3162                 sh->reconstruct_state = reconstruct_state_idle;
3163
3164                 /* All the 'written' buffers and the parity block are ready to
3165                  * be written back to disk
3166                  */
3167                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3168                 for (i = disks; i--; ) {
3169                         dev = &sh->dev[i];
3170                         if (test_bit(R5_LOCKED, &dev->flags) &&
3171                                 (i == sh->pd_idx || dev->written)) {
3172                                 pr_debug("Writing block %d\n", i);
3173                                 set_bit(R5_Wantwrite, &dev->flags);
3174                                 if (prexor)
3175                                         continue;
3176                                 if (!test_bit(R5_Insync, &dev->flags) ||
3177                                     (i == sh->pd_idx && s.failed == 0))
3178                                         set_bit(STRIPE_INSYNC, &sh->state);
3179                         }
3180                 }
3181                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3182                         dec_preread_active = 1;
3183         }
3184
3185         /* Now to consider new write requests and what else, if anything
3186          * should be read.  We do not handle new writes when:
3187          * 1/ A 'write' operation (copy+xor) is already in flight.
3188          * 2/ A 'check' operation is in flight, as it may clobber the parity
3189          *    block.
3190          */
3191         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3192                 handle_stripe_dirtying5(conf, sh, &s, disks);
3193
3194         /* maybe we need to check and possibly fix the parity for this stripe
3195          * Any reads will already have been scheduled, so we just see if enough
3196          * data is available.  The parity check is held off while parity
3197          * dependent operations are in flight.
3198          */
3199         if (sh->check_state ||
3200             (s.syncing && s.locked == 0 &&
3201              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3202              !test_bit(STRIPE_INSYNC, &sh->state)))
3203                 handle_parity_checks5(conf, sh, &s, disks);
3204
3205         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3206                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3207                 clear_bit(STRIPE_SYNCING, &sh->state);
3208         }
3209
3210         /* If the failed drive is just a ReadError, then we might need to progress
3211          * the repair/check process
3212          */
3213         if (s.failed == 1 && !conf->mddev->ro &&
3214             test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
3215             && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
3216             && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
3217                 ) {
3218                 dev = &sh->dev[s.failed_num];
3219                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3220                         set_bit(R5_Wantwrite, &dev->flags);
3221                         set_bit(R5_ReWrite, &dev->flags);
3222                         set_bit(R5_LOCKED, &dev->flags);
3223                         s.locked++;
3224                 } else {
3225                         /* let's read it back */
3226                         set_bit(R5_Wantread, &dev->flags);
3227                         set_bit(R5_LOCKED, &dev->flags);
3228                         s.locked++;
3229                 }
3230         }
3231
3232         /* Finish reconstruct operations initiated by the expansion process */
3233         if (sh->reconstruct_state == reconstruct_state_result) {
3234                 struct stripe_head *sh2
3235                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3236                 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3237                         /* sh cannot be written until sh2 has been read.
3238                          * so arrange for sh to be delayed a little
3239                          */
3240                         set_bit(STRIPE_DELAYED, &sh->state);
3241                         set_bit(STRIPE_HANDLE, &sh->state);
3242                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3243                                               &sh2->state))
3244                                 atomic_inc(&conf->preread_active_stripes);
3245                         release_stripe(sh2);
3246                         goto unlock;
3247                 }
3248                 if (sh2)
3249                         release_stripe(sh2);
3250
3251                 sh->reconstruct_state = reconstruct_state_idle;
3252                 clear_bit(STRIPE_EXPANDING, &sh->state);
3253                 for (i = conf->raid_disks; i--; ) {
3254                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3255                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3256                         s.locked++;
3257                 }
3258         }
3259
3260         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3261             !sh->reconstruct_state) {
3262                 /* Need to write out all blocks after computing parity */
3263                 sh->disks = conf->raid_disks;
3264                 stripe_set_idx(sh->sector, conf, 0, sh);
3265                 schedule_reconstruction(sh, &s, 1, 1);
3266         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3267                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3268                 atomic_dec(&conf->reshape_stripes);
3269                 wake_up(&conf->wait_for_overlap);
3270                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3271         }
3272
3273         if (s.expanding && s.locked == 0 &&
3274             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3275                 handle_stripe_expansion(conf, sh, NULL);
3276
3277  unlock:
3278         spin_unlock(&sh->lock);
3279
3280         /* wait for this device to become unblocked */
3281         if (unlikely(blocked_rdev))
3282                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3283
3284         if (s.ops_request)
3285                 raid_run_ops(sh, s.ops_request);
3286
3287         ops_run_io(sh, &s);
3288
3289         if (dec_preread_active) {
3290                 /* We delay this until after ops_run_io so that if make_request
3291                  * is waiting on a flush, it won't continue until the writes
3292                  * have actually been submitted.
3293                  */
3294                 atomic_dec(&conf->preread_active_stripes);
3295                 if (atomic_read(&conf->preread_active_stripes) <
3296                     IO_THRESHOLD)
3297                         md_wakeup_thread(conf->mddev->thread);
3298         }
3299         return_io(return_bi);
3300 }
3301
3302 static void handle_stripe6(struct stripe_head *sh)
3303 {
3304         raid5_conf_t *conf = sh->raid_conf;
3305         int disks = sh->disks;
3306         struct bio *return_bi = NULL;
3307         int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3308         struct stripe_head_state s;
3309         struct r6_state r6s;
3310         struct r5dev *dev, *pdev, *qdev;
3311         mdk_rdev_t *blocked_rdev = NULL;
3312         int dec_preread_active = 0;
3313
3314         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3315                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3316                (unsigned long long)sh->sector, sh->state,
3317                atomic_read(&sh->count), pd_idx, qd_idx,
3318                sh->check_state, sh->reconstruct_state);
3319         memset(&s, 0, sizeof(s));
3320
3321         spin_lock(&sh->lock);
3322         clear_bit(STRIPE_HANDLE, &sh->state);
3323         clear_bit(STRIPE_DELAYED, &sh->state);
3324
3325         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3326         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3327         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3328         /* Now to look around and see what can be done */
3329
3330         rcu_read_lock();
3331         for (i=disks; i--; ) {
3332                 mdk_rdev_t *rdev;
3333                 dev = &sh->dev[i];
3334
3335                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3336                         i, dev->flags, dev->toread, dev->towrite, dev->written);
3337                 /* maybe we can reply to a read
3338                  *
3339                  * new wantfill requests are only permitted while
3340                  * ops_complete_biofill is guaranteed to be inactive
3341                  */
3342                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3343                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3344                         set_bit(R5_Wantfill, &dev->flags);
3345
3346                 /* now count some things */
3347                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3348                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3349                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3350                         s.compute++;
3351                         BUG_ON(s.compute > 2);
3352                 }
3353
3354                 if (test_bit(R5_Wantfill, &dev->flags)) {
3355                         s.to_fill++;
3356                 } else if (dev->toread)
3357                         s.to_read++;
3358                 if (dev->towrite) {
3359                         s.to_write++;
3360                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3361                                 s.non_overwrite++;
3362                 }
3363                 if (dev->written)
3364                         s.written++;
3365                 rdev = rcu_dereference(conf->disks[i].rdev);
3366                 if (blocked_rdev == NULL &&
3367                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3368                         blocked_rdev = rdev;
3369                         atomic_inc(&rdev->nr_pending);
3370                 }
3371                 clear_bit(R5_Insync, &dev->flags);
3372                 if (!rdev)
3373                         /* Not in-sync */;
3374                 else if (test_bit(In_sync, &rdev->flags))
3375                         set_bit(R5_Insync, &dev->flags);
3376                 else {
3377                         /* in sync if before recovery_offset */
3378                         if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3379                                 set_bit(R5_Insync, &dev->flags);
3380                 }
3381                 if (!test_bit(R5_Insync, &dev->flags)) {
3382                         /* The ReadError flag will just be confusing now */
3383                         clear_bit(R5_ReadError, &dev->flags);
3384                         clear_bit(R5_ReWrite, &dev->flags);
3385                 }
3386                 if (test_bit(R5_ReadError, &dev->flags))
3387                         clear_bit(R5_Insync, &dev->flags);
3388                 if (!test_bit(R5_Insync, &dev->flags)) {
3389                         if (s.failed < 2)
3390                                 r6s.failed_num[s.failed] = i;
3391                         s.failed++;
3392                 }
3393         }
3394         rcu_read_unlock();
3395
3396         if (unlikely(blocked_rdev)) {
3397                 if (s.syncing || s.expanding || s.expanded ||
3398                     s.to_write || s.written) {
3399                         set_bit(STRIPE_HANDLE, &sh->state);
3400                         goto unlock;
3401                 }
3402                 /* There is nothing for the blocked_rdev to block */
3403                 rdev_dec_pending(blocked_rdev, conf->mddev);
3404                 blocked_rdev = NULL;
3405         }
3406
3407         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3408                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3409                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3410         }
3411
3412         pr_debug("locked=%d uptodate=%d to_read=%d"
3413                " to_write=%d failed=%d failed_num=%d,%d\n",
3414                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3415                r6s.failed_num[0], r6s.failed_num[1]);
3416         /* check if the array has lost >2 devices and, if so, some requests
3417          * might need to be failed
3418          */
3419         if (s.failed > 2 && s.to_read+s.to_write+s.written)
3420                 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3421         if (s.failed > 2 && s.syncing) {
3422                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3423                 clear_bit(STRIPE_SYNCING, &sh->state);
3424                 s.syncing = 0;
3425         }
3426
3427         /*
3428          * might be able to return some write requests if the parity blocks
3429          * are safe, or on a failed drive
3430          */
3431         pdev = &sh->dev[pd_idx];
3432         r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3433                 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3434         qdev = &sh->dev[qd_idx];
3435         r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3436                 || (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3437
3438         if ( s.written &&
3439              ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3440                              && !test_bit(R5_LOCKED, &pdev->flags)
3441                              && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3442              ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3443                              && !test_bit(R5_LOCKED, &qdev->flags)
3444                              && test_bit(R5_UPTODATE, &qdev->flags)))))
3445                 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3446
3447         /* Now we might consider reading some blocks, either to check/generate
3448          * parity, or to satisfy requests
3449          * or to load a block that is being partially written.
3450          */
3451         if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3452             (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3453                 handle_stripe_fill6(sh, &s, &r6s, disks);
3454
3455         /* Now we check to see if any write operations have recently
3456          * completed
3457          */
3458         if (sh->reconstruct_state == reconstruct_state_drain_result) {
3459
3460                 sh->reconstruct_state = reconstruct_state_idle;
3461                 /* All the 'written' buffers and the parity blocks are ready to
3462                  * be written back to disk
3463                  */
3464                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3465                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
3466                 for (i = disks; i--; ) {
3467                         dev = &sh->dev[i];
3468                         if (test_bit(R5_LOCKED, &dev->flags) &&
3469                             (i == sh->pd_idx || i == qd_idx ||
3470                              dev->written)) {
3471                                 pr_debug("Writing block %d\n", i);
3472                                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3473                                 set_bit(R5_Wantwrite, &dev->flags);
3474                                 if (!test_bit(R5_Insync, &dev->flags) ||
3475                                     ((i == sh->pd_idx || i == qd_idx) &&
3476                                       s.failed == 0))
3477                                         set_bit(STRIPE_INSYNC, &sh->state);
3478                         }
3479                 }
3480                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3481                         dec_preread_active = 1;
3482         }
3483
3484         /* Now to consider new write requests and what else, if anything
3485          * should be read.  We do not handle new writes when:
3486          * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
3487          * 2/ A 'check' operation is in flight, as it may clobber the parity
3488          *    block.
3489          */
3490         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3491                 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3492
3493         /* maybe we need to check and possibly fix the parity for this stripe
3494          * Any reads will already have been scheduled, so we just see if enough
3495          * data is available.  The parity check is held off while parity
3496          * dependent operations are in flight.
