Merge git://git.kernel.org/pub/scm/linux/kernel/git/wim/linux-2.6-watchdog
[pandora-kernel.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->bm_write is the number of the last batch successfully written.
31  * conf->bm_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is bm_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/module.h>
47 #include <linux/slab.h>
48 #include <linux/highmem.h>
49 #include <linux/bitops.h>
50 #include <linux/kthread.h>
51 #include <asm/atomic.h>
52 #include "raid6.h"
53
54 #include <linux/raid/bitmap.h>
55 #include <linux/async_tx.h>
56
57 /*
58  * Stripe cache
59  */
60
61 #define NR_STRIPES              256
62 #define STRIPE_SIZE             PAGE_SIZE
63 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
64 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
65 #define IO_THRESHOLD            1
66 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
67 #define HASH_MASK               (NR_HASH - 1)
68
69 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
70
71 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
72  * order without overlap.  There may be several bio's per stripe+device, and
73  * a bio could span several devices.
74  * When walking this list for a particular stripe+device, we must never proceed
75  * beyond a bio that extends past this device, as the next bio might no longer
76  * be valid.
77  * This macro is used to determine the 'next' bio in the list, given the sector
78  * of the current stripe+device
79  */
80 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
81 /*
82  * The following can be used to debug the driver
83  */
84 #define RAID5_PARANOIA  1
85 #if RAID5_PARANOIA && defined(CONFIG_SMP)
86 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
87 #else
88 # define CHECK_DEVLOCK()
89 #endif
90
91 #ifdef DEBUG
92 #define inline
93 #define __inline__
94 #endif
95
96 #if !RAID6_USE_EMPTY_ZERO_PAGE
97 /* In .bss so it's zeroed */
98 const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
99 #endif
100
101 static inline int raid6_next_disk(int disk, int raid_disks)
102 {
103         disk++;
104         return (disk < raid_disks) ? disk : 0;
105 }
106
107 static void return_io(struct bio *return_bi)
108 {
109         struct bio *bi = return_bi;
110         while (bi) {
111
112                 return_bi = bi->bi_next;
113                 bi->bi_next = NULL;
114                 bi->bi_size = 0;
115                 bi->bi_end_io(bi,
116                               test_bit(BIO_UPTODATE, &bi->bi_flags)
117                                 ? 0 : -EIO);
118                 bi = return_bi;
119         }
120 }
121
122 static void print_raid5_conf (raid5_conf_t *conf);
123
124 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
125 {
126         if (atomic_dec_and_test(&sh->count)) {
127                 BUG_ON(!list_empty(&sh->lru));
128                 BUG_ON(atomic_read(&conf->active_stripes)==0);
129                 if (test_bit(STRIPE_HANDLE, &sh->state)) {
130                         if (test_bit(STRIPE_DELAYED, &sh->state)) {
131                                 list_add_tail(&sh->lru, &conf->delayed_list);
132                                 blk_plug_device(conf->mddev->queue);
133                         } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
134                                    sh->bm_seq - conf->seq_write > 0) {
135                                 list_add_tail(&sh->lru, &conf->bitmap_list);
136                                 blk_plug_device(conf->mddev->queue);
137                         } else {
138                                 clear_bit(STRIPE_BIT_DELAY, &sh->state);
139                                 list_add_tail(&sh->lru, &conf->handle_list);
140                         }
141                         md_wakeup_thread(conf->mddev->thread);
142                 } else {
143                         BUG_ON(sh->ops.pending);
144                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
145                                 atomic_dec(&conf->preread_active_stripes);
146                                 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
147                                         md_wakeup_thread(conf->mddev->thread);
148                         }
149                         atomic_dec(&conf->active_stripes);
150                         if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
151                                 list_add_tail(&sh->lru, &conf->inactive_list);
152                                 wake_up(&conf->wait_for_stripe);
153                                 if (conf->retry_read_aligned)
154                                         md_wakeup_thread(conf->mddev->thread);
155                         }
156                 }
157         }
158 }
159 static void release_stripe(struct stripe_head *sh)
160 {
161         raid5_conf_t *conf = sh->raid_conf;
162         unsigned long flags;
163
164         spin_lock_irqsave(&conf->device_lock, flags);
165         __release_stripe(conf, sh);
166         spin_unlock_irqrestore(&conf->device_lock, flags);
167 }
168
169 static inline void remove_hash(struct stripe_head *sh)
170 {
171         pr_debug("remove_hash(), stripe %llu\n",
172                 (unsigned long long)sh->sector);
173
174         hlist_del_init(&sh->hash);
175 }
176
177 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
178 {
179         struct hlist_head *hp = stripe_hash(conf, sh->sector);
180
181         pr_debug("insert_hash(), stripe %llu\n",
182                 (unsigned long long)sh->sector);
183
184         CHECK_DEVLOCK();
185         hlist_add_head(&sh->hash, hp);
186 }
187
188
189 /* find an idle stripe, make sure it is unhashed, and return it. */
190 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
191 {
192         struct stripe_head *sh = NULL;
193         struct list_head *first;
194
195         CHECK_DEVLOCK();
196         if (list_empty(&conf->inactive_list))
197                 goto out;
198         first = conf->inactive_list.next;
199         sh = list_entry(first, struct stripe_head, lru);
200         list_del_init(first);
201         remove_hash(sh);
202         atomic_inc(&conf->active_stripes);
203 out:
204         return sh;
205 }
206
207 static void shrink_buffers(struct stripe_head *sh, int num)
208 {
209         struct page *p;
210         int i;
211
212         for (i=0; i<num ; i++) {
213                 p = sh->dev[i].page;
214                 if (!p)
215                         continue;
216                 sh->dev[i].page = NULL;
217                 put_page(p);
218         }
219 }
220
221 static int grow_buffers(struct stripe_head *sh, int num)
222 {
223         int i;
224
225         for (i=0; i<num; i++) {
226                 struct page *page;
227
228                 if (!(page = alloc_page(GFP_KERNEL))) {
229                         return 1;
230                 }
231                 sh->dev[i].page = page;
232         }
233         return 0;
234 }
235
236 static void raid5_build_block (struct stripe_head *sh, int i);
237
238 static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
239 {
240         raid5_conf_t *conf = sh->raid_conf;
241         int i;
242
243         BUG_ON(atomic_read(&sh->count) != 0);
244         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
245         BUG_ON(sh->ops.pending || sh->ops.ack || sh->ops.complete);
246
247         CHECK_DEVLOCK();
248         pr_debug("init_stripe called, stripe %llu\n",
249                 (unsigned long long)sh->sector);
250
251         remove_hash(sh);
252
253         sh->sector = sector;
254         sh->pd_idx = pd_idx;
255         sh->state = 0;
256
257         sh->disks = disks;
258
259         for (i = sh->disks; i--; ) {
260                 struct r5dev *dev = &sh->dev[i];
261
262                 if (dev->toread || dev->read || dev->towrite || dev->written ||
263                     test_bit(R5_LOCKED, &dev->flags)) {
264                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
265                                (unsigned long long)sh->sector, i, dev->toread,
266                                dev->read, dev->towrite, dev->written,
267                                test_bit(R5_LOCKED, &dev->flags));
268                         BUG();
269                 }
270                 dev->flags = 0;
271                 raid5_build_block(sh, i);
272         }
273         insert_hash(conf, sh);
274 }
275
276 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
277 {
278         struct stripe_head *sh;
279         struct hlist_node *hn;
280
281         CHECK_DEVLOCK();
282         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
283         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
284                 if (sh->sector == sector && sh->disks == disks)
285                         return sh;
286         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
287         return NULL;
288 }
289
290 static void unplug_slaves(mddev_t *mddev);
291 static void raid5_unplug_device(struct request_queue *q);
292
293 static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
294                                              int pd_idx, int noblock)
295 {
296         struct stripe_head *sh;
297
298         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
299
300         spin_lock_irq(&conf->device_lock);
301
302         do {
303                 wait_event_lock_irq(conf->wait_for_stripe,
304                                     conf->quiesce == 0,
305                                     conf->device_lock, /* nothing */);
306                 sh = __find_stripe(conf, sector, disks);
307                 if (!sh) {
308                         if (!conf->inactive_blocked)
309                                 sh = get_free_stripe(conf);
310                         if (noblock && sh == NULL)
311                                 break;
312                         if (!sh) {
313                                 conf->inactive_blocked = 1;
314                                 wait_event_lock_irq(conf->wait_for_stripe,
315                                                     !list_empty(&conf->inactive_list) &&
316                                                     (atomic_read(&conf->active_stripes)
317                                                      < (conf->max_nr_stripes *3/4)
318                                                      || !conf->inactive_blocked),
319                                                     conf->device_lock,
320                                                     raid5_unplug_device(conf->mddev->queue)
321                                         );
322                                 conf->inactive_blocked = 0;
323                         } else
324                                 init_stripe(sh, sector, pd_idx, disks);
325                 } else {
326                         if (atomic_read(&sh->count)) {
327                           BUG_ON(!list_empty(&sh->lru));
328                         } else {
329                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
330                                         atomic_inc(&conf->active_stripes);
331                                 if (list_empty(&sh->lru) &&
332                                     !test_bit(STRIPE_EXPANDING, &sh->state))
333                                         BUG();
334                                 list_del_init(&sh->lru);
335                         }
336                 }
337         } while (sh == NULL);
338
339         if (sh)
340                 atomic_inc(&sh->count);
341
342         spin_unlock_irq(&conf->device_lock);
343         return sh;
344 }
345
346 /* test_and_ack_op() ensures that we only dequeue an operation once */
347 #define test_and_ack_op(op, pend) \
348 do {                                                    \
349         if (test_bit(op, &sh->ops.pending) &&           \
350                 !test_bit(op, &sh->ops.complete)) {     \
351                 if (test_and_set_bit(op, &sh->ops.ack)) \
352                         clear_bit(op, &pend);           \
353                 else                                    \
354                         ack++;                          \
355         } else                                          \
356                 clear_bit(op, &pend);                   \
357 } while (0)
358
359 /* find new work to run, do not resubmit work that is already
360  * in flight
361  */
362 static unsigned long get_stripe_work(struct stripe_head *sh)
363 {
364         unsigned long pending;
365         int ack = 0;
366
367         pending = sh->ops.pending;
368
369         test_and_ack_op(STRIPE_OP_BIOFILL, pending);
370         test_and_ack_op(STRIPE_OP_COMPUTE_BLK, pending);
371         test_and_ack_op(STRIPE_OP_PREXOR, pending);
372         test_and_ack_op(STRIPE_OP_BIODRAIN, pending);
373         test_and_ack_op(STRIPE_OP_POSTXOR, pending);
374         test_and_ack_op(STRIPE_OP_CHECK, pending);
375         if (test_and_clear_bit(STRIPE_OP_IO, &sh->ops.pending))
376                 ack++;
377
378         sh->ops.count -= ack;
379         if (unlikely(sh->ops.count < 0)) {
380                 printk(KERN_ERR "pending: %#lx ops.pending: %#lx ops.ack: %#lx "
381                         "ops.complete: %#lx\n", pending, sh->ops.pending,
382                         sh->ops.ack, sh->ops.complete);
383                 BUG();
384         }
385
386         return pending;
387 }
388
389 static void
390 raid5_end_read_request(struct bio *bi, int error);
391 static void
392 raid5_end_write_request(struct bio *bi, int error);
393
394 static void ops_run_io(struct stripe_head *sh)
395 {
396         raid5_conf_t *conf = sh->raid_conf;
397         int i, disks = sh->disks;
398
399         might_sleep();
400
401         for (i = disks; i--; ) {
402                 int rw;
403                 struct bio *bi;
404                 mdk_rdev_t *rdev;
405                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
406                         rw = WRITE;
407                 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
408                         rw = READ;
409                 else
410                         continue;
411
412                 bi = &sh->dev[i].req;
413
414                 bi->bi_rw = rw;
415                 if (rw == WRITE)
416                         bi->bi_end_io = raid5_end_write_request;
417                 else
418                         bi->bi_end_io = raid5_end_read_request;
419
420                 rcu_read_lock();
421                 rdev = rcu_dereference(conf->disks[i].rdev);
422                 if (rdev && test_bit(Faulty, &rdev->flags))
423                         rdev = NULL;
424                 if (rdev)
425                         atomic_inc(&rdev->nr_pending);
426                 rcu_read_unlock();
427
428                 if (rdev) {
429                         if (test_bit(STRIPE_SYNCING, &sh->state) ||
430                                 test_bit(STRIPE_EXPAND_SOURCE, &sh->state) ||
431                                 test_bit(STRIPE_EXPAND_READY, &sh->state))
432                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
433
434                         bi->bi_bdev = rdev->bdev;
435                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
436                                 __FUNCTION__, (unsigned long long)sh->sector,
437                                 bi->bi_rw, i);
438                         atomic_inc(&sh->count);
439                         bi->bi_sector = sh->sector + rdev->data_offset;
440                         bi->bi_flags = 1 << BIO_UPTODATE;
441                         bi->bi_vcnt = 1;
442                         bi->bi_max_vecs = 1;
443                         bi->bi_idx = 0;
444                         bi->bi_io_vec = &sh->dev[i].vec;
445                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
446                         bi->bi_io_vec[0].bv_offset = 0;
447                         bi->bi_size = STRIPE_SIZE;
448                         bi->bi_next = NULL;
449                         if (rw == WRITE &&
450                             test_bit(R5_ReWrite, &sh->dev[i].flags))
451                                 atomic_add(STRIPE_SECTORS,
452                                         &rdev->corrected_errors);
453                         generic_make_request(bi);
454                 } else {
455                         if (rw == WRITE)
456                                 set_bit(STRIPE_DEGRADED, &sh->state);
457                         pr_debug("skip op %ld on disc %d for sector %llu\n",
458                                 bi->bi_rw, i, (unsigned long long)sh->sector);
459                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
460                         set_bit(STRIPE_HANDLE, &sh->state);
461                 }
462         }
463 }
464
465 static struct dma_async_tx_descriptor *
466 async_copy_data(int frombio, struct bio *bio, struct page *page,
467         sector_t sector, struct dma_async_tx_descriptor *tx)
468 {
469         struct bio_vec *bvl;
470         struct page *bio_page;
471         int i;
472         int page_offset;
473
474         if (bio->bi_sector >= sector)
475                 page_offset = (signed)(bio->bi_sector - sector) * 512;
476         else
477                 page_offset = (signed)(sector - bio->bi_sector) * -512;
478         bio_for_each_segment(bvl, bio, i) {
479                 int len = bio_iovec_idx(bio, i)->bv_len;
480                 int clen;
481                 int b_offset = 0;
482
483                 if (page_offset < 0) {
484                         b_offset = -page_offset;
485                         page_offset += b_offset;
486                         len -= b_offset;
487                 }
488
489                 if (len > 0 && page_offset + len > STRIPE_SIZE)
490                         clen = STRIPE_SIZE - page_offset;
491                 else
492                         clen = len;
493
494                 if (clen > 0) {
495                         b_offset += bio_iovec_idx(bio, i)->bv_offset;
496                         bio_page = bio_iovec_idx(bio, i)->bv_page;
497                         if (frombio)
498                                 tx = async_memcpy(page, bio_page, page_offset,
499                                         b_offset, clen,
500                                         ASYNC_TX_DEP_ACK,
501                                         tx, NULL, NULL);
502                         else
503                                 tx = async_memcpy(bio_page, page, b_offset,
504                                         page_offset, clen,
505                                         ASYNC_TX_DEP_ACK,
506                                         tx, NULL, NULL);
507                 }
508                 if (clen < len) /* hit end of page */
509                         break;
510                 page_offset +=  len;
511         }
512
513         return tx;
514 }
515
516 static void ops_complete_biofill(void *stripe_head_ref)
517 {
518         struct stripe_head *sh = stripe_head_ref;
519         struct bio *return_bi = NULL;
520         raid5_conf_t *conf = sh->raid_conf;
521         int i;
522
523         pr_debug("%s: stripe %llu\n", __FUNCTION__,
524                 (unsigned long long)sh->sector);
525
526         /* clear completed biofills */
527         for (i = sh->disks; i--; ) {
528                 struct r5dev *dev = &sh->dev[i];
529
530                 /* acknowledge completion of a biofill operation */
531                 /* and check if we need to reply to a read request,
532                  * new R5_Wantfill requests are held off until
533                  * !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending)
534                  */
535                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
536                         struct bio *rbi, *rbi2;
537
538                         /* The access to dev->read is outside of the
539                          * spin_lock_irq(&conf->device_lock), but is protected
540                          * by the STRIPE_OP_BIOFILL pending bit
541                          */
542                         BUG_ON(!dev->read);
543                         rbi = dev->read;
544                         dev->read = NULL;
545                         while (rbi && rbi->bi_sector <
546                                 dev->sector + STRIPE_SECTORS) {
547                                 rbi2 = r5_next_bio(rbi, dev->sector);
548                                 spin_lock_irq(&conf->device_lock);
549                                 if (--rbi->bi_phys_segments == 0) {
550                                         rbi->bi_next = return_bi;
551                                         return_bi = rbi;
552                                 }
553                                 spin_unlock_irq(&conf->device_lock);
554                                 rbi = rbi2;
555                         }
556                 }
557         }
558         set_bit(STRIPE_OP_BIOFILL, &sh->ops.complete);
559
560         return_io(return_bi);
561
562         set_bit(STRIPE_HANDLE, &sh->state);
563         release_stripe(sh);
564 }
565
566 static void ops_run_biofill(struct stripe_head *sh)
567 {
568         struct dma_async_tx_descriptor *tx = NULL;
569         raid5_conf_t *conf = sh->raid_conf;
570         int i;
571
572         pr_debug("%s: stripe %llu\n", __FUNCTION__,
573                 (unsigned long long)sh->sector);
574
575         for (i = sh->disks; i--; ) {
576                 struct r5dev *dev = &sh->dev[i];
577                 if (test_bit(R5_Wantfill, &dev->flags)) {
578                         struct bio *rbi;
579                         spin_lock_irq(&conf->device_lock);
580                         dev->read = rbi = dev->toread;
581                         dev->toread = NULL;
582                         spin_unlock_irq(&conf->device_lock);
583                         while (rbi && rbi->bi_sector <
584                                 dev->sector + STRIPE_SECTORS) {
585                                 tx = async_copy_data(0, rbi, dev->page,
586                                         dev->sector, tx);
587                                 rbi = r5_next_bio(rbi, dev->sector);
588                         }
589                 }
590         }
591
592         atomic_inc(&sh->count);
593         async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
594                 ops_complete_biofill, sh);
595 }
596
597 static void ops_complete_compute5(void *stripe_head_ref)
598 {
599         struct stripe_head *sh = stripe_head_ref;
600         int target = sh->ops.target;
601         struct r5dev *tgt = &sh->dev[target];
602
603         pr_debug("%s: stripe %llu\n", __FUNCTION__,
604                 (unsigned long long)sh->sector);
605
606         set_bit(R5_UPTODATE, &tgt->flags);
607         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
608         clear_bit(R5_Wantcompute, &tgt->flags);
609         set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
610         set_bit(STRIPE_HANDLE, &sh->state);
611         release_stripe(sh);
612 }
613
614 static struct dma_async_tx_descriptor *
615 ops_run_compute5(struct stripe_head *sh, unsigned long pending)
616 {
617         /* kernel stack size limits the total number of disks */
618         int disks = sh->disks;
619         struct page *xor_srcs[disks];
620         int target = sh->ops.target;
621         struct r5dev *tgt = &sh->dev[target];
622         struct page *xor_dest = tgt->page;
623         int count = 0;
624         struct dma_async_tx_descriptor *tx;
625         int i;
626
627         pr_debug("%s: stripe %llu block: %d\n",
628                 __FUNCTION__, (unsigned long long)sh->sector, target);
629         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
630
631         for (i = disks; i--; )
632                 if (i != target)
633                         xor_srcs[count++] = sh->dev[i].page;
634
635         atomic_inc(&sh->count);
636
637         if (unlikely(count == 1))
638                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
639                         0, NULL, ops_complete_compute5, sh);
640         else
641                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
642                         ASYNC_TX_XOR_ZERO_DST, NULL,
643                         ops_complete_compute5, sh);
644
645         /* ack now if postxor is not set to be run */
646         if (tx && !test_bit(STRIPE_OP_POSTXOR, &pending))
647                 async_tx_ack(tx);
648
649         return tx;
650 }
651
652 static void ops_complete_prexor(void *stripe_head_ref)
653 {
654         struct stripe_head *sh = stripe_head_ref;
655
656         pr_debug("%s: stripe %llu\n", __FUNCTION__,
657                 (unsigned long long)sh->sector);
658
659         set_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
660 }
661
662 static struct dma_async_tx_descriptor *
663 ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
664 {
665         /* kernel stack size limits the total number of disks */
666         int disks = sh->disks;
667         struct page *xor_srcs[disks];
668         int count = 0, pd_idx = sh->pd_idx, i;
669
670         /* existing parity data subtracted */
671         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
672
673         pr_debug("%s: stripe %llu\n", __FUNCTION__,
674                 (unsigned long long)sh->sector);
675
676         for (i = disks; i--; ) {
677                 struct r5dev *dev = &sh->dev[i];
678                 /* Only process blocks that are known to be uptodate */
679                 if (dev->towrite && test_bit(R5_Wantprexor, &dev->flags))
680                         xor_srcs[count++] = dev->page;
681         }
682
683         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
684                 ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
685                 ops_complete_prexor, sh);
686
687         return tx;
688 }
689
690 static struct dma_async_tx_descriptor *
691 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
692 {
693         int disks = sh->disks;
694         int pd_idx = sh->pd_idx, i;
695
696         /* check if prexor is active which means only process blocks
697          * that are part of a read-modify-write (Wantprexor)
698          */
699         int prexor = test_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
700
701         pr_debug("%s: stripe %llu\n", __FUNCTION__,
702                 (unsigned long long)sh->sector);
703
704         for (i = disks; i--; ) {
705                 struct r5dev *dev = &sh->dev[i];
706                 struct bio *chosen;
707                 int towrite;
708
709                 towrite = 0;
710                 if (prexor) { /* rmw */
711                         if (dev->towrite &&
712                             test_bit(R5_Wantprexor, &dev->flags))
713                                 towrite = 1;
714                 } else { /* rcw */
715                         if (i != pd_idx && dev->towrite &&
716                                 test_bit(R5_LOCKED, &dev->flags))
717                                 towrite = 1;
718                 }
719
720                 if (towrite) {
721                         struct bio *wbi;
722
723                         spin_lock(&sh->lock);
724                         chosen = dev->towrite;
725                         dev->towrite = NULL;
726                         BUG_ON(dev->written);
727                         wbi = dev->written = chosen;
728                         spin_unlock(&sh->lock);
729
730                         while (wbi && wbi->bi_sector <
731                                 dev->sector + STRIPE_SECTORS) {
732                                 tx = async_copy_data(1, wbi, dev->page,
733                                         dev->sector, tx);
734                                 wbi = r5_next_bio(wbi, dev->sector);
735                         }
736                 }
737         }
738
739         return tx;
740 }
741
742 static void ops_complete_postxor(void *stripe_head_ref)
743 {
744         struct stripe_head *sh = stripe_head_ref;
745
746         pr_debug("%s: stripe %llu\n", __FUNCTION__,
747                 (unsigned long long)sh->sector);
748
749         set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
750         set_bit(STRIPE_HANDLE, &sh->state);
751         release_stripe(sh);
752 }
753
754 static void ops_complete_write(void *stripe_head_ref)
755 {
756         struct stripe_head *sh = stripe_head_ref;
757         int disks = sh->disks, i, pd_idx = sh->pd_idx;
758
759         pr_debug("%s: stripe %llu\n", __FUNCTION__,
760                 (unsigned long long)sh->sector);
761
762         for (i = disks; i--; ) {
763                 struct r5dev *dev = &sh->dev[i];
764                 if (dev->written || i == pd_idx)
765                         set_bit(R5_UPTODATE, &dev->flags);
766         }
767
768         set_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
769         set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
770
771         set_bit(STRIPE_HANDLE, &sh->state);
772         release_stripe(sh);
773 }
774
775 static void
776 ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
777 {
778         /* kernel stack size limits the total number of disks */
779         int disks = sh->disks;
780         struct page *xor_srcs[disks];
781
782         int count = 0, pd_idx = sh->pd_idx, i;
783         struct page *xor_dest;
784         int prexor = test_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
785         unsigned long flags;
786         dma_async_tx_callback callback;
787
788         pr_debug("%s: stripe %llu\n", __FUNCTION__,
789                 (unsigned long long)sh->sector);
790
791         /* check if prexor is active which means only process blocks
792          * that are part of a read-modify-write (written)
793          */
794         if (prexor) {
795                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
796                 for (i = disks; i--; ) {
797                         struct r5dev *dev = &sh->dev[i];
798                         if (dev->written)
799                                 xor_srcs[count++] = dev->page;
800                 }
801         } else {
802                 xor_dest = sh->dev[pd_idx].page;
803                 for (i = disks; i--; ) {
804                         struct r5dev *dev = &sh->dev[i];
805                         if (i != pd_idx)
806                                 xor_srcs[count++] = dev->page;
807                 }
808         }
809
810         /* check whether this postxor is part of a write */
811         callback = test_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending) ?
