Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound-2.6
[pandora-kernel.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->bm_write is the number of the last batch successfully written.
31  * conf->bm_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is bm_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "raid5.h"
56 #include "bitmap.h"
57
58 /*
59  * Stripe cache
60  */
61
62 #define NR_STRIPES              256
63 #define STRIPE_SIZE             PAGE_SIZE
64 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
65 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
66 #define IO_THRESHOLD            1
67 #define BYPASS_THRESHOLD        1
68 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
69 #define HASH_MASK               (NR_HASH - 1)
70
71 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
72
73 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
74  * order without overlap.  There may be several bio's per stripe+device, and
75  * a bio could span several devices.
76  * When walking this list for a particular stripe+device, we must never proceed
77  * beyond a bio that extends past this device, as the next bio might no longer
78  * be valid.
79  * This macro is used to determine the 'next' bio in the list, given the sector
80  * of the current stripe+device
81  */
82 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
83 /*
84  * The following can be used to debug the driver
85  */
86 #define RAID5_PARANOIA  1
87 #if RAID5_PARANOIA && defined(CONFIG_SMP)
88 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
89 #else
90 # define CHECK_DEVLOCK()
91 #endif
92
93 #ifdef DEBUG
94 #define inline
95 #define __inline__
96 #endif
97
98 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
99
100 /*
101  * We maintain a biased count of active stripes in the bottom 16 bits of
102  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
103  */
104 static inline int raid5_bi_phys_segments(struct bio *bio)
105 {
106         return bio->bi_phys_segments & 0xffff;
107 }
108
109 static inline int raid5_bi_hw_segments(struct bio *bio)
110 {
111         return (bio->bi_phys_segments >> 16) & 0xffff;
112 }
113
114 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
115 {
116         --bio->bi_phys_segments;
117         return raid5_bi_phys_segments(bio);
118 }
119
120 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
121 {
122         unsigned short val = raid5_bi_hw_segments(bio);
123
124         --val;
125         bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
126         return val;
127 }
128
129 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
130 {
131         bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
132 }
133
134 /* Find first data disk in a raid6 stripe */
135 static inline int raid6_d0(struct stripe_head *sh)
136 {
137         if (sh->ddf_layout)
138                 /* ddf always start from first device */
139                 return 0;
140         /* md starts just after Q block */
141         if (sh->qd_idx == sh->disks - 1)
142                 return 0;
143         else
144                 return sh->qd_idx + 1;
145 }
146 static inline int raid6_next_disk(int disk, int raid_disks)
147 {
148         disk++;
149         return (disk < raid_disks) ? disk : 0;
150 }
151
152 /* When walking through the disks in a raid5, starting at raid6_d0,
153  * We need to map each disk to a 'slot', where the data disks are slot
154  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
155  * is raid_disks-1.  This help does that mapping.
156  */
157 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
158                              int *count, int syndrome_disks)
159 {
160         int slot = *count;
161
162         if (sh->ddf_layout)
163                 (*count)++;
164         if (idx == sh->pd_idx)
165                 return syndrome_disks;
166         if (idx == sh->qd_idx)
167                 return syndrome_disks + 1;
168         if (!sh->ddf_layout)
169                 (*count)++;
170         return slot;
171 }
172
173 static void return_io(struct bio *return_bi)
174 {
175         struct bio *bi = return_bi;
176         while (bi) {
177
178                 return_bi = bi->bi_next;
179                 bi->bi_next = NULL;
180                 bi->bi_size = 0;
181                 bio_endio(bi, 0);
182                 bi = return_bi;
183         }
184 }
185
186 static void print_raid5_conf (raid5_conf_t *conf);
187
188 static int stripe_operations_active(struct stripe_head *sh)
189 {
190         return sh->check_state || sh->reconstruct_state ||
191                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
192                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
193 }
194
195 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
196 {
197         if (atomic_dec_and_test(&sh->count)) {
198                 BUG_ON(!list_empty(&sh->lru));
199                 BUG_ON(atomic_read(&conf->active_stripes)==0);
200                 if (test_bit(STRIPE_HANDLE, &sh->state)) {
201                         if (test_bit(STRIPE_DELAYED, &sh->state)) {
202                                 list_add_tail(&sh->lru, &conf->delayed_list);
203                                 blk_plug_device(conf->mddev->queue);
204                         } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
205                                    sh->bm_seq - conf->seq_write > 0) {
206                                 list_add_tail(&sh->lru, &conf->bitmap_list);
207                                 blk_plug_device(conf->mddev->queue);
208                         } else {
209                                 clear_bit(STRIPE_BIT_DELAY, &sh->state);
210                                 list_add_tail(&sh->lru, &conf->handle_list);
211                         }
212                         md_wakeup_thread(conf->mddev->thread);
213                 } else {
214                         BUG_ON(stripe_operations_active(sh));
215                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
216                                 atomic_dec(&conf->preread_active_stripes);
217                                 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
218                                         md_wakeup_thread(conf->mddev->thread);
219                         }
220                         atomic_dec(&conf->active_stripes);
221                         if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
222                                 list_add_tail(&sh->lru, &conf->inactive_list);
223                                 wake_up(&conf->wait_for_stripe);
224                                 if (conf->retry_read_aligned)
225                                         md_wakeup_thread(conf->mddev->thread);
226                         }
227                 }
228         }
229 }
230
231 static void release_stripe(struct stripe_head *sh)
232 {
233         raid5_conf_t *conf = sh->raid_conf;
234         unsigned long flags;
235
236         spin_lock_irqsave(&conf->device_lock, flags);
237         __release_stripe(conf, sh);
238         spin_unlock_irqrestore(&conf->device_lock, flags);
239 }
240
241 static inline void remove_hash(struct stripe_head *sh)
242 {
243         pr_debug("remove_hash(), stripe %llu\n",
244                 (unsigned long long)sh->sector);
245
246         hlist_del_init(&sh->hash);
247 }
248
249 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
250 {
251         struct hlist_head *hp = stripe_hash(conf, sh->sector);
252
253         pr_debug("insert_hash(), stripe %llu\n",
254                 (unsigned long long)sh->sector);
255
256         CHECK_DEVLOCK();
257         hlist_add_head(&sh->hash, hp);
258 }
259
260
261 /* find an idle stripe, make sure it is unhashed, and return it. */
262 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
263 {
264         struct stripe_head *sh = NULL;
265         struct list_head *first;
266
267         CHECK_DEVLOCK();
268         if (list_empty(&conf->inactive_list))
269                 goto out;
270         first = conf->inactive_list.next;
271         sh = list_entry(first, struct stripe_head, lru);
272         list_del_init(first);
273         remove_hash(sh);
274         atomic_inc(&conf->active_stripes);
275 out:
276         return sh;
277 }
278
279 static void shrink_buffers(struct stripe_head *sh, int num)
280 {
281         struct page *p;
282         int i;
283
284         for (i=0; i<num ; i++) {
285                 p = sh->dev[i].page;
286                 if (!p)
287                         continue;
288                 sh->dev[i].page = NULL;
289                 put_page(p);
290         }
291 }
292
293 static int grow_buffers(struct stripe_head *sh, int num)
294 {
295         int i;
296
297         for (i=0; i<num; i++) {
298                 struct page *page;
299
300                 if (!(page = alloc_page(GFP_KERNEL))) {
301                         return 1;
302                 }
303                 sh->dev[i].page = page;
304         }
305         return 0;
306 }
307
308 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
309 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
310                             struct stripe_head *sh);
311
312 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
313 {
314         raid5_conf_t *conf = sh->raid_conf;
315         int i;
316
317         BUG_ON(atomic_read(&sh->count) != 0);
318         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
319         BUG_ON(stripe_operations_active(sh));
320
321         CHECK_DEVLOCK();
322         pr_debug("init_stripe called, stripe %llu\n",
323                 (unsigned long long)sh->sector);
324
325         remove_hash(sh);
326
327         sh->generation = conf->generation - previous;
328         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
329         sh->sector = sector;
330         stripe_set_idx(sector, conf, previous, sh);
331         sh->state = 0;
332
333
334         for (i = sh->disks; i--; ) {
335                 struct r5dev *dev = &sh->dev[i];
336
337                 if (dev->toread || dev->read || dev->towrite || dev->written ||
338                     test_bit(R5_LOCKED, &dev->flags)) {
339                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
340                                (unsigned long long)sh->sector, i, dev->toread,
341                                dev->read, dev->towrite, dev->written,
342                                test_bit(R5_LOCKED, &dev->flags));
343                         BUG();
344                 }
345                 dev->flags = 0;
346                 raid5_build_block(sh, i, previous);
347         }
348         insert_hash(conf, sh);
349 }
350
351 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
352                                          short generation)
353 {
354         struct stripe_head *sh;
355         struct hlist_node *hn;
356
357         CHECK_DEVLOCK();
358         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
359         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
360                 if (sh->sector == sector && sh->generation == generation)
361                         return sh;
362         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
363         return NULL;
364 }
365
366 static void unplug_slaves(mddev_t *mddev);
367 static void raid5_unplug_device(struct request_queue *q);
368
369 static struct stripe_head *
370 get_active_stripe(raid5_conf_t *conf, sector_t sector,
371                   int previous, int noblock, int noquiesce)
372 {
373         struct stripe_head *sh;
374
375         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
376
377         spin_lock_irq(&conf->device_lock);
378
379         do {
380                 wait_event_lock_irq(conf->wait_for_stripe,
381                                     conf->quiesce == 0 || noquiesce,
382                                     conf->device_lock, /* nothing */);
383                 sh = __find_stripe(conf, sector, conf->generation - previous);
384                 if (!sh) {
385                         if (!conf->inactive_blocked)
386                                 sh = get_free_stripe(conf);
387                         if (noblock && sh == NULL)
388                                 break;
389                         if (!sh) {
390                                 conf->inactive_blocked = 1;
391                                 wait_event_lock_irq(conf->wait_for_stripe,
392                                                     !list_empty(&conf->inactive_list) &&
393                                                     (atomic_read(&conf->active_stripes)
394                                                      < (conf->max_nr_stripes *3/4)
395                                                      || !conf->inactive_blocked),
396                                                     conf->device_lock,
397                                                     raid5_unplug_device(conf->mddev->queue)
398                                         );
399                                 conf->inactive_blocked = 0;
400                         } else
401                                 init_stripe(sh, sector, previous);
402                 } else {
403                         if (atomic_read(&sh->count)) {
404                                 BUG_ON(!list_empty(&sh->lru)
405                                     && !test_bit(STRIPE_EXPANDING, &sh->state));
406                         } else {
407                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
408                                         atomic_inc(&conf->active_stripes);
409                                 if (list_empty(&sh->lru) &&
410                                     !test_bit(STRIPE_EXPANDING, &sh->state))
411                                         BUG();
412                                 list_del_init(&sh->lru);
413                         }
414                 }
415         } while (sh == NULL);
416
417         if (sh)
418                 atomic_inc(&sh->count);
419
420         spin_unlock_irq(&conf->device_lock);
421         return sh;
422 }
423
424 static void
425 raid5_end_read_request(struct bio *bi, int error);
426 static void
427 raid5_end_write_request(struct bio *bi, int error);
428
429 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
430 {
431         raid5_conf_t *conf = sh->raid_conf;
432         int i, disks = sh->disks;
433
434         might_sleep();
435
436         for (i = disks; i--; ) {
437                 int rw;
438                 struct bio *bi;
439                 mdk_rdev_t *rdev;
440                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
441                         rw = WRITE;
442                 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
443                         rw = READ;
444                 else
445                         continue;
446
447                 bi = &sh->dev[i].req;
448
449                 bi->bi_rw = rw;
450                 if (rw == WRITE)
451                         bi->bi_end_io = raid5_end_write_request;
452                 else
453                         bi->bi_end_io = raid5_end_read_request;
454
455                 rcu_read_lock();
456                 rdev = rcu_dereference(conf->disks[i].rdev);
457                 if (rdev && test_bit(Faulty, &rdev->flags))
458                         rdev = NULL;
459                 if (rdev)
460                         atomic_inc(&rdev->nr_pending);
461                 rcu_read_unlock();
462
463                 if (rdev) {
464                         if (s->syncing || s->expanding || s->expanded)
465                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
466
467                         set_bit(STRIPE_IO_STARTED, &sh->state);
468
469                         bi->bi_bdev = rdev->bdev;
470                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
471                                 __func__, (unsigned long long)sh->sector,
472                                 bi->bi_rw, i);
473                         atomic_inc(&sh->count);
474                         bi->bi_sector = sh->sector + rdev->data_offset;
475                         bi->bi_flags = 1 << BIO_UPTODATE;
476                         bi->bi_vcnt = 1;
477                         bi->bi_max_vecs = 1;
478                         bi->bi_idx = 0;
479                         bi->bi_io_vec = &sh->dev[i].vec;
480                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
481                         bi->bi_io_vec[0].bv_offset = 0;
482                         bi->bi_size = STRIPE_SIZE;
483                         bi->bi_next = NULL;
484                         if (rw == WRITE &&
485                             test_bit(R5_ReWrite, &sh->dev[i].flags))
486                                 atomic_add(STRIPE_SECTORS,
487                                         &rdev->corrected_errors);
488                         generic_make_request(bi);
489                 } else {
490                         if (rw == WRITE)
491                                 set_bit(STRIPE_DEGRADED, &sh->state);
492                         pr_debug("skip op %ld on disc %d for sector %llu\n",
493                                 bi->bi_rw, i, (unsigned long long)sh->sector);
494                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
495                         set_bit(STRIPE_HANDLE, &sh->state);
496                 }
497         }
498 }
499
500 static struct dma_async_tx_descriptor *
501 async_copy_data(int frombio, struct bio *bio, struct page *page,
502         sector_t sector, struct dma_async_tx_descriptor *tx)
503 {
504         struct bio_vec *bvl;
505         struct page *bio_page;
506         int i;
507         int page_offset;
508         struct async_submit_ctl submit;
509         enum async_tx_flags flags = 0;
510
511         if (bio->bi_sector >= sector)
512                 page_offset = (signed)(bio->bi_sector - sector) * 512;
513         else
514                 page_offset = (signed)(sector - bio->bi_sector) * -512;
515
516         if (frombio)
517                 flags |= ASYNC_TX_FENCE;
518         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
519
520         bio_for_each_segment(bvl, bio, i) {
521                 int len = bio_iovec_idx(bio, i)->bv_len;
522                 int clen;
523                 int b_offset = 0;
524
525                 if (page_offset < 0) {
526                         b_offset = -page_offset;
527                         page_offset += b_offset;
528                         len -= b_offset;
529                 }
530
531                 if (len > 0 && page_offset + len > STRIPE_SIZE)
532                         clen = STRIPE_SIZE - page_offset;
533                 else
534                         clen = len;
535
536                 if (clen > 0) {
537                         b_offset += bio_iovec_idx(bio, i)->bv_offset;
538                         bio_page = bio_iovec_idx(bio, i)->bv_page;
539                         if (frombio)
540                                 tx = async_memcpy(page, bio_page, page_offset,
541                                                   b_offset, clen, &submit);
542                         else
543                                 tx = async_memcpy(bio_page, page, b_offset,
544                                                   page_offset, clen, &submit);
545                 }
546                 /* chain the operations */
547                 submit.depend_tx = tx;
548
549                 if (clen < len) /* hit end of page */
550                         break;
551                 page_offset +=  len;
552         }
553
554         return tx;
555 }
556
557 static void ops_complete_biofill(void *stripe_head_ref)
558 {
559         struct stripe_head *sh = stripe_head_ref;
560         struct bio *return_bi = NULL;
561         raid5_conf_t *conf = sh->raid_conf;
562         int i;
563
564         pr_debug("%s: stripe %llu\n", __func__,
565                 (unsigned long long)sh->sector);
566
567         /* clear completed biofills */
568         spin_lock_irq(&conf->device_lock);
569         for (i = sh->disks; i--; ) {
570                 struct r5dev *dev = &sh->dev[i];
571
572                 /* acknowledge completion of a biofill operation */
573                 /* and check if we need to reply to a read request,
574                  * new R5_Wantfill requests are held off until
575                  * !STRIPE_BIOFILL_RUN
576                  */
577                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
578                         struct bio *rbi, *rbi2;
579
580                         BUG_ON(!dev->read);
581                         rbi = dev->read;
582                         dev->read = NULL;
583                         while (rbi && rbi->bi_sector <
584                                 dev->sector + STRIPE_SECTORS) {
585                                 rbi2 = r5_next_bio(rbi, dev->sector);
586                                 if (!raid5_dec_bi_phys_segments(rbi)) {
587                                         rbi->bi_next = return_bi;
588                                         return_bi = rbi;
589                                 }
590                                 rbi = rbi2;
591                         }
592                 }
593         }
594         spin_unlock_irq(&conf->device_lock);
595         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
596
597         return_io(return_bi);
598
599         set_bit(STRIPE_HANDLE, &sh->state);
600         release_stripe(sh);
601 }
602
603 static void ops_run_biofill(struct stripe_head *sh)
604 {
605         struct dma_async_tx_descriptor *tx = NULL;
606         raid5_conf_t *conf = sh->raid_conf;
607         struct async_submit_ctl submit;
608         int i;
609
610         pr_debug("%s: stripe %llu\n", __func__,
611                 (unsigned long long)sh->sector);
612
613         for (i = sh->disks; i--; ) {
614                 struct r5dev *dev = &sh->dev[i];
615                 if (test_bit(R5_Wantfill, &dev->flags)) {
616                         struct bio *rbi;
617                         spin_lock_irq(&conf->device_lock);
618                         dev->read = rbi = dev->toread;
619                         dev->toread = NULL;
620                         spin_unlock_irq(&conf->device_lock);
621                         while (rbi && rbi->bi_sector <
622                                 dev->sector + STRIPE_SECTORS) {
623                                 tx = async_copy_data(0, rbi, dev->page,
624                                         dev->sector, tx);
625                                 rbi = r5_next_bio(rbi, dev->sector);
626                         }
627                 }
628         }
629
630         atomic_inc(&sh->count);
631         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
632         async_trigger_callback(&submit);
633 }
634
635 static void mark_target_uptodate(struct stripe_head *sh, int target)
636 {
637         struct r5dev *tgt;
638
639         if (target < 0)
640                 return;
641
642         tgt = &sh->dev[target];
643         set_bit(R5_UPTODATE, &tgt->flags);
644         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
645         clear_bit(R5_Wantcompute, &tgt->flags);
646 }
647
648 static void ops_complete_compute(void *stripe_head_ref)
649 {
650         struct stripe_head *sh = stripe_head_ref;
651
652         pr_debug("%s: stripe %llu\n", __func__,
653                 (unsigned long long)sh->sector);
654
655         /* mark the computed target(s) as uptodate */
656         mark_target_uptodate(sh, sh->ops.target);
657         mark_target_uptodate(sh, sh->ops.target2);
658
659         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
660         if (sh->check_state == check_state_compute_run)
661                 sh->check_state = check_state_compute_result;
662         set_bit(STRIPE_HANDLE, &sh->state);
663         release_stripe(sh);
664 }
665
666 /* return a pointer to the address conversion region of the scribble buffer */
667 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
668                                  struct raid5_percpu *percpu)
669 {
670         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
671 }
672
673 static struct dma_async_tx_descriptor *
674 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
675 {
676         int disks = sh->disks;
677         struct page **xor_srcs = percpu->scribble;
678         int target = sh->ops.target;
679         struct r5dev *tgt = &sh->dev[target];
680         struct page *xor_dest = tgt->page;
681         int count = 0;
682         struct dma_async_tx_descriptor *tx;
683         struct async_submit_ctl submit;
684         int i;
685
686         pr_debug("%s: stripe %llu block: %d\n",
687                 __func__, (unsigned long long)sh->sector, target);
688         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
689
690         for (i = disks; i--; )
691                 if (i != target)
692                         xor_srcs[count++] = sh->dev[i].page;
693
694         atomic_inc(&sh->count);
695
696         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
697                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
698         if (unlikely(count == 1))
699                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
700         else
701                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
702
703         return tx;
704 }
705
706 /* set_syndrome_sources - populate source buffers for gen_syndrome
707  * @srcs - (struct page *) array of size sh->disks
708  * @sh - stripe_head to parse
709  *
710  * Populates srcs in proper layout order for the stripe and returns the
711  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
712  * destination buffer is recorded in srcs[count] and the Q destination
713  * is recorded in srcs[count+1]].