3497          */
3498         if (sh->check_state ||
3499             (s.syncing && s.locked == 0 &&
3500              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3501              !test_bit(STRIPE_INSYNC, &sh->state)))
3502                 handle_parity_checks6(conf, sh, &s, &r6s, disks);
3503
3504         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3505                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3506                 clear_bit(STRIPE_SYNCING, &sh->state);
3507         }
3508
3509         /* If the failed drives are just a ReadError, then we might need
3510          * to progress the repair/check process
3511          */
3512         if (s.failed <= 2 && !conf->mddev->ro)
3513                 for (i = 0; i < s.failed; i++) {
3514                         dev = &sh->dev[r6s.failed_num[i]];
3515                         if (test_bit(R5_ReadError, &dev->flags)
3516                             && !test_bit(R5_LOCKED, &dev->flags)
3517                             && test_bit(R5_UPTODATE, &dev->flags)
3518                                 ) {
3519                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3520                                         set_bit(R5_Wantwrite, &dev->flags);
3521                                         set_bit(R5_ReWrite, &dev->flags);
3522                                         set_bit(R5_LOCKED, &dev->flags);
3523                                         s.locked++;
3524                                 } else {
3525                                         /* let's read it back */
3526                                         set_bit(R5_Wantread, &dev->flags);
3527                                         set_bit(R5_LOCKED, &dev->flags);
3528                                         s.locked++;
3529                                 }
3530                         }
3531                 }
3532
3533         /* Finish reconstruct operations initiated by the expansion process */
3534         if (sh->reconstruct_state == reconstruct_state_result) {
3535                 sh->reconstruct_state = reconstruct_state_idle;
3536                 clear_bit(STRIPE_EXPANDING, &sh->state);
3537                 for (i = conf->raid_disks; i--; ) {
3538                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3539                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3540                         s.locked++;
3541                 }
3542         }
3543
3544         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3545             !sh->reconstruct_state) {
3546                 struct stripe_head *sh2
3547                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3548                 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3549                         /* sh cannot be written until sh2 has been read.
3550                          * so arrange for sh to be delayed a little
3551                          */
3552                         set_bit(STRIPE_DELAYED, &sh->state);
3553                         set_bit(STRIPE_HANDLE, &sh->state);
3554                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3555                                               &sh2->state))
3556                                 atomic_inc(&conf->preread_active_stripes);
3557                         release_stripe(sh2);
3558                         goto unlock;
3559                 }
3560                 if (sh2)
3561                         release_stripe(sh2);
3562
3563                 /* Need to write out all blocks after computing P&Q */
3564                 sh->disks = conf->raid_disks;
3565                 stripe_set_idx(sh->sector, conf, 0, sh);
3566                 schedule_reconstruction(sh, &s, 1, 1);
3567         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3568                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3569                 atomic_dec(&conf->reshape_stripes);
3570                 wake_up(&conf->wait_for_overlap);
3571                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3572         }
3573
3574         if (s.expanding && s.locked == 0 &&
3575             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3576                 handle_stripe_expansion(conf, sh, &r6s);
3577
3578  unlock:
3579         spin_unlock(&sh->lock);
3580
3581         /* wait for this device to become unblocked */
3582         if (unlikely(blocked_rdev))
3583                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3584
3585         if (s.ops_request)
3586                 raid_run_ops(sh, s.ops_request);
3587
3588         ops_run_io(sh, &s);
3589
3590
3591         if (dec_preread_active) {
3592                 /* We delay this until after ops_run_io so that if make_request
3593                  * is waiting on a flush, it won't continue until the writes
3594                  * have actually been submitted.
3595                  */
3596                 atomic_dec(&conf->preread_active_stripes);
3597                 if (atomic_read(&conf->preread_active_stripes) <
3598                     IO_THRESHOLD)
3599                         md_wakeup_thread(conf->mddev->thread);
3600         }
3601
3602         return_io(return_bi);
3603 }
3604
3605 static void handle_stripe(struct stripe_head *sh)
3606 {
3607         if (sh->raid_conf->level == 6)
3608                 handle_stripe6(sh);
3609         else
3610                 handle_stripe5(sh);
3611 }
3612
3613 static void raid5_activate_delayed(raid5_conf_t *conf)
3614 {
3615         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3616                 while (!list_empty(&conf->delayed_list)) {
3617                         struct list_head *l = conf->delayed_list.next;
3618                         struct stripe_head *sh;
3619                         sh = list_entry(l, struct stripe_head, lru);
3620                         list_del_init(l);
3621                         clear_bit(STRIPE_DELAYED, &sh->state);
3622                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3623                                 atomic_inc(&conf->preread_active_stripes);
3624                         list_add_tail(&sh->lru, &conf->hold_list);
3625                 }
3626         } else
3627                 plugger_set_plug(&conf->plug);
3628 }
3629
3630 static void activate_bit_delay(raid5_conf_t *conf)
3631 {
3632         /* device_lock is held */
3633         struct list_head head;
3634         list_add(&head, &conf->bitmap_list);
3635         list_del_init(&conf->bitmap_list);
3636         while (!list_empty(&head)) {
3637                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3638                 list_del_init(&sh->lru);
3639                 atomic_inc(&sh->count);
3640                 __release_stripe(conf, sh);
3641         }
3642 }
3643
3644 void md_raid5_kick_device(raid5_conf_t *conf)
3645 {
3646         blk_flush_plug(current);
3647         raid5_activate_delayed(conf);
3648         md_wakeup_thread(conf->mddev->thread);
3649 }
3650 EXPORT_SYMBOL_GPL(md_raid5_kick_device);
3651
3652 static void raid5_unplug(struct plug_handle *plug)
3653 {
3654         raid5_conf_t *conf = container_of(plug, raid5_conf_t, plug);
3655
3656         md_raid5_kick_device(conf);
3657 }
3658
3659 int md_raid5_congested(mddev_t *mddev, int bits)
3660 {
3661         raid5_conf_t *conf = mddev->private;
3662
3663         /* No difference between reads and writes.  Just check
3664          * how busy the stripe_cache is
3665          */
3666
3667         if (conf->inactive_blocked)
3668                 return 1;
3669         if (conf->quiesce)
3670                 return 1;
3671         if (list_empty_careful(&conf->inactive_list))
3672                 return 1;
3673
3674         return 0;
3675 }
3676 EXPORT_SYMBOL_GPL(md_raid5_congested);
3677
3678 static int raid5_congested(void *data, int bits)
3679 {
3680         mddev_t *mddev = data;
3681
3682         return mddev_congested(mddev, bits) ||
3683                 md_raid5_congested(mddev, bits);
3684 }
3685
3686 /* We want read requests to align with chunks where possible,
3687  * but write requests don't need to.
3688  */
3689 static int raid5_mergeable_bvec(struct request_queue *q,
3690                                 struct bvec_merge_data *bvm,
3691                                 struct bio_vec *biovec)
3692 {
3693         mddev_t *mddev = q->queuedata;
3694         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3695         int max;
3696         unsigned int chunk_sectors = mddev->chunk_sectors;
3697         unsigned int bio_sectors = bvm->bi_size >> 9;
3698
3699         if ((bvm->bi_rw & 1) == WRITE)
3700                 return biovec->bv_len; /* always allow writes to be mergeable */
3701
3702         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3703                 chunk_sectors = mddev->new_chunk_sectors;
3704         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3705         if (max < 0) max = 0;
3706         if (max <= biovec->bv_len && bio_sectors == 0)
3707                 return biovec->bv_len;
3708         else
3709                 return max;
3710 }
3711
3712
3713 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3714 {
3715         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3716         unsigned int chunk_sectors = mddev->chunk_sectors;
3717         unsigned int bio_sectors = bio->bi_size >> 9;
3718
3719         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3720                 chunk_sectors = mddev->new_chunk_sectors;
3721         return  chunk_sectors >=
3722                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3723 }
3724
3725 /*
3726  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3727  *  later sampled by raid5d.
3728  */
3729 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3730 {
3731         unsigned long flags;
3732
3733         spin_lock_irqsave(&conf->device_lock, flags);
3734
3735         bi->bi_next = conf->retry_read_aligned_list;
3736         conf->retry_read_aligned_list = bi;
3737
3738         spin_unlock_irqrestore(&conf->device_lock, flags);
3739         md_wakeup_thread(conf->mddev->thread);
3740 }
3741
3742
3743 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3744 {
3745         struct bio *bi;
3746
3747         bi = conf->retry_read_aligned;
3748         if (bi) {
3749                 conf->retry_read_aligned = NULL;
3750                 return bi;
3751         }
3752         bi = conf->retry_read_aligned_list;
3753         if(bi) {
3754                 conf->retry_read_aligned_list = bi->bi_next;
3755                 bi->bi_next = NULL;
3756                 /*
3757                  * this sets the active strip count to 1 and the processed
3758                  * strip count to zero (upper 8 bits)
3759                  */
3760                 bi->bi_phys_segments = 1; /* biased count of active stripes */
3761         }
3762
3763         return bi;
3764 }
3765
3766
3767 /*
3768  *  The "raid5_align_endio" should check if the read succeeded and if it
3769  *  did, call bio_endio on the original bio (having bio_put the new bio
3770  *  first).
3771  *  If the read failed..
3772  */
3773 static void raid5_align_endio(struct bio *bi, int error)
3774 {
3775         struct bio* raid_bi  = bi->bi_private;
3776         mddev_t *mddev;
3777         raid5_conf_t *conf;
3778         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3779         mdk_rdev_t *rdev;
3780
3781         bio_put(bi);
3782
3783         rdev = (void*)raid_bi->bi_next;
3784         raid_bi->bi_next = NULL;
3785         mddev = rdev->mddev;
3786         conf = mddev->private;
3787
3788         rdev_dec_pending(rdev, conf->mddev);
3789
3790         if (!error && uptodate) {
3791                 bio_endio(raid_bi, 0);
3792                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3793                         wake_up(&conf->wait_for_stripe);
3794                 return;
3795         }
3796
3797
3798         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3799
3800         add_bio_to_retry(raid_bi, conf);
3801 }
3802
3803 static int bio_fits_rdev(struct bio *bi)
3804 {
3805         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3806
3807         if ((bi->bi_size>>9) > queue_max_sectors(q))
3808                 return 0;
3809         blk_recount_segments(q, bi);
3810         if (bi->bi_phys_segments > queue_max_segments(q))
3811                 return 0;
3812
3813         if (q->merge_bvec_fn)
3814                 /* it's too hard to apply the merge_bvec_fn at this stage,
3815                  * just just give up
3816                  */
3817                 return 0;
3818
3819         return 1;
3820 }
3821
3822
3823 static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3824 {
3825         raid5_conf_t *conf = mddev->private;
3826         int dd_idx;
3827         struct bio* align_bi;
3828         mdk_rdev_t *rdev;
3829
3830         if (!in_chunk_boundary(mddev, raid_bio)) {
3831                 pr_debug("chunk_aligned_read : non aligned\n");
3832                 return 0;
3833         }
3834         /*
3835          * use bio_clone_mddev to make a copy of the bio
3836          */
3837         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3838         if (!align_bi)
3839                 return 0;
3840         /*
3841          *   set bi_end_io to a new function, and set bi_private to the
3842          *     original bio.
3843          */
3844         align_bi->bi_end_io  = raid5_align_endio;
3845         align_bi->bi_private = raid_bio;
3846         /*
3847          *      compute position
3848          */
3849         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3850                                                     0,
3851                                                     &dd_idx, NULL);
3852
3853         rcu_read_lock();
3854         rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3855         if (rdev && test_bit(In_sync, &rdev->flags)) {
3856                 atomic_inc(&rdev->nr_pending);
3857                 rcu_read_unlock();
3858                 raid_bio->bi_next = (void*)rdev;
3859                 align_bi->bi_bdev =  rdev->bdev;
3860                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3861                 align_bi->bi_sector += rdev->data_offset;
3862
3863                 if (!bio_fits_rdev(align_bi)) {
3864                         /* too big in some way */
3865                         bio_put(align_bi);
3866                         rdev_dec_pending(rdev, mddev);
3867                         return 0;
3868                 }
3869
3870                 spin_lock_irq(&conf->device_lock);
3871                 wait_event_lock_irq(conf->wait_for_stripe,
3872                                     conf->quiesce == 0,
3873                                     conf->device_lock, /* nothing */);
3874                 atomic_inc(&conf->active_aligned_reads);
3875                 spin_unlock_irq(&conf->device_lock);
3876
3877                 generic_make_request(align_bi);
3878                 return 1;
3879         } else {
3880                 rcu_read_unlock();
3881                 bio_put(align_bi);
3882                 return 0;
3883         }
3884 }
3885
3886 /* __get_priority_stripe - get the next stripe to process
3887  *
3888  * Full stripe writes are allowed to pass preread active stripes up until
3889  * the bypass_threshold is exceeded.  In general the bypass_count
3890  * increments when the handle_list is handled before the hold_list; however, it
3891  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3892  * stripe with in flight i/o.  The bypass_count will be reset when the
3893  * head of the hold_list has changed, i.e. the head was promoted to the
3894  * handle_list.