812                 ops_complete_write : ops_complete_postxor;
813
814         /* 1/ if we prexor'd then the dest is reused as a source
815          * 2/ if we did not prexor then we are redoing the parity
816          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
817          * for the synchronous xor case
818          */
819         flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
820                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
821
822         atomic_inc(&sh->count);
823
824         if (unlikely(count == 1)) {
825                 flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
826                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
827                         flags, tx, callback, sh);
828         } else
829                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
830                         flags, tx, callback, sh);
831 }
832
833 static void ops_complete_check(void *stripe_head_ref)
834 {
835         struct stripe_head *sh = stripe_head_ref;
836         int pd_idx = sh->pd_idx;
837
838         pr_debug("%s: stripe %llu\n", __FUNCTION__,
839                 (unsigned long long)sh->sector);
840
841         if (test_and_clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending) &&
842                 sh->ops.zero_sum_result == 0)
843                 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
844
845         set_bit(STRIPE_OP_CHECK, &sh->ops.complete);
846         set_bit(STRIPE_HANDLE, &sh->state);
847         release_stripe(sh);
848 }
849
850 static void ops_run_check(struct stripe_head *sh)
851 {
852         /* kernel stack size limits the total number of disks */
853         int disks = sh->disks;
854         struct page *xor_srcs[disks];
855         struct dma_async_tx_descriptor *tx;
856
857         int count = 0, pd_idx = sh->pd_idx, i;
858         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
859
860         pr_debug("%s: stripe %llu\n", __FUNCTION__,
861                 (unsigned long long)sh->sector);
862
863         for (i = disks; i--; ) {
864                 struct r5dev *dev = &sh->dev[i];
865                 if (i != pd_idx)
866                         xor_srcs[count++] = dev->page;
867         }
868
869         tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
870                 &sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
871
872         if (tx)
873                 set_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending);
874         else
875                 clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending);
876
877         atomic_inc(&sh->count);
878         tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
879                 ops_complete_check, sh);
880 }
881
882 static void raid5_run_ops(struct stripe_head *sh, unsigned long pending)
883 {
884         int overlap_clear = 0, i, disks = sh->disks;
885         struct dma_async_tx_descriptor *tx = NULL;
886
887         if (test_bit(STRIPE_OP_BIOFILL, &pending)) {
888                 ops_run_biofill(sh);
889                 overlap_clear++;
890         }
891
892         if (test_bit(STRIPE_OP_COMPUTE_BLK, &pending))
893                 tx = ops_run_compute5(sh, pending);
894
895         if (test_bit(STRIPE_OP_PREXOR, &pending))
896                 tx = ops_run_prexor(sh, tx);
897
898         if (test_bit(STRIPE_OP_BIODRAIN, &pending)) {
899                 tx = ops_run_biodrain(sh, tx);
900                 overlap_clear++;
901         }
902
903         if (test_bit(STRIPE_OP_POSTXOR, &pending))
904                 ops_run_postxor(sh, tx);
905
906         if (test_bit(STRIPE_OP_CHECK, &pending))
907                 ops_run_check(sh);
908
909         if (test_bit(STRIPE_OP_IO, &pending))
910                 ops_run_io(sh);
911
912         if (overlap_clear)
913                 for (i = disks; i--; ) {
914                         struct r5dev *dev = &sh->dev[i];
915                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
916                                 wake_up(&sh->raid_conf->wait_for_overlap);
917                 }
918 }
919
920 static int grow_one_stripe(raid5_conf_t *conf)
921 {
922         struct stripe_head *sh;
923         sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
924         if (!sh)
925                 return 0;
926         memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
927         sh->raid_conf = conf;
928         spin_lock_init(&sh->lock);
929
930         if (grow_buffers(sh, conf->raid_disks)) {
931                 shrink_buffers(sh, conf->raid_disks);
932                 kmem_cache_free(conf->slab_cache, sh);
933                 return 0;
934         }
935         sh->disks = conf->raid_disks;
936         /* we just created an active stripe so... */
937         atomic_set(&sh->count, 1);
938         atomic_inc(&conf->active_stripes);
939         INIT_LIST_HEAD(&sh->lru);
940         release_stripe(sh);
941         return 1;
942 }
943
944 static int grow_stripes(raid5_conf_t *conf, int num)
945 {
946         struct kmem_cache *sc;
947         int devs = conf->raid_disks;
948
949         sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev));
950         sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev));
951         conf->active_name = 0;
952         sc = kmem_cache_create(conf->cache_name[conf->active_name],
953                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
954                                0, 0, NULL);
955         if (!sc)
956                 return 1;
957         conf->slab_cache = sc;
958         conf->pool_size = devs;
959         while (num--)
960                 if (!grow_one_stripe(conf))
961                         return 1;
962         return 0;
963 }
964
965 #ifdef CONFIG_MD_RAID5_RESHAPE
966 static int resize_stripes(raid5_conf_t *conf, int newsize)
967 {
968         /* Make all the stripes able to hold 'newsize' devices.
969          * New slots in each stripe get 'page' set to a new page.
970          *
971          * This happens in stages:
972          * 1/ create a new kmem_cache and allocate the required number of
973          *    stripe_heads.
974          * 2/ gather all the old stripe_heads and tranfer the pages across
975          *    to the new stripe_heads.  This will have the side effect of
976          *    freezing the array as once all stripe_heads have been collected,
977          *    no IO will be possible.  Old stripe heads are freed once their
978          *    pages have been transferred over, and the old kmem_cache is
979          *    freed when all stripes are done.
980          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
981          *    we simple return a failre status - no need to clean anything up.
982          * 4/ allocate new pages for the new slots in the new stripe_heads.
983          *    If this fails, we don't bother trying the shrink the
984          *    stripe_heads down again, we just leave them as they are.
985          *    As each stripe_head is processed the new one is released into
986          *    active service.
987          *
988          * Once step2 is started, we cannot afford to wait for a write,
989          * so we use GFP_NOIO allocations.
990          */
991         struct stripe_head *osh, *nsh;
992         LIST_HEAD(newstripes);
993         struct disk_info *ndisks;
994         int err = 0;
995         struct kmem_cache *sc;
996         int i;
997
998         if (newsize <= conf->pool_size)
999                 return 0; /* never bother to shrink */
1000
1001         md_allow_write(conf->mddev);
1002
1003         /* Step 1 */
1004         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1005                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1006                                0, 0, NULL);
1007         if (!sc)
1008                 return -ENOMEM;
1009
1010         for (i = conf->max_nr_stripes; i; i--) {
1011                 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1012                 if (!nsh)
1013                         break;
1014
1015                 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1016
1017                 nsh->raid_conf = conf;
1018                 spin_lock_init(&nsh->lock);
1019
1020                 list_add(&nsh->lru, &newstripes);
1021         }
1022         if (i) {
1023                 /* didn't get enough, give up */
1024                 while (!list_empty(&newstripes)) {
1025                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1026                         list_del(&nsh->lru);
1027                         kmem_cache_free(sc, nsh);
1028                 }
1029                 kmem_cache_destroy(sc);
1030                 return -ENOMEM;
1031         }
1032         /* Step 2 - Must use GFP_NOIO now.
1033          * OK, we have enough stripes, start collecting inactive
1034          * stripes and copying them over
1035          */
1036         list_for_each_entry(nsh, &newstripes, lru) {
1037                 spin_lock_irq(&conf->device_lock);
1038                 wait_event_lock_irq(conf->wait_for_stripe,
1039                                     !list_empty(&conf->inactive_list),
1040                                     conf->device_lock,
1041                                     unplug_slaves(conf->mddev)
1042                         );
1043                 osh = get_free_stripe(conf);
1044                 spin_unlock_irq(&conf->device_lock);
1045                 atomic_set(&nsh->count, 1);
1046                 for(i=0; i<conf->pool_size; i++)
1047                         nsh->dev[i].page = osh->dev[i].page;
1048                 for( ; i<newsize; i++)
1049                         nsh->dev[i].page = NULL;
1050                 kmem_cache_free(conf->slab_cache, osh);
1051         }
1052         kmem_cache_destroy(conf->slab_cache);
1053
1054         /* Step 3.
1055          * At this point, we are holding all the stripes so the array
1056          * is completely stalled, so now is a good time to resize
1057          * conf->disks.
1058          */
1059         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1060         if (ndisks) {
1061                 for (i=0; i<conf->raid_disks; i++)
1062                         ndisks[i] = conf->disks[i];
1063                 kfree(conf->disks);
1064                 conf->disks = ndisks;
1065         } else
1066                 err = -ENOMEM;
1067
1068         /* Step 4, return new stripes to service */
1069         while(!list_empty(&newstripes)) {
1070                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1071                 list_del_init(&nsh->lru);
1072                 for (i=conf->raid_disks; i < newsize; i++)
1073                         if (nsh->dev[i].page == NULL) {
1074                                 struct page *p = alloc_page(GFP_NOIO);
1075                                 nsh->dev[i].page = p;
1076                                 if (!p)
1077                                         err = -ENOMEM;
1078                         }
1079                 release_stripe(nsh);
1080         }
1081         /* critical section pass, GFP_NOIO no longer needed */
1082
1083         conf->slab_cache = sc;
1084         conf->active_name = 1-conf->active_name;
1085         conf->pool_size = newsize;
1086         return err;
1087 }
1088 #endif
1089
1090 static int drop_one_stripe(raid5_conf_t *conf)
1091 {
1092         struct stripe_head *sh;
1093
1094         spin_lock_irq(&conf->device_lock);
1095         sh = get_free_stripe(conf);
1096         spin_unlock_irq(&conf->device_lock);
1097         if (!sh)
1098                 return 0;
1099         BUG_ON(atomic_read(&sh->count));
1100         shrink_buffers(sh, conf->pool_size);
1101         kmem_cache_free(conf->slab_cache, sh);
1102         atomic_dec(&conf->active_stripes);
1103         return 1;
1104 }
1105
1106 static void shrink_stripes(raid5_conf_t *conf)
1107 {
1108         while (drop_one_stripe(conf))
1109                 ;
1110
1111         if (conf->slab_cache)
1112                 kmem_cache_destroy(conf->slab_cache);
1113         conf->slab_cache = NULL;
1114 }
1115
1116 static void raid5_end_read_request(struct bio * bi, int error)
1117 {
1118         struct stripe_head *sh = bi->bi_private;
1119         raid5_conf_t *conf = sh->raid_conf;
1120         int disks = sh->disks, i;
1121         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1122         char b[BDEVNAME_SIZE];
1123         mdk_rdev_t *rdev;
1124
1125
1126         for (i=0 ; i<disks; i++)
1127                 if (bi == &sh->dev[i].req)
1128                         break;
1129
1130         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1131                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1132                 uptodate);
1133         if (i == disks) {
1134                 BUG();
1135                 return;
1136         }
1137
1138         if (uptodate) {
1139                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1140                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1141                         rdev = conf->disks[i].rdev;
1142                         printk(KERN_INFO "raid5:%s: read error corrected (%lu sectors at %llu on %s)\n",
1143                                mdname(conf->mddev), STRIPE_SECTORS,
1144                                (unsigned long long)sh->sector + rdev->data_offset,
1145                                bdevname(rdev->bdev, b));
1146                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1147                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1148                 }
1149                 if (atomic_read(&conf->disks[i].rdev->read_errors))
1150                         atomic_set(&conf->disks[i].rdev->read_errors, 0);
1151         } else {
1152                 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1153                 int retry = 0;
1154                 rdev = conf->disks[i].rdev;
1155
1156                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1157                 atomic_inc(&rdev->read_errors);
1158                 if (conf->mddev->degraded)
1159                         printk(KERN_WARNING "raid5:%s: read error not correctable (sector %llu on %s).\n",
1160                                mdname(conf->mddev),
1161                                (unsigned long long)sh->sector + rdev->data_offset,
1162                                bdn);
1163                 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1164                         /* Oh, no!!! */
1165                         printk(KERN_WARNING "raid5:%s: read error NOT corrected!! (sector %llu on %s).\n",
1166                                mdname(conf->mddev),
1167                                (unsigned long long)sh->sector + rdev->data_offset,
1168                                bdn);
1169                 else if (atomic_read(&rdev->read_errors)
1170                          > conf->max_nr_stripes)
1171                         printk(KERN_WARNING
1172                                "raid5:%s: Too many read errors, failing device %s.\n",
1173                                mdname(conf->mddev), bdn);
1174                 else
1175                         retry = 1;
1176                 if (retry)
1177                         set_bit(R5_ReadError, &sh->dev[i].flags);
1178                 else {
1179                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1180                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1181                         md_error(conf->mddev, rdev);
1182                 }
1183         }
1184         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1185         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1186         set_bit(STRIPE_HANDLE, &sh->state);
1187         release_stripe(sh);
1188 }
1189
1190 static void raid5_end_write_request (struct bio *bi, int error)
1191 {
1192         struct stripe_head *sh = bi->bi_private;
1193         raid5_conf_t *conf = sh->raid_conf;
1194         int disks = sh->disks, i;
1195         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1196
1197         for (i=0 ; i<disks; i++)
1198                 if (bi == &sh->dev[i].req)
1199                         break;
1200
1201         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1202                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1203                 uptodate);
1204         if (i == disks) {
1205                 BUG();
1206                 return;
1207         }
1208
1209         if (!uptodate)
1210                 md_error(conf->mddev, conf->disks[i].rdev);
1211
1212         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1213         
1214         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1215         set_bit(STRIPE_HANDLE, &sh->state);
1216         release_stripe(sh);
1217 }
1218
1219
1220 static sector_t compute_blocknr(struct stripe_head *sh, int i);
1221         
1222 static void raid5_build_block (struct stripe_head *sh, int i)
1223 {
1224         struct r5dev *dev = &sh->dev[i];
1225
1226         bio_init(&dev->req);
1227         dev->req.bi_io_vec = &dev->vec;
1228         dev->req.bi_vcnt++;
1229         dev->req.bi_max_vecs++;
1230         dev->vec.bv_page = dev->page;
1231         dev->vec.bv_len = STRIPE_SIZE;
1232         dev->vec.bv_offset = 0;
1233
1234         dev->req.bi_sector = sh->sector;
1235         dev->req.bi_private = sh;
1236
1237         dev->flags = 0;
1238         dev->sector = compute_blocknr(sh, i);
1239 }
1240
1241 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1242 {
1243         char b[BDEVNAME_SIZE];
1244         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1245         pr_debug("raid5: error called\n");
1246
1247         if (!test_bit(Faulty, &rdev->flags)) {
1248                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1249                 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1250                         unsigned long flags;
1251                         spin_lock_irqsave(&conf->device_lock, flags);
1252                         mddev->degraded++;
1253                         spin_unlock_irqrestore(&conf->device_lock, flags);
1254                         /*
1255                          * if recovery was running, make sure it aborts.
1256                          */
1257                         set_bit(MD_RECOVERY_ERR, &mddev->recovery);
1258                 }
1259                 set_bit(Faulty, &rdev->flags);
1260                 printk (KERN_ALERT
1261                         "raid5: Disk failure on %s, disabling device."
1262                         " Operation continuing on %d devices\n",
1263                         bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1264         }
1265 }
1266
1267 /*
1268  * Input: a 'big' sector number,
1269  * Output: index of the data and parity disk, and the sector # in them.
