Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound
[pandora-kernel.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include "md.h"
57 #include "raid5.h"
58 #include "raid0.h"
59 #include "bitmap.h"
60
61 /*
62  * Stripe cache
63  */
64
65 #define NR_STRIPES              256
66 #define STRIPE_SIZE             PAGE_SIZE
67 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
68 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
69 #define IO_THRESHOLD            1
70 #define BYPASS_THRESHOLD        1
71 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
72 #define HASH_MASK               (NR_HASH - 1)
73
74 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
75 {
76         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
77         return &conf->stripe_hashtbl[hash];
78 }
79
80 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
81  * order without overlap.  There may be several bio's per stripe+device, and
82  * a bio could span several devices.
83  * When walking this list for a particular stripe+device, we must never proceed
84  * beyond a bio that extends past this device, as the next bio might no longer
85  * be valid.
86  * This function is used to determine the 'next' bio in the list, given the sector
87  * of the current stripe+device
88  */
89 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
90 {
91         int sectors = bio->bi_size >> 9;
92         if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
93                 return bio->bi_next;
94         else
95                 return NULL;
96 }
97
98 /*
99  * We maintain a biased count of active stripes in the bottom 16 bits of
100  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
101  */
102 static inline int raid5_bi_phys_segments(struct bio *bio)
103 {
104         return bio->bi_phys_segments & 0xffff;
105 }
106
107 static inline int raid5_bi_hw_segments(struct bio *bio)
108 {
109         return (bio->bi_phys_segments >> 16) & 0xffff;
110 }
111
112 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
113 {
114         --bio->bi_phys_segments;
115         return raid5_bi_phys_segments(bio);
116 }
117
118 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
119 {
120         unsigned short val = raid5_bi_hw_segments(bio);
121
122         --val;
123         bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
124         return val;
125 }
126
127 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
128 {
129         bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
130 }
131
132 /* Find first data disk in a raid6 stripe */
133 static inline int raid6_d0(struct stripe_head *sh)
134 {
135         if (sh->ddf_layout)
136                 /* ddf always start from first device */
137                 return 0;
138         /* md starts just after Q block */
139         if (sh->qd_idx == sh->disks - 1)
140                 return 0;
141         else
142                 return sh->qd_idx + 1;
143 }
144 static inline int raid6_next_disk(int disk, int raid_disks)
145 {
146         disk++;
147         return (disk < raid_disks) ? disk : 0;
148 }
149
150 /* When walking through the disks in a raid5, starting at raid6_d0,
151  * We need to map each disk to a 'slot', where the data disks are slot
152  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
153  * is raid_disks-1.  This help does that mapping.
154  */
155 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
156                              int *count, int syndrome_disks)
157 {
158         int slot = *count;
159
160         if (sh->ddf_layout)
161                 (*count)++;
162         if (idx == sh->pd_idx)
163                 return syndrome_disks;
164         if (idx == sh->qd_idx)
165                 return syndrome_disks + 1;
166         if (!sh->ddf_layout)
167                 (*count)++;
168         return slot;
169 }
170
171 static void return_io(struct bio *return_bi)
172 {
173         struct bio *bi = return_bi;
174         while (bi) {
175
176                 return_bi = bi->bi_next;
177                 bi->bi_next = NULL;
178                 bi->bi_size = 0;
179                 bio_endio(bi, 0);
180                 bi = return_bi;
181         }
182 }
183
184 static void print_raid5_conf (struct r5conf *conf);
185
186 static int stripe_operations_active(struct stripe_head *sh)
187 {
188         return sh->check_state || sh->reconstruct_state ||
189                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
190                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
191 }
192
193 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
194 {
195         if (atomic_dec_and_test(&sh->count)) {
196                 BUG_ON(!list_empty(&sh->lru));
197                 BUG_ON(atomic_read(&conf->active_stripes)==0);
198                 if (test_bit(STRIPE_HANDLE, &sh->state)) {
199                         if (test_bit(STRIPE_DELAYED, &sh->state))
200                                 list_add_tail(&sh->lru, &conf->delayed_list);
201                         else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
202                                    sh->bm_seq - conf->seq_write > 0)
203                                 list_add_tail(&sh->lru, &conf->bitmap_list);
204                         else {
205                                 clear_bit(STRIPE_BIT_DELAY, &sh->state);
206                                 list_add_tail(&sh->lru, &conf->handle_list);
207                         }
208                         md_wakeup_thread(conf->mddev->thread);
209                 } else {
210                         BUG_ON(stripe_operations_active(sh));
211                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
212                                 atomic_dec(&conf->preread_active_stripes);
213                                 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
214                                         md_wakeup_thread(conf->mddev->thread);
215                         }
216                         atomic_dec(&conf->active_stripes);
217                         if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
218                                 list_add_tail(&sh->lru, &conf->inactive_list);
219                                 wake_up(&conf->wait_for_stripe);
220                                 if (conf->retry_read_aligned)
221                                         md_wakeup_thread(conf->mddev->thread);
222                         }
223                 }
224         }
225 }
226
227 static void release_stripe(struct stripe_head *sh)
228 {
229         struct r5conf *conf = sh->raid_conf;
230         unsigned long flags;
231
232         spin_lock_irqsave(&conf->device_lock, flags);
233         __release_stripe(conf, sh);
234         spin_unlock_irqrestore(&conf->device_lock, flags);
235 }
236
237 static inline void remove_hash(struct stripe_head *sh)
238 {
239         pr_debug("remove_hash(), stripe %llu\n",
240                 (unsigned long long)sh->sector);
241
242         hlist_del_init(&sh->hash);
243 }
244
245 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
246 {
247         struct hlist_head *hp = stripe_hash(conf, sh->sector);
248
249         pr_debug("insert_hash(), stripe %llu\n",
250                 (unsigned long long)sh->sector);
251
252         hlist_add_head(&sh->hash, hp);
253 }
254
255
256 /* find an idle stripe, make sure it is unhashed, and return it. */
257 static struct stripe_head *get_free_stripe(struct r5conf *conf)
258 {
259         struct stripe_head *sh = NULL;
260         struct list_head *first;
261
262         if (list_empty(&conf->inactive_list))
263                 goto out;
264         first = conf->inactive_list.next;
265         sh = list_entry(first, struct stripe_head, lru);
266         list_del_init(first);
267         remove_hash(sh);
268         atomic_inc(&conf->active_stripes);
269 out:
270         return sh;
271 }
272
273 static void shrink_buffers(struct stripe_head *sh)
274 {
275         struct page *p;
276         int i;
277         int num = sh->raid_conf->pool_size;
278
279         for (i = 0; i < num ; i++) {
280                 p = sh->dev[i].page;
281                 if (!p)
282                         continue;
283                 sh->dev[i].page = NULL;
284                 put_page(p);
285         }
286 }
287
288 static int grow_buffers(struct stripe_head *sh)
289 {
290         int i;
291         int num = sh->raid_conf->pool_size;
292
293         for (i = 0; i < num; i++) {
294                 struct page *page;
295
296                 if (!(page = alloc_page(GFP_KERNEL))) {
297                         return 1;
298                 }
299                 sh->dev[i].page = page;
300         }
301         return 0;
302 }
303
304 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
305 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
306                             struct stripe_head *sh);
307
308 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
309 {
310         struct r5conf *conf = sh->raid_conf;
311         int i;
312
313         BUG_ON(atomic_read(&sh->count) != 0);
314         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
315         BUG_ON(stripe_operations_active(sh));
316
317         pr_debug("init_stripe called, stripe %llu\n",
318                 (unsigned long long)sh->sector);
319
320         remove_hash(sh);
321
322         sh->generation = conf->generation - previous;
323         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
324         sh->sector = sector;
325         stripe_set_idx(sector, conf, previous, sh);
326         sh->state = 0;
327
328
329         for (i = sh->disks; i--; ) {
330                 struct r5dev *dev = &sh->dev[i];
331
332                 if (dev->toread || dev->read || dev->towrite || dev->written ||
333                     test_bit(R5_LOCKED, &dev->flags)) {
334                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
335                                (unsigned long long)sh->sector, i, dev->toread,
336                                dev->read, dev->towrite, dev->written,
337                                test_bit(R5_LOCKED, &dev->flags));
338                         WARN_ON(1);
339                 }
340                 dev->flags = 0;
341                 raid5_build_block(sh, i, previous);
342         }
343         insert_hash(conf, sh);
344 }
345
346 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
347                                          short generation)
348 {
349         struct stripe_head *sh;
350         struct hlist_node *hn;
351
352         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
353         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
354                 if (sh->sector == sector && sh->generation == generation)
355                         return sh;
356         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
357         return NULL;
358 }
359
360 /*
361  * Need to check if array has failed when deciding whether to:
362  *  - start an array
363  *  - remove non-faulty devices
364  *  - add a spare
365  *  - allow a reshape
366  * This determination is simple when no reshape is happening.
367  * However if there is a reshape, we need to carefully check
368  * both the before and after sections.
369  * This is because some failed devices may only affect one
370  * of the two sections, and some non-in_sync devices may
371  * be insync in the section most affected by failed devices.
372  */
373 static int has_failed(struct r5conf *conf)
374 {
375         int degraded;
376         int i;
377         if (conf->mddev->reshape_position == MaxSector)
378                 return conf->mddev->degraded > conf->max_degraded;
379
380         rcu_read_lock();
381         degraded = 0;
382         for (i = 0; i < conf->previous_raid_disks; i++) {
383                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
384                 if (!rdev || test_bit(Faulty, &rdev->flags))
385                         degraded++;
386                 else if (test_bit(In_sync, &rdev->flags))
387                         ;
388                 else
389                         /* not in-sync or faulty.
390                          * If the reshape increases the number of devices,
391                          * this is being recovered by the reshape, so
392                          * this 'previous' section is not in_sync.
393                          * If the number of devices is being reduced however,
394                          * the device can only be part of the array if
395                          * we are reverting a reshape, so this section will
396                          * be in-sync.
397                          */
398                         if (conf->raid_disks >= conf->previous_raid_disks)
399                                 degraded++;
400         }
401         rcu_read_unlock();
402         if (degraded > conf->max_degraded)
403                 return 1;
404         rcu_read_lock();
405         degraded = 0;
406         for (i = 0; i < conf->raid_disks; i++) {
407                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
408                 if (!rdev || test_bit(Faulty, &rdev->flags))
409                         degraded++;
410                 else if (test_bit(In_sync, &rdev->flags))
411                         ;
412                 else
413                         /* not in-sync or faulty.
414                          * If reshape increases the number of devices, this
415                          * section has already been recovered, else it
416                          * almost certainly hasn't.
417                          */
418                         if (conf->raid_disks <= conf->previous_raid_disks)
419                                 degraded++;
420         }
421         rcu_read_unlock();
422         if (degraded > conf->max_degraded)
423                 return 1;
424         return 0;
425 }
426
427 static struct stripe_head *
428 get_active_stripe(struct r5conf *conf, sector_t sector,
429                   int previous, int noblock, int noquiesce)
430 {
431         struct stripe_head *sh;
432
433         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
434
435         spin_lock_irq(&conf->device_lock);
436
437         do {
438                 wait_event_lock_irq(conf->wait_for_stripe,
439                                     conf->quiesce == 0 || noquiesce,
440                                     conf->device_lock, /* nothing */);
441                 sh = __find_stripe(conf, sector, conf->generation - previous);
442                 if (!sh) {
443                         if (!conf->inactive_blocked)
444                                 sh = get_free_stripe(conf);
445                         if (noblock && sh == NULL)
446                                 break;
447                         if (!sh) {
448                                 conf->inactive_blocked = 1;
449                                 wait_event_lock_irq(conf->wait_for_stripe,
450                                                     !list_empty(&conf->inactive_list) &&
451                                                     (atomic_read(&conf->active_stripes)
452                                                      < (conf->max_nr_stripes *3/4)
453                                                      || !conf->inactive_blocked),
454                                                     conf->device_lock,
455                                                     );
456                                 conf->inactive_blocked = 0;
457                         } else
458                                 init_stripe(sh, sector, previous);
459                 } else {
460                         if (atomic_read(&sh->count)) {
461                                 BUG_ON(!list_empty(&sh->lru)
462                                     && !test_bit(STRIPE_EXPANDING, &sh->state));
463                         } else {
464                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
465                                         atomic_inc(&conf->active_stripes);
466                                 if (list_empty(&sh->lru) &&
467                                     !test_bit(STRIPE_EXPANDING, &sh->state))
468                                         BUG();
469                                 list_del_init(&sh->lru);
470                         }
471                 }
472         } while (sh == NULL);
473
474         if (sh)
475                 atomic_inc(&sh->count);
476
477         spin_unlock_irq(&conf->device_lock);
478         return sh;
479 }
480
481 static void
482 raid5_end_read_request(struct bio *bi, int error);
483 static void
484 raid5_end_write_request(struct bio *bi, int error);
485
486 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
487 {
488         struct r5conf *conf = sh->raid_conf;
489         int i, disks = sh->disks;
490
491         might_sleep();
492
493         for (i = disks; i--; ) {
494                 int rw;
495                 struct bio *bi;
496                 struct md_rdev *rdev;
497                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
498                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
499                                 rw = WRITE_FUA;
500                         else
501                                 rw = WRITE;
502                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
503                         rw = READ;
504                 else
505                         continue;
506
507                 bi = &sh->dev[i].req;
508
509                 bi->bi_rw = rw;
510                 if (rw & WRITE)
511                         bi->bi_end_io = raid5_end_write_request;
512                 else
513                         bi->bi_end_io = raid5_end_read_request;
514
515                 rcu_read_lock();
516                 rdev = rcu_dereference(conf->disks[i].rdev);
517                 if (rdev && test_bit(Faulty, &rdev->flags))
518                         rdev = NULL;
519                 if (rdev)
520                         atomic_inc(&rdev->nr_pending);
521                 rcu_read_unlock();
522
523                 /* We have already checked bad blocks for reads.  Now
524                  * need to check for writes.
525                  */
526                 while ((rw & WRITE) && rdev &&
527                        test_bit(WriteErrorSeen, &rdev->flags)) {
528                         sector_t first_bad;
529                         int bad_sectors;
530                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
531                                               &first_bad, &bad_sectors);
532                         if (!bad)
533                                 break;
534
535                         if (bad < 0) {
536                                 set_bit(BlockedBadBlocks, &rdev->flags);
537                                 if (!conf->mddev->external &&
538                                     conf->mddev->flags) {
539                                         /* It is very unlikely, but we might
540                                          * still need to write out the
541                                          * bad block log - better give it
542                                          * a chance*/
543                                         md_check_recovery(conf->mddev);
544                                 }
545                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
546                         } else {
547                                 /* Acknowledged bad block - skip the write */
548                                 rdev_dec_pending(rdev, conf->mddev);
549                                 rdev = NULL;
550                         }
551                 }
552
553                 if (rdev) {
554                         if (s->syncing || s->expanding || s->expanded)
555                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
556
557                         set_bit(STRIPE_IO_STARTED, &sh->state);
558
559                         bi->bi_bdev = rdev->bdev;
560                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
561                                 __func__, (unsigned long long)sh->sector,
562                                 bi->bi_rw, i);
563                         atomic_inc(&sh->count);
564                         bi->bi_sector = sh->sector + rdev->data_offset;
565                         bi->bi_flags = 1 << BIO_UPTODATE;
566                         bi->bi_vcnt = 1;
567                         bi->bi_max_vecs = 1;
568                         bi->bi_idx = 0;
569                         bi->bi_io_vec = &sh->dev[i].vec;
570                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
571                         bi->bi_io_vec[0].bv_offset = 0;
572                         bi->bi_size = STRIPE_SIZE;
573                         bi->bi_next = NULL;
574                         generic_make_request(bi);
575                 } else {
576                         if (rw & WRITE)
577                                 set_bit(STRIPE_DEGRADED, &sh->state);
578                         pr_debug("skip op %ld on disc %d for sector %llu\n",
579                                 bi->bi_rw, i, (unsigned long long)sh->sector);
580                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
581                         set_bit(STRIPE_HANDLE, &sh->state);
582                 }
583         }
584 }
585
586 static struct dma_async_tx_descriptor *
587 async_copy_data(int frombio, struct bio *bio, struct page *page,
588         sector_t sector, struct dma_async_tx_descriptor *tx)
589 {
590         struct bio_vec *bvl;
591         struct page *bio_page;
592         int i;
593         int page_offset;
594         struct async_submit_ctl submit;
595         enum async_tx_flags flags = 0;
596
597         if (bio->bi_sector >= sector)
598                 page_offset = (signed)(bio->bi_sector - sector) * 512;
599         else
600                 page_offset = (signed)(sector - bio->bi_sector) * -512;
601
602         if (frombio)
603                 flags |= ASYNC_TX_FENCE;
604         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
605
606         bio_for_each_segment(bvl, bio, i) {
607                 int len = bvl->bv_len;
608                 int clen;
609                 int b_offset = 0;
610
611                 if (page_offset < 0) {
612                         b_offset = -page_offset;
613                         page_offset += b_offset;
614                         len -= b_offset;
615                 }
616
617                 if (len > 0 && page_offset + len > STRIPE_SIZE)
618                         clen = STRIPE_SIZE - page_offset;
619                 else
620                         clen = len;
621
622                 if (clen > 0) {
623                         b_offset += bvl->bv_offset;
624                         bio_page = bvl->bv_page;
625                         if (frombio)
626                                 tx = async_memcpy(page, bio_page, page_offset,
627                                                   b_offset, clen, &submit);
628                         else
629                                 tx = async_memcpy(bio_page, page, b_offset,
630                                                   page_offset, clen, &submit);
631                 }
632                 /* chain the operations */
633                 submit.depend_tx = tx;
634
635                 if (clen < len) /* hit end of page */
636                         break;
637                 page_offset +=  len;
638         }
639
640         return tx;
641 }
642
643 static void ops_complete_biofill(void *stripe_head_ref)
644 {
645         struct stripe_head *sh = stripe_head_ref;
646         struct bio *return_bi = NULL;
647         struct r5conf *conf = sh->raid_conf;
648         int i;
649
650         pr_debug("%s: stripe %llu\n", __func__,
651                 (unsigned long long)sh->sector);
652
653         /* clear completed biofills */
654         spin_lock_irq(&conf->device_lock);
655         for (i = sh->disks; i--; ) {
656                 struct r5dev *dev = &sh->dev[i];
657
658                 /* acknowledge completion of a biofill operation */
659                 /* and check if we need to reply to a read request,
660                  * new R5_Wantfill requests are held off until
661                  * !STRIPE_BIOFILL_RUN
662                  */
663                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
664                         struct bio *rbi, *rbi2;
665
666                         BUG_ON(!dev->read);
667                         rbi = dev->read;
668                         dev->read = NULL;
669                         while (rbi && rbi->bi_sector <
670                                 dev->sector + STRIPE_SECTORS) {
671                                 rbi2 = r5_next_bio(rbi, dev->sector);
672                                 if (!raid5_dec_bi_phys_segments(rbi)) {
673                                         rbi->bi_next = return_bi;
674                                         return_bi = rbi;
675                                 }
676                                 rbi = rbi2;
677                         }
678                 }
679         }
680         spin_unlock_irq(&conf->device_lock);
681         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
682
683         return_io(return_bi);
684
685         set_bit(STRIPE_HANDLE, &sh->state);
686         release_stripe(sh);
687 }
688
689 static void ops_run_biofill(struct stripe_head *sh)
690 {
691         struct dma_async_tx_descriptor *tx = NULL;
692         struct r5conf *conf = sh->raid_conf;
693         struct async_submit_ctl submit;
694         int i;
695
696         pr_debug("%s: stripe %llu\n", __func__,
697                 (unsigned long long)sh->sector);
698
699         for (i = sh->disks; i--; ) {
700                 struct r5dev *dev = &sh->dev[i];
701                 if (test_bit(R5_Wantfill, &dev->flags)) {
702                         struct bio *rbi;
703                         spin_lock_irq(&conf->device_lock);
704                         dev->read = rbi = dev->toread;
705                         dev->toread = NULL;
706                         spin_unlock_irq(&conf->device_lock);
707                         while (rbi && rbi->bi_sector <
708                                 dev->sector + STRIPE_SECTORS) {
709                                 tx = async_copy_data(0, rbi, dev->page,
710                                         dev->sector, tx);
711                                 rbi = r5_next_bio(rbi, dev->sector);
712                         }
713                 }
714         }
715
716         atomic_inc(&sh->count);
717         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
718         async_trigger_callback(&submit);
719 }
720
721 static void mark_target_uptodate(struct stripe_head *sh, int target)
722 {
723         struct r5dev *tgt;
724
725         if (target < 0)
726                 return;
727
728         tgt = &sh->dev[target];
729         set_bit(R5_UPTODATE, &tgt->flags);
730         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
731         clear_bit(R5_Wantcompute, &tgt->flags);
732 }
733
734 static void ops_complete_compute(void *stripe_head_ref)
735 {
736         struct stripe_head *sh = stripe_head_ref;
737
738         pr_debug("%s: stripe %llu\n", __func__,
739                 (unsigned long long)sh->sector);
740
741         /* mark the computed target(s) as uptodate */
742         mark_target_uptodate(sh, sh->ops.target);
743         mark_target_uptodate(sh, sh->ops.target2);
744
745         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
746         if (sh->check_state == check_state_compute_run)
747                 sh->check_state = check_state_compute_result;
748         set_bit(STRIPE_HANDLE, &sh->state);
749         release_stripe(sh);
750 }
751
752 /* return a pointer to the address conversion region of the scribble buffer */
753 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
754                                  struct raid5_percpu *percpu)
755 {
756         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
757 }
758
759 static struct dma_async_tx_descriptor *
760 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
761 {
762         int disks = sh->disks;
763         struct page **xor_srcs = percpu->scribble;
764         int target = sh->ops.target;
765         struct r5dev *tgt = &sh->dev[target];
766         struct page *xor_dest = tgt->page;
767         int count = 0;
768         struct dma_async_tx_descriptor *tx;
769         struct async_submit_ctl submit;
770         int i;
771
772         pr_debug("%s: stripe %llu block: %d\n",
773                 __func__, (unsigned long long)sh->sector, target);
774         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
775
776         for (i = disks; i--; )
777                 if (i != target)
778                         xor_srcs[count++] = sh->dev[i].page;
779
780         atomic_inc(&sh->count);
781
782         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
783                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
784         if (unlikely(count == 1))
785                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
786         else
787                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
788
789         return tx;
790 }
791
792 /* set_syndrome_sources - populate source buffers for gen_syndrome
793  * @srcs - (struct page *) array of size sh->disks
794  * @sh - stripe_head to parse
795  *
796  * Populates srcs in proper layout order for the stripe and returns the
797  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
798  * destination buffer is recorded in srcs[count] and the Q destination
799  * is recorded in srcs[count+1]].