3895  */
3896 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3897 {
3898         struct stripe_head *sh;
3899
3900         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3901                   __func__,
3902                   list_empty(&conf->handle_list) ? "empty" : "busy",
3903                   list_empty(&conf->hold_list) ? "empty" : "busy",
3904                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
3905
3906         if (!list_empty(&conf->handle_list)) {
3907                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3908
3909                 if (list_empty(&conf->hold_list))
3910                         conf->bypass_count = 0;
3911                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3912                         if (conf->hold_list.next == conf->last_hold)
3913                                 conf->bypass_count++;
3914                         else {
3915                                 conf->last_hold = conf->hold_list.next;
3916                                 conf->bypass_count -= conf->bypass_threshold;
3917                                 if (conf->bypass_count < 0)
3918                                         conf->bypass_count = 0;
3919                         }
3920                 }
3921         } else if (!list_empty(&conf->hold_list) &&
3922                    ((conf->bypass_threshold &&
3923                      conf->bypass_count > conf->bypass_threshold) ||
3924                     atomic_read(&conf->pending_full_writes) == 0)) {
3925                 sh = list_entry(conf->hold_list.next,
3926                                 typeof(*sh), lru);
3927                 conf->bypass_count -= conf->bypass_threshold;
3928                 if (conf->bypass_count < 0)
3929                         conf->bypass_count = 0;
3930         } else
3931                 return NULL;
3932
3933         list_del_init(&sh->lru);
3934         atomic_inc(&sh->count);
3935         BUG_ON(atomic_read(&sh->count) != 1);
3936         return sh;
3937 }
3938
3939 static int make_request(mddev_t *mddev, struct bio * bi)
3940 {
3941         raid5_conf_t *conf = mddev->private;
3942         int dd_idx;
3943         sector_t new_sector;
3944         sector_t logical_sector, last_sector;
3945         struct stripe_head *sh;
3946         const int rw = bio_data_dir(bi);
3947         int remaining;
3948
3949         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3950                 md_flush_request(mddev, bi);
3951                 return 0;
3952         }
3953
3954         md_write_start(mddev, bi);
3955
3956         if (rw == READ &&
3957              mddev->reshape_position == MaxSector &&
3958              chunk_aligned_read(mddev,bi))
3959                 return 0;
3960
3961         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3962         last_sector = bi->bi_sector + (bi->bi_size>>9);
3963         bi->bi_next = NULL;
3964         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
3965
3966         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3967                 DEFINE_WAIT(w);
3968                 int disks, data_disks;
3969                 int previous;
3970
3971         retry:
3972                 previous = 0;
3973                 disks = conf->raid_disks;
3974                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3975                 if (unlikely(conf->reshape_progress != MaxSector)) {
3976                         /* spinlock is needed as reshape_progress may be
3977                          * 64bit on a 32bit platform, and so it might be
3978                          * possible to see a half-updated value
3979                          * Ofcourse reshape_progress could change after
3980                          * the lock is dropped, so once we get a reference
3981                          * to the stripe that we think it is, we will have
3982                          * to check again.
3983                          */
3984                         spin_lock_irq(&conf->device_lock);
3985                         if (mddev->delta_disks < 0
3986                             ? logical_sector < conf->reshape_progress
3987                             : logical_sector >= conf->reshape_progress) {
3988                                 disks = conf->previous_raid_disks;
3989                                 previous = 1;
3990                         } else {
3991                                 if (mddev->delta_disks < 0
3992                                     ? logical_sector < conf->reshape_safe
3993                                     : logical_sector >= conf->reshape_safe) {
3994                                         spin_unlock_irq(&conf->device_lock);
3995                                         schedule();
3996                                         goto retry;
3997                                 }
3998                         }
3999                         spin_unlock_irq(&conf->device_lock);
4000                 }
4001                 data_disks = disks - conf->max_degraded;
4002
4003                 new_sector = raid5_compute_sector(conf, logical_sector,
4004                                                   previous,
4005                                                   &dd_idx, NULL);
4006                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4007                         (unsigned long long)new_sector, 
4008                         (unsigned long long)logical_sector);
4009
4010                 sh = get_active_stripe(conf, new_sector, previous,
4011                                        (bi->bi_rw&RWA_MASK), 0);
4012                 if (sh) {
4013                         if (unlikely(previous)) {
4014                                 /* expansion might have moved on while waiting for a
4015                                  * stripe, so we must do the range check again.
4016                                  * Expansion could still move past after this
4017                                  * test, but as we are holding a reference to
4018                                  * 'sh', we know that if that happens,
4019                                  *  STRIPE_EXPANDING will get set and the expansion
4020                                  * won't proceed until we finish with the stripe.
4021                                  */
4022                                 int must_retry = 0;
4023                                 spin_lock_irq(&conf->device_lock);
4024                                 if (mddev->delta_disks < 0
4025                                     ? logical_sector >= conf->reshape_progress
4026                                     : logical_sector < conf->reshape_progress)
4027                                         /* mismatch, need to try again */
4028                                         must_retry = 1;
4029                                 spin_unlock_irq(&conf->device_lock);
4030                                 if (must_retry) {
4031                                         release_stripe(sh);
4032                                         schedule();
4033                                         goto retry;
4034                                 }
4035                         }
4036
4037                         if (bio_data_dir(bi) == WRITE &&
4038                             logical_sector >= mddev->suspend_lo &&
4039                             logical_sector < mddev->suspend_hi) {
4040                                 release_stripe(sh);
4041                                 /* As the suspend_* range is controlled by
4042                                  * userspace, we want an interruptible
4043                                  * wait.
4044                                  */
4045                                 flush_signals(current);
4046                                 prepare_to_wait(&conf->wait_for_overlap,
4047                                                 &w, TASK_INTERRUPTIBLE);
4048                                 if (logical_sector >= mddev->suspend_lo &&
4049                                     logical_sector < mddev->suspend_hi)
4050                                         schedule();
4051                                 goto retry;
4052                         }
4053
4054                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4055                             !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
4056                                 /* Stripe is busy expanding or
4057                                  * add failed due to overlap.  Flush everything
4058                                  * and wait a while
4059                                  */
4060                                 md_raid5_kick_device(conf);
4061                                 release_stripe(sh);
4062                                 schedule();
4063                                 goto retry;
4064                         }
4065                         finish_wait(&conf->wait_for_overlap, &w);
4066                         set_bit(STRIPE_HANDLE, &sh->state);
4067                         clear_bit(STRIPE_DELAYED, &sh->state);
4068                         if ((bi->bi_rw & REQ_SYNC) &&
4069                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4070                                 atomic_inc(&conf->preread_active_stripes);
4071                         release_stripe(sh);
4072                 } else {
4073                         /* cannot get stripe for read-ahead, just give-up */
4074                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
4075                         finish_wait(&conf->wait_for_overlap, &w);
4076                         break;
4077                 }
4078                         
4079         }
4080         spin_lock_irq(&conf->device_lock);
4081         remaining = raid5_dec_bi_phys_segments(bi);
4082         spin_unlock_irq(&conf->device_lock);
4083         if (remaining == 0) {
4084
4085                 if ( rw == WRITE )
4086                         md_write_end(mddev);
4087
4088                 bio_endio(bi, 0);
4089         }
4090
4091         return 0;
4092 }
4093
4094 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
4095
4096 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
4097 {
4098         /* reshaping is quite different to recovery/resync so it is
4099          * handled quite separately ... here.
4100          *
4101          * On each call to sync_request, we gather one chunk worth of
4102          * destination stripes and flag them as expanding.
4103          * Then we find all the source stripes and request reads.
4104          * As the reads complete, handle_stripe will copy the data
4105          * into the destination stripe and release that stripe.
4106          */
4107         raid5_conf_t *conf = mddev->private;
4108         struct stripe_head *sh;
4109         sector_t first_sector, last_sector;
4110         int raid_disks = conf->previous_raid_disks;
4111         int data_disks = raid_disks - conf->max_degraded;
4112         int new_data_disks = conf->raid_disks - conf->max_degraded;
4113         int i;
4114         int dd_idx;
4115         sector_t writepos, readpos, safepos;
4116         sector_t stripe_addr;
4117         int reshape_sectors;
4118         struct list_head stripes;
4119
4120         if (sector_nr == 0) {
4121                 /* If restarting in the middle, skip the initial sectors */
4122                 if (mddev->delta_disks < 0 &&
4123                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4124                         sector_nr = raid5_size(mddev, 0, 0)
4125                                 - conf->reshape_progress;
4126                 } else if (mddev->delta_disks >= 0 &&
4127                            conf->reshape_progress > 0)
4128                         sector_nr = conf->reshape_progress;
4129                 sector_div(sector_nr, new_data_disks);
4130                 if (sector_nr) {
4131                         mddev->curr_resync_completed = sector_nr;
4132                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4133                         *skipped = 1;
4134                         return sector_nr;
4135                 }
4136         }
4137
4138         /* We need to process a full chunk at a time.
4139          * If old and new chunk sizes differ, we need to process the
4140          * largest of these
4141          */
4142         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4143                 reshape_sectors = mddev->new_chunk_sectors;
4144         else
4145                 reshape_sectors = mddev->chunk_sectors;
4146
4147         /* we update the metadata when there is more than 3Meg
4148          * in the block range (that is rather arbitrary, should
4149          * probably be time based) or when the data about to be
4150          * copied would over-write the source of the data at
4151          * the front of the range.
4152          * i.e. one new_stripe along from reshape_progress new_maps
4153          * to after where reshape_safe old_maps to
4154          */
4155         writepos = conf->reshape_progress;
4156         sector_div(writepos, new_data_disks);
4157         readpos = conf->reshape_progress;
4158         sector_div(readpos, data_disks);
4159         safepos = conf->reshape_safe;
4160         sector_div(safepos, data_disks);
4161         if (mddev->delta_disks < 0) {
4162                 writepos -= min_t(sector_t, reshape_sectors, writepos);
4163                 readpos += reshape_sectors;
4164                 safepos += reshape_sectors;
4165         } else {
4166                 writepos += reshape_sectors;
4167                 readpos -= min_t(sector_t, reshape_sectors, readpos);
4168                 safepos -= min_t(sector_t, reshape_sectors, safepos);
4169         }
4170
4171         /* 'writepos' is the most advanced device address we might write.
4172          * 'readpos' is the least advanced device address we might read.
4173          * 'safepos' is the least address recorded in the metadata as having
4174          *     been reshaped.
4175          * If 'readpos' is behind 'writepos', then there is no way that we can
4176          * ensure safety in the face of a crash - that must be done by userspace
4177          * making a backup of the data.  So in that case there is no particular
4178          * rush to update metadata.
4179          * Otherwise if 'safepos' is behind 'writepos', then we really need to
4180          * update the metadata to advance 'safepos' to match 'readpos' so that
4181          * we can be safe in the event of a crash.
4182          * So we insist on updating metadata if safepos is behind writepos and
4183          * readpos is beyond writepos.
4184          * In any case, update the metadata every 10 seconds.
4185          * Maybe that number should be configurable, but I'm not sure it is
4186          * worth it.... maybe it could be a multiple of safemode_delay???