714  */
715 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
716 {
717         int disks = sh->disks;
718         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
719         int d0_idx = raid6_d0(sh);
720         int count;
721         int i;
722
723         for (i = 0; i < disks; i++)
724                 srcs[i] = NULL;
725
726         count = 0;
727         i = d0_idx;
728         do {
729                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
730
731                 srcs[slot] = sh->dev[i].page;
732                 i = raid6_next_disk(i, disks);
733         } while (i != d0_idx);
734
735         return syndrome_disks;
736 }
737
738 static struct dma_async_tx_descriptor *
739 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
740 {
741         int disks = sh->disks;
742         struct page **blocks = percpu->scribble;
743         int target;
744         int qd_idx = sh->qd_idx;
745         struct dma_async_tx_descriptor *tx;
746         struct async_submit_ctl submit;
747         struct r5dev *tgt;
748         struct page *dest;
749         int i;
750         int count;
751
752         if (sh->ops.target < 0)
753                 target = sh->ops.target2;
754         else if (sh->ops.target2 < 0)
755                 target = sh->ops.target;
756         else
757                 /* we should only have one valid target */
758                 BUG();
759         BUG_ON(target < 0);
760         pr_debug("%s: stripe %llu block: %d\n",
761                 __func__, (unsigned long long)sh->sector, target);
762
763         tgt = &sh->dev[target];
764         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
765         dest = tgt->page;
766
767         atomic_inc(&sh->count);
768
769         if (target == qd_idx) {
770                 count = set_syndrome_sources(blocks, sh);
771                 blocks[count] = NULL; /* regenerating p is not necessary */
772                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
773                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
774                                   ops_complete_compute, sh,
775                                   to_addr_conv(sh, percpu));
776                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
777         } else {
778                 /* Compute any data- or p-drive using XOR */
779                 count = 0;
780                 for (i = disks; i-- ; ) {
781                         if (i == target || i == qd_idx)
782                                 continue;
783                         blocks[count++] = sh->dev[i].page;
784                 }
785
786                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
787                                   NULL, ops_complete_compute, sh,
788                                   to_addr_conv(sh, percpu));
789                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
790         }
791
792         return tx;
793 }
794
795 static struct dma_async_tx_descriptor *
796 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
797 {
798         int i, count, disks = sh->disks;
799         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
800         int d0_idx = raid6_d0(sh);
801         int faila = -1, failb = -1;
802         int target = sh->ops.target;
803         int target2 = sh->ops.target2;
804         struct r5dev *tgt = &sh->dev[target];
805         struct r5dev *tgt2 = &sh->dev[target2];
806         struct dma_async_tx_descriptor *tx;
807         struct page **blocks = percpu->scribble;
808         struct async_submit_ctl submit;
809
810         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
811                  __func__, (unsigned long long)sh->sector, target, target2);
812         BUG_ON(target < 0 || target2 < 0);
813         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
814         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
815
816         /* we need to open-code set_syndrome_sources to handle the
817          * slot number conversion for 'faila' and 'failb'
818          */
819         for (i = 0; i < disks ; i++)
820                 blocks[i] = NULL;
821         count = 0;
822         i = d0_idx;
823         do {
824                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
825
826                 blocks[slot] = sh->dev[i].page;
827
828                 if (i == target)
829                         faila = slot;
830                 if (i == target2)
831                         failb = slot;
832                 i = raid6_next_disk(i, disks);
833         } while (i != d0_idx);
834
835         BUG_ON(faila == failb);
836         if (failb < faila)
837                 swap(faila, failb);
838         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
839                  __func__, (unsigned long long)sh->sector, faila, failb);
840
841         atomic_inc(&sh->count);
842
843         if (failb == syndrome_disks+1) {
844                 /* Q disk is one of the missing disks */
845                 if (faila == syndrome_disks) {
846                         /* Missing P+Q, just recompute */
847                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
848                                           ops_complete_compute, sh,
849                                           to_addr_conv(sh, percpu));
850                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
851                                                   STRIPE_SIZE, &submit);
852                 } else {
853                         struct page *dest;
854                         int data_target;
855                         int qd_idx = sh->qd_idx;
856
857                         /* Missing D+Q: recompute D from P, then recompute Q */
858                         if (target == qd_idx)
859                                 data_target = target2;
860                         else
861                                 data_target = target;
862
863                         count = 0;
864                         for (i = disks; i-- ; ) {
865                                 if (i == data_target || i == qd_idx)
866                                         continue;
867                                 blocks[count++] = sh->dev[i].page;
868                         }
869                         dest = sh->dev[data_target].page;
870                         init_async_submit(&submit,
871                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
872                                           NULL, NULL, NULL,
873                                           to_addr_conv(sh, percpu));
874                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
875                                        &submit);
876
877                         count = set_syndrome_sources(blocks, sh);
878                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
879                                           ops_complete_compute, sh,
880                                           to_addr_conv(sh, percpu));
881                         return async_gen_syndrome(blocks, 0, count+2,
882                                                   STRIPE_SIZE, &submit);
883                 }
884         } else {
885                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
886                                   ops_complete_compute, sh,
887                                   to_addr_conv(sh, percpu));
888                 if (failb == syndrome_disks) {
889                         /* We're missing D+P. */
890                         return async_raid6_datap_recov(syndrome_disks+2,
891                                                        STRIPE_SIZE, faila,
892                                                        blocks, &submit);
893                 } else {
894                         /* We're missing D+D. */
895                         return async_raid6_2data_recov(syndrome_disks+2,
896                                                        STRIPE_SIZE, faila, failb,
897                                                        blocks, &submit);
898                 }
899         }
900 }
901
902
903 static void ops_complete_prexor(void *stripe_head_ref)
904 {
905         struct stripe_head *sh = stripe_head_ref;
906
907         pr_debug("%s: stripe %llu\n", __func__,
908                 (unsigned long long)sh->sector);
909 }
910
911 static struct dma_async_tx_descriptor *
912 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
913                struct dma_async_tx_descriptor *tx)
914 {
915         int disks = sh->disks;
916         struct page **xor_srcs = percpu->scribble;
917         int count = 0, pd_idx = sh->pd_idx, i;
918         struct async_submit_ctl submit;
919
920         /* existing parity data subtracted */
921         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
922
923         pr_debug("%s: stripe %llu\n", __func__,
924                 (unsigned long long)sh->sector);
925
926         for (i = disks; i--; ) {
927                 struct r5dev *dev = &sh->dev[i];
928                 /* Only process blocks that are known to be uptodate */
929                 if (test_bit(R5_Wantdrain, &dev->flags))
930                         xor_srcs[count++] = dev->page;
931         }
932
933         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
934                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
935         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
936
937         return tx;
938 }
939
940 static struct dma_async_tx_descriptor *
941 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
942 {
943         int disks = sh->disks;
944         int i;
945
946         pr_debug("%s: stripe %llu\n", __func__,
947                 (unsigned long long)sh->sector);
948
949         for (i = disks; i--; ) {
950                 struct r5dev *dev = &sh->dev[i];
951                 struct bio *chosen;
952
953                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
954                         struct bio *wbi;
955
956                         spin_lock(&sh->lock);
957                         chosen = dev->towrite;
958                         dev->towrite = NULL;
959                         BUG_ON(dev->written);
960                         wbi = dev->written = chosen;
961                         spin_unlock(&sh->lock);
962
963                         while (wbi && wbi->bi_sector <
964                                 dev->sector + STRIPE_SECTORS) {
965                                 tx = async_copy_data(1, wbi, dev->page,
966                                         dev->sector, tx);
967                                 wbi = r5_next_bio(wbi, dev->sector);
968                         }
969                 }
970         }
971
972         return tx;
973 }
974
975 static void ops_complete_reconstruct(void *stripe_head_ref)
976 {
977         struct stripe_head *sh = stripe_head_ref;
978         int disks = sh->disks;
979         int pd_idx = sh->pd_idx;
980         int qd_idx = sh->qd_idx;
981         int i;
982
983         pr_debug("%s: stripe %llu\n", __func__,
984                 (unsigned long long)sh->sector);
985
986         for (i = disks; i--; ) {
987                 struct r5dev *dev = &sh->dev[i];
988
989                 if (dev->written || i == pd_idx || i == qd_idx)
990                         set_bit(R5_UPTODATE, &dev->flags);
991         }
992
993         if (sh->reconstruct_state == reconstruct_state_drain_run)
994                 sh->reconstruct_state = reconstruct_state_drain_result;
995         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
996                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
997         else {
998                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
999                 sh->reconstruct_state = reconstruct_state_result;
1000         }
1001
1002         set_bit(STRIPE_HANDLE, &sh->state);
1003         release_stripe(sh);
1004 }
1005
1006 static void
1007 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1008                      struct dma_async_tx_descriptor *tx)
1009 {
1010         int disks = sh->disks;
1011         struct page **xor_srcs = percpu->scribble;
1012         struct async_submit_ctl submit;
1013         int count = 0, pd_idx = sh->pd_idx, i;
1014         struct page *xor_dest;
1015         int prexor = 0;
1016         unsigned long flags;
1017
1018         pr_debug("%s: stripe %llu\n", __func__,
1019                 (unsigned long long)sh->sector);
1020
1021         /* check if prexor is active which means only process blocks
1022          * that are part of a read-modify-write (written)
1023          */
1024         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1025                 prexor = 1;
1026                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1027                 for (i = disks; i--; ) {
1028                         struct r5dev *dev = &sh->dev[i];
1029                         if (dev->written)
1030                                 xor_srcs[count++] = dev->page;
1031                 }
1032         } else {
1033                 xor_dest = sh->dev[pd_idx].page;
1034                 for (i = disks; i--; ) {
1035                         struct r5dev *dev = &sh->dev[i];
1036                         if (i != pd_idx)
1037                                 xor_srcs[count++] = dev->page;
1038                 }
1039         }
1040
1041         /* 1/ if we prexor'd then the dest is reused as a source
1042          * 2/ if we did not prexor then we are redoing the parity
1043          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1044          * for the synchronous xor case
1045          */
1046         flags = ASYNC_TX_ACK |
1047                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1048
1049         atomic_inc(&sh->count);
1050
1051         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1052                           to_addr_conv(sh, percpu));
1053         if (unlikely(count == 1))
1054                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1055         else
1056                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1057 }
1058
1059 static void
1060 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1061                      struct dma_async_tx_descriptor *tx)
1062 {
1063         struct async_submit_ctl submit;
1064         struct page **blocks = percpu->scribble;
1065         int count;
1066
1067         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1068
1069         count = set_syndrome_sources(blocks, sh);
1070
1071         atomic_inc(&sh->count);
1072
1073         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1074                           sh, to_addr_conv(sh, percpu));
1075         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1076 }
1077
1078 static void ops_complete_check(void *stripe_head_ref)
1079 {
1080         struct stripe_head *sh = stripe_head_ref;
1081
1082         pr_debug("%s: stripe %llu\n", __func__,
1083                 (unsigned long long)sh->sector);
1084
1085         sh->check_state = check_state_check_result;
1086         set_bit(STRIPE_HANDLE, &sh->state);
1087         release_stripe(sh);
1088 }
1089
1090 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1091 {
1092         int disks = sh->disks;
1093         int pd_idx = sh->pd_idx;
1094         int qd_idx = sh->qd_idx;
1095         struct page *xor_dest;
1096         struct page **xor_srcs = percpu->scribble;
1097         struct dma_async_tx_descriptor *tx;
1098         struct async_submit_ctl submit;
1099         int count;
1100         int i;
1101
1102         pr_debug("%s: stripe %llu\n", __func__,
1103                 (unsigned long long)sh->sector);
1104
1105         count = 0;
1106         xor_dest = sh->dev[pd_idx].page;
1107         xor_srcs[count++] = xor_dest;
1108         for (i = disks; i--; ) {
1109                 if (i == pd_idx || i == qd_idx)
1110                         continue;
1111                 xor_srcs[count++] = sh->dev[i].page;
1112         }
1113
1114         init_async_submit(&submit, 0, NULL, NULL, NULL,
1115                           to_addr_conv(sh, percpu));
1116         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1117                            &sh->ops.zero_sum_result, &submit);
1118
1119         atomic_inc(&sh->count);
1120         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1121         tx = async_trigger_callback(&submit);
1122 }
1123
1124 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1125 {
1126         struct page **srcs = percpu->scribble;
1127         struct async_submit_ctl submit;
1128         int count;
1129
1130         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1131                 (unsigned long long)sh->sector, checkp);
1132
1133         count = set_syndrome_sources(srcs, sh);
1134         if (!checkp)
1135                 srcs[count] = NULL;
1136
1137         atomic_inc(&sh->count);
1138         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1139                           sh, to_addr_conv(sh, percpu));
1140         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1141                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1142 }
1143
1144 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1145 {
1146         int overlap_clear = 0, i, disks = sh->disks;
1147         struct dma_async_tx_descriptor *tx = NULL;
1148         raid5_conf_t *conf = sh->raid_conf;
1149         int level = conf->level;
1150         struct raid5_percpu *percpu;
1151         unsigned long cpu;
1152
1153         cpu = get_cpu();
1154         percpu = per_cpu_ptr(conf->percpu, cpu);
1155         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1156                 ops_run_biofill(sh);
1157                 overlap_clear++;
1158         }
1159
1160         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1161                 if (level < 6)
1162                         tx = ops_run_compute5(sh, percpu);
1163                 else {
1164                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1165                                 tx = ops_run_compute6_1(sh, percpu);
1166                         else
1167                                 tx = ops_run_compute6_2(sh, percpu);
1168                 }
1169                 /* terminate the chain if reconstruct is not set to be run */
1170                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1171                         async_tx_ack(tx);
1172         }
1173
1174         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1175                 tx = ops_run_prexor(sh, percpu, tx);
1176
1177         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1178                 tx = ops_run_biodrain(sh, tx);
1179                 overlap_clear++;
1180         }
1181
1182         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1183                 if (level < 6)
1184                         ops_run_reconstruct5(sh, percpu, tx);
1185                 else
1186                         ops_run_reconstruct6(sh, percpu, tx);
1187         }
1188
1189         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1190                 if (sh->check_state == check_state_run)
1191                         ops_run_check_p(sh, percpu);
1192                 else if (sh->check_state == check_state_run_q)
1193                         ops_run_check_pq(sh, percpu, 0);
1194                 else if (sh->check_state == check_state_run_pq)
1195                         ops_run_check_pq(sh, percpu, 1);
1196                 else
1197                         BUG();
1198         }
1199
1200         if (overlap_clear)
1201                 for (i = disks; i--; ) {
1202                         struct r5dev *dev = &sh->dev[i];
1203                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1204                                 wake_up(&sh->raid_conf->wait_for_overlap);
1205                 }
1206         put_cpu();
1207 }
1208
1209 #ifdef CONFIG_MULTICORE_RAID456
1210 static void async_run_ops(void *param, async_cookie_t cookie)
1211 {
1212         struct stripe_head *sh = param;
1213         unsigned long ops_request = sh->ops.request;
1214
1215         clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1216         wake_up(&sh->ops.wait_for_ops);
1217
1218         __raid_run_ops(sh, ops_request);
1219         release_stripe(sh);
1220 }
1221
1222 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1223 {
1224         /* since handle_stripe can be called outside of raid5d context
1225          * we need to ensure sh->ops.request is de-staged before another
1226          * request arrives
1227          */
1228         wait_event(sh->ops.wait_for_ops,
1229                    !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1230         sh->ops.request = ops_request;
1231
1232         atomic_inc(&sh->count);
1233         async_schedule(async_run_ops, sh);
1234 }
1235 #else
1236 #define raid_run_ops __raid_run_ops
1237 #endif
1238
1239 static int grow_one_stripe(raid5_conf_t *conf)
1240 {
1241         struct stripe_head *sh;
1242         int disks = max(conf->raid_disks, conf->previous_raid_disks);
1243         sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
1244         if (!sh)
1245                 return 0;
1246         memset(sh, 0, sizeof(*sh) + (disks-1)*sizeof(struct r5dev));
1247         sh->raid_conf = conf;
1248         spin_lock_init(&sh->lock);
1249         #ifdef CONFIG_MULTICORE_RAID456
1250         init_waitqueue_head(&sh->ops.wait_for_ops);
1251         #endif
1252
1253         if (grow_buffers(sh, disks)) {
1254                 shrink_buffers(sh, disks);
1255                 kmem_cache_free(conf->slab_cache, sh);
1256                 return 0;
1257         }
1258         /* we just created an active stripe so... */
1259         atomic_set(&sh->count, 1);
1260         atomic_inc(&conf->active_stripes);
1261         INIT_LIST_HEAD(&sh->lru);
1262         release_stripe(sh);
1263         return 1;
1264 }
1265
1266 static int grow_stripes(raid5_conf_t *conf, int num)
1267 {
1268         struct kmem_cache *sc;
1269         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1270
1271         sprintf(conf->cache_name[0],
1272                 "raid%d-%s", conf->level, mdname(conf->mddev));
1273         sprintf(conf->cache_name[1],
1274                 "raid%d-%s-alt", conf->level, mdname(conf->mddev));
1275         conf->active_name = 0;
1276         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1277                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1278                                0, 0, NULL);
1279         if (!sc)
1280                 return 1;
1281         conf->slab_cache = sc;
1282         conf->pool_size = devs;
1283         while (num--)
1284                 if (!grow_one_stripe(conf))
1285                         return 1;
1286         return 0;
1287 }
1288
1289 /**
1290  * scribble_len - return the required size of the scribble region
1291  * @num - total number of disks in the array
1292  *
1293  * The size must be enough to contain:
1294  * 1/ a struct page pointer for each device in the array +2
1295  * 2/ room to convert each entry in (1) to its corresponding dma
1296  *    (dma_map_page()) or page (page_address()) address.
1297  *
1298  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1299  * calculate over all devices (not just the data blocks), using zeros in place
1300  * of the P and Q blocks.
1301  */
1302 static size_t scribble_len(int num)
1303 {
1304         size_t len;
1305
1306         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1307
1308         return len;
1309 }
1310
1311 static int resize_stripes(raid5_conf_t *conf, int newsize)
1312 {
1313         /* Make all the stripes able to hold 'newsize' devices.
1314          * New slots in each stripe get 'page' set to a new page.
1315          *
1316          * This happens in stages:
1317          * 1/ create a new kmem_cache and allocate the required number of
1318          *    stripe_heads.
1319          * 2/ gather all the old stripe_heads and tranfer the pages across
1320          *    to the new stripe_heads.  This will have the side effect of
1321          *    freezing the array as once all stripe_heads have been collected,
1322          *    no IO will be possible.  Old stripe heads are freed once their
1323          *    pages have been transferred over, and the old kmem_cache is
1324          *    freed when all stripes are done.
1325          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1326          *    we simple return a failre status - no need to clean anything up.
1327          * 4/ allocate new pages for the new slots in the new stripe_heads.
1328          *    If this fails, we don't bother trying the shrink the
1329          *    stripe_heads down again, we just leave them as they are.
1330          *    As each stripe_head is processed the new one is released into
1331          *    active service.
1332          *
1333          * Once step2 is started, we cannot afford to wait for a write,
1334          * so we use GFP_NOIO allocations.
1335          */
1336         struct stripe_head *osh, *nsh;
1337         LIST_HEAD(newstripes);
1338         struct disk_info *ndisks;
1339         unsigned long cpu;
1340         int err;
1341         struct kmem_cache *sc;
1342         int i;
1343
1344         if (newsize <= conf->pool_size)
1345                 return 0; /* never bother to shrink */
1346
1347         err = md_allow_write(conf->mddev);
1348         if (err)
1349                 return err;
1350
1351         /* Step 1 */
1352         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1353                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1354                                0, 0, NULL);
1355         if (!sc)
1356                 return -ENOMEM;
1357
1358         for (i = conf->max_nr_stripes; i; i--) {
1359                 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1360                 if (!nsh)
1361                         break;
1362
1363                 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1364
1365                 nsh->raid_conf = conf;
1366                 spin_lock_init(&nsh->lock);
1367                 #ifdef CONFIG_MULTICORE_RAID456
1368                 init_waitqueue_head(&nsh->ops.wait_for_ops);
1369                 #endif
1370
1371                 list_add(&nsh->lru, &newstripes);
1372         }
1373         if (i) {
1374                 /* didn't get enough, give up */
1375                 while (!list_empty(&newstripes)) {
1376                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1377                         list_del(&nsh->lru);
1378                         kmem_cache_free(sc, nsh);
1379                 }
1380                 kmem_cache_destroy(sc);
1381                 return -ENOMEM;
1382         }
1383         /* Step 2 - Must use GFP_NOIO now.
1384          * OK, we have enough stripes, start collecting inactive
1385          * stripes and copying them over
1386          */
1387         list_for_each_entry(nsh, &newstripes, lru) {
1388                 spin_lock_irq(&conf->device_lock);
1389                 wait_event_lock_irq(conf->wait_for_stripe,
1390                                     !list_empty(&conf->inactive_list),
1391                                     conf->device_lock,
1392                                     unplug_slaves(conf->mddev)
1393                         );
1394                 osh = get_free_stripe(conf);
1395                 spin_unlock_irq(&conf->device_lock);
1396                 atomic_set(&nsh->count, 1);
1397                 for(i=0; i<conf->pool_size; i++)
1398                         nsh->dev[i].page = osh->dev[i].page;
1399                 for( ; i<newsize; i++)
1400                         nsh->dev[i].page = NULL;
1401                 kmem_cache_free(conf->slab_cache, osh);
1402         }
1403         kmem_cache_destroy(conf->slab_cache);
1404
1405         /* Step 3.
1406          * At this point, we are holding all the stripes so the array
1407          * is completely stalled, so now is a good time to resize
1408          * conf->disks and the scribble region
1409          */
1410         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1411         if (ndisks) {
1412                 for (i=0; i<conf->raid_disks; i++)
1413                         ndisks[i] = conf->disks[i];
1414                 kfree(conf->disks);
1415                 conf->disks = ndisks;
1416         } else
1417                 err = -ENOMEM;
1418
1419         get_online_cpus();
1420         conf->scribble_len = scribble_len(newsize);
1421         for_each_present_cpu(cpu) {
1422                 struct raid5_percpu *percpu;
1423                 void *scribble;
1424
1425                 percpu = per_cpu_ptr(conf->percpu, cpu);
1426                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1427
1428                 if (scribble) {
1429                         kfree(percpu->scribble);
1430                         percpu->scribble = scribble;
1431                 } else {
1432                         err = -ENOMEM;
1433                         break;
1434                 }
1435         }
1436         put_online_cpus();
1437
1438         /* Step 4, return new stripes to service */
1439         while(!list_empty(&newstripes)) {
1440                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1441                 list_del_init(&nsh->lru);
1442
1443                 for (i=conf->raid_disks; i < newsize; i++)
1444                         if (nsh->dev[i].page == NULL) {
1445                                 struct page *p = alloc_page(GFP_NOIO);
1446                                 nsh->dev[i].page = p;
1447                                 if (!p)
1448                                         err = -ENOMEM;
1449                         }
1450                 release_stripe(nsh);
1451         }
1452         /* critical section pass, GFP_NOIO no longer needed */
1453
1454         conf->slab_cache = sc;
1455         conf->active_name = 1-conf->active_name;
1456         conf->pool_size = newsize;
1457         return err;
1458 }
1459
1460 static int drop_one_stripe(raid5_conf_t *conf)
1461 {
1462         struct stripe_head *sh;
1463
1464         spin_lock_irq(&conf->device_lock);
1465         sh = get_free_stripe(conf);
1466         spin_unlock_irq(&conf->device_lock);
1467         if (!sh)
1468                 return 0;
1469         BUG_ON(atomic_read(&sh->count));
1470         shrink_buffers(sh, conf->pool_size);
1471         kmem_cache_free(conf->slab_cache, sh);
1472         atomic_dec(&conf->active_stripes);
1473         return 1;
1474 }
1475
1476 static void shrink_stripes(raid5_conf_t *conf)
1477 {
1478         while (drop_one_stripe(conf))
1479                 ;
1480
1481         if (conf->slab_cache)
1482                 kmem_cache_destroy(conf->slab_cache);
1483         conf->slab_cache = NULL;
1484 }
1485
1486 static void raid5_end_read_request(struct bio * bi, int error)
1487 {
1488         struct stripe_head *sh = bi->bi_private;
1489         raid5_conf_t *conf = sh->raid_conf;
1490         int disks = sh->disks, i;
1491         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1492         char b[BDEVNAME_SIZE];
1493         mdk_rdev_t *rdev;
1494
1495
1496         for (i=0 ; i<disks; i++)
1497                 if (bi == &sh->dev[i].req)
1498                         break;
1499
1500         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1501                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1502                 uptodate);
1503         if (i == disks) {
1504                 BUG();
1505                 return;
1506         }
1507
1508         if (uptodate) {
1509                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1510                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1511                         rdev = conf->disks[i].rdev;
1512                         printk_rl(KERN_INFO "raid5:%s: read error corrected"
1513                                   " (%lu sectors at %llu on %s)\n",
1514                                   mdname(conf->mddev), STRIPE_SECTORS,
1515                                   (unsigned long long)(sh->sector
1516                                                        + rdev->data_offset),
1517                                   bdevname(rdev->bdev, b));
1518                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1519                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1520                 }
1521                 if (atomic_read(&conf->disks[i].rdev->read_errors))
1522                         atomic_set(&conf->disks[i].rdev->read_errors, 0);
1523         } else {
1524                 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1525                 int retry = 0;
1526                 rdev = conf->disks[i].rdev;
1527
1528                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1529                 atomic_inc(&rdev->read_errors);
1530                 if (conf->mddev->degraded)
1531                         printk_rl(KERN_WARNING
1532                                   "raid5:%s: read error not correctable "
1533                                   "(sector %llu on %s).\n",
1534                                   mdname(conf->mddev),
1535                                   (unsigned long long)(sh->sector
1536                                                        + rdev->data_offset),
1537                                   bdn);
1538                 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1539                         /* Oh, no!!! */
1540                         printk_rl(KERN_WARNING
1541                                   "raid5:%s: read error NOT corrected!! "
1542                                   "(sector %llu on %s).\n",
1543                                   mdname(conf->mddev),
1544                                   (unsigned long long)(sh->sector
1545                                                        + rdev->data_offset),
1546                                   bdn);
1547                 else if (atomic_read(&rdev->read_errors)
1548                          > conf->max_nr_stripes)
1549                         printk(KERN_WARNING
1550                                "raid5:%s: Too many read errors, failing device %s.\n",
1551                                mdname(conf->mddev), bdn);
1552                 else
1553                         retry = 1;
1554                 if (retry)
1555                         set_bit(R5_ReadError, &sh->dev[i].flags);
1556                 else {
1557                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1558                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1559                         md_error(conf->mddev, rdev);
1560                 }
1561         }
1562         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1563         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1564         set_bit(STRIPE_HANDLE, &sh->state);
1565         release_stripe(sh);
1566 }
1567
1568 static void raid5_end_write_request(struct bio *bi, int error)
1569 {
1570         struct stripe_head *sh = bi->bi_private;
1571         raid5_conf_t *conf = sh->raid_conf;
1572         int disks = sh->disks, i;
1573         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1574
1575         for (i=0 ; i<disks; i++)
1576                 if (bi == &sh->dev[i].req)
1577                         break;
1578
1579         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1580                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1581                 uptodate);
1582         if (i == disks) {
1583                 BUG();
1584                 return;
1585         }
1586
1587         if (!uptodate)
1588                 md_error(conf->mddev, conf->disks[i].rdev);
1589
1590         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1591         
1592         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1593         set_bit(STRIPE_HANDLE, &sh->state);
1594         release_stripe(sh);
1595 }
1596
1597
1598 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1599         
1600 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1601 {
1602         struct r5dev *dev = &sh->dev[i];
1603
1604         bio_init(&dev->req);
1605         dev->req.bi_io_vec = &dev->vec;
1606         dev->req.bi_vcnt++;
1607         dev->req.bi_max_vecs++;
1608         dev->vec.bv_page = dev->page;
1609         dev->vec.bv_len = STRIPE_SIZE;
1610         dev->vec.bv_offset = 0;
1611
1612         dev->req.bi_sector = sh->sector;
1613         dev->req.bi_private = sh;
1614
1615         dev->flags = 0;
1616         dev->sector = compute_blocknr(sh, i, previous);
1617 }
1618
1619 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1620 {
1621         char b[BDEVNAME_SIZE];
1622         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1623         pr_debug("raid5: error called\n");
1624
1625         if (!test_bit(Faulty, &rdev->flags)) {
1626                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1627                 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1628                         unsigned long flags;
1629                         spin_lock_irqsave(&conf->device_lock, flags);
1630                         mddev->degraded++;
1631                         spin_unlock_irqrestore(&conf->device_lock, flags);
1632                         /*
1633                          * if recovery was running, make sure it aborts.