800  */
801 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
802 {
803         int disks = sh->disks;
804         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
805         int d0_idx = raid6_d0(sh);
806         int count;
807         int i;
808
809         for (i = 0; i < disks; i++)
810                 srcs[i] = NULL;
811
812         count = 0;
813         i = d0_idx;
814         do {
815                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
816
817                 srcs[slot] = sh->dev[i].page;
818                 i = raid6_next_disk(i, disks);
819         } while (i != d0_idx);
820
821         return syndrome_disks;
822 }
823
824 static struct dma_async_tx_descriptor *
825 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
826 {
827         int disks = sh->disks;
828         struct page **blocks = percpu->scribble;
829         int target;
830         int qd_idx = sh->qd_idx;
831         struct dma_async_tx_descriptor *tx;
832         struct async_submit_ctl submit;
833         struct r5dev *tgt;
834         struct page *dest;
835         int i;
836         int count;
837
838         if (sh->ops.target < 0)
839                 target = sh->ops.target2;
840         else if (sh->ops.target2 < 0)
841                 target = sh->ops.target;
842         else
843                 /* we should only have one valid target */
844                 BUG();
845         BUG_ON(target < 0);
846         pr_debug("%s: stripe %llu block: %d\n",
847                 __func__, (unsigned long long)sh->sector, target);
848
849         tgt = &sh->dev[target];
850         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
851         dest = tgt->page;
852
853         atomic_inc(&sh->count);
854
855         if (target == qd_idx) {
856                 count = set_syndrome_sources(blocks, sh);
857                 blocks[count] = NULL; /* regenerating p is not necessary */
858                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
859                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
860                                   ops_complete_compute, sh,
861                                   to_addr_conv(sh, percpu));
862                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
863         } else {
864                 /* Compute any data- or p-drive using XOR */
865                 count = 0;
866                 for (i = disks; i-- ; ) {
867                         if (i == target || i == qd_idx)
868                                 continue;
869                         blocks[count++] = sh->dev[i].page;
870                 }
871
872                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
873                                   NULL, ops_complete_compute, sh,
874                                   to_addr_conv(sh, percpu));
875                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
876         }
877
878         return tx;
879 }
880
881 static struct dma_async_tx_descriptor *
882 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
883 {
884         int i, count, disks = sh->disks;
885         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
886         int d0_idx = raid6_d0(sh);
887         int faila = -1, failb = -1;
888         int target = sh->ops.target;
889         int target2 = sh->ops.target2;
890         struct r5dev *tgt = &sh->dev[target];
891         struct r5dev *tgt2 = &sh->dev[target2];
892         struct dma_async_tx_descriptor *tx;
893         struct page **blocks = percpu->scribble;
894         struct async_submit_ctl submit;
895
896         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
897                  __func__, (unsigned long long)sh->sector, target, target2);
898         BUG_ON(target < 0 || target2 < 0);
899         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
900         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
901
902         /* we need to open-code set_syndrome_sources to handle the
903          * slot number conversion for 'faila' and 'failb'
904          */
905         for (i = 0; i < disks ; i++)
906                 blocks[i] = NULL;
907         count = 0;
908         i = d0_idx;
909         do {
910                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
911
912                 blocks[slot] = sh->dev[i].page;
913
914                 if (i == target)
915                         faila = slot;
916                 if (i == target2)
917                         failb = slot;
918                 i = raid6_next_disk(i, disks);
919         } while (i != d0_idx);
920
921         BUG_ON(faila == failb);
922         if (failb < faila)
923                 swap(faila, failb);
924         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
925                  __func__, (unsigned long long)sh->sector, faila, failb);
926
927         atomic_inc(&sh->count);
928
929         if (failb == syndrome_disks+1) {
930                 /* Q disk is one of the missing disks */
931                 if (faila == syndrome_disks) {
932                         /* Missing P+Q, just recompute */
933                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
934                                           ops_complete_compute, sh,
935                                           to_addr_conv(sh, percpu));
936                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
937                                                   STRIPE_SIZE, &submit);
938                 } else {
939                         struct page *dest;
940                         int data_target;
941                         int qd_idx = sh->qd_idx;
942
943                         /* Missing D+Q: recompute D from P, then recompute Q */
944                         if (target == qd_idx)
945                                 data_target = target2;
946                         else
947                                 data_target = target;
948
949                         count = 0;
950                         for (i = disks; i-- ; ) {
951                                 if (i == data_target || i == qd_idx)
952                                         continue;
953                                 blocks[count++] = sh->dev[i].page;
954                         }
955                         dest = sh->dev[data_target].page;
956                         init_async_submit(&submit,
957                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
958                                           NULL, NULL, NULL,
959                                           to_addr_conv(sh, percpu));
960                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
961                                        &submit);
962
963                         count = set_syndrome_sources(blocks, sh);
964                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
965                                           ops_complete_compute, sh,
966                                           to_addr_conv(sh, percpu));
967                         return async_gen_syndrome(blocks, 0, count+2,
968                                                   STRIPE_SIZE, &submit);
969                 }
970         } else {
971                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
972                                   ops_complete_compute, sh,
973                                   to_addr_conv(sh, percpu));
974                 if (failb == syndrome_disks) {
975                         /* We're missing D+P. */
976                         return async_raid6_datap_recov(syndrome_disks+2,
977                                                        STRIPE_SIZE, faila,
978                                                        blocks, &submit);
979                 } else {
980                         /* We're missing D+D. */
981                         return async_raid6_2data_recov(syndrome_disks+2,
982                                                        STRIPE_SIZE, faila, failb,
983                                                        blocks, &submit);
984                 }
985         }
986 }
987
988
989 static void ops_complete_prexor(void *stripe_head_ref)
990 {
991         struct stripe_head *sh = stripe_head_ref;
992
993         pr_debug("%s: stripe %llu\n", __func__,
994                 (unsigned long long)sh->sector);
995 }
996
997 static struct dma_async_tx_descriptor *
998 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
999                struct dma_async_tx_descriptor *tx)
1000 {
1001         int disks = sh->disks;
1002         struct page **xor_srcs = percpu->scribble;
1003         int count = 0, pd_idx = sh->pd_idx, i;
1004         struct async_submit_ctl submit;
1005
1006         /* existing parity data subtracted */
1007         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1008
1009         pr_debug("%s: stripe %llu\n", __func__,
1010                 (unsigned long long)sh->sector);
1011
1012         for (i = disks; i--; ) {
1013                 struct r5dev *dev = &sh->dev[i];
1014                 /* Only process blocks that are known to be uptodate */
1015                 if (test_bit(R5_Wantdrain, &dev->flags))
1016                         xor_srcs[count++] = dev->page;
1017         }
1018
1019         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1020                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1021         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1022
1023         return tx;
1024 }
1025
1026 static struct dma_async_tx_descriptor *
1027 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1028 {
1029         int disks = sh->disks;
1030         int i;
1031
1032         pr_debug("%s: stripe %llu\n", __func__,
1033                 (unsigned long long)sh->sector);
1034
1035         for (i = disks; i--; ) {
1036                 struct r5dev *dev = &sh->dev[i];
1037                 struct bio *chosen;
1038
1039                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1040                         struct bio *wbi;
1041
1042                         spin_lock_irq(&sh->raid_conf->device_lock);
1043                         chosen = dev->towrite;
1044                         dev->towrite = NULL;
1045                         BUG_ON(dev->written);
1046                         wbi = dev->written = chosen;
1047                         spin_unlock_irq(&sh->raid_conf->device_lock);
1048
1049                         while (wbi && wbi->bi_sector <
1050                                 dev->sector + STRIPE_SECTORS) {
1051                                 if (wbi->bi_rw & REQ_FUA)
1052                                         set_bit(R5_WantFUA, &dev->flags);
1053                                 tx = async_copy_data(1, wbi, dev->page,
1054                                         dev->sector, tx);
1055                                 wbi = r5_next_bio(wbi, dev->sector);
1056                         }
1057                 }
1058         }
1059
1060         return tx;
1061 }
1062
1063 static void ops_complete_reconstruct(void *stripe_head_ref)
1064 {
1065         struct stripe_head *sh = stripe_head_ref;
1066         int disks = sh->disks;
1067         int pd_idx = sh->pd_idx;
1068         int qd_idx = sh->qd_idx;
1069         int i;
1070         bool fua = false;
1071
1072         pr_debug("%s: stripe %llu\n", __func__,
1073                 (unsigned long long)sh->sector);
1074
1075         for (i = disks; i--; )
1076                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1077
1078         for (i = disks; i--; ) {
1079                 struct r5dev *dev = &sh->dev[i];
1080
1081                 if (dev->written || i == pd_idx || i == qd_idx) {
1082                         set_bit(R5_UPTODATE, &dev->flags);
1083                         if (fua)
1084                                 set_bit(R5_WantFUA, &dev->flags);
1085                 }
1086         }
1087
1088         if (sh->reconstruct_state == reconstruct_state_drain_run)
1089                 sh->reconstruct_state = reconstruct_state_drain_result;
1090         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1091                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1092         else {
1093                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1094                 sh->reconstruct_state = reconstruct_state_result;
1095         }
1096
1097         set_bit(STRIPE_HANDLE, &sh->state);
1098         release_stripe(sh);
1099 }
1100
1101 static void
1102 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1103                      struct dma_async_tx_descriptor *tx)
1104 {
1105         int disks = sh->disks;
1106         struct page **xor_srcs = percpu->scribble;
1107         struct async_submit_ctl submit;
1108         int count = 0, pd_idx = sh->pd_idx, i;
1109         struct page *xor_dest;
1110         int prexor = 0;
1111         unsigned long flags;
1112
1113         pr_debug("%s: stripe %llu\n", __func__,
1114                 (unsigned long long)sh->sector);
1115
1116         /* check if prexor is active which means only process blocks
1117          * that are part of a read-modify-write (written)
1118          */
1119         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1120                 prexor = 1;
1121                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1122                 for (i = disks; i--; ) {
1123                         struct r5dev *dev = &sh->dev[i];
1124                         if (dev->written)
1125                                 xor_srcs[count++] = dev->page;
1126                 }
1127         } else {
1128                 xor_dest = sh->dev[pd_idx].page;
1129                 for (i = disks; i--; ) {
1130                         struct r5dev *dev = &sh->dev[i];
1131                         if (i != pd_idx)
1132                                 xor_srcs[count++] = dev->page;
1133                 }
1134         }
1135
1136         /* 1/ if we prexor'd then the dest is reused as a source
1137          * 2/ if we did not prexor then we are redoing the parity
1138          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1139          * for the synchronous xor case
1140          */
1141         flags = ASYNC_TX_ACK |
1142                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1143
1144         atomic_inc(&sh->count);
1145
1146         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1147                           to_addr_conv(sh, percpu));
1148         if (unlikely(count == 1))
1149                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1150         else
1151                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1152 }
1153
1154 static void
1155 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1156                      struct dma_async_tx_descriptor *tx)
1157 {
1158         struct async_submit_ctl submit;
1159         struct page **blocks = percpu->scribble;
1160         int count;
1161
1162         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1163
1164         count = set_syndrome_sources(blocks, sh);
1165
1166         atomic_inc(&sh->count);
1167
1168         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1169                           sh, to_addr_conv(sh, percpu));
1170         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1171 }
1172
1173 static void ops_complete_check(void *stripe_head_ref)
1174 {
1175         struct stripe_head *sh = stripe_head_ref;
1176
1177         pr_debug("%s: stripe %llu\n", __func__,
1178                 (unsigned long long)sh->sector);
1179
1180         sh->check_state = check_state_check_result;
1181         set_bit(STRIPE_HANDLE, &sh->state);
1182         release_stripe(sh);
1183 }
1184
1185 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1186 {
1187         int disks = sh->disks;
1188         int pd_idx = sh->pd_idx;
1189         int qd_idx = sh->qd_idx;
1190         struct page *xor_dest;
1191         struct page **xor_srcs = percpu->scribble;
1192         struct dma_async_tx_descriptor *tx;
1193         struct async_submit_ctl submit;
1194         int count;
1195         int i;
1196
1197         pr_debug("%s: stripe %llu\n", __func__,
1198                 (unsigned long long)sh->sector);
1199
1200         count = 0;
1201         xor_dest = sh->dev[pd_idx].page;
1202         xor_srcs[count++] = xor_dest;
1203         for (i = disks; i--; ) {
1204                 if (i == pd_idx || i == qd_idx)
1205                         continue;
1206                 xor_srcs[count++] = sh->dev[i].page;
1207         }
1208
1209         init_async_submit(&submit, 0, NULL, NULL, NULL,
1210                           to_addr_conv(sh, percpu));
1211         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1212                            &sh->ops.zero_sum_result, &submit);
1213
1214         atomic_inc(&sh->count);
1215         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1216         tx = async_trigger_callback(&submit);
1217 }
1218
1219 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1220 {
1221         struct page **srcs = percpu->scribble;
1222         struct async_submit_ctl submit;
1223         int count;
1224
1225         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1226                 (unsigned long long)sh->sector, checkp);
1227
1228         count = set_syndrome_sources(srcs, sh);
1229         if (!checkp)
1230                 srcs[count] = NULL;
1231
1232         atomic_inc(&sh->count);
1233         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1234                           sh, to_addr_conv(sh, percpu));
1235         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1236                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1237 }
1238
1239 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1240 {
1241         int overlap_clear = 0, i, disks = sh->disks;
1242         struct dma_async_tx_descriptor *tx = NULL;
1243         struct r5conf *conf = sh->raid_conf;
1244         int level = conf->level;
1245         struct raid5_percpu *percpu;
1246         unsigned long cpu;
1247
1248         cpu = get_cpu();
1249         percpu = per_cpu_ptr(conf->percpu, cpu);
1250         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1251                 ops_run_biofill(sh);
1252                 overlap_clear++;
1253         }
1254
1255         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1256                 if (level < 6)
1257                         tx = ops_run_compute5(sh, percpu);
1258                 else {
1259                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1260                                 tx = ops_run_compute6_1(sh, percpu);
1261                         else
1262                                 tx = ops_run_compute6_2(sh, percpu);
1263                 }
1264                 /* terminate the chain if reconstruct is not set to be run */
1265                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1266                         async_tx_ack(tx);
1267         }
1268
1269         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1270                 tx = ops_run_prexor(sh, percpu, tx);
1271
1272         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1273                 tx = ops_run_biodrain(sh, tx);
1274                 overlap_clear++;
1275         }
1276
1277         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1278                 if (level < 6)
1279                         ops_run_reconstruct5(sh, percpu, tx);
1280                 else
1281                         ops_run_reconstruct6(sh, percpu, tx);
1282         }
1283
1284         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1285                 if (sh->check_state == check_state_run)
1286                         ops_run_check_p(sh, percpu);
1287                 else if (sh->check_state == check_state_run_q)
1288                         ops_run_check_pq(sh, percpu, 0);
1289                 else if (sh->check_state == check_state_run_pq)
1290                         ops_run_check_pq(sh, percpu, 1);
1291                 else
1292                         BUG();
1293         }
1294
1295         if (overlap_clear)
1296                 for (i = disks; i--; ) {
1297                         struct r5dev *dev = &sh->dev[i];
1298                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1299                                 wake_up(&sh->raid_conf->wait_for_overlap);
1300                 }
1301         put_cpu();
1302 }
1303
1304 #ifdef CONFIG_MULTICORE_RAID456
1305 static void async_run_ops(void *param, async_cookie_t cookie)
1306 {
1307         struct stripe_head *sh = param;
1308         unsigned long ops_request = sh->ops.request;
1309
1310         clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1311         wake_up(&sh->ops.wait_for_ops);
1312
1313         __raid_run_ops(sh, ops_request);
1314         release_stripe(sh);
1315 }
1316
1317 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1318 {
1319         /* since handle_stripe can be called outside of raid5d context
1320          * we need to ensure sh->ops.request is de-staged before another
1321          * request arrives
1322          */
1323         wait_event(sh->ops.wait_for_ops,
1324                    !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1325         sh->ops.request = ops_request;
1326
1327         atomic_inc(&sh->count);
1328         async_schedule(async_run_ops, sh);
1329 }
1330 #else
1331 #define raid_run_ops __raid_run_ops
1332 #endif
1333
1334 static int grow_one_stripe(struct r5conf *conf)
1335 {
1336         struct stripe_head *sh;
1337         sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1338         if (!sh)
1339                 return 0;
1340
1341         sh->raid_conf = conf;
1342         #ifdef CONFIG_MULTICORE_RAID456
1343         init_waitqueue_head(&sh->ops.wait_for_ops);
1344         #endif
1345
1346         if (grow_buffers(sh)) {
1347                 shrink_buffers(sh);
1348                 kmem_cache_free(conf->slab_cache, sh);
1349                 return 0;
1350         }
1351         /* we just created an active stripe so... */
1352         atomic_set(&sh->count, 1);
1353         atomic_inc(&conf->active_stripes);
1354         INIT_LIST_HEAD(&sh->lru);
1355         release_stripe(sh);
1356         return 1;
1357 }
1358
1359 static int grow_stripes(struct r5conf *conf, int num)
1360 {
1361         struct kmem_cache *sc;
1362         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1363
1364         if (conf->mddev->gendisk)
1365                 sprintf(conf->cache_name[0],
1366                         "raid%d-%s", conf->level, mdname(conf->mddev));
1367         else
1368                 sprintf(conf->cache_name[0],
1369                         "raid%d-%p", conf->level, conf->mddev);
1370         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1371
1372         conf->active_name = 0;
1373         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1374                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1375                                0, 0, NULL);
1376         if (!sc)
1377                 return 1;
1378         conf->slab_cache = sc;
1379         conf->pool_size = devs;
1380         while (num--)
1381                 if (!grow_one_stripe(conf))
1382                         return 1;
1383         return 0;
1384 }
1385
1386 /**
1387  * scribble_len - return the required size of the scribble region
1388  * @num - total number of disks in the array
1389  *
1390  * The size must be enough to contain:
1391  * 1/ a struct page pointer for each device in the array +2
1392  * 2/ room to convert each entry in (1) to its corresponding dma
1393  *    (dma_map_page()) or page (page_address()) address.
1394  *
1395  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1396  * calculate over all devices (not just the data blocks), using zeros in place
1397  * of the P and Q blocks.
1398  */
1399 static size_t scribble_len(int num)
1400 {
1401         size_t len;
1402
1403         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1404
1405         return len;
1406 }
1407
1408 static int resize_stripes(struct r5conf *conf, int newsize)
1409 {
1410         /* Make all the stripes able to hold 'newsize' devices.
1411          * New slots in each stripe get 'page' set to a new page.
1412          *
1413          * This happens in stages:
1414          * 1/ create a new kmem_cache and allocate the required number of
1415          *    stripe_heads.
1416          * 2/ gather all the old stripe_heads and tranfer the pages across
1417          *    to the new stripe_heads.  This will have the side effect of
1418          *    freezing the array as once all stripe_heads have been collected,
1419          *    no IO will be possible.  Old stripe heads are freed once their
1420          *    pages have been transferred over, and the old kmem_cache is
1421          *    freed when all stripes are done.
1422          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1423          *    we simple return a failre status - no need to clean anything up.
1424          * 4/ allocate new pages for the new slots in the new stripe_heads.
1425          *    If this fails, we don't bother trying the shrink the
1426          *    stripe_heads down again, we just leave them as they are.
1427          *    As each stripe_head is processed the new one is released into
1428          *    active service.
1429          *
1430          * Once step2 is started, we cannot afford to wait for a write,
1431          * so we use GFP_NOIO allocations.
1432          */
1433         struct stripe_head *osh, *nsh;
1434         LIST_HEAD(newstripes);
1435         struct disk_info *ndisks;
1436         unsigned long cpu;
1437         int err;
1438         struct kmem_cache *sc;
1439         int i;
1440
1441         if (newsize <= conf->pool_size)
1442                 return 0; /* never bother to shrink */
1443
1444         err = md_allow_write(conf->mddev);
1445         if (err)
1446                 return err;
1447
1448         /* Step 1 */
1449         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1450                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1451                                0, 0, NULL);
1452         if (!sc)
1453                 return -ENOMEM;
1454
1455         for (i = conf->max_nr_stripes; i; i--) {
1456                 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1457                 if (!nsh)
1458                         break;
1459
1460                 nsh->raid_conf = conf;
1461                 #ifdef CONFIG_MULTICORE_RAID456
1462                 init_waitqueue_head(&nsh->ops.wait_for_ops);
1463                 #endif
1464
1465                 list_add(&nsh->lru, &newstripes);
1466         }
1467         if (i) {
1468                 /* didn't get enough, give up */
1469                 while (!list_empty(&newstripes)) {
1470                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1471                         list_del(&nsh->lru);
1472                         kmem_cache_free(sc, nsh);
1473                 }
1474                 kmem_cache_destroy(sc);
1475                 return -ENOMEM;
1476         }
1477         /* Step 2 - Must use GFP_NOIO now.
1478          * OK, we have enough stripes, start collecting inactive
1479          * stripes and copying them over
1480          */
1481         list_for_each_entry(nsh, &newstripes, lru) {
1482                 spin_lock_irq(&conf->device_lock);
1483                 wait_event_lock_irq(conf->wait_for_stripe,
1484                                     !list_empty(&conf->inactive_list),
1485                                     conf->device_lock,
1486                                     );
1487                 osh = get_free_stripe(conf);
1488                 spin_unlock_irq(&conf->device_lock);
1489                 atomic_set(&nsh->count, 1);
1490                 for(i=0; i<conf->pool_size; i++)
1491                         nsh->dev[i].page = osh->dev[i].page;
1492                 for( ; i<newsize; i++)
1493                         nsh->dev[i].page = NULL;
1494                 kmem_cache_free(conf->slab_cache, osh);
1495         }
1496         kmem_cache_destroy(conf->slab_cache);
1497
1498         /* Step 3.
