mm: thp: set the accessed flag for old pages on access fault
[pandora-kernel.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include "md.h"
57 #include "raid5.h"
58 #include "raid0.h"
59 #include "bitmap.h"
60
61 /*
62  * Stripe cache
63  */
64
65 #define NR_STRIPES              256
66 #define STRIPE_SIZE             PAGE_SIZE
67 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
68 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
69 #define IO_THRESHOLD            1
70 #define BYPASS_THRESHOLD        1
71 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
72 #define HASH_MASK               (NR_HASH - 1)
73
74 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
75 {
76         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
77         return &conf->stripe_hashtbl[hash];
78 }
79
80 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
81  * order without overlap.  There may be several bio's per stripe+device, and
82  * a bio could span several devices.
83  * When walking this list for a particular stripe+device, we must never proceed
84  * beyond a bio that extends past this device, as the next bio might no longer
85  * be valid.
86  * This function is used to determine the 'next' bio in the list, given the sector
87  * of the current stripe+device
88  */
89 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
90 {
91         int sectors = bio->bi_size >> 9;
92         if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
93                 return bio->bi_next;
94         else
95                 return NULL;
96 }
97
98 /*
99  * We maintain a biased count of active stripes in the bottom 16 bits of
100  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
101  */
102 static inline int raid5_bi_phys_segments(struct bio *bio)
103 {
104         return bio->bi_phys_segments & 0xffff;
105 }
106
107 static inline int raid5_bi_hw_segments(struct bio *bio)
108 {
109         return (bio->bi_phys_segments >> 16) & 0xffff;
110 }
111
112 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
113 {
114         --bio->bi_phys_segments;
115         return raid5_bi_phys_segments(bio);
116 }
117
118 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
119 {
120         unsigned short val = raid5_bi_hw_segments(bio);
121
122         --val;
123         bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
124         return val;
125 }
126
127 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
128 {
129         bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
130 }
131
132 /* Find first data disk in a raid6 stripe */
133 static inline int raid6_d0(struct stripe_head *sh)
134 {
135         if (sh->ddf_layout)
136                 /* ddf always start from first device */
137                 return 0;
138         /* md starts just after Q block */
139         if (sh->qd_idx == sh->disks - 1)
140                 return 0;
141         else
142                 return sh->qd_idx + 1;
143 }
144 static inline int raid6_next_disk(int disk, int raid_disks)
145 {
146         disk++;
147         return (disk < raid_disks) ? disk : 0;
148 }
149
150 /* When walking through the disks in a raid5, starting at raid6_d0,
151  * We need to map each disk to a 'slot', where the data disks are slot
152  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
153  * is raid_disks-1.  This help does that mapping.
154  */
155 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
156                              int *count, int syndrome_disks)
157 {
158         int slot = *count;
159
160         if (sh->ddf_layout)
161                 (*count)++;
162         if (idx == sh->pd_idx)
163                 return syndrome_disks;
164         if (idx == sh->qd_idx)
165                 return syndrome_disks + 1;
166         if (!sh->ddf_layout)
167                 (*count)++;
168         return slot;
169 }
170
171 static void return_io(struct bio *return_bi)
172 {
173         struct bio *bi = return_bi;
174         while (bi) {
175
176                 return_bi = bi->bi_next;
177                 bi->bi_next = NULL;
178                 bi->bi_size = 0;
179                 bio_endio(bi, 0);
180                 bi = return_bi;
181         }
182 }
183
184 static void print_raid5_conf (struct r5conf *conf);
185
186 static int stripe_operations_active(struct stripe_head *sh)
187 {
188         return sh->check_state || sh->reconstruct_state ||
189                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
190                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
191 }
192
193 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
194 {
195         if (atomic_dec_and_test(&sh->count)) {
196                 BUG_ON(!list_empty(&sh->lru));
197                 BUG_ON(atomic_read(&conf->active_stripes)==0);
198                 if (test_bit(STRIPE_HANDLE, &sh->state)) {
199                         if (test_bit(STRIPE_DELAYED, &sh->state) &&
200                             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
201                                 list_add_tail(&sh->lru, &conf->delayed_list);
202                         else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
203                                    sh->bm_seq - conf->seq_write > 0)
204                                 list_add_tail(&sh->lru, &conf->bitmap_list);
205                         else {
206                                 clear_bit(STRIPE_DELAYED, &sh->state);
207                                 clear_bit(STRIPE_BIT_DELAY, &sh->state);
208                                 list_add_tail(&sh->lru, &conf->handle_list);
209                         }
210                         md_wakeup_thread(conf->mddev->thread);
211                 } else {
212                         BUG_ON(stripe_operations_active(sh));
213                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
214                                 atomic_dec(&conf->preread_active_stripes);
215                                 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
216                                         md_wakeup_thread(conf->mddev->thread);
217                         }
218                         atomic_dec(&conf->active_stripes);
219                         if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
220                                 list_add_tail(&sh->lru, &conf->inactive_list);
221                                 wake_up(&conf->wait_for_stripe);
222                                 if (conf->retry_read_aligned)
223                                         md_wakeup_thread(conf->mddev->thread);
224                         }
225                 }
226         }
227 }
228
229 static void release_stripe(struct stripe_head *sh)
230 {
231         struct r5conf *conf = sh->raid_conf;
232         unsigned long flags;
233
234         spin_lock_irqsave(&conf->device_lock, flags);
235         __release_stripe(conf, sh);
236         spin_unlock_irqrestore(&conf->device_lock, flags);
237 }
238
239 static inline void remove_hash(struct stripe_head *sh)
240 {
241         pr_debug("remove_hash(), stripe %llu\n",
242                 (unsigned long long)sh->sector);
243
244         hlist_del_init(&sh->hash);
245 }
246
247 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
248 {
249         struct hlist_head *hp = stripe_hash(conf, sh->sector);
250
251         pr_debug("insert_hash(), stripe %llu\n",
252                 (unsigned long long)sh->sector);
253
254         hlist_add_head(&sh->hash, hp);
255 }
256
257
258 /* find an idle stripe, make sure it is unhashed, and return it. */
259 static struct stripe_head *get_free_stripe(struct r5conf *conf)
260 {
261         struct stripe_head *sh = NULL;
262         struct list_head *first;
263
264         if (list_empty(&conf->inactive_list))
265                 goto out;
266         first = conf->inactive_list.next;
267         sh = list_entry(first, struct stripe_head, lru);
268         list_del_init(first);
269         remove_hash(sh);
270         atomic_inc(&conf->active_stripes);
271 out:
272         return sh;
273 }
274
275 static void shrink_buffers(struct stripe_head *sh)
276 {
277         struct page *p;
278         int i;
279         int num = sh->raid_conf->pool_size;
280
281         for (i = 0; i < num ; i++) {
282                 p = sh->dev[i].page;
283                 if (!p)
284                         continue;
285                 sh->dev[i].page = NULL;
286                 put_page(p);
287         }
288 }
289
290 static int grow_buffers(struct stripe_head *sh)
291 {
292         int i;
293         int num = sh->raid_conf->pool_size;
294
295         for (i = 0; i < num; i++) {
296                 struct page *page;
297
298                 if (!(page = alloc_page(GFP_KERNEL))) {
299                         return 1;
300                 }
301                 sh->dev[i].page = page;
302         }
303         return 0;
304 }
305
306 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
307 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
308                             struct stripe_head *sh);
309
310 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
311 {
312         struct r5conf *conf = sh->raid_conf;
313         int i;
314
315         BUG_ON(atomic_read(&sh->count) != 0);
316         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
317         BUG_ON(stripe_operations_active(sh));
318
319         pr_debug("init_stripe called, stripe %llu\n",
320                 (unsigned long long)sh->sector);
321
322         remove_hash(sh);
323
324         sh->generation = conf->generation - previous;
325         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
326         sh->sector = sector;
327         stripe_set_idx(sector, conf, previous, sh);
328         sh->state = 0;
329
330
331         for (i = sh->disks; i--; ) {
332                 struct r5dev *dev = &sh->dev[i];
333
334                 if (dev->toread || dev->read || dev->towrite || dev->written ||
335                     test_bit(R5_LOCKED, &dev->flags)) {
336                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
337                                (unsigned long long)sh->sector, i, dev->toread,
338                                dev->read, dev->towrite, dev->written,
339                                test_bit(R5_LOCKED, &dev->flags));
340                         WARN_ON(1);
341                 }
342                 dev->flags = 0;
343                 raid5_build_block(sh, i, previous);
344         }
345         insert_hash(conf, sh);
346 }
347
348 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
349                                          short generation)
350 {
351         struct stripe_head *sh;
352         struct hlist_node *hn;
353
354         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
355         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
356                 if (sh->sector == sector && sh->generation == generation)
357                         return sh;
358         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
359         return NULL;
360 }
361
362 /*
363  * Need to check if array has failed when deciding whether to:
364  *  - start an array
365  *  - remove non-faulty devices
366  *  - add a spare
367  *  - allow a reshape
368  * This determination is simple when no reshape is happening.
369  * However if there is a reshape, we need to carefully check
370  * both the before and after sections.
371  * This is because some failed devices may only affect one
372  * of the two sections, and some non-in_sync devices may
373  * be insync in the section most affected by failed devices.
374  */
375 static int has_failed(struct r5conf *conf)
376 {
377         int degraded;
378         int i;
379         if (conf->mddev->reshape_position == MaxSector)
380                 return conf->mddev->degraded > conf->max_degraded;
381
382         rcu_read_lock();
383         degraded = 0;
384         for (i = 0; i < conf->previous_raid_disks; i++) {
385                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
386                 if (!rdev || test_bit(Faulty, &rdev->flags))
387                         degraded++;
388                 else if (test_bit(In_sync, &rdev->flags))
389                         ;
390                 else
391                         /* not in-sync or faulty.
392                          * If the reshape increases the number of devices,
393                          * this is being recovered by the reshape, so
394                          * this 'previous' section is not in_sync.
395                          * If the number of devices is being reduced however,
396                          * the device can only be part of the array if
397                          * we are reverting a reshape, so this section will
398                          * be in-sync.
399                          */
400                         if (conf->raid_disks >= conf->previous_raid_disks)
401                                 degraded++;
402         }
403         rcu_read_unlock();
404         if (degraded > conf->max_degraded)
405                 return 1;
406         rcu_read_lock();
407         degraded = 0;
408         for (i = 0; i < conf->raid_disks; i++) {
409                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
410                 if (!rdev || test_bit(Faulty, &rdev->flags))
411                         degraded++;
412                 else if (test_bit(In_sync, &rdev->flags))
413                         ;
414                 else
415                         /* not in-sync or faulty.
416                          * If reshape increases the number of devices, this
417                          * section has already been recovered, else it
418                          * almost certainly hasn't.
419                          */
420                         if (conf->raid_disks <= conf->previous_raid_disks)
421                                 degraded++;
422         }
423         rcu_read_unlock();
424         if (degraded > conf->max_degraded)
425                 return 1;
426         return 0;
427 }
428
429 static struct stripe_head *
430 get_active_stripe(struct r5conf *conf, sector_t sector,
431                   int previous, int noblock, int noquiesce)
432 {
433         struct stripe_head *sh;
434
435         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
436
437         spin_lock_irq(&conf->device_lock);
438
439         do {
440                 wait_event_lock_irq(conf->wait_for_stripe,
441                                     conf->quiesce == 0 || noquiesce,
442                                     conf->device_lock, /* nothing */);
443                 sh = __find_stripe(conf, sector, conf->generation - previous);
444                 if (!sh) {
445                         if (!conf->inactive_blocked)
446                                 sh = get_free_stripe(conf);
447                         if (noblock && sh == NULL)
448                                 break;
449                         if (!sh) {
450                                 conf->inactive_blocked = 1;
451                                 wait_event_lock_irq(conf->wait_for_stripe,
452                                                     !list_empty(&conf->inactive_list) &&
453                                                     (atomic_read(&conf->active_stripes)
454                                                      < (conf->max_nr_stripes *3/4)
455                                                      || !conf->inactive_blocked),
456                                                     conf->device_lock,
457                                                     );
458                                 conf->inactive_blocked = 0;
459                         } else
460                                 init_stripe(sh, sector, previous);
461                 } else {
462                         if (atomic_read(&sh->count)) {
463                                 BUG_ON(!list_empty(&sh->lru)
464                                     && !test_bit(STRIPE_EXPANDING, &sh->state));
465                         } else {
466                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
467                                         atomic_inc(&conf->active_stripes);
468                                 if (list_empty(&sh->lru) &&
469                                     !test_bit(STRIPE_EXPANDING, &sh->state))
470                                         BUG();
471                                 list_del_init(&sh->lru);
472                         }
473                 }
474         } while (sh == NULL);
475
476         if (sh)
477                 atomic_inc(&sh->count);
478
479         spin_unlock_irq(&conf->device_lock);
480         return sh;
481 }
482
483 static void
484 raid5_end_read_request(struct bio *bi, int error);
485 static void
486 raid5_end_write_request(struct bio *bi, int error);
487
488 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
489 {
490         struct r5conf *conf = sh->raid_conf;
491         int i, disks = sh->disks;
492
493         might_sleep();
494
495         for (i = disks; i--; ) {
496                 int rw;
497                 struct bio *bi;
498                 struct md_rdev *rdev;
499                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
500                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
501                                 rw = WRITE_FUA;
502                         else
503                                 rw = WRITE;
504                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
505                         rw = READ;
506                 else
507                         continue;
508
509                 bi = &sh->dev[i].req;
510
511                 bi->bi_rw = rw;
512                 if (rw & WRITE)
513                         bi->bi_end_io = raid5_end_write_request;
514                 else
515                         bi->bi_end_io = raid5_end_read_request;
516
517                 rcu_read_lock();
518                 rdev = rcu_dereference(conf->disks[i].rdev);
519                 if (rdev && test_bit(Faulty, &rdev->flags))
520                         rdev = NULL;
521                 if (rdev)
522                         atomic_inc(&rdev->nr_pending);
523                 rcu_read_unlock();
524
525                 /* We have already checked bad blocks for reads.  Now
526                  * need to check for writes.
527                  */
528                 while ((rw & WRITE) && rdev &&
529                        test_bit(WriteErrorSeen, &rdev->flags)) {
530                         sector_t first_bad;
531                         int bad_sectors;
532                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
533                                               &first_bad, &bad_sectors);
534                         if (!bad)
535                                 break;
536
537                         if (bad < 0) {
538                                 set_bit(BlockedBadBlocks, &rdev->flags);
539                                 if (!conf->mddev->external &&
540                                     conf->mddev->flags) {
541                                         /* It is very unlikely, but we might
542                                          * still need to write out the
543                                          * bad block log - better give it
544                                          * a chance*/
545                                         md_check_recovery(conf->mddev);
546                                 }
547                                 /*
548                                  * Because md_wait_for_blocked_rdev
549                                  * will dec nr_pending, we must
550                                  * increment it first.
551                                  */
552                                 atomic_inc(&rdev->nr_pending);
553                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
554                         } else {
555                                 /* Acknowledged bad block - skip the write */
556                                 rdev_dec_pending(rdev, conf->mddev);
557                                 rdev = NULL;
558                         }
559                 }
560
561                 if (rdev) {
562                         if (s->syncing || s->expanding || s->expanded)
563                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
564
565                         set_bit(STRIPE_IO_STARTED, &sh->state);
566
567                         bi->bi_bdev = rdev->bdev;
568                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
569                                 __func__, (unsigned long long)sh->sector,
570                                 bi->bi_rw, i);
571                         atomic_inc(&sh->count);
572                         bi->bi_sector = sh->sector + rdev->data_offset;
573                         bi->bi_flags = 1 << BIO_UPTODATE;
574                         bi->bi_vcnt = 1;
575                         bi->bi_max_vecs = 1;
576                         bi->bi_idx = 0;
577                         bi->bi_io_vec = &sh->dev[i].vec;
578                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
579                         bi->bi_io_vec[0].bv_offset = 0;
580                         bi->bi_size = STRIPE_SIZE;
581                         bi->bi_next = NULL;
582                         generic_make_request(bi);
583                 } else {
584                         if (rw & WRITE)
585                                 set_bit(STRIPE_DEGRADED, &sh->state);
586                         pr_debug("skip op %ld on disc %d for sector %llu\n",
587                                 bi->bi_rw, i, (unsigned long long)sh->sector);
588                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
589                         set_bit(STRIPE_HANDLE, &sh->state);
590                 }
591         }
592 }
593
594 static struct dma_async_tx_descriptor *
595 async_copy_data(int frombio, struct bio *bio, struct page *page,
596         sector_t sector, struct dma_async_tx_descriptor *tx)
597 {
598         struct bio_vec *bvl;
599         struct page *bio_page;
600         int i;
601         int page_offset;
602         struct async_submit_ctl submit;
603         enum async_tx_flags flags = 0;
604
605         if (bio->bi_sector >= sector)
606                 page_offset = (signed)(bio->bi_sector - sector) * 512;
607         else
608                 page_offset = (signed)(sector - bio->bi_sector) * -512;
609
610         if (frombio)
611                 flags |= ASYNC_TX_FENCE;
612         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
613
614         bio_for_each_segment(bvl, bio, i) {
615                 int len = bvl->bv_len;
616                 int clen;
617                 int b_offset = 0;
618
619                 if (page_offset < 0) {
620                         b_offset = -page_offset;
621                         page_offset += b_offset;
622                         len -= b_offset;
623                 }
624
625                 if (len > 0 && page_offset + len > STRIPE_SIZE)
626                         clen = STRIPE_SIZE - page_offset;
627                 else
628                         clen = len;
629
630                 if (clen > 0) {
631                         b_offset += bvl->bv_offset;
632                         bio_page = bvl->bv_page;
633                         if (frombio)
634                                 tx = async_memcpy(page, bio_page, page_offset,
635                                                   b_offset, clen, &submit);
636                         else
637                                 tx = async_memcpy(bio_page, page, b_offset,
638                                                   page_offset, clen, &submit);
639                 }
640                 /* chain the operations */
641                 submit.depend_tx = tx;
642
643                 if (clen < len) /* hit end of page */
644                         break;
645                 page_offset +=  len;
646         }
647
648         return tx;
649 }
650
651 static void ops_complete_biofill(void *stripe_head_ref)
652 {
653         struct stripe_head *sh = stripe_head_ref;
654         struct bio *return_bi = NULL;
655         struct r5conf *conf = sh->raid_conf;
656         int i;
657
658         pr_debug("%s: stripe %llu\n", __func__,
659                 (unsigned long long)sh->sector);
660
661         /* clear completed biofills */
662         spin_lock_irq(&conf->device_lock);
663         for (i = sh->disks; i--; ) {
664                 struct r5dev *dev = &sh->dev[i];
665
666                 /* acknowledge completion of a biofill operation */
667                 /* and check if we need to reply to a read request,
668                  * new R5_Wantfill requests are held off until
669                  * !STRIPE_BIOFILL_RUN
670                  */
671                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
672                         struct bio *rbi, *rbi2;
673
674                         BUG_ON(!dev->read);
675                         rbi = dev->read;
676                         dev->read = NULL;
677                         while (rbi && rbi->bi_sector <
678                                 dev->sector + STRIPE_SECTORS) {
679                                 rbi2 = r5_next_bio(rbi, dev->sector);
680                                 if (!raid5_dec_bi_phys_segments(rbi)) {
681                                         rbi->bi_next = return_bi;
682                                         return_bi = rbi;
683                                 }
684                                 rbi = rbi2;
685                         }
686                 }
687         }
688         spin_unlock_irq(&conf->device_lock);
689         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
690
691         return_io(return_bi);
692
693         set_bit(STRIPE_HANDLE, &sh->state);
694         release_stripe(sh);
695 }
696
697 static void ops_run_biofill(struct stripe_head *sh)
698 {
699         struct dma_async_tx_descriptor *tx = NULL;
700         struct r5conf *conf = sh->raid_conf;
701         struct async_submit_ctl submit;
702         int i;
703
704         pr_debug("%s: stripe %llu\n", __func__,
705                 (unsigned long long)sh->sector);
706
707         for (i = sh->disks; i--; ) {
708                 struct r5dev *dev = &sh->dev[i];
709                 if (test_bit(R5_Wantfill, &dev->flags)) {
710                         struct bio *rbi;
711                         spin_lock_irq(&conf->device_lock);
712                         dev->read = rbi = dev->toread;
713                         dev->toread = NULL;
714                         spin_unlock_irq(&conf->device_lock);
715                         while (rbi && rbi->bi_sector <
716                                 dev->sector + STRIPE_SECTORS) {
717                                 tx = async_copy_data(0, rbi, dev->page,
718                                         dev->sector, tx);
719                                 rbi = r5_next_bio(rbi, dev->sector);
720                         }
721                 }
722         }
723
724         atomic_inc(&sh->count);
725         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
726         async_trigger_callback(&submit);
727 }
728
729 static void mark_target_uptodate(struct stripe_head *sh, int target)
730 {
731         struct r5dev *tgt;
732
733         if (target < 0)
734                 return;
735
736         tgt = &sh->dev[target];
737         set_bit(R5_UPTODATE, &tgt->flags);
738         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
739         clear_bit(R5_Wantcompute, &tgt->flags);
740 }
741
742 static void ops_complete_compute(void *stripe_head_ref)
743 {
744         struct stripe_head *sh = stripe_head_ref;
745
746         pr_debug("%s: stripe %llu\n", __func__,
747                 (unsigned long long)sh->sector);
748
749         /* mark the computed target(s) as uptodate */
750         mark_target_uptodate(sh, sh->ops.target);
751         mark_target_uptodate(sh, sh->ops.target2);
752
753         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
754         if (sh->check_state == check_state_compute_run)
755                 sh->check_state = check_state_compute_result;
756         set_bit(STRIPE_HANDLE, &sh->state);
757         release_stripe(sh);
758 }
759
760 /* return a pointer to the address conversion region of the scribble buffer */
761 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
762                                  struct raid5_percpu *percpu)
763 {
764         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
765 }
766
767 static struct dma_async_tx_descriptor *
768 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
769 {
770         int disks = sh->disks;
771         struct page **xor_srcs = percpu->scribble;
772         int target = sh->ops.target;
773         struct r5dev *tgt = &sh->dev[target];
774         struct page *xor_dest = tgt->page;
775         int count = 0;
776         struct dma_async_tx_descriptor *tx;
777         struct async_submit_ctl submit;
778         int i;
779
780         pr_debug("%s: stripe %llu block: %d\n",
781                 __func__, (unsigned long long)sh->sector, target);
782         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
783
784         for (i = disks; i--; )
785                 if (i != target)
786                         xor_srcs[count++] = sh->dev[i].page;
787
788         atomic_inc(&sh->count);
789
790         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
791                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
792         if (unlikely(count == 1))
793                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
794         else
795                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
796
797         return tx;
798 }
799
800 /* set_syndrome_sources - populate source buffers for gen_syndrome
801  * @srcs - (struct page *) array of size sh->disks
802  * @sh - stripe_head to parse
803  *
804  * Populates srcs in proper layout order for the stripe and returns the
805  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
806  * destination buffer is recorded in srcs[count] and the Q destination
807  * is recorded in srcs[count+1]].