1634                          */
1635                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1636                 }
1637                 set_bit(Faulty, &rdev->flags);
1638                 printk(KERN_ALERT
1639                        "raid5: Disk failure on %s, disabling device.\n"
1640                        "raid5: Operation continuing on %d devices.\n",
1641                        bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1642         }
1643 }
1644
1645 /*
1646  * Input: a 'big' sector number,
1647  * Output: index of the data and parity disk, and the sector # in them.
1648  */
1649 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1650                                      int previous, int *dd_idx,
1651                                      struct stripe_head *sh)
1652 {
1653         sector_t stripe, stripe2;
1654         sector_t chunk_number;
1655         unsigned int chunk_offset;
1656         int pd_idx, qd_idx;
1657         int ddf_layout = 0;
1658         sector_t new_sector;
1659         int algorithm = previous ? conf->prev_algo
1660                                  : conf->algorithm;
1661         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1662                                          : conf->chunk_sectors;
1663         int raid_disks = previous ? conf->previous_raid_disks
1664                                   : conf->raid_disks;
1665         int data_disks = raid_disks - conf->max_degraded;
1666
1667         /* First compute the information on this sector */
1668
1669         /*
1670          * Compute the chunk number and the sector offset inside the chunk
1671          */
1672         chunk_offset = sector_div(r_sector, sectors_per_chunk);
1673         chunk_number = r_sector;
1674
1675         /*
1676          * Compute the stripe number
1677          */
1678         stripe = chunk_number;
1679         *dd_idx = sector_div(stripe, data_disks);
1680         stripe2 = stripe;
1681         /*
1682          * Select the parity disk based on the user selected algorithm.
1683          */
1684         pd_idx = qd_idx = ~0;
1685         switch(conf->level) {
1686         case 4:
1687                 pd_idx = data_disks;
1688                 break;
1689         case 5:
1690                 switch (algorithm) {
1691                 case ALGORITHM_LEFT_ASYMMETRIC:
1692                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1693                         if (*dd_idx >= pd_idx)
1694                                 (*dd_idx)++;
1695                         break;
1696                 case ALGORITHM_RIGHT_ASYMMETRIC:
1697                         pd_idx = sector_div(stripe2, raid_disks);
1698                         if (*dd_idx >= pd_idx)
1699                                 (*dd_idx)++;
1700                         break;
1701                 case ALGORITHM_LEFT_SYMMETRIC:
1702                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1703                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1704                         break;
1705                 case ALGORITHM_RIGHT_SYMMETRIC:
1706                         pd_idx = sector_div(stripe2, raid_disks);
1707                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1708                         break;
1709                 case ALGORITHM_PARITY_0:
1710                         pd_idx = 0;
1711                         (*dd_idx)++;
1712                         break;
1713                 case ALGORITHM_PARITY_N:
1714                         pd_idx = data_disks;
1715                         break;
1716                 default:
1717                         printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1718                                 algorithm);
1719                         BUG();
1720                 }
1721                 break;
1722         case 6:
1723
1724                 switch (algorithm) {
1725                 case ALGORITHM_LEFT_ASYMMETRIC:
1726                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1727                         qd_idx = pd_idx + 1;
1728                         if (pd_idx == raid_disks-1) {
1729                                 (*dd_idx)++;    /* Q D D D P */
1730                                 qd_idx = 0;
1731                         } else if (*dd_idx >= pd_idx)
1732                                 (*dd_idx) += 2; /* D D P Q D */
1733                         break;
1734                 case ALGORITHM_RIGHT_ASYMMETRIC:
1735                         pd_idx = sector_div(stripe2, raid_disks);
1736                         qd_idx = pd_idx + 1;
1737                         if (pd_idx == raid_disks-1) {
1738                                 (*dd_idx)++;    /* Q D D D P */
1739                                 qd_idx = 0;
1740                         } else if (*dd_idx >= pd_idx)
1741                                 (*dd_idx) += 2; /* D D P Q D */
1742                         break;
1743                 case ALGORITHM_LEFT_SYMMETRIC:
1744                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1745                         qd_idx = (pd_idx + 1) % raid_disks;
1746                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1747                         break;
1748                 case ALGORITHM_RIGHT_SYMMETRIC:
1749                         pd_idx = sector_div(stripe2, raid_disks);
1750                         qd_idx = (pd_idx + 1) % raid_disks;
1751                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1752                         break;
1753
1754                 case ALGORITHM_PARITY_0:
1755                         pd_idx = 0;
1756                         qd_idx = 1;
1757                         (*dd_idx) += 2;
1758                         break;
1759                 case ALGORITHM_PARITY_N:
1760                         pd_idx = data_disks;
1761                         qd_idx = data_disks + 1;
1762                         break;
1763
1764                 case ALGORITHM_ROTATING_ZERO_RESTART:
1765                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
1766                          * of blocks for computing Q is different.
1767                          */
1768                         pd_idx = sector_div(stripe2, raid_disks);
1769                         qd_idx = pd_idx + 1;
1770                         if (pd_idx == raid_disks-1) {
1771                                 (*dd_idx)++;    /* Q D D D P */
1772                                 qd_idx = 0;
1773                         } else if (*dd_idx >= pd_idx)
1774                                 (*dd_idx) += 2; /* D D P Q D */
1775                         ddf_layout = 1;
1776                         break;
1777
1778                 case ALGORITHM_ROTATING_N_RESTART:
1779                         /* Same a left_asymmetric, by first stripe is
1780                          * D D D P Q  rather than
1781                          * Q D D D P
1782                          */
1783                         stripe2 += 1;
1784                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1785                         qd_idx = pd_idx + 1;
1786                         if (pd_idx == raid_disks-1) {
1787                                 (*dd_idx)++;    /* Q D D D P */
1788                                 qd_idx = 0;
1789                         } else if (*dd_idx >= pd_idx)
1790                                 (*dd_idx) += 2; /* D D P Q D */
1791                         ddf_layout = 1;
1792                         break;
1793
1794                 case ALGORITHM_ROTATING_N_CONTINUE:
1795                         /* Same as left_symmetric but Q is before P */
1796                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1797                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1798                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1799                         ddf_layout = 1;
1800                         break;
1801
1802                 case ALGORITHM_LEFT_ASYMMETRIC_6:
1803                         /* RAID5 left_asymmetric, with Q on last device */
1804                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1805                         if (*dd_idx >= pd_idx)
1806                                 (*dd_idx)++;
1807                         qd_idx = raid_disks - 1;
1808                         break;
1809
1810                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1811                         pd_idx = sector_div(stripe2, raid_disks-1);
1812                         if (*dd_idx >= pd_idx)
1813                                 (*dd_idx)++;
1814                         qd_idx = raid_disks - 1;
1815                         break;
1816
1817                 case ALGORITHM_LEFT_SYMMETRIC_6:
1818                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1819                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1820                         qd_idx = raid_disks - 1;
1821                         break;
1822
1823                 case ALGORITHM_RIGHT_SYMMETRIC_6:
1824                         pd_idx = sector_div(stripe2, raid_disks-1);
1825                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1826                         qd_idx = raid_disks - 1;
1827                         break;
1828
1829                 case ALGORITHM_PARITY_0_6:
1830                         pd_idx = 0;
1831                         (*dd_idx)++;
1832                         qd_idx = raid_disks - 1;
1833                         break;
1834
1835
1836                 default:
1837                         printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1838                                algorithm);
1839                         BUG();
1840                 }
1841                 break;
1842         }
1843
1844         if (sh) {
1845                 sh->pd_idx = pd_idx;
1846                 sh->qd_idx = qd_idx;
1847                 sh->ddf_layout = ddf_layout;
1848         }
1849         /*
1850          * Finally, compute the new sector number
1851          */
1852         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1853         return new_sector;
1854 }
1855
1856
1857 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1858 {
1859         raid5_conf_t *conf = sh->raid_conf;
1860         int raid_disks = sh->disks;
1861         int data_disks = raid_disks - conf->max_degraded;
1862         sector_t new_sector = sh->sector, check;
1863         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1864                                          : conf->chunk_sectors;
1865         int algorithm = previous ? conf->prev_algo
1866                                  : conf->algorithm;
1867         sector_t stripe;
1868         int chunk_offset;
1869         sector_t chunk_number;
1870         int dummy1, dd_idx = i;
1871         sector_t r_sector;
1872         struct stripe_head sh2;
1873
1874
1875         chunk_offset = sector_div(new_sector, sectors_per_chunk);
1876         stripe = new_sector;
1877
1878         if (i == sh->pd_idx)
1879                 return 0;
1880         switch(conf->level) {
1881         case 4: break;
1882         case 5:
1883                 switch (algorithm) {
1884                 case ALGORITHM_LEFT_ASYMMETRIC:
1885                 case ALGORITHM_RIGHT_ASYMMETRIC:
1886                         if (i > sh->pd_idx)
1887                                 i--;
1888                         break;
1889                 case ALGORITHM_LEFT_SYMMETRIC:
1890                 case ALGORITHM_RIGHT_SYMMETRIC:
1891                         if (i < sh->pd_idx)
1892                                 i += raid_disks;
1893                         i -= (sh->pd_idx + 1);
1894                         break;
1895                 case ALGORITHM_PARITY_0:
1896                         i -= 1;
1897                         break;
1898                 case ALGORITHM_PARITY_N:
1899                         break;
1900                 default:
1901                         printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1902                                algorithm);
1903                         BUG();
1904                 }
1905                 break;
1906         case 6:
1907                 if (i == sh->qd_idx)
1908                         return 0; /* It is the Q disk */
1909                 switch (algorithm) {
1910                 case ALGORITHM_LEFT_ASYMMETRIC:
1911                 case ALGORITHM_RIGHT_ASYMMETRIC:
1912                 case ALGORITHM_ROTATING_ZERO_RESTART:
1913                 case ALGORITHM_ROTATING_N_RESTART:
1914                         if (sh->pd_idx == raid_disks-1)
1915                                 i--;    /* Q D D D P */
1916                         else if (i > sh->pd_idx)
1917                                 i -= 2; /* D D P Q D */
1918                         break;
1919                 case ALGORITHM_LEFT_SYMMETRIC:
1920                 case ALGORITHM_RIGHT_SYMMETRIC:
1921                         if (sh->pd_idx == raid_disks-1)
1922                                 i--; /* Q D D D P */
1923                         else {
1924                                 /* D D P Q D */
1925                                 if (i < sh->pd_idx)
1926                                         i += raid_disks;
1927                                 i -= (sh->pd_idx + 2);
1928                         }
1929                         break;
1930                 case ALGORITHM_PARITY_0:
1931                         i -= 2;
1932                         break;
1933                 case ALGORITHM_PARITY_N:
1934                         break;
1935                 case ALGORITHM_ROTATING_N_CONTINUE:
1936                         /* Like left_symmetric, but P is before Q */
1937                         if (sh->pd_idx == 0)
1938                                 i--;    /* P D D D Q */
1939                         else {
1940                                 /* D D Q P D */
1941                                 if (i < sh->pd_idx)
1942                                         i += raid_disks;
1943                                 i -= (sh->pd_idx + 1);
1944                         }
1945                         break;
1946                 case ALGORITHM_LEFT_ASYMMETRIC_6:
1947                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1948                         if (i > sh->pd_idx)
1949                                 i--;
1950                         break;
1951                 case ALGORITHM_LEFT_SYMMETRIC_6:
1952                 case ALGORITHM_RIGHT_SYMMETRIC_6:
1953                         if (i < sh->pd_idx)
1954                                 i += data_disks + 1;
1955                         i -= (sh->pd_idx + 1);
1956                         break;
1957                 case ALGORITHM_PARITY_0_6:
1958                         i -= 1;
1959                         break;
1960                 default:
1961                         printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1962                                algorithm);
1963                         BUG();
1964                 }
1965                 break;
1966         }
1967
1968         chunk_number = stripe * data_disks + i;
1969         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1970
1971         check = raid5_compute_sector(conf, r_sector,
1972                                      previous, &dummy1, &sh2);
1973         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
1974                 || sh2.qd_idx != sh->qd_idx) {
1975                 printk(KERN_ERR "compute_blocknr: map not correct\n");
1976                 return 0;
1977         }
1978         return r_sector;
1979 }
1980
1981
1982 static void
1983 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
1984                          int rcw, int expand)
1985 {
1986         int i, pd_idx = sh->pd_idx, disks = sh->disks;
1987         raid5_conf_t *conf = sh->raid_conf;
1988         int level = conf->level;
1989
1990         if (rcw) {
1991                 /* if we are not expanding this is a proper write request, and
1992                  * there will be bios with new data to be drained into the
1993                  * stripe cache
1994                  */
1995                 if (!expand) {
1996                         sh->reconstruct_state = reconstruct_state_drain_run;
1997                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1998                 } else
1999                         sh->reconstruct_state = reconstruct_state_run;
2000
2001                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2002
2003                 for (i = disks; i--; ) {
2004                         struct r5dev *dev = &sh->dev[i];
2005
2006                         if (dev->towrite) {
2007                                 set_bit(R5_LOCKED, &dev->flags);
2008                                 set_bit(R5_Wantdrain, &dev->flags);
2009                                 if (!expand)
2010                                         clear_bit(R5_UPTODATE, &dev->flags);
2011                                 s->locked++;
2012                         }
2013                 }
2014                 if (s->locked + conf->max_degraded == disks)
2015                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2016                                 atomic_inc(&conf->pending_full_writes);
2017         } else {
2018                 BUG_ON(level == 6);
2019                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2020                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2021
2022                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2023                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2024                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2025                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2026
2027                 for (i = disks; i--; ) {
2028                         struct r5dev *dev = &sh->dev[i];
2029                         if (i == pd_idx)
2030                                 continue;
2031
2032                         if (dev->towrite &&
2033                             (test_bit(R5_UPTODATE, &dev->flags) ||
2034                              test_bit(R5_Wantcompute, &dev->flags))) {
2035                                 set_bit(R5_Wantdrain, &dev->flags);
2036                                 set_bit(R5_LOCKED, &dev->flags);
2037                                 clear_bit(R5_UPTODATE, &dev->flags);
2038                                 s->locked++;
2039                         }
2040                 }
2041         }
2042
2043         /* keep the parity disk(s) locked while asynchronous operations
2044          * are in flight
2045          */
2046         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2047         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2048         s->locked++;
2049
2050         if (level == 6) {
2051                 int qd_idx = sh->qd_idx;
2052                 struct r5dev *dev = &sh->dev[qd_idx];
2053
2054                 set_bit(R5_LOCKED, &dev->flags);
2055                 clear_bit(R5_UPTODATE, &dev->flags);
2056                 s->locked++;
2057         }
2058
2059         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2060                 __func__, (unsigned long long)sh->sector,
2061                 s->locked, s->ops_request);
2062 }
2063
2064 /*
2065  * Each stripe/dev can have one or more bion attached.
2066  * toread/towrite point to the first in a chain.
2067  * The bi_next chain must be in order.
2068  */
2069 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2070 {
2071         struct bio **bip;
2072         raid5_conf_t *conf = sh->raid_conf;
2073         int firstwrite=0;
2074
2075         pr_debug("adding bh b#%llu to stripe s#%llu\n",
2076                 (unsigned long long)bi->bi_sector,
2077                 (unsigned long long)sh->sector);
2078
2079
2080         spin_lock(&sh->lock);
2081         spin_lock_irq(&conf->device_lock);
2082         if (forwrite) {
2083                 bip = &sh->dev[dd_idx].towrite;
2084                 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2085                         firstwrite = 1;
2086         } else
2087                 bip = &sh->dev[dd_idx].toread;
2088         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2089                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2090                         goto overlap;
2091                 bip = & (*bip)->bi_next;
2092         }
2093         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2094                 goto overlap;
2095
2096         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2097         if (*bip)
2098                 bi->bi_next = *bip;
2099         *bip = bi;
2100         bi->bi_phys_segments++;
2101         spin_unlock_irq(&conf->device_lock);
2102         spin_unlock(&sh->lock);
2103
2104         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2105                 (unsigned long long)bi->bi_sector,
2106                 (unsigned long long)sh->sector, dd_idx);
2107
2108         if (conf->mddev->bitmap && firstwrite) {
2109                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2110                                   STRIPE_SECTORS, 0);
2111                 sh->bm_seq = conf->seq_flush+1;
2112                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2113         }
2114
2115         if (forwrite) {
2116                 /* check if page is covered */
2117                 sector_t sector = sh->dev[dd_idx].sector;
2118                 for (bi=sh->dev[dd_idx].towrite;
2119                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2120                              bi && bi->bi_sector <= sector;
2121                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2122                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2123                                 sector = bi->bi_sector + (bi->bi_size>>9);
2124                 }
2125                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2126                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2127         }
2128         return 1;
2129
2130  overlap:
2131         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2132         spin_unlock_irq(&conf->device_lock);
2133         spin_unlock(&sh->lock);
2134         return 0;
2135 }
2136
2137 static void end_reshape(raid5_conf_t *conf);
2138
2139 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2140                             struct stripe_head *sh)
2141 {
2142         int sectors_per_chunk =
2143                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2144         int dd_idx;
2145         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2146         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2147
2148         raid5_compute_sector(conf,
2149                              stripe * (disks - conf->max_degraded)
2150                              *sectors_per_chunk + chunk_offset,
2151                              previous,
2152                              &dd_idx, sh);
2153 }
2154
2155 static void
2156 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2157                                 struct stripe_head_state *s, int disks,
2158                                 struct bio **return_bi)
2159 {
2160         int i;
2161         for (i = disks; i--; ) {
2162                 struct bio *bi;
2163                 int bitmap_end = 0;
2164
2165                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2166                         mdk_rdev_t *rdev;
2167                         rcu_read_lock();
2168                         rdev = rcu_dereference(conf->disks[i].rdev);
2169                         if (rdev && test_bit(In_sync, &rdev->flags))
2170                                 /* multiple read failures in one stripe */
2171                                 md_error(conf->mddev, rdev);
2172                         rcu_read_unlock();
2173                 }
2174                 spin_lock_irq(&conf->device_lock);
2175                 /* fail all writes first */
2176                 bi = sh->dev[i].towrite;
2177                 sh->dev[i].towrite = NULL;
2178                 if (bi) {
2179                         s->to_write--;
2180                         bitmap_end = 1;
2181                 }
2182
2183                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2184                         wake_up(&conf->wait_for_overlap);
2185
2186                 while (bi && bi->bi_sector <
2187                         sh->dev[i].sector + STRIPE_SECTORS) {
2188                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2189                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2190                         if (!raid5_dec_bi_phys_segments(bi)) {
2191                                 md_write_end(conf->mddev);
2192                                 bi->bi_next = *return_bi;
2193                                 *return_bi = bi;
2194                         }
2195                         bi = nextbi;
2196                 }
2197                 /* and fail all 'written' */
2198                 bi = sh->dev[i].written;
2199                 sh->dev[i].written = NULL;
2200                 if (bi) bitmap_end = 1;
2201                 while (bi && bi->bi_sector <
2202                        sh->dev[i].sector + STRIPE_SECTORS) {
2203                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2204                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2205                         if (!raid5_dec_bi_phys_segments(bi)) {
2206                                 md_write_end(conf->mddev);
2207                                 bi->bi_next = *return_bi;
2208                                 *return_bi = bi;
2209                         }
2210                         bi = bi2;
2211                 }
2212
2213                 /* fail any reads if this device is non-operational and
2214                  * the data has not reached the cache yet.
2215                  */
2216                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2217                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2218                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2219                         bi = sh->dev[i].toread;
2220                         sh->dev[i].toread = NULL;
2221                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2222                                 wake_up(&conf->wait_for_overlap);
2223                         if (bi) s->to_read--;
2224                         while (bi && bi->bi_sector <
2225                                sh->dev[i].sector + STRIPE_SECTORS) {
2226                                 struct bio *nextbi =
2227                                         r5_next_bio(bi, sh->dev[i].sector);
2228                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2229                                 if (!raid5_dec_bi_phys_segments(bi)) {
2230                                         bi->bi_next = *return_bi;
2231                                         *return_bi = bi;
2232                                 }
2233                                 bi = nextbi;
2234                         }
2235                 }
2236                 spin_unlock_irq(&conf->device_lock);
2237                 if (bitmap_end)
2238                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2239                                         STRIPE_SECTORS, 0, 0);
2240         }
2241
2242         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2243                 if (atomic_dec_and_test(&conf->pending_full_writes))
2244                         md_wakeup_thread(conf->mddev->thread);
2245 }
2246
2247 /* fetch_block5 - checks the given member device to see if its data needs
2248  * to be read or computed to satisfy a request.
2249  *
2250  * Returns 1 when no more member devices need to be checked, otherwise returns
2251  * 0 to tell the loop in handle_stripe_fill5 to continue
2252  */
2253 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2254                         int disk_idx, int disks)
2255 {
2256         struct r5dev *dev = &sh->dev[disk_idx];
2257         struct r5dev *failed_dev = &sh->dev[s->failed_num];
2258
2259         /* is the data in this block needed, and can we get it? */
2260         if (!test_bit(R5_LOCKED, &dev->flags) &&
2261             !test_bit(R5_UPTODATE, &dev->flags) &&
2262             (dev->toread ||
2263              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2264              s->syncing || s->expanding ||
2265              (s->failed &&
2266               (failed_dev->toread ||
2267                (failed_dev->towrite &&
2268                 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2269                 /* We would like to get this block, possibly by computing it,
2270                  * otherwise read it if the backing disk is insync
2271                  */
2272                 if ((s->uptodate == disks - 1) &&
2273                     (s->failed && disk_idx == s->failed_num)) {
2274                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2275                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2276                         set_bit(R5_Wantcompute, &dev->flags);
2277                         sh->ops.target = disk_idx;
2278                         sh->ops.target2 = -1;
2279                         s->req_compute = 1;
2280                         /* Careful: from this point on 'uptodate' is in the eye
2281                          * of raid_run_ops which services 'compute' operations
2282                          * before writes. R5_Wantcompute flags a block that will
2283                          * be R5_UPTODATE by the time it is needed for a
2284                          * subsequent operation.
2285                          */
2286                         s->uptodate++;
2287                         return 1; /* uptodate + compute == disks */
2288                 } else if (test_bit(R5_Insync, &dev->flags)) {
2289                         set_bit(R5_LOCKED, &dev->flags);
2290                         set_bit(R5_Wantread, &dev->flags);
2291                         s->locked++;
2292                         pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2293                                 s->syncing);
2294                 }
2295         }
2296
2297         return 0;
2298 }
2299
2300 /**
2301  * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2302  */
2303 static void handle_stripe_fill5(struct stripe_head *sh,
2304                         struct stripe_head_state *s, int disks)
2305 {
2306         int i;
2307
2308         /* look for blocks to read/compute, skip this if a compute
2309          * is already in flight, or if the stripe contents are in the
2310          * midst of changing due to a write
2311          */
2312         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2313             !sh->reconstruct_state)
2314                 for (i = disks; i--; )
2315                         if (fetch_block5(sh, s, i, disks))
2316                                 break;
2317         set_bit(STRIPE_HANDLE, &sh->state);
2318 }
2319
2320 /* fetch_block6 - checks the given member device to see if its data needs
2321  * to be read or computed to satisfy a request.
2322  *
2323  * Returns 1 when no more member devices need to be checked, otherwise returns
2324  * 0 to tell the loop in handle_stripe_fill6 to continue
2325  */
2326 static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
2327                          struct r6_state *r6s, int disk_idx, int disks)
2328 {
2329         struct r5dev *dev = &sh->dev[disk_idx];
2330         struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
2331                                   &sh->dev[r6s->failed_num[1]] };
2332
2333         if (!test_bit(R5_LOCKED, &dev->flags) &&
2334             !test_bit(R5_UPTODATE, &dev->flags) &&
2335             (dev->toread ||
2336              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2337              s->syncing || s->expanding ||
2338              (s->failed >= 1 &&
2339               (fdev[0]->toread || s->to_write)) ||
2340              (s->failed >= 2 &&
2341               (fdev[1]->toread || s->to_write)))) {
2342                 /* we would like to get this block, possibly by computing it,
2343                  * otherwise read it if the backing disk is insync
2344                  */
2345                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2346                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2347                 if ((s->uptodate == disks - 1) &&
2348                     (s->failed && (disk_idx == r6s->failed_num[0] ||
2349                                    disk_idx == r6s->failed_num[1]))) {
2350                         /* have disk failed, and we're requested to fetch it;
2351                          * do compute it
2352                          */
2353                         pr_debug("Computing stripe %llu block %d\n",
2354                                (unsigned long long)sh->sector, disk_idx);
2355                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2356                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2357                         set_bit(R5_Wantcompute, &dev->flags);
2358                         sh->ops.target = disk_idx;
2359                         sh->ops.target2 = -1; /* no 2nd target */
2360                         s->req_compute = 1;
2361                         s->uptodate++;
2362                         return 1;
2363                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2364                         /* Computing 2-failure is *very* expensive; only
2365                          * do it if failed >= 2
2366                          */
2367                         int other;
2368                         for (other = disks; other--; ) {
2369                                 if (other == disk_idx)
2370                                         continue;
2371                                 if (!test_bit(R5_UPTODATE,
2372                                       &sh->dev[other].flags))
2373                                         break;
2374                         }
2375                         BUG_ON(other < 0);
2376                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2377                                (unsigned long long)sh->sector,
2378                                disk_idx, other);
2379                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2380                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2381                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2382                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2383                         sh->ops.target = disk_idx;
2384                         sh->ops.target2 = other;
2385                         s->uptodate += 2;
2386                         s->req_compute = 1;
2387                         return 1;
2388                 } else if (test_bit(R5_Insync, &dev->flags)) {
2389                         set_bit(R5_LOCKED, &dev->flags);
2390                         set_bit(R5_Wantread, &dev->flags);
2391                         s->locked++;
2392                         pr_debug("Reading block %d (sync=%d)\n",
2393                                 disk_idx, s->syncing);
2394                 }
2395         }
2396
2397         return 0;
2398 }
2399
2400 /**
2401  * handle_stripe_fill6 - read or compute data to satisfy pending requests.