1499          * At this point, we are holding all the stripes so the array
1500          * is completely stalled, so now is a good time to resize
1501          * conf->disks and the scribble region
1502          */
1503         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1504         if (ndisks) {
1505                 for (i=0; i<conf->raid_disks; i++)
1506                         ndisks[i] = conf->disks[i];
1507                 kfree(conf->disks);
1508                 conf->disks = ndisks;
1509         } else
1510                 err = -ENOMEM;
1511
1512         get_online_cpus();
1513         conf->scribble_len = scribble_len(newsize);
1514         for_each_present_cpu(cpu) {
1515                 struct raid5_percpu *percpu;
1516                 void *scribble;
1517
1518                 percpu = per_cpu_ptr(conf->percpu, cpu);
1519                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1520
1521                 if (scribble) {
1522                         kfree(percpu->scribble);
1523                         percpu->scribble = scribble;
1524                 } else {
1525                         err = -ENOMEM;
1526                         break;
1527                 }
1528         }
1529         put_online_cpus();
1530
1531         /* Step 4, return new stripes to service */
1532         while(!list_empty(&newstripes)) {
1533                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1534                 list_del_init(&nsh->lru);
1535
1536                 for (i=conf->raid_disks; i < newsize; i++)
1537                         if (nsh->dev[i].page == NULL) {
1538                                 struct page *p = alloc_page(GFP_NOIO);
1539                                 nsh->dev[i].page = p;
1540                                 if (!p)
1541                                         err = -ENOMEM;
1542                         }
1543                 release_stripe(nsh);
1544         }
1545         /* critical section pass, GFP_NOIO no longer needed */
1546
1547         conf->slab_cache = sc;
1548         conf->active_name = 1-conf->active_name;
1549         conf->pool_size = newsize;
1550         return err;
1551 }
1552
1553 static int drop_one_stripe(struct r5conf *conf)
1554 {
1555         struct stripe_head *sh;
1556
1557         spin_lock_irq(&conf->device_lock);
1558         sh = get_free_stripe(conf);
1559         spin_unlock_irq(&conf->device_lock);
1560         if (!sh)
1561                 return 0;
1562         BUG_ON(atomic_read(&sh->count));
1563         shrink_buffers(sh);
1564         kmem_cache_free(conf->slab_cache, sh);
1565         atomic_dec(&conf->active_stripes);
1566         return 1;
1567 }
1568
1569 static void shrink_stripes(struct r5conf *conf)
1570 {
1571         while (drop_one_stripe(conf))
1572                 ;
1573
1574         if (conf->slab_cache)
1575                 kmem_cache_destroy(conf->slab_cache);
1576         conf->slab_cache = NULL;
1577 }
1578
1579 static void raid5_end_read_request(struct bio * bi, int error)
1580 {
1581         struct stripe_head *sh = bi->bi_private;
1582         struct r5conf *conf = sh->raid_conf;
1583         int disks = sh->disks, i;
1584         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1585         char b[BDEVNAME_SIZE];
1586         struct md_rdev *rdev;
1587
1588
1589         for (i=0 ; i<disks; i++)
1590                 if (bi == &sh->dev[i].req)
1591                         break;
1592
1593         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1594                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1595                 uptodate);
1596         if (i == disks) {
1597                 BUG();
1598                 return;
1599         }
1600
1601         if (uptodate) {
1602                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1603                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1604                         rdev = conf->disks[i].rdev;
1605                         printk_ratelimited(
1606                                 KERN_INFO
1607                                 "md/raid:%s: read error corrected"
1608                                 " (%lu sectors at %llu on %s)\n",
1609                                 mdname(conf->mddev), STRIPE_SECTORS,
1610                                 (unsigned long long)(sh->sector
1611                                                      + rdev->data_offset),
1612                                 bdevname(rdev->bdev, b));
1613                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1614                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1615                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1616                 }
1617                 if (atomic_read(&conf->disks[i].rdev->read_errors))
1618                         atomic_set(&conf->disks[i].rdev->read_errors, 0);
1619         } else {
1620                 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1621                 int retry = 0;
1622                 rdev = conf->disks[i].rdev;
1623
1624                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1625                 atomic_inc(&rdev->read_errors);
1626                 if (conf->mddev->degraded >= conf->max_degraded)
1627                         printk_ratelimited(
1628                                 KERN_WARNING
1629                                 "md/raid:%s: read error not correctable "
1630                                 "(sector %llu on %s).\n",
1631                                 mdname(conf->mddev),
1632                                 (unsigned long long)(sh->sector
1633                                                      + rdev->data_offset),
1634                                 bdn);
1635                 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1636                         /* Oh, no!!! */
1637                         printk_ratelimited(
1638                                 KERN_WARNING
1639                                 "md/raid:%s: read error NOT corrected!! "
1640                                 "(sector %llu on %s).\n",
1641                                 mdname(conf->mddev),
1642                                 (unsigned long long)(sh->sector
1643                                                      + rdev->data_offset),
1644                                 bdn);
1645                 else if (atomic_read(&rdev->read_errors)
1646                          > conf->max_nr_stripes)
1647                         printk(KERN_WARNING
1648                                "md/raid:%s: Too many read errors, failing device %s.\n",
1649                                mdname(conf->mddev), bdn);
1650                 else
1651                         retry = 1;
1652                 if (retry)
1653                         set_bit(R5_ReadError, &sh->dev[i].flags);
1654                 else {
1655                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1656                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1657                         md_error(conf->mddev, rdev);
1658                 }
1659         }
1660         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1661         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1662         set_bit(STRIPE_HANDLE, &sh->state);
1663         release_stripe(sh);
1664 }
1665
1666 static void raid5_end_write_request(struct bio *bi, int error)
1667 {
1668         struct stripe_head *sh = bi->bi_private;
1669         struct r5conf *conf = sh->raid_conf;
1670         int disks = sh->disks, i;
1671         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1672         sector_t first_bad;
1673         int bad_sectors;
1674
1675         for (i=0 ; i<disks; i++)
1676                 if (bi == &sh->dev[i].req)
1677                         break;
1678
1679         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1680                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1681                 uptodate);
1682         if (i == disks) {
1683                 BUG();
1684                 return;
1685         }
1686
1687         if (!uptodate) {
1688                 set_bit(WriteErrorSeen, &conf->disks[i].rdev->flags);
1689                 set_bit(R5_WriteError, &sh->dev[i].flags);
1690         } else if (is_badblock(conf->disks[i].rdev, sh->sector, STRIPE_SECTORS,
1691                                &first_bad, &bad_sectors))
1692                 set_bit(R5_MadeGood, &sh->dev[i].flags);
1693
1694         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1695         
1696         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1697         set_bit(STRIPE_HANDLE, &sh->state);
1698         release_stripe(sh);
1699 }
1700
1701
1702 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1703         
1704 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1705 {
1706         struct r5dev *dev = &sh->dev[i];
1707
1708         bio_init(&dev->req);
1709         dev->req.bi_io_vec = &dev->vec;
1710         dev->req.bi_vcnt++;
1711         dev->req.bi_max_vecs++;
1712         dev->vec.bv_page = dev->page;
1713         dev->vec.bv_len = STRIPE_SIZE;
1714         dev->vec.bv_offset = 0;
1715
1716         dev->req.bi_sector = sh->sector;
1717         dev->req.bi_private = sh;
1718
1719         dev->flags = 0;
1720         dev->sector = compute_blocknr(sh, i, previous);
1721 }
1722
1723 static void error(struct mddev *mddev, struct md_rdev *rdev)
1724 {
1725         char b[BDEVNAME_SIZE];
1726         struct r5conf *conf = mddev->private;
1727         pr_debug("raid456: error called\n");
1728
1729         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1730                 unsigned long flags;
1731                 spin_lock_irqsave(&conf->device_lock, flags);
1732                 mddev->degraded++;
1733                 spin_unlock_irqrestore(&conf->device_lock, flags);
1734                 /*
1735                  * if recovery was running, make sure it aborts.
1736                  */
1737                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1738         }
1739         set_bit(Blocked, &rdev->flags);
1740         set_bit(Faulty, &rdev->flags);
1741         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1742         printk(KERN_ALERT
1743                "md/raid:%s: Disk failure on %s, disabling device.\n"
1744                "md/raid:%s: Operation continuing on %d devices.\n",
1745                mdname(mddev),
1746                bdevname(rdev->bdev, b),
1747                mdname(mddev),
1748                conf->raid_disks - mddev->degraded);
1749 }
1750
1751 /*
1752  * Input: a 'big' sector number,
1753  * Output: index of the data and parity disk, and the sector # in them.
1754  */
1755 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1756                                      int previous, int *dd_idx,
1757                                      struct stripe_head *sh)
1758 {
1759         sector_t stripe, stripe2;
1760         sector_t chunk_number;
1761         unsigned int chunk_offset;
1762         int pd_idx, qd_idx;
1763         int ddf_layout = 0;
1764         sector_t new_sector;
1765         int algorithm = previous ? conf->prev_algo
1766                                  : conf->algorithm;
1767         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1768                                          : conf->chunk_sectors;
1769         int raid_disks = previous ? conf->previous_raid_disks
1770                                   : conf->raid_disks;
1771         int data_disks = raid_disks - conf->max_degraded;
1772
1773         /* First compute the information on this sector */
1774
1775         /*
1776          * Compute the chunk number and the sector offset inside the chunk
1777          */
1778         chunk_offset = sector_div(r_sector, sectors_per_chunk);
1779         chunk_number = r_sector;
1780
1781         /*
1782          * Compute the stripe number
1783          */
1784         stripe = chunk_number;
1785         *dd_idx = sector_div(stripe, data_disks);
1786         stripe2 = stripe;
1787         /*
1788          * Select the parity disk based on the user selected algorithm.
1789          */
1790         pd_idx = qd_idx = -1;
1791         switch(conf->level) {
1792         case 4:
1793                 pd_idx = data_disks;
1794                 break;
1795         case 5:
1796                 switch (algorithm) {
1797                 case ALGORITHM_LEFT_ASYMMETRIC:
1798                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1799                         if (*dd_idx >= pd_idx)
1800                                 (*dd_idx)++;
1801                         break;
1802                 case ALGORITHM_RIGHT_ASYMMETRIC:
1803                         pd_idx = sector_div(stripe2, raid_disks);
1804                         if (*dd_idx >= pd_idx)
1805                                 (*dd_idx)++;
1806                         break;
1807                 case ALGORITHM_LEFT_SYMMETRIC:
1808                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1809                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1810                         break;
1811                 case ALGORITHM_RIGHT_SYMMETRIC:
1812                         pd_idx = sector_div(stripe2, raid_disks);
1813                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1814                         break;
1815                 case ALGORITHM_PARITY_0:
1816                         pd_idx = 0;
1817                         (*dd_idx)++;
1818                         break;
1819                 case ALGORITHM_PARITY_N:
1820                         pd_idx = data_disks;
1821                         break;
1822                 default:
1823                         BUG();
1824                 }
1825                 break;
1826         case 6:
1827
1828                 switch (algorithm) {
1829                 case ALGORITHM_LEFT_ASYMMETRIC:
1830                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1831                         qd_idx = pd_idx + 1;
1832                         if (pd_idx == raid_disks-1) {
1833                                 (*dd_idx)++;    /* Q D D D P */
1834                                 qd_idx = 0;
1835                         } else if (*dd_idx >= pd_idx)
1836                                 (*dd_idx) += 2; /* D D P Q D */
1837                         break;
1838                 case ALGORITHM_RIGHT_ASYMMETRIC:
1839                         pd_idx = sector_div(stripe2, raid_disks);
1840                         qd_idx = pd_idx + 1;
1841                         if (pd_idx == raid_disks-1) {
1842                                 (*dd_idx)++;    /* Q D D D P */
1843                                 qd_idx = 0;
1844                         } else if (*dd_idx >= pd_idx)
1845                                 (*dd_idx) += 2; /* D D P Q D */
1846                         break;
1847                 case ALGORITHM_LEFT_SYMMETRIC:
1848                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1849                         qd_idx = (pd_idx + 1) % raid_disks;
1850                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1851                         break;
1852                 case ALGORITHM_RIGHT_SYMMETRIC:
1853                         pd_idx = sector_div(stripe2, raid_disks);
1854                         qd_idx = (pd_idx + 1) % raid_disks;
1855                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1856                         break;
1857
1858                 case ALGORITHM_PARITY_0:
1859                         pd_idx = 0;
1860                         qd_idx = 1;
1861                         (*dd_idx) += 2;
1862                         break;
1863                 case ALGORITHM_PARITY_N:
1864                         pd_idx = data_disks;
1865                         qd_idx = data_disks + 1;
1866                         break;
1867
1868                 case ALGORITHM_ROTATING_ZERO_RESTART:
1869                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
1870                          * of blocks for computing Q is different.
1871                          */
1872                         pd_idx = sector_div(stripe2, raid_disks);
1873                         qd_idx = pd_idx + 1;
1874                         if (pd_idx == raid_disks-1) {
1875                                 (*dd_idx)++;    /* Q D D D P */
1876                                 qd_idx = 0;
1877                         } else if (*dd_idx >= pd_idx)
1878                                 (*dd_idx) += 2; /* D D P Q D */
1879                         ddf_layout = 1;
1880                         break;
1881
1882                 case ALGORITHM_ROTATING_N_RESTART:
1883                         /* Same a left_asymmetric, by first stripe is
1884                          * D D D P Q  rather than
1885                          * Q D D D P
1886                          */
1887                         stripe2 += 1;
1888                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1889                         qd_idx = pd_idx + 1;
1890                         if (pd_idx == raid_disks-1) {
1891                                 (*dd_idx)++;    /* Q D D D P */
1892                                 qd_idx = 0;
1893                         } else if (*dd_idx >= pd_idx)
1894                                 (*dd_idx) += 2; /* D D P Q D */
1895                         ddf_layout = 1;
1896                         break;
1897
1898                 case ALGORITHM_ROTATING_N_CONTINUE:
1899                         /* Same as left_symmetric but Q is before P */
1900                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1901                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1902                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1903                         ddf_layout = 1;
1904                         break;
1905
1906                 case ALGORITHM_LEFT_ASYMMETRIC_6:
1907                         /* RAID5 left_asymmetric, with Q on last device */
1908                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1909                         if (*dd_idx >= pd_idx)
1910                                 (*dd_idx)++;
1911                         qd_idx = raid_disks - 1;
1912                         break;
1913
1914                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1915                         pd_idx = sector_div(stripe2, raid_disks-1);
1916                         if (*dd_idx >= pd_idx)
1917                                 (*dd_idx)++;
1918                         qd_idx = raid_disks - 1;
1919                         break;
1920
1921                 case ALGORITHM_LEFT_SYMMETRIC_6:
1922                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1923                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1924                         qd_idx = raid_disks - 1;
1925                         break;
1926
1927                 case ALGORITHM_RIGHT_SYMMETRIC_6:
1928                         pd_idx = sector_div(stripe2, raid_disks-1);
1929                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1930                         qd_idx = raid_disks - 1;
1931                         break;
1932
1933                 case ALGORITHM_PARITY_0_6:
1934                         pd_idx = 0;
1935                         (*dd_idx)++;
1936                         qd_idx = raid_disks - 1;
1937                         break;
1938
1939                 default:
1940                         BUG();
1941                 }
1942                 break;
1943         }
1944
1945         if (sh) {
1946                 sh->pd_idx = pd_idx;
1947                 sh->qd_idx = qd_idx;
1948                 sh->ddf_layout = ddf_layout;
1949         }
1950         /*
1951          * Finally, compute the new sector number
1952          */
1953         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1954         return new_sector;
1955 }
1956
1957
1958 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1959 {
1960         struct r5conf *conf = sh->raid_conf;
1961         int raid_disks = sh->disks;
1962         int data_disks = raid_disks - conf->max_degraded;
1963         sector_t new_sector = sh->sector, check;
1964         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1965                                          : conf->chunk_sectors;
1966         int algorithm = previous ? conf->prev_algo
1967                                  : conf->algorithm;
1968         sector_t stripe;
1969         int chunk_offset;
1970         sector_t chunk_number;
1971         int dummy1, dd_idx = i;
1972         sector_t r_sector;
1973         struct stripe_head sh2;
1974
1975
1976         chunk_offset = sector_div(new_sector, sectors_per_chunk);
1977         stripe = new_sector;
1978
1979         if (i == sh->pd_idx)
1980                 return 0;
1981         switch(conf->level) {
1982         case 4: break;
1983         case 5:
1984                 switch (algorithm) {
1985                 case ALGORITHM_LEFT_ASYMMETRIC:
1986                 case ALGORITHM_RIGHT_ASYMMETRIC:
1987                         if (i > sh->pd_idx)
1988                                 i--;
1989                         break;
1990                 case ALGORITHM_LEFT_SYMMETRIC:
1991                 case ALGORITHM_RIGHT_SYMMETRIC:
1992                         if (i < sh->pd_idx)
1993                                 i += raid_disks;
1994                         i -= (sh->pd_idx + 1);
1995                         break;
1996                 case ALGORITHM_PARITY_0:
1997                         i -= 1;
1998                         break;
1999                 case ALGORITHM_PARITY_N:
2000                         break;
2001                 default:
2002                         BUG();
2003                 }
2004                 break;
2005         case 6:
2006                 if (i == sh->qd_idx)
2007                         return 0; /* It is the Q disk */
2008                 switch (algorithm) {
2009                 case ALGORITHM_LEFT_ASYMMETRIC:
2010                 case ALGORITHM_RIGHT_ASYMMETRIC:
2011                 case ALGORITHM_ROTATING_ZERO_RESTART:
2012                 case ALGORITHM_ROTATING_N_RESTART:
2013                         if (sh->pd_idx == raid_disks-1)
2014                                 i--;    /* Q D D D P */
2015                         else if (i > sh->pd_idx)
2016                                 i -= 2; /* D D P Q D */
2017                         break;
2018                 case ALGORITHM_LEFT_SYMMETRIC:
2019                 case ALGORITHM_RIGHT_SYMMETRIC:
2020                         if (sh->pd_idx == raid_disks-1)
2021                                 i--; /* Q D D D P */
2022                         else {
2023                                 /* D D P Q D */
2024                                 if (i < sh->pd_idx)
2025                                         i += raid_disks;
2026                                 i -= (sh->pd_idx + 2);
2027                         }
2028                         break;
2029                 case ALGORITHM_PARITY_0:
2030                         i -= 2;
2031                         break;
2032                 case ALGORITHM_PARITY_N:
2033                         break;
2034                 case ALGORITHM_ROTATING_N_CONTINUE:
2035                         /* Like left_symmetric, but P is before Q */
2036                         if (sh->pd_idx == 0)
2037                                 i--;    /* P D D D Q */
2038                         else {
2039                                 /* D D Q P D */
2040                                 if (i < sh->pd_idx)
2041                                         i += raid_disks;
2042                                 i -= (sh->pd_idx + 1);
2043                         }
2044                         break;
2045                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2046                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2047                         if (i > sh->pd_idx)
2048                                 i--;
2049                         break;
2050                 case ALGORITHM_LEFT_SYMMETRIC_6:
2051                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2052                         if (i < sh->pd_idx)
2053                                 i += data_disks + 1;
2054                         i -= (sh->pd_idx + 1);
2055                         break;
2056                 case ALGORITHM_PARITY_0_6:
2057                         i -= 1;
2058                         break;
2059                 default:
2060                         BUG();
2061                 }
2062                 break;
2063         }
2064
2065         chunk_number = stripe * data_disks + i;
2066         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2067
2068         check = raid5_compute_sector(conf, r_sector,
2069                                      previous, &dummy1, &sh2);
2070         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2071                 || sh2.qd_idx != sh->qd_idx) {
2072                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2073                        mdname(conf->mddev));
2074                 return 0;
2075         }
2076         return r_sector;
2077 }
2078
2079
2080 static void
2081 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2082                          int rcw, int expand)
2083 {
2084         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2085         struct r5conf *conf = sh->raid_conf;
2086         int level = conf->level;
2087
2088         if (rcw) {
2089                 /* if we are not expanding this is a proper write request, and
2090                  * there will be bios with new data to be drained into the
2091                  * stripe cache
2092                  */
2093                 if (!expand) {
2094                         sh->reconstruct_state = reconstruct_state_drain_run;
2095                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2096                 } else
2097                         sh->reconstruct_state = reconstruct_state_run;
2098
2099                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2100
2101                 for (i = disks; i--; ) {
2102                         struct r5dev *dev = &sh->dev[i];
2103
2104                         if (dev->towrite) {
2105                                 set_bit(R5_LOCKED, &dev->flags);
2106                                 set_bit(R5_Wantdrain, &dev->flags);
2107                                 if (!expand)
2108                                         clear_bit(R5_UPTODATE, &dev->flags);
2109                                 s->locked++;
2110                         }
2111                 }
2112                 if (s->locked + conf->max_degraded == disks)
2113                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2114                                 atomic_inc(&conf->pending_full_writes);
2115         } else {
2116                 BUG_ON(level == 6);
2117                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2118                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2119
2120                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2121                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2122                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2123                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2124
2125                 for (i = disks; i--; ) {
2126                         struct r5dev *dev = &sh->dev[i];
2127                         if (i == pd_idx)
2128                                 continue;
2129
2130                         if (dev->towrite &&
2131                             (test_bit(R5_UPTODATE, &dev->flags) ||
2132                              test_bit(R5_Wantcompute, &dev->flags))) {
2133                                 set_bit(R5_Wantdrain, &dev->flags);
2134                                 set_bit(R5_LOCKED, &dev->flags);
2135                                 clear_bit(R5_UPTODATE, &dev->flags);
2136                                 s->locked++;
2137                         }
2138                 }
2139         }
2140
2141         /* keep the parity disk(s) locked while asynchronous operations
2142          * are in flight
2143          */
2144         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2145         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2146         s->locked++;
2147
2148         if (level == 6) {
2149                 int qd_idx = sh->qd_idx;
2150                 struct r5dev *dev = &sh->dev[qd_idx];
2151
2152                 set_bit(R5_LOCKED, &dev->flags);
2153                 clear_bit(R5_UPTODATE, &dev->flags);
2154                 s->locked++;
2155         }
2156
2157         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2158                 __func__, (unsigned long long)sh->sector,
2159                 s->locked, s->ops_request);
2160 }
2161
2162 /*
2163  * Each stripe/dev can have one or more bion attached.
2164  * toread/towrite point to the first in a chain.
2165  * The bi_next chain must be in order.
2166  */
2167 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2168 {
2169         struct bio **bip;
2170         struct r5conf *conf = sh->raid_conf;
2171         int firstwrite=0;
2172
2173         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2174                 (unsigned long long)bi->bi_sector,
2175                 (unsigned long long)sh->sector);
2176
2177
2178         spin_lock_irq(&conf->device_lock);
2179         if (forwrite) {
2180                 bip = &sh->dev[dd_idx].towrite;
2181                 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2182                         firstwrite = 1;
2183         } else
2184                 bip = &sh->dev[dd_idx].toread;
2185         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2186                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2187                         goto overlap;
2188                 bip = & (*bip)->bi_next;
2189         }
2190         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2191                 goto overlap;
2192
2193         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2194         if (*bip)
2195                 bi->bi_next = *bip;
2196         *bip = bi;
2197         bi->bi_phys_segments++;
2198
2199         if (forwrite) {
2200                 /* check if page is covered */
2201                 sector_t sector = sh->dev[dd_idx].sector;
2202                 for (bi=sh->dev[dd_idx].towrite;
2203                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2204                              bi && bi->bi_sector <= sector;
2205                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2206                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2207                                 sector = bi->bi_sector + (bi->bi_size>>9);
2208                 }
2209                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2210                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2211         }
2212         spin_unlock_irq(&conf->device_lock);
2213
2214         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2215                 (unsigned long long)(*bip)->bi_sector,
2216                 (unsigned long long)sh->sector, dd_idx);
2217
2218         if (conf->mddev->bitmap && firstwrite) {
2219                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2220                                   STRIPE_SECTORS, 0);
2221                 sh->bm_seq = conf->seq_flush+1;
2222                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2223         }
2224         return 1;
2225
2226  overlap:
2227         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2228         spin_unlock_irq(&conf->device_lock);
2229         return 0;
2230 }
2231
2232 static void end_reshape(struct r5conf *conf);
2233
2234 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2235                             struct stripe_head *sh)
2236 {
2237         int sectors_per_chunk =
2238                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2239         int dd_idx;
2240         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2241         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2242
2243         raid5_compute_sector(conf,
2244                              stripe * (disks - conf->max_degraded)
2245                              *sectors_per_chunk + chunk_offset,
2246                              previous,
2247                              &dd_idx, sh);
2248 }
2249
2250 static void
2251 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2252                                 struct stripe_head_state *s, int disks,
2253                                 struct bio **return_bi)
2254 {
2255         int i;
2256         for (i = disks; i--; ) {
2257                 struct bio *bi;
2258                 int bitmap_end = 0;
2259
2260                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2261                         struct md_rdev *rdev;
2262                         rcu_read_lock();
2263                         rdev = rcu_dereference(conf->disks[i].rdev);
2264                         if (rdev && test_bit(In_sync, &rdev->flags))
2265                                 atomic_inc(&rdev->nr_pending);
2266                         else
2267                                 rdev = NULL;
2268                         rcu_read_unlock();
2269                         if (rdev) {
2270                                 if (!rdev_set_badblocks(
2271                                             rdev,
2272                                             sh->sector,
2273                                             STRIPE_SECTORS, 0))
2274                                         md_error(conf->mddev, rdev);
2275                                 rdev_dec_pending(rdev, conf->mddev);
2276                         }
2277                 }
2278                 spin_lock_irq(&conf->device_lock);
2279                 /* fail all writes first */
2280                 bi = sh->dev[i].towrite;
2281                 sh->dev[i].towrite = NULL;
2282                 if (bi) {
2283                         s->to_write--;
2284                         bitmap_end = 1;
2285                 }
2286
2287                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2288                         wake_up(&conf->wait_for_overlap);
2289
2290                 while (bi && bi->bi_sector <
2291                         sh->dev[i].sector + STRIPE_SECTORS) {
2292                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2293                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2294                         if (!raid5_dec_bi_phys_segments(bi)) {
2295                                 md_write_end(conf->mddev);
2296                                 bi->bi_next = *return_bi;
2297                                 *return_bi = bi;
2298                         }
2299                         bi = nextbi;
2300                 }
2301                 /* and fail all 'written' */
2302                 bi = sh->dev[i].written;
2303                 sh->dev[i].written = NULL;
2304                 if (bi) bitmap_end = 1;
2305                 while (bi && bi->bi_sector <
2306                        sh->dev[i].sector + STRIPE_SECTORS) {
2307                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2308                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2309                         if (!raid5_dec_bi_phys_segments(bi)) {
2310                                 md_write_end(conf->mddev);
2311                                 bi->bi_next = *return_bi;
2312                                 *return_bi = bi;
2313                         }
2314                         bi = bi2;
2315                 }
2316
2317                 /* fail any reads if this device is non-operational and
2318                  * the data has not reached the cache yet.