4187          */
4188         if ((mddev->delta_disks < 0
4189              ? (safepos > writepos && readpos < writepos)
4190              : (safepos < writepos && readpos > writepos)) ||
4191             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4192                 /* Cannot proceed until we've updated the superblock... */
4193                 wait_event(conf->wait_for_overlap,
4194                            atomic_read(&conf->reshape_stripes)==0);
4195                 mddev->reshape_position = conf->reshape_progress;
4196                 mddev->curr_resync_completed = sector_nr;
4197                 conf->reshape_checkpoint = jiffies;
4198                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4199                 md_wakeup_thread(mddev->thread);
4200                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4201                            kthread_should_stop());
4202                 spin_lock_irq(&conf->device_lock);
4203                 conf->reshape_safe = mddev->reshape_position;
4204                 spin_unlock_irq(&conf->device_lock);
4205                 wake_up(&conf->wait_for_overlap);
4206                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4207         }
4208
4209         if (mddev->delta_disks < 0) {
4210                 BUG_ON(conf->reshape_progress == 0);
4211                 stripe_addr = writepos;
4212                 BUG_ON((mddev->dev_sectors &
4213                         ~((sector_t)reshape_sectors - 1))
4214                        - reshape_sectors - stripe_addr
4215                        != sector_nr);
4216         } else {
4217                 BUG_ON(writepos != sector_nr + reshape_sectors);
4218                 stripe_addr = sector_nr;
4219         }
4220         INIT_LIST_HEAD(&stripes);
4221         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4222                 int j;
4223                 int skipped_disk = 0;
4224                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4225                 set_bit(STRIPE_EXPANDING, &sh->state);
4226                 atomic_inc(&conf->reshape_stripes);
4227                 /* If any of this stripe is beyond the end of the old
4228                  * array, then we need to zero those blocks
4229                  */
4230                 for (j=sh->disks; j--;) {
4231                         sector_t s;
4232                         if (j == sh->pd_idx)
4233                                 continue;
4234                         if (conf->level == 6 &&
4235                             j == sh->qd_idx)
4236                                 continue;
4237                         s = compute_blocknr(sh, j, 0);
4238                         if (s < raid5_size(mddev, 0, 0)) {
4239                                 skipped_disk = 1;
4240                                 continue;
4241                         }
4242                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4243                         set_bit(R5_Expanded, &sh->dev[j].flags);
4244                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
4245                 }
4246                 if (!skipped_disk) {
4247                         set_bit(STRIPE_EXPAND_READY, &sh->state);
4248                         set_bit(STRIPE_HANDLE, &sh->state);
4249                 }
4250                 list_add(&sh->lru, &stripes);
4251         }
4252         spin_lock_irq(&conf->device_lock);
4253         if (mddev->delta_disks < 0)
4254                 conf->reshape_progress -= reshape_sectors * new_data_disks;
4255         else
4256                 conf->reshape_progress += reshape_sectors * new_data_disks;
4257         spin_unlock_irq(&conf->device_lock);
4258         /* Ok, those stripe are ready. We can start scheduling
4259          * reads on the source stripes.
4260          * The source stripes are determined by mapping the first and last
4261          * block on the destination stripes.
4262          */
4263         first_sector =
4264                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4265                                      1, &dd_idx, NULL);
4266         last_sector =
4267                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4268                                             * new_data_disks - 1),
4269                                      1, &dd_idx, NULL);
4270         if (last_sector >= mddev->dev_sectors)
4271                 last_sector = mddev->dev_sectors - 1;
4272         while (first_sector <= last_sector) {
4273                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4274                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4275                 set_bit(STRIPE_HANDLE, &sh->state);
4276                 release_stripe(sh);
4277                 first_sector += STRIPE_SECTORS;
4278         }
4279         /* Now that the sources are clearly marked, we can release
4280          * the destination stripes
4281          */
4282         while (!list_empty(&stripes)) {
4283                 sh = list_entry(stripes.next, struct stripe_head, lru);
4284                 list_del_init(&sh->lru);
4285                 release_stripe(sh);
4286         }
4287         /* If this takes us to the resync_max point where we have to pause,
4288          * then we need to write out the superblock.
4289          */
4290         sector_nr += reshape_sectors;
4291         if ((sector_nr - mddev->curr_resync_completed) * 2
4292             >= mddev->resync_max - mddev->curr_resync_completed) {
4293                 /* Cannot proceed until we've updated the superblock... */
4294                 wait_event(conf->wait_for_overlap,
4295                            atomic_read(&conf->reshape_stripes) == 0);
4296                 mddev->reshape_position = conf->reshape_progress;
4297                 mddev->curr_resync_completed = sector_nr;
4298                 conf->reshape_checkpoint = jiffies;
4299                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4300                 md_wakeup_thread(mddev->thread);
4301                 wait_event(mddev->sb_wait,
4302                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4303                            || kthread_should_stop());
4304                 spin_lock_irq(&conf->device_lock);
4305                 conf->reshape_safe = mddev->reshape_position;
4306                 spin_unlock_irq(&conf->device_lock);
4307                 wake_up(&conf->wait_for_overlap);
4308                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4309         }
4310         return reshape_sectors;
4311 }
4312
4313 /* FIXME go_faster isn't used */
4314 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4315 {
4316         raid5_conf_t *conf = mddev->private;
4317         struct stripe_head *sh;
4318         sector_t max_sector = mddev->dev_sectors;
4319         sector_t sync_blocks;
4320         int still_degraded = 0;
4321         int i;
4322
4323         if (sector_nr >= max_sector) {
4324                 /* just being told to finish up .. nothing much to do */
4325
4326                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4327                         end_reshape(conf);
4328                         return 0;
4329                 }
4330
4331                 if (mddev->curr_resync < max_sector) /* aborted */
4332                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4333                                         &sync_blocks, 1);
4334                 else /* completed sync */
4335                         conf->fullsync = 0;
4336                 bitmap_close_sync(mddev->bitmap);
4337
4338                 return 0;
4339         }
4340
4341         /* Allow raid5_quiesce to complete */
4342         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4343
4344         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4345                 return reshape_request(mddev, sector_nr, skipped);
4346
4347         /* No need to check resync_max as we never do more than one
4348          * stripe, and as resync_max will always be on a chunk boundary,
4349          * if the check in md_do_sync didn't fire, there is no chance
4350          * of overstepping resync_max here
4351          */
4352
4353         /* if there is too many failed drives and we are trying
4354          * to resync, then assert that we are finished, because there is
4355          * nothing we can do.
4356          */
4357         if (mddev->degraded >= conf->max_degraded &&
4358             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4359                 sector_t rv = mddev->dev_sectors - sector_nr;
4360                 *skipped = 1;
4361                 return rv;
4362         }
4363         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4364             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4365             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4366                 /* we can skip this block, and probably more */
4367                 sync_blocks /= STRIPE_SECTORS;
4368                 *skipped = 1;
4369                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4370         }
4371
4372
4373         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4374
4375         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4376         if (sh == NULL) {
4377                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4378                 /* make sure we don't swamp the stripe cache if someone else
4379                  * is trying to get access
4380                  */
4381                 schedule_timeout_uninterruptible(1);
4382         }
4383         /* Need to check if array will still be degraded after recovery/resync
4384          * We don't need to check the 'failed' flag as when that gets set,
4385          * recovery aborts.
4386          */
4387         for (i = 0; i < conf->raid_disks; i++)
4388                 if (conf->disks[i].rdev == NULL)
4389                         still_degraded = 1;
4390
4391         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4392
4393         spin_lock(&sh->lock);
4394         set_bit(STRIPE_SYNCING, &sh->state);
4395         clear_bit(STRIPE_INSYNC, &sh->state);
4396         spin_unlock(&sh->lock);
4397
4398         handle_stripe(sh);
4399         release_stripe(sh);
4400
4401         return STRIPE_SECTORS;
4402 }
4403
4404 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4405 {
4406         /* We may not be able to submit a whole bio at once as there
4407          * may not be enough stripe_heads available.
4408          * We cannot pre-allocate enough stripe_heads as we may need
4409          * more than exist in the cache (if we allow ever large chunks).
4410          * So we do one stripe head at a time and record in
4411          * ->bi_hw_segments how many have been done.
4412          *
4413          * We *know* that this entire raid_bio is in one chunk, so
4414          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4415          */
4416         struct stripe_head *sh;
4417         int dd_idx;
4418         sector_t sector, logical_sector, last_sector;
4419         int scnt = 0;
4420         int remaining;
4421         int handled = 0;
4422
4423         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4424         sector = raid5_compute_sector(conf, logical_sector,
4425                                       0, &dd_idx, NULL);
4426         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4427
4428         for (; logical_sector < last_sector;
4429              logical_sector += STRIPE_SECTORS,
4430                      sector += STRIPE_SECTORS,
4431                      scnt++) {
4432
4433                 if (scnt < raid5_bi_hw_segments(raid_bio))
4434                         /* already done this stripe */
4435                         continue;
4436
4437                 sh = get_active_stripe(conf, sector, 0, 1, 0);
4438
4439                 if (!sh) {
4440                         /* failed to get a stripe - must wait */
4441                         raid5_set_bi_hw_segments(raid_bio, scnt);
4442                         conf->retry_read_aligned = raid_bio;
4443                         return handled;
4444                 }
4445
4446                 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4447                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4448                         release_stripe(sh);
4449                         raid5_set_bi_hw_segments(raid_bio, scnt);
4450                         conf->retry_read_aligned = raid_bio;
4451                         return handled;
4452                 }
4453
4454                 handle_stripe(sh);
4455                 release_stripe(sh);
4456                 handled++;
4457         }
4458         spin_lock_irq(&conf->device_lock);
4459         remaining = raid5_dec_bi_phys_segments(raid_bio);
4460         spin_unlock_irq(&conf->device_lock);
4461         if (remaining == 0)
4462                 bio_endio(raid_bio, 0);
4463         if (atomic_dec_and_test(&conf->active_aligned_reads))
4464                 wake_up(&conf->wait_for_stripe);
4465         return handled;
4466 }
4467
4468
4469 /*
4470  * This is our raid5 kernel thread.
4471  *
4472  * We scan the hash table for stripes which can be handled now.
4473  * During the scan, completed stripes are saved for us by the interrupt
4474  * handler, so that they will not have to wait for our next wakeup.