2402  */
2403 static void handle_stripe_fill6(struct stripe_head *sh,
2404                         struct stripe_head_state *s, struct r6_state *r6s,
2405                         int disks)
2406 {
2407         int i;
2408
2409         /* look for blocks to read/compute, skip this if a compute
2410          * is already in flight, or if the stripe contents are in the
2411          * midst of changing due to a write
2412          */
2413         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2414             !sh->reconstruct_state)
2415                 for (i = disks; i--; )
2416                         if (fetch_block6(sh, s, r6s, i, disks))
2417                                 break;
2418         set_bit(STRIPE_HANDLE, &sh->state);
2419 }
2420
2421
2422 /* handle_stripe_clean_event
2423  * any written block on an uptodate or failed drive can be returned.
2424  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2425  * never LOCKED, so we don't need to test 'failed' directly.
2426  */
2427 static void handle_stripe_clean_event(raid5_conf_t *conf,
2428         struct stripe_head *sh, int disks, struct bio **return_bi)
2429 {
2430         int i;
2431         struct r5dev *dev;
2432
2433         for (i = disks; i--; )
2434                 if (sh->dev[i].written) {
2435                         dev = &sh->dev[i];
2436                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2437                                 test_bit(R5_UPTODATE, &dev->flags)) {
2438                                 /* We can return any write requests */
2439                                 struct bio *wbi, *wbi2;
2440                                 int bitmap_end = 0;
2441                                 pr_debug("Return write for disc %d\n", i);
2442                                 spin_lock_irq(&conf->device_lock);
2443                                 wbi = dev->written;
2444                                 dev->written = NULL;
2445                                 while (wbi && wbi->bi_sector <
2446                                         dev->sector + STRIPE_SECTORS) {
2447                                         wbi2 = r5_next_bio(wbi, dev->sector);
2448                                         if (!raid5_dec_bi_phys_segments(wbi)) {
2449                                                 md_write_end(conf->mddev);
2450                                                 wbi->bi_next = *return_bi;
2451                                                 *return_bi = wbi;
2452                                         }
2453                                         wbi = wbi2;
2454                                 }
2455                                 if (dev->towrite == NULL)
2456                                         bitmap_end = 1;
2457                                 spin_unlock_irq(&conf->device_lock);
2458                                 if (bitmap_end)
2459                                         bitmap_endwrite(conf->mddev->bitmap,
2460                                                         sh->sector,
2461                                                         STRIPE_SECTORS,
2462                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2463                                                         0);
2464                         }
2465                 }
2466
2467         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2468                 if (atomic_dec_and_test(&conf->pending_full_writes))
2469                         md_wakeup_thread(conf->mddev->thread);
2470 }
2471
2472 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2473                 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2474 {
2475         int rmw = 0, rcw = 0, i;
2476         for (i = disks; i--; ) {
2477                 /* would I have to read this buffer for read_modify_write */
2478                 struct r5dev *dev = &sh->dev[i];
2479                 if ((dev->towrite || i == sh->pd_idx) &&
2480                     !test_bit(R5_LOCKED, &dev->flags) &&
2481                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2482                       test_bit(R5_Wantcompute, &dev->flags))) {
2483                         if (test_bit(R5_Insync, &dev->flags))
2484                                 rmw++;
2485                         else
2486                                 rmw += 2*disks;  /* cannot read it */
2487                 }
2488                 /* Would I have to read this buffer for reconstruct_write */
2489                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2490                     !test_bit(R5_LOCKED, &dev->flags) &&
2491                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2492                     test_bit(R5_Wantcompute, &dev->flags))) {
2493                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2494                         else
2495                                 rcw += 2*disks;
2496                 }
2497         }
2498         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2499                 (unsigned long long)sh->sector, rmw, rcw);
2500         set_bit(STRIPE_HANDLE, &sh->state);
2501         if (rmw < rcw && rmw > 0)
2502                 /* prefer read-modify-write, but need to get some data */
2503                 for (i = disks; i--; ) {
2504                         struct r5dev *dev = &sh->dev[i];
2505                         if ((dev->towrite || i == sh->pd_idx) &&
2506                             !test_bit(R5_LOCKED, &dev->flags) &&
2507                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2508                             test_bit(R5_Wantcompute, &dev->flags)) &&
2509                             test_bit(R5_Insync, &dev->flags)) {
2510                                 if (
2511                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2512                                         pr_debug("Read_old block "
2513                                                 "%d for r-m-w\n", i);
2514                                         set_bit(R5_LOCKED, &dev->flags);
2515                                         set_bit(R5_Wantread, &dev->flags);
2516                                         s->locked++;
2517                                 } else {
2518                                         set_bit(STRIPE_DELAYED, &sh->state);
2519                                         set_bit(STRIPE_HANDLE, &sh->state);
2520                                 }
2521                         }
2522                 }
2523         if (rcw <= rmw && rcw > 0)
2524                 /* want reconstruct write, but need to get some data */
2525                 for (i = disks; i--; ) {
2526                         struct r5dev *dev = &sh->dev[i];
2527                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2528                             i != sh->pd_idx &&
2529                             !test_bit(R5_LOCKED, &dev->flags) &&
2530                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2531                             test_bit(R5_Wantcompute, &dev->flags)) &&
2532                             test_bit(R5_Insync, &dev->flags)) {
2533                                 if (
2534                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2535                                         pr_debug("Read_old block "
2536                                                 "%d for Reconstruct\n", i);
2537                                         set_bit(R5_LOCKED, &dev->flags);
2538                                         set_bit(R5_Wantread, &dev->flags);
2539                                         s->locked++;
2540                                 } else {
2541                                         set_bit(STRIPE_DELAYED, &sh->state);
2542                                         set_bit(STRIPE_HANDLE, &sh->state);
2543                                 }
2544                         }
2545                 }
2546         /* now if nothing is locked, and if we have enough data,
2547          * we can start a write request
2548          */
2549         /* since handle_stripe can be called at any time we need to handle the
2550          * case where a compute block operation has been submitted and then a
2551          * subsequent call wants to start a write request.  raid_run_ops only
2552          * handles the case where compute block and reconstruct are requested
2553          * simultaneously.  If this is not the case then new writes need to be
2554          * held off until the compute completes.
2555          */
2556         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2557             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2558             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2559                 schedule_reconstruction(sh, s, rcw == 0, 0);
2560 }
2561
2562 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2563                 struct stripe_head *sh, struct stripe_head_state *s,
2564                 struct r6_state *r6s, int disks)
2565 {
2566         int rcw = 0, pd_idx = sh->pd_idx, i;
2567         int qd_idx = sh->qd_idx;
2568
2569         set_bit(STRIPE_HANDLE, &sh->state);
2570         for (i = disks; i--; ) {
2571                 struct r5dev *dev = &sh->dev[i];
2572                 /* check if we haven't enough data */
2573                 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2574                     i != pd_idx && i != qd_idx &&
2575                     !test_bit(R5_LOCKED, &dev->flags) &&
2576                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2577                       test_bit(R5_Wantcompute, &dev->flags))) {
2578                         rcw++;
2579                         if (!test_bit(R5_Insync, &dev->flags))
2580                                 continue; /* it's a failed drive */
2581
2582                         if (
2583                           test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2584                                 pr_debug("Read_old stripe %llu "
2585                                         "block %d for Reconstruct\n",
2586                                      (unsigned long long)sh->sector, i);
2587                                 set_bit(R5_LOCKED, &dev->flags);
2588                                 set_bit(R5_Wantread, &dev->flags);
2589                                 s->locked++;
2590                         } else {
2591                                 pr_debug("Request delayed stripe %llu "
2592                                         "block %d for Reconstruct\n",
2593                                      (unsigned long long)sh->sector, i);
2594                                 set_bit(STRIPE_DELAYED, &sh->state);
2595                                 set_bit(STRIPE_HANDLE, &sh->state);
2596                         }
2597                 }
2598         }
2599         /* now if nothing is locked, and if we have enough data, we can start a
2600          * write request
2601          */
2602         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2603             s->locked == 0 && rcw == 0 &&
2604             !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2605                 schedule_reconstruction(sh, s, 1, 0);
2606         }
2607 }
2608
2609 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2610                                 struct stripe_head_state *s, int disks)
2611 {
2612         struct r5dev *dev = NULL;
2613
2614         set_bit(STRIPE_HANDLE, &sh->state);
2615
2616         switch (sh->check_state) {
2617         case check_state_idle:
2618                 /* start a new check operation if there are no failures */
2619                 if (s->failed == 0) {
2620                         BUG_ON(s->uptodate != disks);
2621                         sh->check_state = check_state_run;
2622                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2623                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2624                         s->uptodate--;
2625                         break;
2626                 }
2627                 dev = &sh->dev[s->failed_num];
2628                 /* fall through */
2629         case check_state_compute_result:
2630                 sh->check_state = check_state_idle;
2631                 if (!dev)
2632                         dev = &sh->dev[sh->pd_idx];
2633
2634                 /* check that a write has not made the stripe insync */
2635                 if (test_bit(STRIPE_INSYNC, &sh->state))
2636                         break;
2637
2638                 /* either failed parity check, or recovery is happening */
2639                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2640                 BUG_ON(s->uptodate != disks);
2641
2642                 set_bit(R5_LOCKED, &dev->flags);
2643                 s->locked++;
2644                 set_bit(R5_Wantwrite, &dev->flags);
2645
2646                 clear_bit(STRIPE_DEGRADED, &sh->state);
2647                 set_bit(STRIPE_INSYNC, &sh->state);
2648                 break;
2649         case check_state_run:
2650                 break; /* we will be called again upon completion */
2651         case check_state_check_result:
2652                 sh->check_state = check_state_idle;
2653
2654                 /* if a failure occurred during the check operation, leave
2655                  * STRIPE_INSYNC not set and let the stripe be handled again
2656                  */
2657                 if (s->failed)
2658                         break;
2659
2660                 /* handle a successful check operation, if parity is correct
2661                  * we are done.  Otherwise update the mismatch count and repair
2662                  * parity if !MD_RECOVERY_CHECK
2663                  */
2664                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2665                         /* parity is correct (on disc,
2666                          * not in buffer any more)
2667                          */
2668                         set_bit(STRIPE_INSYNC, &sh->state);
2669                 else {
2670                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2671                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2672                                 /* don't try to repair!! */
2673                                 set_bit(STRIPE_INSYNC, &sh->state);
2674                         else {
2675                                 sh->check_state = check_state_compute_run;
2676                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2677                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2678                                 set_bit(R5_Wantcompute,
2679                                         &sh->dev[sh->pd_idx].flags);
2680                                 sh->ops.target = sh->pd_idx;
2681                                 sh->ops.target2 = -1;
2682                                 s->uptodate++;
2683                         }
2684                 }
2685                 break;
2686         case check_state_compute_run:
2687                 break;
2688         default:
2689                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2690                        __func__, sh->check_state,
2691                        (unsigned long long) sh->sector);
2692                 BUG();
2693         }
2694 }
2695
2696
2697 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2698                                   struct stripe_head_state *s,
2699                                   struct r6_state *r6s, int disks)
2700 {
2701         int pd_idx = sh->pd_idx;
2702         int qd_idx = sh->qd_idx;
2703         struct r5dev *dev;
2704
2705         set_bit(STRIPE_HANDLE, &sh->state);
2706
2707         BUG_ON(s->failed > 2);
2708
2709         /* Want to check and possibly repair P and Q.
2710          * However there could be one 'failed' device, in which
2711          * case we can only check one of them, possibly using the
2712          * other to generate missing data
2713          */
2714
2715         switch (sh->check_state) {
2716         case check_state_idle:
2717                 /* start a new check operation if there are < 2 failures */
2718                 if (s->failed == r6s->q_failed) {
2719                         /* The only possible failed device holds Q, so it
2720                          * makes sense to check P (If anything else were failed,
2721                          * we would have used P to recreate it).
2722                          */
2723                         sh->check_state = check_state_run;
2724                 }
2725                 if (!r6s->q_failed && s->failed < 2) {
2726                         /* Q is not failed, and we didn't use it to generate
2727                          * anything, so it makes sense to check it
2728                          */
2729                         if (sh->check_state == check_state_run)
2730                                 sh->check_state = check_state_run_pq;
2731                         else
2732                                 sh->check_state = check_state_run_q;
2733                 }
2734
2735                 /* discard potentially stale zero_sum_result */
2736                 sh->ops.zero_sum_result = 0;
2737
2738                 if (sh->check_state == check_state_run) {
2739                         /* async_xor_zero_sum destroys the contents of P */
2740                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2741                         s->uptodate--;
2742                 }
2743                 if (sh->check_state >= check_state_run &&
2744                     sh->check_state <= check_state_run_pq) {
2745                         /* async_syndrome_zero_sum preserves P and Q, so
2746                          * no need to mark them !uptodate here
2747                          */
2748                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2749                         break;
2750                 }
2751
2752                 /* we have 2-disk failure */
2753                 BUG_ON(s->failed != 2);
2754                 /* fall through */
2755         case check_state_compute_result:
2756                 sh->check_state = check_state_idle;
2757
2758                 /* check that a write has not made the stripe insync */
2759                 if (test_bit(STRIPE_INSYNC, &sh->state))
2760                         break;
2761
2762                 /* now write out any block on a failed drive,
2763                  * or P or Q if they were recomputed
2764                  */
2765                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2766                 if (s->failed == 2) {
2767                         dev = &sh->dev[r6s->failed_num[1]];
2768                         s->locked++;
2769                         set_bit(R5_LOCKED, &dev->flags);
2770                         set_bit(R5_Wantwrite, &dev->flags);
2771                 }
2772                 if (s->failed >= 1) {
2773                         dev = &sh->dev[r6s->failed_num[0]];
2774                         s->locked++;
2775                         set_bit(R5_LOCKED, &dev->flags);
2776                         set_bit(R5_Wantwrite, &dev->flags);
2777                 }
2778                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2779                         dev = &sh->dev[pd_idx];
2780                         s->locked++;
2781                         set_bit(R5_LOCKED, &dev->flags);
2782                         set_bit(R5_Wantwrite, &dev->flags);
2783                 }
2784                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2785                         dev = &sh->dev[qd_idx];
2786                         s->locked++;
2787                         set_bit(R5_LOCKED, &dev->flags);
2788                         set_bit(R5_Wantwrite, &dev->flags);
2789                 }
2790                 clear_bit(STRIPE_DEGRADED, &sh->state);
2791
2792                 set_bit(STRIPE_INSYNC, &sh->state);
2793                 break;
2794         case check_state_run:
2795         case check_state_run_q:
2796         case check_state_run_pq:
2797                 break; /* we will be called again upon completion */
2798         case check_state_check_result:
2799                 sh->check_state = check_state_idle;
2800
2801                 /* handle a successful check operation, if parity is correct
2802                  * we are done.  Otherwise update the mismatch count and repair
2803                  * parity if !MD_RECOVERY_CHECK
2804                  */
2805                 if (sh->ops.zero_sum_result == 0) {
2806                         /* both parities are correct */
2807                         if (!s->failed)
2808                                 set_bit(STRIPE_INSYNC, &sh->state);
2809                         else {
2810                                 /* in contrast to the raid5 case we can validate
2811                                  * parity, but still have a failure to write
2812                                  * back
2813                                  */
2814                                 sh->check_state = check_state_compute_result;
2815                                 /* Returning at this point means that we may go
2816                                  * off and bring p and/or q uptodate again so
2817                                  * we make sure to check zero_sum_result again
2818                                  * to verify if p or q need writeback
2819                                  */
2820                         }
2821                 } else {
2822                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2823                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2824                                 /* don't try to repair!! */
2825                                 set_bit(STRIPE_INSYNC, &sh->state);
2826                         else {
2827                                 int *target = &sh->ops.target;
2828
2829                                 sh->ops.target = -1;
2830                                 sh->ops.target2 = -1;
2831                                 sh->check_state = check_state_compute_run;
2832                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2833                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2834                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2835                                         set_bit(R5_Wantcompute,
2836                                                 &sh->dev[pd_idx].flags);
2837                                         *target = pd_idx;
2838                                         target = &sh->ops.target2;
2839                                         s->uptodate++;
2840                                 }
2841                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2842                                         set_bit(R5_Wantcompute,
2843                                                 &sh->dev[qd_idx].flags);
2844                                         *target = qd_idx;
2845                                         s->uptodate++;
2846                                 }
2847                         }
2848                 }
2849                 break;
2850         case check_state_compute_run:
2851                 break;
2852         default:
2853                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2854                        __func__, sh->check_state,
2855                        (unsigned long long) sh->sector);
2856                 BUG();
2857         }
2858 }
2859
2860 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2861                                 struct r6_state *r6s)
2862 {
2863         int i;
2864
2865         /* We have read all the blocks in this stripe and now we need to
2866          * copy some of them into a target stripe for expand.
2867          */
2868         struct dma_async_tx_descriptor *tx = NULL;
2869         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2870         for (i = 0; i < sh->disks; i++)
2871                 if (i != sh->pd_idx && i != sh->qd_idx) {
2872                         int dd_idx, j;
2873                         struct stripe_head *sh2;
2874                         struct async_submit_ctl submit;
2875
2876                         sector_t bn = compute_blocknr(sh, i, 1);
2877                         sector_t s = raid5_compute_sector(conf, bn, 0,
2878                                                           &dd_idx, NULL);
2879                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
2880                         if (sh2 == NULL)
2881                                 /* so far only the early blocks of this stripe
2882                                  * have been requested.  When later blocks
2883                                  * get requested, we will try again
2884                                  */
2885                                 continue;
2886                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2887                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2888                                 /* must have already done this block */
2889                                 release_stripe(sh2);
2890                                 continue;
2891                         }
2892
2893                         /* place all the copies on one channel */
2894                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2895                         tx = async_memcpy(sh2->dev[dd_idx].page,
2896                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
2897                                           &submit);
2898
2899                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2900                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2901                         for (j = 0; j < conf->raid_disks; j++)
2902                                 if (j != sh2->pd_idx &&
2903                                     (!r6s || j != sh2->qd_idx) &&
2904                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
2905                                         break;
2906                         if (j == conf->raid_disks) {
2907                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2908                                 set_bit(STRIPE_HANDLE, &sh2->state);
2909                         }
2910                         release_stripe(sh2);
2911
2912                 }
2913         /* done submitting copies, wait for them to complete */
2914         if (tx) {
2915                 async_tx_ack(tx);
2916                 dma_wait_for_async_tx(tx);
2917         }
2918 }
2919
2920
2921 /*
2922  * handle_stripe - do things to a stripe.
2923  *
2924  * We lock the stripe and then examine the state of various bits
2925  * to see what needs to be done.
2926  * Possible results:
2927  *    return some read request which now have data
2928  *    return some write requests which are safely on disc
2929  *    schedule a read on some buffers
2930  *    schedule a write of some buffers
2931  *    return confirmation of parity correctness
2932  *
2933  * buffers are taken off read_list or write_list, and bh_cache buffers
2934  * get BH_Lock set before the stripe lock is released.
2935  *
2936  */
2937
2938 static void handle_stripe5(struct stripe_head *sh)
2939 {
2940         raid5_conf_t *conf = sh->raid_conf;
2941         int disks = sh->disks, i;
2942         struct bio *return_bi = NULL;
2943         struct stripe_head_state s;
2944         struct r5dev *dev;
2945         mdk_rdev_t *blocked_rdev = NULL;
2946         int prexor;
2947         int dec_preread_active = 0;
2948
2949         memset(&s, 0, sizeof(s));
2950         pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2951                  "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
2952                  atomic_read(&sh->count), sh->pd_idx, sh->check_state,
2953                  sh->reconstruct_state);
2954
2955         spin_lock(&sh->lock);
2956         clear_bit(STRIPE_HANDLE, &sh->state);
2957         clear_bit(STRIPE_DELAYED, &sh->state);
2958
2959         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2960         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2961         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2962
2963         /* Now to look around and see what can be done */
2964         rcu_read_lock();
2965         for (i=disks; i--; ) {
2966                 mdk_rdev_t *rdev;
2967
2968                 dev = &sh->dev[i];
2969                 clear_bit(R5_Insync, &dev->flags);
2970
2971                 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2972                         "written %p\n", i, dev->flags, dev->toread, dev->read,
2973                         dev->towrite, dev->written);
2974
2975                 /* maybe we can request a biofill operation
2976                  *
2977                  * new wantfill requests are only permitted while
2978                  * ops_complete_biofill is guaranteed to be inactive
2979                  */
2980                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2981                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2982                         set_bit(R5_Wantfill, &dev->flags);
2983
2984                 /* now count some things */
2985                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2986                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2987                 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2988
2989                 if (test_bit(R5_Wantfill, &dev->flags))
2990                         s.to_fill++;
2991                 else if (dev->toread)
2992                         s.to_read++;
2993                 if (dev->towrite) {
2994                         s.to_write++;
2995                         if (!test_bit(R5_OVERWRITE, &dev->flags))
2996                                 s.non_overwrite++;
2997                 }
2998                 if (dev->written)
2999                         s.written++;
3000                 rdev = rcu_dereference(conf->disks[i].rdev);
3001                 if (blocked_rdev == NULL &&
3002                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3003                         blocked_rdev = rdev;
3004                         atomic_inc(&rdev->nr_pending);
3005                 }
3006                 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3007                         /* The ReadError flag will just be confusing now */
3008                         clear_bit(R5_ReadError, &dev->flags);
3009                         clear_bit(R5_ReWrite, &dev->flags);
3010                 }
3011                 if (!rdev || !test_bit(In_sync, &rdev->flags)
3012                     || test_bit(R5_ReadError, &dev->flags)) {
3013                         s.failed++;
3014                         s.failed_num = i;
3015                 } else
3016                         set_bit(R5_Insync, &dev->flags);
3017         }
3018         rcu_read_unlock();
3019
3020         if (unlikely(blocked_rdev)) {
3021                 if (s.syncing || s.expanding || s.expanded ||
3022                     s.to_write || s.written) {
3023                         set_bit(STRIPE_HANDLE, &sh->state);
3024                         goto unlock;
3025                 }
3026                 /* There is nothing for the blocked_rdev to block */
3027                 rdev_dec_pending(blocked_rdev, conf->mddev);
3028                 blocked_rdev = NULL;
3029         }
3030
3031         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3032                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3033                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3034         }
3035
3036         pr_debug("locked=%d uptodate=%d to_read=%d"
3037                 " to_write=%d failed=%d failed_num=%d\n",
3038                 s.locked, s.uptodate, s.to_read, s.to_write,
3039                 s.failed, s.failed_num);
3040         /* check if the array has lost two devices and, if so, some requests might
3041          * need to be failed
3042          */
3043         if (s.failed > 1 && s.to_read+s.to_write+s.written)
3044                 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3045         if (s.failed > 1 && s.syncing) {
3046                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3047                 clear_bit(STRIPE_SYNCING, &sh->state);
3048                 s.syncing = 0;
3049         }
3050
3051         /* might be able to return some write requests if the parity block
3052          * is safe, or on a failed drive
3053          */
3054         dev = &sh->dev[sh->pd_idx];
3055         if ( s.written &&
3056              ((test_bit(R5_Insync, &dev->flags) &&
3057                !test_bit(R5_LOCKED, &dev->flags) &&
3058                test_bit(R5_UPTODATE, &dev->flags)) ||
3059                (s.failed == 1 && s.failed_num == sh->pd_idx)))
3060                 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3061
3062         /* Now we might consider reading some blocks, either to check/generate
3063          * parity, or to satisfy requests
3064          * or to load a block that is being partially written.