2319                  */
2320                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2321                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2322                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2323                         bi = sh->dev[i].toread;
2324                         sh->dev[i].toread = NULL;
2325                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2326                                 wake_up(&conf->wait_for_overlap);
2327                         if (bi) s->to_read--;
2328                         while (bi && bi->bi_sector <
2329                                sh->dev[i].sector + STRIPE_SECTORS) {
2330                                 struct bio *nextbi =
2331                                         r5_next_bio(bi, sh->dev[i].sector);
2332                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2333                                 if (!raid5_dec_bi_phys_segments(bi)) {
2334                                         bi->bi_next = *return_bi;
2335                                         *return_bi = bi;
2336                                 }
2337                                 bi = nextbi;
2338                         }
2339                 }
2340                 spin_unlock_irq(&conf->device_lock);
2341                 if (bitmap_end)
2342                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2343                                         STRIPE_SECTORS, 0, 0);
2344                 /* If we were in the middle of a write the parity block might
2345                  * still be locked - so just clear all R5_LOCKED flags
2346                  */
2347                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2348         }
2349
2350         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2351                 if (atomic_dec_and_test(&conf->pending_full_writes))
2352                         md_wakeup_thread(conf->mddev->thread);
2353 }
2354
2355 static void
2356 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2357                    struct stripe_head_state *s)
2358 {
2359         int abort = 0;
2360         int i;
2361
2362         md_done_sync(conf->mddev, STRIPE_SECTORS, 0);
2363         clear_bit(STRIPE_SYNCING, &sh->state);
2364         s->syncing = 0;
2365         /* There is nothing more to do for sync/check/repair.
2366          * For recover we need to record a bad block on all
2367          * non-sync devices, or abort the recovery
2368          */
2369         if (!test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery))
2370                 return;
2371         /* During recovery devices cannot be removed, so locking and
2372          * refcounting of rdevs is not needed
2373          */
2374         for (i = 0; i < conf->raid_disks; i++) {
2375                 struct md_rdev *rdev = conf->disks[i].rdev;
2376                 if (!rdev
2377                     || test_bit(Faulty, &rdev->flags)
2378                     || test_bit(In_sync, &rdev->flags))
2379                         continue;
2380                 if (!rdev_set_badblocks(rdev, sh->sector,
2381                                         STRIPE_SECTORS, 0))
2382                         abort = 1;
2383         }
2384         if (abort) {
2385                 conf->recovery_disabled = conf->mddev->recovery_disabled;
2386                 set_bit(MD_RECOVERY_INTR, &conf->mddev->recovery);
2387         }
2388 }
2389
2390 /* fetch_block - checks the given member device to see if its data needs
2391  * to be read or computed to satisfy a request.
2392  *
2393  * Returns 1 when no more member devices need to be checked, otherwise returns
2394  * 0 to tell the loop in handle_stripe_fill to continue
2395  */
2396 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2397                        int disk_idx, int disks)
2398 {
2399         struct r5dev *dev = &sh->dev[disk_idx];
2400         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2401                                   &sh->dev[s->failed_num[1]] };
2402
2403         /* is the data in this block needed, and can we get it? */
2404         if (!test_bit(R5_LOCKED, &dev->flags) &&
2405             !test_bit(R5_UPTODATE, &dev->flags) &&
2406             (dev->toread ||
2407              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2408              s->syncing || s->expanding ||
2409              (s->failed >= 1 && fdev[0]->toread) ||
2410              (s->failed >= 2 && fdev[1]->toread) ||
2411              (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2412               !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2413              (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2414                 /* we would like to get this block, possibly by computing it,
2415                  * otherwise read it if the backing disk is insync
2416                  */
2417                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2418                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2419                 if ((s->uptodate == disks - 1) &&
2420                     (s->failed && (disk_idx == s->failed_num[0] ||
2421                                    disk_idx == s->failed_num[1]))) {
2422                         /* have disk failed, and we're requested to fetch it;
2423                          * do compute it
2424                          */
2425                         pr_debug("Computing stripe %llu block %d\n",
2426                                (unsigned long long)sh->sector, disk_idx);
2427                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2428                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2429                         set_bit(R5_Wantcompute, &dev->flags);
2430                         sh->ops.target = disk_idx;
2431                         sh->ops.target2 = -1; /* no 2nd target */
2432                         s->req_compute = 1;
2433                         /* Careful: from this point on 'uptodate' is in the eye
2434                          * of raid_run_ops which services 'compute' operations
2435                          * before writes. R5_Wantcompute flags a block that will
2436                          * be R5_UPTODATE by the time it is needed for a
2437                          * subsequent operation.
2438                          */
2439                         s->uptodate++;
2440                         return 1;
2441                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2442                         /* Computing 2-failure is *very* expensive; only
2443                          * do it if failed >= 2
2444                          */
2445                         int other;
2446                         for (other = disks; other--; ) {
2447                                 if (other == disk_idx)
2448                                         continue;
2449                                 if (!test_bit(R5_UPTODATE,
2450                                       &sh->dev[other].flags))
2451                                         break;
2452                         }
2453                         BUG_ON(other < 0);
2454                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2455                                (unsigned long long)sh->sector,
2456                                disk_idx, other);
2457                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2458                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2459                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2460                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2461                         sh->ops.target = disk_idx;
2462                         sh->ops.target2 = other;
2463                         s->uptodate += 2;
2464                         s->req_compute = 1;
2465                         return 1;
2466                 } else if (test_bit(R5_Insync, &dev->flags)) {
2467                         set_bit(R5_LOCKED, &dev->flags);
2468                         set_bit(R5_Wantread, &dev->flags);
2469                         s->locked++;
2470                         pr_debug("Reading block %d (sync=%d)\n",
2471                                 disk_idx, s->syncing);
2472                 }
2473         }
2474
2475         return 0;
2476 }
2477
2478 /**
2479  * handle_stripe_fill - read or compute data to satisfy pending requests.
2480  */
2481 static void handle_stripe_fill(struct stripe_head *sh,
2482                                struct stripe_head_state *s,
2483                                int disks)
2484 {
2485         int i;
2486
2487         /* look for blocks to read/compute, skip this if a compute
2488          * is already in flight, or if the stripe contents are in the
2489          * midst of changing due to a write
2490          */
2491         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2492             !sh->reconstruct_state)
2493                 for (i = disks; i--; )
2494                         if (fetch_block(sh, s, i, disks))
2495                                 break;
2496         set_bit(STRIPE_HANDLE, &sh->state);
2497 }
2498
2499
2500 /* handle_stripe_clean_event
2501  * any written block on an uptodate or failed drive can be returned.
2502  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2503  * never LOCKED, so we don't need to test 'failed' directly.
2504  */
2505 static void handle_stripe_clean_event(struct r5conf *conf,
2506         struct stripe_head *sh, int disks, struct bio **return_bi)
2507 {
2508         int i;
2509         struct r5dev *dev;
2510
2511         for (i = disks; i--; )
2512                 if (sh->dev[i].written) {
2513                         dev = &sh->dev[i];
2514                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2515                                 test_bit(R5_UPTODATE, &dev->flags)) {
2516                                 /* We can return any write requests */
2517                                 struct bio *wbi, *wbi2;
2518                                 int bitmap_end = 0;
2519                                 pr_debug("Return write for disc %d\n", i);
2520                                 spin_lock_irq(&conf->device_lock);
2521                                 wbi = dev->written;
2522                                 dev->written = NULL;
2523                                 while (wbi && wbi->bi_sector <
2524                                         dev->sector + STRIPE_SECTORS) {
2525                                         wbi2 = r5_next_bio(wbi, dev->sector);
2526                                         if (!raid5_dec_bi_phys_segments(wbi)) {
2527                                                 md_write_end(conf->mddev);
2528                                                 wbi->bi_next = *return_bi;
2529                                                 *return_bi = wbi;
2530                                         }
2531                                         wbi = wbi2;
2532                                 }
2533                                 if (dev->towrite == NULL)
2534                                         bitmap_end = 1;
2535                                 spin_unlock_irq(&conf->device_lock);
2536                                 if (bitmap_end)
2537                                         bitmap_endwrite(conf->mddev->bitmap,
2538                                                         sh->sector,
2539                                                         STRIPE_SECTORS,
2540                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2541                                                         0);
2542                         }
2543                 }
2544
2545         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2546                 if (atomic_dec_and_test(&conf->pending_full_writes))
2547                         md_wakeup_thread(conf->mddev->thread);
2548 }
2549
2550 static void handle_stripe_dirtying(struct r5conf *conf,
2551                                    struct stripe_head *sh,
2552                                    struct stripe_head_state *s,
2553                                    int disks)
2554 {
2555         int rmw = 0, rcw = 0, i;
2556         if (conf->max_degraded == 2) {
2557                 /* RAID6 requires 'rcw' in current implementation
2558                  * Calculate the real rcw later - for now fake it
2559                  * look like rcw is cheaper
2560                  */
2561                 rcw = 1; rmw = 2;
2562         } else for (i = disks; i--; ) {
2563                 /* would I have to read this buffer for read_modify_write */
2564                 struct r5dev *dev = &sh->dev[i];
2565                 if ((dev->towrite || i == sh->pd_idx) &&
2566                     !test_bit(R5_LOCKED, &dev->flags) &&
2567                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2568                       test_bit(R5_Wantcompute, &dev->flags))) {
2569                         if (test_bit(R5_Insync, &dev->flags))
2570                                 rmw++;
2571                         else
2572                                 rmw += 2*disks;  /* cannot read it */
2573                 }
2574                 /* Would I have to read this buffer for reconstruct_write */
2575                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2576                     !test_bit(R5_LOCKED, &dev->flags) &&
2577                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2578                     test_bit(R5_Wantcompute, &dev->flags))) {
2579                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2580                         else
2581                                 rcw += 2*disks;
2582                 }
2583         }
2584         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2585                 (unsigned long long)sh->sector, rmw, rcw);
2586         set_bit(STRIPE_HANDLE, &sh->state);
2587         if (rmw < rcw && rmw > 0)
2588                 /* prefer read-modify-write, but need to get some data */
2589                 for (i = disks; i--; ) {
2590                         struct r5dev *dev = &sh->dev[i];
2591                         if ((dev->towrite || i == sh->pd_idx) &&
2592                             !test_bit(R5_LOCKED, &dev->flags) &&
2593                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2594                             test_bit(R5_Wantcompute, &dev->flags)) &&
2595                             test_bit(R5_Insync, &dev->flags)) {
2596                                 if (
2597                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2598                                         pr_debug("Read_old block "
2599                                                 "%d for r-m-w\n", i);
2600                                         set_bit(R5_LOCKED, &dev->flags);
2601                                         set_bit(R5_Wantread, &dev->flags);
2602                                         s->locked++;
2603                                 } else {
2604                                         set_bit(STRIPE_DELAYED, &sh->state);
2605                                         set_bit(STRIPE_HANDLE, &sh->state);
2606                                 }
2607                         }
2608                 }
2609         if (rcw <= rmw && rcw > 0) {
2610                 /* want reconstruct write, but need to get some data */
2611                 rcw = 0;
2612                 for (i = disks; i--; ) {
2613                         struct r5dev *dev = &sh->dev[i];
2614                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2615                             i != sh->pd_idx && i != sh->qd_idx &&
2616                             !test_bit(R5_LOCKED, &dev->flags) &&
2617                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2618                               test_bit(R5_Wantcompute, &dev->flags))) {
2619                                 rcw++;
2620                                 if (!test_bit(R5_Insync, &dev->flags))
2621                                         continue; /* it's a failed drive */
2622                                 if (
2623                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2624                                         pr_debug("Read_old block "
2625                                                 "%d for Reconstruct\n", i);
2626                                         set_bit(R5_LOCKED, &dev->flags);
2627                                         set_bit(R5_Wantread, &dev->flags);
2628                                         s->locked++;
2629                                 } else {
2630                                         set_bit(STRIPE_DELAYED, &sh->state);
2631                                         set_bit(STRIPE_HANDLE, &sh->state);
2632                                 }
2633                         }
2634                 }
2635         }
2636         /* now if nothing is locked, and if we have enough data,
2637          * we can start a write request
2638          */
2639         /* since handle_stripe can be called at any time we need to handle the
2640          * case where a compute block operation has been submitted and then a
2641          * subsequent call wants to start a write request.  raid_run_ops only
2642          * handles the case where compute block and reconstruct are requested
2643          * simultaneously.  If this is not the case then new writes need to be
2644          * held off until the compute completes.
2645          */
2646         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2647             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2648             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2649                 schedule_reconstruction(sh, s, rcw == 0, 0);
2650 }
2651
2652 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2653                                 struct stripe_head_state *s, int disks)
2654 {
2655         struct r5dev *dev = NULL;
2656
2657         set_bit(STRIPE_HANDLE, &sh->state);
2658
2659         switch (sh->check_state) {
2660         case check_state_idle:
2661                 /* start a new check operation if there are no failures */
2662                 if (s->failed == 0) {
2663                         BUG_ON(s->uptodate != disks);
2664                         sh->check_state = check_state_run;
2665                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2666                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2667                         s->uptodate--;
2668                         break;
2669                 }
2670                 dev = &sh->dev[s->failed_num[0]];
2671                 /* fall through */
2672         case check_state_compute_result:
2673                 sh->check_state = check_state_idle;
2674                 if (!dev)
2675                         dev = &sh->dev[sh->pd_idx];
2676
2677                 /* check that a write has not made the stripe insync */
2678                 if (test_bit(STRIPE_INSYNC, &sh->state))
2679                         break;
2680
2681                 /* either failed parity check, or recovery is happening */
2682                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2683                 BUG_ON(s->uptodate != disks);
2684
2685                 set_bit(R5_LOCKED, &dev->flags);
2686                 s->locked++;
2687                 set_bit(R5_Wantwrite, &dev->flags);
2688
2689                 clear_bit(STRIPE_DEGRADED, &sh->state);
2690                 set_bit(STRIPE_INSYNC, &sh->state);
2691                 break;
2692         case check_state_run:
2693                 break; /* we will be called again upon completion */
2694         case check_state_check_result:
2695                 sh->check_state = check_state_idle;
2696
2697                 /* if a failure occurred during the check operation, leave
2698                  * STRIPE_INSYNC not set and let the stripe be handled again
2699                  */
2700                 if (s->failed)
2701                         break;
2702
2703                 /* handle a successful check operation, if parity is correct
2704                  * we are done.  Otherwise update the mismatch count and repair
2705                  * parity if !MD_RECOVERY_CHECK
2706                  */
2707                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2708                         /* parity is correct (on disc,
2709                          * not in buffer any more)
2710                          */
2711                         set_bit(STRIPE_INSYNC, &sh->state);
2712                 else {
2713                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2714                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2715                                 /* don't try to repair!! */
2716                                 set_bit(STRIPE_INSYNC, &sh->state);
2717                         else {
2718                                 sh->check_state = check_state_compute_run;
2719                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2720                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2721                                 set_bit(R5_Wantcompute,
2722                                         &sh->dev[sh->pd_idx].flags);
2723                                 sh->ops.target = sh->pd_idx;
2724                                 sh->ops.target2 = -1;
2725                                 s->uptodate++;
2726                         }
2727                 }
2728                 break;
2729         case check_state_compute_run:
2730                 break;
2731         default:
2732                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2733                        __func__, sh->check_state,
2734                        (unsigned long long) sh->sector);
2735                 BUG();
2736         }
2737 }
2738
2739
2740 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
2741                                   struct stripe_head_state *s,
2742                                   int disks)
2743 {
2744         int pd_idx = sh->pd_idx;
2745         int qd_idx = sh->qd_idx;
2746         struct r5dev *dev;
2747
2748         set_bit(STRIPE_HANDLE, &sh->state);
2749
2750         BUG_ON(s->failed > 2);
2751
2752         /* Want to check and possibly repair P and Q.
2753          * However there could be one 'failed' device, in which
2754          * case we can only check one of them, possibly using the
2755          * other to generate missing data
2756          */
2757
2758         switch (sh->check_state) {
2759         case check_state_idle:
2760                 /* start a new check operation if there are < 2 failures */
2761                 if (s->failed == s->q_failed) {
2762                         /* The only possible failed device holds Q, so it
2763                          * makes sense to check P (If anything else were failed,
2764                          * we would have used P to recreate it).
2765                          */
2766                         sh->check_state = check_state_run;
2767                 }
2768                 if (!s->q_failed && s->failed < 2) {
2769                         /* Q is not failed, and we didn't use it to generate
2770                          * anything, so it makes sense to check it
2771                          */
2772                         if (sh->check_state == check_state_run)
2773                                 sh->check_state = check_state_run_pq;
2774                         else
2775                                 sh->check_state = check_state_run_q;
2776                 }
2777
2778                 /* discard potentially stale zero_sum_result */
2779                 sh->ops.zero_sum_result = 0;
2780
2781                 if (sh->check_state == check_state_run) {
2782                         /* async_xor_zero_sum destroys the contents of P */
2783                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2784                         s->uptodate--;
2785                 }
2786                 if (sh->check_state >= check_state_run &&
2787                     sh->check_state <= check_state_run_pq) {
2788                         /* async_syndrome_zero_sum preserves P and Q, so
2789                          * no need to mark them !uptodate here
2790                          */
2791                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2792                         break;
2793                 }
2794
2795                 /* we have 2-disk failure */
2796                 BUG_ON(s->failed != 2);
2797                 /* fall through */
2798         case check_state_compute_result:
2799                 sh->check_state = check_state_idle;
2800
2801                 /* check that a write has not made the stripe insync */
2802                 if (test_bit(STRIPE_INSYNC, &sh->state))
2803                         break;
2804
2805                 /* now write out any block on a failed drive,
2806                  * or P or Q if they were recomputed
2807                  */
2808                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2809                 if (s->failed == 2) {
2810                         dev = &sh->dev[s->failed_num[1]];
2811                         s->locked++;
2812                         set_bit(R5_LOCKED, &dev->flags);
2813                         set_bit(R5_Wantwrite, &dev->flags);
2814                 }
2815                 if (s->failed >= 1) {
2816                         dev = &sh->dev[s->failed_num[0]];
2817                         s->locked++;
2818                         set_bit(R5_LOCKED, &dev->flags);
2819                         set_bit(R5_Wantwrite, &dev->flags);
2820                 }
2821                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2822                         dev = &sh->dev[pd_idx];
2823                         s->locked++;
2824                         set_bit(R5_LOCKED, &dev->flags);
2825                         set_bit(R5_Wantwrite, &dev->flags);
2826                 }
2827                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2828                         dev = &sh->dev[qd_idx];
2829                         s->locked++;
2830                         set_bit(R5_LOCKED, &dev->flags);
2831                         set_bit(R5_Wantwrite, &dev->flags);
2832                 }
2833                 clear_bit(STRIPE_DEGRADED, &sh->state);
2834
2835                 set_bit(STRIPE_INSYNC, &sh->state);
2836                 break;
2837         case check_state_run:
2838         case check_state_run_q:
2839         case check_state_run_pq:
2840                 break; /* we will be called again upon completion */
2841         case check_state_check_result:
2842                 sh->check_state = check_state_idle;
2843
2844                 /* handle a successful check operation, if parity is correct
2845                  * we are done.  Otherwise update the mismatch count and repair
2846                  * parity if !MD_RECOVERY_CHECK
2847                  */
2848                 if (sh->ops.zero_sum_result == 0) {
2849                         /* both parities are correct */
2850                         if (!s->failed)
2851                                 set_bit(STRIPE_INSYNC, &sh->state);
2852                         else {
2853                                 /* in contrast to the raid5 case we can validate
2854                                  * parity, but still have a failure to write
2855                                  * back
2856                                  */
2857                                 sh->check_state = check_state_compute_result;
2858                                 /* Returning at this point means that we may go
2859                                  * off and bring p and/or q uptodate again so
2860                                  * we make sure to check zero_sum_result again
2861                                  * to verify if p or q need writeback
2862                                  */
2863                         }
2864                 } else {
2865                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2866                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2867                                 /* don't try to repair!! */
2868                                 set_bit(STRIPE_INSYNC, &sh->state);
2869                         else {
2870                                 int *target = &sh->ops.target;
2871
2872                                 sh->ops.target = -1;
2873                                 sh->ops.target2 = -1;
2874                                 sh->check_state = check_state_compute_run;
2875                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2876                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2877                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2878                                         set_bit(R5_Wantcompute,
2879                                                 &sh->dev[pd_idx].flags);
2880                                         *target = pd_idx;
2881                                         target = &sh->ops.target2;
2882                                         s->uptodate++;
2883                                 }
2884                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2885                                         set_bit(R5_Wantcompute,
2886                                                 &sh->dev[qd_idx].flags);
2887                                         *target = qd_idx;
2888                                         s->uptodate++;
2889                                 }
2890                         }
2891                 }
2892                 break;
2893         case check_state_compute_run:
2894                 break;
2895         default:
2896                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2897                        __func__, sh->check_state,
2898                        (unsigned long long) sh->sector);
2899                 BUG();
2900         }
2901 }
2902
2903 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
2904 {
2905         int i;
2906
2907         /* We have read all the blocks in this stripe and now we need to
2908          * copy some of them into a target stripe for expand.
2909          */
2910         struct dma_async_tx_descriptor *tx = NULL;
2911         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2912         for (i = 0; i < sh->disks; i++)
2913                 if (i != sh->pd_idx && i != sh->qd_idx) {
2914                         int dd_idx, j;
2915                         struct stripe_head *sh2;
2916                         struct async_submit_ctl submit;
2917
2918                         sector_t bn = compute_blocknr(sh, i, 1);
2919                         sector_t s = raid5_compute_sector(conf, bn, 0,
2920                                                           &dd_idx, NULL);
2921                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
2922                         if (sh2 == NULL)
2923                                 /* so far only the early blocks of this stripe
2924                                  * have been requested.  When later blocks
2925                                  * get requested, we will try again
2926                                  */
2927                                 continue;
2928                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2929                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2930                                 /* must have already done this block */
2931                                 release_stripe(sh2);
2932                                 continue;
2933                         }
2934
2935                         /* place all the copies on one channel */
2936                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2937                         tx = async_memcpy(sh2->dev[dd_idx].page,
2938                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
2939                                           &submit);
2940
2941                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2942                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2943                         for (j = 0; j < conf->raid_disks; j++)
2944                                 if (j != sh2->pd_idx &&
2945                                     j != sh2->qd_idx &&
2946                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
2947                                         break;
2948                         if (j == conf->raid_disks) {
2949                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2950                                 set_bit(STRIPE_HANDLE, &sh2->state);
2951                         }
2952                         release_stripe(sh2);
2953
2954                 }
2955         /* done submitting copies, wait for them to complete */
2956         if (tx) {
2957                 async_tx_ack(tx);
2958                 dma_wait_for_async_tx(tx);
2959         }
2960 }
2961
2962
2963 /*
2964  * handle_stripe - do things to a stripe.
2965  *
2966  * We lock the stripe and then examine the state of various bits
2967  * to see what needs to be done.
2968  * Possible results:
2969  *    return some read request which now have data
2970  *    return some write requests which are safely on disc
2971  *    schedule a read on some buffers
2972  *    schedule a write of some buffers
2973  *    return confirmation of parity correctness
2974  *
2975  * buffers are taken off read_list or write_list, and bh_cache buffers
2976  * get BH_Lock set before the stripe lock is released.