4475  */
4476 static void raid5d(mddev_t *mddev)
4477 {
4478         struct stripe_head *sh;
4479         raid5_conf_t *conf = mddev->private;
4480         int handled;
4481
4482         pr_debug("+++ raid5d active\n");
4483
4484         md_check_recovery(mddev);
4485
4486         handled = 0;
4487         spin_lock_irq(&conf->device_lock);
4488         while (1) {
4489                 struct bio *bio;
4490
4491                 if (conf->seq_flush != conf->seq_write) {
4492                         int seq = conf->seq_flush;
4493                         spin_unlock_irq(&conf->device_lock);
4494                         bitmap_unplug(mddev->bitmap);
4495                         spin_lock_irq(&conf->device_lock);
4496                         conf->seq_write = seq;
4497                         activate_bit_delay(conf);
4498                 }
4499
4500                 while ((bio = remove_bio_from_retry(conf))) {
4501                         int ok;
4502                         spin_unlock_irq(&conf->device_lock);
4503                         ok = retry_aligned_read(conf, bio);
4504                         spin_lock_irq(&conf->device_lock);
4505                         if (!ok)
4506                                 break;
4507                         handled++;
4508                 }
4509
4510                 sh = __get_priority_stripe(conf);
4511
4512                 if (!sh)
4513                         break;
4514                 spin_unlock_irq(&conf->device_lock);
4515                 
4516                 handled++;
4517                 handle_stripe(sh);
4518                 release_stripe(sh);
4519                 cond_resched();
4520
4521                 spin_lock_irq(&conf->device_lock);
4522         }
4523         pr_debug("%d stripes handled\n", handled);
4524
4525         spin_unlock_irq(&conf->device_lock);
4526
4527         async_tx_issue_pending_all();
4528
4529         pr_debug("--- raid5d inactive\n");
4530 }
4531
4532 static ssize_t
4533 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4534 {
4535         raid5_conf_t *conf = mddev->private;
4536         if (conf)
4537                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4538         else
4539                 return 0;
4540 }
4541
4542 int
4543 raid5_set_cache_size(mddev_t *mddev, int size)
4544 {
4545         raid5_conf_t *conf = mddev->private;
4546         int err;
4547
4548         if (size <= 16 || size > 32768)
4549                 return -EINVAL;
4550         while (size < conf->max_nr_stripes) {
4551                 if (drop_one_stripe(conf))
4552                         conf->max_nr_stripes--;
4553                 else
4554                         break;
4555         }
4556         err = md_allow_write(mddev);
4557         if (err)
4558                 return err;
4559         while (size > conf->max_nr_stripes) {
4560                 if (grow_one_stripe(conf))
4561                         conf->max_nr_stripes++;
4562                 else break;
4563         }
4564         return 0;
4565 }
4566 EXPORT_SYMBOL(raid5_set_cache_size);
4567
4568 static ssize_t
4569 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4570 {
4571         raid5_conf_t *conf = mddev->private;
4572         unsigned long new;
4573         int err;
4574
4575         if (len >= PAGE_SIZE)
4576                 return -EINVAL;
4577         if (!conf)
4578                 return -ENODEV;
4579
4580         if (strict_strtoul(page, 10, &new))
4581                 return -EINVAL;
4582         err = raid5_set_cache_size(mddev, new);
4583         if (err)
4584                 return err;
4585         return len;
4586 }
4587
4588 static struct md_sysfs_entry
4589 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4590                                 raid5_show_stripe_cache_size,
4591                                 raid5_store_stripe_cache_size);
4592
4593 static ssize_t
4594 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4595 {
4596         raid5_conf_t *conf = mddev->private;
4597         if (conf)
4598                 return sprintf(page, "%d\n", conf->bypass_threshold);
4599         else
4600                 return 0;
4601 }
4602
4603 static ssize_t
4604 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4605 {
4606         raid5_conf_t *conf = mddev->private;
4607         unsigned long new;
4608         if (len >= PAGE_SIZE)
4609                 return -EINVAL;
4610         if (!conf)
4611                 return -ENODEV;
4612
4613         if (strict_strtoul(page, 10, &new))
4614                 return -EINVAL;
4615         if (new > conf->max_nr_stripes)
4616                 return -EINVAL;
4617         conf->bypass_threshold = new;
4618         return len;
4619 }
4620
4621 static struct md_sysfs_entry
4622 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4623                                         S_IRUGO | S_IWUSR,
4624                                         raid5_show_preread_threshold,
4625                                         raid5_store_preread_threshold);
4626
4627 static ssize_t
4628 stripe_cache_active_show(mddev_t *mddev, char *page)
4629 {
4630         raid5_conf_t *conf = mddev->private;
4631         if (conf)
4632                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4633         else
4634                 return 0;
4635 }
4636
4637 static struct md_sysfs_entry
4638 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4639
4640 static struct attribute *raid5_attrs[] =  {
4641         &raid5_stripecache_size.attr,
4642         &raid5_stripecache_active.attr,
4643         &raid5_preread_bypass_threshold.attr,
4644         NULL,
4645 };
4646 static struct attribute_group raid5_attrs_group = {
4647         .name = NULL,
4648         .attrs = raid5_attrs,
4649 };
4650
4651 static sector_t
4652 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4653 {
4654         raid5_conf_t *conf = mddev->private;
4655
4656         if (!sectors)
4657                 sectors = mddev->dev_sectors;
4658         if (!raid_disks)
4659                 /* size is defined by the smallest of previous and new size */
4660                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4661
4662         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4663         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4664         return sectors * (raid_disks - conf->max_degraded);
4665 }
4666
4667 static void raid5_free_percpu(raid5_conf_t *conf)
4668 {
4669         struct raid5_percpu *percpu;
4670         unsigned long cpu;
4671
4672         if (!conf->percpu)
4673                 return;
4674
4675         get_online_cpus();
4676         for_each_possible_cpu(cpu) {
4677                 percpu = per_cpu_ptr(conf->percpu, cpu);
4678                 safe_put_page(percpu->spare_page);
4679                 kfree(percpu->scribble);
4680         }
4681 #ifdef CONFIG_HOTPLUG_CPU
4682         unregister_cpu_notifier(&conf->cpu_notify);
4683 #endif
4684         put_online_cpus();
4685
4686         free_percpu(conf->percpu);
4687 }
4688
4689 static void free_conf(raid5_conf_t *conf)
4690 {
4691         shrink_stripes(conf);
4692         raid5_free_percpu(conf);
4693         kfree(conf->disks);
4694         kfree(conf->stripe_hashtbl);
4695         kfree(conf);
4696 }
4697
4698 #ifdef CONFIG_HOTPLUG_CPU
4699 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4700                               void *hcpu)
4701 {
4702         raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4703         long cpu = (long)hcpu;
4704         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4705
4706         switch (action) {
4707         case CPU_UP_PREPARE:
4708         case CPU_UP_PREPARE_FROZEN:
4709                 if (conf->level == 6 && !percpu->spare_page)
4710                         percpu->spare_page = alloc_page(GFP_KERNEL);
4711                 if (!percpu->scribble)
4712                         percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4713
4714                 if (!percpu->scribble ||
4715                     (conf->level == 6 && !percpu->spare_page)) {
4716                         safe_put_page(percpu->spare_page);
4717                         kfree(percpu->scribble);
4718                         pr_err("%s: failed memory allocation for cpu%ld\n",
4719                                __func__, cpu);
4720                         return notifier_from_errno(-ENOMEM);
4721                 }
4722                 break;
4723         case CPU_DEAD:
4724         case CPU_DEAD_FROZEN:
4725                 safe_put_page(percpu->spare_page);
4726                 kfree(percpu->scribble);
4727                 percpu->spare_page = NULL;
4728                 percpu->scribble = NULL;
4729                 break;
4730         default:
4731                 break;
4732         }
4733         return NOTIFY_OK;
4734 }
4735 #endif
4736
4737 static int raid5_alloc_percpu(raid5_conf_t *conf)
4738 {
4739         unsigned long cpu;
4740         struct page *spare_page;
4741         struct raid5_percpu __percpu *allcpus;
4742         void *scribble;
4743         int err;
4744
4745         allcpus = alloc_percpu(struct raid5_percpu);
4746         if (!allcpus)
4747                 return -ENOMEM;
4748         conf->percpu = allcpus;
4749
4750         get_online_cpus();
4751         err = 0;
4752         for_each_present_cpu(cpu) {
4753                 if (conf->level == 6) {
4754                         spare_page = alloc_page(GFP_KERNEL);
4755                         if (!spare_page) {
4756                                 err = -ENOMEM;
4757                                 break;
4758                         }
4759                         per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4760                 }
4761                 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4762                 if (!scribble) {
4763                         err = -ENOMEM;
4764                         break;
4765                 }
4766                 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4767         }
4768 #ifdef CONFIG_HOTPLUG_CPU
4769         conf->cpu_notify.notifier_call = raid456_cpu_notify;
4770         conf->cpu_notify.priority = 0;
4771         if (err == 0)
4772                 err = register_cpu_notifier(&conf->cpu_notify);
4773 #endif
4774         put_online_cpus();
4775
4776         return err;
4777 }
4778
4779 static raid5_conf_t *setup_conf(mddev_t *mddev)
4780 {
4781         raid5_conf_t *conf;
4782         int raid_disk, memory, max_disks;
4783         mdk_rdev_t *rdev;
4784         struct disk_info *disk;
4785
4786         if (mddev->new_level != 5
4787             && mddev->new_level != 4
4788             && mddev->new_level != 6) {
4789                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4790                        mdname(mddev), mddev->new_level);
4791                 return ERR_PTR(-EIO);
4792         }
4793         if ((mddev->new_level == 5
4794              && !algorithm_valid_raid5(mddev->new_layout)) ||
4795             (mddev->new_level == 6
4796              && !algorithm_valid_raid6(mddev->new_layout))) {
4797                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4798                        mdname(mddev), mddev->new_layout);
4799                 return ERR_PTR(-EIO);
4800         }
4801         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4802                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4803                        mdname(mddev), mddev->raid_disks);
4804                 return ERR_PTR(-EINVAL);
4805         }
4806
4807         if (!mddev->new_chunk_sectors ||
4808             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4809             !is_power_of_2(mddev->new_chunk_sectors)) {
4810                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4811                        mdname(mddev), mddev->new_chunk_sectors << 9);
4812                 return ERR_PTR(-EINVAL);
4813         }
4814
4815         conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4816         if (conf == NULL)
4817                 goto abort;
4818         spin_lock_init(&conf->device_lock);
4819         init_waitqueue_head(&conf->wait_for_stripe);
4820         init_waitqueue_head(&conf->wait_for_overlap);
4821         INIT_LIST_HEAD(&conf->handle_list);
4822         INIT_LIST_HEAD(&conf->hold_list);
4823         INIT_LIST_HEAD(&conf->delayed_list);
4824         INIT_LIST_HEAD(&conf->bitmap_list);
4825         INIT_LIST_HEAD(&conf->inactive_list);
4826         atomic_set(&conf->active_stripes, 0);
4827         atomic_set(&conf->preread_active_stripes, 0);
4828         atomic_set(&conf->active_aligned_reads, 0);
4829         conf->bypass_threshold = BYPASS_THRESHOLD;
4830
4831         conf->raid_disks = mddev->raid_disks;
4832         if (mddev->reshape_position == MaxSector)
4833                 conf->previous_raid_disks = mddev->raid_disks;
4834         else
4835                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4836         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4837         conf->scribble_len = scribble_len(max_disks);
4838
4839         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4840                               GFP_KERNEL);
4841         if (!conf->disks)
4842                 goto abort;
4843
4844         conf->mddev = mddev;
4845
4846         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4847                 goto abort;
4848
4849         conf->level = mddev->new_level;
4850         if (raid5_alloc_percpu(conf) != 0)
4851                 goto abort;
4852
4853         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4854
4855         list_for_each_entry(rdev, &mddev->disks, same_set) {
4856                 raid_disk = rdev->raid_disk;
4857                 if (raid_disk >= max_disks
4858                     || raid_disk < 0)
4859                         continue;
4860                 disk = conf->disks + raid_disk;
4861
4862                 disk->rdev = rdev;
4863
4864                 if (test_bit(In_sync, &rdev->flags)) {
4865                         char b[BDEVNAME_SIZE];
4866                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4867                                " disk %d\n",
4868                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4869                 } else
4870                         /* Cannot rely on bitmap to complete recovery */
4871                         conf->fullsync = 1;
4872         }
4873
4874         conf->chunk_sectors = mddev->new_chunk_sectors;
4875         conf->level = mddev->new_level;
4876         if (conf->level == 6)
4877                 conf->max_degraded = 2;
4878         else
4879                 conf->max_degraded = 1;
4880         conf->algorithm = mddev->new_layout;
4881         conf->max_nr_stripes = NR_STRIPES;
4882         conf->reshape_progress = mddev->reshape_position;
4883         if (conf->reshape_progress != MaxSector) {
4884                 conf->prev_chunk_sectors = mddev->chunk_sectors;
4885                 conf->prev_algo = mddev->layout;
4886         }
4887
4888         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4889                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4890         if (grow_stripes(conf, conf->max_nr_stripes)) {
4891                 printk(KERN_ERR
4892                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
4893                        mdname(mddev), memory);
4894                 goto abort;
4895         } else
4896                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4897                        mdname(mddev), memory);
4898
4899         conf->thread = md_register_thread(raid5d, mddev, NULL);
4900         if (!conf->thread) {
4901                 printk(KERN_ERR
4902                        "md/raid:%s: couldn't allocate thread.\n",
4903                        mdname(mddev));
4904                 goto abort;
4905         }
4906
4907         return conf;
4908
4909  abort:
4910         if (conf) {
4911                 free_conf(conf);
4912                 return ERR_PTR(-EIO);
4913         } else
4914                 return ERR_PTR(-ENOMEM);
4915 }
4916
4917
4918 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4919 {
4920         switch (algo) {
4921         case ALGORITHM_PARITY_0:
4922                 if (raid_disk < max_degraded)
4923                         return 1;
4924                 break;
4925         case ALGORITHM_PARITY_N:
4926                 if (raid_disk >= raid_disks - max_degraded)
4927                         return 1;
4928                 break;
4929         case ALGORITHM_PARITY_0_6:
4930                 if (raid_disk == 0 || 
4931                     raid_disk == raid_disks - 1)
4932                         return 1;
4933                 break;
4934         case ALGORITHM_LEFT_ASYMMETRIC_6:
4935         case ALGORITHM_RIGHT_ASYMMETRIC_6:
4936         case ALGORITHM_LEFT_SYMMETRIC_6:
4937         case ALGORITHM_RIGHT_SYMMETRIC_6:
4938                 if (raid_disk == raid_disks - 1)
4939                         return 1;
4940         }
4941         return 0;
4942 }
4943
4944 static int run(mddev_t *mddev)
4945 {
4946         raid5_conf_t *conf;
4947         int working_disks = 0;
4948         int dirty_parity_disks = 0;
4949         mdk_rdev_t *rdev;
4950         sector_t reshape_offset = 0;
4951
4952         if (mddev->recovery_cp != MaxSector)
4953                 printk(KERN_NOTICE "md/raid:%s: not clean"
4954                        " -- starting background reconstruction\n",
4955                        mdname(mddev));
4956         if (mddev->reshape_position != MaxSector) {
4957                 /* Check that we can continue the reshape.
4958                  * Currently only disks can change, it must
4959                  * increase, and we must be past the point where
4960                  * a stripe over-writes itself
4961                  */
4962                 sector_t here_new, here_old;
4963                 int old_disks;
4964                 int max_degraded = (mddev->level == 6 ? 2 : 1);
4965
4966                 if (mddev->new_level != mddev->level) {
4967                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
4968                                "required - aborting.\n",
4969                                mdname(mddev));
4970                         return -EINVAL;
4971                 }
4972                 old_disks = mddev->raid_disks - mddev->delta_disks;
4973                 /* reshape_position must be on a new-stripe boundary, and one
4974                  * further up in new geometry must map after here in old
4975                  * geometry.