1270  */
1271 static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
1272                         unsigned int data_disks, unsigned int * dd_idx,
1273                         unsigned int * pd_idx, raid5_conf_t *conf)
1274 {
1275         long stripe;
1276         unsigned long chunk_number;
1277         unsigned int chunk_offset;
1278         sector_t new_sector;
1279         int sectors_per_chunk = conf->chunk_size >> 9;
1280
1281         /* First compute the information on this sector */
1282
1283         /*
1284          * Compute the chunk number and the sector offset inside the chunk
1285          */
1286         chunk_offset = sector_div(r_sector, sectors_per_chunk);
1287         chunk_number = r_sector;
1288         BUG_ON(r_sector != chunk_number);
1289
1290         /*
1291          * Compute the stripe number
1292          */
1293         stripe = chunk_number / data_disks;
1294
1295         /*
1296          * Compute the data disk and parity disk indexes inside the stripe
1297          */
1298         *dd_idx = chunk_number % data_disks;
1299
1300         /*
1301          * Select the parity disk based on the user selected algorithm.
1302          */
1303         switch(conf->level) {
1304         case 4:
1305                 *pd_idx = data_disks;
1306                 break;
1307         case 5:
1308                 switch (conf->algorithm) {
1309                 case ALGORITHM_LEFT_ASYMMETRIC:
1310                         *pd_idx = data_disks - stripe % raid_disks;
1311                         if (*dd_idx >= *pd_idx)
1312                                 (*dd_idx)++;
1313                         break;
1314                 case ALGORITHM_RIGHT_ASYMMETRIC:
1315                         *pd_idx = stripe % raid_disks;
1316                         if (*dd_idx >= *pd_idx)
1317                                 (*dd_idx)++;
1318                         break;
1319                 case ALGORITHM_LEFT_SYMMETRIC:
1320                         *pd_idx = data_disks - stripe % raid_disks;
1321                         *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1322                         break;
1323                 case ALGORITHM_RIGHT_SYMMETRIC:
1324                         *pd_idx = stripe % raid_disks;
1325                         *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1326                         break;
1327                 default:
1328                         printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1329                                 conf->algorithm);
1330                 }
1331                 break;
1332         case 6:
1333
1334                 /**** FIX THIS ****/
1335                 switch (conf->algorithm) {
1336                 case ALGORITHM_LEFT_ASYMMETRIC:
1337                         *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1338                         if (*pd_idx == raid_disks-1)
1339                                 (*dd_idx)++;    /* Q D D D P */
1340                         else if (*dd_idx >= *pd_idx)
1341                                 (*dd_idx) += 2; /* D D P Q D */
1342                         break;
1343                 case ALGORITHM_RIGHT_ASYMMETRIC:
1344                         *pd_idx = stripe % raid_disks;
1345                         if (*pd_idx == raid_disks-1)
1346                                 (*dd_idx)++;    /* Q D D D P */
1347                         else if (*dd_idx >= *pd_idx)
1348                                 (*dd_idx) += 2; /* D D P Q D */
1349                         break;
1350                 case ALGORITHM_LEFT_SYMMETRIC:
1351                         *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1352                         *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1353                         break;
1354                 case ALGORITHM_RIGHT_SYMMETRIC:
1355                         *pd_idx = stripe % raid_disks;
1356                         *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1357                         break;
1358                 default:
1359                         printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1360                                 conf->algorithm);
1361                 }
1362                 break;
1363         }
1364
1365         /*
1366          * Finally, compute the new sector number
1367          */
1368         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1369         return new_sector;
1370 }
1371
1372
1373 static sector_t compute_blocknr(struct stripe_head *sh, int i)
1374 {
1375         raid5_conf_t *conf = sh->raid_conf;
1376         int raid_disks = sh->disks;
1377         int data_disks = raid_disks - conf->max_degraded;
1378         sector_t new_sector = sh->sector, check;
1379         int sectors_per_chunk = conf->chunk_size >> 9;
1380         sector_t stripe;
1381         int chunk_offset;
1382         int chunk_number, dummy1, dummy2, dd_idx = i;
1383         sector_t r_sector;
1384
1385
1386         chunk_offset = sector_div(new_sector, sectors_per_chunk);
1387         stripe = new_sector;
1388         BUG_ON(new_sector != stripe);
1389
1390         if (i == sh->pd_idx)
1391                 return 0;
1392         switch(conf->level) {
1393         case 4: break;
1394         case 5:
1395                 switch (conf->algorithm) {
1396                 case ALGORITHM_LEFT_ASYMMETRIC:
1397                 case ALGORITHM_RIGHT_ASYMMETRIC:
1398                         if (i > sh->pd_idx)
1399                                 i--;
1400                         break;
1401                 case ALGORITHM_LEFT_SYMMETRIC:
1402                 case ALGORITHM_RIGHT_SYMMETRIC:
1403                         if (i < sh->pd_idx)
1404                                 i += raid_disks;
1405                         i -= (sh->pd_idx + 1);
1406                         break;
1407                 default:
1408                         printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1409                                conf->algorithm);
1410                 }
1411                 break;
1412         case 6:
1413                 if (i == raid6_next_disk(sh->pd_idx, raid_disks))
1414                         return 0; /* It is the Q disk */
1415                 switch (conf->algorithm) {
1416                 case ALGORITHM_LEFT_ASYMMETRIC:
1417                 case ALGORITHM_RIGHT_ASYMMETRIC:
1418                         if (sh->pd_idx == raid_disks-1)
1419                                 i--;    /* Q D D D P */
1420                         else if (i > sh->pd_idx)
1421                                 i -= 2; /* D D P Q D */
1422                         break;
1423                 case ALGORITHM_LEFT_SYMMETRIC:
1424                 case ALGORITHM_RIGHT_SYMMETRIC:
1425                         if (sh->pd_idx == raid_disks-1)
1426                                 i--; /* Q D D D P */
1427                         else {
1428                                 /* D D P Q D */
1429                                 if (i < sh->pd_idx)
1430                                         i += raid_disks;
1431                                 i -= (sh->pd_idx + 2);
1432                         }
1433                         break;
1434                 default:
1435                         printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1436                                 conf->algorithm);
1437                 }
1438                 break;
1439         }
1440
1441         chunk_number = stripe * data_disks + i;
1442         r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1443
1444         check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
1445         if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
1446                 printk(KERN_ERR "compute_blocknr: map not correct\n");
1447                 return 0;
1448         }
1449         return r_sector;
1450 }
1451
1452
1453
1454 /*
1455  * Copy data between a page in the stripe cache, and one or more bion
1456  * The page could align with the middle of the bio, or there could be
1457  * several bion, each with several bio_vecs, which cover part of the page
1458  * Multiple bion are linked together on bi_next.  There may be extras
1459  * at the end of this list.  We ignore them.
1460  */
1461 static void copy_data(int frombio, struct bio *bio,
1462                      struct page *page,
1463                      sector_t sector)
1464 {
1465         char *pa = page_address(page);
1466         struct bio_vec *bvl;
1467         int i;
1468         int page_offset;
1469
1470         if (bio->bi_sector >= sector)
1471                 page_offset = (signed)(bio->bi_sector - sector) * 512;
1472         else
1473                 page_offset = (signed)(sector - bio->bi_sector) * -512;
1474         bio_for_each_segment(bvl, bio, i) {
1475                 int len = bio_iovec_idx(bio,i)->bv_len;
1476                 int clen;
1477                 int b_offset = 0;
1478
1479                 if (page_offset < 0) {
1480                         b_offset = -page_offset;
1481                         page_offset += b_offset;
1482                         len -= b_offset;
1483                 }
1484
1485                 if (len > 0 && page_offset + len > STRIPE_SIZE)
1486                         clen = STRIPE_SIZE - page_offset;
1487                 else clen = len;
1488
1489                 if (clen > 0) {
1490                         char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1491                         if (frombio)
1492                                 memcpy(pa+page_offset, ba+b_offset, clen);
1493                         else
1494                                 memcpy(ba+b_offset, pa+page_offset, clen);
1495                         __bio_kunmap_atomic(ba, KM_USER0);
1496                 }
1497                 if (clen < len) /* hit end of page */
1498                         break;
1499                 page_offset +=  len;
1500         }
1501 }
1502
1503 #define check_xor()     do {                                              \
1504                                 if (count == MAX_XOR_BLOCKS) {            \
1505                                 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1506                                 count = 0;                                \
1507                            }                                              \
1508                         } while(0)
1509
1510 static void compute_parity6(struct stripe_head *sh, int method)
1511 {
1512         raid6_conf_t *conf = sh->raid_conf;
1513         int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1514         struct bio *chosen;
1515         /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1516         void *ptrs[disks];
1517
1518         qd_idx = raid6_next_disk(pd_idx, disks);
1519         d0_idx = raid6_next_disk(qd_idx, disks);
1520
1521         pr_debug("compute_parity, stripe %llu, method %d\n",
1522                 (unsigned long long)sh->sector, method);
1523
1524         switch(method) {
1525         case READ_MODIFY_WRITE:
1526                 BUG();          /* READ_MODIFY_WRITE N/A for RAID-6 */
1527         case RECONSTRUCT_WRITE:
1528                 for (i= disks; i-- ;)
1529                         if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1530                                 chosen = sh->dev[i].towrite;
1531                                 sh->dev[i].towrite = NULL;
1532
1533                                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1534                                         wake_up(&conf->wait_for_overlap);
1535
1536                                 BUG_ON(sh->dev[i].written);
1537                                 sh->dev[i].written = chosen;
1538                         }
1539                 break;
1540         case CHECK_PARITY:
1541                 BUG();          /* Not implemented yet */
1542         }
1543
1544         for (i = disks; i--;)
1545                 if (sh->dev[i].written) {
1546                         sector_t sector = sh->dev[i].sector;
1547                         struct bio *wbi = sh->dev[i].written;
1548                         while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1549                                 copy_data(1, wbi, sh->dev[i].page, sector);
1550                                 wbi = r5_next_bio(wbi, sector);
1551                         }
1552
1553                         set_bit(R5_LOCKED, &sh->dev[i].flags);
1554                         set_bit(R5_UPTODATE, &sh->dev[i].flags);
1555                 }
1556
1557 //      switch(method) {
1558 //      case RECONSTRUCT_WRITE:
1559 //      case CHECK_PARITY:
1560 //      case UPDATE_PARITY:
1561                 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1562                 /* FIX: Is this ordering of drives even remotely optimal? */
1563                 count = 0;
1564                 i = d0_idx;
1565                 do {
1566                         ptrs[count++] = page_address(sh->dev[i].page);
1567                         if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1568                                 printk("block %d/%d not uptodate on parity calc\n", i,count);
1569                         i = raid6_next_disk(i, disks);
1570                 } while ( i != d0_idx );
1571 //              break;
1572 //      }
1573
1574         raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1575
1576         switch(method) {
1577         case RECONSTRUCT_WRITE:
1578                 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1579                 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1580                 set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
1581                 set_bit(R5_LOCKED,   &sh->dev[qd_idx].flags);
1582                 break;
1583         case UPDATE_PARITY:
1584                 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1585                 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1586                 break;
1587         }
1588 }
1589
1590
1591 /* Compute one missing block */
1592 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1593 {
1594         int i, count, disks = sh->disks;
1595         void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1596         int pd_idx = sh->pd_idx;
1597         int qd_idx = raid6_next_disk(pd_idx, disks);
1598
1599         pr_debug("compute_block_1, stripe %llu, idx %d\n",
1600                 (unsigned long long)sh->sector, dd_idx);
1601
1602         if ( dd_idx == qd_idx ) {
1603                 /* We're actually computing the Q drive */
1604                 compute_parity6(sh, UPDATE_PARITY);
1605         } else {
1606                 dest = page_address(sh->dev[dd_idx].page);
1607                 if (!nozero) memset(dest, 0, STRIPE_SIZE);
1608                 count = 0;
1609                 for (i = disks ; i--; ) {
1610                         if (i == dd_idx || i == qd_idx)
1611                                 continue;
1612                         p = page_address(sh->dev[i].page);
1613                         if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1614                                 ptr[count++] = p;
1615                         else
1616                                 printk("compute_block() %d, stripe %llu, %d"
1617                                        " not present\n", dd_idx,
1618                                        (unsigned long long)sh->sector, i);
1619
1620                         check_xor();
1621                 }
1622                 if (count)
1623                         xor_blocks(count, STRIPE_SIZE, dest, ptr);
1624                 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1625                 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1626         }
1627 }
1628
1629 /* Compute two missing blocks */
1630 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1631 {
1632         int i, count, disks = sh->disks;
1633         int pd_idx = sh->pd_idx;
1634         int qd_idx = raid6_next_disk(pd_idx, disks);
1635         int d0_idx = raid6_next_disk(qd_idx, disks);
1636         int faila, failb;
1637
1638         /* faila and failb are disk numbers relative to d0_idx */
1639         /* pd_idx become disks-2 and qd_idx become disks-1 */
1640         faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1641         failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1642
1643         BUG_ON(faila == failb);
1644         if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1645
1646         pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1647                (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1648
1649         if ( failb == disks-1 ) {
1650                 /* Q disk is one of the missing disks */
1651                 if ( faila == disks-2 ) {
1652                         /* Missing P+Q, just recompute */
1653                         compute_parity6(sh, UPDATE_PARITY);
1654                         return;
1655                 } else {
1656                         /* We're missing D+Q; recompute D from P */
1657                         compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1658                         compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1659                         return;
1660                 }
1661         }
1662
1663         /* We're missing D+P or D+D; build pointer table */
1664         {
1665                 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1666                 void *ptrs[disks];
1667
1668                 count = 0;
1669                 i = d0_idx;
1670                 do {
1671                         ptrs[count++] = page_address(sh->dev[i].page);
1672                         i = raid6_next_disk(i, disks);
1673                         if (i != dd_idx1 && i != dd_idx2 &&
1674                             !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1675                                 printk("compute_2 with missing block %d/%d\n", count, i);
1676                 } while ( i != d0_idx );
1677
1678                 if ( failb == disks-2 ) {
1679                         /* We're missing D+P. */
1680                         raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1681                 } else {
1682                         /* We're missing D+D. */
1683                         raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1684                 }
1685
1686                 /* Both the above update both missing blocks */
1687                 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1688                 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1689         }
1690 }
1691
1692 static int
1693 handle_write_operations5(struct stripe_head *sh, int rcw, int expand)
1694 {
1695         int i, pd_idx = sh->pd_idx, disks = sh->disks;
1696         int locked = 0;
1697
1698         if (rcw) {
1699                 /* if we are not expanding this is a proper write request, and
1700                  * there will be bios with new data to be drained into the
1701                  * stripe cache
1702                  */
1703                 if (!expand) {
1704                         set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1705                         sh->ops.count++;
1706                 }
1707
1708                 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1709                 sh->ops.count++;
1710
1711                 for (i = disks; i--; ) {
1712                         struct r5dev *dev = &sh->dev[i];
1713
1714                         if (dev->towrite) {
1715                                 set_bit(R5_LOCKED, &dev->flags);
1716                                 if (!expand)
1717                                         clear_bit(R5_UPTODATE, &dev->flags);
1718                                 locked++;
1719                         }
1720                 }
1721         } else {
1722                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1723                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1724
1725                 set_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
1726                 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1727                 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1728
1729                 sh->ops.count += 3;
1730
1731                 for (i = disks; i--; ) {
1732                         struct r5dev *dev = &sh->dev[i];
1733                         if (i == pd_idx)
1734                                 continue;
1735
1736                         /* For a read-modify write there may be blocks that are
1737                          * locked for reading while others are ready to be
1738                          * written so we distinguish these blocks by the
1739                          * R5_Wantprexor bit
1740                          */
1741                         if (dev->towrite &&
1742                             (test_bit(R5_UPTODATE, &dev->flags) ||
1743                             test_bit(R5_Wantcompute, &dev->flags))) {
1744                                 set_bit(R5_Wantprexor, &dev->flags);
1745                                 set_bit(R5_LOCKED, &dev->flags);
1746                                 clear_bit(R5_UPTODATE, &dev->flags);
1747                                 locked++;
1748                         }
1749                 }
1750         }
1751
1752         /* keep the parity disk locked while asynchronous operations
1753          * are in flight
1754          */
1755         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1756         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1757         locked++;
1758
1759         pr_debug("%s: stripe %llu locked: %d pending: %lx\n",
1760                 __FUNCTION__, (unsigned long long)sh->sector,
1761                 locked, sh->ops.pending);
1762
1763         return locked;
1764 }
1765
1766 /*
1767  * Each stripe/dev can have one or more bion attached.
1768  * toread/towrite point to the first in a chain.
1769  * The bi_next chain must be in order.
1770  */
1771 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1772 {
1773         struct bio **bip;
1774         raid5_conf_t *conf = sh->raid_conf;
1775         int firstwrite=0;
1776
1777         pr_debug("adding bh b#%llu to stripe s#%llu\n",
1778                 (unsigned long long)bi->bi_sector,
1779                 (unsigned long long)sh->sector);
1780
1781
1782         spin_lock(&sh->lock);
1783         spin_lock_irq(&conf->device_lock);
1784         if (forwrite) {
1785                 bip = &sh->dev[dd_idx].towrite;
1786                 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1787                         firstwrite = 1;
1788         } else
1789                 bip = &sh->dev[dd_idx].toread;
1790         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1791                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1792                         goto overlap;
1793                 bip = & (*bip)->bi_next;
1794         }
1795         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1796                 goto overlap;
1797
1798         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1799         if (*bip)
1800                 bi->bi_next = *bip;
1801         *bip = bi;
1802         bi->bi_phys_segments ++;
1803         spin_unlock_irq(&conf->device_lock);
1804         spin_unlock(&sh->lock);
1805
1806         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1807                 (unsigned long long)bi->bi_sector,
1808                 (unsigned long long)sh->sector, dd_idx);
1809
1810         if (conf->mddev->bitmap && firstwrite) {
1811                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1812                                   STRIPE_SECTORS, 0);
1813                 sh->bm_seq = conf->seq_flush+1;
1814                 set_bit(STRIPE_BIT_DELAY, &sh->state);
1815         }
1816
1817         if (forwrite) {
1818                 /* check if page is covered */
1819                 sector_t sector = sh->dev[dd_idx].sector;
1820                 for (bi=sh->dev[dd_idx].towrite;
1821                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1822                              bi && bi->bi_sector <= sector;
1823                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1824                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1825                                 sector = bi->bi_sector + (bi->bi_size>>9);
1826                 }
1827                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1828                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1829         }
1830         return 1;
1831
1832  overlap:
1833         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1834         spin_unlock_irq(&conf->device_lock);
1835         spin_unlock(&sh->lock);
1836         return 0;
1837 }
1838
1839 static void end_reshape(raid5_conf_t *conf);
1840
1841 static int page_is_zero(struct page *p)
1842 {
1843         char *a = page_address(p);
1844         return ((*(u32*)a) == 0 &&
1845                 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1846 }
1847
1848 static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1849 {
1850         int sectors_per_chunk = conf->chunk_size >> 9;
1851         int pd_idx, dd_idx;
1852         int chunk_offset = sector_div(stripe, sectors_per_chunk);
1853
1854         raid5_compute_sector(stripe * (disks - conf->max_degraded)
1855                              *sectors_per_chunk + chunk_offset,
1856                              disks, disks - conf->max_degraded,
1857                              &dd_idx, &pd_idx, conf);
1858         return pd_idx;
1859 }
1860
1861 static void
1862 handle_requests_to_failed_array(raid5_conf_t *conf, struct stripe_head *sh,
1863                                 struct stripe_head_state *s, int disks,
1864                                 struct bio **return_bi)
1865 {
1866         int i;
1867         for (i = disks; i--; ) {
1868                 struct bio *bi;
1869                 int bitmap_end = 0;
1870
1871                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1872                         mdk_rdev_t *rdev;
1873                         rcu_read_lock();
1874                         rdev = rcu_dereference(conf->disks[i].rdev);
1875                         if (rdev && test_bit(In_sync, &rdev->flags))
1876                                 /* multiple read failures in one stripe */
1877                                 md_error(conf->mddev, rdev);
1878                         rcu_read_unlock();
1879                 }
1880                 spin_lock_irq(&conf->device_lock);
1881                 /* fail all writes first */
1882                 bi = sh->dev[i].towrite;
1883                 sh->dev[i].towrite = NULL;
1884                 if (bi) {
1885                         s->to_write--;
1886                         bitmap_end = 1;
1887                 }
1888
1889                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1890                         wake_up(&conf->wait_for_overlap);
1891
1892                 while (bi && bi->bi_sector <
1893                         sh->dev[i].sector + STRIPE_SECTORS) {
1894                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1895                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
1896                         if (--bi->bi_phys_segments == 0) {
1897                                 md_write_end(conf->mddev);
1898                                 bi->bi_next = *return_bi;
1899                                 *return_bi = bi;
1900                         }
1901                         bi = nextbi;
1902                 }
1903                 /* and fail all 'written' */
1904                 bi = sh->dev[i].written;
1905                 sh->dev[i].written = NULL;
1906                 if (bi) bitmap_end = 1;
1907                 while (bi && bi->bi_sector <
1908                        sh->dev[i].sector + STRIPE_SECTORS) {
1909                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1910                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
1911                         if (--bi->bi_phys_segments == 0) {
1912                                 md_write_end(conf->mddev);
1913                                 bi->bi_next = *return_bi;
1914                                 *return_bi = bi;
1915                         }
1916                         bi = bi2;
1917                 }
1918
1919                 /* fail any reads if this device is non-operational and
1920                  * the data has not reached the cache yet.