808  */
809 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
810 {
811         int disks = sh->disks;
812         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
813         int d0_idx = raid6_d0(sh);
814         int count;
815         int i;
816
817         for (i = 0; i < disks; i++)
818                 srcs[i] = NULL;
819
820         count = 0;
821         i = d0_idx;
822         do {
823                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
824
825                 srcs[slot] = sh->dev[i].page;
826                 i = raid6_next_disk(i, disks);
827         } while (i != d0_idx);
828
829         return syndrome_disks;
830 }
831
832 static struct dma_async_tx_descriptor *
833 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
834 {
835         int disks = sh->disks;
836         struct page **blocks = percpu->scribble;
837         int target;
838         int qd_idx = sh->qd_idx;
839         struct dma_async_tx_descriptor *tx;
840         struct async_submit_ctl submit;
841         struct r5dev *tgt;
842         struct page *dest;
843         int i;
844         int count;
845
846         if (sh->ops.target < 0)
847                 target = sh->ops.target2;
848         else if (sh->ops.target2 < 0)
849                 target = sh->ops.target;
850         else
851                 /* we should only have one valid target */
852                 BUG();
853         BUG_ON(target < 0);
854         pr_debug("%s: stripe %llu block: %d\n",
855                 __func__, (unsigned long long)sh->sector, target);
856
857         tgt = &sh->dev[target];
858         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
859         dest = tgt->page;
860
861         atomic_inc(&sh->count);
862
863         if (target == qd_idx) {
864                 count = set_syndrome_sources(blocks, sh);
865                 blocks[count] = NULL; /* regenerating p is not necessary */
866                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
867                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
868                                   ops_complete_compute, sh,
869                                   to_addr_conv(sh, percpu));
870                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
871         } else {
872                 /* Compute any data- or p-drive using XOR */
873                 count = 0;
874                 for (i = disks; i-- ; ) {
875                         if (i == target || i == qd_idx)
876                                 continue;
877                         blocks[count++] = sh->dev[i].page;
878                 }
879
880                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
881                                   NULL, ops_complete_compute, sh,
882                                   to_addr_conv(sh, percpu));
883                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
884         }
885
886         return tx;
887 }
888
889 static struct dma_async_tx_descriptor *
890 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
891 {
892         int i, count, disks = sh->disks;
893         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
894         int d0_idx = raid6_d0(sh);
895         int faila = -1, failb = -1;
896         int target = sh->ops.target;
897         int target2 = sh->ops.target2;
898         struct r5dev *tgt = &sh->dev[target];
899         struct r5dev *tgt2 = &sh->dev[target2];
900         struct dma_async_tx_descriptor *tx;
901         struct page **blocks = percpu->scribble;
902         struct async_submit_ctl submit;
903
904         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
905                  __func__, (unsigned long long)sh->sector, target, target2);
906         BUG_ON(target < 0 || target2 < 0);
907         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
908         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
909
910         /* we need to open-code set_syndrome_sources to handle the
911          * slot number conversion for 'faila' and 'failb'
912          */
913         for (i = 0; i < disks ; i++)
914                 blocks[i] = NULL;
915         count = 0;
916         i = d0_idx;
917         do {
918                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
919
920                 blocks[slot] = sh->dev[i].page;
921
922                 if (i == target)
923                         faila = slot;
924                 if (i == target2)
925                         failb = slot;
926                 i = raid6_next_disk(i, disks);
927         } while (i != d0_idx);
928
929         BUG_ON(faila == failb);
930         if (failb < faila)
931                 swap(faila, failb);
932         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
933                  __func__, (unsigned long long)sh->sector, faila, failb);
934
935         atomic_inc(&sh->count);
936
937         if (failb == syndrome_disks+1) {
938                 /* Q disk is one of the missing disks */
939                 if (faila == syndrome_disks) {
940                         /* Missing P+Q, just recompute */
941                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
942                                           ops_complete_compute, sh,
943                                           to_addr_conv(sh, percpu));
944                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
945                                                   STRIPE_SIZE, &submit);
946                 } else {
947                         struct page *dest;
948                         int data_target;
949                         int qd_idx = sh->qd_idx;
950
951                         /* Missing D+Q: recompute D from P, then recompute Q */
952                         if (target == qd_idx)
953                                 data_target = target2;
954                         else
955                                 data_target = target;
956
957                         count = 0;
958                         for (i = disks; i-- ; ) {
959                                 if (i == data_target || i == qd_idx)
960                                         continue;
961                                 blocks[count++] = sh->dev[i].page;
962                         }
963                         dest = sh->dev[data_target].page;
964                         init_async_submit(&submit,
965                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
966                                           NULL, NULL, NULL,
967                                           to_addr_conv(sh, percpu));
968                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
969                                        &submit);
970
971                         count = set_syndrome_sources(blocks, sh);
972                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
973                                           ops_complete_compute, sh,
974                                           to_addr_conv(sh, percpu));
975                         return async_gen_syndrome(blocks, 0, count+2,
976                                                   STRIPE_SIZE, &submit);
977                 }
978         } else {
979                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
980                                   ops_complete_compute, sh,
981                                   to_addr_conv(sh, percpu));
982                 if (failb == syndrome_disks) {
983                         /* We're missing D+P. */
984                         return async_raid6_datap_recov(syndrome_disks+2,
985                                                        STRIPE_SIZE, faila,
986                                                        blocks, &submit);
987                 } else {
988                         /* We're missing D+D. */
989                         return async_raid6_2data_recov(syndrome_disks+2,
990                                                        STRIPE_SIZE, faila, failb,
991                                                        blocks, &submit);
992                 }
993         }
994 }
995
996
997 static void ops_complete_prexor(void *stripe_head_ref)
998 {
999         struct stripe_head *sh = stripe_head_ref;
1000
1001         pr_debug("%s: stripe %llu\n", __func__,
1002                 (unsigned long long)sh->sector);
1003 }
1004
1005 static struct dma_async_tx_descriptor *
1006 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1007                struct dma_async_tx_descriptor *tx)
1008 {
1009         int disks = sh->disks;
1010         struct page **xor_srcs = percpu->scribble;
1011         int count = 0, pd_idx = sh->pd_idx, i;
1012         struct async_submit_ctl submit;
1013
1014         /* existing parity data subtracted */
1015         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1016
1017         pr_debug("%s: stripe %llu\n", __func__,
1018                 (unsigned long long)sh->sector);
1019
1020         for (i = disks; i--; ) {
1021                 struct r5dev *dev = &sh->dev[i];
1022                 /* Only process blocks that are known to be uptodate */
1023                 if (test_bit(R5_Wantdrain, &dev->flags))
1024                         xor_srcs[count++] = dev->page;
1025         }
1026
1027         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1028                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1029         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1030
1031         return tx;
1032 }
1033
1034 static struct dma_async_tx_descriptor *
1035 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1036 {
1037         int disks = sh->disks;
1038         int i;
1039
1040         pr_debug("%s: stripe %llu\n", __func__,
1041                 (unsigned long long)sh->sector);
1042
1043         for (i = disks; i--; ) {
1044                 struct r5dev *dev = &sh->dev[i];
1045                 struct bio *chosen;
1046
1047                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1048                         struct bio *wbi;
1049
1050                         spin_lock_irq(&sh->raid_conf->device_lock);
1051                         chosen = dev->towrite;
1052                         dev->towrite = NULL;
1053                         BUG_ON(dev->written);
1054                         wbi = dev->written = chosen;
1055                         spin_unlock_irq(&sh->raid_conf->device_lock);
1056
1057                         while (wbi && wbi->bi_sector <
1058                                 dev->sector + STRIPE_SECTORS) {
1059                                 if (wbi->bi_rw & REQ_FUA)
1060                                         set_bit(R5_WantFUA, &dev->flags);
1061                                 tx = async_copy_data(1, wbi, dev->page,
1062                                         dev->sector, tx);
1063                                 wbi = r5_next_bio(wbi, dev->sector);
1064                         }
1065                 }
1066         }
1067
1068         return tx;
1069 }
1070
1071 static void ops_complete_reconstruct(void *stripe_head_ref)
1072 {
1073         struct stripe_head *sh = stripe_head_ref;
1074         int disks = sh->disks;
1075         int pd_idx = sh->pd_idx;
1076         int qd_idx = sh->qd_idx;
1077         int i;
1078         bool fua = false;
1079
1080         pr_debug("%s: stripe %llu\n", __func__,
1081                 (unsigned long long)sh->sector);
1082
1083         for (i = disks; i--; )
1084                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1085
1086         for (i = disks; i--; ) {
1087                 struct r5dev *dev = &sh->dev[i];
1088
1089                 if (dev->written || i == pd_idx || i == qd_idx) {
1090                         set_bit(R5_UPTODATE, &dev->flags);
1091                         if (fua)
1092                                 set_bit(R5_WantFUA, &dev->flags);
1093                 }
1094         }
1095
1096         if (sh->reconstruct_state == reconstruct_state_drain_run)
1097                 sh->reconstruct_state = reconstruct_state_drain_result;
1098         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1099                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1100         else {
1101                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1102                 sh->reconstruct_state = reconstruct_state_result;
1103         }
1104
1105         set_bit(STRIPE_HANDLE, &sh->state);
1106         release_stripe(sh);
1107 }
1108
1109 static void
1110 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1111                      struct dma_async_tx_descriptor *tx)
1112 {
1113         int disks = sh->disks;
1114         struct page **xor_srcs = percpu->scribble;
1115         struct async_submit_ctl submit;
1116         int count = 0, pd_idx = sh->pd_idx, i;
1117         struct page *xor_dest;
1118         int prexor = 0;
1119         unsigned long flags;
1120
1121         pr_debug("%s: stripe %llu\n", __func__,
1122                 (unsigned long long)sh->sector);
1123
1124         /* check if prexor is active which means only process blocks
1125          * that are part of a read-modify-write (written)
1126          */
1127         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1128                 prexor = 1;
1129                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1130                 for (i = disks; i--; ) {
1131                         struct r5dev *dev = &sh->dev[i];
1132                         if (dev->written)
1133                                 xor_srcs[count++] = dev->page;
1134                 }
1135         } else {
1136                 xor_dest = sh->dev[pd_idx].page;
1137                 for (i = disks; i--; ) {
1138                         struct r5dev *dev = &sh->dev[i];
1139                         if (i != pd_idx)
1140                                 xor_srcs[count++] = dev->page;
1141                 }
1142         }
1143
1144         /* 1/ if we prexor'd then the dest is reused as a source
1145          * 2/ if we did not prexor then we are redoing the parity
1146          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1147          * for the synchronous xor case
1148          */
1149         flags = ASYNC_TX_ACK |
1150                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1151
1152         atomic_inc(&sh->count);
1153
1154         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1155                           to_addr_conv(sh, percpu));
1156         if (unlikely(count == 1))
1157                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1158         else
1159                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1160 }
1161
1162 static void
1163 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1164                      struct dma_async_tx_descriptor *tx)
1165 {
1166         struct async_submit_ctl submit;
1167         struct page **blocks = percpu->scribble;
1168         int count;
1169
1170         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1171
1172         count = set_syndrome_sources(blocks, sh);
1173
1174         atomic_inc(&sh->count);
1175
1176         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1177                           sh, to_addr_conv(sh, percpu));
1178         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1179 }
1180
1181 static void ops_complete_check(void *stripe_head_ref)
1182 {
1183         struct stripe_head *sh = stripe_head_ref;
1184
1185         pr_debug("%s: stripe %llu\n", __func__,
1186                 (unsigned long long)sh->sector);
1187
1188         sh->check_state = check_state_check_result;
1189         set_bit(STRIPE_HANDLE, &sh->state);
1190         release_stripe(sh);
1191 }
1192
1193 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1194 {
1195         int disks = sh->disks;
1196         int pd_idx = sh->pd_idx;
1197         int qd_idx = sh->qd_idx;
1198         struct page *xor_dest;
1199         struct page **xor_srcs = percpu->scribble;
1200         struct dma_async_tx_descriptor *tx;
1201         struct async_submit_ctl submit;
1202         int count;
1203         int i;
1204
1205         pr_debug("%s: stripe %llu\n", __func__,
1206                 (unsigned long long)sh->sector);
1207
1208         count = 0;
1209         xor_dest = sh->dev[pd_idx].page;
1210         xor_srcs[count++] = xor_dest;
1211         for (i = disks; i--; ) {
1212                 if (i == pd_idx || i == qd_idx)
1213                         continue;
1214                 xor_srcs[count++] = sh->dev[i].page;
1215         }
1216
1217         init_async_submit(&submit, 0, NULL, NULL, NULL,
1218                           to_addr_conv(sh, percpu));
1219         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1220                            &sh->ops.zero_sum_result, &submit);
1221
1222         atomic_inc(&sh->count);
1223         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1224         tx = async_trigger_callback(&submit);
1225 }
1226
1227 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1228 {
1229         struct page **srcs = percpu->scribble;
1230         struct async_submit_ctl submit;
1231         int count;
1232
1233         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1234                 (unsigned long long)sh->sector, checkp);
1235
1236         count = set_syndrome_sources(srcs, sh);
1237         if (!checkp)
1238                 srcs[count] = NULL;
1239
1240         atomic_inc(&sh->count);
1241         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1242                           sh, to_addr_conv(sh, percpu));
1243         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1244                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1245 }
1246
1247 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1248 {
1249         int overlap_clear = 0, i, disks = sh->disks;
1250         struct dma_async_tx_descriptor *tx = NULL;
1251         struct r5conf *conf = sh->raid_conf;
1252         int level = conf->level;
1253         struct raid5_percpu *percpu;
1254         unsigned long cpu;
1255
1256         cpu = get_cpu();
1257         percpu = per_cpu_ptr(conf->percpu, cpu);
1258         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1259                 ops_run_biofill(sh);
1260                 overlap_clear++;
1261         }
1262
1263         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1264                 if (level < 6)
1265                         tx = ops_run_compute5(sh, percpu);
1266                 else {
1267                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1268                                 tx = ops_run_compute6_1(sh, percpu);
1269                         else
1270                                 tx = ops_run_compute6_2(sh, percpu);
1271                 }
1272                 /* terminate the chain if reconstruct is not set to be run */
1273                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1274                         async_tx_ack(tx);
1275         }
1276
1277         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1278                 tx = ops_run_prexor(sh, percpu, tx);
1279
1280         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1281                 tx = ops_run_biodrain(sh, tx);
1282                 overlap_clear++;
1283         }
1284
1285         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1286                 if (level < 6)
1287                         ops_run_reconstruct5(sh, percpu, tx);
1288                 else
1289                         ops_run_reconstruct6(sh, percpu, tx);
1290         }
1291
1292         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1293                 if (sh->check_state == check_state_run)
1294                         ops_run_check_p(sh, percpu);
1295                 else if (sh->check_state == check_state_run_q)
1296                         ops_run_check_pq(sh, percpu, 0);
1297                 else if (sh->check_state == check_state_run_pq)
1298                         ops_run_check_pq(sh, percpu, 1);
1299                 else
1300                         BUG();
1301         }
1302
1303         if (overlap_clear)
1304                 for (i = disks; i--; ) {
1305                         struct r5dev *dev = &sh->dev[i];
1306                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1307                                 wake_up(&sh->raid_conf->wait_for_overlap);
1308                 }
1309         put_cpu();
1310 }
1311
1312 #ifdef CONFIG_MULTICORE_RAID456
1313 static void async_run_ops(void *param, async_cookie_t cookie)
1314 {
1315         struct stripe_head *sh = param;
1316         unsigned long ops_request = sh->ops.request;
1317
1318         clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1319         wake_up(&sh->ops.wait_for_ops);
1320
1321         __raid_run_ops(sh, ops_request);
1322         release_stripe(sh);
1323 }
1324
1325 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1326 {
1327         /* since handle_stripe can be called outside of raid5d context
1328          * we need to ensure sh->ops.request is de-staged before another
1329          * request arrives
1330          */
1331         wait_event(sh->ops.wait_for_ops,
1332                    !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1333         sh->ops.request = ops_request;
1334
1335         atomic_inc(&sh->count);
1336         async_schedule(async_run_ops, sh);
1337 }
1338 #else
1339 #define raid_run_ops __raid_run_ops
1340 #endif
1341
1342 static int grow_one_stripe(struct r5conf *conf)
1343 {
1344         struct stripe_head *sh;
1345         sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1346         if (!sh)
1347                 return 0;
1348
1349         sh->raid_conf = conf;
1350         #ifdef CONFIG_MULTICORE_RAID456
1351         init_waitqueue_head(&sh->ops.wait_for_ops);
1352         #endif
1353
1354         if (grow_buffers(sh)) {
1355                 shrink_buffers(sh);
1356                 kmem_cache_free(conf->slab_cache, sh);
1357                 return 0;
1358         }
1359         /* we just created an active stripe so... */
1360         atomic_set(&sh->count, 1);
1361         atomic_inc(&conf->active_stripes);
1362         INIT_LIST_HEAD(&sh->lru);
1363         release_stripe(sh);
1364         return 1;
1365 }
1366
1367 static int grow_stripes(struct r5conf *conf, int num)
1368 {
1369         struct kmem_cache *sc;
1370         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1371
1372         if (conf->mddev->gendisk)
1373                 sprintf(conf->cache_name[0],
1374                         "raid%d-%s", conf->level, mdname(conf->mddev));
1375         else
1376                 sprintf(conf->cache_name[0],
1377                         "raid%d-%p", conf->level, conf->mddev);
1378         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1379
1380         conf->active_name = 0;
1381         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1382                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1383                                0, 0, NULL);
1384         if (!sc)
1385                 return 1;
1386         conf->slab_cache = sc;
1387         conf->pool_size = devs;
1388         while (num--)
1389                 if (!grow_one_stripe(conf))
1390                         return 1;
1391         return 0;
1392 }
1393
1394 /**
1395  * scribble_len - return the required size of the scribble region
1396  * @num - total number of disks in the array
1397  *
1398  * The size must be enough to contain:
1399  * 1/ a struct page pointer for each device in the array +2
1400  * 2/ room to convert each entry in (1) to its corresponding dma
1401  *    (dma_map_page()) or page (page_address()) address.
1402  *
1403  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1404  * calculate over all devices (not just the data blocks), using zeros in place
1405  * of the P and Q blocks.
1406  */
1407 static size_t scribble_len(int num)
1408 {
1409         size_t len;
1410
1411         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1412
1413         return len;
1414 }
1415
1416 static int resize_stripes(struct r5conf *conf, int newsize)
1417 {
1418         /* Make all the stripes able to hold 'newsize' devices.
1419          * New slots in each stripe get 'page' set to a new page.
1420          *
1421          * This happens in stages:
1422          * 1/ create a new kmem_cache and allocate the required number of
1423          *    stripe_heads.
1424          * 2/ gather all the old stripe_heads and tranfer the pages across
1425          *    to the new stripe_heads.  This will have the side effect of
1426          *    freezing the array as once all stripe_heads have been collected,
1427          *    no IO will be possible.  Old stripe heads are freed once their
1428          *    pages have been transferred over, and the old kmem_cache is
1429          *    freed when all stripes are done.
1430          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1431          *    we simple return a failre status - no need to clean anything up.
1432          * 4/ allocate new pages for the new slots in the new stripe_heads.
1433          *    If this fails, we don't bother trying the shrink the
1434          *    stripe_heads down again, we just leave them as they are.
1435          *    As each stripe_head is processed the new one is released into
1436          *    active service.
1437          *
1438          * Once step2 is started, we cannot afford to wait for a write,
1439          * so we use GFP_NOIO allocations.
1440          */
1441         struct stripe_head *osh, *nsh;
1442         LIST_HEAD(newstripes);
1443         struct disk_info *ndisks;
1444         unsigned long cpu;
1445         int err;
1446         struct kmem_cache *sc;
1447         int i;
1448
1449         if (newsize <= conf->pool_size)
1450                 return 0; /* never bother to shrink */
1451
1452         err = md_allow_write(conf->mddev);
1453         if (err)
1454                 return err;
1455
1456         /* Step 1 */
1457         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1458                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1459                                0, 0, NULL);
1460         if (!sc)
1461                 return -ENOMEM;
1462
1463         for (i = conf->max_nr_stripes; i; i--) {
1464                 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1465                 if (!nsh)
1466                         break;
1467
1468                 nsh->raid_conf = conf;
1469                 #ifdef CONFIG_MULTICORE_RAID456
1470                 init_waitqueue_head(&nsh->ops.wait_for_ops);
1471                 #endif
1472
1473                 list_add(&nsh->lru, &newstripes);
1474         }
1475         if (i) {
1476                 /* didn't get enough, give up */
1477                 while (!list_empty(&newstripes)) {
1478                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1479                         list_del(&nsh->lru);
1480                         kmem_cache_free(sc, nsh);
1481                 }
1482                 kmem_cache_destroy(sc);
1483                 return -ENOMEM;
1484         }
1485         /* Step 2 - Must use GFP_NOIO now.
1486          * OK, we have enough stripes, start collecting inactive
1487          * stripes and copying them over
1488          */
1489         list_for_each_entry(nsh, &newstripes, lru) {
1490                 spin_lock_irq(&conf->device_lock);
1491                 wait_event_lock_irq(conf->wait_for_stripe,
1492                                     !list_empty(&conf->inactive_list),
1493                                     conf->device_lock,
1494                                     );
1495                 osh = get_free_stripe(conf);
1496                 spin_unlock_irq(&conf->device_lock);
1497                 atomic_set(&nsh->count, 1);
1498                 for(i=0; i<conf->pool_size; i++)
1499                         nsh->dev[i].page = osh->dev[i].page;
1500                 for( ; i<newsize; i++)
1501                         nsh->dev[i].page = NULL;
1502                 kmem_cache_free(conf->slab_cache, osh);
1503         }
1504         kmem_cache_destroy(conf->slab_cache);
1505
1506         /* Step 3.