4976                  */
4977                 here_new = mddev->reshape_position;
4978                 if (sector_div(here_new, mddev->new_chunk_sectors *
4979                                (mddev->raid_disks - max_degraded))) {
4980                         printk(KERN_ERR "md/raid:%s: reshape_position not "
4981                                "on a stripe boundary\n", mdname(mddev));
4982                         return -EINVAL;
4983                 }
4984                 reshape_offset = here_new * mddev->new_chunk_sectors;
4985                 /* here_new is the stripe we will write to */
4986                 here_old = mddev->reshape_position;
4987                 sector_div(here_old, mddev->chunk_sectors *
4988                            (old_disks-max_degraded));
4989                 /* here_old is the first stripe that we might need to read
4990                  * from */
4991                 if (mddev->delta_disks == 0) {
4992                         /* We cannot be sure it is safe to start an in-place
4993                          * reshape.  It is only safe if user-space if monitoring
4994                          * and taking constant backups.
4995                          * mdadm always starts a situation like this in
4996                          * readonly mode so it can take control before
4997                          * allowing any writes.  So just check for that.
4998                          */
4999                         if ((here_new * mddev->new_chunk_sectors != 
5000                              here_old * mddev->chunk_sectors) ||
5001                             mddev->ro == 0) {
5002                                 printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
5003                                        " in read-only mode - aborting\n",
5004                                        mdname(mddev));
5005                                 return -EINVAL;
5006                         }
5007                 } else if (mddev->delta_disks < 0
5008                     ? (here_new * mddev->new_chunk_sectors <=
5009                        here_old * mddev->chunk_sectors)
5010                     : (here_new * mddev->new_chunk_sectors >=
5011                        here_old * mddev->chunk_sectors)) {
5012                         /* Reading from the same stripe as writing to - bad */
5013                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5014                                "auto-recovery - aborting.\n",
5015                                mdname(mddev));
5016                         return -EINVAL;
5017                 }
5018                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5019                        mdname(mddev));
5020                 /* OK, we should be able to continue; */
5021         } else {
5022                 BUG_ON(mddev->level != mddev->new_level);
5023                 BUG_ON(mddev->layout != mddev->new_layout);
5024                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5025                 BUG_ON(mddev->delta_disks != 0);
5026         }
5027
5028         if (mddev->private == NULL)
5029                 conf = setup_conf(mddev);
5030         else
5031                 conf = mddev->private;
5032
5033         if (IS_ERR(conf))
5034                 return PTR_ERR(conf);
5035
5036         mddev->thread = conf->thread;
5037         conf->thread = NULL;
5038         mddev->private = conf;
5039
5040         /*
5041          * 0 for a fully functional array, 1 or 2 for a degraded array.
5042          */
5043         list_for_each_entry(rdev, &mddev->disks, same_set) {
5044                 if (rdev->raid_disk < 0)
5045                         continue;
5046                 if (test_bit(In_sync, &rdev->flags)) {
5047                         working_disks++;
5048                         continue;
5049                 }
5050                 /* This disc is not fully in-sync.  However if it
5051                  * just stored parity (beyond the recovery_offset),
5052                  * when we don't need to be concerned about the
5053                  * array being dirty.
5054                  * When reshape goes 'backwards', we never have
5055                  * partially completed devices, so we only need
5056                  * to worry about reshape going forwards.
5057                  */
5058                 /* Hack because v0.91 doesn't store recovery_offset properly. */
5059                 if (mddev->major_version == 0 &&
5060                     mddev->minor_version > 90)
5061                         rdev->recovery_offset = reshape_offset;
5062                         
5063                 if (rdev->recovery_offset < reshape_offset) {
5064                         /* We need to check old and new layout */
5065                         if (!only_parity(rdev->raid_disk,
5066                                          conf->algorithm,
5067                                          conf->raid_disks,
5068                                          conf->max_degraded))
5069                                 continue;
5070                 }
5071                 if (!only_parity(rdev->raid_disk,
5072                                  conf->prev_algo,
5073                                  conf->previous_raid_disks,
5074                                  conf->max_degraded))
5075                         continue;
5076                 dirty_parity_disks++;
5077         }
5078
5079         mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
5080                            - working_disks);
5081
5082         if (has_failed(conf)) {
5083                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
5084                         " (%d/%d failed)\n",
5085                         mdname(mddev), mddev->degraded, conf->raid_disks);
5086                 goto abort;
5087         }
5088
5089         /* device size must be a multiple of chunk size */
5090         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5091         mddev->resync_max_sectors = mddev->dev_sectors;
5092
5093         if (mddev->degraded > dirty_parity_disks &&
5094             mddev->recovery_cp != MaxSector) {
5095                 if (mddev->ok_start_degraded)
5096                         printk(KERN_WARNING
5097                                "md/raid:%s: starting dirty degraded array"
5098                                " - data corruption possible.\n",
5099                                mdname(mddev));
5100                 else {
5101                         printk(KERN_ERR
5102                                "md/raid:%s: cannot start dirty degraded array.\n",
5103                                mdname(mddev));
5104                         goto abort;
5105                 }
5106         }
5107
5108         if (mddev->degraded == 0)
5109                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5110                        " devices, algorithm %d\n", mdname(mddev), conf->level,
5111                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5112                        mddev->new_layout);
5113         else
5114                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5115                        " out of %d devices, algorithm %d\n",
5116                        mdname(mddev), conf->level,
5117                        mddev->raid_disks - mddev->degraded,
5118                        mddev->raid_disks, mddev->new_layout);
5119
5120         print_raid5_conf(conf);
5121
5122         if (conf->reshape_progress != MaxSector) {
5123                 conf->reshape_safe = conf->reshape_progress;
5124                 atomic_set(&conf->reshape_stripes, 0);
5125                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5126                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5127                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5128                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5129                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5130                                                         "reshape");
5131         }
5132
5133
5134         /* Ok, everything is just fine now */
5135         if (mddev->to_remove == &raid5_attrs_group)
5136                 mddev->to_remove = NULL;
5137         else if (mddev->kobj.sd &&
5138             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5139                 printk(KERN_WARNING
5140                        "raid5: failed to create sysfs attributes for %s\n",
5141                        mdname(mddev));
5142         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5143
5144         plugger_init(&conf->plug, raid5_unplug);
5145         mddev->plug = &conf->plug;
5146         if (mddev->queue) {
5147                 int chunk_size;
5148                 /* read-ahead size must cover two whole stripes, which
5149                  * is 2 * (datadisks) * chunksize where 'n' is the
5150                  * number of raid devices
5151                  */
5152                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5153                 int stripe = data_disks *
5154                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5155                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5156                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5157
5158                 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5159
5160                 mddev->queue->backing_dev_info.congested_data = mddev;
5161                 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5162                 mddev->queue->queue_lock = &conf->device_lock;
5163
5164                 chunk_size = mddev->chunk_sectors << 9;
5165                 blk_queue_io_min(mddev->queue, chunk_size);
5166                 blk_queue_io_opt(mddev->queue, chunk_size *
5167                                  (conf->raid_disks - conf->max_degraded));
5168
5169                 list_for_each_entry(rdev, &mddev->disks, same_set)
5170                         disk_stack_limits(mddev->gendisk, rdev->bdev,
5171                                           rdev->data_offset << 9);
5172         }
5173
5174         return 0;
5175 abort:
5176         md_unregister_thread(mddev->thread);
5177         mddev->thread = NULL;
5178         if (conf) {
5179                 print_raid5_conf(conf);
5180                 free_conf(conf);
5181         }
5182         mddev->private = NULL;
5183         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5184         return -EIO;
5185 }
5186
5187 static int stop(mddev_t *mddev)
5188 {
5189         raid5_conf_t *conf = mddev->private;
5190
5191         md_unregister_thread(mddev->thread);
5192         mddev->thread = NULL;
5193         if (mddev->queue)
5194                 mddev->queue->backing_dev_info.congested_fn = NULL;
5195         plugger_flush(&conf->plug); /* the unplug fn references 'conf'*/
5196         free_conf(conf);
5197         mddev->private = NULL;
5198         mddev->to_remove = &raid5_attrs_group;
5199         return 0;
5200 }
5201
5202 #ifdef DEBUG
5203 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
5204 {
5205         int i;
5206
5207         seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
5208                    (unsigned long long)sh->sector, sh->pd_idx, sh->state);
5209         seq_printf(seq, "sh %llu,  count %d.\n",
5210                    (unsigned long long)sh->sector, atomic_read(&sh->count));
5211         seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5212         for (i = 0; i < sh->disks; i++) {
5213                 seq_printf(seq, "(cache%d: %p %ld) ",
5214                            i, sh->dev[i].page, sh->dev[i].flags);
5215         }
5216         seq_printf(seq, "\n");
5217 }
5218
5219 static void printall(struct seq_file *seq, raid5_conf_t *conf)
5220 {
5221         struct stripe_head *sh;
5222         struct hlist_node *hn;
5223         int i;
5224
5225         spin_lock_irq(&conf->device_lock);
5226         for (i = 0; i < NR_HASH; i++) {
5227                 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
5228                         if (sh->raid_conf != conf)
5229                                 continue;
5230                         print_sh(seq, sh);
5231                 }
5232         }
5233         spin_unlock_irq(&conf->device_lock);
5234 }
5235 #endif
5236
5237 static void status(struct seq_file *seq, mddev_t *mddev)
5238 {
5239         raid5_conf_t *conf = mddev->private;
5240         int i;
5241
5242         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5243                 mddev->chunk_sectors / 2, mddev->layout);
5244         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5245         for (i = 0; i < conf->raid_disks; i++)
5246                 seq_printf (seq, "%s",
5247                                conf->disks[i].rdev &&
5248                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5249         seq_printf (seq, "]");
5250 #ifdef DEBUG
5251         seq_printf (seq, "\n");
5252         printall(seq, conf);
5253 #endif
5254 }
5255
5256 static void print_raid5_conf (raid5_conf_t *conf)
5257 {
5258         int i;
5259         struct disk_info *tmp;
5260
5261         printk(KERN_DEBUG "RAID conf printout:\n");
5262         if (!conf) {
5263                 printk("(conf==NULL)\n");
5264                 return;
5265         }
5266         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5267                conf->raid_disks,
5268                conf->raid_disks - conf->mddev->degraded);
5269
5270         for (i = 0; i < conf->raid_disks; i++) {
5271                 char b[BDEVNAME_SIZE];
5272                 tmp = conf->disks + i;
5273                 if (tmp->rdev)
5274                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5275                                i, !test_bit(Faulty, &tmp->rdev->flags),
5276                                bdevname(tmp->rdev->bdev, b));
5277         }
5278 }
5279
5280 static int raid5_spare_active(mddev_t *mddev)
5281 {
5282         int i;
5283         raid5_conf_t *conf = mddev->private;
5284         struct disk_info *tmp;
5285         int count = 0;
5286         unsigned long flags;
5287
5288         for (i = 0; i < conf->raid_disks; i++) {
5289                 tmp = conf->disks + i;
5290                 if (tmp->rdev
5291                     && tmp->rdev->recovery_offset == MaxSector
5292                     && !test_bit(Faulty, &tmp->rdev->flags)
5293                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5294                         count++;
5295                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5296                 }
5297         }
5298         spin_lock_irqsave(&conf->device_lock, flags);
5299         mddev->degraded -= count;
5300         spin_unlock_irqrestore(&conf->device_lock, flags);
5301         print_raid5_conf(conf);
5302         return count;
5303 }
5304
5305 static int raid5_remove_disk(mddev_t *mddev, int number)
5306 {
5307         raid5_conf_t *conf = mddev->private;
5308         int err = 0;
5309         mdk_rdev_t *rdev;
5310         struct disk_info *p = conf->disks + number;
5311
5312         print_raid5_conf(conf);
5313         rdev = p->rdev;
5314         if (rdev) {
5315                 if (number >= conf->raid_disks &&
5316                     conf->reshape_progress == MaxSector)
5317                         clear_bit(In_sync, &rdev->flags);
5318
5319                 if (test_bit(In_sync, &rdev->flags) ||
5320                     atomic_read(&rdev->nr_pending)) {
5321                         err = -EBUSY;
5322                         goto abort;
5323                 }
5324                 /* Only remove non-faulty devices if recovery
5325                  * isn't possible.