3065          */
3066         if (s.to_read || s.non_overwrite ||
3067             (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3068                 handle_stripe_fill5(sh, &s, disks);
3069
3070         /* Now we check to see if any write operations have recently
3071          * completed
3072          */
3073         prexor = 0;
3074         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3075                 prexor = 1;
3076         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3077             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3078                 sh->reconstruct_state = reconstruct_state_idle;
3079
3080                 /* All the 'written' buffers and the parity block are ready to
3081                  * be written back to disk
3082                  */
3083                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3084                 for (i = disks; i--; ) {
3085                         dev = &sh->dev[i];
3086                         if (test_bit(R5_LOCKED, &dev->flags) &&
3087                                 (i == sh->pd_idx || dev->written)) {
3088                                 pr_debug("Writing block %d\n", i);
3089                                 set_bit(R5_Wantwrite, &dev->flags);
3090                                 if (prexor)
3091                                         continue;
3092                                 if (!test_bit(R5_Insync, &dev->flags) ||
3093                                     (i == sh->pd_idx && s.failed == 0))
3094                                         set_bit(STRIPE_INSYNC, &sh->state);
3095                         }
3096                 }
3097                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3098                         dec_preread_active = 1;
3099         }
3100
3101         /* Now to consider new write requests and what else, if anything
3102          * should be read.  We do not handle new writes when:
3103          * 1/ A 'write' operation (copy+xor) is already in flight.
3104          * 2/ A 'check' operation is in flight, as it may clobber the parity
3105          *    block.
3106          */
3107         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3108                 handle_stripe_dirtying5(conf, sh, &s, disks);
3109
3110         /* maybe we need to check and possibly fix the parity for this stripe
3111          * Any reads will already have been scheduled, so we just see if enough
3112          * data is available.  The parity check is held off while parity
3113          * dependent operations are in flight.
3114          */
3115         if (sh->check_state ||
3116             (s.syncing && s.locked == 0 &&
3117              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3118              !test_bit(STRIPE_INSYNC, &sh->state)))
3119                 handle_parity_checks5(conf, sh, &s, disks);
3120
3121         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3122                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3123                 clear_bit(STRIPE_SYNCING, &sh->state);
3124         }
3125
3126         /* If the failed drive is just a ReadError, then we might need to progress
3127          * the repair/check process
3128          */
3129         if (s.failed == 1 && !conf->mddev->ro &&
3130             test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
3131             && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
3132             && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
3133                 ) {
3134                 dev = &sh->dev[s.failed_num];
3135                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3136                         set_bit(R5_Wantwrite, &dev->flags);
3137                         set_bit(R5_ReWrite, &dev->flags);
3138                         set_bit(R5_LOCKED, &dev->flags);
3139                         s.locked++;
3140                 } else {
3141                         /* let's read it back */
3142                         set_bit(R5_Wantread, &dev->flags);
3143                         set_bit(R5_LOCKED, &dev->flags);
3144                         s.locked++;
3145                 }
3146         }
3147
3148         /* Finish reconstruct operations initiated by the expansion process */
3149         if (sh->reconstruct_state == reconstruct_state_result) {
3150                 struct stripe_head *sh2
3151                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3152                 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3153                         /* sh cannot be written until sh2 has been read.
3154                          * so arrange for sh to be delayed a little
3155                          */
3156                         set_bit(STRIPE_DELAYED, &sh->state);
3157                         set_bit(STRIPE_HANDLE, &sh->state);
3158                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3159                                               &sh2->state))
3160                                 atomic_inc(&conf->preread_active_stripes);
3161                         release_stripe(sh2);
3162                         goto unlock;
3163                 }
3164                 if (sh2)
3165                         release_stripe(sh2);
3166
3167                 sh->reconstruct_state = reconstruct_state_idle;
3168                 clear_bit(STRIPE_EXPANDING, &sh->state);
3169                 for (i = conf->raid_disks; i--; ) {
3170                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3171                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3172                         s.locked++;
3173                 }
3174         }
3175
3176         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3177             !sh->reconstruct_state) {
3178                 /* Need to write out all blocks after computing parity */
3179                 sh->disks = conf->raid_disks;
3180                 stripe_set_idx(sh->sector, conf, 0, sh);
3181                 schedule_reconstruction(sh, &s, 1, 1);
3182         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3183                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3184                 atomic_dec(&conf->reshape_stripes);
3185                 wake_up(&conf->wait_for_overlap);
3186                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3187         }
3188
3189         if (s.expanding && s.locked == 0 &&
3190             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3191                 handle_stripe_expansion(conf, sh, NULL);
3192
3193  unlock:
3194         spin_unlock(&sh->lock);
3195
3196         /* wait for this device to become unblocked */
3197         if (unlikely(blocked_rdev))
3198                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3199
3200         if (s.ops_request)
3201                 raid_run_ops(sh, s.ops_request);
3202
3203         ops_run_io(sh, &s);
3204
3205         if (dec_preread_active) {
3206                 /* We delay this until after ops_run_io so that if make_request
3207                  * is waiting on a barrier, it won't continue until the writes
3208                  * have actually been submitted.
3209                  */
3210                 atomic_dec(&conf->preread_active_stripes);
3211                 if (atomic_read(&conf->preread_active_stripes) <
3212                     IO_THRESHOLD)
3213                         md_wakeup_thread(conf->mddev->thread);
3214         }
3215         return_io(return_bi);
3216 }
3217
3218 static void handle_stripe6(struct stripe_head *sh)
3219 {
3220         raid5_conf_t *conf = sh->raid_conf;
3221         int disks = sh->disks;
3222         struct bio *return_bi = NULL;
3223         int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3224         struct stripe_head_state s;
3225         struct r6_state r6s;
3226         struct r5dev *dev, *pdev, *qdev;
3227         mdk_rdev_t *blocked_rdev = NULL;
3228         int dec_preread_active = 0;
3229
3230         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3231                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3232                (unsigned long long)sh->sector, sh->state,
3233                atomic_read(&sh->count), pd_idx, qd_idx,
3234                sh->check_state, sh->reconstruct_state);
3235         memset(&s, 0, sizeof(s));
3236
3237         spin_lock(&sh->lock);
3238         clear_bit(STRIPE_HANDLE, &sh->state);
3239         clear_bit(STRIPE_DELAYED, &sh->state);
3240
3241         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3242         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3243         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3244         /* Now to look around and see what can be done */
3245
3246         rcu_read_lock();
3247         for (i=disks; i--; ) {
3248                 mdk_rdev_t *rdev;
3249                 dev = &sh->dev[i];
3250                 clear_bit(R5_Insync, &dev->flags);
3251
3252                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3253                         i, dev->flags, dev->toread, dev->towrite, dev->written);
3254                 /* maybe we can reply to a read
3255                  *
3256                  * new wantfill requests are only permitted while
3257                  * ops_complete_biofill is guaranteed to be inactive
3258                  */
3259                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3260                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3261                         set_bit(R5_Wantfill, &dev->flags);
3262
3263                 /* now count some things */
3264                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3265                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3266                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3267                         s.compute++;
3268                         BUG_ON(s.compute > 2);
3269                 }
3270
3271                 if (test_bit(R5_Wantfill, &dev->flags)) {
3272                         s.to_fill++;
3273                 } else if (dev->toread)
3274                         s.to_read++;
3275                 if (dev->towrite) {
3276                         s.to_write++;
3277                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3278                                 s.non_overwrite++;
3279                 }
3280                 if (dev->written)
3281                         s.written++;
3282                 rdev = rcu_dereference(conf->disks[i].rdev);
3283                 if (blocked_rdev == NULL &&
3284                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3285                         blocked_rdev = rdev;
3286                         atomic_inc(&rdev->nr_pending);
3287                 }
3288                 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3289                         /* The ReadError flag will just be confusing now */
3290                         clear_bit(R5_ReadError, &dev->flags);
3291                         clear_bit(R5_ReWrite, &dev->flags);
3292                 }
3293                 if (!rdev || !test_bit(In_sync, &rdev->flags)
3294                     || test_bit(R5_ReadError, &dev->flags)) {
3295                         if (s.failed < 2)
3296                                 r6s.failed_num[s.failed] = i;
3297                         s.failed++;
3298                 } else
3299                         set_bit(R5_Insync, &dev->flags);
3300         }
3301         rcu_read_unlock();
3302
3303         if (unlikely(blocked_rdev)) {
3304                 if (s.syncing || s.expanding || s.expanded ||
3305                     s.to_write || s.written) {
3306                         set_bit(STRIPE_HANDLE, &sh->state);
3307                         goto unlock;
3308                 }
3309                 /* There is nothing for the blocked_rdev to block */
3310                 rdev_dec_pending(blocked_rdev, conf->mddev);
3311                 blocked_rdev = NULL;
3312         }
3313
3314         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3315                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3316                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3317         }
3318
3319         pr_debug("locked=%d uptodate=%d to_read=%d"
3320                " to_write=%d failed=%d failed_num=%d,%d\n",
3321                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3322                r6s.failed_num[0], r6s.failed_num[1]);
3323         /* check if the array has lost >2 devices and, if so, some requests
3324          * might need to be failed
3325          */
3326         if (s.failed > 2 && s.to_read+s.to_write+s.written)
3327                 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3328         if (s.failed > 2 && s.syncing) {
3329                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3330                 clear_bit(STRIPE_SYNCING, &sh->state);
3331                 s.syncing = 0;
3332         }
3333
3334         /*
3335          * might be able to return some write requests if the parity blocks
3336          * are safe, or on a failed drive
3337          */
3338         pdev = &sh->dev[pd_idx];
3339         r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3340                 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3341         qdev = &sh->dev[qd_idx];
3342         r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3343                 || (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3344
3345         if ( s.written &&
3346              ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3347                              && !test_bit(R5_LOCKED, &pdev->flags)
3348                              && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3349              ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3350                              && !test_bit(R5_LOCKED, &qdev->flags)
3351                              && test_bit(R5_UPTODATE, &qdev->flags)))))
3352                 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3353
3354         /* Now we might consider reading some blocks, either to check/generate
3355          * parity, or to satisfy requests
3356          * or to load a block that is being partially written.
3357          */
3358         if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3359             (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3360                 handle_stripe_fill6(sh, &s, &r6s, disks);
3361
3362         /* Now we check to see if any write operations have recently
3363          * completed
3364          */
3365         if (sh->reconstruct_state == reconstruct_state_drain_result) {
3366
3367                 sh->reconstruct_state = reconstruct_state_idle;
3368                 /* All the 'written' buffers and the parity blocks are ready to
3369                  * be written back to disk
3370                  */
3371                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3372                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
3373                 for (i = disks; i--; ) {
3374                         dev = &sh->dev[i];
3375                         if (test_bit(R5_LOCKED, &dev->flags) &&
3376                             (i == sh->pd_idx || i == qd_idx ||
3377                              dev->written)) {
3378                                 pr_debug("Writing block %d\n", i);
3379                                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3380                                 set_bit(R5_Wantwrite, &dev->flags);
3381                                 if (!test_bit(R5_Insync, &dev->flags) ||
3382                                     ((i == sh->pd_idx || i == qd_idx) &&
3383                                       s.failed == 0))
3384                                         set_bit(STRIPE_INSYNC, &sh->state);
3385                         }
3386                 }
3387                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3388                         dec_preread_active = 1;
3389         }
3390
3391         /* Now to consider new write requests and what else, if anything
3392          * should be read.  We do not handle new writes when:
3393          * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
3394          * 2/ A 'check' operation is in flight, as it may clobber the parity
3395          *    block.
3396          */
3397         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3398                 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3399
3400         /* maybe we need to check and possibly fix the parity for this stripe
3401          * Any reads will already have been scheduled, so we just see if enough
3402          * data is available.  The parity check is held off while parity
3403          * dependent operations are in flight.
3404          */
3405         if (sh->check_state ||
3406             (s.syncing && s.locked == 0 &&
3407              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3408              !test_bit(STRIPE_INSYNC, &sh->state)))
3409                 handle_parity_checks6(conf, sh, &s, &r6s, disks);
3410
3411         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3412                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3413                 clear_bit(STRIPE_SYNCING, &sh->state);
3414         }
3415
3416         /* If the failed drives are just a ReadError, then we might need
3417          * to progress the repair/check process
3418          */
3419         if (s.failed <= 2 && !conf->mddev->ro)
3420                 for (i = 0; i < s.failed; i++) {
3421                         dev = &sh->dev[r6s.failed_num[i]];
3422                         if (test_bit(R5_ReadError, &dev->flags)
3423                             && !test_bit(R5_LOCKED, &dev->flags)
3424                             && test_bit(R5_UPTODATE, &dev->flags)
3425                                 ) {
3426                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3427                                         set_bit(R5_Wantwrite, &dev->flags);
3428                                         set_bit(R5_ReWrite, &dev->flags);
3429                                         set_bit(R5_LOCKED, &dev->flags);
3430                                         s.locked++;
3431                                 } else {
3432                                         /* let's read it back */
3433                                         set_bit(R5_Wantread, &dev->flags);
3434                                         set_bit(R5_LOCKED, &dev->flags);
3435                                         s.locked++;
3436                                 }
3437                         }
3438                 }
3439
3440         /* Finish reconstruct operations initiated by the expansion process */
3441         if (sh->reconstruct_state == reconstruct_state_result) {
3442                 sh->reconstruct_state = reconstruct_state_idle;
3443                 clear_bit(STRIPE_EXPANDING, &sh->state);
3444                 for (i = conf->raid_disks; i--; ) {
3445                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3446                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3447                         s.locked++;
3448                 }
3449         }
3450
3451         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3452             !sh->reconstruct_state) {
3453                 struct stripe_head *sh2
3454                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3455                 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3456                         /* sh cannot be written until sh2 has been read.
3457                          * so arrange for sh to be delayed a little
3458                          */
3459                         set_bit(STRIPE_DELAYED, &sh->state);
3460                         set_bit(STRIPE_HANDLE, &sh->state);
3461                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3462                                               &sh2->state))
3463                                 atomic_inc(&conf->preread_active_stripes);
3464                         release_stripe(sh2);
3465                         goto unlock;
3466                 }
3467                 if (sh2)
3468                         release_stripe(sh2);
3469
3470                 /* Need to write out all blocks after computing P&Q */
3471                 sh->disks = conf->raid_disks;
3472                 stripe_set_idx(sh->sector, conf, 0, sh);
3473                 schedule_reconstruction(sh, &s, 1, 1);
3474         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3475                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3476                 atomic_dec(&conf->reshape_stripes);
3477                 wake_up(&conf->wait_for_overlap);
3478                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3479         }
3480
3481         if (s.expanding && s.locked == 0 &&
3482             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3483                 handle_stripe_expansion(conf, sh, &r6s);
3484
3485  unlock:
3486         spin_unlock(&sh->lock);
3487
3488         /* wait for this device to become unblocked */
3489         if (unlikely(blocked_rdev))
3490                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3491
3492         if (s.ops_request)
3493                 raid_run_ops(sh, s.ops_request);
3494
3495         ops_run_io(sh, &s);
3496
3497
3498         if (dec_preread_active) {
3499                 /* We delay this until after ops_run_io so that if make_request
3500                  * is waiting on a barrier, it won't continue until the writes
3501                  * have actually been submitted.
3502                  */
3503                 atomic_dec(&conf->preread_active_stripes);
3504                 if (atomic_read(&conf->preread_active_stripes) <
3505                     IO_THRESHOLD)
3506                         md_wakeup_thread(conf->mddev->thread);
3507         }
3508
3509         return_io(return_bi);
3510 }
3511
3512 static void handle_stripe(struct stripe_head *sh)
3513 {
3514         if (sh->raid_conf->level == 6)
3515                 handle_stripe6(sh);
3516         else
3517                 handle_stripe5(sh);
3518 }
3519
3520 static void raid5_activate_delayed(raid5_conf_t *conf)
3521 {
3522         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3523                 while (!list_empty(&conf->delayed_list)) {
3524                         struct list_head *l = conf->delayed_list.next;
3525                         struct stripe_head *sh;
3526                         sh = list_entry(l, struct stripe_head, lru);
3527                         list_del_init(l);
3528                         clear_bit(STRIPE_DELAYED, &sh->state);
3529                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3530                                 atomic_inc(&conf->preread_active_stripes);
3531                         list_add_tail(&sh->lru, &conf->hold_list);
3532                 }
3533         } else
3534                 blk_plug_device(conf->mddev->queue);
3535 }
3536
3537 static void activate_bit_delay(raid5_conf_t *conf)
3538 {
3539         /* device_lock is held */
3540         struct list_head head;
3541         list_add(&head, &conf->bitmap_list);
3542         list_del_init(&conf->bitmap_list);
3543         while (!list_empty(&head)) {
3544                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3545                 list_del_init(&sh->lru);
3546                 atomic_inc(&sh->count);
3547                 __release_stripe(conf, sh);
3548         }
3549 }
3550
3551 static void unplug_slaves(mddev_t *mddev)
3552 {
3553         raid5_conf_t *conf = mddev->private;
3554         int i;
3555         int devs = max(conf->raid_disks, conf->previous_raid_disks);
3556
3557         rcu_read_lock();
3558         for (i = 0; i < devs; i++) {
3559                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3560                 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3561                         struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3562
3563                         atomic_inc(&rdev->nr_pending);
3564                         rcu_read_unlock();
3565
3566                         blk_unplug(r_queue);
3567
3568                         rdev_dec_pending(rdev, mddev);
3569                         rcu_read_lock();
3570                 }
3571         }
3572         rcu_read_unlock();
3573 }
3574
3575 static void raid5_unplug_device(struct request_queue *q)
3576 {
3577         mddev_t *mddev = q->queuedata;
3578         raid5_conf_t *conf = mddev->private;
3579         unsigned long flags;
3580
3581         spin_lock_irqsave(&conf->device_lock, flags);
3582
3583         if (blk_remove_plug(q)) {
3584                 conf->seq_flush++;
3585                 raid5_activate_delayed(conf);
3586         }
3587         md_wakeup_thread(mddev->thread);
3588
3589         spin_unlock_irqrestore(&conf->device_lock, flags);
3590
3591         unplug_slaves(mddev);
3592 }
3593
3594 static int raid5_congested(void *data, int bits)
3595 {
3596         mddev_t *mddev = data;
3597         raid5_conf_t *conf = mddev->private;
3598
3599         /* No difference between reads and writes.  Just check
3600          * how busy the stripe_cache is
3601          */
3602
3603         if (mddev_congested(mddev, bits))
3604                 return 1;
3605         if (conf->inactive_blocked)
3606                 return 1;
3607         if (conf->quiesce)
3608                 return 1;
3609         if (list_empty_careful(&conf->inactive_list))
3610                 return 1;
3611
3612         return 0;
3613 }
3614
3615 /* We want read requests to align with chunks where possible,
3616  * but write requests don't need to.
3617  */
3618 static int raid5_mergeable_bvec(struct request_queue *q,
3619                                 struct bvec_merge_data *bvm,
3620                                 struct bio_vec *biovec)
3621 {
3622         mddev_t *mddev = q->queuedata;
3623         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3624         int max;
3625         unsigned int chunk_sectors = mddev->chunk_sectors;
3626         unsigned int bio_sectors = bvm->bi_size >> 9;
3627
3628         if ((bvm->bi_rw & 1) == WRITE)
3629                 return biovec->bv_len; /* always allow writes to be mergeable */
3630
3631         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3632                 chunk_sectors = mddev->new_chunk_sectors;
3633         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3634         if (max < 0) max = 0;
3635         if (max <= biovec->bv_len && bio_sectors == 0)
3636                 return biovec->bv_len;
3637         else
3638                 return max;
3639 }
3640
3641
3642 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3643 {
3644         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3645         unsigned int chunk_sectors = mddev->chunk_sectors;
3646         unsigned int bio_sectors = bio->bi_size >> 9;
3647
3648         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3649                 chunk_sectors = mddev->new_chunk_sectors;
3650         return  chunk_sectors >=
3651                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3652 }
3653
3654 /*
3655  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3656  *  later sampled by raid5d.
3657  */
3658 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3659 {
3660         unsigned long flags;
3661
3662         spin_lock_irqsave(&conf->device_lock, flags);
3663
3664         bi->bi_next = conf->retry_read_aligned_list;
3665         conf->retry_read_aligned_list = bi;
3666
3667         spin_unlock_irqrestore(&conf->device_lock, flags);
3668         md_wakeup_thread(conf->mddev->thread);
3669 }
3670
3671
3672 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3673 {
3674         struct bio *bi;
3675
3676         bi = conf->retry_read_aligned;
3677         if (bi) {
3678                 conf->retry_read_aligned = NULL;
3679                 return bi;
3680         }
3681         bi = conf->retry_read_aligned_list;
3682         if(bi) {
3683                 conf->retry_read_aligned_list = bi->bi_next;
3684                 bi->bi_next = NULL;
3685                 /*
3686                  * this sets the active strip count to 1 and the processed
3687                  * strip count to zero (upper 8 bits)
3688                  */
3689                 bi->bi_phys_segments = 1; /* biased count of active stripes */
3690         }
3691
3692         return bi;
3693 }
3694
3695
3696 /*
3697  *  The "raid5_align_endio" should check if the read succeeded and if it
3698  *  did, call bio_endio on the original bio (having bio_put the new bio
3699  *  first).
3700  *  If the read failed..
3701  */
3702 static void raid5_align_endio(struct bio *bi, int error)
3703 {
3704         struct bio* raid_bi  = bi->bi_private;
3705         mddev_t *mddev;
3706         raid5_conf_t *conf;
3707         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3708         mdk_rdev_t *rdev;
3709
3710         bio_put(bi);
3711
3712         mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3713         conf = mddev->private;
3714         rdev = (void*)raid_bi->bi_next;
3715         raid_bi->bi_next = NULL;
3716
3717         rdev_dec_pending(rdev, conf->mddev);
3718
3719         if (!error && uptodate) {
3720                 bio_endio(raid_bi, 0);
3721                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3722                         wake_up(&conf->wait_for_stripe);
3723                 return;
3724         }
3725
3726
3727         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3728
3729         add_bio_to_retry(raid_bi, conf);
3730 }
3731
3732 static int bio_fits_rdev(struct bio *bi)
3733 {
3734         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3735
3736         if ((bi->bi_size>>9) > queue_max_sectors(q))
3737                 return 0;
3738         blk_recount_segments(q, bi);
3739         if (bi->bi_phys_segments > queue_max_segments(q))
3740                 return 0;
3741
3742         if (q->merge_bvec_fn)
3743                 /* it's too hard to apply the merge_bvec_fn at this stage,
3744                  * just just give up
3745                  */
3746                 return 0;
3747
3748         return 1;
3749 }
3750
3751
3752 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3753 {
3754         mddev_t *mddev = q->queuedata;
3755         raid5_conf_t *conf = mddev->private;
3756         int dd_idx;
3757         struct bio* align_bi;
3758         mdk_rdev_t *rdev;
3759
3760         if (!in_chunk_boundary(mddev, raid_bio)) {
3761                 pr_debug("chunk_aligned_read : non aligned\n");
3762                 return 0;
3763         }
3764         /*
3765          * use bio_clone to make a copy of the bio
3766          */
3767         align_bi = bio_clone(raid_bio, GFP_NOIO);
3768         if (!align_bi)
3769                 return 0;
3770         /*
3771          *   set bi_end_io to a new function, and set bi_private to the
3772          *     original bio.
3773          */
3774         align_bi->bi_end_io  = raid5_align_endio;
3775         align_bi->bi_private = raid_bio;
3776         /*
3777          *      compute position
3778          */
3779         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3780                                                     0,
3781                                                     &dd_idx, NULL);
3782
3783         rcu_read_lock();
3784         rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3785         if (rdev && test_bit(In_sync, &rdev->flags)) {
3786                 atomic_inc(&rdev->nr_pending);
3787                 rcu_read_unlock();
3788                 raid_bio->bi_next = (void*)rdev;
3789                 align_bi->bi_bdev =  rdev->bdev;
3790                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3791                 align_bi->bi_sector += rdev->data_offset;
3792
3793                 if (!bio_fits_rdev(align_bi)) {
3794                         /* too big in some way */
3795                         bio_put(align_bi);
3796                         rdev_dec_pending(rdev, mddev);
3797                         return 0;
3798                 }
3799
3800                 spin_lock_irq(&conf->device_lock);
3801                 wait_event_lock_irq(conf->wait_for_stripe,
3802                                     conf->quiesce == 0,
3803                                     conf->device_lock, /* nothing */);
3804                 atomic_inc(&conf->active_aligned_reads);
3805                 spin_unlock_irq(&conf->device_lock);
3806
3807                 generic_make_request(align_bi);
3808                 return 1;
3809         } else {
3810                 rcu_read_unlock();
3811                 bio_put(align_bi);
3812                 return 0;
3813         }
3814 }
3815
3816 /* __get_priority_stripe - get the next stripe to process
3817  *
3818  * Full stripe writes are allowed to pass preread active stripes up until
3819  * the bypass_threshold is exceeded.  In general the bypass_count
3820  * increments when the handle_list is handled before the hold_list; however, it
3821  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3822  * stripe with in flight i/o.  The bypass_count will be reset when the
3823  * head of the hold_list has changed, i.e. the head was promoted to the
3824  * handle_list.
