libata: ensure NCQ error result taskfile is fully initialized
[pandora-kernel.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->bm_write is the number of the last batch successfully written.
31  * conf->bm_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is bm_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "raid5.h"
56 #include "bitmap.h"
57
58 /*
59  * Stripe cache
60  */
61
62 #define NR_STRIPES              256
63 #define STRIPE_SIZE             PAGE_SIZE
64 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
65 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
66 #define IO_THRESHOLD            1
67 #define BYPASS_THRESHOLD        1
68 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
69 #define HASH_MASK               (NR_HASH - 1)
70
71 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
72
73 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
74  * order without overlap.  There may be several bio's per stripe+device, and
75  * a bio could span several devices.
76  * When walking this list for a particular stripe+device, we must never proceed
77  * beyond a bio that extends past this device, as the next bio might no longer
78  * be valid.
79  * This macro is used to determine the 'next' bio in the list, given the sector
80  * of the current stripe+device
81  */
82 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
83 /*
84  * The following can be used to debug the driver
85  */
86 #define RAID5_PARANOIA  1
87 #if RAID5_PARANOIA && defined(CONFIG_SMP)
88 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
89 #else
90 # define CHECK_DEVLOCK()
91 #endif
92
93 #ifdef DEBUG
94 #define inline
95 #define __inline__
96 #endif
97
98 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
99
100 /*
101  * We maintain a biased count of active stripes in the bottom 16 bits of
102  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
103  */
104 static inline int raid5_bi_phys_segments(struct bio *bio)
105 {
106         return bio->bi_phys_segments & 0xffff;
107 }
108
109 static inline int raid5_bi_hw_segments(struct bio *bio)
110 {
111         return (bio->bi_phys_segments >> 16) & 0xffff;
112 }
113
114 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
115 {
116         --bio->bi_phys_segments;
117         return raid5_bi_phys_segments(bio);
118 }
119
120 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
121 {
122         unsigned short val = raid5_bi_hw_segments(bio);
123
124         --val;
125         bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
126         return val;
127 }
128
129 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
130 {
131         bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
132 }
133
134 /* Find first data disk in a raid6 stripe */
135 static inline int raid6_d0(struct stripe_head *sh)
136 {
137         if (sh->ddf_layout)
138                 /* ddf always start from first device */
139                 return 0;
140         /* md starts just after Q block */
141         if (sh->qd_idx == sh->disks - 1)
142                 return 0;
143         else
144                 return sh->qd_idx + 1;
145 }
146 static inline int raid6_next_disk(int disk, int raid_disks)
147 {
148         disk++;
149         return (disk < raid_disks) ? disk : 0;
150 }
151
152 /* When walking through the disks in a raid5, starting at raid6_d0,
153  * We need to map each disk to a 'slot', where the data disks are slot
154  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
155  * is raid_disks-1.  This help does that mapping.
156  */
157 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
158                              int *count, int syndrome_disks)
159 {
160         int slot = *count;
161
162         if (sh->ddf_layout)
163                 (*count)++;
164         if (idx == sh->pd_idx)
165                 return syndrome_disks;
166         if (idx == sh->qd_idx)
167                 return syndrome_disks + 1;
168         if (!sh->ddf_layout)
169                 (*count)++;
170         return slot;
171 }
172
173 static void return_io(struct bio *return_bi)
174 {
175         struct bio *bi = return_bi;
176         while (bi) {
177
178                 return_bi = bi->bi_next;
179                 bi->bi_next = NULL;
180                 bi->bi_size = 0;
181                 bio_endio(bi, 0);
182                 bi = return_bi;
183         }
184 }
185
186 static void print_raid5_conf (raid5_conf_t *conf);
187
188 static int stripe_operations_active(struct stripe_head *sh)
189 {
190         return sh->check_state || sh->reconstruct_state ||
191                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
192                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
193 }
194
195 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
196 {
197         if (atomic_dec_and_test(&sh->count)) {
198                 BUG_ON(!list_empty(&sh->lru));
199                 BUG_ON(atomic_read(&conf->active_stripes)==0);
200                 if (test_bit(STRIPE_HANDLE, &sh->state)) {
201                         if (test_bit(STRIPE_DELAYED, &sh->state)) {
202                                 list_add_tail(&sh->lru, &conf->delayed_list);
203                                 blk_plug_device(conf->mddev->queue);
204                         } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
205                                    sh->bm_seq - conf->seq_write > 0) {
206                                 list_add_tail(&sh->lru, &conf->bitmap_list);
207                                 blk_plug_device(conf->mddev->queue);
208                         } else {
209                                 clear_bit(STRIPE_BIT_DELAY, &sh->state);
210                                 list_add_tail(&sh->lru, &conf->handle_list);
211                         }
212                         md_wakeup_thread(conf->mddev->thread);
213                 } else {
214                         BUG_ON(stripe_operations_active(sh));
215                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
216                                 atomic_dec(&conf->preread_active_stripes);