5326                  */
5327                 if (!test_bit(Faulty, &rdev->flags) &&
5328                     !has_failed(conf) &&
5329                     number < conf->raid_disks) {
5330                         err = -EBUSY;
5331                         goto abort;
5332                 }
5333                 p->rdev = NULL;
5334                 synchronize_rcu();
5335                 if (atomic_read(&rdev->nr_pending)) {
5336                         /* lost the race, try later */
5337                         err = -EBUSY;
5338                         p->rdev = rdev;
5339                 }
5340         }
5341 abort:
5342
5343         print_raid5_conf(conf);
5344         return err;
5345 }
5346
5347 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5348 {
5349         raid5_conf_t *conf = mddev->private;
5350         int err = -EEXIST;
5351         int disk;
5352         struct disk_info *p;
5353         int first = 0;
5354         int last = conf->raid_disks - 1;
5355
5356         if (has_failed(conf))
5357                 /* no point adding a device */
5358                 return -EINVAL;
5359
5360         if (rdev->raid_disk >= 0)
5361                 first = last = rdev->raid_disk;
5362
5363         /*
5364          * find the disk ... but prefer rdev->saved_raid_disk
5365          * if possible.
5366          */
5367         if (rdev->saved_raid_disk >= 0 &&
5368             rdev->saved_raid_disk >= first &&
5369             conf->disks[rdev->saved_raid_disk].rdev == NULL)
5370                 disk = rdev->saved_raid_disk;
5371         else
5372                 disk = first;
5373         for ( ; disk <= last ; disk++)
5374                 if ((p=conf->disks + disk)->rdev == NULL) {
5375                         clear_bit(In_sync, &rdev->flags);
5376                         rdev->raid_disk = disk;
5377                         err = 0;
5378                         if (rdev->saved_raid_disk != disk)
5379                                 conf->fullsync = 1;
5380                         rcu_assign_pointer(p->rdev, rdev);
5381                         break;
5382                 }
5383         print_raid5_conf(conf);
5384         return err;
5385 }
5386
5387 static int raid5_resize(mddev_t *mddev, sector_t sectors)
5388 {
5389         /* no resync is happening, and there is enough space
5390          * on all devices, so we can resize.
5391          * We need to make sure resync covers any new space.
5392          * If the array is shrinking we should possibly wait until
5393          * any io in the removed space completes, but it hardly seems
5394          * worth it.
5395          */
5396         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5397         md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5398                                                mddev->raid_disks));
5399         if (mddev->array_sectors >
5400             raid5_size(mddev, sectors, mddev->raid_disks))
5401                 return -EINVAL;
5402         set_capacity(mddev->gendisk, mddev->array_sectors);
5403         revalidate_disk(mddev->gendisk);
5404         if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
5405                 mddev->recovery_cp = mddev->dev_sectors;
5406                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5407         }
5408         mddev->dev_sectors = sectors;
5409         mddev->resync_max_sectors = sectors;
5410         return 0;
5411 }
5412
5413 static int check_stripe_cache(mddev_t *mddev)
5414 {
5415         /* Can only proceed if there are plenty of stripe_heads.
5416          * We need a minimum of one full stripe,, and for sensible progress
5417          * it is best to have about 4 times that.
5418          * If we require 4 times, then the default 256 4K stripe_heads will
5419          * allow for chunk sizes up to 256K, which is probably OK.
5420          * If the chunk size is greater, user-space should request more
5421          * stripe_heads first.
5422          */
5423         raid5_conf_t *conf = mddev->private;
5424         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5425             > conf->max_nr_stripes ||
5426             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5427             > conf->max_nr_stripes) {
5428                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5429                        mdname(mddev),
5430                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5431                         / STRIPE_SIZE)*4);
5432                 return 0;
5433         }
5434         return 1;
5435 }
5436
5437 static int check_reshape(mddev_t *mddev)
5438 {
5439         raid5_conf_t *conf = mddev->private;
5440
5441         if (mddev->delta_disks == 0 &&
5442             mddev->new_layout == mddev->layout &&
5443             mddev->new_chunk_sectors == mddev->chunk_sectors)
5444                 return 0; /* nothing to do */
5445         if (mddev->bitmap)
5446                 /* Cannot grow a bitmap yet */
5447                 return -EBUSY;
5448         if (has_failed(conf))
5449                 return -EINVAL;
5450         if (mddev->delta_disks < 0) {
5451                 /* We might be able to shrink, but the devices must
5452                  * be made bigger first.
5453                  * For raid6, 4 is the minimum size.
5454                  * Otherwise 2 is the minimum
5455                  */
5456                 int min = 2;
5457                 if (mddev->level == 6)
5458                         min = 4;
5459                 if (mddev->raid_disks + mddev->delta_disks < min)
5460                         return -EINVAL;
5461         }
5462
5463         if (!check_stripe_cache(mddev))
5464                 return -ENOSPC;
5465
5466         return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5467 }
5468
5469 static int raid5_start_reshape(mddev_t *mddev)
5470 {
5471         raid5_conf_t *conf = mddev->private;
5472         mdk_rdev_t *rdev;
5473         int spares = 0;
5474         unsigned long flags;
5475
5476         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5477                 return -EBUSY;
5478
5479         if (!check_stripe_cache(mddev))
5480                 return -ENOSPC;
5481
5482         list_for_each_entry(rdev, &mddev->disks, same_set)
5483                 if (!test_bit(In_sync, &rdev->flags)
5484                     && !test_bit(Faulty, &rdev->flags))
5485                         spares++;
5486
5487         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5488                 /* Not enough devices even to make a degraded array
5489                  * of that size
5490                  */
5491                 return -EINVAL;
5492
5493         /* Refuse to reduce size of the array.  Any reductions in
5494          * array size must be through explicit setting of array_size
5495          * attribute.
5496          */
5497         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5498             < mddev->array_sectors) {
5499                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5500                        "before number of disks\n", mdname(mddev));
5501                 return -EINVAL;
5502         }
5503
5504         atomic_set(&conf->reshape_stripes, 0);
5505         spin_lock_irq(&conf->device_lock);
5506         conf->previous_raid_disks = conf->raid_disks;
5507         conf->raid_disks += mddev->delta_disks;
5508         conf->prev_chunk_sectors = conf->chunk_sectors;
5509         conf->chunk_sectors = mddev->new_chunk_sectors;
5510         conf->prev_algo = conf->algorithm;
5511         conf->algorithm = mddev->new_layout;
5512         if (mddev->delta_disks < 0)
5513                 conf->reshape_progress = raid5_size(mddev, 0, 0);
5514         else
5515                 conf->reshape_progress = 0;
5516         conf->reshape_safe = conf->reshape_progress;
5517         conf->generation++;
5518         spin_unlock_irq(&conf->device_lock);
5519
5520         /* Add some new drives, as many as will fit.
5521          * We know there are enough to make the newly sized array work.
5522          * Don't add devices if we are reducing the number of
5523          * devices in the array.  This is because it is not possible
5524          * to correctly record the "partially reconstructed" state of
5525          * such devices during the reshape and confusion could result.
5526          */
5527         if (mddev->delta_disks >= 0) {
5528                 int added_devices = 0;
5529                 list_for_each_entry(rdev, &mddev->disks, same_set)
5530                         if (rdev->raid_disk < 0 &&
5531                             !test_bit(Faulty, &rdev->flags)) {
5532                                 if (raid5_add_disk(mddev, rdev) == 0) {
5533                                         char nm[20];
5534                                         if (rdev->raid_disk
5535                                             >= conf->previous_raid_disks) {
5536                                                 set_bit(In_sync, &rdev->flags);
5537                                                 added_devices++;
5538                                         } else
5539                                                 rdev->recovery_offset = 0;
5540                                         sprintf(nm, "rd%d", rdev->raid_disk);
5541                                         if (sysfs_create_link(&mddev->kobj,
5542                                                               &rdev->kobj, nm))
5543                                                 /* Failure here is OK */;
5544                                 }
5545                         } else if (rdev->raid_disk >= conf->previous_raid_disks
5546                                    && !test_bit(Faulty, &rdev->flags)) {
5547                                 /* This is a spare that was manually added */
5548                                 set_bit(In_sync, &rdev->flags);
5549                                 added_devices++;
5550                         }
5551
5552                 /* When a reshape changes the number of devices,
5553                  * ->degraded is measured against the larger of the
5554                  * pre and post number of devices.
5555                  */
5556                 spin_lock_irqsave(&conf->device_lock, flags);
5557                 mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5558                         - added_devices;
5559                 spin_unlock_irqrestore(&conf->device_lock, flags);
5560         }
5561         mddev->raid_disks = conf->raid_disks;
5562         mddev->reshape_position = conf->reshape_progress;
5563         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5564
5565         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5566         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5567         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5568         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5569         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5570                                                 "reshape");
5571         if (!mddev->sync_thread) {
5572                 mddev->recovery = 0;
5573                 spin_lock_irq(&conf->device_lock);
5574                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5575                 conf->reshape_progress = MaxSector;
5576                 spin_unlock_irq(&conf->device_lock);
5577                 return -EAGAIN;
5578         }
5579         conf->reshape_checkpoint = jiffies;
5580         md_wakeup_thread(mddev->sync_thread);
5581         md_new_event(mddev);
5582         return 0;
5583 }
5584
5585 /* This is called from the reshape thread and should make any
5586  * changes needed in 'conf'
5587  */
5588 static void end_reshape(raid5_conf_t *conf)
5589 {
5590
5591         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5592
5593                 spin_lock_irq(&conf->device_lock);
5594                 conf->previous_raid_disks = conf->raid_disks;
5595                 conf->reshape_progress = MaxSector;
5596                 spin_unlock_irq(&conf->device_lock);
5597                 wake_up(&conf->wait_for_overlap);
5598
5599                 /* read-ahead size must cover two whole stripes, which is
5600                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5601                  */
5602                 if (conf->mddev->queue) {
5603                         int data_disks = conf->raid_disks - conf->max_degraded;
5604                         int stripe = data_disks * ((conf->chunk_sectors << 9)
5605                                                    / PAGE_SIZE);
5606                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5607                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5608                 }
5609         }
5610 }
5611
5612 /* This is called from the raid5d thread with mddev_lock held.
5613  * It makes config changes to the device.