1921                  */
1922                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
1923                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1924                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
1925                         bi = sh->dev[i].toread;
1926                         sh->dev[i].toread = NULL;
1927                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1928                                 wake_up(&conf->wait_for_overlap);
1929                         if (bi) s->to_read--;
1930                         while (bi && bi->bi_sector <
1931                                sh->dev[i].sector + STRIPE_SECTORS) {
1932                                 struct bio *nextbi =
1933                                         r5_next_bio(bi, sh->dev[i].sector);
1934                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1935                                 if (--bi->bi_phys_segments == 0) {
1936                                         bi->bi_next = *return_bi;
1937                                         *return_bi = bi;
1938                                 }
1939                                 bi = nextbi;
1940                         }
1941                 }
1942                 spin_unlock_irq(&conf->device_lock);
1943                 if (bitmap_end)
1944                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1945                                         STRIPE_SECTORS, 0, 0);
1946         }
1947
1948 }
1949
1950 /* __handle_issuing_new_read_requests5 - returns 0 if there are no more disks
1951  * to process
1952  */
1953 static int __handle_issuing_new_read_requests5(struct stripe_head *sh,
1954                         struct stripe_head_state *s, int disk_idx, int disks)
1955 {
1956         struct r5dev *dev = &sh->dev[disk_idx];
1957         struct r5dev *failed_dev = &sh->dev[s->failed_num];
1958
1959         /* don't schedule compute operations or reads on the parity block while
1960          * a check is in flight
1961          */
1962         if ((disk_idx == sh->pd_idx) &&
1963              test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
1964                 return ~0;
1965
1966         /* is the data in this block needed, and can we get it? */
1967         if (!test_bit(R5_LOCKED, &dev->flags) &&
1968             !test_bit(R5_UPTODATE, &dev->flags) && (dev->toread ||
1969             (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1970              s->syncing || s->expanding || (s->failed &&
1971              (failed_dev->toread || (failed_dev->towrite &&
1972              !test_bit(R5_OVERWRITE, &failed_dev->flags)
1973              ))))) {
1974                 /* 1/ We would like to get this block, possibly by computing it,
1975                  * but we might not be able to.
1976                  *
1977                  * 2/ Since parity check operations potentially make the parity
1978                  * block !uptodate it will need to be refreshed before any
1979                  * compute operations on data disks are scheduled.
1980                  *
1981                  * 3/ We hold off parity block re-reads until check operations
1982                  * have quiesced.
1983                  */
1984                 if ((s->uptodate == disks - 1) &&
1985                     !test_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
1986                         set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
1987                         set_bit(R5_Wantcompute, &dev->flags);
1988                         sh->ops.target = disk_idx;
1989                         s->req_compute = 1;
1990                         sh->ops.count++;
1991                         /* Careful: from this point on 'uptodate' is in the eye
1992                          * of raid5_run_ops which services 'compute' operations
1993                          * before writes. R5_Wantcompute flags a block that will
1994                          * be R5_UPTODATE by the time it is needed for a
1995                          * subsequent operation.
1996                          */
1997                         s->uptodate++;
1998                         return 0; /* uptodate + compute == disks */
1999                 } else if ((s->uptodate < disks - 1) &&
2000                         test_bit(R5_Insync, &dev->flags)) {
2001                         /* Note: we hold off compute operations while checks are
2002                          * in flight, but we still prefer 'compute' over 'read'
2003                          * hence we only read if (uptodate < * disks-1)
2004                          */
2005                         set_bit(R5_LOCKED, &dev->flags);
2006                         set_bit(R5_Wantread, &dev->flags);
2007                         if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2008                                 sh->ops.count++;
2009                         s->locked++;
2010                         pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2011                                 s->syncing);
2012                 }
2013         }
2014
2015         return ~0;
2016 }
2017
2018 static void handle_issuing_new_read_requests5(struct stripe_head *sh,
2019                         struct stripe_head_state *s, int disks)
2020 {
2021         int i;
2022
2023         /* Clear completed compute operations.  Parity recovery
2024          * (STRIPE_OP_MOD_REPAIR_PD) implies a write-back which is handled
2025          * later on in this routine
2026          */
2027         if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2028                 !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2029                 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2030                 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2031                 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2032         }
2033
2034         /* look for blocks to read/compute, skip this if a compute
2035          * is already in flight, or if the stripe contents are in the
2036          * midst of changing due to a write
2037          */
2038         if (!test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2039                 !test_bit(STRIPE_OP_PREXOR, &sh->ops.pending) &&
2040                 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2041                 for (i = disks; i--; )
2042                         if (__handle_issuing_new_read_requests5(
2043                                 sh, s, i, disks) == 0)
2044                                 break;
2045         }
2046         set_bit(STRIPE_HANDLE, &sh->state);
2047 }
2048
2049 static void handle_issuing_new_read_requests6(struct stripe_head *sh,
2050                         struct stripe_head_state *s, struct r6_state *r6s,
2051                         int disks)
2052 {
2053         int i;
2054         for (i = disks; i--; ) {
2055                 struct r5dev *dev = &sh->dev[i];
2056                 if (!test_bit(R5_LOCKED, &dev->flags) &&
2057                     !test_bit(R5_UPTODATE, &dev->flags) &&
2058                     (dev->toread || (dev->towrite &&
2059                      !test_bit(R5_OVERWRITE, &dev->flags)) ||
2060                      s->syncing || s->expanding ||
2061                      (s->failed >= 1 &&
2062                       (sh->dev[r6s->failed_num[0]].toread ||
2063                        s->to_write)) ||
2064                      (s->failed >= 2 &&
2065                       (sh->dev[r6s->failed_num[1]].toread ||
2066                        s->to_write)))) {
2067                         /* we would like to get this block, possibly
2068                          * by computing it, but we might not be able to
2069                          */
2070                         if (s->uptodate == disks-1) {
2071                                 pr_debug("Computing stripe %llu block %d\n",
2072                                        (unsigned long long)sh->sector, i);
2073                                 compute_block_1(sh, i, 0);
2074                                 s->uptodate++;
2075                         } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2076                                 /* Computing 2-failure is *very* expensive; only
2077                                  * do it if failed >= 2
2078                                  */
2079                                 int other;
2080                                 for (other = disks; other--; ) {
2081                                         if (other == i)
2082                                                 continue;
2083                                         if (!test_bit(R5_UPTODATE,
2084                                               &sh->dev[other].flags))
2085                                                 break;
2086                                 }
2087                                 BUG_ON(other < 0);
2088                                 pr_debug("Computing stripe %llu blocks %d,%d\n",
2089                                        (unsigned long long)sh->sector,
2090                                        i, other);
2091                                 compute_block_2(sh, i, other);
2092                                 s->uptodate += 2;
2093                         } else if (test_bit(R5_Insync, &dev->flags)) {
2094                                 set_bit(R5_LOCKED, &dev->flags);
2095                                 set_bit(R5_Wantread, &dev->flags);
2096                                 s->locked++;
2097                                 pr_debug("Reading block %d (sync=%d)\n",
2098                                         i, s->syncing);
2099                         }
2100                 }
2101         }
2102         set_bit(STRIPE_HANDLE, &sh->state);
2103 }
2104
2105
2106 /* handle_completed_write_requests
2107  * any written block on an uptodate or failed drive can be returned.
2108  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2109  * never LOCKED, so we don't need to test 'failed' directly.
2110  */
2111 static void handle_completed_write_requests(raid5_conf_t *conf,
2112         struct stripe_head *sh, int disks, struct bio **return_bi)
2113 {
2114         int i;
2115         struct r5dev *dev;
2116
2117         for (i = disks; i--; )
2118                 if (sh->dev[i].written) {
2119                         dev = &sh->dev[i];
2120                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2121                                 test_bit(R5_UPTODATE, &dev->flags)) {
2122                                 /* We can return any write requests */
2123                                 struct bio *wbi, *wbi2;
2124                                 int bitmap_end = 0;
2125                                 pr_debug("Return write for disc %d\n", i);
2126                                 spin_lock_irq(&conf->device_lock);
2127                                 wbi = dev->written;
2128                                 dev->written = NULL;
2129                                 while (wbi && wbi->bi_sector <
2130                                         dev->sector + STRIPE_SECTORS) {
2131                                         wbi2 = r5_next_bio(wbi, dev->sector);
2132                                         if (--wbi->bi_phys_segments == 0) {
2133                                                 md_write_end(conf->mddev);
2134                                                 wbi->bi_next = *return_bi;
2135                                                 *return_bi = wbi;
2136                                         }
2137                                         wbi = wbi2;
2138                                 }
2139                                 if (dev->towrite == NULL)
2140                                         bitmap_end = 1;
2141                                 spin_unlock_irq(&conf->device_lock);
2142                                 if (bitmap_end)
2143                                         bitmap_endwrite(conf->mddev->bitmap,
2144                                                         sh->sector,
2145                                                         STRIPE_SECTORS,
2146                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2147                                                         0);
2148                         }
2149                 }
2150 }
2151
2152 static void handle_issuing_new_write_requests5(raid5_conf_t *conf,
2153                 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2154 {
2155         int rmw = 0, rcw = 0, i;
2156         for (i = disks; i--; ) {
2157                 /* would I have to read this buffer for read_modify_write */
2158                 struct r5dev *dev = &sh->dev[i];
2159                 if ((dev->towrite || i == sh->pd_idx) &&
2160                     !test_bit(R5_LOCKED, &dev->flags) &&
2161                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2162                       test_bit(R5_Wantcompute, &dev->flags))) {
2163                         if (test_bit(R5_Insync, &dev->flags))
2164                                 rmw++;
2165                         else
2166                                 rmw += 2*disks;  /* cannot read it */
2167                 }
2168                 /* Would I have to read this buffer for reconstruct_write */
2169                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2170                     !test_bit(R5_LOCKED, &dev->flags) &&
2171                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2172                     test_bit(R5_Wantcompute, &dev->flags))) {
2173                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2174                         else
2175                                 rcw += 2*disks;
2176                 }
2177         }
2178         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2179                 (unsigned long long)sh->sector, rmw, rcw);
2180         set_bit(STRIPE_HANDLE, &sh->state);
2181         if (rmw < rcw && rmw > 0)
2182                 /* prefer read-modify-write, but need to get some data */
2183                 for (i = disks; i--; ) {
2184                         struct r5dev *dev = &sh->dev[i];
2185                         if ((dev->towrite || i == sh->pd_idx) &&
2186                             !test_bit(R5_LOCKED, &dev->flags) &&
2187                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2188                             test_bit(R5_Wantcompute, &dev->flags)) &&
2189                             test_bit(R5_Insync, &dev->flags)) {
2190                                 if (
2191                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2192                                         pr_debug("Read_old block "
2193                                                 "%d for r-m-w\n", i);
2194                                         set_bit(R5_LOCKED, &dev->flags);
2195                                         set_bit(R5_Wantread, &dev->flags);
2196                                         if (!test_and_set_bit(
2197                                                 STRIPE_OP_IO, &sh->ops.pending))
2198                                                 sh->ops.count++;
2199                                         s->locked++;
2200                                 } else {
2201                                         set_bit(STRIPE_DELAYED, &sh->state);
2202                                         set_bit(STRIPE_HANDLE, &sh->state);
2203                                 }
2204                         }
2205                 }
2206         if (rcw <= rmw && rcw > 0)
2207                 /* want reconstruct write, but need to get some data */
2208                 for (i = disks; i--; ) {
2209                         struct r5dev *dev = &sh->dev[i];
2210                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2211                             i != sh->pd_idx &&
2212                             !test_bit(R5_LOCKED, &dev->flags) &&
2213                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2214                             test_bit(R5_Wantcompute, &dev->flags)) &&
2215                             test_bit(R5_Insync, &dev->flags)) {
2216                                 if (
2217                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2218                                         pr_debug("Read_old block "
2219                                                 "%d for Reconstruct\n", i);
2220                                         set_bit(R5_LOCKED, &dev->flags);
2221                                         set_bit(R5_Wantread, &dev->flags);
2222                                         if (!test_and_set_bit(
2223                                                 STRIPE_OP_IO, &sh->ops.pending))
2224                                                 sh->ops.count++;
2225                                         s->locked++;
2226                                 } else {
2227                                         set_bit(STRIPE_DELAYED, &sh->state);
2228                                         set_bit(STRIPE_HANDLE, &sh->state);
2229                                 }
2230                         }
2231                 }
2232         /* now if nothing is locked, and if we have enough data,
2233          * we can start a write request
2234          */
2235         /* since handle_stripe can be called at any time we need to handle the
2236          * case where a compute block operation has been submitted and then a
2237          * subsequent call wants to start a write request.  raid5_run_ops only
2238          * handles the case where compute block and postxor are requested
2239          * simultaneously.  If this is not the case then new writes need to be
2240          * held off until the compute completes.
2241          */
2242         if ((s->req_compute ||
2243             !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) &&
2244                 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2245                 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2246                 s->locked += handle_write_operations5(sh, rcw == 0, 0);
2247 }
2248
2249 static void handle_issuing_new_write_requests6(raid5_conf_t *conf,
2250                 struct stripe_head *sh, struct stripe_head_state *s,
2251                 struct r6_state *r6s, int disks)
2252 {
2253         int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2254         int qd_idx = r6s->qd_idx;
2255         for (i = disks; i--; ) {
2256                 struct r5dev *dev = &sh->dev[i];
2257                 /* Would I have to read this buffer for reconstruct_write */
2258                 if (!test_bit(R5_OVERWRITE, &dev->flags)
2259                     && i != pd_idx && i != qd_idx
2260                     && (!test_bit(R5_LOCKED, &dev->flags)
2261                             ) &&
2262                     !test_bit(R5_UPTODATE, &dev->flags)) {
2263                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2264                         else {
2265                                 pr_debug("raid6: must_compute: "
2266                                         "disk %d flags=%#lx\n", i, dev->flags);
2267                                 must_compute++;
2268                         }
2269                 }
2270         }
2271         pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2272                (unsigned long long)sh->sector, rcw, must_compute);
2273         set_bit(STRIPE_HANDLE, &sh->state);
2274
2275         if (rcw > 0)
2276                 /* want reconstruct write, but need to get some data */
2277                 for (i = disks; i--; ) {
2278                         struct r5dev *dev = &sh->dev[i];
2279                         if (!test_bit(R5_OVERWRITE, &dev->flags)
2280                             && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2281                             && !test_bit(R5_LOCKED, &dev->flags) &&
2282                             !test_bit(R5_UPTODATE, &dev->flags) &&
2283                             test_bit(R5_Insync, &dev->flags)) {
2284                                 if (
2285                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2286                                         pr_debug("Read_old stripe %llu "
2287                                                 "block %d for Reconstruct\n",
2288                                              (unsigned long long)sh->sector, i);
2289                                         set_bit(R5_LOCKED, &dev->flags);
2290                                         set_bit(R5_Wantread, &dev->flags);
2291                                         s->locked++;
2292                                 } else {
2293                                         pr_debug("Request delayed stripe %llu "
2294                                                 "block %d for Reconstruct\n",
2295                                              (unsigned long long)sh->sector, i);
2296                                         set_bit(STRIPE_DELAYED, &sh->state);
2297                                         set_bit(STRIPE_HANDLE, &sh->state);
2298                                 }
2299                         }
2300                 }
2301         /* now if nothing is locked, and if we have enough data, we can start a
2302          * write request
2303          */
2304         if (s->locked == 0 && rcw == 0 &&
2305             !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2306                 if (must_compute > 0) {
2307                         /* We have failed blocks and need to compute them */
2308                         switch (s->failed) {
2309                         case 0:
2310                                 BUG();
2311                         case 1:
2312                                 compute_block_1(sh, r6s->failed_num[0], 0);
2313                                 break;
2314                         case 2:
2315                                 compute_block_2(sh, r6s->failed_num[0],
2316                                                 r6s->failed_num[1]);
2317                                 break;
2318                         default: /* This request should have been failed? */
2319                                 BUG();
2320                         }
2321                 }
2322
2323                 pr_debug("Computing parity for stripe %llu\n",
2324                         (unsigned long long)sh->sector);
2325                 compute_parity6(sh, RECONSTRUCT_WRITE);
2326                 /* now every locked buffer is ready to be written */
2327                 for (i = disks; i--; )
2328                         if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2329                                 pr_debug("Writing stripe %llu block %d\n",
2330                                        (unsigned long long)sh->sector, i);
2331                                 s->locked++;
2332                                 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2333                         }
2334                 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2335                 set_bit(STRIPE_INSYNC, &sh->state);
2336
2337                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2338                         atomic_dec(&conf->preread_active_stripes);
2339                         if (atomic_read(&conf->preread_active_stripes) <
2340                             IO_THRESHOLD)
2341                                 md_wakeup_thread(conf->mddev->thread);
2342                 }
2343         }
2344 }
2345
2346 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2347                                 struct stripe_head_state *s, int disks)
2348 {
2349         set_bit(STRIPE_HANDLE, &sh->state);
2350         /* Take one of the following actions:
2351          * 1/ start a check parity operation if (uptodate == disks)
2352          * 2/ finish a check parity operation and act on the result
2353          * 3/ skip to the writeback section if we previously
2354          *    initiated a recovery operation
2355          */
2356         if (s->failed == 0 &&
2357             !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2358                 if (!test_and_set_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
2359                         BUG_ON(s->uptodate != disks);
2360                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2361                         sh->ops.count++;
2362                         s->uptodate--;
2363                 } else if (
2364                        test_and_clear_bit(STRIPE_OP_CHECK, &sh->ops.complete)) {
2365                         clear_bit(STRIPE_OP_CHECK, &sh->ops.ack);
2366                         clear_bit(STRIPE_OP_CHECK, &sh->ops.pending);
2367
2368                         if (sh->ops.zero_sum_result == 0)
2369                                 /* parity is correct (on disc,
2370                                  * not in buffer any more)
2371                                  */
2372                                 set_bit(STRIPE_INSYNC, &sh->state);
2373                         else {
2374                                 conf->mddev->resync_mismatches +=
2375                                         STRIPE_SECTORS;
2376                                 if (test_bit(
2377                                      MD_RECOVERY_CHECK, &conf->mddev->recovery))
2378                                         /* don't try to repair!! */
2379                                         set_bit(STRIPE_INSYNC, &sh->state);
2380                                 else {
2381                                         set_bit(STRIPE_OP_COMPUTE_BLK,
2382                                                 &sh->ops.pending);
2383                                         set_bit(STRIPE_OP_MOD_REPAIR_PD,
2384                                                 &sh->ops.pending);
2385                                         set_bit(R5_Wantcompute,
2386                                                 &sh->dev[sh->pd_idx].flags);
2387                                         sh->ops.target = sh->pd_idx;
2388                                         sh->ops.count++;
2389                                         s->uptodate++;
2390                                 }
2391                         }
2392                 }
2393         }
2394
2395         /* check if we can clear a parity disk reconstruct */
2396         if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2397                 test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2398
2399                 clear_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending);
2400                 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2401                 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2402                 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2403         }
2404
2405         /* Wait for check parity and compute block operations to complete
2406          * before write-back
2407          */
2408         if (!test_bit(STRIPE_INSYNC, &sh->state) &&
2409                 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending) &&
2410                 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) {
2411                 struct r5dev *dev;
2412                 /* either failed parity check, or recovery is happening */
2413                 if (s->failed == 0)
2414                         s->failed_num = sh->pd_idx;
2415                 dev = &sh->dev[s->failed_num];
2416                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2417                 BUG_ON(s->uptodate != disks);
2418
2419                 set_bit(R5_LOCKED, &dev->flags);
2420                 set_bit(R5_Wantwrite, &dev->flags);
2421                 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2422                         sh->ops.count++;
2423
2424                 clear_bit(STRIPE_DEGRADED, &sh->state);
2425                 s->locked++;
2426                 set_bit(STRIPE_INSYNC, &sh->state);
2427         }
2428 }
2429
2430
2431 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2432                                 struct stripe_head_state *s,
2433                                 struct r6_state *r6s, struct page *tmp_page,
2434                                 int disks)
2435 {
2436         int update_p = 0, update_q = 0;
2437         struct r5dev *dev;
2438         int pd_idx = sh->pd_idx;
2439         int qd_idx = r6s->qd_idx;
2440
2441         set_bit(STRIPE_HANDLE, &sh->state);
2442
2443         BUG_ON(s->failed > 2);
2444         BUG_ON(s->uptodate < disks);
2445         /* Want to check and possibly repair P and Q.