1507          * At this point, we are holding all the stripes so the array
1508          * is completely stalled, so now is a good time to resize
1509          * conf->disks and the scribble region
1510          */
1511         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1512         if (ndisks) {
1513                 for (i=0; i<conf->raid_disks; i++)
1514                         ndisks[i] = conf->disks[i];
1515                 kfree(conf->disks);
1516                 conf->disks = ndisks;
1517         } else
1518                 err = -ENOMEM;
1519
1520         get_online_cpus();
1521         conf->scribble_len = scribble_len(newsize);
1522         for_each_present_cpu(cpu) {
1523                 struct raid5_percpu *percpu;
1524                 void *scribble;
1525
1526                 percpu = per_cpu_ptr(conf->percpu, cpu);
1527                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1528
1529                 if (scribble) {
1530                         kfree(percpu->scribble);
1531                         percpu->scribble = scribble;
1532                 } else {
1533                         err = -ENOMEM;
1534                         break;
1535                 }
1536         }
1537         put_online_cpus();
1538
1539         /* Step 4, return new stripes to service */
1540         while(!list_empty(&newstripes)) {
1541                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1542                 list_del_init(&nsh->lru);
1543
1544                 for (i=conf->raid_disks; i < newsize; i++)
1545                         if (nsh->dev[i].page == NULL) {
1546                                 struct page *p = alloc_page(GFP_NOIO);
1547                                 nsh->dev[i].page = p;
1548                                 if (!p)
1549                                         err = -ENOMEM;
1550                         }
1551                 release_stripe(nsh);
1552         }
1553         /* critical section pass, GFP_NOIO no longer needed */
1554
1555         conf->slab_cache = sc;
1556         conf->active_name = 1-conf->active_name;
1557         conf->pool_size = newsize;
1558         return err;
1559 }
1560
1561 static int drop_one_stripe(struct r5conf *conf)
1562 {
1563         struct stripe_head *sh;
1564
1565         spin_lock_irq(&conf->device_lock);
1566         sh = get_free_stripe(conf);
1567         spin_unlock_irq(&conf->device_lock);
1568         if (!sh)
1569                 return 0;
1570         BUG_ON(atomic_read(&sh->count));
1571         shrink_buffers(sh);
1572         kmem_cache_free(conf->slab_cache, sh);
1573         atomic_dec(&conf->active_stripes);
1574         return 1;
1575 }
1576
1577 static void shrink_stripes(struct r5conf *conf)
1578 {
1579         while (drop_one_stripe(conf))
1580                 ;
1581
1582         if (conf->slab_cache)
1583                 kmem_cache_destroy(conf->slab_cache);
1584         conf->slab_cache = NULL;
1585 }
1586
1587 static void raid5_end_read_request(struct bio * bi, int error)
1588 {
1589         struct stripe_head *sh = bi->bi_private;
1590         struct r5conf *conf = sh->raid_conf;
1591         int disks = sh->disks, i;
1592         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1593         char b[BDEVNAME_SIZE];
1594         struct md_rdev *rdev;
1595
1596
1597         for (i=0 ; i<disks; i++)
1598                 if (bi == &sh->dev[i].req)
1599                         break;
1600
1601         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1602                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1603                 uptodate);
1604         if (i == disks) {
1605                 BUG();
1606                 return;
1607         }
1608
1609         if (uptodate) {
1610                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1611                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1612                         rdev = conf->disks[i].rdev;
1613                         printk_ratelimited(
1614                                 KERN_INFO
1615                                 "md/raid:%s: read error corrected"
1616                                 " (%lu sectors at %llu on %s)\n",
1617                                 mdname(conf->mddev), STRIPE_SECTORS,
1618                                 (unsigned long long)(sh->sector
1619                                                      + rdev->data_offset),
1620                                 bdevname(rdev->bdev, b));
1621                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1622                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1623                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1624                 }
1625                 if (atomic_read(&conf->disks[i].rdev->read_errors))
1626                         atomic_set(&conf->disks[i].rdev->read_errors, 0);
1627         } else {
1628                 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1629                 int retry = 0;
1630                 rdev = conf->disks[i].rdev;
1631
1632                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1633                 atomic_inc(&rdev->read_errors);
1634                 if (conf->mddev->degraded >= conf->max_degraded)
1635                         printk_ratelimited(
1636                                 KERN_WARNING
1637                                 "md/raid:%s: read error not correctable "
1638                                 "(sector %llu on %s).\n",
1639                                 mdname(conf->mddev),
1640                                 (unsigned long long)(sh->sector
1641                                                      + rdev->data_offset),
1642                                 bdn);
1643                 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1644                         /* Oh, no!!! */
1645                         printk_ratelimited(
1646                                 KERN_WARNING
1647                                 "md/raid:%s: read error NOT corrected!! "
1648                                 "(sector %llu on %s).\n",
1649                                 mdname(conf->mddev),
1650                                 (unsigned long long)(sh->sector
1651                                                      + rdev->data_offset),
1652                                 bdn);
1653                 else if (atomic_read(&rdev->read_errors)
1654                          > conf->max_nr_stripes)
1655                         printk(KERN_WARNING
1656                                "md/raid:%s: Too many read errors, failing device %s.\n",
1657                                mdname(conf->mddev), bdn);
1658                 else
1659                         retry = 1;
1660                 if (retry)
1661                         set_bit(R5_ReadError, &sh->dev[i].flags);
1662                 else {
1663                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1664                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1665                         md_error(conf->mddev, rdev);
1666                 }
1667         }
1668         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1669         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1670         set_bit(STRIPE_HANDLE, &sh->state);
1671         release_stripe(sh);
1672 }
1673
1674 static void raid5_end_write_request(struct bio *bi, int error)
1675 {
1676         struct stripe_head *sh = bi->bi_private;
1677         struct r5conf *conf = sh->raid_conf;
1678         int disks = sh->disks, i;
1679         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1680         sector_t first_bad;
1681         int bad_sectors;
1682
1683         for (i=0 ; i<disks; i++)
1684                 if (bi == &sh->dev[i].req)
1685                         break;
1686
1687         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1688                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1689                 uptodate);
1690         if (i == disks) {
1691                 BUG();
1692                 return;
1693         }
1694
1695         if (!uptodate) {
1696                 set_bit(WriteErrorSeen, &conf->disks[i].rdev->flags);
1697                 set_bit(R5_WriteError, &sh->dev[i].flags);
1698         } else if (is_badblock(conf->disks[i].rdev, sh->sector, STRIPE_SECTORS,
1699                                &first_bad, &bad_sectors))
1700                 set_bit(R5_MadeGood, &sh->dev[i].flags);
1701
1702         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1703         
1704         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1705         set_bit(STRIPE_HANDLE, &sh->state);
1706         release_stripe(sh);
1707 }
1708
1709
1710 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1711         
1712 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1713 {
1714         struct r5dev *dev = &sh->dev[i];
1715
1716         bio_init(&dev->req);
1717         dev->req.bi_io_vec = &dev->vec;
1718         dev->req.bi_vcnt++;
1719         dev->req.bi_max_vecs++;
1720         dev->vec.bv_page = dev->page;
1721         dev->vec.bv_len = STRIPE_SIZE;
1722         dev->vec.bv_offset = 0;
1723
1724         dev->req.bi_sector = sh->sector;
1725         dev->req.bi_private = sh;
1726
1727         dev->flags = 0;
1728         dev->sector = compute_blocknr(sh, i, previous);
1729 }
1730
1731 static void error(struct mddev *mddev, struct md_rdev *rdev)
1732 {
1733         char b[BDEVNAME_SIZE];
1734         struct r5conf *conf = mddev->private;
1735         pr_debug("raid456: error called\n");
1736
1737         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1738                 unsigned long flags;
1739                 spin_lock_irqsave(&conf->device_lock, flags);
1740                 mddev->degraded++;
1741                 spin_unlock_irqrestore(&conf->device_lock, flags);
1742                 /*
1743                  * if recovery was running, make sure it aborts.
1744                  */
1745                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1746         }
1747         set_bit(Blocked, &rdev->flags);
1748         set_bit(Faulty, &rdev->flags);
1749         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1750         printk(KERN_ALERT
1751                "md/raid:%s: Disk failure on %s, disabling device.\n"
1752                "md/raid:%s: Operation continuing on %d devices.\n",
1753                mdname(mddev),
1754                bdevname(rdev->bdev, b),
1755                mdname(mddev),
1756                conf->raid_disks - mddev->degraded);
1757 }
1758
1759 /*
1760  * Input: a 'big' sector number,
1761  * Output: index of the data and parity disk, and the sector # in them.
1762  */
1763 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1764                                      int previous, int *dd_idx,
1765                                      struct stripe_head *sh)
1766 {
1767         sector_t stripe, stripe2;
1768         sector_t chunk_number;
1769         unsigned int chunk_offset;
1770         int pd_idx, qd_idx;
1771         int ddf_layout = 0;
1772         sector_t new_sector;
1773         int algorithm = previous ? conf->prev_algo
1774                                  : conf->algorithm;
1775         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1776                                          : conf->chunk_sectors;
1777         int raid_disks = previous ? conf->previous_raid_disks
1778                                   : conf->raid_disks;
1779         int data_disks = raid_disks - conf->max_degraded;
1780
1781         /* First compute the information on this sector */
1782
1783         /*
1784          * Compute the chunk number and the sector offset inside the chunk
1785          */
1786         chunk_offset = sector_div(r_sector, sectors_per_chunk);
1787         chunk_number = r_sector;
1788
1789         /*
1790          * Compute the stripe number
1791          */
1792         stripe = chunk_number;
1793         *dd_idx = sector_div(stripe, data_disks);
1794         stripe2 = stripe;
1795         /*
1796          * Select the parity disk based on the user selected algorithm.
1797          */
1798         pd_idx = qd_idx = -1;
1799         switch(conf->level) {
1800         case 4:
1801                 pd_idx = data_disks;
1802                 break;
1803         case 5:
1804                 switch (algorithm) {
1805                 case ALGORITHM_LEFT_ASYMMETRIC:
1806                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1807                         if (*dd_idx >= pd_idx)
1808                                 (*dd_idx)++;
1809                         break;
1810                 case ALGORITHM_RIGHT_ASYMMETRIC:
1811                         pd_idx = sector_div(stripe2, raid_disks);
1812                         if (*dd_idx >= pd_idx)
1813                                 (*dd_idx)++;
1814                         break;
1815                 case ALGORITHM_LEFT_SYMMETRIC:
1816                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1817                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1818                         break;
1819                 case ALGORITHM_RIGHT_SYMMETRIC:
1820                         pd_idx = sector_div(stripe2, raid_disks);
1821                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1822                         break;
1823                 case ALGORITHM_PARITY_0:
1824                         pd_idx = 0;
1825                         (*dd_idx)++;
1826                         break;
1827                 case ALGORITHM_PARITY_N:
1828                         pd_idx = data_disks;
1829                         break;
1830                 default:
1831                         BUG();
1832                 }
1833                 break;
1834         case 6:
1835
1836                 switch (algorithm) {
1837                 case ALGORITHM_LEFT_ASYMMETRIC:
1838                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1839                         qd_idx = pd_idx + 1;
1840                         if (pd_idx == raid_disks-1) {
1841                                 (*dd_idx)++;    /* Q D D D P */
1842                                 qd_idx = 0;
1843                         } else if (*dd_idx >= pd_idx)
1844                                 (*dd_idx) += 2; /* D D P Q D */
1845                         break;
1846                 case ALGORITHM_RIGHT_ASYMMETRIC:
1847                         pd_idx = sector_div(stripe2, raid_disks);
1848                         qd_idx = pd_idx + 1;
1849                         if (pd_idx == raid_disks-1) {
1850                                 (*dd_idx)++;    /* Q D D D P */
1851                                 qd_idx = 0;
1852                         } else if (*dd_idx >= pd_idx)
1853                                 (*dd_idx) += 2; /* D D P Q D */
1854                         break;
1855                 case ALGORITHM_LEFT_SYMMETRIC:
1856                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1857                         qd_idx = (pd_idx + 1) % raid_disks;
1858                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1859                         break;
1860                 case ALGORITHM_RIGHT_SYMMETRIC:
1861                         pd_idx = sector_div(stripe2, raid_disks);
1862                         qd_idx = (pd_idx + 1) % raid_disks;
1863                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1864                         break;
1865
1866                 case ALGORITHM_PARITY_0:
1867                         pd_idx = 0;
1868                         qd_idx = 1;
1869                         (*dd_idx) += 2;
1870                         break;
1871                 case ALGORITHM_PARITY_N:
1872                         pd_idx = data_disks;
1873                         qd_idx = data_disks + 1;
1874                         break;
1875
1876                 case ALGORITHM_ROTATING_ZERO_RESTART:
1877                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
1878                          * of blocks for computing Q is different.
1879                          */
1880                         pd_idx = sector_div(stripe2, raid_disks);
1881                         qd_idx = pd_idx + 1;
1882                         if (pd_idx == raid_disks-1) {
1883                                 (*dd_idx)++;    /* Q D D D P */
1884                                 qd_idx = 0;
1885                         } else if (*dd_idx >= pd_idx)
1886                                 (*dd_idx) += 2; /* D D P Q D */
1887                         ddf_layout = 1;
1888                         break;
1889
1890                 case ALGORITHM_ROTATING_N_RESTART:
1891                         /* Same a left_asymmetric, by first stripe is
1892                          * D D D P Q  rather than
1893                          * Q D D D P
1894                          */
1895                         stripe2 += 1;
1896                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1897                         qd_idx = pd_idx + 1;
1898                         if (pd_idx == raid_disks-1) {
1899                                 (*dd_idx)++;    /* Q D D D P */
1900                                 qd_idx = 0;
1901                         } else if (*dd_idx >= pd_idx)
1902                                 (*dd_idx) += 2; /* D D P Q D */
1903                         ddf_layout = 1;
1904                         break;
1905
1906                 case ALGORITHM_ROTATING_N_CONTINUE:
1907                         /* Same as left_symmetric but Q is before P */
1908                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1909                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1910                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1911                         ddf_layout = 1;
1912                         break;
1913
1914                 case ALGORITHM_LEFT_ASYMMETRIC_6:
1915                         /* RAID5 left_asymmetric, with Q on last device */
1916                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1917                         if (*dd_idx >= pd_idx)
1918                                 (*dd_idx)++;
1919                         qd_idx = raid_disks - 1;
1920                         break;
1921
1922                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1923                         pd_idx = sector_div(stripe2, raid_disks-1);
1924                         if (*dd_idx >= pd_idx)
1925                                 (*dd_idx)++;
1926                         qd_idx = raid_disks - 1;
1927                         break;
1928
1929                 case ALGORITHM_LEFT_SYMMETRIC_6:
1930                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1931                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1932                         qd_idx = raid_disks - 1;
1933                         break;
1934
1935                 case ALGORITHM_RIGHT_SYMMETRIC_6:
1936                         pd_idx = sector_div(stripe2, raid_disks-1);
1937                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1938                         qd_idx = raid_disks - 1;
1939                         break;
1940
1941                 case ALGORITHM_PARITY_0_6:
1942                         pd_idx = 0;
1943                         (*dd_idx)++;
1944                         qd_idx = raid_disks - 1;
1945                         break;
1946
1947                 default:
1948                         BUG();
1949                 }
1950                 break;
1951         }
1952
1953         if (sh) {
1954                 sh->pd_idx = pd_idx;
1955                 sh->qd_idx = qd_idx;
1956                 sh->ddf_layout = ddf_layout;
1957         }
1958         /*
1959          * Finally, compute the new sector number
1960          */
1961         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1962         return new_sector;
1963 }
1964
1965
1966 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1967 {
1968         struct r5conf *conf = sh->raid_conf;
1969         int raid_disks = sh->disks;
1970         int data_disks = raid_disks - conf->max_degraded;
1971         sector_t new_sector = sh->sector, check;
1972         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1973                                          : conf->chunk_sectors;
1974         int algorithm = previous ? conf->prev_algo
1975                                  : conf->algorithm;
1976         sector_t stripe;
1977         int chunk_offset;
1978         sector_t chunk_number;
1979         int dummy1, dd_idx = i;
1980         sector_t r_sector;
1981         struct stripe_head sh2;
1982
1983
1984         chunk_offset = sector_div(new_sector, sectors_per_chunk);
1985         stripe = new_sector;
1986
1987         if (i == sh->pd_idx)
1988                 return 0;
1989         switch(conf->level) {
1990         case 4: break;
1991         case 5:
1992                 switch (algorithm) {
1993                 case ALGORITHM_LEFT_ASYMMETRIC:
1994                 case ALGORITHM_RIGHT_ASYMMETRIC:
1995                         if (i > sh->pd_idx)
1996                                 i--;
1997                         break;
1998                 case ALGORITHM_LEFT_SYMMETRIC:
1999                 case ALGORITHM_RIGHT_SYMMETRIC:
2000                         if (i < sh->pd_idx)
2001                                 i += raid_disks;
2002                         i -= (sh->pd_idx + 1);
2003                         break;
2004                 case ALGORITHM_PARITY_0:
2005                         i -= 1;
2006                         break;
2007                 case ALGORITHM_PARITY_N:
2008                         break;
2009                 default:
2010                         BUG();
2011                 }
2012                 break;
2013         case 6:
2014                 if (i == sh->qd_idx)
2015                         return 0; /* It is the Q disk */
2016                 switch (algorithm) {
2017                 case ALGORITHM_LEFT_ASYMMETRIC:
2018                 case ALGORITHM_RIGHT_ASYMMETRIC:
2019                 case ALGORITHM_ROTATING_ZERO_RESTART:
2020                 case ALGORITHM_ROTATING_N_RESTART:
2021                         if (sh->pd_idx == raid_disks-1)
2022                                 i--;    /* Q D D D P */
2023                         else if (i > sh->pd_idx)
2024                                 i -= 2; /* D D P Q D */
2025                         break;
2026                 case ALGORITHM_LEFT_SYMMETRIC:
2027                 case ALGORITHM_RIGHT_SYMMETRIC:
2028                         if (sh->pd_idx == raid_disks-1)
2029                                 i--; /* Q D D D P */
2030                         else {
2031                                 /* D D P Q D */
2032                                 if (i < sh->pd_idx)
2033                                         i += raid_disks;
2034                                 i -= (sh->pd_idx + 2);
2035                         }
2036                         break;
2037                 case ALGORITHM_PARITY_0:
2038                         i -= 2;
2039                         break;
2040                 case ALGORITHM_PARITY_N:
2041                         break;
2042                 case ALGORITHM_ROTATING_N_CONTINUE:
2043                         /* Like left_symmetric, but P is before Q */
2044                         if (sh->pd_idx == 0)
2045                                 i--;    /* P D D D Q */
2046                         else {
2047                                 /* D D Q P D */
2048                                 if (i < sh->pd_idx)
2049                                         i += raid_disks;
2050                                 i -= (sh->pd_idx + 1);
2051                         }
2052                         break;
2053                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2054                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2055                         if (i > sh->pd_idx)
2056                                 i--;
2057                         break;
2058                 case ALGORITHM_LEFT_SYMMETRIC_6:
2059                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2060                         if (i < sh->pd_idx)
2061                                 i += data_disks + 1;
2062                         i -= (sh->pd_idx + 1);
2063                         break;
2064                 case ALGORITHM_PARITY_0_6:
2065                         i -= 1;
2066                         break;
2067                 default:
2068                         BUG();
2069                 }
2070                 break;
2071         }
2072
2073         chunk_number = stripe * data_disks + i;
2074         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2075
2076         check = raid5_compute_sector(conf, r_sector,
2077                                      previous, &dummy1, &sh2);
2078         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2079                 || sh2.qd_idx != sh->qd_idx) {
2080                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2081                        mdname(conf->mddev));
2082                 return 0;
2083         }
2084         return r_sector;
2085 }
2086
2087
2088 static void
2089 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2090                          int rcw, int expand)
2091 {
2092         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2093         struct r5conf *conf = sh->raid_conf;
2094         int level = conf->level;
2095
2096         if (rcw) {
2097                 /* if we are not expanding this is a proper write request, and
2098                  * there will be bios with new data to be drained into the
2099                  * stripe cache
2100                  */
2101                 if (!expand) {
2102                         sh->reconstruct_state = reconstruct_state_drain_run;
2103                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2104                 } else
2105                         sh->reconstruct_state = reconstruct_state_run;
2106
2107                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2108
2109                 for (i = disks; i--; ) {
2110                         struct r5dev *dev = &sh->dev[i];
2111
2112                         if (dev->towrite) {
2113                                 set_bit(R5_LOCKED, &dev->flags);
2114                                 set_bit(R5_Wantdrain, &dev->flags);
2115                                 if (!expand)
2116                                         clear_bit(R5_UPTODATE, &dev->flags);
2117                                 s->locked++;
2118                         }
2119                 }
2120                 if (s->locked + conf->max_degraded == disks)
2121                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2122                                 atomic_inc(&conf->pending_full_writes);
2123         } else {
2124                 BUG_ON(level == 6);
2125                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2126                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2127
2128                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2129                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2130                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2131                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2132
2133                 for (i = disks; i--; ) {
2134                         struct r5dev *dev = &sh->dev[i];
2135                         if (i == pd_idx)
2136                                 continue;
2137
2138                         if (dev->towrite &&
2139                             (test_bit(R5_UPTODATE, &dev->flags) ||
2140                              test_bit(R5_Wantcompute, &dev->flags))) {
2141                                 set_bit(R5_Wantdrain, &dev->flags);
2142                                 set_bit(R5_LOCKED, &dev->flags);
2143                                 clear_bit(R5_UPTODATE, &dev->flags);
2144                                 s->locked++;
2145                         }
2146                 }
2147         }
2148
2149         /* keep the parity disk(s) locked while asynchronous operations
2150          * are in flight
2151          */
2152         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2153         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2154         s->locked++;
2155
2156         if (level == 6) {
2157                 int qd_idx = sh->qd_idx;
2158                 struct r5dev *dev = &sh->dev[qd_idx];
2159
2160                 set_bit(R5_LOCKED, &dev->flags);
2161                 clear_bit(R5_UPTODATE, &dev->flags);
2162                 s->locked++;
2163         }
2164
2165         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2166                 __func__, (unsigned long long)sh->sector,
2167                 s->locked, s->ops_request);
2168 }
2169
2170 /*
2171  * Each stripe/dev can have one or more bion attached.
2172  * toread/towrite point to the first in a chain.
2173  * The bi_next chain must be in order.
2174  */
2175 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2176 {
2177         struct bio **bip;
2178         struct r5conf *conf = sh->raid_conf;
2179         int firstwrite=0;
2180
2181         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2182                 (unsigned long long)bi->bi_sector,
2183                 (unsigned long long)sh->sector);
2184
2185
2186         spin_lock_irq(&conf->device_lock);
2187         if (forwrite) {
2188                 bip = &sh->dev[dd_idx].towrite;
2189                 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2190                         firstwrite = 1;
2191         } else
2192                 bip = &sh->dev[dd_idx].toread;
2193         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2194                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2195                         goto overlap;
2196                 bip = & (*bip)->bi_next;
2197         }
2198         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2199                 goto overlap;
2200
2201         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2202         if (*bip)
2203                 bi->bi_next = *bip;
2204         *bip = bi;
2205         bi->bi_phys_segments++;
2206
2207         if (forwrite) {
2208                 /* check if page is covered */
2209                 sector_t sector = sh->dev[dd_idx].sector;
2210                 for (bi=sh->dev[dd_idx].towrite;
2211                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2212                              bi && bi->bi_sector <= sector;
2213                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2214                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2215                                 sector = bi->bi_sector + (bi->bi_size>>9);
2216                 }
2217                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2218                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2219         }
2220         spin_unlock_irq(&conf->device_lock);
2221
2222         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2223                 (unsigned long long)(*bip)->bi_sector,
2224                 (unsigned long long)sh->sector, dd_idx);
2225
2226         if (conf->mddev->bitmap && firstwrite) {
2227                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2228                                   STRIPE_SECTORS, 0);
2229                 sh->bm_seq = conf->seq_flush+1;
2230                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2231         }
2232         return 1;
2233
2234  overlap:
2235         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2236         spin_unlock_irq(&conf->device_lock);
2237         return 0;
2238 }
2239
2240 static void end_reshape(struct r5conf *conf);
2241
2242 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2243                             struct stripe_head *sh)
2244 {
2245         int sectors_per_chunk =
2246                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2247         int dd_idx;
2248         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2249         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2250
2251         raid5_compute_sector(conf,
2252                              stripe * (disks - conf->max_degraded)
2253                              *sectors_per_chunk + chunk_offset,
2254                              previous,
2255                              &dd_idx, sh);
2256 }
2257
2258 static void
2259 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2260                                 struct stripe_head_state *s, int disks,
2261                                 struct bio **return_bi)
2262 {
2263         int i;
2264         for (i = disks; i--; ) {
2265                 struct bio *bi;
2266                 int bitmap_end = 0;
2267
2268                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2269                         struct md_rdev *rdev;
2270                         rcu_read_lock();
2271                         rdev = rcu_dereference(conf->disks[i].rdev);
2272                         if (rdev && test_bit(In_sync, &rdev->flags))
2273                                 atomic_inc(&rdev->nr_pending);
2274                         else
2275                                 rdev = NULL;
2276                         rcu_read_unlock();
2277                         if (rdev) {
2278                                 if (!rdev_set_badblocks(
2279                                             rdev,
2280                                             sh->sector,
2281                                             STRIPE_SECTORS, 0))
2282                                         md_error(conf->mddev, rdev);
2283                                 rdev_dec_pending(rdev, conf->mddev);
2284                         }
2285                 }
2286                 spin_lock_irq(&conf->device_lock);
2287                 /* fail all writes first */
2288                 bi = sh->dev[i].towrite;
2289                 sh->dev[i].towrite = NULL;
2290                 if (bi) {
2291                         s->to_write--;
2292                         bitmap_end = 1;
2293                 }
2294
2295                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2296                         wake_up(&conf->wait_for_overlap);
2297
2298                 while (bi && bi->bi_sector <
2299                         sh->dev[i].sector + STRIPE_SECTORS) {
2300                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2301                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2302                         if (!raid5_dec_bi_phys_segments(bi)) {
2303                                 md_write_end(conf->mddev);
2304                                 bi->bi_next = *return_bi;
2305                                 *return_bi = bi;
2306                         }
2307                         bi = nextbi;
2308                 }
2309                 /* and fail all 'written' */
2310                 bi = sh->dev[i].written;
2311                 sh->dev[i].written = NULL;
2312                 if (bi) bitmap_end = 1;
2313                 while (bi && bi->bi_sector <
2314                        sh->dev[i].sector + STRIPE_SECTORS) {
2315                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2316                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2317                         if (!raid5_dec_bi_phys_segments(bi)) {
2318                                 md_write_end(conf->mddev);
2319                                 bi->bi_next = *return_bi;
2320                                 *return_bi = bi;
2321                         }
2322                         bi = bi2;
2323                 }
2324
2325                 /* fail any reads if this device is non-operational and
2326                  * the data has not reached the cache yet.