3825  */
3826 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3827 {
3828         struct stripe_head *sh;
3829
3830         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3831                   __func__,
3832                   list_empty(&conf->handle_list) ? "empty" : "busy",
3833                   list_empty(&conf->hold_list) ? "empty" : "busy",
3834                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
3835
3836         if (!list_empty(&conf->handle_list)) {
3837                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3838
3839                 if (list_empty(&conf->hold_list))
3840                         conf->bypass_count = 0;
3841                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3842                         if (conf->hold_list.next == conf->last_hold)
3843                                 conf->bypass_count++;
3844                         else {
3845                                 conf->last_hold = conf->hold_list.next;
3846                                 conf->bypass_count -= conf->bypass_threshold;
3847                                 if (conf->bypass_count < 0)
3848                                         conf->bypass_count = 0;
3849                         }
3850                 }
3851         } else if (!list_empty(&conf->hold_list) &&
3852                    ((conf->bypass_threshold &&
3853                      conf->bypass_count > conf->bypass_threshold) ||
3854                     atomic_read(&conf->pending_full_writes) == 0)) {
3855                 sh = list_entry(conf->hold_list.next,
3856                                 typeof(*sh), lru);
3857                 conf->bypass_count -= conf->bypass_threshold;
3858                 if (conf->bypass_count < 0)
3859                         conf->bypass_count = 0;
3860         } else
3861                 return NULL;
3862
3863         list_del_init(&sh->lru);
3864         atomic_inc(&sh->count);
3865         BUG_ON(atomic_read(&sh->count) != 1);
3866         return sh;
3867 }
3868
3869 static int make_request(struct request_queue *q, struct bio * bi)
3870 {
3871         mddev_t *mddev = q->queuedata;
3872         raid5_conf_t *conf = mddev->private;
3873         int dd_idx;
3874         sector_t new_sector;
3875         sector_t logical_sector, last_sector;
3876         struct stripe_head *sh;
3877         const int rw = bio_data_dir(bi);
3878         int cpu, remaining;
3879
3880         if (unlikely(bio_rw_flagged(bi, BIO_RW_BARRIER))) {
3881                 /* Drain all pending writes.  We only really need
3882                  * to ensure they have been submitted, but this is
3883                  * easier.
3884                  */
3885                 mddev->pers->quiesce(mddev, 1);
3886                 mddev->pers->quiesce(mddev, 0);
3887                 md_barrier_request(mddev, bi);
3888                 return 0;
3889         }
3890
3891         md_write_start(mddev, bi);
3892
3893         cpu = part_stat_lock();
3894         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
3895         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
3896                       bio_sectors(bi));
3897         part_stat_unlock();
3898
3899         if (rw == READ &&
3900              mddev->reshape_position == MaxSector &&
3901              chunk_aligned_read(q,bi))
3902                 return 0;
3903
3904         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3905         last_sector = bi->bi_sector + (bi->bi_size>>9);
3906         bi->bi_next = NULL;
3907         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
3908
3909         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3910                 DEFINE_WAIT(w);
3911                 int disks, data_disks;
3912                 int previous;
3913
3914         retry:
3915                 previous = 0;
3916                 disks = conf->raid_disks;
3917                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3918                 if (unlikely(conf->reshape_progress != MaxSector)) {
3919                         /* spinlock is needed as reshape_progress may be
3920                          * 64bit on a 32bit platform, and so it might be
3921                          * possible to see a half-updated value
3922                          * Ofcourse reshape_progress could change after
3923                          * the lock is dropped, so once we get a reference
3924                          * to the stripe that we think it is, we will have
3925                          * to check again.
3926                          */
3927                         spin_lock_irq(&conf->device_lock);
3928                         if (mddev->delta_disks < 0
3929                             ? logical_sector < conf->reshape_progress
3930                             : logical_sector >= conf->reshape_progress) {
3931                                 disks = conf->previous_raid_disks;
3932                                 previous = 1;
3933                         } else {
3934                                 if (mddev->delta_disks < 0
3935                                     ? logical_sector < conf->reshape_safe
3936                                     : logical_sector >= conf->reshape_safe) {
3937                                         spin_unlock_irq(&conf->device_lock);
3938                                         schedule();
3939                                         goto retry;
3940                                 }
3941                         }
3942                         spin_unlock_irq(&conf->device_lock);
3943                 }
3944                 data_disks = disks - conf->max_degraded;
3945
3946                 new_sector = raid5_compute_sector(conf, logical_sector,
3947                                                   previous,
3948                                                   &dd_idx, NULL);
3949                 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3950                         (unsigned long long)new_sector, 
3951                         (unsigned long long)logical_sector);
3952
3953                 sh = get_active_stripe(conf, new_sector, previous,
3954                                        (bi->bi_rw&RWA_MASK), 0);
3955                 if (sh) {
3956                         if (unlikely(previous)) {
3957                                 /* expansion might have moved on while waiting for a
3958                                  * stripe, so we must do the range check again.
3959                                  * Expansion could still move past after this
3960                                  * test, but as we are holding a reference to
3961                                  * 'sh', we know that if that happens,
3962                                  *  STRIPE_EXPANDING will get set and the expansion
3963                                  * won't proceed until we finish with the stripe.
3964                                  */
3965                                 int must_retry = 0;
3966                                 spin_lock_irq(&conf->device_lock);
3967                                 if (mddev->delta_disks < 0
3968                                     ? logical_sector >= conf->reshape_progress
3969                                     : logical_sector < conf->reshape_progress)
3970                                         /* mismatch, need to try again */
3971                                         must_retry = 1;
3972                                 spin_unlock_irq(&conf->device_lock);
3973                                 if (must_retry) {
3974                                         release_stripe(sh);
3975                                         schedule();
3976                                         goto retry;
3977                                 }
3978                         }
3979
3980                         if (bio_data_dir(bi) == WRITE &&
3981                             logical_sector >= mddev->suspend_lo &&
3982                             logical_sector < mddev->suspend_hi) {
3983                                 release_stripe(sh);
3984                                 /* As the suspend_* range is controlled by
3985                                  * userspace, we want an interruptible
3986                                  * wait.
3987                                  */
3988                                 flush_signals(current);
3989                                 prepare_to_wait(&conf->wait_for_overlap,
3990                                                 &w, TASK_INTERRUPTIBLE);
3991                                 if (logical_sector >= mddev->suspend_lo &&
3992                                     logical_sector < mddev->suspend_hi)
3993                                         schedule();
3994                                 goto retry;
3995                         }
3996
3997                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3998                             !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3999                                 /* Stripe is busy expanding or
4000                                  * add failed due to overlap.  Flush everything
4001                                  * and wait a while
4002                                  */
4003                                 raid5_unplug_device(mddev->queue);
4004                                 release_stripe(sh);
4005                                 schedule();
4006                                 goto retry;
4007                         }
4008                         finish_wait(&conf->wait_for_overlap, &w);
4009                         set_bit(STRIPE_HANDLE, &sh->state);
4010                         clear_bit(STRIPE_DELAYED, &sh->state);
4011                         if (mddev->barrier && 
4012                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4013                                 atomic_inc(&conf->preread_active_stripes);
4014                         release_stripe(sh);
4015                 } else {
4016                         /* cannot get stripe for read-ahead, just give-up */
4017                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
4018                         finish_wait(&conf->wait_for_overlap, &w);
4019                         break;
4020                 }
4021                         
4022         }
4023         spin_lock_irq(&conf->device_lock);
4024         remaining = raid5_dec_bi_phys_segments(bi);
4025         spin_unlock_irq(&conf->device_lock);
4026         if (remaining == 0) {
4027
4028                 if ( rw == WRITE )
4029                         md_write_end(mddev);
4030
4031                 bio_endio(bi, 0);
4032         }
4033
4034         if (mddev->barrier) {
4035                 /* We need to wait for the stripes to all be handled.
4036                  * So: wait for preread_active_stripes to drop to 0.
4037                  */
4038                 wait_event(mddev->thread->wqueue,
4039                            atomic_read(&conf->preread_active_stripes) == 0);
4040         }
4041         return 0;
4042 }
4043
4044 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
4045
4046 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
4047 {
4048         /* reshaping is quite different to recovery/resync so it is
4049          * handled quite separately ... here.
4050          *
4051          * On each call to sync_request, we gather one chunk worth of
4052          * destination stripes and flag them as expanding.
4053          * Then we find all the source stripes and request reads.
4054          * As the reads complete, handle_stripe will copy the data
4055          * into the destination stripe and release that stripe.
4056          */
4057         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4058         struct stripe_head *sh;
4059         sector_t first_sector, last_sector;
4060         int raid_disks = conf->previous_raid_disks;
4061         int data_disks = raid_disks - conf->max_degraded;
4062         int new_data_disks = conf->raid_disks - conf->max_degraded;
4063         int i;
4064         int dd_idx;
4065         sector_t writepos, readpos, safepos;
4066         sector_t stripe_addr;
4067         int reshape_sectors;
4068         struct list_head stripes;
4069
4070         if (sector_nr == 0) {
4071                 /* If restarting in the middle, skip the initial sectors */
4072                 if (mddev->delta_disks < 0 &&
4073                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4074                         sector_nr = raid5_size(mddev, 0, 0)
4075                                 - conf->reshape_progress;
4076                 } else if (mddev->delta_disks >= 0 &&
4077                            conf->reshape_progress > 0)
4078                         sector_nr = conf->reshape_progress;
4079                 sector_div(sector_nr, new_data_disks);
4080                 if (sector_nr) {
4081                         mddev->curr_resync_completed = sector_nr;
4082                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4083                         *skipped = 1;
4084                         return sector_nr;
4085                 }
4086         }
4087
4088         /* We need to process a full chunk at a time.
4089          * If old and new chunk sizes differ, we need to process the
4090          * largest of these
4091          */
4092         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4093                 reshape_sectors = mddev->new_chunk_sectors;
4094         else
4095                 reshape_sectors = mddev->chunk_sectors;
4096
4097         /* we update the metadata when there is more than 3Meg
4098          * in the block range (that is rather arbitrary, should
4099          * probably be time based) or when the data about to be
4100          * copied would over-write the source of the data at
4101          * the front of the range.
4102          * i.e. one new_stripe along from reshape_progress new_maps
4103          * to after where reshape_safe old_maps to
4104          */
4105         writepos = conf->reshape_progress;
4106         sector_div(writepos, new_data_disks);
4107         readpos = conf->reshape_progress;
4108         sector_div(readpos, data_disks);
4109         safepos = conf->reshape_safe;
4110         sector_div(safepos, data_disks);
4111         if (mddev->delta_disks < 0) {
4112                 writepos -= min_t(sector_t, reshape_sectors, writepos);
4113                 readpos += reshape_sectors;
4114                 safepos += reshape_sectors;
4115         } else {
4116                 writepos += reshape_sectors;
4117                 readpos -= min_t(sector_t, reshape_sectors, readpos);
4118                 safepos -= min_t(sector_t, reshape_sectors, safepos);
4119         }
4120
4121         /* 'writepos' is the most advanced device address we might write.
4122          * 'readpos' is the least advanced device address we might read.
4123          * 'safepos' is the least address recorded in the metadata as having
4124          *     been reshaped.
4125          * If 'readpos' is behind 'writepos', then there is no way that we can
4126          * ensure safety in the face of a crash - that must be done by userspace
4127          * making a backup of the data.  So in that case there is no particular
4128          * rush to update metadata.
4129          * Otherwise if 'safepos' is behind 'writepos', then we really need to
4130          * update the metadata to advance 'safepos' to match 'readpos' so that
4131          * we can be safe in the event of a crash.
4132          * So we insist on updating metadata if safepos is behind writepos and
4133          * readpos is beyond writepos.
4134          * In any case, update the metadata every 10 seconds.
4135          * Maybe that number should be configurable, but I'm not sure it is
4136          * worth it.... maybe it could be a multiple of safemode_delay???
4137          */
4138         if ((mddev->delta_disks < 0
4139              ? (safepos > writepos && readpos < writepos)
4140              : (safepos < writepos && readpos > writepos)) ||
4141             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4142                 /* Cannot proceed until we've updated the superblock... */
4143                 wait_event(conf->wait_for_overlap,
4144                            atomic_read(&conf->reshape_stripes)==0);
4145                 mddev->reshape_position = conf->reshape_progress;
4146                 mddev->curr_resync_completed = mddev->curr_resync;
4147                 conf->reshape_checkpoint = jiffies;
4148                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4149                 md_wakeup_thread(mddev->thread);
4150                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4151                            kthread_should_stop());
4152                 spin_lock_irq(&conf->device_lock);
4153                 conf->reshape_safe = mddev->reshape_position;
4154                 spin_unlock_irq(&conf->device_lock);
4155                 wake_up(&conf->wait_for_overlap);
4156                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4157         }
4158
4159         if (mddev->delta_disks < 0) {
4160                 BUG_ON(conf->reshape_progress == 0);
4161                 stripe_addr = writepos;
4162                 BUG_ON((mddev->dev_sectors &
4163                         ~((sector_t)reshape_sectors - 1))
4164                        - reshape_sectors - stripe_addr
4165                        != sector_nr);
4166         } else {
4167                 BUG_ON(writepos != sector_nr + reshape_sectors);
4168                 stripe_addr = sector_nr;
4169         }
4170         INIT_LIST_HEAD(&stripes);
4171         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4172                 int j;
4173                 int skipped_disk = 0;
4174                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4175                 set_bit(STRIPE_EXPANDING, &sh->state);
4176                 atomic_inc(&conf->reshape_stripes);
4177                 /* If any of this stripe is beyond the end of the old
4178                  * array, then we need to zero those blocks
4179                  */
4180                 for (j=sh->disks; j--;) {
4181                         sector_t s;
4182                         if (j == sh->pd_idx)
4183                                 continue;
4184                         if (conf->level == 6 &&
4185                             j == sh->qd_idx)
4186                                 continue;
4187                         s = compute_blocknr(sh, j, 0);
4188                         if (s < raid5_size(mddev, 0, 0)) {
4189                                 skipped_disk = 1;
4190                                 continue;
4191                         }
4192                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4193                         set_bit(R5_Expanded, &sh->dev[j].flags);
4194                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
4195                 }
4196                 if (!skipped_disk) {
4197                         set_bit(STRIPE_EXPAND_READY, &sh->state);
4198                         set_bit(STRIPE_HANDLE, &sh->state);
4199                 }
4200                 list_add(&sh->lru, &stripes);
4201         }
4202         spin_lock_irq(&conf->device_lock);
4203         if (mddev->delta_disks < 0)
4204                 conf->reshape_progress -= reshape_sectors * new_data_disks;
4205         else
4206                 conf->reshape_progress += reshape_sectors * new_data_disks;
4207         spin_unlock_irq(&conf->device_lock);
4208         /* Ok, those stripe are ready. We can start scheduling
4209          * reads on the source stripes.
4210          * The source stripes are determined by mapping the first and last
4211          * block on the destination stripes.
4212          */
4213         first_sector =
4214                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4215                                      1, &dd_idx, NULL);
4216         last_sector =
4217                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4218                                             * new_data_disks - 1),
4219                                      1, &dd_idx, NULL);
4220         if (last_sector >= mddev->dev_sectors)
4221                 last_sector = mddev->dev_sectors - 1;
4222         while (first_sector <= last_sector) {
4223                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4224                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4225                 set_bit(STRIPE_HANDLE, &sh->state);
4226                 release_stripe(sh);
4227                 first_sector += STRIPE_SECTORS;
4228         }
4229         /* Now that the sources are clearly marked, we can release
4230          * the destination stripes
4231          */
4232         while (!list_empty(&stripes)) {
4233                 sh = list_entry(stripes.next, struct stripe_head, lru);
4234                 list_del_init(&sh->lru);
4235                 release_stripe(sh);
4236         }
4237         /* If this takes us to the resync_max point where we have to pause,
4238          * then we need to write out the superblock.
4239          */
4240         sector_nr += reshape_sectors;
4241         if ((sector_nr - mddev->curr_resync_completed) * 2
4242             >= mddev->resync_max - mddev->curr_resync_completed) {
4243                 /* Cannot proceed until we've updated the superblock... */
4244                 wait_event(conf->wait_for_overlap,
4245                            atomic_read(&conf->reshape_stripes) == 0);
4246                 mddev->reshape_position = conf->reshape_progress;
4247                 mddev->curr_resync_completed = mddev->curr_resync + reshape_sectors;
4248                 conf->reshape_checkpoint = jiffies;
4249                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4250                 md_wakeup_thread(mddev->thread);
4251                 wait_event(mddev->sb_wait,
4252                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4253                            || kthread_should_stop());
4254                 spin_lock_irq(&conf->device_lock);
4255                 conf->reshape_safe = mddev->reshape_position;
4256                 spin_unlock_irq(&conf->device_lock);
4257                 wake_up(&conf->wait_for_overlap);
4258                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4259         }
4260         return reshape_sectors;
4261 }
4262
4263 /* FIXME go_faster isn't used */
4264 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4265 {
4266         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4267         struct stripe_head *sh;
4268         sector_t max_sector = mddev->dev_sectors;
4269         int sync_blocks;
4270         int still_degraded = 0;
4271         int i;
4272
4273         if (sector_nr >= max_sector) {
4274                 /* just being told to finish up .. nothing much to do */
4275                 unplug_slaves(mddev);
4276
4277                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4278                         end_reshape(conf);
4279                         return 0;
4280                 }
4281
4282                 if (mddev->curr_resync < max_sector) /* aborted */
4283                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4284                                         &sync_blocks, 1);
4285                 else /* completed sync */
4286                         conf->fullsync = 0;
4287                 bitmap_close_sync(mddev->bitmap);
4288
4289                 return 0;
4290         }
4291
4292         /* Allow raid5_quiesce to complete */
4293         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4294
4295         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4296                 return reshape_request(mddev, sector_nr, skipped);
4297
4298         /* No need to check resync_max as we never do more than one
4299          * stripe, and as resync_max will always be on a chunk boundary,
4300          * if the check in md_do_sync didn't fire, there is no chance
4301          * of overstepping resync_max here
4302          */
4303
4304         /* if there is too many failed drives and we are trying
4305          * to resync, then assert that we are finished, because there is
4306          * nothing we can do.
4307          */
4308         if (mddev->degraded >= conf->max_degraded &&
4309             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4310                 sector_t rv = mddev->dev_sectors - sector_nr;
4311                 *skipped = 1;
4312                 return rv;
4313         }
4314         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4315             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4316             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4317                 /* we can skip this block, and probably more */
4318                 sync_blocks /= STRIPE_SECTORS;
4319                 *skipped = 1;
4320                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4321         }
4322
4323
4324         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4325
4326         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4327         if (sh == NULL) {
4328                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4329                 /* make sure we don't swamp the stripe cache if someone else
4330                  * is trying to get access
4331                  */
4332                 schedule_timeout_uninterruptible(1);
4333         }
4334         /* Need to check if array will still be degraded after recovery/resync
4335          * We don't need to check the 'failed' flag as when that gets set,
4336          * recovery aborts.
4337          */
4338         for (i = 0; i < conf->raid_disks; i++)
4339                 if (conf->disks[i].rdev == NULL)
4340                         still_degraded = 1;
4341
4342         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4343
4344         spin_lock(&sh->lock);
4345         set_bit(STRIPE_SYNCING, &sh->state);
4346         clear_bit(STRIPE_INSYNC, &sh->state);
4347         spin_unlock(&sh->lock);
4348
4349         handle_stripe(sh);
4350         release_stripe(sh);
4351
4352         return STRIPE_SECTORS;
4353 }
4354
4355 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4356 {
4357         /* We may not be able to submit a whole bio at once as there
4358          * may not be enough stripe_heads available.
4359          * We cannot pre-allocate enough stripe_heads as we may need
4360          * more than exist in the cache (if we allow ever large chunks).
4361          * So we do one stripe head at a time and record in
4362          * ->bi_hw_segments how many have been done.
4363          *
4364          * We *know* that this entire raid_bio is in one chunk, so
4365          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4366          */
4367         struct stripe_head *sh;
4368         int dd_idx;
4369         sector_t sector, logical_sector, last_sector;
4370         int scnt = 0;
4371         int remaining;
4372         int handled = 0;
4373
4374         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4375         sector = raid5_compute_sector(conf, logical_sector,
4376                                       0, &dd_idx, NULL);
4377         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4378
4379         for (; logical_sector < last_sector;
4380              logical_sector += STRIPE_SECTORS,
4381                      sector += STRIPE_SECTORS,
4382                      scnt++) {
4383
4384                 if (scnt < raid5_bi_hw_segments(raid_bio))
4385                         /* already done this stripe */
4386                         continue;
4387
4388                 sh = get_active_stripe(conf, sector, 0, 1, 0);
4389
4390                 if (!sh) {
4391                         /* failed to get a stripe - must wait */
4392                         raid5_set_bi_hw_segments(raid_bio, scnt);
4393                         conf->retry_read_aligned = raid_bio;
4394                         return handled;
4395                 }
4396
4397                 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4398                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4399                         release_stripe(sh);
4400                         raid5_set_bi_hw_segments(raid_bio, scnt);
4401                         conf->retry_read_aligned = raid_bio;
4402                         return handled;
4403                 }
4404
4405                 handle_stripe(sh);
4406                 release_stripe(sh);
4407                 handled++;
4408         }
4409         spin_lock_irq(&conf->device_lock);
4410         remaining = raid5_dec_bi_phys_segments(raid_bio);
4411         spin_unlock_irq(&conf->device_lock);
4412         if (remaining == 0)
4413                 bio_endio(raid_bio, 0);
4414         if (atomic_dec_and_test(&conf->active_aligned_reads))
4415                 wake_up(&conf->wait_for_stripe);
4416         return handled;
4417 }
4418
4419
4420 /*
4421  * This is our raid5 kernel thread.
4422  *
4423  * We scan the hash table for stripes which can be handled now.
4424  * During the scan, completed stripes are saved for us by the interrupt
4425  * handler, so that they will not have to wait for our next wakeup.