2446          * However there could be one 'failed' device, in which
2447          * case we can only check one of them, possibly using the
2448          * other to generate missing data
2449          */
2450
2451         /* If !tmp_page, we cannot do the calculations,
2452          * but as we have set STRIPE_HANDLE, we will soon be called
2453          * by stripe_handle with a tmp_page - just wait until then.
2454          */
2455         if (tmp_page) {
2456                 if (s->failed == r6s->q_failed) {
2457                         /* The only possible failed device holds 'Q', so it
2458                          * makes sense to check P (If anything else were failed,
2459                          * we would have used P to recreate it).
2460                          */
2461                         compute_block_1(sh, pd_idx, 1);
2462                         if (!page_is_zero(sh->dev[pd_idx].page)) {
2463                                 compute_block_1(sh, pd_idx, 0);
2464                                 update_p = 1;
2465                         }
2466                 }
2467                 if (!r6s->q_failed && s->failed < 2) {
2468                         /* q is not failed, and we didn't use it to generate
2469                          * anything, so it makes sense to check it
2470                          */
2471                         memcpy(page_address(tmp_page),
2472                                page_address(sh->dev[qd_idx].page),
2473                                STRIPE_SIZE);
2474                         compute_parity6(sh, UPDATE_PARITY);
2475                         if (memcmp(page_address(tmp_page),
2476                                    page_address(sh->dev[qd_idx].page),
2477                                    STRIPE_SIZE) != 0) {
2478                                 clear_bit(STRIPE_INSYNC, &sh->state);
2479                                 update_q = 1;
2480                         }
2481                 }
2482                 if (update_p || update_q) {
2483                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2484                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2485                                 /* don't try to repair!! */
2486                                 update_p = update_q = 0;
2487                 }
2488
2489                 /* now write out any block on a failed drive,
2490                  * or P or Q if they need it
2491                  */
2492
2493                 if (s->failed == 2) {
2494                         dev = &sh->dev[r6s->failed_num[1]];
2495                         s->locked++;
2496                         set_bit(R5_LOCKED, &dev->flags);
2497                         set_bit(R5_Wantwrite, &dev->flags);
2498                 }
2499                 if (s->failed >= 1) {
2500                         dev = &sh->dev[r6s->failed_num[0]];
2501                         s->locked++;
2502                         set_bit(R5_LOCKED, &dev->flags);
2503                         set_bit(R5_Wantwrite, &dev->flags);
2504                 }
2505
2506                 if (update_p) {
2507                         dev = &sh->dev[pd_idx];
2508                         s->locked++;
2509                         set_bit(R5_LOCKED, &dev->flags);
2510                         set_bit(R5_Wantwrite, &dev->flags);
2511                 }
2512                 if (update_q) {
2513                         dev = &sh->dev[qd_idx];
2514                         s->locked++;
2515                         set_bit(R5_LOCKED, &dev->flags);
2516                         set_bit(R5_Wantwrite, &dev->flags);
2517                 }
2518                 clear_bit(STRIPE_DEGRADED, &sh->state);
2519
2520                 set_bit(STRIPE_INSYNC, &sh->state);
2521         }
2522 }
2523
2524 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2525                                 struct r6_state *r6s)
2526 {
2527         int i;
2528
2529         /* We have read all the blocks in this stripe and now we need to
2530          * copy some of them into a target stripe for expand.
2531          */
2532         struct dma_async_tx_descriptor *tx = NULL;
2533         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2534         for (i = 0; i < sh->disks; i++)
2535                 if (i != sh->pd_idx && (!r6s || i != r6s->qd_idx)) {
2536                         int dd_idx, pd_idx, j;
2537                         struct stripe_head *sh2;
2538
2539                         sector_t bn = compute_blocknr(sh, i);
2540                         sector_t s = raid5_compute_sector(bn, conf->raid_disks,
2541                                                 conf->raid_disks -
2542                                                 conf->max_degraded, &dd_idx,
2543                                                 &pd_idx, conf);
2544                         sh2 = get_active_stripe(conf, s, conf->raid_disks,
2545                                                 pd_idx, 1);
2546                         if (sh2 == NULL)
2547                                 /* so far only the early blocks of this stripe
2548                                  * have been requested.  When later blocks
2549                                  * get requested, we will try again
2550                                  */
2551                                 continue;
2552                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2553                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2554                                 /* must have already done this block */
2555                                 release_stripe(sh2);
2556                                 continue;
2557                         }
2558
2559                         /* place all the copies on one channel */
2560                         tx = async_memcpy(sh2->dev[dd_idx].page,
2561                                 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2562                                 ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2563
2564                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2565                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2566                         for (j = 0; j < conf->raid_disks; j++)
2567                                 if (j != sh2->pd_idx &&
2568                                     (!r6s || j != raid6_next_disk(sh2->pd_idx,
2569                                                                  sh2->disks)) &&
2570                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
2571                                         break;
2572                         if (j == conf->raid_disks) {
2573                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2574                                 set_bit(STRIPE_HANDLE, &sh2->state);
2575                         }
2576                         release_stripe(sh2);
2577
2578                 }
2579         /* done submitting copies, wait for them to complete */
2580         if (tx) {
2581                 async_tx_ack(tx);
2582                 dma_wait_for_async_tx(tx);
2583         }
2584 }
2585
2586 /*
2587  * handle_stripe - do things to a stripe.
2588  *
2589  * We lock the stripe and then examine the state of various bits
2590  * to see what needs to be done.
2591  * Possible results:
2592  *    return some read request which now have data
2593  *    return some write requests which are safely on disc
2594  *    schedule a read on some buffers
2595  *    schedule a write of some buffers
2596  *    return confirmation of parity correctness
2597  *
2598  * buffers are taken off read_list or write_list, and bh_cache buffers
2599  * get BH_Lock set before the stripe lock is released.
2600  *
2601  */
2602
2603 static void handle_stripe5(struct stripe_head *sh)
2604 {
2605         raid5_conf_t *conf = sh->raid_conf;
2606         int disks = sh->disks, i;
2607         struct bio *return_bi = NULL;
2608         struct stripe_head_state s;
2609         struct r5dev *dev;
2610         unsigned long pending = 0;
2611
2612         memset(&s, 0, sizeof(s));
2613         pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d "
2614                 "ops=%lx:%lx:%lx\n", (unsigned long long)sh->sector, sh->state,
2615                 atomic_read(&sh->count), sh->pd_idx,
2616                 sh->ops.pending, sh->ops.ack, sh->ops.complete);
2617
2618         spin_lock(&sh->lock);
2619         clear_bit(STRIPE_HANDLE, &sh->state);
2620         clear_bit(STRIPE_DELAYED, &sh->state);
2621
2622         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2623         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2624         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2625         /* Now to look around and see what can be done */
2626
2627         rcu_read_lock();
2628         for (i=disks; i--; ) {
2629                 mdk_rdev_t *rdev;
2630                 struct r5dev *dev = &sh->dev[i];
2631                 clear_bit(R5_Insync, &dev->flags);
2632
2633                 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2634                         "written %p\n", i, dev->flags, dev->toread, dev->read,
2635                         dev->towrite, dev->written);
2636
2637                 /* maybe we can request a biofill operation
2638                  *
2639                  * new wantfill requests are only permitted while
2640                  * STRIPE_OP_BIOFILL is clear
2641                  */
2642                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2643                         !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2644                         set_bit(R5_Wantfill, &dev->flags);
2645
2646                 /* now count some things */
2647                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2648                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2649                 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2650
2651                 if (test_bit(R5_Wantfill, &dev->flags))
2652                         s.to_fill++;
2653                 else if (dev->toread)
2654                         s.to_read++;
2655                 if (dev->towrite) {
2656                         s.to_write++;
2657                         if (!test_bit(R5_OVERWRITE, &dev->flags))
2658                                 s.non_overwrite++;
2659                 }
2660                 if (dev->written)
2661                         s.written++;
2662                 rdev = rcu_dereference(conf->disks[i].rdev);
2663                 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2664                         /* The ReadError flag will just be confusing now */
2665                         clear_bit(R5_ReadError, &dev->flags);
2666                         clear_bit(R5_ReWrite, &dev->flags);
2667                 }
2668                 if (!rdev || !test_bit(In_sync, &rdev->flags)
2669                     || test_bit(R5_ReadError, &dev->flags)) {
2670                         s.failed++;
2671                         s.failed_num = i;
2672                 } else
2673                         set_bit(R5_Insync, &dev->flags);
2674         }
2675         rcu_read_unlock();
2676
2677         if (s.to_fill && !test_and_set_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2678                 sh->ops.count++;
2679
2680         pr_debug("locked=%d uptodate=%d to_read=%d"
2681                 " to_write=%d failed=%d failed_num=%d\n",
2682                 s.locked, s.uptodate, s.to_read, s.to_write,
2683                 s.failed, s.failed_num);
2684         /* check if the array has lost two devices and, if so, some requests might
2685          * need to be failed
2686          */
2687         if (s.failed > 1 && s.to_read+s.to_write+s.written)
2688                 handle_requests_to_failed_array(conf, sh, &s, disks,
2689                                                 &return_bi);
2690         if (s.failed > 1 && s.syncing) {
2691                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2692                 clear_bit(STRIPE_SYNCING, &sh->state);
2693                 s.syncing = 0;
2694         }
2695
2696         /* might be able to return some write requests if the parity block
2697          * is safe, or on a failed drive
2698          */
2699         dev = &sh->dev[sh->pd_idx];
2700         if ( s.written &&
2701              ((test_bit(R5_Insync, &dev->flags) &&
2702                !test_bit(R5_LOCKED, &dev->flags) &&
2703                test_bit(R5_UPTODATE, &dev->flags)) ||
2704                (s.failed == 1 && s.failed_num == sh->pd_idx)))
2705                 handle_completed_write_requests(conf, sh, disks, &return_bi);
2706
2707         /* Now we might consider reading some blocks, either to check/generate
2708          * parity, or to satisfy requests
2709          * or to load a block that is being partially written.
2710          */
2711         if (s.to_read || s.non_overwrite ||
2712             (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding ||
2713             test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
2714                 handle_issuing_new_read_requests5(sh, &s, disks);
2715
2716         /* Now we check to see if any write operations have recently
2717          * completed
2718          */
2719
2720         /* leave prexor set until postxor is done, allows us to distinguish
2721          * a rmw from a rcw during biodrain
2722          */
2723         if (test_bit(STRIPE_OP_PREXOR, &sh->ops.complete) &&
2724                 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2725
2726                 clear_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
2727                 clear_bit(STRIPE_OP_PREXOR, &sh->ops.ack);
2728                 clear_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
2729
2730                 for (i = disks; i--; )
2731                         clear_bit(R5_Wantprexor, &sh->dev[i].flags);
2732         }
2733
2734         /* if only POSTXOR is set then this is an 'expand' postxor */
2735         if (test_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete) &&
2736                 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2737
2738                 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
2739                 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.ack);
2740                 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
2741
2742                 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2743                 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2744                 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2745
2746                 /* All the 'written' buffers and the parity block are ready to
2747                  * be written back to disk
2748                  */
2749                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2750                 for (i = disks; i--; ) {
2751                         dev = &sh->dev[i];
2752                         if (test_bit(R5_LOCKED, &dev->flags) &&
2753                                 (i == sh->pd_idx || dev->written)) {
2754                                 pr_debug("Writing block %d\n", i);
2755                                 set_bit(R5_Wantwrite, &dev->flags);
2756                                 if (!test_and_set_bit(
2757                                     STRIPE_OP_IO, &sh->ops.pending))
2758                                         sh->ops.count++;
2759                                 if (!test_bit(R5_Insync, &dev->flags) ||
2760                                     (i == sh->pd_idx && s.failed == 0))
2761                                         set_bit(STRIPE_INSYNC, &sh->state);
2762                         }
2763                 }
2764                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2765                         atomic_dec(&conf->preread_active_stripes);
2766                         if (atomic_read(&conf->preread_active_stripes) <
2767                                 IO_THRESHOLD)
2768                                 md_wakeup_thread(conf->mddev->thread);
2769                 }
2770         }
2771
2772         /* Now to consider new write requests and what else, if anything
2773          * should be read.  We do not handle new writes when:
2774          * 1/ A 'write' operation (copy+xor) is already in flight.
2775          * 2/ A 'check' operation is in flight, as it may clobber the parity
2776          *    block.
2777          */
2778         if (s.to_write && !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending) &&
2779                           !test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
2780                 handle_issuing_new_write_requests5(conf, sh, &s, disks);
2781
2782         /* maybe we need to check and possibly fix the parity for this stripe
2783          * Any reads will already have been scheduled, so we just see if enough
2784          * data is available.  The parity check is held off while parity
2785          * dependent operations are in flight.
2786          */
2787         if ((s.syncing && s.locked == 0 &&
2788              !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2789              !test_bit(STRIPE_INSYNC, &sh->state)) ||
2790               test_bit(STRIPE_OP_CHECK, &sh->ops.pending) ||
2791               test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending))
2792                 handle_parity_checks5(conf, sh, &s, disks);
2793
2794         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2795                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2796                 clear_bit(STRIPE_SYNCING, &sh->state);
2797         }
2798
2799         /* If the failed drive is just a ReadError, then we might need to progress
2800          * the repair/check process
2801          */
2802         if (s.failed == 1 && !conf->mddev->ro &&
2803             test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2804             && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2805             && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2806                 ) {
2807                 dev = &sh->dev[s.failed_num];
2808                 if (!test_bit(R5_ReWrite, &dev->flags)) {
2809                         set_bit(R5_Wantwrite, &dev->flags);
2810                         if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2811                                 sh->ops.count++;
2812                         set_bit(R5_ReWrite, &dev->flags);
2813                         set_bit(R5_LOCKED, &dev->flags);
2814                         s.locked++;
2815                 } else {
2816                         /* let's read it back */
2817                         set_bit(R5_Wantread, &dev->flags);
2818                         if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2819                                 sh->ops.count++;
2820                         set_bit(R5_LOCKED, &dev->flags);
2821                         s.locked++;
2822                 }
2823         }
2824
2825         /* Finish postxor operations initiated by the expansion
2826          * process
2827          */
2828         if (test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete) &&
2829                 !test_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending)) {
2830
2831                 clear_bit(STRIPE_EXPANDING, &sh->state);
2832
2833                 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2834                 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2835                 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2836
2837                 for (i = conf->raid_disks; i--; ) {
2838                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
2839                         if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2840                                 sh->ops.count++;
2841                 }
2842         }
2843
2844         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2845                 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2846                 /* Need to write out all blocks after computing parity */
2847                 sh->disks = conf->raid_disks;
2848                 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
2849                         conf->raid_disks);
2850                 s.locked += handle_write_operations5(sh, 1, 1);
2851         } else if (s.expanded &&
2852                 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2853                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
2854                 atomic_dec(&conf->reshape_stripes);
2855                 wake_up(&conf->wait_for_overlap);
2856                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2857         }
2858
2859         if (s.expanding && s.locked == 0)
2860                 handle_stripe_expansion(conf, sh, NULL);
2861
2862         if (sh->ops.count)
2863                 pending = get_stripe_work(sh);
2864
2865         spin_unlock(&sh->lock);
2866
2867         if (pending)
2868                 raid5_run_ops(sh, pending);
2869
2870         return_io(return_bi);
2871
2872 }
2873
2874 static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
2875 {
2876         raid6_conf_t *conf = sh->raid_conf;
2877         int disks = sh->disks;
2878         struct bio *return_bi = NULL;
2879         int i, pd_idx = sh->pd_idx;
2880         struct stripe_head_state s;
2881         struct r6_state r6s;
2882         struct r5dev *dev, *pdev, *qdev;
2883
2884         r6s.qd_idx = raid6_next_disk(pd_idx, disks);
2885         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
2886                 "pd_idx=%d, qd_idx=%d\n",
2887                (unsigned long long)sh->sector, sh->state,
2888                atomic_read(&sh->count), pd_idx, r6s.qd_idx);
2889         memset(&s, 0, sizeof(s));
2890
2891         spin_lock(&sh->lock);
2892         clear_bit(STRIPE_HANDLE, &sh->state);
2893         clear_bit(STRIPE_DELAYED, &sh->state);
2894
2895         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2896         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2897         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2898         /* Now to look around and see what can be done */
2899
2900         /* clean-up completed biofill operations */
2901         if (test_bit(STRIPE_OP_BIOFILL, &sh->ops.complete)) {
2902                 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.pending);
2903                 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.ack);
2904                 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.complete);
2905         }
2906
2907         rcu_read_lock();
2908         for (i=disks; i--; ) {
2909                 mdk_rdev_t *rdev;
2910                 dev = &sh->dev[i];
2911                 clear_bit(R5_Insync, &dev->flags);
2912
2913                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
2914                         i, dev->flags, dev->toread, dev->towrite, dev->written);
2915                 /* maybe we can reply to a read */
2916                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
2917                         struct bio *rbi, *rbi2;
2918                         pr_debug("Return read for disc %d\n", i);
2919                         spin_lock_irq(&conf->device_lock);
2920                         rbi = dev->toread;
2921                         dev->toread = NULL;
2922                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
2923                                 wake_up(&conf->wait_for_overlap);
2924                         spin_unlock_irq(&conf->device_lock);
2925                         while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2926                                 copy_data(0, rbi, dev->page, dev->sector);
2927                                 rbi2 = r5_next_bio(rbi, dev->sector);
2928                                 spin_lock_irq(&conf->device_lock);
2929                                 if (--rbi->bi_phys_segments == 0) {
2930                                         rbi->bi_next = return_bi;
2931                                         return_bi = rbi;
2932                                 }
2933                                 spin_unlock_irq(&conf->device_lock);
2934                                 rbi = rbi2;
2935                         }
2936                 }
2937
2938                 /* now count some things */
2939                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2940                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2941
2942
2943                 if (dev->toread)
2944                         s.to_read++;
2945                 if (dev->towrite) {
2946                         s.to_write++;
2947                         if (!test_bit(R5_OVERWRITE, &dev->flags))
2948                                 s.non_overwrite++;
2949                 }
2950                 if (dev->written)
2951                         s.written++;
2952                 rdev = rcu_dereference(conf->disks[i].rdev);
2953                 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2954                         /* The ReadError flag will just be confusing now */
2955                         clear_bit(R5_ReadError, &dev->flags);
2956                         clear_bit(R5_ReWrite, &dev->flags);
2957                 }
2958                 if (!rdev || !test_bit(In_sync, &rdev->flags)
2959                     || test_bit(R5_ReadError, &dev->flags)) {
2960                         if (s.failed < 2)
2961                                 r6s.failed_num[s.failed] = i;
2962                         s.failed++;
2963                 } else
2964                         set_bit(R5_Insync, &dev->flags);
2965         }
2966         rcu_read_unlock();
2967         pr_debug("locked=%d uptodate=%d to_read=%d"
2968                " to_write=%d failed=%d failed_num=%d,%d\n",
2969                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
2970                r6s.failed_num[0], r6s.failed_num[1]);
2971         /* check if the array has lost >2 devices and, if so, some requests
2972          * might need to be failed
2973          */
2974         if (s.failed > 2 && s.to_read+s.to_write+s.written)
2975                 handle_requests_to_failed_array(conf, sh, &s, disks,
2976                                                 &return_bi);
2977         if (s.failed > 2 && s.syncing) {
2978                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2979                 clear_bit(STRIPE_SYNCING, &sh->state);
2980                 s.syncing = 0;
2981         }
2982
2983         /*
2984          * might be able to return some write requests if the parity blocks
2985          * are safe, or on a failed drive
2986          */
2987         pdev = &sh->dev[pd_idx];
2988         r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
2989                 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
2990         qdev = &sh->dev[r6s.qd_idx];
2991         r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx)
2992                 || (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx);
2993
2994         if ( s.written &&
2995              ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
2996                              && !test_bit(R5_LOCKED, &pdev->flags)
2997                              && test_bit(R5_UPTODATE, &pdev->flags)))) &&
2998              ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
2999                              && !test_bit(R5_LOCKED, &qdev->flags)
3000                              && test_bit(R5_UPTODATE, &qdev->flags)))))
3001                 handle_completed_write_requests(conf, sh, disks, &return_bi);
3002
3003         /* Now we might consider reading some blocks, either to check/generate
3004          * parity, or to satisfy requests
3005          * or to load a block that is being partially written.