2327                  */
2328                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2329                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2330                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2331                         bi = sh->dev[i].toread;
2332                         sh->dev[i].toread = NULL;
2333                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2334                                 wake_up(&conf->wait_for_overlap);
2335                         if (bi) s->to_read--;
2336                         while (bi && bi->bi_sector <
2337                                sh->dev[i].sector + STRIPE_SECTORS) {
2338                                 struct bio *nextbi =
2339                                         r5_next_bio(bi, sh->dev[i].sector);
2340                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2341                                 if (!raid5_dec_bi_phys_segments(bi)) {
2342                                         bi->bi_next = *return_bi;
2343                                         *return_bi = bi;
2344                                 }
2345                                 bi = nextbi;
2346                         }
2347                 }
2348                 spin_unlock_irq(&conf->device_lock);
2349                 if (bitmap_end)
2350                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2351                                         STRIPE_SECTORS, 0, 0);
2352                 /* If we were in the middle of a write the parity block might
2353                  * still be locked - so just clear all R5_LOCKED flags
2354                  */
2355                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2356         }
2357
2358         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2359                 if (atomic_dec_and_test(&conf->pending_full_writes))
2360                         md_wakeup_thread(conf->mddev->thread);
2361 }
2362
2363 static void
2364 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2365                    struct stripe_head_state *s)
2366 {
2367         int abort = 0;
2368         int i;
2369
2370         md_done_sync(conf->mddev, STRIPE_SECTORS, 0);
2371         clear_bit(STRIPE_SYNCING, &sh->state);
2372         s->syncing = 0;
2373         /* There is nothing more to do for sync/check/repair.
2374          * For recover we need to record a bad block on all
2375          * non-sync devices, or abort the recovery
2376          */
2377         if (!test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery))
2378                 return;
2379         /* During recovery devices cannot be removed, so locking and
2380          * refcounting of rdevs is not needed
2381          */
2382         for (i = 0; i < conf->raid_disks; i++) {
2383                 struct md_rdev *rdev = conf->disks[i].rdev;
2384                 if (!rdev
2385                     || test_bit(Faulty, &rdev->flags)
2386                     || test_bit(In_sync, &rdev->flags))
2387                         continue;
2388                 if (!rdev_set_badblocks(rdev, sh->sector,
2389                                         STRIPE_SECTORS, 0))
2390                         abort = 1;
2391         }
2392         if (abort) {
2393                 conf->recovery_disabled = conf->mddev->recovery_disabled;
2394                 set_bit(MD_RECOVERY_INTR, &conf->mddev->recovery);
2395         }
2396 }
2397
2398 /* fetch_block - checks the given member device to see if its data needs
2399  * to be read or computed to satisfy a request.
2400  *
2401  * Returns 1 when no more member devices need to be checked, otherwise returns
2402  * 0 to tell the loop in handle_stripe_fill to continue
2403  */
2404 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2405                        int disk_idx, int disks)
2406 {
2407         struct r5dev *dev = &sh->dev[disk_idx];
2408         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2409                                   &sh->dev[s->failed_num[1]] };
2410
2411         /* is the data in this block needed, and can we get it? */
2412         if (!test_bit(R5_LOCKED, &dev->flags) &&
2413             !test_bit(R5_UPTODATE, &dev->flags) &&
2414             (dev->toread ||
2415              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2416              s->syncing || s->expanding ||
2417              (s->failed >= 1 && fdev[0]->toread) ||
2418              (s->failed >= 2 && fdev[1]->toread) ||
2419              (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2420               !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2421              (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2422                 /* we would like to get this block, possibly by computing it,
2423                  * otherwise read it if the backing disk is insync
2424                  */
2425                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2426                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2427                 if ((s->uptodate == disks - 1) &&
2428                     (s->failed && (disk_idx == s->failed_num[0] ||
2429                                    disk_idx == s->failed_num[1]))) {
2430                         /* have disk failed, and we're requested to fetch it;
2431                          * do compute it
2432                          */
2433                         pr_debug("Computing stripe %llu block %d\n",
2434                                (unsigned long long)sh->sector, disk_idx);
2435                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2436                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2437                         set_bit(R5_Wantcompute, &dev->flags);
2438                         sh->ops.target = disk_idx;
2439                         sh->ops.target2 = -1; /* no 2nd target */
2440                         s->req_compute = 1;
2441                         /* Careful: from this point on 'uptodate' is in the eye
2442                          * of raid_run_ops which services 'compute' operations
2443                          * before writes. R5_Wantcompute flags a block that will
2444                          * be R5_UPTODATE by the time it is needed for a
2445                          * subsequent operation.
2446                          */
2447                         s->uptodate++;
2448                         return 1;
2449                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2450                         /* Computing 2-failure is *very* expensive; only
2451                          * do it if failed >= 2
2452                          */
2453                         int other;
2454                         for (other = disks; other--; ) {
2455                                 if (other == disk_idx)
2456                                         continue;
2457                                 if (!test_bit(R5_UPTODATE,
2458                                       &sh->dev[other].flags))
2459                                         break;
2460                         }
2461                         BUG_ON(other < 0);
2462                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2463                                (unsigned long long)sh->sector,
2464                                disk_idx, other);
2465                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2466                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2467                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2468                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2469                         sh->ops.target = disk_idx;
2470                         sh->ops.target2 = other;
2471                         s->uptodate += 2;
2472                         s->req_compute = 1;
2473                         return 1;
2474                 } else if (test_bit(R5_Insync, &dev->flags)) {
2475                         set_bit(R5_LOCKED, &dev->flags);
2476                         set_bit(R5_Wantread, &dev->flags);
2477                         s->locked++;
2478                         pr_debug("Reading block %d (sync=%d)\n",
2479                                 disk_idx, s->syncing);
2480                 }
2481         }
2482
2483         return 0;
2484 }
2485
2486 /**
2487  * handle_stripe_fill - read or compute data to satisfy pending requests.
2488  */
2489 static void handle_stripe_fill(struct stripe_head *sh,
2490                                struct stripe_head_state *s,
2491                                int disks)
2492 {
2493         int i;
2494
2495         /* look for blocks to read/compute, skip this if a compute
2496          * is already in flight, or if the stripe contents are in the
2497          * midst of changing due to a write
2498          */
2499         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2500             !sh->reconstruct_state)
2501                 for (i = disks; i--; )
2502                         if (fetch_block(sh, s, i, disks))
2503                                 break;
2504         set_bit(STRIPE_HANDLE, &sh->state);
2505 }
2506
2507
2508 /* handle_stripe_clean_event
2509  * any written block on an uptodate or failed drive can be returned.
2510  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2511  * never LOCKED, so we don't need to test 'failed' directly.
2512  */
2513 static void handle_stripe_clean_event(struct r5conf *conf,
2514         struct stripe_head *sh, int disks, struct bio **return_bi)
2515 {
2516         int i;
2517         struct r5dev *dev;
2518
2519         for (i = disks; i--; )
2520                 if (sh->dev[i].written) {
2521                         dev = &sh->dev[i];
2522                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2523                                 test_bit(R5_UPTODATE, &dev->flags)) {
2524                                 /* We can return any write requests */
2525                                 struct bio *wbi, *wbi2;
2526                                 int bitmap_end = 0;
2527                                 pr_debug("Return write for disc %d\n", i);
2528                                 spin_lock_irq(&conf->device_lock);
2529                                 wbi = dev->written;
2530                                 dev->written = NULL;
2531                                 while (wbi && wbi->bi_sector <
2532                                         dev->sector + STRIPE_SECTORS) {
2533                                         wbi2 = r5_next_bio(wbi, dev->sector);
2534                                         if (!raid5_dec_bi_phys_segments(wbi)) {
2535                                                 md_write_end(conf->mddev);
2536                                                 wbi->bi_next = *return_bi;
2537                                                 *return_bi = wbi;
2538                                         }
2539                                         wbi = wbi2;
2540                                 }
2541                                 if (dev->towrite == NULL)
2542                                         bitmap_end = 1;
2543                                 spin_unlock_irq(&conf->device_lock);
2544                                 if (bitmap_end)
2545                                         bitmap_endwrite(conf->mddev->bitmap,
2546                                                         sh->sector,
2547                                                         STRIPE_SECTORS,
2548                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2549                                                         0);
2550                         }
2551                 }
2552
2553         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2554                 if (atomic_dec_and_test(&conf->pending_full_writes))
2555                         md_wakeup_thread(conf->mddev->thread);
2556 }
2557
2558 static void handle_stripe_dirtying(struct r5conf *conf,
2559                                    struct stripe_head *sh,
2560                                    struct stripe_head_state *s,
2561                                    int disks)
2562 {
2563         int rmw = 0, rcw = 0, i;
2564         if (conf->max_degraded == 2) {
2565                 /* RAID6 requires 'rcw' in current implementation
2566                  * Calculate the real rcw later - for now fake it
2567                  * look like rcw is cheaper
2568                  */
2569                 rcw = 1; rmw = 2;
2570         } else for (i = disks; i--; ) {
2571                 /* would I have to read this buffer for read_modify_write */
2572                 struct r5dev *dev = &sh->dev[i];
2573                 if ((dev->towrite || i == sh->pd_idx) &&
2574                     !test_bit(R5_LOCKED, &dev->flags) &&
2575                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2576                       test_bit(R5_Wantcompute, &dev->flags))) {
2577                         if (test_bit(R5_Insync, &dev->flags))
2578                                 rmw++;
2579                         else
2580                                 rmw += 2*disks;  /* cannot read it */
2581                 }
2582                 /* Would I have to read this buffer for reconstruct_write */
2583                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2584                     !test_bit(R5_LOCKED, &dev->flags) &&
2585                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2586                     test_bit(R5_Wantcompute, &dev->flags))) {
2587                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2588                         else
2589                                 rcw += 2*disks;
2590                 }
2591         }
2592         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2593                 (unsigned long long)sh->sector, rmw, rcw);
2594         set_bit(STRIPE_HANDLE, &sh->state);
2595         if (rmw < rcw && rmw > 0)
2596                 /* prefer read-modify-write, but need to get some data */
2597                 for (i = disks; i--; ) {
2598                         struct r5dev *dev = &sh->dev[i];
2599                         if ((dev->towrite || i == sh->pd_idx) &&
2600                             !test_bit(R5_LOCKED, &dev->flags) &&
2601                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2602                             test_bit(R5_Wantcompute, &dev->flags)) &&
2603                             test_bit(R5_Insync, &dev->flags)) {
2604                                 if (
2605                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2606                                         pr_debug("Read_old block "
2607                                                 "%d for r-m-w\n", i);
2608                                         set_bit(R5_LOCKED, &dev->flags);
2609                                         set_bit(R5_Wantread, &dev->flags);
2610                                         s->locked++;
2611                                 } else {
2612                                         set_bit(STRIPE_DELAYED, &sh->state);
2613                                         set_bit(STRIPE_HANDLE, &sh->state);
2614                                 }
2615                         }
2616                 }
2617         if (rcw <= rmw && rcw > 0) {
2618                 /* want reconstruct write, but need to get some data */
2619                 rcw = 0;
2620                 for (i = disks; i--; ) {
2621                         struct r5dev *dev = &sh->dev[i];
2622                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2623                             i != sh->pd_idx && i != sh->qd_idx &&
2624                             !test_bit(R5_LOCKED, &dev->flags) &&
2625                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2626                               test_bit(R5_Wantcompute, &dev->flags))) {
2627                                 rcw++;
2628                                 if (!test_bit(R5_Insync, &dev->flags))
2629                                         continue; /* it's a failed drive */
2630                                 if (
2631                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2632                                         pr_debug("Read_old block "
2633                                                 "%d for Reconstruct\n", i);
2634                                         set_bit(R5_LOCKED, &dev->flags);
2635                                         set_bit(R5_Wantread, &dev->flags);
2636                                         s->locked++;
2637                                 } else {
2638                                         set_bit(STRIPE_DELAYED, &sh->state);
2639                                         set_bit(STRIPE_HANDLE, &sh->state);
2640                                 }
2641                         }
2642                 }
2643         }
2644         /* now if nothing is locked, and if we have enough data,
2645          * we can start a write request
2646          */
2647         /* since handle_stripe can be called at any time we need to handle the
2648          * case where a compute block operation has been submitted and then a
2649          * subsequent call wants to start a write request.  raid_run_ops only
2650          * handles the case where compute block and reconstruct are requested
2651          * simultaneously.  If this is not the case then new writes need to be
2652          * held off until the compute completes.
2653          */
2654         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2655             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2656             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2657                 schedule_reconstruction(sh, s, rcw == 0, 0);
2658 }
2659
2660 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2661                                 struct stripe_head_state *s, int disks)
2662 {
2663         struct r5dev *dev = NULL;
2664
2665         set_bit(STRIPE_HANDLE, &sh->state);
2666
2667         switch (sh->check_state) {
2668         case check_state_idle:
2669                 /* start a new check operation if there are no failures */
2670                 if (s->failed == 0) {
2671                         BUG_ON(s->uptodate != disks);
2672                         sh->check_state = check_state_run;
2673                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2674                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2675                         s->uptodate--;
2676                         break;
2677                 }
2678                 dev = &sh->dev[s->failed_num[0]];
2679                 /* fall through */
2680         case check_state_compute_result:
2681                 sh->check_state = check_state_idle;
2682                 if (!dev)
2683                         dev = &sh->dev[sh->pd_idx];
2684
2685                 /* check that a write has not made the stripe insync */
2686                 if (test_bit(STRIPE_INSYNC, &sh->state))
2687                         break;
2688
2689                 /* either failed parity check, or recovery is happening */
2690                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2691                 BUG_ON(s->uptodate != disks);
2692
2693                 set_bit(R5_LOCKED, &dev->flags);
2694                 s->locked++;
2695                 set_bit(R5_Wantwrite, &dev->flags);
2696
2697                 clear_bit(STRIPE_DEGRADED, &sh->state);
2698                 set_bit(STRIPE_INSYNC, &sh->state);
2699                 break;
2700         case check_state_run:
2701                 break; /* we will be called again upon completion */
2702         case check_state_check_result:
2703                 sh->check_state = check_state_idle;
2704
2705                 /* if a failure occurred during the check operation, leave
2706                  * STRIPE_INSYNC not set and let the stripe be handled again
2707                  */
2708                 if (s->failed)
2709                         break;
2710
2711                 /* handle a successful check operation, if parity is correct
2712                  * we are done.  Otherwise update the mismatch count and repair
2713                  * parity if !MD_RECOVERY_CHECK
2714                  */
2715                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2716                         /* parity is correct (on disc,
2717                          * not in buffer any more)
2718                          */
2719                         set_bit(STRIPE_INSYNC, &sh->state);
2720                 else {
2721                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2722                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2723                                 /* don't try to repair!! */
2724                                 set_bit(STRIPE_INSYNC, &sh->state);
2725                         else {
2726                                 sh->check_state = check_state_compute_run;
2727                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2728                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2729                                 set_bit(R5_Wantcompute,
2730                                         &sh->dev[sh->pd_idx].flags);
2731                                 sh->ops.target = sh->pd_idx;
2732                                 sh->ops.target2 = -1;
2733                                 s->uptodate++;
2734                         }
2735                 }
2736                 break;
2737         case check_state_compute_run:
2738                 break;
2739         default:
2740                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2741                        __func__, sh->check_state,
2742                        (unsigned long long) sh->sector);
2743                 BUG();
2744         }
2745 }
2746
2747
2748 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
2749                                   struct stripe_head_state *s,
2750                                   int disks)
2751 {
2752         int pd_idx = sh->pd_idx;
2753         int qd_idx = sh->qd_idx;
2754         struct r5dev *dev;
2755
2756         set_bit(STRIPE_HANDLE, &sh->state);
2757
2758         BUG_ON(s->failed > 2);
2759
2760         /* Want to check and possibly repair P and Q.
2761          * However there could be one 'failed' device, in which
2762          * case we can only check one of them, possibly using the
2763          * other to generate missing data
2764          */
2765
2766         switch (sh->check_state) {
2767         case check_state_idle:
2768                 /* start a new check operation if there are < 2 failures */
2769                 if (s->failed == s->q_failed) {
2770                         /* The only possible failed device holds Q, so it
2771                          * makes sense to check P (If anything else were failed,
2772                          * we would have used P to recreate it).
2773                          */
2774                         sh->check_state = check_state_run;
2775                 }
2776                 if (!s->q_failed && s->failed < 2) {
2777                         /* Q is not failed, and we didn't use it to generate
2778                          * anything, so it makes sense to check it
2779                          */
2780                         if (sh->check_state == check_state_run)
2781                                 sh->check_state = check_state_run_pq;
2782                         else
2783                                 sh->check_state = check_state_run_q;
2784                 }
2785
2786                 /* discard potentially stale zero_sum_result */
2787                 sh->ops.zero_sum_result = 0;
2788
2789                 if (sh->check_state == check_state_run) {
2790                         /* async_xor_zero_sum destroys the contents of P */
2791                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2792                         s->uptodate--;
2793                 }
2794                 if (sh->check_state >= check_state_run &&
2795                     sh->check_state <= check_state_run_pq) {
2796                         /* async_syndrome_zero_sum preserves P and Q, so
2797                          * no need to mark them !uptodate here
2798                          */
2799                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2800                         break;
2801                 }
2802
2803                 /* we have 2-disk failure */
2804                 BUG_ON(s->failed != 2);
2805                 /* fall through */
2806         case check_state_compute_result:
2807                 sh->check_state = check_state_idle;
2808
2809                 /* check that a write has not made the stripe insync */
2810                 if (test_bit(STRIPE_INSYNC, &sh->state))
2811                         break;
2812
2813                 /* now write out any block on a failed drive,
2814                  * or P or Q if they were recomputed
2815                  */
2816                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2817                 if (s->failed == 2) {
2818                         dev = &sh->dev[s->failed_num[1]];
2819                         s->locked++;
2820                         set_bit(R5_LOCKED, &dev->flags);
2821                         set_bit(R5_Wantwrite, &dev->flags);
2822                 }
2823                 if (s->failed >= 1) {
2824                         dev = &sh->dev[s->failed_num[0]];
2825                         s->locked++;
2826                         set_bit(R5_LOCKED, &dev->flags);
2827                         set_bit(R5_Wantwrite, &dev->flags);
2828                 }
2829                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2830                         dev = &sh->dev[pd_idx];
2831                         s->locked++;
2832                         set_bit(R5_LOCKED, &dev->flags);
2833                         set_bit(R5_Wantwrite, &dev->flags);
2834                 }
2835                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2836                         dev = &sh->dev[qd_idx];
2837                         s->locked++;
2838                         set_bit(R5_LOCKED, &dev->flags);
2839                         set_bit(R5_Wantwrite, &dev->flags);
2840                 }
2841                 clear_bit(STRIPE_DEGRADED, &sh->state);
2842
2843                 set_bit(STRIPE_INSYNC, &sh->state);
2844                 break;
2845         case check_state_run:
2846         case check_state_run_q:
2847         case check_state_run_pq:
2848                 break; /* we will be called again upon completion */
2849         case check_state_check_result:
2850                 sh->check_state = check_state_idle;
2851
2852                 /* handle a successful check operation, if parity is correct
2853                  * we are done.  Otherwise update the mismatch count and repair
2854                  * parity if !MD_RECOVERY_CHECK
2855                  */
2856                 if (sh->ops.zero_sum_result == 0) {
2857                         /* both parities are correct */
2858                         if (!s->failed)
2859                                 set_bit(STRIPE_INSYNC, &sh->state);
2860                         else {
2861                                 /* in contrast to the raid5 case we can validate
2862                                  * parity, but still have a failure to write
2863                                  * back
2864                                  */
2865                                 sh->check_state = check_state_compute_result;
2866                                 /* Returning at this point means that we may go
2867                                  * off and bring p and/or q uptodate again so
2868                                  * we make sure to check zero_sum_result again
2869                                  * to verify if p or q need writeback
2870                                  */
2871                         }
2872                 } else {
2873                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2874                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2875                                 /* don't try to repair!! */
2876                                 set_bit(STRIPE_INSYNC, &sh->state);
2877                         else {
2878                                 int *target = &sh->ops.target;
2879
2880                                 sh->ops.target = -1;
2881                                 sh->ops.target2 = -1;
2882                                 sh->check_state = check_state_compute_run;
2883                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2884                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2885                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2886                                         set_bit(R5_Wantcompute,
2887                                                 &sh->dev[pd_idx].flags);
2888                                         *target = pd_idx;
2889                                         target = &sh->ops.target2;
2890                                         s->uptodate++;
2891                                 }
2892                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2893                                         set_bit(R5_Wantcompute,
2894                                                 &sh->dev[qd_idx].flags);
2895                                         *target = qd_idx;
2896                                         s->uptodate++;
2897                                 }
2898                         }
2899                 }
2900                 break;
2901         case check_state_compute_run:
2902                 break;
2903         default:
2904                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2905                        __func__, sh->check_state,
2906                        (unsigned long long) sh->sector);
2907                 BUG();
2908         }
2909 }
2910
2911 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
2912 {
2913         int i;
2914
2915         /* We have read all the blocks in this stripe and now we need to
2916          * copy some of them into a target stripe for expand.
2917          */
2918         struct dma_async_tx_descriptor *tx = NULL;
2919         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2920         for (i = 0; i < sh->disks; i++)
2921                 if (i != sh->pd_idx && i != sh->qd_idx) {
2922                         int dd_idx, j;
2923                         struct stripe_head *sh2;
2924                         struct async_submit_ctl submit;
2925
2926                         sector_t bn = compute_blocknr(sh, i, 1);
2927                         sector_t s = raid5_compute_sector(conf, bn, 0,
2928                                                           &dd_idx, NULL);
2929                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
2930                         if (sh2 == NULL)
2931                                 /* so far only the early blocks of this stripe
2932                                  * have been requested.  When later blocks
2933                                  * get requested, we will try again
2934                                  */
2935                                 continue;
2936                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2937                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2938                                 /* must have already done this block */
2939                                 release_stripe(sh2);
2940                                 continue;
2941                         }
2942
2943                         /* place all the copies on one channel */
2944                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2945                         tx = async_memcpy(sh2->dev[dd_idx].page,
2946                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
2947                                           &submit);
2948
2949                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2950                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2951                         for (j = 0; j < conf->raid_disks; j++)
2952                                 if (j != sh2->pd_idx &&
2953                                     j != sh2->qd_idx &&
2954                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
2955                                         break;
2956                         if (j == conf->raid_disks) {
2957                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2958                                 set_bit(STRIPE_HANDLE, &sh2->state);
2959                         }
2960                         release_stripe(sh2);
2961
2962                 }
2963         /* done submitting copies, wait for them to complete */
2964         if (tx) {
2965                 async_tx_ack(tx);
2966                 dma_wait_for_async_tx(tx);
2967         }
2968 }
2969
2970
2971 /*
2972  * handle_stripe - do things to a stripe.
2973  *
2974  * We lock the stripe and then examine the state of various bits
2975  * to see what needs to be done.
2976  * Possible results:
2977  *    return some read request which now have data
2978  *    return some write requests which are safely on disc
2979  *    schedule a read on some buffers
2980  *    schedule a write of some buffers
2981  *    return confirmation of parity correctness
2982  *
2983  * buffers are taken off read_list or write_list, and bh_cache buffers
2984  * get BH_Lock set before the stripe lock is released.