5614  */
5615 static void raid5_finish_reshape(mddev_t *mddev)
5616 {
5617         raid5_conf_t *conf = mddev->private;
5618
5619         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5620
5621                 if (mddev->delta_disks > 0) {
5622                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5623                         set_capacity(mddev->gendisk, mddev->array_sectors);
5624                         revalidate_disk(mddev->gendisk);
5625                 } else {
5626                         int d;
5627                         mddev->degraded = conf->raid_disks;
5628                         for (d = 0; d < conf->raid_disks ; d++)
5629                                 if (conf->disks[d].rdev &&
5630                                     test_bit(In_sync,
5631                                              &conf->disks[d].rdev->flags))
5632                                         mddev->degraded--;
5633                         for (d = conf->raid_disks ;
5634                              d < conf->raid_disks - mddev->delta_disks;
5635                              d++) {
5636                                 mdk_rdev_t *rdev = conf->disks[d].rdev;
5637                                 if (rdev && raid5_remove_disk(mddev, d) == 0) {
5638                                         char nm[20];
5639                                         sprintf(nm, "rd%d", rdev->raid_disk);
5640                                         sysfs_remove_link(&mddev->kobj, nm);
5641                                         rdev->raid_disk = -1;
5642                                 }
5643                         }
5644                 }
5645                 mddev->layout = conf->algorithm;
5646                 mddev->chunk_sectors = conf->chunk_sectors;
5647                 mddev->reshape_position = MaxSector;
5648                 mddev->delta_disks = 0;
5649         }
5650 }
5651
5652 static void raid5_quiesce(mddev_t *mddev, int state)
5653 {
5654         raid5_conf_t *conf = mddev->private;
5655
5656         switch(state) {
5657         case 2: /* resume for a suspend */
5658                 wake_up(&conf->wait_for_overlap);
5659                 break;
5660
5661         case 1: /* stop all writes */
5662                 spin_lock_irq(&conf->device_lock);
5663                 /* '2' tells resync/reshape to pause so that all
5664                  * active stripes can drain
5665                  */
5666                 conf->quiesce = 2;
5667                 wait_event_lock_irq(conf->wait_for_stripe,
5668                                     atomic_read(&conf->active_stripes) == 0 &&
5669                                     atomic_read(&conf->active_aligned_reads) == 0,
5670                                     conf->device_lock, /* nothing */);
5671                 conf->quiesce = 1;
5672                 spin_unlock_irq(&conf->device_lock);
5673                 /* allow reshape to continue */
5674                 wake_up(&conf->wait_for_overlap);
5675                 break;
5676
5677         case 0: /* re-enable writes */
5678                 spin_lock_irq(&conf->device_lock);
5679                 conf->quiesce = 0;
5680                 wake_up(&conf->wait_for_stripe);
5681                 wake_up(&conf->wait_for_overlap);
5682                 spin_unlock_irq(&conf->device_lock);
5683                 break;
5684         }
5685 }
5686
5687
5688 static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5689 {
5690         struct raid0_private_data *raid0_priv = mddev->private;
5691
5692         /* for raid0 takeover only one zone is supported */
5693         if (raid0_priv->nr_strip_zones > 1) {
5694                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5695                        mdname(mddev));
5696                 return ERR_PTR(-EINVAL);
5697         }
5698
5699         mddev->new_level = level;
5700         mddev->new_layout = ALGORITHM_PARITY_N;
5701         mddev->new_chunk_sectors = mddev->chunk_sectors;
5702         mddev->raid_disks += 1;
5703         mddev->delta_disks = 1;
5704         /* make sure it will be not marked as dirty */
5705         mddev->recovery_cp = MaxSector;
5706
5707         return setup_conf(mddev);
5708 }
5709
5710
5711 static void *raid5_takeover_raid1(mddev_t *mddev)
5712 {
5713         int chunksect;
5714
5715         if (mddev->raid_disks != 2 ||
5716             mddev->degraded > 1)
5717                 return ERR_PTR(-EINVAL);
5718
5719         /* Should check if there are write-behind devices? */
5720
5721         chunksect = 64*2; /* 64K by default */
5722
5723         /* The array must be an exact multiple of chunksize */
5724         while (chunksect && (mddev->array_sectors & (chunksect-1)))
5725                 chunksect >>= 1;
5726
5727         if ((chunksect<<9) < STRIPE_SIZE)
5728                 /* array size does not allow a suitable chunk size */
5729                 return ERR_PTR(-EINVAL);
5730
5731         mddev->new_level = 5;
5732         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5733         mddev->new_chunk_sectors = chunksect;
5734
5735         return setup_conf(mddev);
5736 }
5737
5738 static void *raid5_takeover_raid6(mddev_t *mddev)
5739 {
5740         int new_layout;
5741
5742         switch (mddev->layout) {
5743         case ALGORITHM_LEFT_ASYMMETRIC_6:
5744                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5745                 break;
5746         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5747                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5748                 break;
5749         case ALGORITHM_LEFT_SYMMETRIC_6:
5750                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5751                 break;
5752         case ALGORITHM_RIGHT_SYMMETRIC_6:
5753                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5754                 break;
5755         case ALGORITHM_PARITY_0_6:
5756                 new_layout = ALGORITHM_PARITY_0;
5757                 break;
5758         case ALGORITHM_PARITY_N:
5759                 new_layout = ALGORITHM_PARITY_N;
5760                 break;
5761         default:
5762                 return ERR_PTR(-EINVAL);
5763         }
5764         mddev->new_level = 5;
5765         mddev->new_layout = new_layout;
5766         mddev->delta_disks = -1;
5767         mddev->raid_disks -= 1;
5768         return setup_conf(mddev);
5769 }
5770
5771
5772 static int raid5_check_reshape(mddev_t *mddev)
5773 {
5774         /* For a 2-drive array, the layout and chunk size can be changed
5775          * immediately as not restriping is needed.
5776          * For larger arrays we record the new value - after validation
5777          * to be used by a reshape pass.
5778          */
5779         raid5_conf_t *conf = mddev->private;
5780         int new_chunk = mddev->new_chunk_sectors;
5781
5782         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5783                 return -EINVAL;
5784         if (new_chunk > 0) {
5785                 if (!is_power_of_2(new_chunk))
5786                         return -EINVAL;
5787                 if (new_chunk < (PAGE_SIZE>>9))
5788                         return -EINVAL;
5789                 if (mddev->array_sectors & (new_chunk-1))
5790                         /* not factor of array size */
5791                         return -EINVAL;
5792         }
5793
5794         /* They look valid */
5795
5796         if (mddev->raid_disks == 2) {
5797                 /* can make the change immediately */
5798                 if (mddev->new_layout >= 0) {
5799                         conf->algorithm = mddev->new_layout;
5800                         mddev->layout = mddev->new_layout;
5801                 }
5802                 if (new_chunk > 0) {
5803                         conf->chunk_sectors = new_chunk ;
5804                         mddev->chunk_sectors = new_chunk;
5805                 }
5806                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5807                 md_wakeup_thread(mddev->thread);
5808         }
5809         return check_reshape(mddev);
5810 }
5811
5812 static int raid6_check_reshape(mddev_t *mddev)
5813 {
5814         int new_chunk = mddev->new_chunk_sectors;
5815
5816         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5817                 return -EINVAL;
5818         if (new_chunk > 0) {
5819                 if (!is_power_of_2(new_chunk))
5820                         return -EINVAL;
5821                 if (new_chunk < (PAGE_SIZE >> 9))
5822                         return -EINVAL;
5823                 if (mddev->array_sectors & (new_chunk-1))
5824                         /* not factor of array size */
5825                         return -EINVAL;
5826         }
5827
5828         /* They look valid */
5829         return check_reshape(mddev);
5830 }
5831
5832 static void *raid5_takeover(mddev_t *mddev)
5833 {
5834         /* raid5 can take over:
5835          *  raid0 - if there is only one strip zone - make it a raid4 layout
5836          *  raid1 - if there are two drives.  We need to know the chunk size
5837          *  raid4 - trivial - just use a raid4 layout.
5838          *  raid6 - Providing it is a *_6 layout
5839          */
5840         if (mddev->level == 0)
5841                 return raid45_takeover_raid0(mddev, 5);
5842         if (mddev->level == 1)
5843                 return raid5_takeover_raid1(mddev);
5844         if (mddev->level == 4) {
5845                 mddev->new_layout = ALGORITHM_PARITY_N;
5846                 mddev->new_level = 5;
5847                 return setup_conf(mddev);
5848         }
5849         if (mddev->level == 6)
5850                 return raid5_takeover_raid6(mddev);
5851
5852         return ERR_PTR(-EINVAL);
5853 }
5854
5855 static void *raid4_takeover(mddev_t *mddev)
5856 {
5857         /* raid4 can take over:
5858          *  raid0 - if there is only one strip zone
5859          *  raid5 - if layout is right
5860          */
5861         if (mddev->level == 0)
5862                 return raid45_takeover_raid0(mddev, 4);
5863         if (mddev->level == 5 &&
5864             mddev->layout == ALGORITHM_PARITY_N) {
5865                 mddev->new_layout = 0;
5866                 mddev->new_level = 4;
5867                 return setup_conf(mddev);
5868         }
5869         return ERR_PTR(-EINVAL);
5870 }
5871
5872 static struct mdk_personality raid5_personality;
5873
5874 static void *raid6_takeover(mddev_t *mddev)
5875 {
5876         /* Currently can only take over a raid5.  We map the
5877          * personality to an equivalent raid6 personality
5878          * with the Q block at the end.
5879          */
5880         int new_layout;
5881
5882         if (mddev->pers != &raid5_personality)
5883                 return ERR_PTR(-EINVAL);
5884         if (mddev->degraded > 1)
5885                 return ERR_PTR(-EINVAL);
5886         if (mddev->raid_disks > 253)
5887                 return ERR_PTR(-EINVAL);
5888         if (mddev->raid_disks < 3)
5889                 return ERR_PTR(-EINVAL);
5890
5891         switch (mddev->layout) {
5892         case ALGORITHM_LEFT_ASYMMETRIC:
5893                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5894                 break;
5895         case ALGORITHM_RIGHT_ASYMMETRIC:
5896                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5897                 break;
5898         case ALGORITHM_LEFT_SYMMETRIC:
5899                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5900                 break;
5901         case ALGORITHM_RIGHT_SYMMETRIC:
5902                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5903                 break;
5904         case ALGORITHM_PARITY_0:
5905                 new_layout = ALGORITHM_PARITY_0_6;
5906                 break;
5907         case ALGORITHM_PARITY_N:
5908                 new_layout = ALGORITHM_PARITY_N;
5909                 break;
5910         default:
5911                 return ERR_PTR(-EINVAL);
5912         }
5913         mddev->new_level = 6;
5914         mddev->new_layout = new_layout;
5915         mddev->delta_disks = 1;
5916         mddev->raid_disks += 1;
5917         return setup_conf(mddev);
5918 }
5919
5920
5921 static struct mdk_personality raid6_personality =
5922 {
5923         .name           = "raid6",
5924         .level          = 6,
5925         .owner          = THIS_MODULE,
5926         .make_request   = make_request,
5927         .run            = run,
5928         .stop           = stop,
5929         .status         = status,
5930         .error_handler  = error,
5931         .hot_add_disk   = raid5_add_disk,
5932         .hot_remove_disk= raid5_remove_disk,
5933         .spare_active   = raid5_spare_active,
5934         .sync_request   = sync_request,
5935         .resize         = raid5_resize,
5936         .size           = raid5_size,
5937         .check_reshape  = raid6_check_reshape,
5938         .start_reshape  = raid5_start_reshape,
5939         .finish_reshape = raid5_finish_reshape,
5940         .quiesce        = raid5_quiesce,
5941         .takeover       = raid6_takeover,
5942 };
5943 static struct mdk_personality raid5_personality =
5944 {
5945         .name           = "raid5",
5946         .level          = 5,
5947         .owner          = THIS_MODULE,
5948         .make_request   = make_request,
5949         .run            = run,
5950         .stop           = stop,
5951         .status         = status,
5952         .error_handler  = error,
5953         .hot_add_disk   = raid5_add_disk,
5954         .hot_remove_disk= raid5_remove_disk,
5955         .spare_active   = raid5_spare_active,
5956         .sync_request   = sync_request,
5957         .resize         = raid5_resize,
5958         .size           = raid5_size,
5959         .check_reshape  = raid5_check_reshape,
5960         .start_reshape  = raid5_start_reshape,
5961         .finish_reshape = raid5_finish_reshape,
5962         .quiesce        = raid5_quiesce,
5963         .takeover       = raid5_takeover,
5964 };
5965
5966 static struct mdk_personality raid4_personality =
5967 {
5968         .name           = "raid4",
5969         .level          = 4,
5970         .owner          = THIS_MODULE,
5971         .make_request   = make_request,
5972         .run            = run,
5973         .stop           = stop,
5974         .status         = status,
5975         .error_handler  = error,
5976         .hot_add_disk   = raid5_add_disk,
5977         .hot_remove_disk= raid5_remove_disk,
5978         .spare_active   = raid5_spare_active,
5979         .sync_request   = sync_request,
5980         .resize         = raid5_resize,
5981         .size           = raid5_size,
5982         .check_reshape  = raid5_check_reshape,
5983         .start_reshape  = raid5_start_reshape,
5984         .finish_reshape = raid5_finish_reshape,
5985         .quiesce        = raid5_quiesce,
5986         .takeover       = raid4_takeover,
5987 };
5988
5989 static int __init raid5_init(void)
5990 {
5991         register_md_personality(&raid6_personality);
5992         register_md_personality(&raid5_personality);
5993         register_md_personality(&raid4_personality);
5994         return 0;
5995 }
5996
5997 static void raid5_exit(void)
5998 {
5999         unregister_md_personality(&raid6_personality);
6000         unregister_md_personality(&raid5_personality);
6001         unregister_md_personality(&raid4_personality);
6002 }
6003
6004 module_init(raid5_init);
6005 module_exit(raid5_exit);
6006 MODULE_LICENSE("GPL");
6007 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6008 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6009 MODULE_ALIAS("md-raid5");
6010 MODULE_ALIAS("md-raid4");
6011 MODULE_ALIAS("md-level-5");
6012 MODULE_ALIAS("md-level-4");
6013 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6014 MODULE_ALIAS("md-raid6");
6015 MODULE_ALIAS("md-level-6");
6016
6017 /* This used to be two separate modules, they were: */
6018 MODULE_ALIAS("raid5");
6019 MODULE_ALIAS("raid6");