3006          */
3007         if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3008             (s.syncing && (s.uptodate < disks)) || s.expanding)
3009                 handle_issuing_new_read_requests6(sh, &s, &r6s, disks);
3010
3011         /* now to consider writing and what else, if anything should be read */
3012         if (s.to_write)
3013                 handle_issuing_new_write_requests6(conf, sh, &s, &r6s, disks);
3014
3015         /* maybe we need to check and possibly fix the parity for this stripe
3016          * Any reads will already have been scheduled, so we just see if enough
3017          * data is available
3018          */
3019         if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3020                 handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
3021
3022         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3023                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3024                 clear_bit(STRIPE_SYNCING, &sh->state);
3025         }
3026
3027         /* If the failed drives are just a ReadError, then we might need
3028          * to progress the repair/check process
3029          */
3030         if (s.failed <= 2 && !conf->mddev->ro)
3031                 for (i = 0; i < s.failed; i++) {
3032                         dev = &sh->dev[r6s.failed_num[i]];
3033                         if (test_bit(R5_ReadError, &dev->flags)
3034                             && !test_bit(R5_LOCKED, &dev->flags)
3035                             && test_bit(R5_UPTODATE, &dev->flags)
3036                                 ) {
3037                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3038                                         set_bit(R5_Wantwrite, &dev->flags);
3039                                         set_bit(R5_ReWrite, &dev->flags);
3040                                         set_bit(R5_LOCKED, &dev->flags);
3041                                 } else {
3042                                         /* let's read it back */
3043                                         set_bit(R5_Wantread, &dev->flags);
3044                                         set_bit(R5_LOCKED, &dev->flags);
3045                                 }
3046                         }
3047                 }
3048
3049         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
3050                 /* Need to write out all blocks after computing P&Q */
3051                 sh->disks = conf->raid_disks;
3052                 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
3053                                              conf->raid_disks);
3054                 compute_parity6(sh, RECONSTRUCT_WRITE);
3055                 for (i = conf->raid_disks ; i-- ;  ) {
3056                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3057                         s.locked++;
3058                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3059                 }
3060                 clear_bit(STRIPE_EXPANDING, &sh->state);
3061         } else if (s.expanded) {
3062                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3063                 atomic_dec(&conf->reshape_stripes);
3064                 wake_up(&conf->wait_for_overlap);
3065                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3066         }
3067
3068         if (s.expanding && s.locked == 0)
3069                 handle_stripe_expansion(conf, sh, &r6s);
3070
3071         spin_unlock(&sh->lock);
3072
3073         return_io(return_bi);
3074
3075         for (i=disks; i-- ;) {
3076                 int rw;
3077                 struct bio *bi;
3078                 mdk_rdev_t *rdev;
3079                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
3080                         rw = WRITE;
3081                 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
3082                         rw = READ;
3083                 else
3084                         continue;
3085
3086                 bi = &sh->dev[i].req;
3087
3088                 bi->bi_rw = rw;
3089                 if (rw == WRITE)
3090                         bi->bi_end_io = raid5_end_write_request;
3091                 else
3092                         bi->bi_end_io = raid5_end_read_request;
3093
3094                 rcu_read_lock();
3095                 rdev = rcu_dereference(conf->disks[i].rdev);
3096                 if (rdev && test_bit(Faulty, &rdev->flags))
3097                         rdev = NULL;
3098                 if (rdev)
3099                         atomic_inc(&rdev->nr_pending);
3100                 rcu_read_unlock();
3101
3102                 if (rdev) {
3103                         if (s.syncing || s.expanding || s.expanded)
3104                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
3105
3106                         bi->bi_bdev = rdev->bdev;
3107                         pr_debug("for %llu schedule op %ld on disc %d\n",
3108                                 (unsigned long long)sh->sector, bi->bi_rw, i);
3109                         atomic_inc(&sh->count);
3110                         bi->bi_sector = sh->sector + rdev->data_offset;
3111                         bi->bi_flags = 1 << BIO_UPTODATE;
3112                         bi->bi_vcnt = 1;
3113                         bi->bi_max_vecs = 1;
3114                         bi->bi_idx = 0;
3115                         bi->bi_io_vec = &sh->dev[i].vec;
3116                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
3117                         bi->bi_io_vec[0].bv_offset = 0;
3118                         bi->bi_size = STRIPE_SIZE;
3119                         bi->bi_next = NULL;
3120                         if (rw == WRITE &&
3121                             test_bit(R5_ReWrite, &sh->dev[i].flags))
3122                                 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
3123                         generic_make_request(bi);
3124                 } else {
3125                         if (rw == WRITE)
3126                                 set_bit(STRIPE_DEGRADED, &sh->state);
3127                         pr_debug("skip op %ld on disc %d for sector %llu\n",
3128                                 bi->bi_rw, i, (unsigned long long)sh->sector);
3129                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
3130                         set_bit(STRIPE_HANDLE, &sh->state);
3131                 }
3132         }
3133 }
3134
3135 static void handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3136 {
3137         if (sh->raid_conf->level == 6)
3138                 handle_stripe6(sh, tmp_page);
3139         else
3140                 handle_stripe5(sh);
3141 }
3142
3143
3144
3145 static void raid5_activate_delayed(raid5_conf_t *conf)
3146 {
3147         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3148                 while (!list_empty(&conf->delayed_list)) {
3149                         struct list_head *l = conf->delayed_list.next;
3150                         struct stripe_head *sh;
3151                         sh = list_entry(l, struct stripe_head, lru);
3152                         list_del_init(l);
3153                         clear_bit(STRIPE_DELAYED, &sh->state);
3154                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3155                                 atomic_inc(&conf->preread_active_stripes);
3156                         list_add_tail(&sh->lru, &conf->handle_list);
3157                 }
3158         }
3159 }
3160
3161 static void activate_bit_delay(raid5_conf_t *conf)
3162 {
3163         /* device_lock is held */
3164         struct list_head head;
3165         list_add(&head, &conf->bitmap_list);
3166         list_del_init(&conf->bitmap_list);
3167         while (!list_empty(&head)) {
3168                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3169                 list_del_init(&sh->lru);
3170                 atomic_inc(&sh->count);
3171                 __release_stripe(conf, sh);
3172         }
3173 }
3174
3175 static void unplug_slaves(mddev_t *mddev)
3176 {
3177         raid5_conf_t *conf = mddev_to_conf(mddev);
3178         int i;
3179
3180         rcu_read_lock();
3181         for (i=0; i<mddev->raid_disks; i++) {
3182                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3183                 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3184                         struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3185
3186                         atomic_inc(&rdev->nr_pending);
3187                         rcu_read_unlock();
3188
3189                         if (r_queue->unplug_fn)
3190                                 r_queue->unplug_fn(r_queue);
3191
3192                         rdev_dec_pending(rdev, mddev);
3193                         rcu_read_lock();
3194                 }
3195         }
3196         rcu_read_unlock();
3197 }
3198
3199 static void raid5_unplug_device(struct request_queue *q)
3200 {
3201         mddev_t *mddev = q->queuedata;
3202         raid5_conf_t *conf = mddev_to_conf(mddev);
3203         unsigned long flags;
3204
3205         spin_lock_irqsave(&conf->device_lock, flags);
3206
3207         if (blk_remove_plug(q)) {
3208                 conf->seq_flush++;
3209                 raid5_activate_delayed(conf);
3210         }
3211         md_wakeup_thread(mddev->thread);
3212
3213         spin_unlock_irqrestore(&conf->device_lock, flags);
3214
3215         unplug_slaves(mddev);
3216 }
3217
3218 static int raid5_congested(void *data, int bits)
3219 {
3220         mddev_t *mddev = data;
3221         raid5_conf_t *conf = mddev_to_conf(mddev);
3222
3223         /* No difference between reads and writes.  Just check
3224          * how busy the stripe_cache is
3225          */
3226         if (conf->inactive_blocked)
3227                 return 1;
3228         if (conf->quiesce)
3229                 return 1;
3230         if (list_empty_careful(&conf->inactive_list))
3231                 return 1;
3232
3233         return 0;
3234 }
3235
3236 /* We want read requests to align with chunks where possible,
3237  * but write requests don't need to.
3238  */
3239 static int raid5_mergeable_bvec(struct request_queue *q, struct bio *bio, struct bio_vec *biovec)
3240 {
3241         mddev_t *mddev = q->queuedata;
3242         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3243         int max;
3244         unsigned int chunk_sectors = mddev->chunk_size >> 9;
3245         unsigned int bio_sectors = bio->bi_size >> 9;
3246
3247         if (bio_data_dir(bio) == WRITE)
3248                 return biovec->bv_len; /* always allow writes to be mergeable */
3249
3250         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3251         if (max < 0) max = 0;
3252         if (max <= biovec->bv_len && bio_sectors == 0)
3253                 return biovec->bv_len;
3254         else
3255                 return max;
3256 }
3257
3258
3259 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3260 {
3261         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3262         unsigned int chunk_sectors = mddev->chunk_size >> 9;
3263         unsigned int bio_sectors = bio->bi_size >> 9;
3264
3265         return  chunk_sectors >=
3266                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3267 }
3268
3269 /*
3270  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3271  *  later sampled by raid5d.
3272  */
3273 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3274 {
3275         unsigned long flags;
3276
3277         spin_lock_irqsave(&conf->device_lock, flags);
3278
3279         bi->bi_next = conf->retry_read_aligned_list;
3280         conf->retry_read_aligned_list = bi;
3281
3282         spin_unlock_irqrestore(&conf->device_lock, flags);
3283         md_wakeup_thread(conf->mddev->thread);
3284 }
3285
3286
3287 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3288 {
3289         struct bio *bi;
3290
3291         bi = conf->retry_read_aligned;
3292         if (bi) {
3293                 conf->retry_read_aligned = NULL;
3294                 return bi;
3295         }
3296         bi = conf->retry_read_aligned_list;
3297         if(bi) {
3298                 conf->retry_read_aligned_list = bi->bi_next;
3299                 bi->bi_next = NULL;
3300                 bi->bi_phys_segments = 1; /* biased count of active stripes */
3301                 bi->bi_hw_segments = 0; /* count of processed stripes */
3302         }
3303
3304         return bi;
3305 }
3306
3307
3308 /*
3309  *  The "raid5_align_endio" should check if the read succeeded and if it
3310  *  did, call bio_endio on the original bio (having bio_put the new bio
3311  *  first).
3312  *  If the read failed..
3313  */
3314 static void raid5_align_endio(struct bio *bi, int error)
3315 {
3316         struct bio* raid_bi  = bi->bi_private;
3317         mddev_t *mddev;
3318         raid5_conf_t *conf;
3319         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3320         mdk_rdev_t *rdev;
3321
3322         bio_put(bi);
3323
3324         mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3325         conf = mddev_to_conf(mddev);
3326         rdev = (void*)raid_bi->bi_next;
3327         raid_bi->bi_next = NULL;
3328
3329         rdev_dec_pending(rdev, conf->mddev);
3330
3331         if (!error && uptodate) {
3332                 bio_endio(raid_bi, 0);
3333                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3334                         wake_up(&conf->wait_for_stripe);
3335                 return;
3336         }
3337
3338
3339         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3340
3341         add_bio_to_retry(raid_bi, conf);
3342 }
3343
3344 static int bio_fits_rdev(struct bio *bi)
3345 {
3346         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3347
3348         if ((bi->bi_size>>9) > q->max_sectors)
3349                 return 0;
3350         blk_recount_segments(q, bi);
3351         if (bi->bi_phys_segments > q->max_phys_segments ||
3352             bi->bi_hw_segments > q->max_hw_segments)
3353                 return 0;
3354
3355         if (q->merge_bvec_fn)
3356                 /* it's too hard to apply the merge_bvec_fn at this stage,
3357                  * just just give up
3358                  */
3359                 return 0;
3360
3361         return 1;
3362 }
3363
3364
3365 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3366 {
3367         mddev_t *mddev = q->queuedata;
3368         raid5_conf_t *conf = mddev_to_conf(mddev);
3369         const unsigned int raid_disks = conf->raid_disks;
3370         const unsigned int data_disks = raid_disks - conf->max_degraded;
3371         unsigned int dd_idx, pd_idx;
3372         struct bio* align_bi;
3373         mdk_rdev_t *rdev;
3374
3375         if (!in_chunk_boundary(mddev, raid_bio)) {
3376                 pr_debug("chunk_aligned_read : non aligned\n");
3377                 return 0;
3378         }
3379         /*
3380          * use bio_clone to make a copy of the bio
3381          */
3382         align_bi = bio_clone(raid_bio, GFP_NOIO);
3383         if (!align_bi)
3384                 return 0;
3385         /*
3386          *   set bi_end_io to a new function, and set bi_private to the
3387          *     original bio.
3388          */
3389         align_bi->bi_end_io  = raid5_align_endio;
3390         align_bi->bi_private = raid_bio;
3391         /*
3392          *      compute position
3393          */
3394         align_bi->bi_sector =  raid5_compute_sector(raid_bio->bi_sector,
3395                                         raid_disks,
3396                                         data_disks,
3397                                         &dd_idx,
3398                                         &pd_idx,
3399                                         conf);
3400
3401         rcu_read_lock();
3402         rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3403         if (rdev && test_bit(In_sync, &rdev->flags)) {
3404                 atomic_inc(&rdev->nr_pending);
3405                 rcu_read_unlock();
3406                 raid_bio->bi_next = (void*)rdev;
3407                 align_bi->bi_bdev =  rdev->bdev;
3408                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3409                 align_bi->bi_sector += rdev->data_offset;
3410
3411                 if (!bio_fits_rdev(align_bi)) {
3412                         /* too big in some way */
3413                         bio_put(align_bi);
3414                         rdev_dec_pending(rdev, mddev);
3415                         return 0;
3416                 }
3417
3418                 spin_lock_irq(&conf->device_lock);
3419                 wait_event_lock_irq(conf->wait_for_stripe,
3420                                     conf->quiesce == 0,
3421                                     conf->device_lock, /* nothing */);
3422                 atomic_inc(&conf->active_aligned_reads);
3423                 spin_unlock_irq(&conf->device_lock);
3424
3425                 generic_make_request(align_bi);
3426                 return 1;
3427         } else {
3428                 rcu_read_unlock();
3429                 bio_put(align_bi);
3430                 return 0;
3431         }
3432 }
3433
3434
3435 static int make_request(struct request_queue *q, struct bio * bi)
3436 {
3437         mddev_t *mddev = q->queuedata;
3438         raid5_conf_t *conf = mddev_to_conf(mddev);
3439         unsigned int dd_idx, pd_idx;
3440         sector_t new_sector;
3441         sector_t logical_sector, last_sector;
3442         struct stripe_head *sh;
3443         const int rw = bio_data_dir(bi);
3444         int remaining;
3445
3446         if (unlikely(bio_barrier(bi))) {
3447                 bio_endio(bi, -EOPNOTSUPP);
3448                 return 0;
3449         }
3450
3451         md_write_start(mddev, bi);
3452
3453         disk_stat_inc(mddev->gendisk, ios[rw]);
3454         disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
3455
3456         if (rw == READ &&
3457              mddev->reshape_position == MaxSector &&
3458              chunk_aligned_read(q,bi))
3459                 return 0;
3460
3461         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3462         last_sector = bi->bi_sector + (bi->bi_size>>9);
3463         bi->bi_next = NULL;
3464         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
3465
3466         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3467                 DEFINE_WAIT(w);
3468                 int disks, data_disks;
3469
3470         retry:
3471                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3472                 if (likely(conf->expand_progress == MaxSector))
3473                         disks = conf->raid_disks;
3474                 else {
3475                         /* spinlock is needed as expand_progress may be
3476                          * 64bit on a 32bit platform, and so it might be
3477                          * possible to see a half-updated value
3478                          * Ofcourse expand_progress could change after
3479                          * the lock is dropped, so once we get a reference
3480                          * to the stripe that we think it is, we will have
3481                          * to check again.
3482                          */
3483                         spin_lock_irq(&conf->device_lock);
3484                         disks = conf->raid_disks;
3485                         if (logical_sector >= conf->expand_progress)
3486                                 disks = conf->previous_raid_disks;
3487                         else {
3488                                 if (logical_sector >= conf->expand_lo) {
3489                                         spin_unlock_irq(&conf->device_lock);
3490                                         schedule();
3491                                         goto retry;
3492                                 }
3493                         }
3494                         spin_unlock_irq(&conf->device_lock);
3495                 }
3496                 data_disks = disks - conf->max_degraded;
3497
3498                 new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
3499                                                   &dd_idx, &pd_idx, conf);
3500                 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3501                         (unsigned long long)new_sector, 
3502                         (unsigned long long)logical_sector);
3503
3504                 sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
3505                 if (sh) {
3506                         if (unlikely(conf->expand_progress != MaxSector)) {
3507                                 /* expansion might have moved on while waiting for a
3508                                  * stripe, so we must do the range check again.
3509                                  * Expansion could still move past after this
3510                                  * test, but as we are holding a reference to
3511                                  * 'sh', we know that if that happens,
3512                                  *  STRIPE_EXPANDING will get set and the expansion
3513                                  * won't proceed until we finish with the stripe.
3514                                  */
3515                                 int must_retry = 0;
3516                                 spin_lock_irq(&conf->device_lock);
3517                                 if (logical_sector <  conf->expand_progress &&
3518                                     disks == conf->previous_raid_disks)
3519                                         /* mismatch, need to try again */
3520                                         must_retry = 1;
3521                                 spin_unlock_irq(&conf->device_lock);
3522                                 if (must_retry) {
3523                                         release_stripe(sh);
3524                                         goto retry;
3525                                 }
3526                         }
3527                         /* FIXME what if we get a false positive because these
3528                          * are being updated.
3529                          */
3530                         if (logical_sector >= mddev->suspend_lo &&
3531                             logical_sector < mddev->suspend_hi) {
3532                                 release_stripe(sh);
3533                                 schedule();
3534                                 goto retry;
3535                         }
3536
3537                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3538                             !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3539                                 /* Stripe is busy expanding or
3540                                  * add failed due to overlap.  Flush everything
3541                                  * and wait a while
3542                                  */
3543                                 raid5_unplug_device(mddev->queue);
3544                                 release_stripe(sh);
3545                                 schedule();
3546                                 goto retry;
3547                         }
3548                         finish_wait(&conf->wait_for_overlap, &w);
3549                         handle_stripe(sh, NULL);
3550                         release_stripe(sh);
3551                 } else {
3552                         /* cannot get stripe for read-ahead, just give-up */
3553                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3554                         finish_wait(&conf->wait_for_overlap, &w);
3555                         break;
3556                 }
3557                         
3558         }
3559         spin_lock_irq(&conf->device_lock);
3560         remaining = --bi->bi_phys_segments;
3561         spin_unlock_irq(&conf->device_lock);
3562         if (remaining == 0) {
3563
3564                 if ( rw == WRITE )
3565                         md_write_end(mddev);
3566
3567                 bi->bi_end_io(bi,
3568                               test_bit(BIO_UPTODATE, &bi->bi_flags)
3569                                 ? 0 : -EIO);
3570         }
3571         return 0;
3572 }
3573
3574 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3575 {
3576         /* reshaping is quite different to recovery/resync so it is
3577          * handled quite separately ... here.
3578          *
3579          * On each call to sync_request, we gather one chunk worth of
3580          * destination stripes and flag them as expanding.
3581          * Then we find all the source stripes and request reads.