2985  *
2986  */
2987
2988 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
2989 {
2990         struct r5conf *conf = sh->raid_conf;
2991         int disks = sh->disks;
2992         struct r5dev *dev;
2993         int i;
2994
2995         memset(s, 0, sizeof(*s));
2996
2997         s->syncing = test_bit(STRIPE_SYNCING, &sh->state);
2998         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2999         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3000         s->failed_num[0] = -1;
3001         s->failed_num[1] = -1;
3002
3003         /* Now to look around and see what can be done */
3004         rcu_read_lock();
3005         spin_lock_irq(&conf->device_lock);
3006         for (i=disks; i--; ) {
3007                 struct md_rdev *rdev;
3008                 sector_t first_bad;
3009                 int bad_sectors;
3010                 int is_bad = 0;
3011
3012                 dev = &sh->dev[i];
3013
3014                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3015                         i, dev->flags, dev->toread, dev->towrite, dev->written);
3016                 /* maybe we can reply to a read
3017                  *
3018                  * new wantfill requests are only permitted while
3019                  * ops_complete_biofill is guaranteed to be inactive
3020                  */
3021                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3022                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3023                         set_bit(R5_Wantfill, &dev->flags);
3024
3025                 /* now count some things */
3026                 if (test_bit(R5_LOCKED, &dev->flags))
3027                         s->locked++;
3028                 if (test_bit(R5_UPTODATE, &dev->flags))
3029                         s->uptodate++;
3030                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3031                         s->compute++;
3032                         BUG_ON(s->compute > 2);
3033                 }
3034
3035                 if (test_bit(R5_Wantfill, &dev->flags))
3036                         s->to_fill++;
3037                 else if (dev->toread)
3038                         s->to_read++;
3039                 if (dev->towrite) {
3040                         s->to_write++;
3041                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3042                                 s->non_overwrite++;
3043                 }
3044                 if (dev->written)
3045                         s->written++;
3046                 rdev = rcu_dereference(conf->disks[i].rdev);
3047                 if (rdev && test_bit(Faulty, &rdev->flags))
3048                         rdev = NULL;
3049                 if (rdev) {
3050                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3051                                              &first_bad, &bad_sectors);
3052                         if (s->blocked_rdev == NULL
3053                             && (test_bit(Blocked, &rdev->flags)
3054                                 || is_bad < 0)) {
3055                                 if (is_bad < 0)
3056                                         set_bit(BlockedBadBlocks,
3057                                                 &rdev->flags);
3058                                 s->blocked_rdev = rdev;
3059                                 atomic_inc(&rdev->nr_pending);
3060                         }
3061                 }
3062                 clear_bit(R5_Insync, &dev->flags);
3063                 if (!rdev)
3064                         /* Not in-sync */;
3065                 else if (is_bad) {
3066                         /* also not in-sync */
3067                         if (!test_bit(WriteErrorSeen, &rdev->flags)) {
3068                                 /* treat as in-sync, but with a read error
3069                                  * which we can now try to correct
3070                                  */
3071                                 set_bit(R5_Insync, &dev->flags);
3072                                 set_bit(R5_ReadError, &dev->flags);
3073                         }
3074                 } else if (test_bit(In_sync, &rdev->flags))
3075                         set_bit(R5_Insync, &dev->flags);
3076                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3077                         /* in sync if before recovery_offset */
3078                         set_bit(R5_Insync, &dev->flags);
3079                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3080                          test_bit(R5_Expanded, &dev->flags))
3081                         /* If we've reshaped into here, we assume it is Insync.
3082                          * We will shortly update recovery_offset to make
3083                          * it official.
3084                          */
3085                         set_bit(R5_Insync, &dev->flags);
3086
3087                 if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3088                         clear_bit(R5_Insync, &dev->flags);
3089                         if (!test_bit(Faulty, &rdev->flags)) {
3090                                 s->handle_bad_blocks = 1;
3091                                 atomic_inc(&rdev->nr_pending);
3092                         } else
3093                                 clear_bit(R5_WriteError, &dev->flags);
3094                 }
3095                 if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3096                         if (!test_bit(Faulty, &rdev->flags)) {
3097                                 s->handle_bad_blocks = 1;
3098                                 atomic_inc(&rdev->nr_pending);
3099                         } else
3100                                 clear_bit(R5_MadeGood, &dev->flags);
3101                 }
3102                 if (!test_bit(R5_Insync, &dev->flags)) {
3103                         /* The ReadError flag will just be confusing now */
3104                         clear_bit(R5_ReadError, &dev->flags);
3105                         clear_bit(R5_ReWrite, &dev->flags);
3106                 }
3107                 if (test_bit(R5_ReadError, &dev->flags))
3108                         clear_bit(R5_Insync, &dev->flags);
3109                 if (!test_bit(R5_Insync, &dev->flags)) {
3110                         if (s->failed < 2)
3111                                 s->failed_num[s->failed] = i;
3112                         s->failed++;
3113                 }
3114         }
3115         spin_unlock_irq(&conf->device_lock);
3116         rcu_read_unlock();
3117 }
3118
3119 static void handle_stripe(struct stripe_head *sh)
3120 {
3121         struct stripe_head_state s;
3122         struct r5conf *conf = sh->raid_conf;
3123         int i;
3124         int prexor;
3125         int disks = sh->disks;
3126         struct r5dev *pdev, *qdev;
3127
3128         clear_bit(STRIPE_HANDLE, &sh->state);
3129         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3130                 /* already being handled, ensure it gets handled
3131                  * again when current action finishes */
3132                 set_bit(STRIPE_HANDLE, &sh->state);
3133                 return;
3134         }
3135
3136         if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3137                 set_bit(STRIPE_SYNCING, &sh->state);
3138                 clear_bit(STRIPE_INSYNC, &sh->state);
3139         }
3140         clear_bit(STRIPE_DELAYED, &sh->state);
3141
3142         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3143                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3144                (unsigned long long)sh->sector, sh->state,
3145                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3146                sh->check_state, sh->reconstruct_state);
3147
3148         analyse_stripe(sh, &s);
3149
3150         if (s.handle_bad_blocks) {
3151                 set_bit(STRIPE_HANDLE, &sh->state);
3152                 goto finish;
3153         }
3154
3155         if (unlikely(s.blocked_rdev)) {
3156                 if (s.syncing || s.expanding || s.expanded ||
3157                     s.to_write || s.written) {
3158                         set_bit(STRIPE_HANDLE, &sh->state);
3159                         goto finish;
3160                 }
3161                 /* There is nothing for the blocked_rdev to block */
3162                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3163                 s.blocked_rdev = NULL;
3164         }
3165
3166         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3167                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3168                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3169         }
3170
3171         pr_debug("locked=%d uptodate=%d to_read=%d"
3172                " to_write=%d failed=%d failed_num=%d,%d\n",
3173                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3174                s.failed_num[0], s.failed_num[1]);
3175         /* check if the array has lost more than max_degraded devices and,
3176          * if so, some requests might need to be failed.
3177          */
3178         if (s.failed > conf->max_degraded) {
3179                 sh->check_state = 0;
3180                 sh->reconstruct_state = 0;
3181                 if (s.to_read+s.to_write+s.written)
3182                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3183                 if (s.syncing)
3184                         handle_failed_sync(conf, sh, &s);
3185         }
3186
3187         /*
3188          * might be able to return some write requests if the parity blocks
3189          * are safe, or on a failed drive
3190          */
3191         pdev = &sh->dev[sh->pd_idx];
3192         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3193                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3194         qdev = &sh->dev[sh->qd_idx];
3195         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3196                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3197                 || conf->level < 6;
3198
3199         if (s.written &&
3200             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3201                              && !test_bit(R5_LOCKED, &pdev->flags)
3202                              && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3203             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3204                              && !test_bit(R5_LOCKED, &qdev->flags)
3205                              && test_bit(R5_UPTODATE, &qdev->flags)))))
3206                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3207
3208         /* Now we might consider reading some blocks, either to check/generate
3209          * parity, or to satisfy requests
3210          * or to load a block that is being partially written.
3211          */
3212         if (s.to_read || s.non_overwrite
3213             || (conf->level == 6 && s.to_write && s.failed)
3214             || (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3215                 handle_stripe_fill(sh, &s, disks);
3216
3217         /* Now we check to see if any write operations have recently
3218          * completed
3219          */
3220         prexor = 0;
3221         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3222                 prexor = 1;
3223         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3224             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3225                 sh->reconstruct_state = reconstruct_state_idle;
3226
3227                 /* All the 'written' buffers and the parity block are ready to
3228                  * be written back to disk
3229                  */
3230                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3231                 BUG_ON(sh->qd_idx >= 0 &&
3232                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
3233                 for (i = disks; i--; ) {
3234                         struct r5dev *dev = &sh->dev[i];
3235                         if (test_bit(R5_LOCKED, &dev->flags) &&
3236                                 (i == sh->pd_idx || i == sh->qd_idx ||
3237                                  dev->written)) {
3238                                 pr_debug("Writing block %d\n", i);
3239                                 set_bit(R5_Wantwrite, &dev->flags);
3240                                 if (prexor)
3241                                         continue;
3242                                 if (!test_bit(R5_Insync, &dev->flags) ||
3243                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
3244                                      s.failed == 0))
3245                                         set_bit(STRIPE_INSYNC, &sh->state);
3246                         }
3247                 }
3248                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3249                         s.dec_preread_active = 1;
3250         }
3251
3252         /* Now to consider new write requests and what else, if anything
3253          * should be read.  We do not handle new writes when:
3254          * 1/ A 'write' operation (copy+xor) is already in flight.
3255          * 2/ A 'check' operation is in flight, as it may clobber the parity
3256          *    block.
3257          */
3258         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3259                 handle_stripe_dirtying(conf, sh, &s, disks);
3260
3261         /* maybe we need to check and possibly fix the parity for this stripe
3262          * Any reads will already have been scheduled, so we just see if enough
3263          * data is available.  The parity check is held off while parity
3264          * dependent operations are in flight.
3265          */
3266         if (sh->check_state ||
3267             (s.syncing && s.locked == 0 &&
3268              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3269              !test_bit(STRIPE_INSYNC, &sh->state))) {
3270                 if (conf->level == 6)
3271                         handle_parity_checks6(conf, sh, &s, disks);
3272                 else
3273                         handle_parity_checks5(conf, sh, &s, disks);
3274         }
3275
3276         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3277                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3278                 clear_bit(STRIPE_SYNCING, &sh->state);
3279         }
3280
3281         /* If the failed drives are just a ReadError, then we might need
3282          * to progress the repair/check process
3283          */
3284         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3285                 for (i = 0; i < s.failed; i++) {
3286                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
3287                         if (test_bit(R5_ReadError, &dev->flags)
3288                             && !test_bit(R5_LOCKED, &dev->flags)
3289                             && test_bit(R5_UPTODATE, &dev->flags)
3290                                 ) {
3291                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3292                                         set_bit(R5_Wantwrite, &dev->flags);
3293                                         set_bit(R5_ReWrite, &dev->flags);
3294                                         set_bit(R5_LOCKED, &dev->flags);
3295                                         s.locked++;
3296                                 } else {
3297                                         /* let's read it back */
3298                                         set_bit(R5_Wantread, &dev->flags);
3299                                         set_bit(R5_LOCKED, &dev->flags);
3300                                         s.locked++;
3301                                 }
3302                         }
3303                 }
3304
3305
3306         /* Finish reconstruct operations initiated by the expansion process */
3307         if (sh->reconstruct_state == reconstruct_state_result) {
3308                 struct stripe_head *sh_src
3309                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3310                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3311                         /* sh cannot be written until sh_src has been read.
3312                          * so arrange for sh to be delayed a little
3313                          */
3314                         set_bit(STRIPE_DELAYED, &sh->state);
3315                         set_bit(STRIPE_HANDLE, &sh->state);
3316                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3317                                               &sh_src->state))
3318                                 atomic_inc(&conf->preread_active_stripes);
3319                         release_stripe(sh_src);
3320                         goto finish;
3321                 }
3322                 if (sh_src)
3323                         release_stripe(sh_src);
3324
3325                 sh->reconstruct_state = reconstruct_state_idle;
3326                 clear_bit(STRIPE_EXPANDING, &sh->state);
3327                 for (i = conf->raid_disks; i--; ) {
3328                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3329                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3330                         s.locked++;
3331                 }
3332         }
3333
3334         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3335             !sh->reconstruct_state) {
3336                 /* Need to write out all blocks after computing parity */
3337                 sh->disks = conf->raid_disks;
3338                 stripe_set_idx(sh->sector, conf, 0, sh);
3339                 schedule_reconstruction(sh, &s, 1, 1);
3340         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3341                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3342                 atomic_dec(&conf->reshape_stripes);
3343                 wake_up(&conf->wait_for_overlap);
3344                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3345         }
3346
3347         if (s.expanding && s.locked == 0 &&
3348             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3349                 handle_stripe_expansion(conf, sh);
3350
3351 finish:
3352         /* wait for this device to become unblocked */
3353         if (conf->mddev->external && unlikely(s.blocked_rdev))
3354                 md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
3355
3356         if (s.handle_bad_blocks)
3357                 for (i = disks; i--; ) {
3358                         struct md_rdev *rdev;
3359                         struct r5dev *dev = &sh->dev[i];
3360                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3361                                 /* We own a safe reference to the rdev */
3362                                 rdev = conf->disks[i].rdev;
3363                                 if (!rdev_set_badblocks(rdev, sh->sector,
3364                                                         STRIPE_SECTORS, 0))
3365                                         md_error(conf->mddev, rdev);
3366                                 rdev_dec_pending(rdev, conf->mddev);
3367                         }
3368                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3369                                 rdev = conf->disks[i].rdev;
3370                                 rdev_clear_badblocks(rdev, sh->sector,
3371                                                      STRIPE_SECTORS);
3372                                 rdev_dec_pending(rdev, conf->mddev);
3373                         }
3374                 }
3375
3376         if (s.ops_request)
3377                 raid_run_ops(sh, s.ops_request);
3378
3379         ops_run_io(sh, &s);
3380
3381         if (s.dec_preread_active) {
3382                 /* We delay this until after ops_run_io so that if make_request
3383                  * is waiting on a flush, it won't continue until the writes
3384                  * have actually been submitted.
3385                  */
3386                 atomic_dec(&conf->preread_active_stripes);
3387                 if (atomic_read(&conf->preread_active_stripes) <
3388                     IO_THRESHOLD)
3389                         md_wakeup_thread(conf->mddev->thread);
3390         }
3391
3392         return_io(s.return_bi);
3393
3394         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3395 }
3396
3397 static void raid5_activate_delayed(struct r5conf *conf)
3398 {
3399         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3400                 while (!list_empty(&conf->delayed_list)) {
3401                         struct list_head *l = conf->delayed_list.next;
3402                         struct stripe_head *sh;
3403                         sh = list_entry(l, struct stripe_head, lru);
3404                         list_del_init(l);
3405                         clear_bit(STRIPE_DELAYED, &sh->state);
3406                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3407                                 atomic_inc(&conf->preread_active_stripes);
3408                         list_add_tail(&sh->lru, &conf->hold_list);
3409                 }
3410         }
3411 }
3412
3413 static void activate_bit_delay(struct r5conf *conf)
3414 {
3415         /* device_lock is held */
3416         struct list_head head;
3417         list_add(&head, &conf->bitmap_list);
3418         list_del_init(&conf->bitmap_list);
3419         while (!list_empty(&head)) {
3420                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3421                 list_del_init(&sh->lru);
3422                 atomic_inc(&sh->count);
3423                 __release_stripe(conf, sh);
3424         }
3425 }
3426
3427 int md_raid5_congested(struct mddev *mddev, int bits)
3428 {
3429         struct r5conf *conf = mddev->private;
3430
3431         /* No difference between reads and writes.  Just check
3432          * how busy the stripe_cache is
3433          */
3434
3435         if (conf->inactive_blocked)
3436                 return 1;
3437         if (conf->quiesce)
3438                 return 1;
3439         if (list_empty_careful(&conf->inactive_list))
3440                 return 1;
3441
3442         return 0;
3443 }
3444 EXPORT_SYMBOL_GPL(md_raid5_congested);
3445
3446 static int raid5_congested(void *data, int bits)
3447 {
3448         struct mddev *mddev = data;
3449
3450         return mddev_congested(mddev, bits) ||
3451                 md_raid5_congested(mddev, bits);
3452 }
3453
3454 /* We want read requests to align with chunks where possible,
3455  * but write requests don't need to.
3456  */
3457 static int raid5_mergeable_bvec(struct request_queue *q,
3458                                 struct bvec_merge_data *bvm,
3459                                 struct bio_vec *biovec)
3460 {
3461         struct mddev *mddev = q->queuedata;
3462         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3463         int max;
3464         unsigned int chunk_sectors = mddev->chunk_sectors;
3465         unsigned int bio_sectors = bvm->bi_size >> 9;
3466
3467         if ((bvm->bi_rw & 1) == WRITE)
3468                 return biovec->bv_len; /* always allow writes to be mergeable */
3469
3470         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3471                 chunk_sectors = mddev->new_chunk_sectors;
3472         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3473         if (max < 0) max = 0;
3474         if (max <= biovec->bv_len && bio_sectors == 0)
3475                 return biovec->bv_len;
3476         else
3477                 return max;
3478 }
3479
3480
3481 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3482 {
3483         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3484         unsigned int chunk_sectors = mddev->chunk_sectors;
3485         unsigned int bio_sectors = bio->bi_size >> 9;
3486
3487         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3488                 chunk_sectors = mddev->new_chunk_sectors;
3489         return  chunk_sectors >=
3490                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3491 }
3492
3493 /*
3494  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3495  *  later sampled by raid5d.
3496  */
3497 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3498 {
3499         unsigned long flags;
3500
3501         spin_lock_irqsave(&conf->device_lock, flags);
3502
3503         bi->bi_next = conf->retry_read_aligned_list;
3504         conf->retry_read_aligned_list = bi;
3505
3506         spin_unlock_irqrestore(&conf->device_lock, flags);
3507         md_wakeup_thread(conf->mddev->thread);
3508 }
3509
3510
3511 static struct bio *remove_bio_from_retry(struct r5conf *conf)
3512 {
3513         struct bio *bi;
3514
3515         bi = conf->retry_read_aligned;
3516         if (bi) {
3517                 conf->retry_read_aligned = NULL;
3518                 return bi;
3519         }
3520         bi = conf->retry_read_aligned_list;
3521         if(bi) {
3522                 conf->retry_read_aligned_list = bi->bi_next;
3523                 bi->bi_next = NULL;
3524                 /*
3525                  * this sets the active strip count to 1 and the processed
3526                  * strip count to zero (upper 8 bits)
3527                  */
3528                 bi->bi_phys_segments = 1; /* biased count of active stripes */
3529         }
3530
3531         return bi;
3532 }
3533
3534
3535 /*
3536  *  The "raid5_align_endio" should check if the read succeeded and if it
3537  *  did, call bio_endio on the original bio (having bio_put the new bio
3538  *  first).
3539  *  If the read failed..
3540  */
3541 static void raid5_align_endio(struct bio *bi, int error)
3542 {
3543         struct bio* raid_bi  = bi->bi_private;
3544         struct mddev *mddev;
3545         struct r5conf *conf;
3546         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3547         struct md_rdev *rdev;
3548
3549         bio_put(bi);
3550
3551         rdev = (void*)raid_bi->bi_next;
3552         raid_bi->bi_next = NULL;
3553         mddev = rdev->mddev;
3554         conf = mddev->private;
3555
3556         rdev_dec_pending(rdev, conf->mddev);
3557
3558         if (!error && uptodate) {
3559                 bio_endio(raid_bi, 0);
3560                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3561                         wake_up(&conf->wait_for_stripe);
3562                 return;
3563         }
3564
3565
3566         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3567
3568         add_bio_to_retry(raid_bi, conf);
3569 }
3570
3571 static int bio_fits_rdev(struct bio *bi)
3572 {
3573         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3574
3575         if ((bi->bi_size>>9) > queue_max_sectors(q))
3576                 return 0;
3577         blk_recount_segments(q, bi);
3578         if (bi->bi_phys_segments > queue_max_segments(q))
3579                 return 0;
3580
3581         if (q->merge_bvec_fn)
3582                 /* it's too hard to apply the merge_bvec_fn at this stage,
3583                  * just just give up
3584                  */
3585                 return 0;
3586
3587         return 1;
3588 }
3589
3590
3591 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3592 {
3593         struct r5conf *conf = mddev->private;
3594         int dd_idx;
3595         struct bio* align_bi;
3596         struct md_rdev *rdev;
3597
3598         if (!in_chunk_boundary(mddev, raid_bio)) {
3599                 pr_debug("chunk_aligned_read : non aligned\n");
3600                 return 0;
3601         }
3602         /*
3603          * use bio_clone_mddev to make a copy of the bio
3604          */
3605         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3606         if (!align_bi)
3607                 return 0;
3608         /*
3609          *   set bi_end_io to a new function, and set bi_private to the
3610          *     original bio.
3611          */
3612         align_bi->bi_end_io  = raid5_align_endio;
3613         align_bi->bi_private = raid_bio;
3614         /*
3615          *      compute position
3616          */
3617         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3618                                                     0,
3619                                                     &dd_idx, NULL);
3620
3621         rcu_read_lock();
3622         rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3623         if (rdev && test_bit(In_sync, &rdev->flags)) {
3624                 sector_t first_bad;
3625                 int bad_sectors;
3626
3627                 atomic_inc(&rdev->nr_pending);
3628                 rcu_read_unlock();
3629                 raid_bio->bi_next = (void*)rdev;
3630                 align_bi->bi_bdev =  rdev->bdev;
3631                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3632
3633                 if (!bio_fits_rdev(align_bi) ||
3634                     is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
3635                                 &first_bad, &bad_sectors)) {
3636                         /* too big in some way, or has a known bad block */
3637                         bio_put(align_bi);
3638                         rdev_dec_pending(rdev, mddev);
3639                         return 0;
3640                 }
3641
3642                 /* No reshape active, so we can trust rdev->data_offset */
3643                 align_bi->bi_sector += rdev->data_offset;
3644
3645                 spin_lock_irq(&conf->device_lock);
3646                 wait_event_lock_irq(conf->wait_for_stripe,
3647                                     conf->quiesce == 0,
3648                                     conf->device_lock, /* nothing */);
3649                 atomic_inc(&conf->active_aligned_reads);
3650                 spin_unlock_irq(&conf->device_lock);
3651
3652                 generic_make_request(align_bi);
3653                 return 1;
3654         } else {
3655                 rcu_read_unlock();
3656                 bio_put(align_bi);
3657                 return 0;
3658         }
3659 }
3660
3661 /* __get_priority_stripe - get the next stripe to process
3662  *
3663  * Full stripe writes are allowed to pass preread active stripes up until
3664  * the bypass_threshold is exceeded.  In general the bypass_count
3665  * increments when the handle_list is handled before the hold_list; however, it
3666  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3667  * stripe with in flight i/o.  The bypass_count will be reset when the
3668  * head of the hold_list has changed, i.e. the head was promoted to the
3669  * handle_list.