2977  *
2978  */
2979
2980 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
2981 {
2982         struct r5conf *conf = sh->raid_conf;
2983         int disks = sh->disks;
2984         struct r5dev *dev;
2985         int i;
2986
2987         memset(s, 0, sizeof(*s));
2988
2989         s->syncing = test_bit(STRIPE_SYNCING, &sh->state);
2990         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2991         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2992         s->failed_num[0] = -1;
2993         s->failed_num[1] = -1;
2994
2995         /* Now to look around and see what can be done */
2996         rcu_read_lock();
2997         spin_lock_irq(&conf->device_lock);
2998         for (i=disks; i--; ) {
2999                 struct md_rdev *rdev;
3000                 sector_t first_bad;
3001                 int bad_sectors;
3002                 int is_bad = 0;
3003
3004                 dev = &sh->dev[i];
3005
3006                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3007                         i, dev->flags, dev->toread, dev->towrite, dev->written);
3008                 /* maybe we can reply to a read
3009                  *
3010                  * new wantfill requests are only permitted while
3011                  * ops_complete_biofill is guaranteed to be inactive
3012                  */
3013                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3014                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3015                         set_bit(R5_Wantfill, &dev->flags);
3016
3017                 /* now count some things */
3018                 if (test_bit(R5_LOCKED, &dev->flags))
3019                         s->locked++;
3020                 if (test_bit(R5_UPTODATE, &dev->flags))
3021                         s->uptodate++;
3022                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3023                         s->compute++;
3024                         BUG_ON(s->compute > 2);
3025                 }
3026
3027                 if (test_bit(R5_Wantfill, &dev->flags))
3028                         s->to_fill++;
3029                 else if (dev->toread)
3030                         s->to_read++;
3031                 if (dev->towrite) {
3032                         s->to_write++;
3033                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3034                                 s->non_overwrite++;
3035                 }
3036                 if (dev->written)
3037                         s->written++;
3038                 rdev = rcu_dereference(conf->disks[i].rdev);
3039                 if (rdev && test_bit(Faulty, &rdev->flags))
3040                         rdev = NULL;
3041                 if (rdev) {
3042                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3043                                              &first_bad, &bad_sectors);
3044                         if (s->blocked_rdev == NULL
3045                             && (test_bit(Blocked, &rdev->flags)
3046                                 || is_bad < 0)) {
3047                                 if (is_bad < 0)
3048                                         set_bit(BlockedBadBlocks,
3049                                                 &rdev->flags);
3050                                 s->blocked_rdev = rdev;
3051                                 atomic_inc(&rdev->nr_pending);
3052                         }
3053                 }
3054                 clear_bit(R5_Insync, &dev->flags);
3055                 if (!rdev)
3056                         /* Not in-sync */;
3057                 else if (is_bad) {
3058                         /* also not in-sync */
3059                         if (!test_bit(WriteErrorSeen, &rdev->flags)) {
3060                                 /* treat as in-sync, but with a read error
3061                                  * which we can now try to correct
3062                                  */
3063                                 set_bit(R5_Insync, &dev->flags);
3064                                 set_bit(R5_ReadError, &dev->flags);
3065                         }
3066                 } else if (test_bit(In_sync, &rdev->flags))
3067                         set_bit(R5_Insync, &dev->flags);
3068                 else {
3069                         /* in sync if before recovery_offset */
3070                         if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3071                                 set_bit(R5_Insync, &dev->flags);
3072                 }
3073                 if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3074                         clear_bit(R5_Insync, &dev->flags);
3075                         if (!test_bit(Faulty, &rdev->flags)) {
3076                                 s->handle_bad_blocks = 1;
3077                                 atomic_inc(&rdev->nr_pending);
3078                         } else
3079                                 clear_bit(R5_WriteError, &dev->flags);
3080                 }
3081                 if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3082                         if (!test_bit(Faulty, &rdev->flags)) {
3083                                 s->handle_bad_blocks = 1;
3084                                 atomic_inc(&rdev->nr_pending);
3085                         } else
3086                                 clear_bit(R5_MadeGood, &dev->flags);
3087                 }
3088                 if (!test_bit(R5_Insync, &dev->flags)) {
3089                         /* The ReadError flag will just be confusing now */
3090                         clear_bit(R5_ReadError, &dev->flags);
3091                         clear_bit(R5_ReWrite, &dev->flags);
3092                 }
3093                 if (test_bit(R5_ReadError, &dev->flags))
3094                         clear_bit(R5_Insync, &dev->flags);
3095                 if (!test_bit(R5_Insync, &dev->flags)) {
3096                         if (s->failed < 2)
3097                                 s->failed_num[s->failed] = i;
3098                         s->failed++;
3099                 }
3100         }
3101         spin_unlock_irq(&conf->device_lock);
3102         rcu_read_unlock();
3103 }
3104
3105 static void handle_stripe(struct stripe_head *sh)
3106 {
3107         struct stripe_head_state s;
3108         struct r5conf *conf = sh->raid_conf;
3109         int i;
3110         int prexor;
3111         int disks = sh->disks;
3112         struct r5dev *pdev, *qdev;
3113
3114         clear_bit(STRIPE_HANDLE, &sh->state);
3115         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3116                 /* already being handled, ensure it gets handled
3117                  * again when current action finishes */
3118                 set_bit(STRIPE_HANDLE, &sh->state);
3119                 return;
3120         }
3121
3122         if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3123                 set_bit(STRIPE_SYNCING, &sh->state);
3124                 clear_bit(STRIPE_INSYNC, &sh->state);
3125         }
3126         clear_bit(STRIPE_DELAYED, &sh->state);
3127
3128         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3129                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3130                (unsigned long long)sh->sector, sh->state,
3131                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3132                sh->check_state, sh->reconstruct_state);
3133
3134         analyse_stripe(sh, &s);
3135
3136         if (s.handle_bad_blocks) {
3137                 set_bit(STRIPE_HANDLE, &sh->state);
3138                 goto finish;
3139         }
3140
3141         if (unlikely(s.blocked_rdev)) {
3142                 if (s.syncing || s.expanding || s.expanded ||
3143                     s.to_write || s.written) {
3144                         set_bit(STRIPE_HANDLE, &sh->state);
3145                         goto finish;
3146                 }
3147                 /* There is nothing for the blocked_rdev to block */
3148                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3149                 s.blocked_rdev = NULL;
3150         }
3151
3152         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3153                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3154                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3155         }
3156
3157         pr_debug("locked=%d uptodate=%d to_read=%d"
3158                " to_write=%d failed=%d failed_num=%d,%d\n",
3159                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3160                s.failed_num[0], s.failed_num[1]);
3161         /* check if the array has lost more than max_degraded devices and,
3162          * if so, some requests might need to be failed.
3163          */
3164         if (s.failed > conf->max_degraded) {
3165                 sh->check_state = 0;
3166                 sh->reconstruct_state = 0;
3167                 if (s.to_read+s.to_write+s.written)
3168                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3169                 if (s.syncing)
3170                         handle_failed_sync(conf, sh, &s);
3171         }
3172
3173         /*
3174          * might be able to return some write requests if the parity blocks
3175          * are safe, or on a failed drive
3176          */
3177         pdev = &sh->dev[sh->pd_idx];
3178         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3179                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3180         qdev = &sh->dev[sh->qd_idx];
3181         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3182                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3183                 || conf->level < 6;
3184
3185         if (s.written &&
3186             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3187                              && !test_bit(R5_LOCKED, &pdev->flags)
3188                              && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3189             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3190                              && !test_bit(R5_LOCKED, &qdev->flags)
3191                              && test_bit(R5_UPTODATE, &qdev->flags)))))
3192                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3193
3194         /* Now we might consider reading some blocks, either to check/generate
3195          * parity, or to satisfy requests
3196          * or to load a block that is being partially written.
3197          */
3198         if (s.to_read || s.non_overwrite
3199             || (conf->level == 6 && s.to_write && s.failed)
3200             || (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3201                 handle_stripe_fill(sh, &s, disks);
3202
3203         /* Now we check to see if any write operations have recently
3204          * completed
3205          */
3206         prexor = 0;
3207         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3208                 prexor = 1;
3209         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3210             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3211                 sh->reconstruct_state = reconstruct_state_idle;
3212
3213                 /* All the 'written' buffers and the parity block are ready to
3214                  * be written back to disk
3215                  */
3216                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3217                 BUG_ON(sh->qd_idx >= 0 &&
3218                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
3219                 for (i = disks; i--; ) {
3220                         struct r5dev *dev = &sh->dev[i];
3221                         if (test_bit(R5_LOCKED, &dev->flags) &&
3222                                 (i == sh->pd_idx || i == sh->qd_idx ||
3223                                  dev->written)) {
3224                                 pr_debug("Writing block %d\n", i);
3225                                 set_bit(R5_Wantwrite, &dev->flags);
3226                                 if (prexor)
3227                                         continue;
3228                                 if (!test_bit(R5_Insync, &dev->flags) ||
3229                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
3230                                      s.failed == 0))
3231                                         set_bit(STRIPE_INSYNC, &sh->state);
3232                         }
3233                 }
3234                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3235                         s.dec_preread_active = 1;
3236         }
3237
3238         /* Now to consider new write requests and what else, if anything
3239          * should be read.  We do not handle new writes when:
3240          * 1/ A 'write' operation (copy+xor) is already in flight.
3241          * 2/ A 'check' operation is in flight, as it may clobber the parity
3242          *    block.
3243          */
3244         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3245                 handle_stripe_dirtying(conf, sh, &s, disks);
3246
3247         /* maybe we need to check and possibly fix the parity for this stripe
3248          * Any reads will already have been scheduled, so we just see if enough
3249          * data is available.  The parity check is held off while parity
3250          * dependent operations are in flight.
3251          */
3252         if (sh->check_state ||
3253             (s.syncing && s.locked == 0 &&
3254              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3255              !test_bit(STRIPE_INSYNC, &sh->state))) {
3256                 if (conf->level == 6)
3257                         handle_parity_checks6(conf, sh, &s, disks);
3258                 else
3259                         handle_parity_checks5(conf, sh, &s, disks);
3260         }
3261
3262         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3263                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3264                 clear_bit(STRIPE_SYNCING, &sh->state);
3265         }
3266
3267         /* If the failed drives are just a ReadError, then we might need
3268          * to progress the repair/check process
3269          */
3270         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3271                 for (i = 0; i < s.failed; i++) {
3272                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
3273                         if (test_bit(R5_ReadError, &dev->flags)
3274                             && !test_bit(R5_LOCKED, &dev->flags)
3275                             && test_bit(R5_UPTODATE, &dev->flags)
3276                                 ) {
3277                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3278                                         set_bit(R5_Wantwrite, &dev->flags);
3279                                         set_bit(R5_ReWrite, &dev->flags);
3280                                         set_bit(R5_LOCKED, &dev->flags);
3281                                         s.locked++;
3282                                 } else {
3283                                         /* let's read it back */
3284                                         set_bit(R5_Wantread, &dev->flags);
3285                                         set_bit(R5_LOCKED, &dev->flags);
3286                                         s.locked++;
3287                                 }
3288                         }
3289                 }
3290
3291
3292         /* Finish reconstruct operations initiated by the expansion process */
3293         if (sh->reconstruct_state == reconstruct_state_result) {
3294                 struct stripe_head *sh_src
3295                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3296                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3297                         /* sh cannot be written until sh_src has been read.
3298                          * so arrange for sh to be delayed a little
3299                          */
3300                         set_bit(STRIPE_DELAYED, &sh->state);
3301                         set_bit(STRIPE_HANDLE, &sh->state);
3302                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3303                                               &sh_src->state))
3304                                 atomic_inc(&conf->preread_active_stripes);
3305                         release_stripe(sh_src);
3306                         goto finish;
3307                 }
3308                 if (sh_src)
3309                         release_stripe(sh_src);
3310
3311                 sh->reconstruct_state = reconstruct_state_idle;
3312                 clear_bit(STRIPE_EXPANDING, &sh->state);
3313                 for (i = conf->raid_disks; i--; ) {
3314                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3315                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3316                         s.locked++;
3317                 }
3318         }
3319
3320         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3321             !sh->reconstruct_state) {
3322                 /* Need to write out all blocks after computing parity */
3323                 sh->disks = conf->raid_disks;
3324                 stripe_set_idx(sh->sector, conf, 0, sh);
3325                 schedule_reconstruction(sh, &s, 1, 1);
3326         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3327                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3328                 atomic_dec(&conf->reshape_stripes);
3329                 wake_up(&conf->wait_for_overlap);
3330                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3331         }
3332
3333         if (s.expanding && s.locked == 0 &&
3334             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3335                 handle_stripe_expansion(conf, sh);
3336
3337 finish:
3338         /* wait for this device to become unblocked */
3339         if (conf->mddev->external && unlikely(s.blocked_rdev))
3340                 md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
3341
3342         if (s.handle_bad_blocks)
3343                 for (i = disks; i--; ) {
3344                         struct md_rdev *rdev;
3345                         struct r5dev *dev = &sh->dev[i];
3346                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3347                                 /* We own a safe reference to the rdev */
3348                                 rdev = conf->disks[i].rdev;
3349                                 if (!rdev_set_badblocks(rdev, sh->sector,
3350                                                         STRIPE_SECTORS, 0))
3351                                         md_error(conf->mddev, rdev);
3352                                 rdev_dec_pending(rdev, conf->mddev);
3353                         }
3354                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3355                                 rdev = conf->disks[i].rdev;
3356                                 rdev_clear_badblocks(rdev, sh->sector,
3357                                                      STRIPE_SECTORS);
3358                                 rdev_dec_pending(rdev, conf->mddev);
3359                         }
3360                 }
3361
3362         if (s.ops_request)
3363                 raid_run_ops(sh, s.ops_request);
3364
3365         ops_run_io(sh, &s);
3366
3367         if (s.dec_preread_active) {
3368                 /* We delay this until after ops_run_io so that if make_request
3369                  * is waiting on a flush, it won't continue until the writes
3370                  * have actually been submitted.
3371                  */
3372                 atomic_dec(&conf->preread_active_stripes);
3373                 if (atomic_read(&conf->preread_active_stripes) <
3374                     IO_THRESHOLD)
3375                         md_wakeup_thread(conf->mddev->thread);
3376         }
3377
3378         return_io(s.return_bi);
3379
3380         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3381 }
3382
3383 static void raid5_activate_delayed(struct r5conf *conf)
3384 {
3385         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3386                 while (!list_empty(&conf->delayed_list)) {
3387                         struct list_head *l = conf->delayed_list.next;
3388                         struct stripe_head *sh;
3389                         sh = list_entry(l, struct stripe_head, lru);
3390                         list_del_init(l);
3391                         clear_bit(STRIPE_DELAYED, &sh->state);
3392                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3393                                 atomic_inc(&conf->preread_active_stripes);
3394                         list_add_tail(&sh->lru, &conf->hold_list);
3395                 }
3396         }
3397 }
3398
3399 static void activate_bit_delay(struct r5conf *conf)
3400 {
3401         /* device_lock is held */
3402         struct list_head head;
3403         list_add(&head, &conf->bitmap_list);
3404         list_del_init(&conf->bitmap_list);
3405         while (!list_empty(&head)) {
3406                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3407                 list_del_init(&sh->lru);
3408                 atomic_inc(&sh->count);
3409                 __release_stripe(conf, sh);
3410         }
3411 }
3412
3413 int md_raid5_congested(struct mddev *mddev, int bits)
3414 {
3415         struct r5conf *conf = mddev->private;
3416
3417         /* No difference between reads and writes.  Just check
3418          * how busy the stripe_cache is
3419          */
3420
3421         if (conf->inactive_blocked)
3422                 return 1;
3423         if (conf->quiesce)
3424                 return 1;
3425         if (list_empty_careful(&conf->inactive_list))
3426                 return 1;
3427
3428         return 0;
3429 }
3430 EXPORT_SYMBOL_GPL(md_raid5_congested);
3431
3432 static int raid5_congested(void *data, int bits)
3433 {
3434         struct mddev *mddev = data;
3435
3436         return mddev_congested(mddev, bits) ||
3437                 md_raid5_congested(mddev, bits);
3438 }
3439
3440 /* We want read requests to align with chunks where possible,
3441  * but write requests don't need to.
3442  */
3443 static int raid5_mergeable_bvec(struct request_queue *q,
3444                                 struct bvec_merge_data *bvm,
3445                                 struct bio_vec *biovec)
3446 {
3447         struct mddev *mddev = q->queuedata;
3448         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3449         int max;
3450         unsigned int chunk_sectors = mddev->chunk_sectors;
3451         unsigned int bio_sectors = bvm->bi_size >> 9;
3452
3453         if ((bvm->bi_rw & 1) == WRITE)
3454                 return biovec->bv_len; /* always allow writes to be mergeable */
3455
3456         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3457                 chunk_sectors = mddev->new_chunk_sectors;
3458         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3459         if (max < 0) max = 0;
3460         if (max <= biovec->bv_len && bio_sectors == 0)
3461                 return biovec->bv_len;
3462         else
3463                 return max;
3464 }
3465
3466
3467 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3468 {
3469         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3470         unsigned int chunk_sectors = mddev->chunk_sectors;
3471         unsigned int bio_sectors = bio->bi_size >> 9;
3472
3473         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3474                 chunk_sectors = mddev->new_chunk_sectors;
3475         return  chunk_sectors >=
3476                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3477 }
3478
3479 /*
3480  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3481  *  later sampled by raid5d.
3482  */
3483 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3484 {
3485         unsigned long flags;
3486
3487         spin_lock_irqsave(&conf->device_lock, flags);
3488
3489         bi->bi_next = conf->retry_read_aligned_list;
3490         conf->retry_read_aligned_list = bi;
3491
3492         spin_unlock_irqrestore(&conf->device_lock, flags);
3493         md_wakeup_thread(conf->mddev->thread);
3494 }
3495
3496
3497 static struct bio *remove_bio_from_retry(struct r5conf *conf)
3498 {
3499         struct bio *bi;
3500
3501         bi = conf->retry_read_aligned;
3502         if (bi) {
3503                 conf->retry_read_aligned = NULL;
3504                 return bi;
3505         }
3506         bi = conf->retry_read_aligned_list;
3507         if(bi) {
3508                 conf->retry_read_aligned_list = bi->bi_next;
3509                 bi->bi_next = NULL;
3510                 /*
3511                  * this sets the active strip count to 1 and the processed
3512                  * strip count to zero (upper 8 bits)
3513                  */
3514                 bi->bi_phys_segments = 1; /* biased count of active stripes */
3515         }
3516
3517         return bi;
3518 }
3519
3520
3521 /*
3522  *  The "raid5_align_endio" should check if the read succeeded and if it
3523  *  did, call bio_endio on the original bio (having bio_put the new bio
3524  *  first).
3525  *  If the read failed..
3526  */
3527 static void raid5_align_endio(struct bio *bi, int error)
3528 {
3529         struct bio* raid_bi  = bi->bi_private;
3530         struct mddev *mddev;
3531         struct r5conf *conf;
3532         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3533         struct md_rdev *rdev;
3534
3535         bio_put(bi);
3536
3537         rdev = (void*)raid_bi->bi_next;
3538         raid_bi->bi_next = NULL;
3539         mddev = rdev->mddev;
3540         conf = mddev->private;
3541
3542         rdev_dec_pending(rdev, conf->mddev);
3543
3544         if (!error && uptodate) {
3545                 bio_endio(raid_bi, 0);
3546                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3547                         wake_up(&conf->wait_for_stripe);
3548                 return;
3549         }
3550
3551
3552         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3553
3554         add_bio_to_retry(raid_bi, conf);
3555 }
3556
3557 static int bio_fits_rdev(struct bio *bi)
3558 {
3559         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3560
3561         if ((bi->bi_size>>9) > queue_max_sectors(q))
3562                 return 0;
3563         blk_recount_segments(q, bi);
3564         if (bi->bi_phys_segments > queue_max_segments(q))
3565                 return 0;
3566
3567         if (q->merge_bvec_fn)
3568                 /* it's too hard to apply the merge_bvec_fn at this stage,
3569                  * just just give up
3570                  */
3571                 return 0;
3572
3573         return 1;
3574 }
3575
3576
3577 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3578 {
3579         struct r5conf *conf = mddev->private;
3580         int dd_idx;
3581         struct bio* align_bi;
3582         struct md_rdev *rdev;
3583
3584         if (!in_chunk_boundary(mddev, raid_bio)) {
3585                 pr_debug("chunk_aligned_read : non aligned\n");
3586                 return 0;
3587         }
3588         /*
3589          * use bio_clone_mddev to make a copy of the bio
3590          */
3591         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3592         if (!align_bi)
3593                 return 0;
3594         /*
3595          *   set bi_end_io to a new function, and set bi_private to the
3596          *     original bio.
3597          */
3598         align_bi->bi_end_io  = raid5_align_endio;
3599         align_bi->bi_private = raid_bio;
3600         /*
3601          *      compute position
3602          */
3603         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3604                                                     0,
3605                                                     &dd_idx, NULL);
3606
3607         rcu_read_lock();
3608         rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3609         if (rdev && test_bit(In_sync, &rdev->flags)) {
3610                 sector_t first_bad;
3611                 int bad_sectors;
3612
3613                 atomic_inc(&rdev->nr_pending);
3614                 rcu_read_unlock();
3615                 raid_bio->bi_next = (void*)rdev;
3616                 align_bi->bi_bdev =  rdev->bdev;
3617                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3618                 align_bi->bi_sector += rdev->data_offset;
3619
3620                 if (!bio_fits_rdev(align_bi) ||
3621                     is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
3622                                 &first_bad, &bad_sectors)) {
3623                         /* too big in some way, or has a known bad block */
3624                         bio_put(align_bi);
3625                         rdev_dec_pending(rdev, mddev);
3626                         return 0;
3627                 }
3628
3629                 spin_lock_irq(&conf->device_lock);
3630                 wait_event_lock_irq(conf->wait_for_stripe,
3631                                     conf->quiesce == 0,
3632                                     conf->device_lock, /* nothing */);
3633                 atomic_inc(&conf->active_aligned_reads);
3634                 spin_unlock_irq(&conf->device_lock);
3635
3636                 generic_make_request(align_bi);
3637                 return 1;
3638         } else {
3639                 rcu_read_unlock();
3640                 bio_put(align_bi);
3641                 return 0;
3642         }
3643 }
3644
3645 /* __get_priority_stripe - get the next stripe to process
3646  *
3647  * Full stripe writes are allowed to pass preread active stripes up until
3648  * the bypass_threshold is exceeded.  In general the bypass_count
3649  * increments when the handle_list is handled before the hold_list; however, it
3650  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3651  * stripe with in flight i/o.  The bypass_count will be reset when the
3652  * head of the hold_list has changed, i.e. the head was promoted to the
3653  * handle_list.