4426  */
4427 static void raid5d(mddev_t *mddev)
4428 {
4429         struct stripe_head *sh;
4430         raid5_conf_t *conf = mddev->private;
4431         int handled;
4432
4433         pr_debug("+++ raid5d active\n");
4434
4435         md_check_recovery(mddev);
4436
4437         handled = 0;
4438         spin_lock_irq(&conf->device_lock);
4439         while (1) {
4440                 struct bio *bio;
4441
4442                 if (conf->seq_flush != conf->seq_write) {
4443                         int seq = conf->seq_flush;
4444                         spin_unlock_irq(&conf->device_lock);
4445                         bitmap_unplug(mddev->bitmap);
4446                         spin_lock_irq(&conf->device_lock);
4447                         conf->seq_write = seq;
4448                         activate_bit_delay(conf);
4449                 }
4450
4451                 while ((bio = remove_bio_from_retry(conf))) {
4452                         int ok;
4453                         spin_unlock_irq(&conf->device_lock);
4454                         ok = retry_aligned_read(conf, bio);
4455                         spin_lock_irq(&conf->device_lock);
4456                         if (!ok)
4457                                 break;
4458                         handled++;
4459                 }
4460
4461                 sh = __get_priority_stripe(conf);
4462
4463                 if (!sh)
4464                         break;
4465                 spin_unlock_irq(&conf->device_lock);
4466                 
4467                 handled++;
4468                 handle_stripe(sh);
4469                 release_stripe(sh);
4470                 cond_resched();
4471
4472                 spin_lock_irq(&conf->device_lock);
4473         }
4474         pr_debug("%d stripes handled\n", handled);
4475
4476         spin_unlock_irq(&conf->device_lock);
4477
4478         async_tx_issue_pending_all();
4479         unplug_slaves(mddev);
4480
4481         pr_debug("--- raid5d inactive\n");
4482 }
4483
4484 static ssize_t
4485 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4486 {
4487         raid5_conf_t *conf = mddev->private;
4488         if (conf)
4489                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4490         else
4491                 return 0;
4492 }
4493
4494 static ssize_t
4495 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4496 {
4497         raid5_conf_t *conf = mddev->private;
4498         unsigned long new;
4499         int err;
4500
4501         if (len >= PAGE_SIZE)
4502                 return -EINVAL;
4503         if (!conf)
4504                 return -ENODEV;
4505
4506         if (strict_strtoul(page, 10, &new))
4507                 return -EINVAL;
4508         if (new <= 16 || new > 32768)
4509                 return -EINVAL;
4510         while (new < conf->max_nr_stripes) {
4511                 if (drop_one_stripe(conf))
4512                         conf->max_nr_stripes--;
4513                 else
4514                         break;
4515         }
4516         err = md_allow_write(mddev);
4517         if (err)
4518                 return err;
4519         while (new > conf->max_nr_stripes) {
4520                 if (grow_one_stripe(conf))
4521                         conf->max_nr_stripes++;
4522                 else break;
4523         }
4524         return len;
4525 }
4526
4527 static struct md_sysfs_entry
4528 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4529                                 raid5_show_stripe_cache_size,
4530                                 raid5_store_stripe_cache_size);
4531
4532 static ssize_t
4533 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4534 {
4535         raid5_conf_t *conf = mddev->private;
4536         if (conf)
4537                 return sprintf(page, "%d\n", conf->bypass_threshold);
4538         else
4539                 return 0;
4540 }
4541
4542 static ssize_t
4543 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4544 {
4545         raid5_conf_t *conf = mddev->private;
4546         unsigned long new;
4547         if (len >= PAGE_SIZE)
4548                 return -EINVAL;
4549         if (!conf)
4550                 return -ENODEV;
4551
4552         if (strict_strtoul(page, 10, &new))
4553                 return -EINVAL;
4554         if (new > conf->max_nr_stripes)
4555                 return -EINVAL;
4556         conf->bypass_threshold = new;
4557         return len;
4558 }
4559
4560 static struct md_sysfs_entry
4561 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4562                                         S_IRUGO | S_IWUSR,
4563                                         raid5_show_preread_threshold,
4564                                         raid5_store_preread_threshold);
4565
4566 static ssize_t
4567 stripe_cache_active_show(mddev_t *mddev, char *page)
4568 {
4569         raid5_conf_t *conf = mddev->private;
4570         if (conf)
4571                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4572         else
4573                 return 0;
4574 }
4575
4576 static struct md_sysfs_entry
4577 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4578
4579 static struct attribute *raid5_attrs[] =  {
4580         &raid5_stripecache_size.attr,
4581         &raid5_stripecache_active.attr,
4582         &raid5_preread_bypass_threshold.attr,
4583         NULL,
4584 };
4585 static struct attribute_group raid5_attrs_group = {
4586         .name = NULL,
4587         .attrs = raid5_attrs,
4588 };
4589
4590 static sector_t
4591 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4592 {
4593         raid5_conf_t *conf = mddev->private;
4594
4595         if (!sectors)
4596                 sectors = mddev->dev_sectors;
4597         if (!raid_disks)
4598                 /* size is defined by the smallest of previous and new size */
4599                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4600
4601         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4602         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4603         return sectors * (raid_disks - conf->max_degraded);
4604 }
4605
4606 static void raid5_free_percpu(raid5_conf_t *conf)
4607 {
4608         struct raid5_percpu *percpu;
4609         unsigned long cpu;
4610
4611         if (!conf->percpu)
4612                 return;
4613
4614         get_online_cpus();
4615         for_each_possible_cpu(cpu) {
4616                 percpu = per_cpu_ptr(conf->percpu, cpu);
4617                 safe_put_page(percpu->spare_page);
4618                 kfree(percpu->scribble);
4619         }
4620 #ifdef CONFIG_HOTPLUG_CPU
4621         unregister_cpu_notifier(&conf->cpu_notify);
4622 #endif
4623         put_online_cpus();
4624
4625         free_percpu(conf->percpu);
4626 }
4627
4628 static void free_conf(raid5_conf_t *conf)
4629 {
4630         shrink_stripes(conf);
4631         raid5_free_percpu(conf);
4632         kfree(conf->disks);
4633         kfree(conf->stripe_hashtbl);
4634         kfree(conf);
4635 }
4636
4637 #ifdef CONFIG_HOTPLUG_CPU
4638 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4639                               void *hcpu)
4640 {
4641         raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4642         long cpu = (long)hcpu;
4643         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4644
4645         switch (action) {
4646         case CPU_UP_PREPARE:
4647         case CPU_UP_PREPARE_FROZEN:
4648                 if (conf->level == 6 && !percpu->spare_page)
4649                         percpu->spare_page = alloc_page(GFP_KERNEL);
4650                 if (!percpu->scribble)
4651                         percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4652
4653                 if (!percpu->scribble ||
4654                     (conf->level == 6 && !percpu->spare_page)) {
4655                         safe_put_page(percpu->spare_page);
4656                         kfree(percpu->scribble);
4657                         pr_err("%s: failed memory allocation for cpu%ld\n",
4658                                __func__, cpu);
4659                         return NOTIFY_BAD;
4660                 }
4661                 break;
4662         case CPU_DEAD:
4663         case CPU_DEAD_FROZEN:
4664                 safe_put_page(percpu->spare_page);
4665                 kfree(percpu->scribble);
4666                 percpu->spare_page = NULL;
4667                 percpu->scribble = NULL;
4668                 break;
4669         default:
4670                 break;
4671         }
4672         return NOTIFY_OK;
4673 }
4674 #endif
4675
4676 static int raid5_alloc_percpu(raid5_conf_t *conf)
4677 {
4678         unsigned long cpu;
4679         struct page *spare_page;
4680         struct raid5_percpu __percpu *allcpus;
4681         void *scribble;
4682         int err;
4683
4684         allcpus = alloc_percpu(struct raid5_percpu);
4685         if (!allcpus)
4686                 return -ENOMEM;
4687         conf->percpu = allcpus;
4688
4689         get_online_cpus();
4690         err = 0;
4691         for_each_present_cpu(cpu) {
4692                 if (conf->level == 6) {
4693                         spare_page = alloc_page(GFP_KERNEL);
4694                         if (!spare_page) {
4695                                 err = -ENOMEM;
4696                                 break;
4697                         }
4698                         per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4699                 }
4700                 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4701                 if (!scribble) {
4702                         err = -ENOMEM;
4703                         break;
4704                 }
4705                 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4706         }
4707 #ifdef CONFIG_HOTPLUG_CPU
4708         conf->cpu_notify.notifier_call = raid456_cpu_notify;
4709         conf->cpu_notify.priority = 0;
4710         if (err == 0)
4711                 err = register_cpu_notifier(&conf->cpu_notify);
4712 #endif
4713         put_online_cpus();
4714
4715         return err;
4716 }
4717
4718 static raid5_conf_t *setup_conf(mddev_t *mddev)
4719 {
4720         raid5_conf_t *conf;
4721         int raid_disk, memory, max_disks;
4722         mdk_rdev_t *rdev;
4723         struct disk_info *disk;
4724
4725         if (mddev->new_level != 5
4726             && mddev->new_level != 4
4727             && mddev->new_level != 6) {
4728                 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4729                        mdname(mddev), mddev->new_level);
4730                 return ERR_PTR(-EIO);
4731         }
4732         if ((mddev->new_level == 5
4733              && !algorithm_valid_raid5(mddev->new_layout)) ||
4734             (mddev->new_level == 6
4735              && !algorithm_valid_raid6(mddev->new_layout))) {
4736                 printk(KERN_ERR "raid5: %s: layout %d not supported\n",
4737                        mdname(mddev), mddev->new_layout);
4738                 return ERR_PTR(-EIO);
4739         }
4740         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4741                 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4742                        mdname(mddev), mddev->raid_disks);
4743                 return ERR_PTR(-EINVAL);
4744         }
4745
4746         if (!mddev->new_chunk_sectors ||
4747             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4748             !is_power_of_2(mddev->new_chunk_sectors)) {
4749                 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4750                        mddev->new_chunk_sectors << 9, mdname(mddev));
4751                 return ERR_PTR(-EINVAL);
4752         }
4753
4754         conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4755         if (conf == NULL)
4756                 goto abort;
4757         spin_lock_init(&conf->device_lock);
4758         init_waitqueue_head(&conf->wait_for_stripe);
4759         init_waitqueue_head(&conf->wait_for_overlap);
4760         INIT_LIST_HEAD(&conf->handle_list);
4761         INIT_LIST_HEAD(&conf->hold_list);
4762         INIT_LIST_HEAD(&conf->delayed_list);
4763         INIT_LIST_HEAD(&conf->bitmap_list);
4764         INIT_LIST_HEAD(&conf->inactive_list);
4765         atomic_set(&conf->active_stripes, 0);
4766         atomic_set(&conf->preread_active_stripes, 0);
4767         atomic_set(&conf->active_aligned_reads, 0);
4768         conf->bypass_threshold = BYPASS_THRESHOLD;
4769
4770         conf->raid_disks = mddev->raid_disks;
4771         if (mddev->reshape_position == MaxSector)
4772                 conf->previous_raid_disks = mddev->raid_disks;
4773         else
4774                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4775         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4776         conf->scribble_len = scribble_len(max_disks);
4777
4778         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4779                               GFP_KERNEL);
4780         if (!conf->disks)
4781                 goto abort;
4782
4783         conf->mddev = mddev;
4784
4785         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4786                 goto abort;
4787
4788         conf->level = mddev->new_level;
4789         if (raid5_alloc_percpu(conf) != 0)
4790                 goto abort;
4791
4792         pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4793
4794         list_for_each_entry(rdev, &mddev->disks, same_set) {
4795                 raid_disk = rdev->raid_disk;
4796                 if (raid_disk >= max_disks
4797                     || raid_disk < 0)
4798                         continue;
4799                 disk = conf->disks + raid_disk;
4800
4801                 disk->rdev = rdev;
4802
4803                 if (test_bit(In_sync, &rdev->flags)) {
4804                         char b[BDEVNAME_SIZE];
4805                         printk(KERN_INFO "raid5: device %s operational as raid"
4806                                 " disk %d\n", bdevname(rdev->bdev,b),
4807                                 raid_disk);
4808                 } else
4809                         /* Cannot rely on bitmap to complete recovery */
4810                         conf->fullsync = 1;
4811         }
4812
4813         conf->chunk_sectors = mddev->new_chunk_sectors;
4814         conf->level = mddev->new_level;
4815         if (conf->level == 6)
4816                 conf->max_degraded = 2;
4817         else
4818                 conf->max_degraded = 1;
4819         conf->algorithm = mddev->new_layout;
4820         conf->max_nr_stripes = NR_STRIPES;
4821         conf->reshape_progress = mddev->reshape_position;
4822         if (conf->reshape_progress != MaxSector) {
4823                 conf->prev_chunk_sectors = mddev->chunk_sectors;
4824                 conf->prev_algo = mddev->layout;
4825         }
4826
4827         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4828                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4829         if (grow_stripes(conf, conf->max_nr_stripes)) {
4830                 printk(KERN_ERR
4831                         "raid5: couldn't allocate %dkB for buffers\n", memory);
4832                 goto abort;
4833         } else
4834                 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4835                         memory, mdname(mddev));
4836
4837         conf->thread = md_register_thread(raid5d, mddev, NULL);
4838         if (!conf->thread) {
4839                 printk(KERN_ERR
4840                        "raid5: couldn't allocate thread for %s\n",
4841                        mdname(mddev));
4842                 goto abort;
4843         }
4844
4845         return conf;
4846
4847  abort:
4848         if (conf) {
4849                 free_conf(conf);
4850                 return ERR_PTR(-EIO);
4851         } else
4852                 return ERR_PTR(-ENOMEM);
4853 }
4854
4855
4856 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4857 {
4858         switch (algo) {
4859         case ALGORITHM_PARITY_0:
4860                 if (raid_disk < max_degraded)
4861                         return 1;
4862                 break;
4863         case ALGORITHM_PARITY_N:
4864                 if (raid_disk >= raid_disks - max_degraded)
4865                         return 1;
4866                 break;
4867         case ALGORITHM_PARITY_0_6:
4868                 if (raid_disk == 0 || 
4869                     raid_disk == raid_disks - 1)
4870                         return 1;
4871                 break;
4872         case ALGORITHM_LEFT_ASYMMETRIC_6:
4873         case ALGORITHM_RIGHT_ASYMMETRIC_6:
4874         case ALGORITHM_LEFT_SYMMETRIC_6:
4875         case ALGORITHM_RIGHT_SYMMETRIC_6:
4876                 if (raid_disk == raid_disks - 1)
4877                         return 1;
4878         }
4879         return 0;
4880 }
4881
4882 static int run(mddev_t *mddev)
4883 {
4884         raid5_conf_t *conf;
4885         int working_disks = 0, chunk_size;
4886         int dirty_parity_disks = 0;
4887         mdk_rdev_t *rdev;
4888         sector_t reshape_offset = 0;
4889
4890         if (mddev->recovery_cp != MaxSector)
4891                 printk(KERN_NOTICE "raid5: %s is not clean"
4892                        " -- starting background reconstruction\n",
4893                        mdname(mddev));
4894         if (mddev->reshape_position != MaxSector) {
4895                 /* Check that we can continue the reshape.
4896                  * Currently only disks can change, it must
4897                  * increase, and we must be past the point where
4898                  * a stripe over-writes itself
4899                  */
4900                 sector_t here_new, here_old;
4901                 int old_disks;
4902                 int max_degraded = (mddev->level == 6 ? 2 : 1);
4903
4904                 if (mddev->new_level != mddev->level) {
4905                         printk(KERN_ERR "raid5: %s: unsupported reshape "
4906                                "required - aborting.\n",
4907                                mdname(mddev));
4908                         return -EINVAL;
4909                 }
4910                 old_disks = mddev->raid_disks - mddev->delta_disks;
4911                 /* reshape_position must be on a new-stripe boundary, and one
4912                  * further up in new geometry must map after here in old
4913                  * geometry.
4914                  */
4915                 here_new = mddev->reshape_position;
4916                 if (sector_div(here_new, mddev->new_chunk_sectors *
4917                                (mddev->raid_disks - max_degraded))) {
4918                         printk(KERN_ERR "raid5: reshape_position not "
4919                                "on a stripe boundary\n");
4920                         return -EINVAL;
4921                 }
4922                 reshape_offset = here_new * mddev->new_chunk_sectors;
4923                 /* here_new is the stripe we will write to */
4924                 here_old = mddev->reshape_position;
4925                 sector_div(here_old, mddev->chunk_sectors *
4926                            (old_disks-max_degraded));
4927                 /* here_old is the first stripe that we might need to read
4928                  * from */
4929                 if (mddev->delta_disks == 0) {
4930                         /* We cannot be sure it is safe to start an in-place
4931                          * reshape.  It is only safe if user-space if monitoring
4932                          * and taking constant backups.
4933                          * mdadm always starts a situation like this in
4934                          * readonly mode so it can take control before
4935                          * allowing any writes.  So just check for that.
4936                          */
4937                         if ((here_new * mddev->new_chunk_sectors != 
4938                              here_old * mddev->chunk_sectors) ||
4939                             mddev->ro == 0) {
4940                                 printk(KERN_ERR "raid5: in-place reshape must be started"
4941                                        " in read-only mode - aborting\n");
4942                                 return -EINVAL;
4943                         }
4944                 } else if (mddev->delta_disks < 0
4945                     ? (here_new * mddev->new_chunk_sectors <=
4946                        here_old * mddev->chunk_sectors)
4947                     : (here_new * mddev->new_chunk_sectors >=
4948                        here_old * mddev->chunk_sectors)) {
4949                         /* Reading from the same stripe as writing to - bad */
4950                         printk(KERN_ERR "raid5: reshape_position too early for "
4951                                "auto-recovery - aborting.\n");
4952                         return -EINVAL;
4953                 }
4954                 printk(KERN_INFO "raid5: reshape will continue\n");
4955                 /* OK, we should be able to continue; */
4956         } else {
4957                 BUG_ON(mddev->level != mddev->new_level);
4958                 BUG_ON(mddev->layout != mddev->new_layout);
4959                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
4960                 BUG_ON(mddev->delta_disks != 0);
4961         }
4962
4963         if (mddev->private == NULL)
4964                 conf = setup_conf(mddev);
4965         else
4966                 conf = mddev->private;
4967
4968         if (IS_ERR(conf))
4969                 return PTR_ERR(conf);
4970
4971         mddev->thread = conf->thread;
4972         conf->thread = NULL;
4973         mddev->private = conf;
4974
4975         /*
4976          * 0 for a fully functional array, 1 or 2 for a degraded array.
4977          */
4978         list_for_each_entry(rdev, &mddev->disks, same_set) {
4979                 if (rdev->raid_disk < 0)
4980                         continue;
4981                 if (test_bit(In_sync, &rdev->flags))
4982                         working_disks++;
4983                 /* This disc is not fully in-sync.  However if it
4984                  * just stored parity (beyond the recovery_offset),
4985                  * when we don't need to be concerned about the
4986                  * array being dirty.
4987                  * When reshape goes 'backwards', we never have
4988                  * partially completed devices, so we only need
4989                  * to worry about reshape going forwards.
4990                  */
4991                 /* Hack because v0.91 doesn't store recovery_offset properly. */
4992                 if (mddev->major_version == 0 &&
4993                     mddev->minor_version > 90)
4994                         rdev->recovery_offset = reshape_offset;
4995                         
4996                 printk("%d: w=%d pa=%d pr=%d m=%d a=%d r=%d op1=%d op2=%d\n",
4997                        rdev->raid_disk, working_disks, conf->prev_algo,
4998                        conf->previous_raid_disks, conf->max_degraded,
4999                        conf->algorithm, conf->raid_disks, 
5000                        only_parity(rdev->raid_disk,
5001                                    conf->prev_algo,
5002                                    conf->previous_raid_disks,
5003                                    conf->max_degraded),
5004                        only_parity(rdev->raid_disk,
5005                                    conf->algorithm,
5006                                    conf->raid_disks,
5007                                    conf->max_degraded));
5008                 if (rdev->recovery_offset < reshape_offset) {
5009                         /* We need to check old and new layout */
5010                         if (!only_parity(rdev->raid_disk,
5011                                          conf->algorithm,
5012                                          conf->raid_disks,
5013                                          conf->max_degraded))
5014                                 continue;
5015                 }
5016                 if (!only_parity(rdev->raid_disk,
5017                                  conf->prev_algo,
5018                                  conf->previous_raid_disks,
5019                                  conf->max_degraded))
5020                         continue;
5021                 dirty_parity_disks++;
5022         }
5023
5024         mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
5025                            - working_disks);
5026
5027         if (mddev->degraded > conf->max_degraded) {
5028                 printk(KERN_ERR "raid5: not enough operational devices for %s"
5029                         " (%d/%d failed)\n",
5030                         mdname(mddev), mddev->degraded, conf->raid_disks);
5031                 goto abort;
5032         }
5033
5034         /* device size must be a multiple of chunk size */
5035         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5036         mddev->resync_max_sectors = mddev->dev_sectors;
5037
5038         if (mddev->degraded > dirty_parity_disks &&
5039             mddev->recovery_cp != MaxSector) {
5040                 if (mddev->ok_start_degraded)
5041                         printk(KERN_WARNING
5042                                "raid5: starting dirty degraded array: %s"
5043                                "- data corruption possible.\n",
5044                                mdname(mddev));
5045                 else {
5046                         printk(KERN_ERR
5047                                "raid5: cannot start dirty degraded array for %s\n",
5048                                mdname(mddev));
5049                         goto abort;
5050                 }
5051         }
5052
5053         if (mddev->degraded == 0)
5054                 printk("raid5: raid level %d set %s active with %d out of %d"
5055                        " devices, algorithm %d\n", conf->level, mdname(mddev),
5056                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5057                        mddev->new_layout);
5058         else
5059                 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
5060                         " out of %d devices, algorithm %d\n", conf->level,
5061                         mdname(mddev), mddev->raid_disks - mddev->degraded,
5062                         mddev->raid_disks, mddev->new_layout);
5063
5064         print_raid5_conf(conf);
5065
5066         if (conf->reshape_progress != MaxSector) {
5067                 printk("...ok start reshape thread\n");
5068                 conf->reshape_safe = conf->reshape_progress;
5069                 atomic_set(&conf->reshape_stripes, 0);
5070                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5071                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5072                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5073                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5074                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5075                                                         "reshape");
5076         }
5077
5078         /* read-ahead size must cover two whole stripes, which is
5079          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5080          */
5081         {
5082                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5083                 int stripe = data_disks *
5084                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5085                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5086                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5087         }
5088
5089         /* Ok, everything is just fine now */
5090         if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5091                 printk(KERN_WARNING
5092                        "raid5: failed to create sysfs attributes for %s\n",
5093                        mdname(mddev));
5094
5095         mddev->queue->queue_lock = &conf->device_lock;
5096
5097         mddev->queue->unplug_fn = raid5_unplug_device;
5098         mddev->queue->backing_dev_info.congested_data = mddev;
5099         mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5100
5101         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5102
5103         blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5104         chunk_size = mddev->chunk_sectors << 9;
5105         blk_queue_io_min(mddev->queue, chunk_size);
5106         blk_queue_io_opt(mddev->queue, chunk_size *
5107                          (conf->raid_disks - conf->max_degraded));
5108
5109         list_for_each_entry(rdev, &mddev->disks, same_set)
5110                 disk_stack_limits(mddev->gendisk, rdev->bdev,
5111                                   rdev->data_offset << 9);
5112
5113         return 0;
5114 abort:
5115         md_unregister_thread(mddev->thread);
5116         mddev->thread = NULL;
5117         if (conf) {
5118                 print_raid5_conf(conf);
5119                 free_conf(conf);
5120         }
5121         mddev->private = NULL;
5122         printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
5123         return -EIO;
5124 }
5125
5126
5127
5128 static int stop(mddev_t *mddev)
5129 {
5130         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
5131
5132         md_unregister_thread(mddev->thread);
5133         mddev->thread = NULL;
5134         mddev->queue->backing_dev_info.congested_fn = NULL;
5135         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5136         free_conf(conf);
5137         mddev->private = &raid5_attrs_group;
5138         return 0;
5139 }
5140
5141 #ifdef DEBUG
5142 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
5143 {
5144         int i;
5145
5146         seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
5147                    (unsigned long long)sh->sector, sh->pd_idx, sh->state);
5148         seq_printf(seq, "sh %llu,  count %d.\n",
5149                    (unsigned long long)sh->sector, atomic_read(&sh->count));
5150         seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5151         for (i = 0; i < sh->disks; i++) {
5152                 seq_printf(seq, "(cache%d: %p %ld) ",
5153                            i, sh->dev[i].page, sh->dev[i].flags);
5154         }
5155         seq_printf(seq, "\n");
5156 }
5157
5158 static void printall(struct seq_file *seq, raid5_conf_t *conf)
5159 {
5160         struct stripe_head *sh;
5161         struct hlist_node *hn;
5162         int i;
5163
5164         spin_lock_irq(&conf->device_lock);
5165         for (i = 0; i < NR_HASH; i++) {
5166                 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
5167                         if (sh->raid_conf != conf)
5168                                 continue;
5169                         print_sh(seq, sh);
5170                 }
5171         }
5172         spin_unlock_irq(&conf->device_lock);
5173 }
5174 #endif
5175
5176 static void status(struct seq_file *seq, mddev_t *mddev)
5177 {
5178         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
5179         int i;
5180
5181         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5182                 mddev->chunk_sectors / 2, mddev->layout);
5183         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5184         for (i = 0; i < conf->raid_disks; i++)
5185                 seq_printf (seq, "%s",
5186                                conf->disks[i].rdev &&
5187                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5188         seq_printf (seq, "]");
5189 #ifdef DEBUG
5190         seq_printf (seq, "\n");
5191         printall(seq, conf);
5192 #endif
5193 }
5194
5195 static void print_raid5_conf (raid5_conf_t *conf)
5196 {
5197         int i;
5198         struct disk_info *tmp;
5199
5200         printk("RAID5 conf printout:\n");
5201         if (!conf) {
5202                 printk("(conf==NULL)\n");
5203                 return;
5204         }
5205         printk(" --- rd:%d wd:%d\n", conf->raid_disks,
5206                  conf->raid_disks - conf->mddev->degraded);
5207
5208         for (i = 0; i < conf->raid_disks; i++) {
5209                 char b[BDEVNAME_SIZE];
5210                 tmp = conf->disks + i;
5211                 if (tmp->rdev)
5212                 printk(" disk %d, o:%d, dev:%s\n",
5213                         i, !test_bit(Faulty, &tmp->rdev->flags),
5214                         bdevname(tmp->rdev->bdev,b));
5215         }
5216 }
5217
5218 static int raid5_spare_active(mddev_t *mddev)
5219 {
5220         int i;
5221         raid5_conf_t *conf = mddev->private;
5222         struct disk_info *tmp;
5223
5224         for (i = 0; i < conf->raid_disks; i++) {
5225                 tmp = conf->disks + i;
5226                 if (tmp->rdev
5227                     && !test_bit(Faulty, &tmp->rdev->flags)
5228                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5229                         unsigned long flags;
5230                         spin_lock_irqsave(&conf->device_lock, flags);
5231                         mddev->degraded--;
5232                         spin_unlock_irqrestore(&conf->device_lock, flags);
5233                 }
5234         }
5235         print_raid5_conf(conf);
5236         return 0;
5237 }
5238
5239 static int raid5_remove_disk(mddev_t *mddev, int number)
5240 {
5241         raid5_conf_t *conf = mddev->private;
5242         int err = 0;
5243         mdk_rdev_t *rdev;
5244         struct disk_info *p = conf->disks + number;
5245
5246         print_raid5_conf(conf);
5247         rdev = p->rdev;
5248         if (rdev) {
5249                 if (number >= conf->raid_disks &&
5250                     conf->reshape_progress == MaxSector)
5251                         clear_bit(In_sync, &rdev->flags);
5252
5253                 if (test_bit(In_sync, &rdev->flags) ||
5254                     atomic_read(&rdev->nr_pending)) {
5255                         err = -EBUSY;
5256                         goto abort;
5257                 }
5258                 /* Only remove non-faulty devices if recovery
5259                  * isn't possible.