3582          * As the reads complete, handle_stripe will copy the data
3583          * into the destination stripe and release that stripe.
3584          */
3585         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3586         struct stripe_head *sh;
3587         int pd_idx;
3588         sector_t first_sector, last_sector;
3589         int raid_disks = conf->previous_raid_disks;
3590         int data_disks = raid_disks - conf->max_degraded;
3591         int new_data_disks = conf->raid_disks - conf->max_degraded;
3592         int i;
3593         int dd_idx;
3594         sector_t writepos, safepos, gap;
3595
3596         if (sector_nr == 0 &&
3597             conf->expand_progress != 0) {
3598                 /* restarting in the middle, skip the initial sectors */
3599                 sector_nr = conf->expand_progress;
3600                 sector_div(sector_nr, new_data_disks);
3601                 *skipped = 1;
3602                 return sector_nr;
3603         }
3604
3605         /* we update the metadata when there is more than 3Meg
3606          * in the block range (that is rather arbitrary, should
3607          * probably be time based) or when the data about to be
3608          * copied would over-write the source of the data at
3609          * the front of the range.
3610          * i.e. one new_stripe forward from expand_progress new_maps
3611          * to after where expand_lo old_maps to
3612          */
3613         writepos = conf->expand_progress +
3614                 conf->chunk_size/512*(new_data_disks);
3615         sector_div(writepos, new_data_disks);
3616         safepos = conf->expand_lo;
3617         sector_div(safepos, data_disks);
3618         gap = conf->expand_progress - conf->expand_lo;
3619
3620         if (writepos >= safepos ||
3621             gap > (new_data_disks)*3000*2 /*3Meg*/) {
3622                 /* Cannot proceed until we've updated the superblock... */
3623                 wait_event(conf->wait_for_overlap,
3624                            atomic_read(&conf->reshape_stripes)==0);
3625                 mddev->reshape_position = conf->expand_progress;
3626                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3627                 md_wakeup_thread(mddev->thread);
3628                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3629                            kthread_should_stop());
3630                 spin_lock_irq(&conf->device_lock);
3631                 conf->expand_lo = mddev->reshape_position;
3632                 spin_unlock_irq(&conf->device_lock);
3633                 wake_up(&conf->wait_for_overlap);
3634         }
3635
3636         for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
3637                 int j;
3638                 int skipped = 0;
3639                 pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
3640                 sh = get_active_stripe(conf, sector_nr+i,
3641                                        conf->raid_disks, pd_idx, 0);
3642                 set_bit(STRIPE_EXPANDING, &sh->state);
3643                 atomic_inc(&conf->reshape_stripes);
3644                 /* If any of this stripe is beyond the end of the old
3645                  * array, then we need to zero those blocks
3646                  */
3647                 for (j=sh->disks; j--;) {
3648                         sector_t s;
3649                         if (j == sh->pd_idx)
3650                                 continue;
3651                         if (conf->level == 6 &&
3652                             j == raid6_next_disk(sh->pd_idx, sh->disks))
3653                                 continue;
3654                         s = compute_blocknr(sh, j);
3655                         if (s < (mddev->array_size<<1)) {
3656                                 skipped = 1;
3657                                 continue;
3658                         }
3659                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3660                         set_bit(R5_Expanded, &sh->dev[j].flags);
3661                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
3662                 }
3663                 if (!skipped) {
3664                         set_bit(STRIPE_EXPAND_READY, &sh->state);
3665                         set_bit(STRIPE_HANDLE, &sh->state);
3666                 }
3667                 release_stripe(sh);
3668         }
3669         spin_lock_irq(&conf->device_lock);
3670         conf->expand_progress = (sector_nr + i) * new_data_disks;
3671         spin_unlock_irq(&conf->device_lock);
3672         /* Ok, those stripe are ready. We can start scheduling
3673          * reads on the source stripes.
3674          * The source stripes are determined by mapping the first and last
3675          * block on the destination stripes.
3676          */
3677         first_sector =
3678                 raid5_compute_sector(sector_nr*(new_data_disks),
3679                                      raid_disks, data_disks,
3680                                      &dd_idx, &pd_idx, conf);
3681         last_sector =
3682                 raid5_compute_sector((sector_nr+conf->chunk_size/512)
3683                                      *(new_data_disks) -1,
3684                                      raid_disks, data_disks,
3685                                      &dd_idx, &pd_idx, conf);
3686         if (last_sector >= (mddev->size<<1))
3687                 last_sector = (mddev->size<<1)-1;
3688         while (first_sector <= last_sector) {
3689                 pd_idx = stripe_to_pdidx(first_sector, conf,
3690                                          conf->previous_raid_disks);
3691                 sh = get_active_stripe(conf, first_sector,
3692                                        conf->previous_raid_disks, pd_idx, 0);
3693                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3694                 set_bit(STRIPE_HANDLE, &sh->state);
3695                 release_stripe(sh);
3696                 first_sector += STRIPE_SECTORS;
3697         }
3698         return conf->chunk_size>>9;
3699 }
3700
3701 /* FIXME go_faster isn't used */
3702 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3703 {
3704         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3705         struct stripe_head *sh;
3706         int pd_idx;
3707         int raid_disks = conf->raid_disks;
3708         sector_t max_sector = mddev->size << 1;
3709         int sync_blocks;
3710         int still_degraded = 0;
3711         int i;
3712
3713         if (sector_nr >= max_sector) {
3714                 /* just being told to finish up .. nothing much to do */
3715                 unplug_slaves(mddev);
3716                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3717                         end_reshape(conf);
3718                         return 0;
3719                 }
3720
3721                 if (mddev->curr_resync < max_sector) /* aborted */
3722                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3723                                         &sync_blocks, 1);
3724                 else /* completed sync */
3725                         conf->fullsync = 0;
3726                 bitmap_close_sync(mddev->bitmap);
3727
3728                 return 0;
3729         }
3730
3731         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3732                 return reshape_request(mddev, sector_nr, skipped);
3733
3734         /* if there is too many failed drives and we are trying
3735          * to resync, then assert that we are finished, because there is
3736          * nothing we can do.
3737          */
3738         if (mddev->degraded >= conf->max_degraded &&
3739             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3740                 sector_t rv = (mddev->size << 1) - sector_nr;
3741                 *skipped = 1;
3742                 return rv;
3743         }
3744         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3745             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3746             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3747                 /* we can skip this block, and probably more */
3748                 sync_blocks /= STRIPE_SECTORS;
3749                 *skipped = 1;
3750                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3751         }
3752
3753         pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
3754         sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
3755         if (sh == NULL) {
3756                 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
3757                 /* make sure we don't swamp the stripe cache if someone else
3758                  * is trying to get access
3759                  */
3760                 schedule_timeout_uninterruptible(1);
3761         }
3762         /* Need to check if array will still be degraded after recovery/resync
3763          * We don't need to check the 'failed' flag as when that gets set,
3764          * recovery aborts.
3765          */
3766         for (i=0; i<mddev->raid_disks; i++)
3767                 if (conf->disks[i].rdev == NULL)
3768                         still_degraded = 1;
3769
3770         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3771
3772         spin_lock(&sh->lock);
3773         set_bit(STRIPE_SYNCING, &sh->state);
3774         clear_bit(STRIPE_INSYNC, &sh->state);
3775         spin_unlock(&sh->lock);
3776
3777         handle_stripe(sh, NULL);
3778         release_stripe(sh);
3779
3780         return STRIPE_SECTORS;
3781 }
3782
3783 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3784 {
3785         /* We may not be able to submit a whole bio at once as there
3786          * may not be enough stripe_heads available.
3787          * We cannot pre-allocate enough stripe_heads as we may need
3788          * more than exist in the cache (if we allow ever large chunks).
3789          * So we do one stripe head at a time and record in
3790          * ->bi_hw_segments how many have been done.
3791          *
3792          * We *know* that this entire raid_bio is in one chunk, so
3793          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3794          */
3795         struct stripe_head *sh;
3796         int dd_idx, pd_idx;
3797         sector_t sector, logical_sector, last_sector;
3798         int scnt = 0;
3799         int remaining;
3800         int handled = 0;
3801
3802         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3803         sector = raid5_compute_sector(  logical_sector,
3804                                         conf->raid_disks,
3805                                         conf->raid_disks - conf->max_degraded,
3806                                         &dd_idx,
3807                                         &pd_idx,
3808                                         conf);
3809         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
3810
3811         for (; logical_sector < last_sector;
3812              logical_sector += STRIPE_SECTORS,
3813                      sector += STRIPE_SECTORS,
3814                      scnt++) {
3815
3816                 if (scnt < raid_bio->bi_hw_segments)
3817                         /* already done this stripe */
3818                         continue;
3819
3820                 sh = get_active_stripe(conf, sector, conf->raid_disks, pd_idx, 1);
3821
3822                 if (!sh) {
3823                         /* failed to get a stripe - must wait */
3824                         raid_bio->bi_hw_segments = scnt;
3825                         conf->retry_read_aligned = raid_bio;
3826                         return handled;
3827                 }
3828
3829                 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
3830                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
3831                         release_stripe(sh);
3832                         raid_bio->bi_hw_segments = scnt;
3833                         conf->retry_read_aligned = raid_bio;
3834                         return handled;
3835                 }
3836
3837                 handle_stripe(sh, NULL);
3838                 release_stripe(sh);
3839                 handled++;
3840         }
3841         spin_lock_irq(&conf->device_lock);
3842         remaining = --raid_bio->bi_phys_segments;
3843         spin_unlock_irq(&conf->device_lock);
3844         if (remaining == 0) {
3845
3846                 raid_bio->bi_end_io(raid_bio,
3847                               test_bit(BIO_UPTODATE, &raid_bio->bi_flags)
3848                                 ? 0 : -EIO);
3849         }
3850         if (atomic_dec_and_test(&conf->active_aligned_reads))
3851                 wake_up(&conf->wait_for_stripe);
3852         return handled;
3853 }
3854
3855
3856
3857 /*
3858  * This is our raid5 kernel thread.
3859  *
3860  * We scan the hash table for stripes which can be handled now.
3861  * During the scan, completed stripes are saved for us by the interrupt
3862  * handler, so that they will not have to wait for our next wakeup.
3863  */
3864 static void raid5d (mddev_t *mddev)
3865 {
3866         struct stripe_head *sh;
3867         raid5_conf_t *conf = mddev_to_conf(mddev);
3868         int handled;
3869
3870         pr_debug("+++ raid5d active\n");
3871
3872         md_check_recovery(mddev);
3873
3874         handled = 0;
3875         spin_lock_irq(&conf->device_lock);
3876         while (1) {
3877                 struct list_head *first;
3878                 struct bio *bio;
3879
3880                 if (conf->seq_flush != conf->seq_write) {
3881                         int seq = conf->seq_flush;
3882                         spin_unlock_irq(&conf->device_lock);
3883                         bitmap_unplug(mddev->bitmap);
3884                         spin_lock_irq(&conf->device_lock);
3885                         conf->seq_write = seq;
3886                         activate_bit_delay(conf);
3887                 }
3888
3889                 if (list_empty(&conf->handle_list) &&
3890                     atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD &&
3891                     !blk_queue_plugged(mddev->queue) &&
3892                     !list_empty(&conf->delayed_list))
3893                         raid5_activate_delayed(conf);
3894
3895                 while ((bio = remove_bio_from_retry(conf))) {
3896                         int ok;
3897                         spin_unlock_irq(&conf->device_lock);
3898                         ok = retry_aligned_read(conf, bio);
3899                         spin_lock_irq(&conf->device_lock);
3900                         if (!ok)
3901                                 break;
3902                         handled++;
3903                 }
3904
3905                 if (list_empty(&conf->handle_list)) {
3906                         async_tx_issue_pending_all();
3907                         break;
3908                 }
3909
3910                 first = conf->handle_list.next;
3911                 sh = list_entry(first, struct stripe_head, lru);
3912
3913                 list_del_init(first);
3914                 atomic_inc(&sh->count);
3915                 BUG_ON(atomic_read(&sh->count)!= 1);
3916                 spin_unlock_irq(&conf->device_lock);
3917                 
3918                 handled++;
3919                 handle_stripe(sh, conf->spare_page);
3920                 release_stripe(sh);
3921
3922                 spin_lock_irq(&conf->device_lock);
3923         }
3924         pr_debug("%d stripes handled\n", handled);
3925
3926         spin_unlock_irq(&conf->device_lock);
3927
3928         unplug_slaves(mddev);
3929
3930         pr_debug("--- raid5d inactive\n");
3931 }
3932
3933 static ssize_t
3934 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3935 {
3936         raid5_conf_t *conf = mddev_to_conf(mddev);
3937         if (conf)
3938                 return sprintf(page, "%d\n", conf->max_nr_stripes);
3939         else
3940                 return 0;
3941 }
3942
3943 static ssize_t
3944 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
3945 {
3946         raid5_conf_t *conf = mddev_to_conf(mddev);
3947         char *end;
3948         int new;
3949         if (len >= PAGE_SIZE)
3950                 return -EINVAL;
3951         if (!conf)
3952                 return -ENODEV;
3953
3954         new = simple_strtoul(page, &end, 10);
3955         if (!*page || (*end && *end != '\n') )
3956                 return -EINVAL;
3957         if (new <= 16 || new > 32768)
3958                 return -EINVAL;
3959         while (new < conf->max_nr_stripes) {
3960                 if (drop_one_stripe(conf))
3961                         conf->max_nr_stripes--;
3962                 else
3963                         break;
3964         }
3965         md_allow_write(mddev);
3966         while (new > conf->max_nr_stripes) {
3967                 if (grow_one_stripe(conf))
3968                         conf->max_nr_stripes++;
3969                 else break;
3970         }
3971         return len;
3972 }
3973
3974 static struct md_sysfs_entry
3975 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
3976                                 raid5_show_stripe_cache_size,
3977                                 raid5_store_stripe_cache_size);
3978
3979 static ssize_t
3980 stripe_cache_active_show(mddev_t *mddev, char *page)
3981 {
3982         raid5_conf_t *conf = mddev_to_conf(mddev);
3983         if (conf)
3984                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
3985         else
3986                 return 0;
3987 }
3988
3989 static struct md_sysfs_entry
3990 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3991
3992 static struct attribute *raid5_attrs[] =  {
3993         &raid5_stripecache_size.attr,
3994         &raid5_stripecache_active.attr,
3995         NULL,
3996 };
3997 static struct attribute_group raid5_attrs_group = {
3998         .name = NULL,
3999         .attrs = raid5_attrs,
4000 };
4001
4002 static int run(mddev_t *mddev)
4003 {
4004         raid5_conf_t *conf;
4005         int raid_disk, memory;
4006         mdk_rdev_t *rdev;
4007         struct disk_info *disk;
4008         struct list_head *tmp;
4009         int working_disks = 0;
4010
4011         if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
4012                 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4013                        mdname(mddev), mddev->level);
4014                 return -EIO;
4015         }
4016
4017         if (mddev->reshape_position != MaxSector) {
4018                 /* Check that we can continue the reshape.
4019                  * Currently only disks can change, it must
4020                  * increase, and we must be past the point where
4021                  * a stripe over-writes itself
4022                  */
4023                 sector_t here_new, here_old;
4024                 int old_disks;
4025                 int max_degraded = (mddev->level == 5 ? 1 : 2);
4026
4027                 if (mddev->new_level != mddev->level ||
4028                     mddev->new_layout != mddev->layout ||
4029                     mddev->new_chunk != mddev->chunk_size) {
4030                         printk(KERN_ERR "raid5: %s: unsupported reshape "
4031                                "required - aborting.\n",
4032                                mdname(mddev));
4033                         return -EINVAL;
4034                 }
4035                 if (mddev->delta_disks <= 0) {
4036                         printk(KERN_ERR "raid5: %s: unsupported reshape "
4037                                "(reduce disks) required - aborting.\n",
4038                                mdname(mddev));
4039                         return -EINVAL;
4040                 }
4041                 old_disks = mddev->raid_disks - mddev->delta_disks;
4042                 /* reshape_position must be on a new-stripe boundary, and one
4043                  * further up in new geometry must map after here in old
4044                  * geometry.
4045                  */
4046                 here_new = mddev->reshape_position;
4047                 if (sector_div(here_new, (mddev->chunk_size>>9)*
4048                                (mddev->raid_disks - max_degraded))) {
4049                         printk(KERN_ERR "raid5: reshape_position not "
4050                                "on a stripe boundary\n");
4051                         return -EINVAL;
4052                 }
4053                 /* here_new is the stripe we will write to */
4054                 here_old = mddev->reshape_position;
4055                 sector_div(here_old, (mddev->chunk_size>>9)*
4056                            (old_disks-max_degraded));
4057                 /* here_old is the first stripe that we might need to read
4058                  * from */
4059                 if (here_new >= here_old) {
4060                         /* Reading from the same stripe as writing to - bad */
4061                         printk(KERN_ERR "raid5: reshape_position too early for "
4062                                "auto-recovery - aborting.\n");
4063                         return -EINVAL;
4064                 }
4065                 printk(KERN_INFO "raid5: reshape will continue\n");
4066                 /* OK, we should be able to continue; */
4067         }
4068
4069
4070         mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
4071         if ((conf = mddev->private) == NULL)
4072                 goto abort;
4073         if (mddev->reshape_position == MaxSector) {
4074                 conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
4075         } else {
4076                 conf->raid_disks = mddev->raid_disks;
4077                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4078         }
4079
4080         conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4081                               GFP_KERNEL);
4082         if (!conf->disks)
4083                 goto abort;
4084
4085         conf->mddev = mddev;
4086
4087         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4088                 goto abort;
4089
4090         if (mddev->level == 6) {
4091                 conf->spare_page = alloc_page(GFP_KERNEL);
4092                 if (!conf->spare_page)
4093                         goto abort;
4094         }
4095         spin_lock_init(&conf->device_lock);
4096         init_waitqueue_head(&conf->wait_for_stripe);
4097         init_waitqueue_head(&conf->wait_for_overlap);
4098         INIT_LIST_HEAD(&conf->handle_list);
4099         INIT_LIST_HEAD(&conf->delayed_list);
4100         INIT_LIST_HEAD(&conf->bitmap_list);
4101         INIT_LIST_HEAD(&conf->inactive_list);
4102         atomic_set(&conf->active_stripes, 0);
4103         atomic_set(&conf->preread_active_stripes, 0);
4104         atomic_set(&conf->active_aligned_reads, 0);
4105
4106         pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4107
4108         ITERATE_RDEV(mddev,rdev,tmp) {
4109                 raid_disk = rdev->raid_disk;
4110                 if (raid_disk >= conf->raid_disks
4111                     || raid_disk < 0)
4112                         continue;
4113                 disk = conf->disks + raid_disk;
4114
4115                 disk->rdev = rdev;
4116
4117                 if (test_bit(In_sync, &rdev->flags)) {
4118                         char b[BDEVNAME_SIZE];
4119                         printk(KERN_INFO "raid5: device %s operational as raid"
4120                                 " disk %d\n", bdevname(rdev->bdev,b),
4121                                 raid_disk);
4122                         working_disks++;
4123                 }
4124         }
4125
4126         /*
4127          * 0 for a fully functional array, 1 or 2 for a degraded array.