3654  */
3655 static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
3656 {
3657         struct stripe_head *sh;
3658
3659         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3660                   __func__,
3661                   list_empty(&conf->handle_list) ? "empty" : "busy",
3662                   list_empty(&conf->hold_list) ? "empty" : "busy",
3663                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
3664
3665         if (!list_empty(&conf->handle_list)) {
3666                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3667
3668                 if (list_empty(&conf->hold_list))
3669                         conf->bypass_count = 0;
3670                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3671                         if (conf->hold_list.next == conf->last_hold)
3672                                 conf->bypass_count++;
3673                         else {
3674                                 conf->last_hold = conf->hold_list.next;
3675                                 conf->bypass_count -= conf->bypass_threshold;
3676                                 if (conf->bypass_count < 0)
3677                                         conf->bypass_count = 0;
3678                         }
3679                 }
3680         } else if (!list_empty(&conf->hold_list) &&
3681                    ((conf->bypass_threshold &&
3682                      conf->bypass_count > conf->bypass_threshold) ||
3683                     atomic_read(&conf->pending_full_writes) == 0)) {
3684                 sh = list_entry(conf->hold_list.next,
3685                                 typeof(*sh), lru);
3686                 conf->bypass_count -= conf->bypass_threshold;
3687                 if (conf->bypass_count < 0)
3688                         conf->bypass_count = 0;
3689         } else
3690                 return NULL;
3691
3692         list_del_init(&sh->lru);
3693         atomic_inc(&sh->count);
3694         BUG_ON(atomic_read(&sh->count) != 1);
3695         return sh;
3696 }
3697
3698 static void make_request(struct mddev *mddev, struct bio * bi)
3699 {
3700         struct r5conf *conf = mddev->private;
3701         int dd_idx;
3702         sector_t new_sector;
3703         sector_t logical_sector, last_sector;
3704         struct stripe_head *sh;
3705         const int rw = bio_data_dir(bi);
3706         int remaining;
3707         int plugged;
3708
3709         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3710                 md_flush_request(mddev, bi);
3711                 return;
3712         }
3713
3714         md_write_start(mddev, bi);
3715
3716         if (rw == READ &&
3717              mddev->reshape_position == MaxSector &&
3718              chunk_aligned_read(mddev,bi))
3719                 return;
3720
3721         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3722         last_sector = bi->bi_sector + (bi->bi_size>>9);
3723         bi->bi_next = NULL;
3724         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
3725
3726         plugged = mddev_check_plugged(mddev);
3727         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3728                 DEFINE_WAIT(w);
3729                 int disks, data_disks;
3730                 int previous;
3731
3732         retry:
3733                 previous = 0;
3734                 disks = conf->raid_disks;
3735                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3736                 if (unlikely(conf->reshape_progress != MaxSector)) {
3737                         /* spinlock is needed as reshape_progress may be
3738                          * 64bit on a 32bit platform, and so it might be
3739                          * possible to see a half-updated value
3740                          * Of course reshape_progress could change after
3741                          * the lock is dropped, so once we get a reference
3742                          * to the stripe that we think it is, we will have
3743                          * to check again.
3744                          */
3745                         spin_lock_irq(&conf->device_lock);
3746                         if (mddev->delta_disks < 0
3747                             ? logical_sector < conf->reshape_progress
3748                             : logical_sector >= conf->reshape_progress) {
3749                                 disks = conf->previous_raid_disks;
3750                                 previous = 1;
3751                         } else {
3752                                 if (mddev->delta_disks < 0
3753                                     ? logical_sector < conf->reshape_safe
3754                                     : logical_sector >= conf->reshape_safe) {
3755                                         spin_unlock_irq(&conf->device_lock);
3756                                         schedule();
3757                                         goto retry;
3758                                 }
3759                         }
3760                         spin_unlock_irq(&conf->device_lock);
3761                 }
3762                 data_disks = disks - conf->max_degraded;
3763
3764                 new_sector = raid5_compute_sector(conf, logical_sector,
3765                                                   previous,
3766                                                   &dd_idx, NULL);
3767                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
3768                         (unsigned long long)new_sector, 
3769                         (unsigned long long)logical_sector);
3770
3771                 sh = get_active_stripe(conf, new_sector, previous,
3772                                        (bi->bi_rw&RWA_MASK), 0);
3773                 if (sh) {
3774                         if (unlikely(previous)) {
3775                                 /* expansion might have moved on while waiting for a
3776                                  * stripe, so we must do the range check again.
3777                                  * Expansion could still move past after this
3778                                  * test, but as we are holding a reference to
3779                                  * 'sh', we know that if that happens,
3780                                  *  STRIPE_EXPANDING will get set and the expansion
3781                                  * won't proceed until we finish with the stripe.
3782                                  */
3783                                 int must_retry = 0;
3784                                 spin_lock_irq(&conf->device_lock);
3785                                 if (mddev->delta_disks < 0
3786                                     ? logical_sector >= conf->reshape_progress
3787                                     : logical_sector < conf->reshape_progress)
3788                                         /* mismatch, need to try again */
3789                                         must_retry = 1;
3790                                 spin_unlock_irq(&conf->device_lock);
3791                                 if (must_retry) {
3792                                         release_stripe(sh);
3793                                         schedule();
3794                                         goto retry;
3795                                 }
3796                         }
3797
3798                         if (rw == WRITE &&
3799                             logical_sector >= mddev->suspend_lo &&
3800                             logical_sector < mddev->suspend_hi) {
3801                                 release_stripe(sh);
3802                                 /* As the suspend_* range is controlled by
3803                                  * userspace, we want an interruptible
3804                                  * wait.
3805                                  */
3806                                 flush_signals(current);
3807                                 prepare_to_wait(&conf->wait_for_overlap,
3808                                                 &w, TASK_INTERRUPTIBLE);
3809                                 if (logical_sector >= mddev->suspend_lo &&
3810                                     logical_sector < mddev->suspend_hi)
3811                                         schedule();
3812                                 goto retry;
3813                         }
3814
3815                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3816                             !add_stripe_bio(sh, bi, dd_idx, rw)) {
3817                                 /* Stripe is busy expanding or
3818                                  * add failed due to overlap.  Flush everything
3819                                  * and wait a while
3820                                  */
3821                                 md_wakeup_thread(mddev->thread);
3822                                 release_stripe(sh);
3823                                 schedule();
3824                                 goto retry;
3825                         }
3826                         finish_wait(&conf->wait_for_overlap, &w);
3827                         set_bit(STRIPE_HANDLE, &sh->state);
3828                         clear_bit(STRIPE_DELAYED, &sh->state);
3829                         if ((bi->bi_rw & REQ_SYNC) &&
3830                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3831                                 atomic_inc(&conf->preread_active_stripes);
3832                         release_stripe(sh);
3833                 } else {
3834                         /* cannot get stripe for read-ahead, just give-up */
3835                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3836                         finish_wait(&conf->wait_for_overlap, &w);
3837                         break;
3838                 }
3839                         
3840         }
3841         if (!plugged)
3842                 md_wakeup_thread(mddev->thread);
3843
3844         spin_lock_irq(&conf->device_lock);
3845         remaining = raid5_dec_bi_phys_segments(bi);
3846         spin_unlock_irq(&conf->device_lock);
3847         if (remaining == 0) {
3848
3849                 if ( rw == WRITE )
3850                         md_write_end(mddev);
3851
3852                 bio_endio(bi, 0);
3853         }
3854 }
3855
3856 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
3857
3858 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
3859 {
3860         /* reshaping is quite different to recovery/resync so it is
3861          * handled quite separately ... here.
3862          *
3863          * On each call to sync_request, we gather one chunk worth of
3864          * destination stripes and flag them as expanding.
3865          * Then we find all the source stripes and request reads.
3866          * As the reads complete, handle_stripe will copy the data
3867          * into the destination stripe and release that stripe.
3868          */
3869         struct r5conf *conf = mddev->private;
3870         struct stripe_head *sh;
3871         sector_t first_sector, last_sector;
3872         int raid_disks = conf->previous_raid_disks;
3873         int data_disks = raid_disks - conf->max_degraded;
3874         int new_data_disks = conf->raid_disks - conf->max_degraded;
3875         int i;
3876         int dd_idx;
3877         sector_t writepos, readpos, safepos;
3878         sector_t stripe_addr;
3879         int reshape_sectors;
3880         struct list_head stripes;
3881
3882         if (sector_nr == 0) {
3883                 /* If restarting in the middle, skip the initial sectors */
3884                 if (mddev->delta_disks < 0 &&
3885                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
3886                         sector_nr = raid5_size(mddev, 0, 0)
3887                                 - conf->reshape_progress;
3888                 } else if (mddev->delta_disks >= 0 &&
3889                            conf->reshape_progress > 0)
3890                         sector_nr = conf->reshape_progress;
3891                 sector_div(sector_nr, new_data_disks);
3892                 if (sector_nr) {
3893                         mddev->curr_resync_completed = sector_nr;
3894                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3895                         *skipped = 1;
3896                         return sector_nr;
3897                 }
3898         }
3899
3900         /* We need to process a full chunk at a time.
3901          * If old and new chunk sizes differ, we need to process the
3902          * largest of these
3903          */
3904         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
3905                 reshape_sectors = mddev->new_chunk_sectors;
3906         else
3907                 reshape_sectors = mddev->chunk_sectors;
3908
3909         /* we update the metadata when there is more than 3Meg
3910          * in the block range (that is rather arbitrary, should
3911          * probably be time based) or when the data about to be
3912          * copied would over-write the source of the data at
3913          * the front of the range.
3914          * i.e. one new_stripe along from reshape_progress new_maps
3915          * to after where reshape_safe old_maps to
3916          */
3917         writepos = conf->reshape_progress;
3918         sector_div(writepos, new_data_disks);
3919         readpos = conf->reshape_progress;
3920         sector_div(readpos, data_disks);
3921         safepos = conf->reshape_safe;
3922         sector_div(safepos, data_disks);
3923         if (mddev->delta_disks < 0) {
3924                 writepos -= min_t(sector_t, reshape_sectors, writepos);
3925                 readpos += reshape_sectors;
3926                 safepos += reshape_sectors;
3927         } else {
3928                 writepos += reshape_sectors;
3929                 readpos -= min_t(sector_t, reshape_sectors, readpos);
3930                 safepos -= min_t(sector_t, reshape_sectors, safepos);
3931         }
3932
3933         /* 'writepos' is the most advanced device address we might write.
3934          * 'readpos' is the least advanced device address we might read.
3935          * 'safepos' is the least address recorded in the metadata as having
3936          *     been reshaped.
3937          * If 'readpos' is behind 'writepos', then there is no way that we can
3938          * ensure safety in the face of a crash - that must be done by userspace
3939          * making a backup of the data.  So in that case there is no particular
3940          * rush to update metadata.
3941          * Otherwise if 'safepos' is behind 'writepos', then we really need to
3942          * update the metadata to advance 'safepos' to match 'readpos' so that
3943          * we can be safe in the event of a crash.
3944          * So we insist on updating metadata if safepos is behind writepos and
3945          * readpos is beyond writepos.
3946          * In any case, update the metadata every 10 seconds.
3947          * Maybe that number should be configurable, but I'm not sure it is
3948          * worth it.... maybe it could be a multiple of safemode_delay???
3949          */
3950         if ((mddev->delta_disks < 0
3951              ? (safepos > writepos && readpos < writepos)
3952              : (safepos < writepos && readpos > writepos)) ||
3953             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
3954                 /* Cannot proceed until we've updated the superblock... */
3955                 wait_event(conf->wait_for_overlap,
3956                            atomic_read(&conf->reshape_stripes)==0);
3957                 mddev->reshape_position = conf->reshape_progress;
3958                 mddev->curr_resync_completed = sector_nr;
3959                 conf->reshape_checkpoint = jiffies;
3960                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3961                 md_wakeup_thread(mddev->thread);
3962                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3963                            kthread_should_stop());
3964                 spin_lock_irq(&conf->device_lock);
3965                 conf->reshape_safe = mddev->reshape_position;
3966                 spin_unlock_irq(&conf->device_lock);
3967                 wake_up(&conf->wait_for_overlap);
3968                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3969         }
3970
3971         if (mddev->delta_disks < 0) {
3972                 BUG_ON(conf->reshape_progress == 0);
3973                 stripe_addr = writepos;
3974                 BUG_ON((mddev->dev_sectors &
3975                         ~((sector_t)reshape_sectors - 1))
3976                        - reshape_sectors - stripe_addr
3977                        != sector_nr);
3978         } else {
3979                 BUG_ON(writepos != sector_nr + reshape_sectors);
3980                 stripe_addr = sector_nr;
3981         }
3982         INIT_LIST_HEAD(&stripes);
3983         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
3984                 int j;
3985                 int skipped_disk = 0;
3986                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
3987                 set_bit(STRIPE_EXPANDING, &sh->state);
3988                 atomic_inc(&conf->reshape_stripes);
3989                 /* If any of this stripe is beyond the end of the old
3990                  * array, then we need to zero those blocks
3991                  */
3992                 for (j=sh->disks; j--;) {
3993                         sector_t s;
3994                         if (j == sh->pd_idx)
3995                                 continue;
3996                         if (conf->level == 6 &&
3997                             j == sh->qd_idx)
3998                                 continue;
3999                         s = compute_blocknr(sh, j, 0);
4000                         if (s < raid5_size(mddev, 0, 0)) {
4001                                 skipped_disk = 1;
4002                                 continue;
4003                         }
4004                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4005                         set_bit(R5_Expanded, &sh->dev[j].flags);
4006                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
4007                 }
4008                 if (!skipped_disk) {
4009                         set_bit(STRIPE_EXPAND_READY, &sh->state);
4010                         set_bit(STRIPE_HANDLE, &sh->state);
4011                 }
4012                 list_add(&sh->lru, &stripes);
4013         }
4014         spin_lock_irq(&conf->device_lock);
4015         if (mddev->delta_disks < 0)
4016                 conf->reshape_progress -= reshape_sectors * new_data_disks;
4017         else
4018                 conf->reshape_progress += reshape_sectors * new_data_disks;
4019         spin_unlock_irq(&conf->device_lock);
4020         /* Ok, those stripe are ready. We can start scheduling
4021          * reads on the source stripes.
4022          * The source stripes are determined by mapping the first and last
4023          * block on the destination stripes.
4024          */
4025         first_sector =
4026                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4027                                      1, &dd_idx, NULL);
4028         last_sector =
4029                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4030                                             * new_data_disks - 1),
4031                                      1, &dd_idx, NULL);
4032         if (last_sector >= mddev->dev_sectors)
4033                 last_sector = mddev->dev_sectors - 1;
4034         while (first_sector <= last_sector) {
4035                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4036                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4037                 set_bit(STRIPE_HANDLE, &sh->state);
4038                 release_stripe(sh);
4039                 first_sector += STRIPE_SECTORS;
4040         }
4041         /* Now that the sources are clearly marked, we can release
4042          * the destination stripes
4043          */
4044         while (!list_empty(&stripes)) {
4045                 sh = list_entry(stripes.next, struct stripe_head, lru);
4046                 list_del_init(&sh->lru);
4047                 release_stripe(sh);
4048         }
4049         /* If this takes us to the resync_max point where we have to pause,
4050          * then we need to write out the superblock.
4051          */
4052         sector_nr += reshape_sectors;
4053         if ((sector_nr - mddev->curr_resync_completed) * 2
4054             >= mddev->resync_max - mddev->curr_resync_completed) {
4055                 /* Cannot proceed until we've updated the superblock... */
4056                 wait_event(conf->wait_for_overlap,
4057                            atomic_read(&conf->reshape_stripes) == 0);
4058                 mddev->reshape_position = conf->reshape_progress;
4059                 mddev->curr_resync_completed = sector_nr;
4060                 conf->reshape_checkpoint = jiffies;
4061                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4062                 md_wakeup_thread(mddev->thread);
4063                 wait_event(mddev->sb_wait,
4064                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4065                            || kthread_should_stop());
4066                 spin_lock_irq(&conf->device_lock);
4067                 conf->reshape_safe = mddev->reshape_position;
4068                 spin_unlock_irq(&conf->device_lock);
4069                 wake_up(&conf->wait_for_overlap);
4070                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4071         }
4072         return reshape_sectors;
4073 }
4074
4075 /* FIXME go_faster isn't used */
4076 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4077 {
4078         struct r5conf *conf = mddev->private;
4079         struct stripe_head *sh;
4080         sector_t max_sector = mddev->dev_sectors;
4081         sector_t sync_blocks;
4082         int still_degraded = 0;
4083         int i;
4084
4085         if (sector_nr >= max_sector) {
4086                 /* just being told to finish up .. nothing much to do */
4087
4088                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4089                         end_reshape(conf);
4090                         return 0;
4091                 }
4092
4093                 if (mddev->curr_resync < max_sector) /* aborted */
4094                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4095                                         &sync_blocks, 1);
4096                 else /* completed sync */
4097                         conf->fullsync = 0;
4098                 bitmap_close_sync(mddev->bitmap);
4099
4100                 return 0;
4101         }
4102
4103         /* Allow raid5_quiesce to complete */
4104         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4105
4106         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4107                 return reshape_request(mddev, sector_nr, skipped);
4108
4109         /* No need to check resync_max as we never do more than one
4110          * stripe, and as resync_max will always be on a chunk boundary,
4111          * if the check in md_do_sync didn't fire, there is no chance
4112          * of overstepping resync_max here
4113          */
4114
4115         /* if there is too many failed drives and we are trying
4116          * to resync, then assert that we are finished, because there is
4117          * nothing we can do.
4118          */
4119         if (mddev->degraded >= conf->max_degraded &&
4120             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4121                 sector_t rv = mddev->dev_sectors - sector_nr;
4122                 *skipped = 1;
4123                 return rv;
4124         }
4125         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4126             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4127             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4128                 /* we can skip this block, and probably more */
4129                 sync_blocks /= STRIPE_SECTORS;
4130                 *skipped = 1;
4131                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4132         }
4133
4134
4135         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4136
4137         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4138         if (sh == NULL) {
4139                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4140                 /* make sure we don't swamp the stripe cache if someone else
4141                  * is trying to get access
4142                  */
4143                 schedule_timeout_uninterruptible(1);
4144         }
4145         /* Need to check if array will still be degraded after recovery/resync
4146          * We don't need to check the 'failed' flag as when that gets set,
4147          * recovery aborts.
4148          */
4149         for (i = 0; i < conf->raid_disks; i++)
4150                 if (conf->disks[i].rdev == NULL)
4151                         still_degraded = 1;
4152
4153         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4154
4155         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4156
4157         handle_stripe(sh);
4158         release_stripe(sh);
4159
4160         return STRIPE_SECTORS;
4161 }
4162
4163 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4164 {
4165         /* We may not be able to submit a whole bio at once as there
4166          * may not be enough stripe_heads available.
4167          * We cannot pre-allocate enough stripe_heads as we may need
4168          * more than exist in the cache (if we allow ever large chunks).
4169          * So we do one stripe head at a time and record in
4170          * ->bi_hw_segments how many have been done.
4171          *
4172          * We *know* that this entire raid_bio is in one chunk, so
4173          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4174          */
4175         struct stripe_head *sh;
4176         int dd_idx;
4177         sector_t sector, logical_sector, last_sector;
4178         int scnt = 0;
4179         int remaining;
4180         int handled = 0;
4181
4182         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4183         sector = raid5_compute_sector(conf, logical_sector,
4184                                       0, &dd_idx, NULL);
4185         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4186
4187         for (; logical_sector < last_sector;
4188              logical_sector += STRIPE_SECTORS,
4189                      sector += STRIPE_SECTORS,
4190                      scnt++) {
4191
4192                 if (scnt < raid5_bi_hw_segments(raid_bio))
4193                         /* already done this stripe */
4194                         continue;
4195
4196                 sh = get_active_stripe(conf, sector, 0, 1, 0);
4197
4198                 if (!sh) {
4199                         /* failed to get a stripe - must wait */
4200                         raid5_set_bi_hw_segments(raid_bio, scnt);
4201                         conf->retry_read_aligned = raid_bio;
4202                         return handled;
4203                 }
4204
4205                 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4206                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4207                         release_stripe(sh);
4208                         raid5_set_bi_hw_segments(raid_bio, scnt);
4209                         conf->retry_read_aligned = raid_bio;
4210                         return handled;
4211                 }
4212
4213                 handle_stripe(sh);
4214                 release_stripe(sh);
4215                 handled++;
4216         }
4217         spin_lock_irq(&conf->device_lock);
4218         remaining = raid5_dec_bi_phys_segments(raid_bio);
4219         spin_unlock_irq(&conf->device_lock);
4220         if (remaining == 0)
4221                 bio_endio(raid_bio, 0);
4222         if (atomic_dec_and_test(&conf->active_aligned_reads))
4223                 wake_up(&conf->wait_for_stripe);
4224         return handled;
4225 }
4226
4227
4228 /*
4229  * This is our raid5 kernel thread.
4230  *
4231  * We scan the hash table for stripes which can be handled now.
4232  * During the scan, completed stripes are saved for us by the interrupt
4233  * handler, so that they will not have to wait for our next wakeup.