5260                  */
5261                 if (!test_bit(Faulty, &rdev->flags) &&
5262                     mddev->degraded <= conf->max_degraded &&
5263                     number < conf->raid_disks) {
5264                         err = -EBUSY;
5265                         goto abort;
5266                 }
5267                 p->rdev = NULL;
5268                 synchronize_rcu();
5269                 if (atomic_read(&rdev->nr_pending)) {
5270                         /* lost the race, try later */
5271                         err = -EBUSY;
5272                         p->rdev = rdev;
5273                 }
5274         }
5275 abort:
5276
5277         print_raid5_conf(conf);
5278         return err;
5279 }
5280
5281 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5282 {
5283         raid5_conf_t *conf = mddev->private;
5284         int err = -EEXIST;
5285         int disk;
5286         struct disk_info *p;
5287         int first = 0;
5288         int last = conf->raid_disks - 1;
5289
5290         if (mddev->degraded > conf->max_degraded)
5291                 /* no point adding a device */
5292                 return -EINVAL;
5293
5294         if (rdev->raid_disk >= 0)
5295                 first = last = rdev->raid_disk;
5296
5297         /*
5298          * find the disk ... but prefer rdev->saved_raid_disk
5299          * if possible.
5300          */
5301         if (rdev->saved_raid_disk >= 0 &&
5302             rdev->saved_raid_disk >= first &&
5303             conf->disks[rdev->saved_raid_disk].rdev == NULL)
5304                 disk = rdev->saved_raid_disk;
5305         else
5306                 disk = first;
5307         for ( ; disk <= last ; disk++)
5308                 if ((p=conf->disks + disk)->rdev == NULL) {
5309                         clear_bit(In_sync, &rdev->flags);
5310                         rdev->raid_disk = disk;
5311                         err = 0;
5312                         if (rdev->saved_raid_disk != disk)
5313                                 conf->fullsync = 1;
5314                         rcu_assign_pointer(p->rdev, rdev);
5315                         break;
5316                 }
5317         print_raid5_conf(conf);
5318         return err;
5319 }
5320
5321 static int raid5_resize(mddev_t *mddev, sector_t sectors)
5322 {
5323         /* no resync is happening, and there is enough space
5324          * on all devices, so we can resize.
5325          * We need to make sure resync covers any new space.
5326          * If the array is shrinking we should possibly wait until
5327          * any io in the removed space completes, but it hardly seems
5328          * worth it.
5329          */
5330         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5331         md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5332                                                mddev->raid_disks));
5333         if (mddev->array_sectors >
5334             raid5_size(mddev, sectors, mddev->raid_disks))
5335                 return -EINVAL;
5336         set_capacity(mddev->gendisk, mddev->array_sectors);
5337         mddev->changed = 1;
5338         revalidate_disk(mddev->gendisk);
5339         if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
5340                 mddev->recovery_cp = mddev->dev_sectors;
5341                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5342         }
5343         mddev->dev_sectors = sectors;
5344         mddev->resync_max_sectors = sectors;
5345         return 0;
5346 }
5347
5348 static int check_stripe_cache(mddev_t *mddev)
5349 {
5350         /* Can only proceed if there are plenty of stripe_heads.
5351          * We need a minimum of one full stripe,, and for sensible progress
5352          * it is best to have about 4 times that.
5353          * If we require 4 times, then the default 256 4K stripe_heads will
5354          * allow for chunk sizes up to 256K, which is probably OK.
5355          * If the chunk size is greater, user-space should request more
5356          * stripe_heads first.
5357          */
5358         raid5_conf_t *conf = mddev->private;
5359         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5360             > conf->max_nr_stripes ||
5361             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5362             > conf->max_nr_stripes) {
5363                 printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
5364                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5365                         / STRIPE_SIZE)*4);
5366                 return 0;
5367         }
5368         return 1;
5369 }
5370
5371 static int check_reshape(mddev_t *mddev)
5372 {
5373         raid5_conf_t *conf = mddev->private;
5374
5375         if (mddev->delta_disks == 0 &&
5376             mddev->new_layout == mddev->layout &&
5377             mddev->new_chunk_sectors == mddev->chunk_sectors)
5378                 return 0; /* nothing to do */
5379         if (mddev->bitmap)
5380                 /* Cannot grow a bitmap yet */
5381                 return -EBUSY;
5382         if (mddev->degraded > conf->max_degraded)
5383                 return -EINVAL;
5384         if (mddev->delta_disks < 0) {
5385                 /* We might be able to shrink, but the devices must
5386                  * be made bigger first.
5387                  * For raid6, 4 is the minimum size.
5388                  * Otherwise 2 is the minimum
5389                  */
5390                 int min = 2;
5391                 if (mddev->level == 6)
5392                         min = 4;
5393                 if (mddev->raid_disks + mddev->delta_disks < min)
5394                         return -EINVAL;
5395         }
5396
5397         if (!check_stripe_cache(mddev))
5398                 return -ENOSPC;
5399
5400         return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5401 }
5402
5403 static int raid5_start_reshape(mddev_t *mddev)
5404 {
5405         raid5_conf_t *conf = mddev->private;
5406         mdk_rdev_t *rdev;
5407         int spares = 0;
5408         int added_devices = 0;
5409         unsigned long flags;
5410
5411         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5412                 return -EBUSY;
5413
5414         if (!check_stripe_cache(mddev))
5415                 return -ENOSPC;
5416
5417         list_for_each_entry(rdev, &mddev->disks, same_set)
5418                 if (rdev->raid_disk < 0 &&
5419                     !test_bit(Faulty, &rdev->flags))
5420                         spares++;
5421
5422         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5423                 /* Not enough devices even to make a degraded array
5424                  * of that size
5425                  */
5426                 return -EINVAL;
5427
5428         /* Refuse to reduce size of the array.  Any reductions in
5429          * array size must be through explicit setting of array_size
5430          * attribute.
5431          */
5432         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5433             < mddev->array_sectors) {
5434                 printk(KERN_ERR "md: %s: array size must be reduced "
5435                        "before number of disks\n", mdname(mddev));
5436                 return -EINVAL;
5437         }
5438
5439         atomic_set(&conf->reshape_stripes, 0);
5440         spin_lock_irq(&conf->device_lock);
5441         conf->previous_raid_disks = conf->raid_disks;
5442         conf->raid_disks += mddev->delta_disks;
5443         conf->prev_chunk_sectors = conf->chunk_sectors;
5444         conf->chunk_sectors = mddev->new_chunk_sectors;
5445         conf->prev_algo = conf->algorithm;
5446         conf->algorithm = mddev->new_layout;
5447         if (mddev->delta_disks < 0)
5448                 conf->reshape_progress = raid5_size(mddev, 0, 0);
5449         else
5450                 conf->reshape_progress = 0;
5451         conf->reshape_safe = conf->reshape_progress;
5452         conf->generation++;
5453         spin_unlock_irq(&conf->device_lock);
5454
5455         /* Add some new drives, as many as will fit.
5456          * We know there are enough to make the newly sized array work.
5457          */
5458         list_for_each_entry(rdev, &mddev->disks, same_set)
5459                 if (rdev->raid_disk < 0 &&
5460                     !test_bit(Faulty, &rdev->flags)) {
5461                         if (raid5_add_disk(mddev, rdev) == 0) {
5462                                 char nm[20];
5463                                 if (rdev->raid_disk >= conf->previous_raid_disks) {
5464                                         set_bit(In_sync, &rdev->flags);
5465                                         added_devices++;
5466                                 } else
5467                                         rdev->recovery_offset = 0;
5468                                 sprintf(nm, "rd%d", rdev->raid_disk);
5469                                 if (sysfs_create_link(&mddev->kobj,
5470                                                       &rdev->kobj, nm))
5471                                         printk(KERN_WARNING
5472                                                "raid5: failed to create "
5473                                                " link %s for %s\n",
5474                                                nm, mdname(mddev));
5475                         } else
5476                                 break;
5477                 }
5478
5479         /* When a reshape changes the number of devices, ->degraded
5480          * is measured against the large of the pre and post number of
5481          * devices.*/
5482         if (mddev->delta_disks > 0) {
5483                 spin_lock_irqsave(&conf->device_lock, flags);
5484                 mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5485                         - added_devices;
5486                 spin_unlock_irqrestore(&conf->device_lock, flags);
5487         }
5488         mddev->raid_disks = conf->raid_disks;
5489         mddev->reshape_position = conf->reshape_progress;
5490         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5491
5492         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5493         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5494         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5495         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5496         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5497                                                 "reshape");
5498         if (!mddev->sync_thread) {
5499                 mddev->recovery = 0;
5500                 spin_lock_irq(&conf->device_lock);
5501                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5502                 conf->reshape_progress = MaxSector;
5503                 spin_unlock_irq(&conf->device_lock);
5504                 return -EAGAIN;
5505         }
5506         conf->reshape_checkpoint = jiffies;
5507         md_wakeup_thread(mddev->sync_thread);
5508         md_new_event(mddev);
5509         return 0;
5510 }
5511
5512 /* This is called from the reshape thread and should make any
5513  * changes needed in 'conf'
5514  */
5515 static void end_reshape(raid5_conf_t *conf)
5516 {
5517
5518         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5519
5520                 spin_lock_irq(&conf->device_lock);
5521                 conf->previous_raid_disks = conf->raid_disks;
5522                 conf->reshape_progress = MaxSector;
5523                 spin_unlock_irq(&conf->device_lock);
5524                 wake_up(&conf->wait_for_overlap);
5525
5526                 /* read-ahead size must cover two whole stripes, which is
5527                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5528                  */
5529                 {
5530                         int data_disks = conf->raid_disks - conf->max_degraded;
5531                         int stripe = data_disks * ((conf->chunk_sectors << 9)
5532                                                    / PAGE_SIZE);
5533                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5534                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5535                 }
5536         }
5537 }
5538
5539 /* This is called from the raid5d thread with mddev_lock held.
5540  * It makes config changes to the device.
5541  */
5542 static void raid5_finish_reshape(mddev_t *mddev)
5543 {
5544         raid5_conf_t *conf = mddev->private;
5545
5546         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5547
5548                 if (mddev->delta_disks > 0) {
5549                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5550                         set_capacity(mddev->gendisk, mddev->array_sectors);
5551                         mddev->changed = 1;
5552                         revalidate_disk(mddev->gendisk);
5553                 } else {
5554                         int d;
5555                         mddev->degraded = conf->raid_disks;
5556                         for (d = 0; d < conf->raid_disks ; d++)
5557                                 if (conf->disks[d].rdev &&
5558                                     test_bit(In_sync,
5559                                              &conf->disks[d].rdev->flags))
5560                                         mddev->degraded--;
5561                         for (d = conf->raid_disks ;
5562                              d < conf->raid_disks - mddev->delta_disks;
5563                              d++) {
5564                                 mdk_rdev_t *rdev = conf->disks[d].rdev;
5565                                 if (rdev && raid5_remove_disk(mddev, d) == 0) {
5566                                         char nm[20];
5567                                         sprintf(nm, "rd%d", rdev->raid_disk);
5568                                         sysfs_remove_link(&mddev->kobj, nm);
5569                                         rdev->raid_disk = -1;
5570                                 }
5571                         }
5572                 }
5573                 mddev->layout = conf->algorithm;
5574                 mddev->chunk_sectors = conf->chunk_sectors;
5575                 mddev->reshape_position = MaxSector;
5576                 mddev->delta_disks = 0;
5577         }
5578 }
5579
5580 static void raid5_quiesce(mddev_t *mddev, int state)
5581 {
5582         raid5_conf_t *conf = mddev->private;
5583
5584         switch(state) {
5585         case 2: /* resume for a suspend */
5586                 wake_up(&conf->wait_for_overlap);
5587                 break;
5588
5589         case 1: /* stop all writes */
5590                 spin_lock_irq(&conf->device_lock);
5591                 /* '2' tells resync/reshape to pause so that all
5592                  * active stripes can drain
5593                  */
5594                 conf->quiesce = 2;
5595                 wait_event_lock_irq(conf->wait_for_stripe,
5596                                     atomic_read(&conf->active_stripes) == 0 &&
5597                                     atomic_read(&conf->active_aligned_reads) == 0,
5598                                     conf->device_lock, /* nothing */);
5599                 conf->quiesce = 1;
5600                 spin_unlock_irq(&conf->device_lock);
5601                 /* allow reshape to continue */
5602                 wake_up(&conf->wait_for_overlap);
5603                 break;
5604
5605         case 0: /* re-enable writes */
5606                 spin_lock_irq(&conf->device_lock);
5607                 conf->quiesce = 0;
5608                 wake_up(&conf->wait_for_stripe);
5609                 wake_up(&conf->wait_for_overlap);
5610                 spin_unlock_irq(&conf->device_lock);
5611                 break;
5612         }
5613 }
5614
5615
5616 static void *raid5_takeover_raid1(mddev_t *mddev)
5617 {
5618         int chunksect;
5619
5620         if (mddev->raid_disks != 2 ||
5621             mddev->degraded > 1)
5622                 return ERR_PTR(-EINVAL);
5623
5624         /* Should check if there are write-behind devices? */
5625
5626         chunksect = 64*2; /* 64K by default */
5627
5628         /* The array must be an exact multiple of chunksize */
5629         while (chunksect && (mddev->array_sectors & (chunksect-1)))
5630                 chunksect >>= 1;
5631
5632         if ((chunksect<<9) < STRIPE_SIZE)
5633                 /* array size does not allow a suitable chunk size */
5634                 return ERR_PTR(-EINVAL);
5635
5636         mddev->new_level = 5;
5637         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5638         mddev->new_chunk_sectors = chunksect;
5639
5640         return setup_conf(mddev);
5641 }
5642
5643 static void *raid5_takeover_raid6(mddev_t *mddev)
5644 {
5645         int new_layout;
5646
5647         switch (mddev->layout) {
5648         case ALGORITHM_LEFT_ASYMMETRIC_6:
5649                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5650                 break;
5651         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5652                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5653                 break;
5654         case ALGORITHM_LEFT_SYMMETRIC_6:
5655                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5656                 break;
5657         case ALGORITHM_RIGHT_SYMMETRIC_6:
5658                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5659                 break;
5660         case ALGORITHM_PARITY_0_6:
5661                 new_layout = ALGORITHM_PARITY_0;
5662                 break;
5663         case ALGORITHM_PARITY_N:
5664                 new_layout = ALGORITHM_PARITY_N;
5665                 break;
5666         default:
5667                 return ERR_PTR(-EINVAL);
5668         }
5669         mddev->new_level = 5;
5670         mddev->new_layout = new_layout;
5671         mddev->delta_disks = -1;
5672         mddev->raid_disks -= 1;
5673         return setup_conf(mddev);
5674 }
5675
5676
5677 static int raid5_check_reshape(mddev_t *mddev)
5678 {
5679         /* For a 2-drive array, the layout and chunk size can be changed
5680          * immediately as not restriping is needed.
5681          * For larger arrays we record the new value - after validation
5682          * to be used by a reshape pass.
5683          */
5684         raid5_conf_t *conf = mddev->private;
5685         int new_chunk = mddev->new_chunk_sectors;
5686
5687         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5688                 return -EINVAL;
5689         if (new_chunk > 0) {
5690                 if (!is_power_of_2(new_chunk))
5691                         return -EINVAL;
5692                 if (new_chunk < (PAGE_SIZE>>9))
5693                         return -EINVAL;
5694                 if (mddev->array_sectors & (new_chunk-1))
5695                         /* not factor of array size */
5696                         return -EINVAL;
5697         }
5698
5699         /* They look valid */
5700
5701         if (mddev->raid_disks == 2) {
5702                 /* can make the change immediately */
5703                 if (mddev->new_layout >= 0) {
5704                         conf->algorithm = mddev->new_layout;
5705                         mddev->layout = mddev->new_layout;
5706                 }
5707                 if (new_chunk > 0) {
5708                         conf->chunk_sectors = new_chunk ;
5709                         mddev->chunk_sectors = new_chunk;
5710                 }
5711                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5712                 md_wakeup_thread(mddev->thread);
5713         }
5714         return check_reshape(mddev);
5715 }
5716
5717 static int raid6_check_reshape(mddev_t *mddev)
5718 {
5719         int new_chunk = mddev->new_chunk_sectors;
5720
5721         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5722                 return -EINVAL;
5723         if (new_chunk > 0) {
5724                 if (!is_power_of_2(new_chunk))
5725                         return -EINVAL;
5726                 if (new_chunk < (PAGE_SIZE >> 9))
5727                         return -EINVAL;
5728                 if (mddev->array_sectors & (new_chunk-1))
5729                         /* not factor of array size */
5730                         return -EINVAL;
5731         }
5732
5733         /* They look valid */
5734         return check_reshape(mddev);
5735 }
5736
5737 static void *raid5_takeover(mddev_t *mddev)
5738 {
5739         /* raid5 can take over:
5740          *  raid0 - if all devices are the same - make it a raid4 layout
5741          *  raid1 - if there are two drives.  We need to know the chunk size
5742          *  raid4 - trivial - just use a raid4 layout.
5743          *  raid6 - Providing it is a *_6 layout
5744          */
5745
5746         if (mddev->level == 1)
5747                 return raid5_takeover_raid1(mddev);
5748         if (mddev->level == 4) {
5749                 mddev->new_layout = ALGORITHM_PARITY_N;
5750                 mddev->new_level = 5;
5751                 return setup_conf(mddev);
5752         }
5753         if (mddev->level == 6)
5754                 return raid5_takeover_raid6(mddev);
5755
5756         return ERR_PTR(-EINVAL);
5757 }
5758
5759
5760 static struct mdk_personality raid5_personality;
5761
5762 static void *raid6_takeover(mddev_t *mddev)
5763 {
5764         /* Currently can only take over a raid5.  We map the
5765          * personality to an equivalent raid6 personality
5766          * with the Q block at the end.
5767          */
5768         int new_layout;
5769
5770         if (mddev->pers != &raid5_personality)
5771                 return ERR_PTR(-EINVAL);
5772         if (mddev->degraded > 1)
5773                 return ERR_PTR(-EINVAL);
5774         if (mddev->raid_disks > 253)
5775                 return ERR_PTR(-EINVAL);
5776         if (mddev->raid_disks < 3)
5777                 return ERR_PTR(-EINVAL);
5778
5779         switch (mddev->layout) {
5780         case ALGORITHM_LEFT_ASYMMETRIC:
5781                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5782                 break;
5783         case ALGORITHM_RIGHT_ASYMMETRIC:
5784                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5785                 break;
5786         case ALGORITHM_LEFT_SYMMETRIC:
5787                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5788                 break;
5789         case ALGORITHM_RIGHT_SYMMETRIC:
5790                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5791                 break;
5792         case ALGORITHM_PARITY_0:
5793                 new_layout = ALGORITHM_PARITY_0_6;
5794                 break;
5795         case ALGORITHM_PARITY_N:
5796                 new_layout = ALGORITHM_PARITY_N;
5797                 break;
5798         default:
5799                 return ERR_PTR(-EINVAL);
5800         }
5801         mddev->new_level = 6;
5802         mddev->new_layout = new_layout;
5803         mddev->delta_disks = 1;
5804         mddev->raid_disks += 1;
5805         return setup_conf(mddev);
5806 }
5807
5808
5809 static struct mdk_personality raid6_personality =
5810 {
5811         .name           = "raid6",
5812         .level          = 6,
5813         .owner          = THIS_MODULE,
5814         .make_request   = make_request,
5815         .run            = run,
5816         .stop           = stop,
5817         .status         = status,
5818         .error_handler  = error,
5819         .hot_add_disk   = raid5_add_disk,
5820         .hot_remove_disk= raid5_remove_disk,
5821         .spare_active   = raid5_spare_active,
5822         .sync_request   = sync_request,
5823         .resize         = raid5_resize,
5824         .size           = raid5_size,
5825         .check_reshape  = raid6_check_reshape,
5826         .start_reshape  = raid5_start_reshape,
5827         .finish_reshape = raid5_finish_reshape,
5828         .quiesce        = raid5_quiesce,
5829         .takeover       = raid6_takeover,
5830 };
5831 static struct mdk_personality raid5_personality =
5832 {
5833         .name           = "raid5",
5834         .level          = 5,
5835         .owner          = THIS_MODULE,
5836         .make_request   = make_request,
5837         .run            = run,
5838         .stop           = stop,
5839         .status         = status,
5840         .error_handler  = error,
5841         .hot_add_disk   = raid5_add_disk,
5842         .hot_remove_disk= raid5_remove_disk,
5843         .spare_active   = raid5_spare_active,
5844         .sync_request   = sync_request,
5845         .resize         = raid5_resize,
5846         .size           = raid5_size,
5847         .check_reshape  = raid5_check_reshape,
5848         .start_reshape  = raid5_start_reshape,
5849         .finish_reshape = raid5_finish_reshape,
5850         .quiesce        = raid5_quiesce,
5851         .takeover       = raid5_takeover,
5852 };
5853
5854 static struct mdk_personality raid4_personality =
5855 {
5856         .name           = "raid4",
5857         .level          = 4,
5858         .owner          = THIS_MODULE,
5859         .make_request   = make_request,
5860         .run            = run,
5861         .stop           = stop,
5862         .status         = status,
5863         .error_handler  = error,
5864         .hot_add_disk   = raid5_add_disk,
5865         .hot_remove_disk= raid5_remove_disk,
5866         .spare_active   = raid5_spare_active,
5867         .sync_request   = sync_request,
5868         .resize         = raid5_resize,
5869         .size           = raid5_size,
5870         .check_reshape  = raid5_check_reshape,
5871         .start_reshape  = raid5_start_reshape,
5872         .finish_reshape = raid5_finish_reshape,
5873         .quiesce        = raid5_quiesce,
5874 };
5875
5876 static int __init raid5_init(void)
5877 {
5878         register_md_personality(&raid6_personality);
5879         register_md_personality(&raid5_personality);
5880         register_md_personality(&raid4_personality);
5881         return 0;
5882 }
5883
5884 static void raid5_exit(void)
5885 {
5886         unregister_md_personality(&raid6_personality);
5887         unregister_md_personality(&raid5_personality);
5888         unregister_md_personality(&raid4_personality);
5889 }
5890
5891 module_init(raid5_init);
5892 module_exit(raid5_exit);
5893 MODULE_LICENSE("GPL");
5894 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
5895 MODULE_ALIAS("md-personality-4"); /* RAID5 */
5896 MODULE_ALIAS("md-raid5");
5897 MODULE_ALIAS("md-raid4");
5898 MODULE_ALIAS("md-level-5");
5899 MODULE_ALIAS("md-level-4");
5900 MODULE_ALIAS("md-personality-8"); /* RAID6 */
5901 MODULE_ALIAS("md-raid6");
5902 MODULE_ALIAS("md-level-6");
5903
5904 /* This used to be two separate modules, they were: */
5905 MODULE_ALIAS("raid5");
5906 MODULE_ALIAS("raid6");