3670  */
3671 static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
3672 {
3673         struct stripe_head *sh;
3674
3675         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3676                   __func__,
3677                   list_empty(&conf->handle_list) ? "empty" : "busy",
3678                   list_empty(&conf->hold_list) ? "empty" : "busy",
3679                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
3680
3681         if (!list_empty(&conf->handle_list)) {
3682                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3683
3684                 if (list_empty(&conf->hold_list))
3685                         conf->bypass_count = 0;
3686                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3687                         if (conf->hold_list.next == conf->last_hold)
3688                                 conf->bypass_count++;
3689                         else {
3690                                 conf->last_hold = conf->hold_list.next;
3691                                 conf->bypass_count -= conf->bypass_threshold;
3692                                 if (conf->bypass_count < 0)
3693                                         conf->bypass_count = 0;
3694                         }
3695                 }
3696         } else if (!list_empty(&conf->hold_list) &&
3697                    ((conf->bypass_threshold &&
3698                      conf->bypass_count > conf->bypass_threshold) ||
3699                     atomic_read(&conf->pending_full_writes) == 0)) {
3700                 sh = list_entry(conf->hold_list.next,
3701                                 typeof(*sh), lru);
3702                 conf->bypass_count -= conf->bypass_threshold;
3703                 if (conf->bypass_count < 0)
3704                         conf->bypass_count = 0;
3705         } else
3706                 return NULL;
3707
3708         list_del_init(&sh->lru);
3709         atomic_inc(&sh->count);
3710         BUG_ON(atomic_read(&sh->count) != 1);
3711         return sh;
3712 }
3713
3714 static void make_request(struct mddev *mddev, struct bio * bi)
3715 {
3716         struct r5conf *conf = mddev->private;
3717         int dd_idx;
3718         sector_t new_sector;
3719         sector_t logical_sector, last_sector;
3720         struct stripe_head *sh;
3721         const int rw = bio_data_dir(bi);
3722         int remaining;
3723         int plugged;
3724
3725         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3726                 md_flush_request(mddev, bi);
3727                 return;
3728         }
3729
3730         md_write_start(mddev, bi);
3731
3732         if (rw == READ &&
3733              mddev->reshape_position == MaxSector &&
3734              chunk_aligned_read(mddev,bi))
3735                 return;
3736
3737         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3738         last_sector = bi->bi_sector + (bi->bi_size>>9);
3739         bi->bi_next = NULL;
3740         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
3741
3742         plugged = mddev_check_plugged(mddev);
3743         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3744                 DEFINE_WAIT(w);
3745                 int disks, data_disks;
3746                 int previous;
3747
3748         retry:
3749                 previous = 0;
3750                 disks = conf->raid_disks;
3751                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3752                 if (unlikely(conf->reshape_progress != MaxSector)) {
3753                         /* spinlock is needed as reshape_progress may be
3754                          * 64bit on a 32bit platform, and so it might be
3755                          * possible to see a half-updated value
3756                          * Of course reshape_progress could change after
3757                          * the lock is dropped, so once we get a reference
3758                          * to the stripe that we think it is, we will have
3759                          * to check again.
3760                          */
3761                         spin_lock_irq(&conf->device_lock);
3762                         if (mddev->delta_disks < 0
3763                             ? logical_sector < conf->reshape_progress
3764                             : logical_sector >= conf->reshape_progress) {
3765                                 disks = conf->previous_raid_disks;
3766                                 previous = 1;
3767                         } else {
3768                                 if (mddev->delta_disks < 0
3769                                     ? logical_sector < conf->reshape_safe
3770                                     : logical_sector >= conf->reshape_safe) {
3771                                         spin_unlock_irq(&conf->device_lock);
3772                                         schedule();
3773                                         goto retry;
3774                                 }
3775                         }
3776                         spin_unlock_irq(&conf->device_lock);
3777                 }
3778                 data_disks = disks - conf->max_degraded;
3779
3780                 new_sector = raid5_compute_sector(conf, logical_sector,
3781                                                   previous,
3782                                                   &dd_idx, NULL);
3783                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
3784                         (unsigned long long)new_sector, 
3785                         (unsigned long long)logical_sector);
3786
3787                 sh = get_active_stripe(conf, new_sector, previous,
3788                                        (bi->bi_rw&RWA_MASK), 0);
3789                 if (sh) {
3790                         if (unlikely(previous)) {
3791                                 /* expansion might have moved on while waiting for a
3792                                  * stripe, so we must do the range check again.
3793                                  * Expansion could still move past after this
3794                                  * test, but as we are holding a reference to
3795                                  * 'sh', we know that if that happens,
3796                                  *  STRIPE_EXPANDING will get set and the expansion
3797                                  * won't proceed until we finish with the stripe.
3798                                  */
3799                                 int must_retry = 0;
3800                                 spin_lock_irq(&conf->device_lock);
3801                                 if (mddev->delta_disks < 0
3802                                     ? logical_sector >= conf->reshape_progress
3803                                     : logical_sector < conf->reshape_progress)
3804                                         /* mismatch, need to try again */
3805                                         must_retry = 1;
3806                                 spin_unlock_irq(&conf->device_lock);
3807                                 if (must_retry) {
3808                                         release_stripe(sh);
3809                                         schedule();
3810                                         goto retry;
3811                                 }
3812                         }
3813
3814                         if (rw == WRITE &&
3815                             logical_sector >= mddev->suspend_lo &&
3816                             logical_sector < mddev->suspend_hi) {
3817                                 release_stripe(sh);
3818                                 /* As the suspend_* range is controlled by
3819                                  * userspace, we want an interruptible
3820                                  * wait.
3821                                  */
3822                                 flush_signals(current);
3823                                 prepare_to_wait(&conf->wait_for_overlap,
3824                                                 &w, TASK_INTERRUPTIBLE);
3825                                 if (logical_sector >= mddev->suspend_lo &&
3826                                     logical_sector < mddev->suspend_hi)
3827                                         schedule();
3828                                 goto retry;
3829                         }
3830
3831                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3832                             !add_stripe_bio(sh, bi, dd_idx, rw)) {
3833                                 /* Stripe is busy expanding or
3834                                  * add failed due to overlap.  Flush everything
3835                                  * and wait a while
3836                                  */
3837                                 md_wakeup_thread(mddev->thread);
3838                                 release_stripe(sh);
3839                                 schedule();
3840                                 goto retry;
3841                         }
3842                         finish_wait(&conf->wait_for_overlap, &w);
3843                         set_bit(STRIPE_HANDLE, &sh->state);
3844                         clear_bit(STRIPE_DELAYED, &sh->state);
3845                         if ((bi->bi_rw & REQ_SYNC) &&
3846                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3847                                 atomic_inc(&conf->preread_active_stripes);
3848                         release_stripe(sh);
3849                 } else {
3850                         /* cannot get stripe for read-ahead, just give-up */
3851                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3852                         finish_wait(&conf->wait_for_overlap, &w);
3853                         break;
3854                 }
3855                         
3856         }
3857         if (!plugged)
3858                 md_wakeup_thread(mddev->thread);
3859
3860         spin_lock_irq(&conf->device_lock);
3861         remaining = raid5_dec_bi_phys_segments(bi);
3862         spin_unlock_irq(&conf->device_lock);
3863         if (remaining == 0) {
3864
3865                 if ( rw == WRITE )
3866                         md_write_end(mddev);
3867
3868                 bio_endio(bi, 0);
3869         }
3870 }
3871
3872 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
3873
3874 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
3875 {
3876         /* reshaping is quite different to recovery/resync so it is
3877          * handled quite separately ... here.
3878          *
3879          * On each call to sync_request, we gather one chunk worth of
3880          * destination stripes and flag them as expanding.
3881          * Then we find all the source stripes and request reads.
3882          * As the reads complete, handle_stripe will copy the data
3883          * into the destination stripe and release that stripe.
3884          */
3885         struct r5conf *conf = mddev->private;
3886         struct stripe_head *sh;
3887         sector_t first_sector, last_sector;
3888         int raid_disks = conf->previous_raid_disks;
3889         int data_disks = raid_disks - conf->max_degraded;
3890         int new_data_disks = conf->raid_disks - conf->max_degraded;
3891         int i;
3892         int dd_idx;
3893         sector_t writepos, readpos, safepos;
3894         sector_t stripe_addr;
3895         int reshape_sectors;
3896         struct list_head stripes;
3897
3898         if (sector_nr == 0) {
3899                 /* If restarting in the middle, skip the initial sectors */
3900                 if (mddev->delta_disks < 0 &&
3901                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
3902                         sector_nr = raid5_size(mddev, 0, 0)
3903                                 - conf->reshape_progress;
3904                 } else if (mddev->delta_disks >= 0 &&
3905                            conf->reshape_progress > 0)
3906                         sector_nr = conf->reshape_progress;
3907                 sector_div(sector_nr, new_data_disks);
3908                 if (sector_nr) {
3909                         mddev->curr_resync_completed = sector_nr;
3910                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3911                         *skipped = 1;
3912                         return sector_nr;
3913                 }
3914         }
3915
3916         /* We need to process a full chunk at a time.
3917          * If old and new chunk sizes differ, we need to process the
3918          * largest of these
3919          */
3920         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
3921                 reshape_sectors = mddev->new_chunk_sectors;
3922         else
3923                 reshape_sectors = mddev->chunk_sectors;
3924
3925         /* we update the metadata when there is more than 3Meg
3926          * in the block range (that is rather arbitrary, should
3927          * probably be time based) or when the data about to be
3928          * copied would over-write the source of the data at
3929          * the front of the range.
3930          * i.e. one new_stripe along from reshape_progress new_maps
3931          * to after where reshape_safe old_maps to
3932          */
3933         writepos = conf->reshape_progress;
3934         sector_div(writepos, new_data_disks);
3935         readpos = conf->reshape_progress;
3936         sector_div(readpos, data_disks);
3937         safepos = conf->reshape_safe;
3938         sector_div(safepos, data_disks);
3939         if (mddev->delta_disks < 0) {
3940                 writepos -= min_t(sector_t, reshape_sectors, writepos);
3941                 readpos += reshape_sectors;
3942                 safepos += reshape_sectors;
3943         } else {
3944                 writepos += reshape_sectors;
3945                 readpos -= min_t(sector_t, reshape_sectors, readpos);
3946                 safepos -= min_t(sector_t, reshape_sectors, safepos);
3947         }
3948
3949         /* 'writepos' is the most advanced device address we might write.
3950          * 'readpos' is the least advanced device address we might read.
3951          * 'safepos' is the least address recorded in the metadata as having
3952          *     been reshaped.
3953          * If 'readpos' is behind 'writepos', then there is no way that we can
3954          * ensure safety in the face of a crash - that must be done by userspace
3955          * making a backup of the data.  So in that case there is no particular
3956          * rush to update metadata.
3957          * Otherwise if 'safepos' is behind 'writepos', then we really need to
3958          * update the metadata to advance 'safepos' to match 'readpos' so that
3959          * we can be safe in the event of a crash.
3960          * So we insist on updating metadata if safepos is behind writepos and
3961          * readpos is beyond writepos.
3962          * In any case, update the metadata every 10 seconds.
3963          * Maybe that number should be configurable, but I'm not sure it is
3964          * worth it.... maybe it could be a multiple of safemode_delay???
3965          */
3966         if ((mddev->delta_disks < 0
3967              ? (safepos > writepos && readpos < writepos)
3968              : (safepos < writepos && readpos > writepos)) ||
3969             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
3970                 /* Cannot proceed until we've updated the superblock... */
3971                 wait_event(conf->wait_for_overlap,
3972                            atomic_read(&conf->reshape_stripes)==0);
3973                 mddev->reshape_position = conf->reshape_progress;
3974                 mddev->curr_resync_completed = sector_nr;
3975                 conf->reshape_checkpoint = jiffies;
3976                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3977                 md_wakeup_thread(mddev->thread);
3978                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3979                            kthread_should_stop());
3980                 spin_lock_irq(&conf->device_lock);
3981                 conf->reshape_safe = mddev->reshape_position;
3982                 spin_unlock_irq(&conf->device_lock);
3983                 wake_up(&conf->wait_for_overlap);
3984                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3985         }
3986
3987         if (mddev->delta_disks < 0) {
3988                 BUG_ON(conf->reshape_progress == 0);
3989                 stripe_addr = writepos;
3990                 BUG_ON((mddev->dev_sectors &
3991                         ~((sector_t)reshape_sectors - 1))
3992                        - reshape_sectors - stripe_addr
3993                        != sector_nr);
3994         } else {
3995                 BUG_ON(writepos != sector_nr + reshape_sectors);
3996                 stripe_addr = sector_nr;
3997         }
3998         INIT_LIST_HEAD(&stripes);
3999         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4000                 int j;
4001                 int skipped_disk = 0;
4002                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4003                 set_bit(STRIPE_EXPANDING, &sh->state);
4004                 atomic_inc(&conf->reshape_stripes);
4005                 /* If any of this stripe is beyond the end of the old
4006                  * array, then we need to zero those blocks
4007                  */
4008                 for (j=sh->disks; j--;) {
4009                         sector_t s;
4010                         if (j == sh->pd_idx)
4011                                 continue;
4012                         if (conf->level == 6 &&
4013                             j == sh->qd_idx)
4014                                 continue;
4015                         s = compute_blocknr(sh, j, 0);
4016                         if (s < raid5_size(mddev, 0, 0)) {
4017                                 skipped_disk = 1;
4018                                 continue;
4019                         }
4020                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4021                         set_bit(R5_Expanded, &sh->dev[j].flags);
4022                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
4023                 }
4024                 if (!skipped_disk) {
4025                         set_bit(STRIPE_EXPAND_READY, &sh->state);
4026                         set_bit(STRIPE_HANDLE, &sh->state);
4027                 }
4028                 list_add(&sh->lru, &stripes);
4029         }
4030         spin_lock_irq(&conf->device_lock);
4031         if (mddev->delta_disks < 0)
4032                 conf->reshape_progress -= reshape_sectors * new_data_disks;
4033         else
4034                 conf->reshape_progress += reshape_sectors * new_data_disks;
4035         spin_unlock_irq(&conf->device_lock);
4036         /* Ok, those stripe are ready. We can start scheduling
4037          * reads on the source stripes.
4038          * The source stripes are determined by mapping the first and last
4039          * block on the destination stripes.
4040          */
4041         first_sector =
4042                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4043                                      1, &dd_idx, NULL);
4044         last_sector =
4045                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4046                                             * new_data_disks - 1),
4047                                      1, &dd_idx, NULL);
4048         if (last_sector >= mddev->dev_sectors)
4049                 last_sector = mddev->dev_sectors - 1;
4050         while (first_sector <= last_sector) {
4051                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4052                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4053                 set_bit(STRIPE_HANDLE, &sh->state);
4054                 release_stripe(sh);
4055                 first_sector += STRIPE_SECTORS;
4056         }
4057         /* Now that the sources are clearly marked, we can release
4058          * the destination stripes
4059          */
4060         while (!list_empty(&stripes)) {
4061                 sh = list_entry(stripes.next, struct stripe_head, lru);
4062                 list_del_init(&sh->lru);
4063                 release_stripe(sh);
4064         }
4065         /* If this takes us to the resync_max point where we have to pause,
4066          * then we need to write out the superblock.
4067          */
4068         sector_nr += reshape_sectors;
4069         if ((sector_nr - mddev->curr_resync_completed) * 2
4070             >= mddev->resync_max - mddev->curr_resync_completed) {
4071                 /* Cannot proceed until we've updated the superblock... */
4072                 wait_event(conf->wait_for_overlap,
4073                            atomic_read(&conf->reshape_stripes) == 0);
4074                 mddev->reshape_position = conf->reshape_progress;
4075                 mddev->curr_resync_completed = sector_nr;
4076                 conf->reshape_checkpoint = jiffies;
4077                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4078                 md_wakeup_thread(mddev->thread);
4079                 wait_event(mddev->sb_wait,
4080                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4081                            || kthread_should_stop());
4082                 spin_lock_irq(&conf->device_lock);
4083                 conf->reshape_safe = mddev->reshape_position;
4084                 spin_unlock_irq(&conf->device_lock);
4085                 wake_up(&conf->wait_for_overlap);
4086                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4087         }
4088         return reshape_sectors;
4089 }
4090
4091 /* FIXME go_faster isn't used */
4092 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4093 {
4094         struct r5conf *conf = mddev->private;
4095         struct stripe_head *sh;
4096         sector_t max_sector = mddev->dev_sectors;
4097         sector_t sync_blocks;
4098         int still_degraded = 0;
4099         int i;
4100
4101         if (sector_nr >= max_sector) {
4102                 /* just being told to finish up .. nothing much to do */
4103
4104                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4105                         end_reshape(conf);
4106                         return 0;
4107                 }
4108
4109                 if (mddev->curr_resync < max_sector) /* aborted */
4110                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4111                                         &sync_blocks, 1);
4112                 else /* completed sync */
4113                         conf->fullsync = 0;
4114                 bitmap_close_sync(mddev->bitmap);
4115
4116                 return 0;
4117         }
4118
4119         /* Allow raid5_quiesce to complete */
4120         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4121
4122         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4123                 return reshape_request(mddev, sector_nr, skipped);
4124
4125         /* No need to check resync_max as we never do more than one
4126          * stripe, and as resync_max will always be on a chunk boundary,
4127          * if the check in md_do_sync didn't fire, there is no chance
4128          * of overstepping resync_max here
4129          */
4130
4131         /* if there is too many failed drives and we are trying
4132          * to resync, then assert that we are finished, because there is
4133          * nothing we can do.
4134          */
4135         if (mddev->degraded >= conf->max_degraded &&
4136             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4137                 sector_t rv = mddev->dev_sectors - sector_nr;
4138                 *skipped = 1;
4139                 return rv;
4140         }
4141         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4142             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4143             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4144                 /* we can skip this block, and probably more */
4145                 sync_blocks /= STRIPE_SECTORS;
4146                 *skipped = 1;
4147                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4148         }
4149
4150
4151         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4152
4153         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4154         if (sh == NULL) {
4155                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4156                 /* make sure we don't swamp the stripe cache if someone else
4157                  * is trying to get access
4158                  */
4159                 schedule_timeout_uninterruptible(1);
4160         }
4161         /* Need to check if array will still be degraded after recovery/resync
4162          * We don't need to check the 'failed' flag as when that gets set,
4163          * recovery aborts.
4164          */
4165         for (i = 0; i < conf->raid_disks; i++)
4166                 if (conf->disks[i].rdev == NULL)
4167                         still_degraded = 1;
4168
4169         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4170
4171         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4172
4173         handle_stripe(sh);
4174         release_stripe(sh);
4175
4176         return STRIPE_SECTORS;
4177 }
4178
4179 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4180 {
4181         /* We may not be able to submit a whole bio at once as there
4182          * may not be enough stripe_heads available.
4183          * We cannot pre-allocate enough stripe_heads as we may need
4184          * more than exist in the cache (if we allow ever large chunks).
4185          * So we do one stripe head at a time and record in
4186          * ->bi_hw_segments how many have been done.
4187          *
4188          * We *know* that this entire raid_bio is in one chunk, so
4189          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4190          */
4191         struct stripe_head *sh;
4192         int dd_idx;
4193         sector_t sector, logical_sector, last_sector;
4194         int scnt = 0;
4195         int remaining;
4196         int handled = 0;
4197
4198         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4199         sector = raid5_compute_sector(conf, logical_sector,
4200                                       0, &dd_idx, NULL);
4201         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4202
4203         for (; logical_sector < last_sector;
4204              logical_sector += STRIPE_SECTORS,
4205                      sector += STRIPE_SECTORS,
4206                      scnt++) {
4207
4208                 if (scnt < raid5_bi_hw_segments(raid_bio))
4209                         /* already done this stripe */
4210                         continue;
4211
4212                 sh = get_active_stripe(conf, sector, 0, 1, 0);
4213
4214                 if (!sh) {
4215                         /* failed to get a stripe - must wait */
4216                         raid5_set_bi_hw_segments(raid_bio, scnt);
4217                         conf->retry_read_aligned = raid_bio;
4218                         return handled;
4219                 }
4220
4221                 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4222                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4223                         release_stripe(sh);
4224                         raid5_set_bi_hw_segments(raid_bio, scnt);
4225                         conf->retry_read_aligned = raid_bio;
4226                         return handled;
4227                 }
4228
4229                 handle_stripe(sh);
4230                 release_stripe(sh);
4231                 handled++;
4232         }
4233         spin_lock_irq(&conf->device_lock);
4234         remaining = raid5_dec_bi_phys_segments(raid_bio);
4235         spin_unlock_irq(&conf->device_lock);
4236         if (remaining == 0)
4237                 bio_endio(raid_bio, 0);
4238         if (atomic_dec_and_test(&conf->active_aligned_reads))
4239                 wake_up(&conf->wait_for_stripe);
4240         return handled;
4241 }
4242
4243
4244 /*
4245  * This is our raid5 kernel thread.
4246  *
4247  * We scan the hash table for stripes which can be handled now.
4248  * During the scan, completed stripes are saved for us by the interrupt
4249  * handler, so that they will not have to wait for our next wakeup.