4234  */
4235 static void raid5d(struct mddev *mddev)
4236 {
4237         struct stripe_head *sh;
4238         struct r5conf *conf = mddev->private;
4239         int handled;
4240         struct blk_plug plug;
4241
4242         pr_debug("+++ raid5d active\n");
4243
4244         md_check_recovery(mddev);
4245
4246         blk_start_plug(&plug);
4247         handled = 0;
4248         spin_lock_irq(&conf->device_lock);
4249         while (1) {
4250                 struct bio *bio;
4251
4252                 if (atomic_read(&mddev->plug_cnt) == 0 &&
4253                     !list_empty(&conf->bitmap_list)) {
4254                         /* Now is a good time to flush some bitmap updates */
4255                         conf->seq_flush++;
4256                         spin_unlock_irq(&conf->device_lock);
4257                         bitmap_unplug(mddev->bitmap);
4258                         spin_lock_irq(&conf->device_lock);
4259                         conf->seq_write = conf->seq_flush;
4260                         activate_bit_delay(conf);
4261                 }
4262                 if (atomic_read(&mddev->plug_cnt) == 0)
4263                         raid5_activate_delayed(conf);
4264
4265                 while ((bio = remove_bio_from_retry(conf))) {
4266                         int ok;
4267                         spin_unlock_irq(&conf->device_lock);
4268                         ok = retry_aligned_read(conf, bio);
4269                         spin_lock_irq(&conf->device_lock);
4270                         if (!ok)
4271                                 break;
4272                         handled++;
4273                 }
4274
4275                 sh = __get_priority_stripe(conf);
4276
4277                 if (!sh)
4278                         break;
4279                 spin_unlock_irq(&conf->device_lock);
4280                 
4281                 handled++;
4282                 handle_stripe(sh);
4283                 release_stripe(sh);
4284                 cond_resched();
4285
4286                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
4287                         md_check_recovery(mddev);
4288
4289                 spin_lock_irq(&conf->device_lock);
4290         }
4291         pr_debug("%d stripes handled\n", handled);
4292
4293         spin_unlock_irq(&conf->device_lock);
4294
4295         async_tx_issue_pending_all();
4296         blk_finish_plug(&plug);
4297
4298         pr_debug("--- raid5d inactive\n");
4299 }
4300
4301 static ssize_t
4302 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4303 {
4304         struct r5conf *conf = mddev->private;
4305         if (conf)
4306                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4307         else
4308                 return 0;
4309 }
4310
4311 int
4312 raid5_set_cache_size(struct mddev *mddev, int size)
4313 {
4314         struct r5conf *conf = mddev->private;
4315         int err;
4316
4317         if (size <= 16 || size > 32768)
4318                 return -EINVAL;
4319         while (size < conf->max_nr_stripes) {
4320                 if (drop_one_stripe(conf))
4321                         conf->max_nr_stripes--;
4322                 else
4323                         break;
4324         }
4325         err = md_allow_write(mddev);
4326         if (err)
4327                 return err;
4328         while (size > conf->max_nr_stripes) {
4329                 if (grow_one_stripe(conf))
4330                         conf->max_nr_stripes++;
4331                 else break;
4332         }
4333         return 0;
4334 }
4335 EXPORT_SYMBOL(raid5_set_cache_size);
4336
4337 static ssize_t
4338 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4339 {
4340         struct r5conf *conf = mddev->private;
4341         unsigned long new;
4342         int err;
4343
4344         if (len >= PAGE_SIZE)
4345                 return -EINVAL;
4346         if (!conf)
4347                 return -ENODEV;
4348
4349         if (strict_strtoul(page, 10, &new))
4350                 return -EINVAL;
4351         err = raid5_set_cache_size(mddev, new);
4352         if (err)
4353                 return err;
4354         return len;
4355 }
4356
4357 static struct md_sysfs_entry
4358 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4359                                 raid5_show_stripe_cache_size,
4360                                 raid5_store_stripe_cache_size);
4361
4362 static ssize_t
4363 raid5_show_preread_threshold(struct mddev *mddev, char *page)
4364 {
4365         struct r5conf *conf = mddev->private;
4366         if (conf)
4367                 return sprintf(page, "%d\n", conf->bypass_threshold);
4368         else
4369                 return 0;
4370 }
4371
4372 static ssize_t
4373 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4374 {
4375         struct r5conf *conf = mddev->private;
4376         unsigned long new;
4377         if (len >= PAGE_SIZE)
4378                 return -EINVAL;
4379         if (!conf)
4380                 return -ENODEV;
4381
4382         if (strict_strtoul(page, 10, &new))
4383                 return -EINVAL;
4384         if (new > conf->max_nr_stripes)
4385                 return -EINVAL;
4386         conf->bypass_threshold = new;
4387         return len;
4388 }
4389
4390 static struct md_sysfs_entry
4391 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4392                                         S_IRUGO | S_IWUSR,
4393                                         raid5_show_preread_threshold,
4394                                         raid5_store_preread_threshold);
4395
4396 static ssize_t
4397 stripe_cache_active_show(struct mddev *mddev, char *page)
4398 {
4399         struct r5conf *conf = mddev->private;
4400         if (conf)
4401                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4402         else
4403                 return 0;
4404 }
4405
4406 static struct md_sysfs_entry
4407 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4408
4409 static struct attribute *raid5_attrs[] =  {
4410         &raid5_stripecache_size.attr,
4411         &raid5_stripecache_active.attr,
4412         &raid5_preread_bypass_threshold.attr,
4413         NULL,
4414 };
4415 static struct attribute_group raid5_attrs_group = {
4416         .name = NULL,
4417         .attrs = raid5_attrs,
4418 };
4419
4420 static sector_t
4421 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
4422 {
4423         struct r5conf *conf = mddev->private;
4424
4425         if (!sectors)
4426                 sectors = mddev->dev_sectors;
4427         if (!raid_disks)
4428                 /* size is defined by the smallest of previous and new size */
4429                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4430
4431         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4432         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4433         return sectors * (raid_disks - conf->max_degraded);
4434 }
4435
4436 static void raid5_free_percpu(struct r5conf *conf)
4437 {
4438         struct raid5_percpu *percpu;
4439         unsigned long cpu;
4440
4441         if (!conf->percpu)
4442                 return;
4443
4444         get_online_cpus();
4445         for_each_possible_cpu(cpu) {
4446                 percpu = per_cpu_ptr(conf->percpu, cpu);
4447                 safe_put_page(percpu->spare_page);
4448                 kfree(percpu->scribble);
4449         }
4450 #ifdef CONFIG_HOTPLUG_CPU
4451         unregister_cpu_notifier(&conf->cpu_notify);
4452 #endif
4453         put_online_cpus();
4454
4455         free_percpu(conf->percpu);
4456 }
4457
4458 static void free_conf(struct r5conf *conf)
4459 {
4460         shrink_stripes(conf);
4461         raid5_free_percpu(conf);
4462         kfree(conf->disks);
4463         kfree(conf->stripe_hashtbl);
4464         kfree(conf);
4465 }
4466
4467 #ifdef CONFIG_HOTPLUG_CPU
4468 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4469                               void *hcpu)
4470 {
4471         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
4472         long cpu = (long)hcpu;
4473         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4474
4475         switch (action) {
4476         case CPU_UP_PREPARE:
4477         case CPU_UP_PREPARE_FROZEN:
4478                 if (conf->level == 6 && !percpu->spare_page)
4479                         percpu->spare_page = alloc_page(GFP_KERNEL);
4480                 if (!percpu->scribble)
4481                         percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4482
4483                 if (!percpu->scribble ||
4484                     (conf->level == 6 && !percpu->spare_page)) {
4485                         safe_put_page(percpu->spare_page);
4486                         kfree(percpu->scribble);
4487                         pr_err("%s: failed memory allocation for cpu%ld\n",
4488                                __func__, cpu);
4489                         return notifier_from_errno(-ENOMEM);
4490                 }
4491                 break;
4492         case CPU_DEAD:
4493         case CPU_DEAD_FROZEN:
4494                 safe_put_page(percpu->spare_page);
4495                 kfree(percpu->scribble);
4496                 percpu->spare_page = NULL;
4497                 percpu->scribble = NULL;
4498                 break;
4499         default:
4500                 break;
4501         }
4502         return NOTIFY_OK;
4503 }
4504 #endif
4505
4506 static int raid5_alloc_percpu(struct r5conf *conf)
4507 {
4508         unsigned long cpu;
4509         struct page *spare_page;
4510         struct raid5_percpu __percpu *allcpus;
4511         void *scribble;
4512         int err;
4513
4514         allcpus = alloc_percpu(struct raid5_percpu);
4515         if (!allcpus)
4516                 return -ENOMEM;
4517         conf->percpu = allcpus;
4518
4519         get_online_cpus();
4520         err = 0;
4521         for_each_present_cpu(cpu) {
4522                 if (conf->level == 6) {
4523                         spare_page = alloc_page(GFP_KERNEL);
4524                         if (!spare_page) {
4525                                 err = -ENOMEM;
4526                                 break;
4527                         }
4528                         per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4529                 }
4530                 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4531                 if (!scribble) {
4532                         err = -ENOMEM;
4533                         break;
4534                 }
4535                 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4536         }
4537 #ifdef CONFIG_HOTPLUG_CPU
4538         conf->cpu_notify.notifier_call = raid456_cpu_notify;
4539         conf->cpu_notify.priority = 0;
4540         if (err == 0)
4541                 err = register_cpu_notifier(&conf->cpu_notify);
4542 #endif
4543         put_online_cpus();
4544
4545         return err;
4546 }
4547
4548 static struct r5conf *setup_conf(struct mddev *mddev)
4549 {
4550         struct r5conf *conf;
4551         int raid_disk, memory, max_disks;
4552         struct md_rdev *rdev;
4553         struct disk_info *disk;
4554
4555         if (mddev->new_level != 5
4556             && mddev->new_level != 4
4557             && mddev->new_level != 6) {
4558                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4559                        mdname(mddev), mddev->new_level);
4560                 return ERR_PTR(-EIO);
4561         }
4562         if ((mddev->new_level == 5
4563              && !algorithm_valid_raid5(mddev->new_layout)) ||
4564             (mddev->new_level == 6
4565              && !algorithm_valid_raid6(mddev->new_layout))) {
4566                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4567                        mdname(mddev), mddev->new_layout);
4568                 return ERR_PTR(-EIO);
4569         }
4570         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4571                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4572                        mdname(mddev), mddev->raid_disks);
4573                 return ERR_PTR(-EINVAL);
4574         }
4575
4576         if (!mddev->new_chunk_sectors ||
4577             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4578             !is_power_of_2(mddev->new_chunk_sectors)) {
4579                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4580                        mdname(mddev), mddev->new_chunk_sectors << 9);
4581                 return ERR_PTR(-EINVAL);
4582         }
4583
4584         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
4585         if (conf == NULL)
4586                 goto abort;
4587         spin_lock_init(&conf->device_lock);
4588         init_waitqueue_head(&conf->wait_for_stripe);
4589         init_waitqueue_head(&conf->wait_for_overlap);
4590         INIT_LIST_HEAD(&conf->handle_list);
4591         INIT_LIST_HEAD(&conf->hold_list);
4592         INIT_LIST_HEAD(&conf->delayed_list);
4593         INIT_LIST_HEAD(&conf->bitmap_list);
4594         INIT_LIST_HEAD(&conf->inactive_list);
4595         atomic_set(&conf->active_stripes, 0);
4596         atomic_set(&conf->preread_active_stripes, 0);
4597         atomic_set(&conf->active_aligned_reads, 0);
4598         conf->bypass_threshold = BYPASS_THRESHOLD;
4599         conf->recovery_disabled = mddev->recovery_disabled - 1;
4600
4601         conf->raid_disks = mddev->raid_disks;
4602         if (mddev->reshape_position == MaxSector)
4603                 conf->previous_raid_disks = mddev->raid_disks;
4604         else
4605                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4606         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4607         conf->scribble_len = scribble_len(max_disks);
4608
4609         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4610                               GFP_KERNEL);
4611         if (!conf->disks)
4612                 goto abort;
4613
4614         conf->mddev = mddev;
4615
4616         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4617                 goto abort;
4618
4619         conf->level = mddev->new_level;
4620         if (raid5_alloc_percpu(conf) != 0)
4621                 goto abort;
4622
4623         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4624
4625         list_for_each_entry(rdev, &mddev->disks, same_set) {
4626                 raid_disk = rdev->raid_disk;
4627                 if (raid_disk >= max_disks
4628                     || raid_disk < 0)
4629                         continue;
4630                 disk = conf->disks + raid_disk;
4631
4632                 disk->rdev = rdev;
4633
4634                 if (test_bit(In_sync, &rdev->flags)) {
4635                         char b[BDEVNAME_SIZE];
4636                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4637                                " disk %d\n",
4638                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4639                 } else if (rdev->saved_raid_disk != raid_disk)
4640                         /* Cannot rely on bitmap to complete recovery */
4641                         conf->fullsync = 1;
4642         }
4643
4644         conf->chunk_sectors = mddev->new_chunk_sectors;
4645         conf->level = mddev->new_level;
4646         if (conf->level == 6)
4647                 conf->max_degraded = 2;
4648         else
4649                 conf->max_degraded = 1;
4650         conf->algorithm = mddev->new_layout;
4651         conf->max_nr_stripes = NR_STRIPES;
4652         conf->reshape_progress = mddev->reshape_position;
4653         if (conf->reshape_progress != MaxSector) {
4654                 conf->prev_chunk_sectors = mddev->chunk_sectors;
4655                 conf->prev_algo = mddev->layout;
4656         }
4657
4658         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4659                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4660         if (grow_stripes(conf, conf->max_nr_stripes)) {
4661                 printk(KERN_ERR
4662                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
4663                        mdname(mddev), memory);
4664                 goto abort;
4665         } else
4666                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4667                        mdname(mddev), memory);
4668
4669         conf->thread = md_register_thread(raid5d, mddev, NULL);
4670         if (!conf->thread) {
4671                 printk(KERN_ERR
4672                        "md/raid:%s: couldn't allocate thread.\n",
4673                        mdname(mddev));
4674                 goto abort;
4675         }
4676
4677         return conf;
4678
4679  abort:
4680         if (conf) {
4681                 free_conf(conf);
4682                 return ERR_PTR(-EIO);
4683         } else
4684                 return ERR_PTR(-ENOMEM);
4685 }
4686
4687
4688 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4689 {
4690         switch (algo) {
4691         case ALGORITHM_PARITY_0:
4692                 if (raid_disk < max_degraded)
4693                         return 1;
4694                 break;
4695         case ALGORITHM_PARITY_N:
4696                 if (raid_disk >= raid_disks - max_degraded)
4697                         return 1;
4698                 break;
4699         case ALGORITHM_PARITY_0_6:
4700                 if (raid_disk == 0 || 
4701                     raid_disk == raid_disks - 1)
4702                         return 1;
4703                 break;
4704         case ALGORITHM_LEFT_ASYMMETRIC_6:
4705         case ALGORITHM_RIGHT_ASYMMETRIC_6:
4706         case ALGORITHM_LEFT_SYMMETRIC_6:
4707         case ALGORITHM_RIGHT_SYMMETRIC_6:
4708                 if (raid_disk == raid_disks - 1)
4709                         return 1;
4710         }
4711         return 0;
4712 }
4713
4714 static int run(struct mddev *mddev)
4715 {
4716         struct r5conf *conf;
4717         int working_disks = 0;
4718         int dirty_parity_disks = 0;
4719         struct md_rdev *rdev;
4720         sector_t reshape_offset = 0;
4721
4722         if (mddev->recovery_cp != MaxSector)
4723                 printk(KERN_NOTICE "md/raid:%s: not clean"
4724                        " -- starting background reconstruction\n",
4725                        mdname(mddev));
4726         if (mddev->reshape_position != MaxSector) {
4727                 /* Check that we can continue the reshape.
4728                  * Currently only disks can change, it must
4729                  * increase, and we must be past the point where
4730                  * a stripe over-writes itself
4731                  */
4732                 sector_t here_new, here_old;
4733                 int old_disks;
4734                 int max_degraded = (mddev->level == 6 ? 2 : 1);
4735
4736                 if (mddev->new_level != mddev->level) {
4737                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
4738                                "required - aborting.\n",
4739                                mdname(mddev));
4740                         return -EINVAL;
4741                 }
4742                 old_disks = mddev->raid_disks - mddev->delta_disks;
4743                 /* reshape_position must be on a new-stripe boundary, and one
4744                  * further up in new geometry must map after here in old
4745                  * geometry.
4746                  */
4747                 here_new = mddev->reshape_position;
4748                 if (sector_div(here_new, mddev->new_chunk_sectors *
4749                                (mddev->raid_disks - max_degraded))) {
4750                         printk(KERN_ERR "md/raid:%s: reshape_position not "
4751                                "on a stripe boundary\n", mdname(mddev));
4752                         return -EINVAL;
4753                 }
4754                 reshape_offset = here_new * mddev->new_chunk_sectors;
4755                 /* here_new is the stripe we will write to */
4756                 here_old = mddev->reshape_position;
4757                 sector_div(here_old, mddev->chunk_sectors *
4758                            (old_disks-max_degraded));
4759                 /* here_old is the first stripe that we might need to read
4760                  * from */
4761                 if (mddev->delta_disks == 0) {
4762                         /* We cannot be sure it is safe to start an in-place
4763                          * reshape.  It is only safe if user-space if monitoring
4764                          * and taking constant backups.
4765                          * mdadm always starts a situation like this in
4766                          * readonly mode so it can take control before
4767                          * allowing any writes.  So just check for that.
4768                          */
4769                         if ((here_new * mddev->new_chunk_sectors != 
4770                              here_old * mddev->chunk_sectors) ||
4771                             mddev->ro == 0) {
4772                                 printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
4773                                        " in read-only mode - aborting\n",
4774                                        mdname(mddev));
4775                                 return -EINVAL;
4776                         }
4777                 } else if (mddev->delta_disks < 0
4778                     ? (here_new * mddev->new_chunk_sectors <=
4779                        here_old * mddev->chunk_sectors)
4780                     : (here_new * mddev->new_chunk_sectors >=
4781                        here_old * mddev->chunk_sectors)) {
4782                         /* Reading from the same stripe as writing to - bad */
4783                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
4784                                "auto-recovery - aborting.\n",
4785                                mdname(mddev));
4786                         return -EINVAL;
4787                 }
4788                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
4789                        mdname(mddev));
4790                 /* OK, we should be able to continue; */
4791         } else {
4792                 BUG_ON(mddev->level != mddev->new_level);
4793                 BUG_ON(mddev->layout != mddev->new_layout);
4794                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
4795                 BUG_ON(mddev->delta_disks != 0);
4796         }
4797
4798         if (mddev->private == NULL)
4799                 conf = setup_conf(mddev);
4800         else
4801                 conf = mddev->private;
4802
4803         if (IS_ERR(conf))
4804                 return PTR_ERR(conf);
4805
4806         mddev->thread = conf->thread;
4807         conf->thread = NULL;
4808         mddev->private = conf;
4809
4810         /*
4811          * 0 for a fully functional array, 1 or 2 for a degraded array.
4812          */
4813         list_for_each_entry(rdev, &mddev->disks, same_set) {
4814                 if (rdev->raid_disk < 0)
4815                         continue;
4816                 if (test_bit(In_sync, &rdev->flags)) {
4817                         working_disks++;
4818                         continue;
4819                 }
4820                 /* This disc is not fully in-sync.  However if it
4821                  * just stored parity (beyond the recovery_offset),
4822                  * when we don't need to be concerned about the
4823                  * array being dirty.
4824                  * When reshape goes 'backwards', we never have
4825                  * partially completed devices, so we only need
4826                  * to worry about reshape going forwards.
4827                  */
4828                 /* Hack because v0.91 doesn't store recovery_offset properly. */
4829                 if (mddev->major_version == 0 &&
4830                     mddev->minor_version > 90)
4831                         rdev->recovery_offset = reshape_offset;
4832                         
4833                 if (rdev->recovery_offset < reshape_offset) {
4834                         /* We need to check old and new layout */
4835                         if (!only_parity(rdev->raid_disk,
4836                                          conf->algorithm,
4837                                          conf->raid_disks,
4838                                          conf->max_degraded))
4839                                 continue;
4840                 }
4841                 if (!only_parity(rdev->raid_disk,
4842                                  conf->prev_algo,
4843                                  conf->previous_raid_disks,
4844                                  conf->max_degraded))
4845                         continue;
4846                 dirty_parity_disks++;
4847         }
4848
4849         mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
4850                            - working_disks);
4851
4852         if (has_failed(conf)) {
4853                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
4854                         " (%d/%d failed)\n",
4855                         mdname(mddev), mddev->degraded, conf->raid_disks);
4856                 goto abort;
4857         }
4858
4859         /* device size must be a multiple of chunk size */
4860         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
4861         mddev->resync_max_sectors = mddev->dev_sectors;
4862
4863         if (mddev->degraded > dirty_parity_disks &&
4864             mddev->recovery_cp != MaxSector) {
4865                 if (mddev->ok_start_degraded)
4866                         printk(KERN_WARNING
4867                                "md/raid:%s: starting dirty degraded array"
4868                                " - data corruption possible.\n",
4869                                mdname(mddev));
4870                 else {
4871                         printk(KERN_ERR
4872                                "md/raid:%s: cannot start dirty degraded array.\n",
4873                                mdname(mddev));
4874                         goto abort;
4875                 }
4876         }
4877
4878         if (mddev->degraded == 0)
4879                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
4880                        " devices, algorithm %d\n", mdname(mddev), conf->level,
4881                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4882                        mddev->new_layout);
4883         else
4884                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
4885                        " out of %d devices, algorithm %d\n",
4886                        mdname(mddev), conf->level,
4887                        mddev->raid_disks - mddev->degraded,
4888                        mddev->raid_disks, mddev->new_layout);
4889
4890         print_raid5_conf(conf);
4891
4892         if (conf->reshape_progress != MaxSector) {
4893                 conf->reshape_safe = conf->reshape_progress;
4894                 atomic_set(&conf->reshape_stripes, 0);
4895                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4896                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4897                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4898                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4899                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4900                                                         "reshape");
4901         }
4902
4903
4904         /* Ok, everything is just fine now */
4905         if (mddev->to_remove == &raid5_attrs_group)
4906                 mddev->to_remove = NULL;
4907         else if (mddev->kobj.sd &&
4908             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4909                 printk(KERN_WARNING
4910                        "raid5: failed to create sysfs attributes for %s\n",
4911                        mdname(mddev));
4912         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4913
4914         if (mddev->queue) {
4915                 int chunk_size;
4916                 /* read-ahead size must cover two whole stripes, which
4917                  * is 2 * (datadisks) * chunksize where 'n' is the
4918                  * number of raid devices
4919                  */
4920                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4921                 int stripe = data_disks *
4922                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
4923                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4924                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4925
4926                 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4927
4928                 mddev->queue->backing_dev_info.congested_data = mddev;
4929                 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4930
4931                 chunk_size = mddev->chunk_sectors << 9;
4932                 blk_queue_io_min(mddev->queue, chunk_size);
4933                 blk_queue_io_opt(mddev->queue, chunk_size *
4934                                  (conf->raid_disks - conf->max_degraded));
4935
4936                 list_for_each_entry(rdev, &mddev->disks, same_set)
4937                         disk_stack_limits(mddev->gendisk, rdev->bdev,
4938                                           rdev->data_offset << 9);
4939         }
4940
4941         return 0;
4942 abort:
4943         md_unregister_thread(&mddev->thread);
4944         print_raid5_conf(conf);
4945         free_conf(conf);
4946         mddev->private = NULL;
4947         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
4948         return -EIO;
4949 }
4950
4951 static int stop(struct mddev *mddev)
4952 {
4953         struct r5conf *conf = mddev->private;
4954
4955         md_unregister_thread(&mddev->thread);
4956         if (mddev->queue)
4957                 mddev->queue->backing_dev_info.congested_fn = NULL;
4958         free_conf(conf);
4959         mddev->private = NULL;
4960         mddev->to_remove = &raid5_attrs_group;
4961         return 0;
4962 }
4963
4964 static void status(struct seq_file *seq, struct mddev *mddev)
4965 {
4966         struct r5conf *conf = mddev->private;
4967         int i;
4968
4969         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
4970                 mddev->chunk_sectors / 2, mddev->layout);
4971         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4972         for (i = 0; i < conf->raid_disks; i++)
4973                 seq_printf (seq, "%s",
4974                                conf->disks[i].rdev &&
4975                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4976         seq_printf (seq, "]");
4977 }
4978
4979 static void print_raid5_conf (struct r5conf *conf)
4980 {
4981         int i;
4982         struct disk_info *tmp;
4983
4984         printk(KERN_DEBUG "RAID conf printout:\n");
4985         if (!conf) {
4986                 printk("(conf==NULL)\n");
4987                 return;
4988         }
4989         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
4990                conf->raid_disks,
4991                conf->raid_disks - conf->mddev->degraded);
4992
4993         for (i = 0; i < conf->raid_disks; i++) {
4994                 char b[BDEVNAME_SIZE];
4995                 tmp = conf->disks + i;
4996                 if (tmp->rdev)
4997                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
4998                                i, !test_bit(Faulty, &tmp->rdev->flags),
4999                                bdevname(tmp->rdev->bdev, b));
5000         }
5001 }
5002
5003 static int raid5_spare_active(struct mddev *mddev)
5004 {
5005         int i;
5006         struct r5conf *conf = mddev->private;
5007         struct disk_info *tmp;
5008         int count = 0;
5009         unsigned long flags;
5010
5011         for (i = 0; i < conf->raid_disks; i++) {
5012                 tmp = conf->disks + i;
5013                 if (tmp->rdev
5014                     && tmp->rdev->recovery_offset == MaxSector
5015                     && !test_bit(Faulty, &tmp->rdev->flags)
5016                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5017                         count++;
5018                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5019                 }
5020         }
5021         spin_lock_irqsave(&conf->device_lock, flags);
5022         mddev->degraded -= count;
5023         spin_unlock_irqrestore(&conf->device_lock, flags);
5024         print_raid5_conf(conf);
5025         return count;
5026 }
5027
5028 static int raid5_remove_disk(struct mddev *mddev, int number)
5029 {
5030         struct r5conf *conf = mddev->private;
5031         int err = 0;
5032         struct md_rdev *rdev;
5033         struct disk_info *p = conf->disks + number;
5034
5035         print_raid5_conf(conf);
5036         rdev = p->rdev;
5037         if (rdev) {
5038                 if (number >= conf->raid_disks &&
5039                     conf->reshape_progress == MaxSector)
5040                         clear_bit(In_sync, &rdev->flags);
5041
5042                 if (test_bit(In_sync, &rdev->flags) ||
5043                     atomic_read(&rdev->nr_pending)) {
5044                         err = -EBUSY;
5045                         goto abort;
5046                 }
5047                 /* Only remove non-faulty devices if recovery
5048                  * isn't possible.
5049                  */
5050                 if (!test_bit(Faulty, &rdev->flags) &&
5051                     mddev->recovery_disabled != conf->recovery_disabled &&
5052                     !has_failed(conf) &&
5053                     number < conf->raid_disks) {
5054                         err = -EBUSY;
5055                         goto abort;
5056                 }
5057                 p->rdev = NULL;
5058                 synchronize_rcu();
5059                 if (atomic_read(&rdev->nr_pending)) {
5060                         /* lost the race, try later */
5061                         err = -EBUSY;
5062                         p->rdev = rdev;
5063                 }
5064         }
5065 abort:
5066
5067         print_raid5_conf(conf);
5068         return err;
5069 }
5070
5071 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
5072 {
5073         struct r5conf *conf = mddev->private;
5074         int err = -EEXIST;
5075         int disk;
5076         struct disk_info *p;
5077         int first = 0;
5078         int last = conf->raid_disks - 1;
5079
5080         if (mddev->recovery_disabled == conf->recovery_disabled)
5081                 return -EBUSY;
5082
5083         if (has_failed(conf))
5084                 /* no point adding a device */
5085                 return -EINVAL;
5086
5087         if (rdev->raid_disk >= 0)
5088                 first = last = rdev->raid_disk;
5089
5090         /*
5091          * find the disk ... but prefer rdev->saved_raid_disk
5092          * if possible.