4128          */
4129         mddev->degraded = conf->raid_disks - working_disks;
4130         conf->mddev = mddev;
4131         conf->chunk_size = mddev->chunk_size;
4132         conf->level = mddev->level;
4133         if (conf->level == 6)
4134                 conf->max_degraded = 2;
4135         else
4136                 conf->max_degraded = 1;
4137         conf->algorithm = mddev->layout;
4138         conf->max_nr_stripes = NR_STRIPES;
4139         conf->expand_progress = mddev->reshape_position;
4140
4141         /* device size must be a multiple of chunk size */
4142         mddev->size &= ~(mddev->chunk_size/1024 -1);
4143         mddev->resync_max_sectors = mddev->size << 1;
4144
4145         if (conf->level == 6 && conf->raid_disks < 4) {
4146                 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4147                        mdname(mddev), conf->raid_disks);
4148                 goto abort;
4149         }
4150         if (!conf->chunk_size || conf->chunk_size % 4) {
4151                 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4152                         conf->chunk_size, mdname(mddev));
4153                 goto abort;
4154         }
4155         if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
4156                 printk(KERN_ERR 
4157                         "raid5: unsupported parity algorithm %d for %s\n",
4158                         conf->algorithm, mdname(mddev));
4159                 goto abort;
4160         }
4161         if (mddev->degraded > conf->max_degraded) {
4162                 printk(KERN_ERR "raid5: not enough operational devices for %s"
4163                         " (%d/%d failed)\n",
4164                         mdname(mddev), mddev->degraded, conf->raid_disks);
4165                 goto abort;
4166         }
4167
4168         if (mddev->degraded > 0 &&
4169             mddev->recovery_cp != MaxSector) {
4170                 if (mddev->ok_start_degraded)
4171                         printk(KERN_WARNING
4172                                "raid5: starting dirty degraded array: %s"
4173                                "- data corruption possible.\n",
4174                                mdname(mddev));
4175                 else {
4176                         printk(KERN_ERR
4177                                "raid5: cannot start dirty degraded array for %s\n",
4178                                mdname(mddev));
4179                         goto abort;
4180                 }
4181         }
4182
4183         {
4184                 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4185                 if (!mddev->thread) {
4186                         printk(KERN_ERR 
4187                                 "raid5: couldn't allocate thread for %s\n",
4188                                 mdname(mddev));
4189                         goto abort;
4190                 }
4191         }
4192         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4193                  conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4194         if (grow_stripes(conf, conf->max_nr_stripes)) {
4195                 printk(KERN_ERR 
4196                         "raid5: couldn't allocate %dkB for buffers\n", memory);
4197                 shrink_stripes(conf);
4198                 md_unregister_thread(mddev->thread);
4199                 goto abort;
4200         } else
4201                 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4202                         memory, mdname(mddev));
4203
4204         if (mddev->degraded == 0)
4205                 printk("raid5: raid level %d set %s active with %d out of %d"
4206                         " devices, algorithm %d\n", conf->level, mdname(mddev), 
4207                         mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4208                         conf->algorithm);
4209         else
4210                 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4211                         " out of %d devices, algorithm %d\n", conf->level,
4212                         mdname(mddev), mddev->raid_disks - mddev->degraded,
4213                         mddev->raid_disks, conf->algorithm);
4214
4215         print_raid5_conf(conf);
4216
4217         if (conf->expand_progress != MaxSector) {
4218                 printk("...ok start reshape thread\n");
4219                 conf->expand_lo = conf->expand_progress;
4220                 atomic_set(&conf->reshape_stripes, 0);
4221                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4222                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4223                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4224                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4225                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4226                                                         "%s_reshape");
4227         }
4228
4229         /* read-ahead size must cover two whole stripes, which is
4230          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4231          */
4232         {
4233                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4234                 int stripe = data_disks *
4235                         (mddev->chunk_size / PAGE_SIZE);
4236                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4237                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4238         }
4239
4240         /* Ok, everything is just fine now */
4241         if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4242                 printk(KERN_WARNING
4243                        "raid5: failed to create sysfs attributes for %s\n",
4244                        mdname(mddev));
4245
4246         mddev->queue->unplug_fn = raid5_unplug_device;
4247         mddev->queue->backing_dev_info.congested_data = mddev;
4248         mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4249
4250         mddev->array_size =  mddev->size * (conf->previous_raid_disks -
4251                                             conf->max_degraded);
4252
4253         blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4254
4255         return 0;
4256 abort:
4257         if (conf) {
4258                 print_raid5_conf(conf);
4259                 safe_put_page(conf->spare_page);
4260                 kfree(conf->disks);
4261                 kfree(conf->stripe_hashtbl);
4262                 kfree(conf);
4263         }
4264         mddev->private = NULL;
4265         printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4266         return -EIO;
4267 }
4268
4269
4270
4271 static int stop(mddev_t *mddev)
4272 {
4273         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4274
4275         md_unregister_thread(mddev->thread);
4276         mddev->thread = NULL;
4277         shrink_stripes(conf);
4278         kfree(conf->stripe_hashtbl);
4279         mddev->queue->backing_dev_info.congested_fn = NULL;
4280         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4281         sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4282         kfree(conf->disks);
4283         kfree(conf);
4284         mddev->private = NULL;
4285         return 0;
4286 }
4287
4288 #ifdef DEBUG
4289 static void print_sh (struct seq_file *seq, struct stripe_head *sh)
4290 {
4291         int i;
4292
4293         seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4294                    (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4295         seq_printf(seq, "sh %llu,  count %d.\n",
4296                    (unsigned long long)sh->sector, atomic_read(&sh->count));
4297         seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4298         for (i = 0; i < sh->disks; i++) {
4299                 seq_printf(seq, "(cache%d: %p %ld) ",
4300                            i, sh->dev[i].page, sh->dev[i].flags);
4301         }
4302         seq_printf(seq, "\n");
4303 }
4304
4305 static void printall (struct seq_file *seq, raid5_conf_t *conf)
4306 {
4307         struct stripe_head *sh;
4308         struct hlist_node *hn;
4309         int i;
4310
4311         spin_lock_irq(&conf->device_lock);
4312         for (i = 0; i < NR_HASH; i++) {
4313                 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4314                         if (sh->raid_conf != conf)
4315                                 continue;
4316                         print_sh(seq, sh);
4317                 }
4318         }
4319         spin_unlock_irq(&conf->device_lock);
4320 }
4321 #endif
4322
4323 static void status (struct seq_file *seq, mddev_t *mddev)
4324 {
4325         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4326         int i;
4327
4328         seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4329         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4330         for (i = 0; i < conf->raid_disks; i++)
4331                 seq_printf (seq, "%s",
4332                                conf->disks[i].rdev &&
4333                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4334         seq_printf (seq, "]");
4335 #ifdef DEBUG
4336         seq_printf (seq, "\n");
4337         printall(seq, conf);
4338 #endif
4339 }
4340
4341 static void print_raid5_conf (raid5_conf_t *conf)
4342 {
4343         int i;
4344         struct disk_info *tmp;
4345
4346         printk("RAID5 conf printout:\n");
4347         if (!conf) {
4348                 printk("(conf==NULL)\n");
4349                 return;
4350         }
4351         printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4352                  conf->raid_disks - conf->mddev->degraded);
4353
4354         for (i = 0; i < conf->raid_disks; i++) {
4355                 char b[BDEVNAME_SIZE];
4356                 tmp = conf->disks + i;
4357                 if (tmp->rdev)
4358                 printk(" disk %d, o:%d, dev:%s\n",
4359                         i, !test_bit(Faulty, &tmp->rdev->flags),
4360                         bdevname(tmp->rdev->bdev,b));
4361         }
4362 }
4363
4364 static int raid5_spare_active(mddev_t *mddev)
4365 {
4366         int i;
4367         raid5_conf_t *conf = mddev->private;
4368         struct disk_info *tmp;
4369
4370         for (i = 0; i < conf->raid_disks; i++) {
4371                 tmp = conf->disks + i;
4372                 if (tmp->rdev
4373                     && !test_bit(Faulty, &tmp->rdev->flags)
4374                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4375                         unsigned long flags;
4376                         spin_lock_irqsave(&conf->device_lock, flags);
4377                         mddev->degraded--;
4378                         spin_unlock_irqrestore(&conf->device_lock, flags);
4379                 }
4380         }
4381         print_raid5_conf(conf);
4382         return 0;
4383 }
4384
4385 static int raid5_remove_disk(mddev_t *mddev, int number)
4386 {
4387         raid5_conf_t *conf = mddev->private;
4388         int err = 0;
4389         mdk_rdev_t *rdev;
4390         struct disk_info *p = conf->disks + number;
4391
4392         print_raid5_conf(conf);
4393         rdev = p->rdev;
4394         if (rdev) {
4395                 if (test_bit(In_sync, &rdev->flags) ||
4396                     atomic_read(&rdev->nr_pending)) {
4397                         err = -EBUSY;
4398                         goto abort;
4399                 }
4400                 p->rdev = NULL;
4401                 synchronize_rcu();
4402                 if (atomic_read(&rdev->nr_pending)) {
4403                         /* lost the race, try later */
4404                         err = -EBUSY;
4405                         p->rdev = rdev;
4406                 }
4407         }
4408 abort:
4409
4410         print_raid5_conf(conf);
4411         return err;
4412 }
4413
4414 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4415 {
4416         raid5_conf_t *conf = mddev->private;
4417         int found = 0;
4418         int disk;
4419         struct disk_info *p;
4420
4421         if (mddev->degraded > conf->max_degraded)
4422                 /* no point adding a device */
4423                 return 0;
4424
4425         /*
4426          * find the disk ... but prefer rdev->saved_raid_disk
4427          * if possible.
4428          */
4429         if (rdev->saved_raid_disk >= 0 &&
4430             conf->disks[rdev->saved_raid_disk].rdev == NULL)
4431                 disk = rdev->saved_raid_disk;
4432         else
4433                 disk = 0;
4434         for ( ; disk < conf->raid_disks; disk++)
4435                 if ((p=conf->disks + disk)->rdev == NULL) {
4436                         clear_bit(In_sync, &rdev->flags);
4437                         rdev->raid_disk = disk;
4438                         found = 1;
4439                         if (rdev->saved_raid_disk != disk)
4440                                 conf->fullsync = 1;
4441                         rcu_assign_pointer(p->rdev, rdev);
4442                         break;
4443                 }
4444         print_raid5_conf(conf);
4445         return found;
4446 }
4447
4448 static int raid5_resize(mddev_t *mddev, sector_t sectors)
4449 {
4450         /* no resync is happening, and there is enough space
4451          * on all devices, so we can resize.
4452          * We need to make sure resync covers any new space.
4453          * If the array is shrinking we should possibly wait until
4454          * any io in the removed space completes, but it hardly seems
4455          * worth it.
4456          */
4457         raid5_conf_t *conf = mddev_to_conf(mddev);
4458
4459         sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4460         mddev->array_size = (sectors * (mddev->raid_disks-conf->max_degraded))>>1;
4461         set_capacity(mddev->gendisk, mddev->array_size << 1);
4462         mddev->changed = 1;
4463         if (sectors/2  > mddev->size && mddev->recovery_cp == MaxSector) {
4464                 mddev->recovery_cp = mddev->size << 1;
4465                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4466         }
4467         mddev->size = sectors /2;
4468         mddev->resync_max_sectors = sectors;
4469         return 0;
4470 }
4471
4472 #ifdef CONFIG_MD_RAID5_RESHAPE
4473 static int raid5_check_reshape(mddev_t *mddev)
4474 {
4475         raid5_conf_t *conf = mddev_to_conf(mddev);
4476         int err;
4477
4478         if (mddev->delta_disks < 0 ||
4479             mddev->new_level != mddev->level)
4480                 return -EINVAL; /* Cannot shrink array or change level yet */
4481         if (mddev->delta_disks == 0)
4482                 return 0; /* nothing to do */
4483
4484         /* Can only proceed if there are plenty of stripe_heads.
4485          * We need a minimum of one full stripe,, and for sensible progress
4486          * it is best to have about 4 times that.
4487          * If we require 4 times, then the default 256 4K stripe_heads will
4488          * allow for chunk sizes up to 256K, which is probably OK.
4489          * If the chunk size is greater, user-space should request more
4490          * stripe_heads first.
4491          */
4492         if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4493             (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
4494                 printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
4495                        (mddev->chunk_size / STRIPE_SIZE)*4);
4496                 return -ENOSPC;
4497         }
4498
4499         err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4500         if (err)
4501                 return err;
4502
4503         if (mddev->degraded > conf->max_degraded)
4504                 return -EINVAL;
4505         /* looks like we might be able to manage this */
4506         return 0;
4507 }
4508
4509 static int raid5_start_reshape(mddev_t *mddev)
4510 {
4511         raid5_conf_t *conf = mddev_to_conf(mddev);
4512         mdk_rdev_t *rdev;
4513         struct list_head *rtmp;
4514         int spares = 0;
4515         int added_devices = 0;
4516         unsigned long flags;
4517
4518         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4519                 return -EBUSY;
4520
4521         ITERATE_RDEV(mddev, rdev, rtmp)
4522                 if (rdev->raid_disk < 0 &&
4523                     !test_bit(Faulty, &rdev->flags))
4524                         spares++;
4525
4526         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4527                 /* Not enough devices even to make a degraded array
4528                  * of that size
4529                  */
4530                 return -EINVAL;
4531
4532         atomic_set(&conf->reshape_stripes, 0);
4533         spin_lock_irq(&conf->device_lock);
4534         conf->previous_raid_disks = conf->raid_disks;
4535         conf->raid_disks += mddev->delta_disks;
4536         conf->expand_progress = 0;
4537         conf->expand_lo = 0;
4538         spin_unlock_irq(&conf->device_lock);
4539
4540         /* Add some new drives, as many as will fit.
4541          * We know there are enough to make the newly sized array work.
4542          */
4543         ITERATE_RDEV(mddev, rdev, rtmp)
4544                 if (rdev->raid_disk < 0 &&
4545                     !test_bit(Faulty, &rdev->flags)) {
4546                         if (raid5_add_disk(mddev, rdev)) {
4547                                 char nm[20];
4548                                 set_bit(In_sync, &rdev->flags);
4549                                 added_devices++;
4550                                 rdev->recovery_offset = 0;
4551                                 sprintf(nm, "rd%d", rdev->raid_disk);
4552                                 if (sysfs_create_link(&mddev->kobj,
4553                                                       &rdev->kobj, nm))
4554                                         printk(KERN_WARNING
4555                                                "raid5: failed to create "
4556                                                " link %s for %s\n",
4557                                                nm, mdname(mddev));
4558                         } else
4559                                 break;
4560                 }
4561
4562         spin_lock_irqsave(&conf->device_lock, flags);
4563         mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
4564         spin_unlock_irqrestore(&conf->device_lock, flags);
4565         mddev->raid_disks = conf->raid_disks;
4566         mddev->reshape_position = 0;
4567         set_bit(MD_CHANGE_DEVS, &mddev->flags);
4568
4569         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4570         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4571         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4572         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4573         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4574                                                 "%s_reshape");
4575         if (!mddev->sync_thread) {
4576                 mddev->recovery = 0;
4577                 spin_lock_irq(&conf->device_lock);
4578                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4579                 conf->expand_progress = MaxSector;
4580                 spin_unlock_irq(&conf->device_lock);
4581                 return -EAGAIN;
4582         }
4583         md_wakeup_thread(mddev->sync_thread);
4584         md_new_event(mddev);
4585         return 0;
4586 }
4587 #endif
4588
4589 static void end_reshape(raid5_conf_t *conf)
4590 {
4591         struct block_device *bdev;
4592
4593         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
4594                 conf->mddev->array_size = conf->mddev->size *
4595                         (conf->raid_disks - conf->max_degraded);
4596                 set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1);
4597                 conf->mddev->changed = 1;
4598
4599                 bdev = bdget_disk(conf->mddev->gendisk, 0);
4600                 if (bdev) {
4601                         mutex_lock(&bdev->bd_inode->i_mutex);
4602                         i_size_write(bdev->bd_inode, (loff_t)conf->mddev->array_size << 10);
4603                         mutex_unlock(&bdev->bd_inode->i_mutex);
4604                         bdput(bdev);
4605                 }
4606                 spin_lock_irq(&conf->device_lock);
4607                 conf->expand_progress = MaxSector;
4608                 spin_unlock_irq(&conf->device_lock);
4609                 conf->mddev->reshape_position = MaxSector;
4610
4611                 /* read-ahead size must cover two whole stripes, which is
4612                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4613                  */
4614                 {
4615                         int data_disks = conf->previous_raid_disks - conf->max_degraded;
4616                         int stripe = data_disks *
4617                                 (conf->mddev->chunk_size / PAGE_SIZE);
4618                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4619                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4620                 }
4621         }
4622 }
4623
4624 static void raid5_quiesce(mddev_t *mddev, int state)
4625 {
4626         raid5_conf_t *conf = mddev_to_conf(mddev);
4627
4628         switch(state) {
4629         case 2: /* resume for a suspend */
4630                 wake_up(&conf->wait_for_overlap);
4631                 break;
4632
4633         case 1: /* stop all writes */
4634                 spin_lock_irq(&conf->device_lock);
4635                 conf->quiesce = 1;
4636                 wait_event_lock_irq(conf->wait_for_stripe,
4637                                     atomic_read(&conf->active_stripes) == 0 &&
4638                                     atomic_read(&conf->active_aligned_reads) == 0,
4639                                     conf->device_lock, /* nothing */);
4640                 spin_unlock_irq(&conf->device_lock);
4641                 break;
4642
4643         case 0: /* re-enable writes */
4644                 spin_lock_irq(&conf->device_lock);
4645                 conf->quiesce = 0;
4646                 wake_up(&conf->wait_for_stripe);
4647                 wake_up(&conf->wait_for_overlap);
4648                 spin_unlock_irq(&conf->device_lock);
4649                 break;
4650         }
4651 }
4652
4653 static struct mdk_personality raid6_personality =
4654 {
4655         .name           = "raid6",
4656         .level          = 6,
4657         .owner          = THIS_MODULE,
4658         .make_request   = make_request,
4659         .run            = run,
4660         .stop           = stop,
4661         .status         = status,
4662         .error_handler  = error,
4663         .hot_add_disk   = raid5_add_disk,
4664         .hot_remove_disk= raid5_remove_disk,
4665         .spare_active   = raid5_spare_active,
4666         .sync_request   = sync_request,
4667         .resize         = raid5_resize,
4668 #ifdef CONFIG_MD_RAID5_RESHAPE
4669         .check_reshape  = raid5_check_reshape,
4670         .start_reshape  = raid5_start_reshape,
4671 #endif
4672         .quiesce        = raid5_quiesce,
4673 };
4674 static struct mdk_personality raid5_personality =
4675 {
4676         .name           = "raid5",
4677         .level          = 5,
4678         .owner          = THIS_MODULE,
4679         .make_request   = make_request,
4680         .run            = run,
4681         .stop           = stop,
4682         .status         = status,
4683         .error_handler  = error,
4684         .hot_add_disk   = raid5_add_disk,
4685         .hot_remove_disk= raid5_remove_disk,
4686         .spare_active   = raid5_spare_active,
4687         .sync_request   = sync_request,
4688         .resize         = raid5_resize,
4689 #ifdef CONFIG_MD_RAID5_RESHAPE
4690         .check_reshape  = raid5_check_reshape,
4691         .start_reshape  = raid5_start_reshape,
4692 #endif
4693         .quiesce        = raid5_quiesce,
4694 };
4695
4696 static struct mdk_personality raid4_personality =
4697 {
4698         .name           = "raid4",
4699         .level          = 4,
4700         .owner          = THIS_MODULE,
4701         .make_request   = make_request,
4702         .run            = run,
4703         .stop           = stop,
4704         .status         = status,
4705         .error_handler  = error,
4706         .hot_add_disk   = raid5_add_disk,
4707         .hot_remove_disk= raid5_remove_disk,
4708         .spare_active   = raid5_spare_active,
4709         .sync_request   = sync_request,
4710         .resize         = raid5_resize,
4711 #ifdef CONFIG_MD_RAID5_RESHAPE
4712         .check_reshape  = raid5_check_reshape,
4713         .start_reshape  = raid5_start_reshape,
4714 #endif
4715         .quiesce        = raid5_quiesce,
4716 };
4717
4718 static int __init raid5_init(void)
4719 {
4720         int e;
4721
4722         e = raid6_select_algo();
4723         if ( e )
4724                 return e;
4725         register_md_personality(&raid6_personality);
4726         register_md_personality(&raid5_personality);
4727         register_md_personality(&raid4_personality);
4728         return 0;
4729 }
4730
4731 static void raid5_exit(void)
4732 {
4733         unregister_md_personality(&raid6_personality);
4734         unregister_md_personality(&raid5_personality);
4735         unregister_md_personality(&raid4_personality);
4736 }
4737
4738 module_init(raid5_init);
4739 module_exit(raid5_exit);
4740 MODULE_LICENSE("GPL");
4741 MODULE_ALIAS("md-personality-4"); /* RAID5 */
4742 MODULE_ALIAS("md-raid5");
4743 MODULE_ALIAS("md-raid4");
4744 MODULE_ALIAS("md-level-5");
4745 MODULE_ALIAS("md-level-4");
4746 MODULE_ALIAS("md-personality-8"); /* RAID6 */
4747 MODULE_ALIAS("md-raid6");
4748 MODULE_ALIAS("md-level-6");
4749
4750 /* This used to be two separate modules, they were: */
4751 MODULE_ALIAS("raid5");
4752 MODULE_ALIAS("raid6");