4250  */
4251 static void raid5d(struct mddev *mddev)
4252 {
4253         struct stripe_head *sh;
4254         struct r5conf *conf = mddev->private;
4255         int handled;
4256         struct blk_plug plug;
4257
4258         pr_debug("+++ raid5d active\n");
4259
4260         md_check_recovery(mddev);
4261
4262         blk_start_plug(&plug);
4263         handled = 0;
4264         spin_lock_irq(&conf->device_lock);
4265         while (1) {
4266                 struct bio *bio;
4267
4268                 if (atomic_read(&mddev->plug_cnt) == 0 &&
4269                     !list_empty(&conf->bitmap_list)) {
4270                         /* Now is a good time to flush some bitmap updates */
4271                         conf->seq_flush++;
4272                         spin_unlock_irq(&conf->device_lock);
4273                         bitmap_unplug(mddev->bitmap);
4274                         spin_lock_irq(&conf->device_lock);
4275                         conf->seq_write = conf->seq_flush;
4276                         activate_bit_delay(conf);
4277                 }
4278                 if (atomic_read(&mddev->plug_cnt) == 0)
4279                         raid5_activate_delayed(conf);
4280
4281                 while ((bio = remove_bio_from_retry(conf))) {
4282                         int ok;
4283                         spin_unlock_irq(&conf->device_lock);
4284                         ok = retry_aligned_read(conf, bio);
4285                         spin_lock_irq(&conf->device_lock);
4286                         if (!ok)
4287                                 break;
4288                         handled++;
4289                 }
4290
4291                 sh = __get_priority_stripe(conf);
4292
4293                 if (!sh)
4294                         break;
4295                 spin_unlock_irq(&conf->device_lock);
4296                 
4297                 handled++;
4298                 handle_stripe(sh);
4299                 release_stripe(sh);
4300                 cond_resched();
4301
4302                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
4303                         md_check_recovery(mddev);
4304
4305                 spin_lock_irq(&conf->device_lock);
4306         }
4307         pr_debug("%d stripes handled\n", handled);
4308
4309         spin_unlock_irq(&conf->device_lock);
4310
4311         async_tx_issue_pending_all();
4312         blk_finish_plug(&plug);
4313
4314         pr_debug("--- raid5d inactive\n");
4315 }
4316
4317 static ssize_t
4318 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4319 {
4320         struct r5conf *conf = mddev->private;
4321         if (conf)
4322                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4323         else
4324                 return 0;
4325 }
4326
4327 int
4328 raid5_set_cache_size(struct mddev *mddev, int size)
4329 {
4330         struct r5conf *conf = mddev->private;
4331         int err;
4332
4333         if (size <= 16 || size > 32768)
4334                 return -EINVAL;
4335         while (size < conf->max_nr_stripes) {
4336                 if (drop_one_stripe(conf))
4337                         conf->max_nr_stripes--;
4338                 else
4339                         break;
4340         }
4341         err = md_allow_write(mddev);
4342         if (err)
4343                 return err;
4344         while (size > conf->max_nr_stripes) {
4345                 if (grow_one_stripe(conf))
4346                         conf->max_nr_stripes++;
4347                 else break;
4348         }
4349         return 0;
4350 }
4351 EXPORT_SYMBOL(raid5_set_cache_size);
4352
4353 static ssize_t
4354 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4355 {
4356         struct r5conf *conf = mddev->private;
4357         unsigned long new;
4358         int err;
4359
4360         if (len >= PAGE_SIZE)
4361                 return -EINVAL;
4362         if (!conf)
4363                 return -ENODEV;
4364
4365         if (strict_strtoul(page, 10, &new))
4366                 return -EINVAL;
4367         err = raid5_set_cache_size(mddev, new);
4368         if (err)
4369                 return err;
4370         return len;
4371 }
4372
4373 static struct md_sysfs_entry
4374 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4375                                 raid5_show_stripe_cache_size,
4376                                 raid5_store_stripe_cache_size);
4377
4378 static ssize_t
4379 raid5_show_preread_threshold(struct mddev *mddev, char *page)
4380 {
4381         struct r5conf *conf = mddev->private;
4382         if (conf)
4383                 return sprintf(page, "%d\n", conf->bypass_threshold);
4384         else
4385                 return 0;
4386 }
4387
4388 static ssize_t
4389 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4390 {
4391         struct r5conf *conf = mddev->private;
4392         unsigned long new;
4393         if (len >= PAGE_SIZE)
4394                 return -EINVAL;
4395         if (!conf)
4396                 return -ENODEV;
4397
4398         if (strict_strtoul(page, 10, &new))
4399                 return -EINVAL;
4400         if (new > conf->max_nr_stripes)
4401                 return -EINVAL;
4402         conf->bypass_threshold = new;
4403         return len;
4404 }
4405
4406 static struct md_sysfs_entry
4407 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4408                                         S_IRUGO | S_IWUSR,
4409                                         raid5_show_preread_threshold,
4410                                         raid5_store_preread_threshold);
4411
4412 static ssize_t
4413 stripe_cache_active_show(struct mddev *mddev, char *page)
4414 {
4415         struct r5conf *conf = mddev->private;
4416         if (conf)
4417                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4418         else
4419                 return 0;
4420 }
4421
4422 static struct md_sysfs_entry
4423 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4424
4425 static struct attribute *raid5_attrs[] =  {
4426         &raid5_stripecache_size.attr,
4427         &raid5_stripecache_active.attr,
4428         &raid5_preread_bypass_threshold.attr,
4429         NULL,
4430 };
4431 static struct attribute_group raid5_attrs_group = {
4432         .name = NULL,
4433         .attrs = raid5_attrs,
4434 };
4435
4436 static sector_t
4437 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
4438 {
4439         struct r5conf *conf = mddev->private;
4440
4441         if (!sectors)
4442                 sectors = mddev->dev_sectors;
4443         if (!raid_disks)
4444                 /* size is defined by the smallest of previous and new size */
4445                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4446
4447         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4448         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4449         return sectors * (raid_disks - conf->max_degraded);
4450 }
4451
4452 static void raid5_free_percpu(struct r5conf *conf)
4453 {
4454         struct raid5_percpu *percpu;
4455         unsigned long cpu;
4456
4457         if (!conf->percpu)
4458                 return;
4459
4460         get_online_cpus();
4461         for_each_possible_cpu(cpu) {
4462                 percpu = per_cpu_ptr(conf->percpu, cpu);
4463                 safe_put_page(percpu->spare_page);
4464                 kfree(percpu->scribble);
4465         }
4466 #ifdef CONFIG_HOTPLUG_CPU
4467         unregister_cpu_notifier(&conf->cpu_notify);
4468 #endif
4469         put_online_cpus();
4470
4471         free_percpu(conf->percpu);
4472 }
4473
4474 static void free_conf(struct r5conf *conf)
4475 {
4476         shrink_stripes(conf);
4477         raid5_free_percpu(conf);
4478         kfree(conf->disks);
4479         kfree(conf->stripe_hashtbl);
4480         kfree(conf);
4481 }
4482
4483 #ifdef CONFIG_HOTPLUG_CPU
4484 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4485                               void *hcpu)
4486 {
4487         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
4488         long cpu = (long)hcpu;
4489         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4490
4491         switch (action) {
4492         case CPU_UP_PREPARE:
4493         case CPU_UP_PREPARE_FROZEN:
4494                 if (conf->level == 6 && !percpu->spare_page)
4495                         percpu->spare_page = alloc_page(GFP_KERNEL);
4496                 if (!percpu->scribble)
4497                         percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4498
4499                 if (!percpu->scribble ||
4500                     (conf->level == 6 && !percpu->spare_page)) {
4501                         safe_put_page(percpu->spare_page);
4502                         kfree(percpu->scribble);
4503                         pr_err("%s: failed memory allocation for cpu%ld\n",
4504                                __func__, cpu);
4505                         return notifier_from_errno(-ENOMEM);
4506                 }
4507                 break;
4508         case CPU_DEAD:
4509         case CPU_DEAD_FROZEN:
4510                 safe_put_page(percpu->spare_page);
4511                 kfree(percpu->scribble);
4512                 percpu->spare_page = NULL;
4513                 percpu->scribble = NULL;
4514                 break;
4515         default:
4516                 break;
4517         }
4518         return NOTIFY_OK;
4519 }
4520 #endif
4521
4522 static int raid5_alloc_percpu(struct r5conf *conf)
4523 {
4524         unsigned long cpu;
4525         struct page *spare_page;
4526         struct raid5_percpu __percpu *allcpus;
4527         void *scribble;
4528         int err;
4529
4530         allcpus = alloc_percpu(struct raid5_percpu);
4531         if (!allcpus)
4532                 return -ENOMEM;
4533         conf->percpu = allcpus;
4534
4535         get_online_cpus();
4536         err = 0;
4537         for_each_present_cpu(cpu) {
4538                 if (conf->level == 6) {
4539                         spare_page = alloc_page(GFP_KERNEL);
4540                         if (!spare_page) {
4541                                 err = -ENOMEM;
4542                                 break;
4543                         }
4544                         per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4545                 }
4546                 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4547                 if (!scribble) {
4548                         err = -ENOMEM;
4549                         break;
4550                 }
4551                 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4552         }
4553 #ifdef CONFIG_HOTPLUG_CPU
4554         conf->cpu_notify.notifier_call = raid456_cpu_notify;
4555         conf->cpu_notify.priority = 0;
4556         if (err == 0)
4557                 err = register_cpu_notifier(&conf->cpu_notify);
4558 #endif
4559         put_online_cpus();
4560
4561         return err;
4562 }
4563
4564 static struct r5conf *setup_conf(struct mddev *mddev)
4565 {
4566         struct r5conf *conf;
4567         int raid_disk, memory, max_disks;
4568         struct md_rdev *rdev;
4569         struct disk_info *disk;
4570
4571         if (mddev->new_level != 5
4572             && mddev->new_level != 4
4573             && mddev->new_level != 6) {
4574                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4575                        mdname(mddev), mddev->new_level);
4576                 return ERR_PTR(-EIO);
4577         }
4578         if ((mddev->new_level == 5
4579              && !algorithm_valid_raid5(mddev->new_layout)) ||
4580             (mddev->new_level == 6
4581              && !algorithm_valid_raid6(mddev->new_layout))) {
4582                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4583                        mdname(mddev), mddev->new_layout);
4584                 return ERR_PTR(-EIO);
4585         }
4586         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4587                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4588                        mdname(mddev), mddev->raid_disks);
4589                 return ERR_PTR(-EINVAL);
4590         }
4591
4592         if (!mddev->new_chunk_sectors ||
4593             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4594             !is_power_of_2(mddev->new_chunk_sectors)) {
4595                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4596                        mdname(mddev), mddev->new_chunk_sectors << 9);
4597                 return ERR_PTR(-EINVAL);
4598         }
4599
4600         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
4601         if (conf == NULL)
4602                 goto abort;
4603         spin_lock_init(&conf->device_lock);
4604         init_waitqueue_head(&conf->wait_for_stripe);
4605         init_waitqueue_head(&conf->wait_for_overlap);
4606         INIT_LIST_HEAD(&conf->handle_list);
4607         INIT_LIST_HEAD(&conf->hold_list);
4608         INIT_LIST_HEAD(&conf->delayed_list);
4609         INIT_LIST_HEAD(&conf->bitmap_list);
4610         INIT_LIST_HEAD(&conf->inactive_list);
4611         atomic_set(&conf->active_stripes, 0);
4612         atomic_set(&conf->preread_active_stripes, 0);
4613         atomic_set(&conf->active_aligned_reads, 0);
4614         conf->bypass_threshold = BYPASS_THRESHOLD;
4615         conf->recovery_disabled = mddev->recovery_disabled - 1;
4616
4617         conf->raid_disks = mddev->raid_disks;
4618         if (mddev->reshape_position == MaxSector)
4619                 conf->previous_raid_disks = mddev->raid_disks;
4620         else
4621                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4622         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4623         conf->scribble_len = scribble_len(max_disks);
4624
4625         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4626                               GFP_KERNEL);
4627         if (!conf->disks)
4628                 goto abort;
4629
4630         conf->mddev = mddev;
4631
4632         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4633                 goto abort;
4634
4635         conf->level = mddev->new_level;
4636         if (raid5_alloc_percpu(conf) != 0)
4637                 goto abort;
4638
4639         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4640
4641         list_for_each_entry(rdev, &mddev->disks, same_set) {
4642                 raid_disk = rdev->raid_disk;
4643                 if (raid_disk >= max_disks
4644                     || raid_disk < 0)
4645                         continue;
4646                 disk = conf->disks + raid_disk;
4647
4648                 disk->rdev = rdev;
4649
4650                 if (test_bit(In_sync, &rdev->flags)) {
4651                         char b[BDEVNAME_SIZE];
4652                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4653                                " disk %d\n",
4654                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4655                 } else if (rdev->saved_raid_disk != raid_disk)
4656                         /* Cannot rely on bitmap to complete recovery */
4657                         conf->fullsync = 1;
4658         }
4659
4660         conf->chunk_sectors = mddev->new_chunk_sectors;
4661         conf->level = mddev->new_level;
4662         if (conf->level == 6)
4663                 conf->max_degraded = 2;
4664         else
4665                 conf->max_degraded = 1;
4666         conf->algorithm = mddev->new_layout;
4667         conf->max_nr_stripes = NR_STRIPES;
4668         conf->reshape_progress = mddev->reshape_position;
4669         if (conf->reshape_progress != MaxSector) {
4670                 conf->prev_chunk_sectors = mddev->chunk_sectors;
4671                 conf->prev_algo = mddev->layout;
4672         }
4673
4674         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4675                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4676         if (grow_stripes(conf, conf->max_nr_stripes)) {
4677                 printk(KERN_ERR
4678                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
4679                        mdname(mddev), memory);
4680                 goto abort;
4681         } else
4682                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4683                        mdname(mddev), memory);
4684
4685         conf->thread = md_register_thread(raid5d, mddev, NULL);
4686         if (!conf->thread) {
4687                 printk(KERN_ERR
4688                        "md/raid:%s: couldn't allocate thread.\n",
4689                        mdname(mddev));
4690                 goto abort;
4691         }
4692
4693         return conf;
4694
4695  abort:
4696         if (conf) {
4697                 free_conf(conf);
4698                 return ERR_PTR(-EIO);
4699         } else
4700                 return ERR_PTR(-ENOMEM);
4701 }
4702
4703
4704 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4705 {
4706         switch (algo) {
4707         case ALGORITHM_PARITY_0:
4708                 if (raid_disk < max_degraded)
4709                         return 1;
4710                 break;
4711         case ALGORITHM_PARITY_N:
4712                 if (raid_disk >= raid_disks - max_degraded)
4713                         return 1;
4714                 break;
4715         case ALGORITHM_PARITY_0_6:
4716                 if (raid_disk == 0 || 
4717                     raid_disk == raid_disks - 1)
4718                         return 1;
4719                 break;
4720         case ALGORITHM_LEFT_ASYMMETRIC_6:
4721         case ALGORITHM_RIGHT_ASYMMETRIC_6:
4722         case ALGORITHM_LEFT_SYMMETRIC_6:
4723         case ALGORITHM_RIGHT_SYMMETRIC_6:
4724                 if (raid_disk == raid_disks - 1)
4725                         return 1;
4726         }
4727         return 0;
4728 }
4729
4730 static int run(struct mddev *mddev)
4731 {
4732         struct r5conf *conf;
4733         int working_disks = 0;
4734         int dirty_parity_disks = 0;
4735         struct md_rdev *rdev;
4736         sector_t reshape_offset = 0;
4737
4738         if (mddev->recovery_cp != MaxSector)
4739                 printk(KERN_NOTICE "md/raid:%s: not clean"
4740                        " -- starting background reconstruction\n",
4741                        mdname(mddev));
4742         if (mddev->reshape_position != MaxSector) {
4743                 /* Check that we can continue the reshape.
4744                  * Currently only disks can change, it must
4745                  * increase, and we must be past the point where
4746                  * a stripe over-writes itself
4747                  */
4748                 sector_t here_new, here_old;
4749                 int old_disks;
4750                 int max_degraded = (mddev->level == 6 ? 2 : 1);
4751
4752                 if (mddev->new_level != mddev->level) {
4753                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
4754                                "required - aborting.\n",
4755                                mdname(mddev));
4756                         return -EINVAL;
4757                 }
4758                 old_disks = mddev->raid_disks - mddev->delta_disks;
4759                 /* reshape_position must be on a new-stripe boundary, and one
4760                  * further up in new geometry must map after here in old
4761                  * geometry.
4762                  */
4763                 here_new = mddev->reshape_position;
4764                 if (sector_div(here_new, mddev->new_chunk_sectors *
4765                                (mddev->raid_disks - max_degraded))) {
4766                         printk(KERN_ERR "md/raid:%s: reshape_position not "
4767                                "on a stripe boundary\n", mdname(mddev));
4768                         return -EINVAL;
4769                 }
4770                 reshape_offset = here_new * mddev->new_chunk_sectors;
4771                 /* here_new is the stripe we will write to */
4772                 here_old = mddev->reshape_position;
4773                 sector_div(here_old, mddev->chunk_sectors *
4774                            (old_disks-max_degraded));
4775                 /* here_old is the first stripe that we might need to read
4776                  * from */
4777                 if (mddev->delta_disks == 0) {
4778                         /* We cannot be sure it is safe to start an in-place
4779                          * reshape.  It is only safe if user-space if monitoring
4780                          * and taking constant backups.
4781                          * mdadm always starts a situation like this in
4782                          * readonly mode so it can take control before
4783                          * allowing any writes.  So just check for that.
4784                          */
4785                         if ((here_new * mddev->new_chunk_sectors != 
4786                              here_old * mddev->chunk_sectors) ||
4787                             mddev->ro == 0) {
4788                                 printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
4789                                        " in read-only mode - aborting\n",
4790                                        mdname(mddev));
4791                                 return -EINVAL;
4792                         }
4793                 } else if (mddev->delta_disks < 0
4794                     ? (here_new * mddev->new_chunk_sectors <=
4795                        here_old * mddev->chunk_sectors)
4796                     : (here_new * mddev->new_chunk_sectors >=
4797                        here_old * mddev->chunk_sectors)) {
4798                         /* Reading from the same stripe as writing to - bad */
4799                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
4800                                "auto-recovery - aborting.\n",
4801                                mdname(mddev));
4802                         return -EINVAL;
4803                 }
4804                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
4805                        mdname(mddev));
4806                 /* OK, we should be able to continue; */
4807         } else {
4808                 BUG_ON(mddev->level != mddev->new_level);
4809                 BUG_ON(mddev->layout != mddev->new_layout);
4810                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
4811                 BUG_ON(mddev->delta_disks != 0);
4812         }
4813
4814         if (mddev->private == NULL)
4815                 conf = setup_conf(mddev);
4816         else
4817                 conf = mddev->private;
4818
4819         if (IS_ERR(conf))
4820                 return PTR_ERR(conf);
4821
4822         mddev->thread = conf->thread;
4823         conf->thread = NULL;
4824         mddev->private = conf;
4825
4826         /*
4827          * 0 for a fully functional array, 1 or 2 for a degraded array.
4828          */
4829         list_for_each_entry(rdev, &mddev->disks, same_set) {
4830                 if (rdev->raid_disk < 0)
4831                         continue;
4832                 if (test_bit(In_sync, &rdev->flags)) {
4833                         working_disks++;
4834                         continue;
4835                 }
4836                 /* This disc is not fully in-sync.  However if it
4837                  * just stored parity (beyond the recovery_offset),
4838                  * when we don't need to be concerned about the
4839                  * array being dirty.
4840                  * When reshape goes 'backwards', we never have
4841                  * partially completed devices, so we only need
4842                  * to worry about reshape going forwards.
4843                  */
4844                 /* Hack because v0.91 doesn't store recovery_offset properly. */
4845                 if (mddev->major_version == 0 &&
4846                     mddev->minor_version > 90)
4847                         rdev->recovery_offset = reshape_offset;
4848                         
4849                 if (rdev->recovery_offset < reshape_offset) {
4850                         /* We need to check old and new layout */
4851                         if (!only_parity(rdev->raid_disk,
4852                                          conf->algorithm,
4853                                          conf->raid_disks,
4854                                          conf->max_degraded))
4855                                 continue;
4856                 }
4857                 if (!only_parity(rdev->raid_disk,
4858                                  conf->prev_algo,
4859                                  conf->previous_raid_disks,
4860                                  conf->max_degraded))
4861                         continue;
4862                 dirty_parity_disks++;
4863         }
4864
4865         mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
4866                            - working_disks);
4867
4868         if (has_failed(conf)) {
4869                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
4870                         " (%d/%d failed)\n",
4871                         mdname(mddev), mddev->degraded, conf->raid_disks);
4872                 goto abort;
4873         }
4874
4875         /* device size must be a multiple of chunk size */
4876         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
4877         mddev->resync_max_sectors = mddev->dev_sectors;
4878
4879         if (mddev->degraded > dirty_parity_disks &&
4880             mddev->recovery_cp != MaxSector) {
4881                 if (mddev->ok_start_degraded)
4882                         printk(KERN_WARNING
4883                                "md/raid:%s: starting dirty degraded array"
4884                                " - data corruption possible.\n",
4885                                mdname(mddev));
4886                 else {
4887                         printk(KERN_ERR
4888                                "md/raid:%s: cannot start dirty degraded array.\n",
4889                                mdname(mddev));
4890                         goto abort;
4891                 }
4892         }
4893
4894         if (mddev->degraded == 0)
4895                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
4896                        " devices, algorithm %d\n", mdname(mddev), conf->level,
4897                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4898                        mddev->new_layout);
4899         else
4900                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
4901                        " out of %d devices, algorithm %d\n",
4902                        mdname(mddev), conf->level,
4903                        mddev->raid_disks - mddev->degraded,
4904                        mddev->raid_disks, mddev->new_layout);
4905
4906         print_raid5_conf(conf);
4907
4908         if (conf->reshape_progress != MaxSector) {
4909                 conf->reshape_safe = conf->reshape_progress;
4910                 atomic_set(&conf->reshape_stripes, 0);
4911                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4912                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4913                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4914                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4915                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4916                                                         "reshape");
4917         }
4918
4919
4920         /* Ok, everything is just fine now */
4921         if (mddev->to_remove == &raid5_attrs_group)
4922                 mddev->to_remove = NULL;
4923         else if (mddev->kobj.sd &&
4924             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4925                 printk(KERN_WARNING
4926                        "raid5: failed to create sysfs attributes for %s\n",
4927                        mdname(mddev));
4928         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4929
4930         if (mddev->queue) {
4931                 int chunk_size;
4932                 /* read-ahead size must cover two whole stripes, which
4933                  * is 2 * (datadisks) * chunksize where 'n' is the
4934                  * number of raid devices
4935                  */
4936                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4937                 int stripe = data_disks *
4938                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
4939                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4940                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4941
4942                 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4943
4944                 mddev->queue->backing_dev_info.congested_data = mddev;
4945                 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4946
4947                 chunk_size = mddev->chunk_sectors << 9;
4948                 blk_queue_io_min(mddev->queue, chunk_size);
4949                 blk_queue_io_opt(mddev->queue, chunk_size *
4950                                  (conf->raid_disks - conf->max_degraded));
4951
4952                 list_for_each_entry(rdev, &mddev->disks, same_set)
4953                         disk_stack_limits(mddev->gendisk, rdev->bdev,
4954                                           rdev->data_offset << 9);
4955         }
4956
4957         return 0;
4958 abort:
4959         md_unregister_thread(&mddev->thread);
4960         print_raid5_conf(conf);
4961         free_conf(conf);
4962         mddev->private = NULL;
4963         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
4964         return -EIO;
4965 }
4966
4967 static int stop(struct mddev *mddev)
4968 {
4969         struct r5conf *conf = mddev->private;
4970
4971         md_unregister_thread(&mddev->thread);
4972         if (mddev->queue)
4973                 mddev->queue->backing_dev_info.congested_fn = NULL;
4974         free_conf(conf);
4975         mddev->private = NULL;
4976         mddev->to_remove = &raid5_attrs_group;
4977         return 0;
4978 }
4979
4980 static void status(struct seq_file *seq, struct mddev *mddev)
4981 {
4982         struct r5conf *conf = mddev->private;
4983         int i;
4984
4985         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
4986                 mddev->chunk_sectors / 2, mddev->layout);
4987         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4988         for (i = 0; i < conf->raid_disks; i++)
4989                 seq_printf (seq, "%s",
4990                                conf->disks[i].rdev &&
4991                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4992         seq_printf (seq, "]");
4993 }
4994
4995 static void print_raid5_conf (struct r5conf *conf)
4996 {
4997         int i;
4998         struct disk_info *tmp;
4999
5000         printk(KERN_DEBUG "RAID conf printout:\n");
5001         if (!conf) {
5002                 printk("(conf==NULL)\n");
5003                 return;
5004         }
5005         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5006                conf->raid_disks,
5007                conf->raid_disks - conf->mddev->degraded);
5008
5009         for (i = 0; i < conf->raid_disks; i++) {
5010                 char b[BDEVNAME_SIZE];
5011                 tmp = conf->disks + i;
5012                 if (tmp->rdev)
5013                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5014                                i, !test_bit(Faulty, &tmp->rdev->flags),
5015                                bdevname(tmp->rdev->bdev, b));
5016         }
5017 }
5018
5019 static int raid5_spare_active(struct mddev *mddev)
5020 {
5021         int i;
5022         struct r5conf *conf = mddev->private;
5023         struct disk_info *tmp;
5024         int count = 0;
5025         unsigned long flags;
5026
5027         for (i = 0; i < conf->raid_disks; i++) {
5028                 tmp = conf->disks + i;
5029                 if (tmp->rdev
5030                     && tmp->rdev->recovery_offset == MaxSector
5031                     && !test_bit(Faulty, &tmp->rdev->flags)
5032                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5033                         count++;
5034                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5035                 }
5036         }
5037         spin_lock_irqsave(&conf->device_lock, flags);
5038         mddev->degraded -= count;
5039         spin_unlock_irqrestore(&conf->device_lock, flags);
5040         print_raid5_conf(conf);
5041         return count;
5042 }
5043
5044 static int raid5_remove_disk(struct mddev *mddev, int number)
5045 {
5046         struct r5conf *conf = mddev->private;
5047         int err = 0;
5048         struct md_rdev *rdev;
5049         struct disk_info *p = conf->disks + number;
5050
5051         print_raid5_conf(conf);
5052         rdev = p->rdev;
5053         if (rdev) {
5054                 if (number >= conf->raid_disks &&
5055                     conf->reshape_progress == MaxSector)
5056                         clear_bit(In_sync, &rdev->flags);
5057
5058                 if (test_bit(In_sync, &rdev->flags) ||
5059                     atomic_read(&rdev->nr_pending)) {
5060                         err = -EBUSY;
5061                         goto abort;
5062                 }
5063                 /* Only remove non-faulty devices if recovery
5064                  * isn't possible.
5065                  */
5066                 if (!test_bit(Faulty, &rdev->flags) &&
5067                     mddev->recovery_disabled != conf->recovery_disabled &&
5068                     !has_failed(conf) &&
5069                     number < conf->raid_disks) {
5070                         err = -EBUSY;
5071                         goto abort;
5072                 }
5073                 p->rdev = NULL;
5074                 synchronize_rcu();
5075                 if (atomic_read(&rdev->nr_pending)) {
5076                         /* lost the race, try later */
5077                         err = -EBUSY;
5078                         p->rdev = rdev;
5079                 }
5080         }
5081 abort:
5082
5083         print_raid5_conf(conf);
5084         return err;
5085 }
5086
5087 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
5088 {
5089         struct r5conf *conf = mddev->private;
5090         int err = -EEXIST;
5091         int disk;
5092         struct disk_info *p;
5093         int first = 0;
5094         int last = conf->raid_disks - 1;
5095
5096         if (mddev->recovery_disabled == conf->recovery_disabled)
5097                 return -EBUSY;
5098
5099         if (has_failed(conf))
5100                 /* no point adding a device */
5101                 return -EINVAL;
5102
5103         if (rdev->raid_disk >= 0)
5104                 first = last = rdev->raid_disk;
5105
5106         /*
5107          * find the disk ... but prefer rdev->saved_raid_disk
5108          * if possible.