5093          */
5094         if (rdev->saved_raid_disk >= 0 &&
5095             rdev->saved_raid_disk >= first &&
5096             conf->disks[rdev->saved_raid_disk].rdev == NULL)
5097                 disk = rdev->saved_raid_disk;
5098         else
5099                 disk = first;
5100         for ( ; disk <= last ; disk++)
5101                 if ((p=conf->disks + disk)->rdev == NULL) {
5102                         clear_bit(In_sync, &rdev->flags);
5103                         rdev->raid_disk = disk;
5104                         err = 0;
5105                         if (rdev->saved_raid_disk != disk)
5106                                 conf->fullsync = 1;
5107                         rcu_assign_pointer(p->rdev, rdev);
5108                         break;
5109                 }
5110         print_raid5_conf(conf);
5111         return err;
5112 }
5113
5114 static int raid5_resize(struct mddev *mddev, sector_t sectors)
5115 {
5116         /* no resync is happening, and there is enough space
5117          * on all devices, so we can resize.
5118          * We need to make sure resync covers any new space.
5119          * If the array is shrinking we should possibly wait until
5120          * any io in the removed space completes, but it hardly seems
5121          * worth it.
5122          */
5123         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5124         md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5125                                                mddev->raid_disks));
5126         if (mddev->array_sectors >
5127             raid5_size(mddev, sectors, mddev->raid_disks))
5128                 return -EINVAL;
5129         set_capacity(mddev->gendisk, mddev->array_sectors);
5130         revalidate_disk(mddev->gendisk);
5131         if (sectors > mddev->dev_sectors &&
5132             mddev->recovery_cp > mddev->dev_sectors) {
5133                 mddev->recovery_cp = mddev->dev_sectors;
5134                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5135         }
5136         mddev->dev_sectors = sectors;
5137         mddev->resync_max_sectors = sectors;
5138         return 0;
5139 }
5140
5141 static int check_stripe_cache(struct mddev *mddev)
5142 {
5143         /* Can only proceed if there are plenty of stripe_heads.
5144          * We need a minimum of one full stripe,, and for sensible progress
5145          * it is best to have about 4 times that.
5146          * If we require 4 times, then the default 256 4K stripe_heads will
5147          * allow for chunk sizes up to 256K, which is probably OK.
5148          * If the chunk size is greater, user-space should request more
5149          * stripe_heads first.
5150          */
5151         struct r5conf *conf = mddev->private;
5152         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5153             > conf->max_nr_stripes ||
5154             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5155             > conf->max_nr_stripes) {
5156                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5157                        mdname(mddev),
5158                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5159                         / STRIPE_SIZE)*4);
5160                 return 0;
5161         }
5162         return 1;
5163 }
5164
5165 static int check_reshape(struct mddev *mddev)
5166 {
5167         struct r5conf *conf = mddev->private;
5168
5169         if (mddev->delta_disks == 0 &&
5170             mddev->new_layout == mddev->layout &&
5171             mddev->new_chunk_sectors == mddev->chunk_sectors)
5172                 return 0; /* nothing to do */
5173         if (mddev->bitmap)
5174                 /* Cannot grow a bitmap yet */
5175                 return -EBUSY;
5176         if (has_failed(conf))
5177                 return -EINVAL;
5178         if (mddev->delta_disks < 0) {
5179                 /* We might be able to shrink, but the devices must
5180                  * be made bigger first.
5181                  * For raid6, 4 is the minimum size.
5182                  * Otherwise 2 is the minimum
5183                  */
5184                 int min = 2;
5185                 if (mddev->level == 6)
5186                         min = 4;
5187                 if (mddev->raid_disks + mddev->delta_disks < min)
5188                         return -EINVAL;
5189         }
5190
5191         if (!check_stripe_cache(mddev))
5192                 return -ENOSPC;
5193
5194         return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5195 }
5196
5197 static int raid5_start_reshape(struct mddev *mddev)
5198 {
5199         struct r5conf *conf = mddev->private;
5200         struct md_rdev *rdev;
5201         int spares = 0;
5202         unsigned long flags;
5203
5204         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5205                 return -EBUSY;
5206
5207         if (!check_stripe_cache(mddev))
5208                 return -ENOSPC;
5209
5210         list_for_each_entry(rdev, &mddev->disks, same_set)
5211                 if (!test_bit(In_sync, &rdev->flags)
5212                     && !test_bit(Faulty, &rdev->flags))
5213                         spares++;
5214
5215         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5216                 /* Not enough devices even to make a degraded array
5217                  * of that size
5218                  */
5219                 return -EINVAL;
5220
5221         /* Refuse to reduce size of the array.  Any reductions in
5222          * array size must be through explicit setting of array_size
5223          * attribute.
5224          */
5225         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5226             < mddev->array_sectors) {
5227                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5228                        "before number of disks\n", mdname(mddev));
5229                 return -EINVAL;
5230         }
5231
5232         atomic_set(&conf->reshape_stripes, 0);
5233         spin_lock_irq(&conf->device_lock);
5234         conf->previous_raid_disks = conf->raid_disks;
5235         conf->raid_disks += mddev->delta_disks;
5236         conf->prev_chunk_sectors = conf->chunk_sectors;
5237         conf->chunk_sectors = mddev->new_chunk_sectors;
5238         conf->prev_algo = conf->algorithm;
5239         conf->algorithm = mddev->new_layout;
5240         if (mddev->delta_disks < 0)
5241                 conf->reshape_progress = raid5_size(mddev, 0, 0);
5242         else
5243                 conf->reshape_progress = 0;
5244         conf->reshape_safe = conf->reshape_progress;
5245         conf->generation++;
5246         spin_unlock_irq(&conf->device_lock);
5247
5248         /* Add some new drives, as many as will fit.
5249          * We know there are enough to make the newly sized array work.
5250          * Don't add devices if we are reducing the number of
5251          * devices in the array.  This is because it is not possible
5252          * to correctly record the "partially reconstructed" state of
5253          * such devices during the reshape and confusion could result.
5254          */
5255         if (mddev->delta_disks >= 0) {
5256                 int added_devices = 0;
5257                 list_for_each_entry(rdev, &mddev->disks, same_set)
5258                         if (rdev->raid_disk < 0 &&
5259                             !test_bit(Faulty, &rdev->flags)) {
5260                                 if (raid5_add_disk(mddev, rdev) == 0) {
5261                                         if (rdev->raid_disk
5262                                             >= conf->previous_raid_disks) {
5263                                                 set_bit(In_sync, &rdev->flags);
5264                                                 added_devices++;
5265                                         } else
5266                                                 rdev->recovery_offset = 0;
5267
5268                                         if (sysfs_link_rdev(mddev, rdev))
5269                                                 /* Failure here is OK */;
5270                                 }
5271                         } else if (rdev->raid_disk >= conf->previous_raid_disks
5272                                    && !test_bit(Faulty, &rdev->flags)) {
5273                                 /* This is a spare that was manually added */
5274                                 set_bit(In_sync, &rdev->flags);
5275                                 added_devices++;
5276                         }
5277
5278                 /* When a reshape changes the number of devices,
5279                  * ->degraded is measured against the larger of the
5280                  * pre and post number of devices.
5281                  */
5282                 spin_lock_irqsave(&conf->device_lock, flags);
5283                 mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5284                         - added_devices;
5285                 spin_unlock_irqrestore(&conf->device_lock, flags);
5286         }
5287         mddev->raid_disks = conf->raid_disks;
5288         mddev->reshape_position = conf->reshape_progress;
5289         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5290
5291         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5292         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5293         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5294         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5295         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5296                                                 "reshape");
5297         if (!mddev->sync_thread) {
5298                 mddev->recovery = 0;
5299                 spin_lock_irq(&conf->device_lock);
5300                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5301                 conf->reshape_progress = MaxSector;
5302                 spin_unlock_irq(&conf->device_lock);
5303                 return -EAGAIN;
5304         }
5305         conf->reshape_checkpoint = jiffies;
5306         md_wakeup_thread(mddev->sync_thread);
5307         md_new_event(mddev);
5308         return 0;
5309 }
5310
5311 /* This is called from the reshape thread and should make any
5312  * changes needed in 'conf'
5313  */
5314 static void end_reshape(struct r5conf *conf)
5315 {
5316
5317         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5318
5319                 spin_lock_irq(&conf->device_lock);
5320                 conf->previous_raid_disks = conf->raid_disks;
5321                 conf->reshape_progress = MaxSector;
5322                 spin_unlock_irq(&conf->device_lock);
5323                 wake_up(&conf->wait_for_overlap);
5324
5325                 /* read-ahead size must cover two whole stripes, which is
5326                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5327                  */
5328                 if (conf->mddev->queue) {
5329                         int data_disks = conf->raid_disks - conf->max_degraded;
5330                         int stripe = data_disks * ((conf->chunk_sectors << 9)
5331                                                    / PAGE_SIZE);
5332                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5333                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5334                 }
5335         }
5336 }
5337
5338 /* This is called from the raid5d thread with mddev_lock held.
5339  * It makes config changes to the device.
5340  */
5341 static void raid5_finish_reshape(struct mddev *mddev)
5342 {
5343         struct r5conf *conf = mddev->private;
5344
5345         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5346
5347                 if (mddev->delta_disks > 0) {
5348                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5349                         set_capacity(mddev->gendisk, mddev->array_sectors);
5350                         revalidate_disk(mddev->gendisk);
5351                 } else {
5352                         int d;
5353                         mddev->degraded = conf->raid_disks;
5354                         for (d = 0; d < conf->raid_disks ; d++)
5355                                 if (conf->disks[d].rdev &&
5356                                     test_bit(In_sync,
5357                                              &conf->disks[d].rdev->flags))
5358                                         mddev->degraded--;
5359                         for (d = conf->raid_disks ;
5360                              d < conf->raid_disks - mddev->delta_disks;
5361                              d++) {
5362                                 struct md_rdev *rdev = conf->disks[d].rdev;
5363                                 if (rdev && raid5_remove_disk(mddev, d) == 0) {
5364                                         sysfs_unlink_rdev(mddev, rdev);
5365                                         rdev->raid_disk = -1;
5366                                 }
5367                         }
5368                 }
5369                 mddev->layout = conf->algorithm;
5370                 mddev->chunk_sectors = conf->chunk_sectors;
5371                 mddev->reshape_position = MaxSector;
5372                 mddev->delta_disks = 0;
5373         }
5374 }
5375
5376 static void raid5_quiesce(struct mddev *mddev, int state)
5377 {
5378         struct r5conf *conf = mddev->private;
5379
5380         switch(state) {
5381         case 2: /* resume for a suspend */
5382                 wake_up(&conf->wait_for_overlap);
5383                 break;
5384
5385         case 1: /* stop all writes */
5386                 spin_lock_irq(&conf->device_lock);
5387                 /* '2' tells resync/reshape to pause so that all
5388                  * active stripes can drain
5389                  */
5390                 conf->quiesce = 2;
5391                 wait_event_lock_irq(conf->wait_for_stripe,
5392                                     atomic_read(&conf->active_stripes) == 0 &&
5393                                     atomic_read(&conf->active_aligned_reads) == 0,
5394                                     conf->device_lock, /* nothing */);
5395                 conf->quiesce = 1;
5396                 spin_unlock_irq(&conf->device_lock);
5397                 /* allow reshape to continue */
5398                 wake_up(&conf->wait_for_overlap);
5399                 break;
5400
5401         case 0: /* re-enable writes */
5402                 spin_lock_irq(&conf->device_lock);
5403                 conf->quiesce = 0;
5404                 wake_up(&conf->wait_for_stripe);
5405                 wake_up(&conf->wait_for_overlap);
5406                 spin_unlock_irq(&conf->device_lock);
5407                 break;
5408         }
5409 }
5410
5411
5412 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
5413 {
5414         struct r0conf *raid0_conf = mddev->private;
5415         sector_t sectors;
5416
5417         /* for raid0 takeover only one zone is supported */
5418         if (raid0_conf->nr_strip_zones > 1) {
5419                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5420                        mdname(mddev));
5421                 return ERR_PTR(-EINVAL);
5422         }
5423
5424         sectors = raid0_conf->strip_zone[0].zone_end;
5425         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
5426         mddev->dev_sectors = sectors;
5427         mddev->new_level = level;
5428         mddev->new_layout = ALGORITHM_PARITY_N;
5429         mddev->new_chunk_sectors = mddev->chunk_sectors;
5430         mddev->raid_disks += 1;
5431         mddev->delta_disks = 1;
5432         /* make sure it will be not marked as dirty */
5433         mddev->recovery_cp = MaxSector;
5434
5435         return setup_conf(mddev);
5436 }
5437
5438
5439 static void *raid5_takeover_raid1(struct mddev *mddev)
5440 {
5441         int chunksect;
5442
5443         if (mddev->raid_disks != 2 ||
5444             mddev->degraded > 1)
5445                 return ERR_PTR(-EINVAL);
5446
5447         /* Should check if there are write-behind devices? */
5448
5449         chunksect = 64*2; /* 64K by default */
5450
5451         /* The array must be an exact multiple of chunksize */
5452         while (chunksect && (mddev->array_sectors & (chunksect-1)))
5453                 chunksect >>= 1;
5454
5455         if ((chunksect<<9) < STRIPE_SIZE)
5456                 /* array size does not allow a suitable chunk size */
5457                 return ERR_PTR(-EINVAL);
5458
5459         mddev->new_level = 5;
5460         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5461         mddev->new_chunk_sectors = chunksect;
5462
5463         return setup_conf(mddev);
5464 }
5465
5466 static void *raid5_takeover_raid6(struct mddev *mddev)
5467 {
5468         int new_layout;
5469
5470         switch (mddev->layout) {
5471         case ALGORITHM_LEFT_ASYMMETRIC_6:
5472                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5473                 break;
5474         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5475                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5476                 break;
5477         case ALGORITHM_LEFT_SYMMETRIC_6:
5478                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5479                 break;
5480         case ALGORITHM_RIGHT_SYMMETRIC_6:
5481                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5482                 break;
5483         case ALGORITHM_PARITY_0_6:
5484                 new_layout = ALGORITHM_PARITY_0;
5485                 break;
5486         case ALGORITHM_PARITY_N:
5487                 new_layout = ALGORITHM_PARITY_N;
5488                 break;
5489         default:
5490                 return ERR_PTR(-EINVAL);
5491         }
5492         mddev->new_level = 5;
5493         mddev->new_layout = new_layout;
5494         mddev->delta_disks = -1;
5495         mddev->raid_disks -= 1;
5496         return setup_conf(mddev);
5497 }
5498
5499
5500 static int raid5_check_reshape(struct mddev *mddev)
5501 {
5502         /* For a 2-drive array, the layout and chunk size can be changed
5503          * immediately as not restriping is needed.
5504          * For larger arrays we record the new value - after validation
5505          * to be used by a reshape pass.
5506          */
5507         struct r5conf *conf = mddev->private;
5508         int new_chunk = mddev->new_chunk_sectors;
5509
5510         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5511                 return -EINVAL;
5512         if (new_chunk > 0) {
5513                 if (!is_power_of_2(new_chunk))
5514                         return -EINVAL;
5515                 if (new_chunk < (PAGE_SIZE>>9))
5516                         return -EINVAL;
5517                 if (mddev->array_sectors & (new_chunk-1))
5518                         /* not factor of array size */
5519                         return -EINVAL;
5520         }
5521
5522         /* They look valid */
5523
5524         if (mddev->raid_disks == 2) {
5525                 /* can make the change immediately */
5526                 if (mddev->new_layout >= 0) {
5527                         conf->algorithm = mddev->new_layout;
5528                         mddev->layout = mddev->new_layout;
5529                 }
5530                 if (new_chunk > 0) {
5531                         conf->chunk_sectors = new_chunk ;
5532                         mddev->chunk_sectors = new_chunk;
5533                 }
5534                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5535                 md_wakeup_thread(mddev->thread);
5536         }
5537         return check_reshape(mddev);
5538 }
5539
5540 static int raid6_check_reshape(struct mddev *mddev)
5541 {
5542         int new_chunk = mddev->new_chunk_sectors;
5543
5544         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5545                 return -EINVAL;
5546         if (new_chunk > 0) {
5547                 if (!is_power_of_2(new_chunk))
5548                         return -EINVAL;
5549                 if (new_chunk < (PAGE_SIZE >> 9))
5550                         return -EINVAL;
5551                 if (mddev->array_sectors & (new_chunk-1))
5552                         /* not factor of array size */
5553                         return -EINVAL;
5554         }
5555
5556         /* They look valid */
5557         return check_reshape(mddev);
5558 }
5559
5560 static void *raid5_takeover(struct mddev *mddev)
5561 {
5562         /* raid5 can take over:
5563          *  raid0 - if there is only one strip zone - make it a raid4 layout
5564          *  raid1 - if there are two drives.  We need to know the chunk size
5565          *  raid4 - trivial - just use a raid4 layout.
5566          *  raid6 - Providing it is a *_6 layout
5567          */
5568         if (mddev->level == 0)
5569                 return raid45_takeover_raid0(mddev, 5);
5570         if (mddev->level == 1)
5571                 return raid5_takeover_raid1(mddev);
5572         if (mddev->level == 4) {
5573                 mddev->new_layout = ALGORITHM_PARITY_N;
5574                 mddev->new_level = 5;
5575                 return setup_conf(mddev);
5576         }
5577         if (mddev->level == 6)
5578                 return raid5_takeover_raid6(mddev);
5579
5580         return ERR_PTR(-EINVAL);
5581 }
5582
5583 static void *raid4_takeover(struct mddev *mddev)
5584 {
5585         /* raid4 can take over:
5586          *  raid0 - if there is only one strip zone
5587          *  raid5 - if layout is right
5588          */
5589         if (mddev->level == 0)
5590                 return raid45_takeover_raid0(mddev, 4);
5591         if (mddev->level == 5 &&
5592             mddev->layout == ALGORITHM_PARITY_N) {
5593                 mddev->new_layout = 0;
5594                 mddev->new_level = 4;
5595                 return setup_conf(mddev);
5596         }
5597         return ERR_PTR(-EINVAL);
5598 }
5599
5600 static struct md_personality raid5_personality;
5601
5602 static void *raid6_takeover(struct mddev *mddev)
5603 {
5604         /* Currently can only take over a raid5.  We map the
5605          * personality to an equivalent raid6 personality
5606          * with the Q block at the end.
5607          */
5608         int new_layout;
5609
5610         if (mddev->pers != &raid5_personality)
5611                 return ERR_PTR(-EINVAL);
5612         if (mddev->degraded > 1)
5613                 return ERR_PTR(-EINVAL);
5614         if (mddev->raid_disks > 253)
5615                 return ERR_PTR(-EINVAL);
5616         if (mddev->raid_disks < 3)
5617                 return ERR_PTR(-EINVAL);
5618
5619         switch (mddev->layout) {
5620         case ALGORITHM_LEFT_ASYMMETRIC:
5621                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5622                 break;
5623         case ALGORITHM_RIGHT_ASYMMETRIC:
5624                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5625                 break;
5626         case ALGORITHM_LEFT_SYMMETRIC:
5627                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5628                 break;
5629         case ALGORITHM_RIGHT_SYMMETRIC:
5630                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5631                 break;
5632         case ALGORITHM_PARITY_0:
5633                 new_layout = ALGORITHM_PARITY_0_6;
5634                 break;
5635         case ALGORITHM_PARITY_N:
5636                 new_layout = ALGORITHM_PARITY_N;
5637                 break;
5638         default:
5639                 return ERR_PTR(-EINVAL);
5640         }
5641         mddev->new_level = 6;
5642         mddev->new_layout = new_layout;
5643         mddev->delta_disks = 1;
5644         mddev->raid_disks += 1;
5645         return setup_conf(mddev);
5646 }
5647
5648
5649 static struct md_personality raid6_personality =
5650 {
5651         .name           = "raid6",
5652         .level          = 6,
5653         .owner          = THIS_MODULE,
5654         .make_request   = make_request,
5655         .run            = run,
5656         .stop           = stop,
5657         .status         = status,
5658         .error_handler  = error,
5659         .hot_add_disk   = raid5_add_disk,
5660         .hot_remove_disk= raid5_remove_disk,
5661         .spare_active   = raid5_spare_active,
5662         .sync_request   = sync_request,
5663         .resize         = raid5_resize,
5664         .size           = raid5_size,
5665         .check_reshape  = raid6_check_reshape,
5666         .start_reshape  = raid5_start_reshape,
5667         .finish_reshape = raid5_finish_reshape,
5668         .quiesce        = raid5_quiesce,
5669         .takeover       = raid6_takeover,
5670 };
5671 static struct md_personality raid5_personality =
5672 {
5673         .name           = "raid5",
5674         .level          = 5,
5675         .owner          = THIS_MODULE,
5676         .make_request   = make_request,
5677         .run            = run,
5678         .stop           = stop,
5679         .status         = status,
5680         .error_handler  = error,
5681         .hot_add_disk   = raid5_add_disk,
5682         .hot_remove_disk= raid5_remove_disk,
5683         .spare_active   = raid5_spare_active,
5684         .sync_request   = sync_request,
5685         .resize         = raid5_resize,
5686         .size           = raid5_size,
5687         .check_reshape  = raid5_check_reshape,
5688         .start_reshape  = raid5_start_reshape,
5689         .finish_reshape = raid5_finish_reshape,
5690         .quiesce        = raid5_quiesce,
5691         .takeover       = raid5_takeover,
5692 };
5693
5694 static struct md_personality raid4_personality =
5695 {
5696         .name           = "raid4",
5697         .level          = 4,
5698         .owner          = THIS_MODULE,
5699         .make_request   = make_request,
5700         .run            = run,
5701         .stop           = stop,
5702         .status         = status,
5703         .error_handler  = error,
5704         .hot_add_disk   = raid5_add_disk,
5705         .hot_remove_disk= raid5_remove_disk,
5706         .spare_active   = raid5_spare_active,
5707         .sync_request   = sync_request,
5708         .resize         = raid5_resize,
5709         .size           = raid5_size,
5710         .check_reshape  = raid5_check_reshape,
5711         .start_reshape  = raid5_start_reshape,
5712         .finish_reshape = raid5_finish_reshape,
5713         .quiesce        = raid5_quiesce,
5714         .takeover       = raid4_takeover,
5715 };
5716
5717 static int __init raid5_init(void)
5718 {
5719         register_md_personality(&raid6_personality);
5720         register_md_personality(&raid5_personality);
5721         register_md_personality(&raid4_personality);
5722         return 0;
5723 }
5724
5725 static void raid5_exit(void)
5726 {
5727         unregister_md_personality(&raid6_personality);
5728         unregister_md_personality(&raid5_personality);
5729         unregister_md_personality(&raid4_personality);
5730 }
5731
5732 module_init(raid5_init);
5733 module_exit(raid5_exit);
5734 MODULE_LICENSE("GPL");
5735 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
5736 MODULE_ALIAS("md-personality-4"); /* RAID5 */
5737 MODULE_ALIAS("md-raid5");
5738 MODULE_ALIAS("md-raid4");
5739 MODULE_ALIAS("md-level-5");
5740 MODULE_ALIAS("md-level-4");
5741 MODULE_ALIAS("md-personality-8"); /* RAID6 */
5742 MODULE_ALIAS("md-raid6");
5743 MODULE_ALIAS("md-level-6");
5744
5745 /* This used to be two separate modules, they were: */
5746 MODULE_ALIAS("raid5");
5747 MODULE_ALIAS("raid6");