5109          */
5110         if (rdev->saved_raid_disk >= 0 &&
5111             rdev->saved_raid_disk >= first &&
5112             conf->disks[rdev->saved_raid_disk].rdev == NULL)
5113                 disk = rdev->saved_raid_disk;
5114         else
5115                 disk = first;
5116         for ( ; disk <= last ; disk++)
5117                 if ((p=conf->disks + disk)->rdev == NULL) {
5118                         clear_bit(In_sync, &rdev->flags);
5119                         rdev->raid_disk = disk;
5120                         err = 0;
5121                         if (rdev->saved_raid_disk != disk)
5122                                 conf->fullsync = 1;
5123                         rcu_assign_pointer(p->rdev, rdev);
5124                         break;
5125                 }
5126         print_raid5_conf(conf);
5127         return err;
5128 }
5129
5130 static int raid5_resize(struct mddev *mddev, sector_t sectors)
5131 {
5132         /* no resync is happening, and there is enough space
5133          * on all devices, so we can resize.
5134          * We need to make sure resync covers any new space.
5135          * If the array is shrinking we should possibly wait until
5136          * any io in the removed space completes, but it hardly seems
5137          * worth it.
5138          */
5139         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5140         md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5141                                                mddev->raid_disks));
5142         if (mddev->array_sectors >
5143             raid5_size(mddev, sectors, mddev->raid_disks))
5144                 return -EINVAL;
5145         set_capacity(mddev->gendisk, mddev->array_sectors);
5146         revalidate_disk(mddev->gendisk);
5147         if (sectors > mddev->dev_sectors &&
5148             mddev->recovery_cp > mddev->dev_sectors) {
5149                 mddev->recovery_cp = mddev->dev_sectors;
5150                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5151         }
5152         mddev->dev_sectors = sectors;
5153         mddev->resync_max_sectors = sectors;
5154         return 0;
5155 }
5156
5157 static int check_stripe_cache(struct mddev *mddev)
5158 {
5159         /* Can only proceed if there are plenty of stripe_heads.
5160          * We need a minimum of one full stripe,, and for sensible progress
5161          * it is best to have about 4 times that.
5162          * If we require 4 times, then the default 256 4K stripe_heads will
5163          * allow for chunk sizes up to 256K, which is probably OK.
5164          * If the chunk size is greater, user-space should request more
5165          * stripe_heads first.
5166          */
5167         struct r5conf *conf = mddev->private;
5168         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5169             > conf->max_nr_stripes ||
5170             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5171             > conf->max_nr_stripes) {
5172                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5173                        mdname(mddev),
5174                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5175                         / STRIPE_SIZE)*4);
5176                 return 0;
5177         }
5178         return 1;
5179 }
5180
5181 static int check_reshape(struct mddev *mddev)
5182 {
5183         struct r5conf *conf = mddev->private;
5184
5185         if (mddev->delta_disks == 0 &&
5186             mddev->new_layout == mddev->layout &&
5187             mddev->new_chunk_sectors == mddev->chunk_sectors)
5188                 return 0; /* nothing to do */
5189         if (mddev->bitmap)
5190                 /* Cannot grow a bitmap yet */
5191                 return -EBUSY;
5192         if (has_failed(conf))
5193                 return -EINVAL;
5194         if (mddev->delta_disks < 0) {
5195                 /* We might be able to shrink, but the devices must
5196                  * be made bigger first.
5197                  * For raid6, 4 is the minimum size.
5198                  * Otherwise 2 is the minimum
5199                  */
5200                 int min = 2;
5201                 if (mddev->level == 6)
5202                         min = 4;
5203                 if (mddev->raid_disks + mddev->delta_disks < min)
5204                         return -EINVAL;
5205         }
5206
5207         if (!check_stripe_cache(mddev))
5208                 return -ENOSPC;
5209
5210         return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5211 }
5212
5213 static int raid5_start_reshape(struct mddev *mddev)
5214 {
5215         struct r5conf *conf = mddev->private;
5216         struct md_rdev *rdev;
5217         int spares = 0;
5218         unsigned long flags;
5219
5220         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5221                 return -EBUSY;
5222
5223         if (!check_stripe_cache(mddev))
5224                 return -ENOSPC;
5225
5226         list_for_each_entry(rdev, &mddev->disks, same_set)
5227                 if (!test_bit(In_sync, &rdev->flags)
5228                     && !test_bit(Faulty, &rdev->flags))
5229                         spares++;
5230
5231         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5232                 /* Not enough devices even to make a degraded array
5233                  * of that size
5234                  */
5235                 return -EINVAL;
5236
5237         /* Refuse to reduce size of the array.  Any reductions in
5238          * array size must be through explicit setting of array_size
5239          * attribute.
5240          */
5241         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5242             < mddev->array_sectors) {
5243                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5244                        "before number of disks\n", mdname(mddev));
5245                 return -EINVAL;
5246         }
5247
5248         atomic_set(&conf->reshape_stripes, 0);
5249         spin_lock_irq(&conf->device_lock);
5250         conf->previous_raid_disks = conf->raid_disks;
5251         conf->raid_disks += mddev->delta_disks;
5252         conf->prev_chunk_sectors = conf->chunk_sectors;
5253         conf->chunk_sectors = mddev->new_chunk_sectors;
5254         conf->prev_algo = conf->algorithm;
5255         conf->algorithm = mddev->new_layout;
5256         if (mddev->delta_disks < 0)
5257                 conf->reshape_progress = raid5_size(mddev, 0, 0);
5258         else
5259                 conf->reshape_progress = 0;
5260         conf->reshape_safe = conf->reshape_progress;
5261         conf->generation++;
5262         spin_unlock_irq(&conf->device_lock);
5263
5264         /* Add some new drives, as many as will fit.
5265          * We know there are enough to make the newly sized array work.
5266          * Don't add devices if we are reducing the number of
5267          * devices in the array.  This is because it is not possible
5268          * to correctly record the "partially reconstructed" state of
5269          * such devices during the reshape and confusion could result.
5270          */
5271         if (mddev->delta_disks >= 0) {
5272                 int added_devices = 0;
5273                 list_for_each_entry(rdev, &mddev->disks, same_set)
5274                         if (rdev->raid_disk < 0 &&
5275                             !test_bit(Faulty, &rdev->flags)) {
5276                                 if (raid5_add_disk(mddev, rdev) == 0) {
5277                                         if (rdev->raid_disk
5278                                             >= conf->previous_raid_disks) {
5279                                                 set_bit(In_sync, &rdev->flags);
5280                                                 added_devices++;
5281                                         } else
5282                                                 rdev->recovery_offset = 0;
5283
5284                                         if (sysfs_link_rdev(mddev, rdev))
5285                                                 /* Failure here is OK */;
5286                                 }
5287                         } else if (rdev->raid_disk >= conf->previous_raid_disks
5288                                    && !test_bit(Faulty, &rdev->flags)) {
5289                                 /* This is a spare that was manually added */
5290                                 set_bit(In_sync, &rdev->flags);
5291                                 added_devices++;
5292                         }
5293
5294                 /* When a reshape changes the number of devices,
5295                  * ->degraded is measured against the larger of the
5296                  * pre and post number of devices.
5297                  */
5298                 spin_lock_irqsave(&conf->device_lock, flags);
5299                 mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5300                         - added_devices;
5301                 spin_unlock_irqrestore(&conf->device_lock, flags);
5302         }
5303         mddev->raid_disks = conf->raid_disks;
5304         mddev->reshape_position = conf->reshape_progress;
5305         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5306
5307         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5308         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5309         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5310         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5311         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5312                                                 "reshape");
5313         if (!mddev->sync_thread) {
5314                 mddev->recovery = 0;
5315                 spin_lock_irq(&conf->device_lock);
5316                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5317                 conf->reshape_progress = MaxSector;
5318                 spin_unlock_irq(&conf->device_lock);
5319                 return -EAGAIN;
5320         }
5321         conf->reshape_checkpoint = jiffies;
5322         md_wakeup_thread(mddev->sync_thread);
5323         md_new_event(mddev);
5324         return 0;
5325 }
5326
5327 /* This is called from the reshape thread and should make any
5328  * changes needed in 'conf'
5329  */
5330 static void end_reshape(struct r5conf *conf)
5331 {
5332
5333         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5334
5335                 spin_lock_irq(&conf->device_lock);
5336                 conf->previous_raid_disks = conf->raid_disks;
5337                 conf->reshape_progress = MaxSector;
5338                 spin_unlock_irq(&conf->device_lock);
5339                 wake_up(&conf->wait_for_overlap);
5340
5341                 /* read-ahead size must cover two whole stripes, which is
5342                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5343                  */
5344                 if (conf->mddev->queue) {
5345                         int data_disks = conf->raid_disks - conf->max_degraded;
5346                         int stripe = data_disks * ((conf->chunk_sectors << 9)
5347                                                    / PAGE_SIZE);
5348                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5349                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5350                 }
5351         }
5352 }
5353
5354 /* This is called from the raid5d thread with mddev_lock held.
5355  * It makes config changes to the device.
5356  */
5357 static void raid5_finish_reshape(struct mddev *mddev)
5358 {
5359         struct r5conf *conf = mddev->private;
5360
5361         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5362
5363                 if (mddev->delta_disks > 0) {
5364                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5365                         set_capacity(mddev->gendisk, mddev->array_sectors);
5366                         revalidate_disk(mddev->gendisk);
5367                 } else {
5368                         int d;
5369                         mddev->degraded = conf->raid_disks;
5370                         for (d = 0; d < conf->raid_disks ; d++)
5371                                 if (conf->disks[d].rdev &&
5372                                     test_bit(In_sync,
5373                                              &conf->disks[d].rdev->flags))
5374                                         mddev->degraded--;
5375                         for (d = conf->raid_disks ;
5376                              d < conf->raid_disks - mddev->delta_disks;
5377                              d++) {
5378                                 struct md_rdev *rdev = conf->disks[d].rdev;
5379                                 if (rdev && raid5_remove_disk(mddev, d) == 0) {
5380                                         sysfs_unlink_rdev(mddev, rdev);
5381                                         rdev->raid_disk = -1;
5382                                 }
5383                         }
5384                 }
5385                 mddev->layout = conf->algorithm;
5386                 mddev->chunk_sectors = conf->chunk_sectors;
5387                 mddev->reshape_position = MaxSector;
5388                 mddev->delta_disks = 0;
5389         }
5390 }
5391
5392 static void raid5_quiesce(struct mddev *mddev, int state)
5393 {
5394         struct r5conf *conf = mddev->private;
5395
5396         switch(state) {
5397         case 2: /* resume for a suspend */
5398                 wake_up(&conf->wait_for_overlap);
5399                 break;
5400
5401         case 1: /* stop all writes */
5402                 spin_lock_irq(&conf->device_lock);
5403                 /* '2' tells resync/reshape to pause so that all
5404                  * active stripes can drain
5405                  */
5406                 conf->quiesce = 2;
5407                 wait_event_lock_irq(conf->wait_for_stripe,
5408                                     atomic_read(&conf->active_stripes) == 0 &&
5409                                     atomic_read(&conf->active_aligned_reads) == 0,
5410                                     conf->device_lock, /* nothing */);
5411                 conf->quiesce = 1;
5412                 spin_unlock_irq(&conf->device_lock);
5413                 /* allow reshape to continue */
5414                 wake_up(&conf->wait_for_overlap);
5415                 break;
5416
5417         case 0: /* re-enable writes */
5418                 spin_lock_irq(&conf->device_lock);
5419                 conf->quiesce = 0;
5420                 wake_up(&conf->wait_for_stripe);
5421                 wake_up(&conf->wait_for_overlap);
5422                 spin_unlock_irq(&conf->device_lock);
5423                 break;
5424         }
5425 }
5426
5427
5428 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
5429 {
5430         struct r0conf *raid0_conf = mddev->private;
5431         sector_t sectors;
5432
5433         /* for raid0 takeover only one zone is supported */
5434         if (raid0_conf->nr_strip_zones > 1) {
5435                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5436                        mdname(mddev));
5437                 return ERR_PTR(-EINVAL);
5438         }
5439
5440         sectors = raid0_conf->strip_zone[0].zone_end;
5441         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
5442         mddev->dev_sectors = sectors;
5443         mddev->new_level = level;
5444         mddev->new_layout = ALGORITHM_PARITY_N;
5445         mddev->new_chunk_sectors = mddev->chunk_sectors;
5446         mddev->raid_disks += 1;
5447         mddev->delta_disks = 1;
5448         /* make sure it will be not marked as dirty */
5449         mddev->recovery_cp = MaxSector;
5450
5451         return setup_conf(mddev);
5452 }
5453
5454
5455 static void *raid5_takeover_raid1(struct mddev *mddev)
5456 {
5457         int chunksect;
5458
5459         if (mddev->raid_disks != 2 ||
5460             mddev->degraded > 1)
5461                 return ERR_PTR(-EINVAL);
5462
5463         /* Should check if there are write-behind devices? */
5464
5465         chunksect = 64*2; /* 64K by default */
5466
5467         /* The array must be an exact multiple of chunksize */
5468         while (chunksect && (mddev->array_sectors & (chunksect-1)))
5469                 chunksect >>= 1;
5470
5471         if ((chunksect<<9) < STRIPE_SIZE)
5472                 /* array size does not allow a suitable chunk size */
5473                 return ERR_PTR(-EINVAL);
5474
5475         mddev->new_level = 5;
5476         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5477         mddev->new_chunk_sectors = chunksect;
5478
5479         return setup_conf(mddev);
5480 }
5481
5482 static void *raid5_takeover_raid6(struct mddev *mddev)
5483 {
5484         int new_layout;
5485
5486         switch (mddev->layout) {
5487         case ALGORITHM_LEFT_ASYMMETRIC_6:
5488                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5489                 break;
5490         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5491                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5492                 break;
5493         case ALGORITHM_LEFT_SYMMETRIC_6:
5494                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5495                 break;
5496         case ALGORITHM_RIGHT_SYMMETRIC_6:
5497                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5498                 break;
5499         case ALGORITHM_PARITY_0_6:
5500                 new_layout = ALGORITHM_PARITY_0;
5501                 break;
5502         case ALGORITHM_PARITY_N:
5503                 new_layout = ALGORITHM_PARITY_N;
5504                 break;
5505         default:
5506                 return ERR_PTR(-EINVAL);
5507         }
5508         mddev->new_level = 5;
5509         mddev->new_layout = new_layout;
5510         mddev->delta_disks = -1;
5511         mddev->raid_disks -= 1;
5512         return setup_conf(mddev);
5513 }
5514
5515
5516 static int raid5_check_reshape(struct mddev *mddev)
5517 {
5518         /* For a 2-drive array, the layout and chunk size can be changed
5519          * immediately as not restriping is needed.
5520          * For larger arrays we record the new value - after validation
5521          * to be used by a reshape pass.
5522          */
5523         struct r5conf *conf = mddev->private;
5524         int new_chunk = mddev->new_chunk_sectors;
5525
5526         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5527                 return -EINVAL;
5528         if (new_chunk > 0) {
5529                 if (!is_power_of_2(new_chunk))
5530                         return -EINVAL;
5531                 if (new_chunk < (PAGE_SIZE>>9))
5532                         return -EINVAL;
5533                 if (mddev->array_sectors & (new_chunk-1))
5534                         /* not factor of array size */
5535                         return -EINVAL;
5536         }
5537
5538         /* They look valid */
5539
5540         if (mddev->raid_disks == 2) {
5541                 /* can make the change immediately */
5542                 if (mddev->new_layout >= 0) {
5543                         conf->algorithm = mddev->new_layout;
5544                         mddev->layout = mddev->new_layout;
5545                 }
5546                 if (new_chunk > 0) {
5547                         conf->chunk_sectors = new_chunk ;
5548                         mddev->chunk_sectors = new_chunk;
5549                 }
5550                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5551                 md_wakeup_thread(mddev->thread);
5552         }
5553         return check_reshape(mddev);
5554 }
5555
5556 static int raid6_check_reshape(struct mddev *mddev)
5557 {
5558         int new_chunk = mddev->new_chunk_sectors;
5559
5560         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5561                 return -EINVAL;
5562         if (new_chunk > 0) {
5563                 if (!is_power_of_2(new_chunk))
5564                         return -EINVAL;
5565                 if (new_chunk < (PAGE_SIZE >> 9))
5566                         return -EINVAL;
5567                 if (mddev->array_sectors & (new_chunk-1))
5568                         /* not factor of array size */
5569                         return -EINVAL;
5570         }
5571
5572         /* They look valid */
5573         return check_reshape(mddev);
5574 }
5575
5576 static void *raid5_takeover(struct mddev *mddev)
5577 {
5578         /* raid5 can take over:
5579          *  raid0 - if there is only one strip zone - make it a raid4 layout
5580          *  raid1 - if there are two drives.  We need to know the chunk size
5581          *  raid4 - trivial - just use a raid4 layout.
5582          *  raid6 - Providing it is a *_6 layout
5583          */
5584         if (mddev->level == 0)
5585                 return raid45_takeover_raid0(mddev, 5);
5586         if (mddev->level == 1)
5587                 return raid5_takeover_raid1(mddev);
5588         if (mddev->level == 4) {
5589                 mddev->new_layout = ALGORITHM_PARITY_N;
5590                 mddev->new_level = 5;
5591                 return setup_conf(mddev);
5592         }
5593         if (mddev->level == 6)
5594                 return raid5_takeover_raid6(mddev);
5595
5596         return ERR_PTR(-EINVAL);
5597 }
5598
5599 static void *raid4_takeover(struct mddev *mddev)
5600 {
5601         /* raid4 can take over:
5602          *  raid0 - if there is only one strip zone
5603          *  raid5 - if layout is right
5604          */
5605         if (mddev->level == 0)
5606                 return raid45_takeover_raid0(mddev, 4);
5607         if (mddev->level == 5 &&
5608             mddev->layout == ALGORITHM_PARITY_N) {
5609                 mddev->new_layout = 0;
5610                 mddev->new_level = 4;
5611                 return setup_conf(mddev);
5612         }
5613         return ERR_PTR(-EINVAL);
5614 }
5615
5616 static struct md_personality raid5_personality;
5617
5618 static void *raid6_takeover(struct mddev *mddev)
5619 {
5620         /* Currently can only take over a raid5.  We map the
5621          * personality to an equivalent raid6 personality
5622          * with the Q block at the end.
5623          */
5624         int new_layout;
5625
5626         if (mddev->pers != &raid5_personality)
5627                 return ERR_PTR(-EINVAL);
5628         if (mddev->degraded > 1)
5629                 return ERR_PTR(-EINVAL);
5630         if (mddev->raid_disks > 253)
5631                 return ERR_PTR(-EINVAL);
5632         if (mddev->raid_disks < 3)
5633                 return ERR_PTR(-EINVAL);
5634
5635         switch (mddev->layout) {
5636         case ALGORITHM_LEFT_ASYMMETRIC:
5637                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5638                 break;
5639         case ALGORITHM_RIGHT_ASYMMETRIC:
5640                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5641                 break;
5642         case ALGORITHM_LEFT_SYMMETRIC:
5643                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5644                 break;
5645         case ALGORITHM_RIGHT_SYMMETRIC:
5646                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5647                 break;
5648         case ALGORITHM_PARITY_0:
5649                 new_layout = ALGORITHM_PARITY_0_6;
5650                 break;
5651         case ALGORITHM_PARITY_N:
5652                 new_layout = ALGORITHM_PARITY_N;
5653                 break;
5654         default:
5655                 return ERR_PTR(-EINVAL);
5656         }
5657         mddev->new_level = 6;
5658         mddev->new_layout = new_layout;
5659         mddev->delta_disks = 1;
5660         mddev->raid_disks += 1;
5661         return setup_conf(mddev);
5662 }
5663
5664
5665 static struct md_personality raid6_personality =
5666 {
5667         .name           = "raid6",
5668         .level          = 6,
5669         .owner          = THIS_MODULE,
5670         .make_request   = make_request,
5671         .run            = run,
5672         .stop           = stop,
5673         .status         = status,
5674         .error_handler  = error,
5675         .hot_add_disk   = raid5_add_disk,
5676         .hot_remove_disk= raid5_remove_disk,
5677         .spare_active   = raid5_spare_active,
5678         .sync_request   = sync_request,
5679         .resize         = raid5_resize,
5680         .size           = raid5_size,
5681         .check_reshape  = raid6_check_reshape,
5682         .start_reshape  = raid5_start_reshape,
5683         .finish_reshape = raid5_finish_reshape,
5684         .quiesce        = raid5_quiesce,
5685         .takeover       = raid6_takeover,
5686 };
5687 static struct md_personality raid5_personality =
5688 {
5689         .name           = "raid5",
5690         .level          = 5,
5691         .owner          = THIS_MODULE,
5692         .make_request   = make_request,
5693         .run            = run,
5694         .stop           = stop,
5695         .status         = status,
5696         .error_handler  = error,
5697         .hot_add_disk   = raid5_add_disk,
5698         .hot_remove_disk= raid5_remove_disk,
5699         .spare_active   = raid5_spare_active,
5700         .sync_request   = sync_request,
5701         .resize         = raid5_resize,
5702         .size           = raid5_size,
5703         .check_reshape  = raid5_check_reshape,
5704         .start_reshape  = raid5_start_reshape,
5705         .finish_reshape = raid5_finish_reshape,
5706         .quiesce        = raid5_quiesce,
5707         .takeover       = raid5_takeover,
5708 };
5709
5710 static struct md_personality raid4_personality =
5711 {
5712         .name           = "raid4",
5713         .level          = 4,
5714         .owner          = THIS_MODULE,
5715         .make_request   = make_request,
5716         .run            = run,
5717         .stop           = stop,
5718         .status         = status,
5719         .error_handler  = error,
5720         .hot_add_disk   = raid5_add_disk,
5721         .hot_remove_disk= raid5_remove_disk,
5722         .spare_active   = raid5_spare_active,
5723         .sync_request   = sync_request,
5724         .resize         = raid5_resize,
5725         .size           = raid5_size,
5726         .check_reshape  = raid5_check_reshape,
5727         .start_reshape  = raid5_start_reshape,
5728         .finish_reshape = raid5_finish_reshape,
5729         .quiesce        = raid5_quiesce,
5730         .takeover       = raid4_takeover,
5731 };
5732
5733 static int __init raid5_init(void)
5734 {
5735         register_md_personality(&raid6_personality);
5736         register_md_personality(&raid5_personality);
5737         register_md_personality(&raid4_personality);
5738         return 0;
5739 }
5740
5741 static void raid5_exit(void)
5742 {
5743         unregister_md_personality(&raid6_personality);
5744         unregister_md_personality(&raid5_personality);
5745         unregister_md_personality(&raid4_personality);
5746 }
5747
5748 module_init(raid5_init);
5749 module_exit(raid5_exit);
5750 MODULE_LICENSE("GPL");
5751 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
5752 MODULE_ALIAS("md-personality-4"); /* RAID5 */
5753 MODULE_ALIAS("md-raid5");
5754 MODULE_ALIAS("md-raid4");
5755 MODULE_ALIAS("md-level-5");
5756 MODULE_ALIAS("md-level-4");
5757 MODULE_ALIAS("md-personality-8"); /* RAID6 */
5758 MODULE_ALIAS("md-raid6");
5759 MODULE_ALIAS("md-level-6");
5760
5761 /* This used to be two separate modules, they were: */
5762 MODULE_ALIAS("raid5");
5763 MODULE_ALIAS("raid6");