217                                 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
218                                         md_wakeup_thread(conf->mddev->thread);
219                         }
220                         atomic_dec(&conf->active_stripes);
221                         if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
222                                 list_add_tail(&sh->lru, &conf->inactive_list);
223                                 wake_up(&conf->wait_for_stripe);
224                                 if (conf->retry_read_aligned)
225                                         md_wakeup_thread(conf->mddev->thread);
226                         }
227                 }
228         }
229 }
230
231 static void release_stripe(struct stripe_head *sh)
232 {
233         raid5_conf_t *conf = sh->raid_conf;
234         unsigned long flags;
235
236         spin_lock_irqsave(&conf->device_lock, flags);
237         __release_stripe(conf, sh);
238         spin_unlock_irqrestore(&conf->device_lock, flags);
239 }
240
241 static inline void remove_hash(struct stripe_head *sh)
242 {
243         pr_debug("remove_hash(), stripe %llu\n",
244                 (unsigned long long)sh->sector);
245
246         hlist_del_init(&sh->hash);
247 }
248
249 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
250 {
251         struct hlist_head *hp = stripe_hash(conf, sh->sector);
252
253         pr_debug("insert_hash(), stripe %llu\n",
254                 (unsigned long long)sh->sector);
255
256         CHECK_DEVLOCK();
257         hlist_add_head(&sh->hash, hp);
258 }
259
260
261 /* find an idle stripe, make sure it is unhashed, and return it. */
262 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
263 {
264         struct stripe_head *sh = NULL;
265         struct list_head *first;
266
267         CHECK_DEVLOCK();
268         if (list_empty(&conf->inactive_list))
269                 goto out;
270         first = conf->inactive_list.next;
271         sh = list_entry(first, struct stripe_head, lru);
272         list_del_init(first);
273         remove_hash(sh);
274         atomic_inc(&conf->active_stripes);
275 out:
276         return sh;
277 }
278
279 static void shrink_buffers(struct stripe_head *sh, int num)
280 {
281         struct page *p;
282         int i;
283
284         for (i=0; i<num ; i++) {
285                 p = sh->dev[i].page;
286                 if (!p)
287                         continue;
288                 sh->dev[i].page = NULL;
289                 put_page(p);
290         }
291 }
292
293 static int grow_buffers(struct stripe_head *sh, int num)
294 {
295         int i;
296
297         for (i=0; i<num; i++) {
298                 struct page *page;
299
300                 if (!(page = alloc_page(GFP_KERNEL))) {
301                         return 1;
302                 }
303                 sh->dev[i].page = page;
304         }
305         return 0;
306 }
307
308 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
309 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
310                             struct stripe_head *sh);
311
312 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
313 {
314         raid5_conf_t *conf = sh->raid_conf;
315         int i;
316
317         BUG_ON(atomic_read(&sh->count) != 0);
318         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
319         BUG_ON(stripe_operations_active(sh));
320
321         CHECK_DEVLOCK();
322         pr_debug("init_stripe called, stripe %llu\n",
323                 (unsigned long long)sh->sector);
324
325         remove_hash(sh);
326
327         sh->generation = conf->generation - previous;
328         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
329         sh->sector = sector;
330         stripe_set_idx(sector, conf, previous, sh);
331         sh->state = 0;
332
333
334         for (i = sh->disks; i--; ) {
335                 struct r5dev *dev = &sh->dev[i];
336
337                 if (dev->toread || dev->read || dev->towrite || dev->written ||
338                     test_bit(R5_LOCKED, &dev->flags)) {
339                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
340                                (unsigned long long)sh->sector, i, dev->toread,
341                                dev->read, dev->towrite, dev->written,
342                                test_bit(R5_LOCKED, &dev->flags));
343                         BUG();
344                 }
345                 dev->flags = 0;
346                 raid5_build_block(sh, i, previous);
347         }
348         insert_hash(conf, sh);
349 }
350
351 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
352                                          short generation)
353 {
354         struct stripe_head *sh;
355         struct hlist_node *hn;
356
357         CHECK_DEVLOCK();
358         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
359         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
360                 if (sh->sector == sector && sh->generation == generation)
361                         return sh;
362         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
363         return NULL;
364 }
365
366 static void unplug_slaves(mddev_t *mddev);
367 static void raid5_unplug_device(struct request_queue *q);
368
369 static struct stripe_head *
370 get_active_stripe(raid5_conf_t *conf, sector_t sector,
371                   int previous, int noblock, int noquiesce)
372 {
373         struct stripe_head *sh;
374
375         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
376
377         spin_lock_irq(&conf->device_lock);
378
379         do {
380                 wait_event_lock_irq(conf->wait_for_stripe,
381                                     conf->quiesce == 0 || noquiesce,
382                                     conf->device_lock, /* nothing */);
383                 sh = __find_stripe(conf, sector, conf->generation - previous);
384                 if (!sh) {
385                         if (!conf->inactive_blocked)
386                                 sh = get_free_stripe(conf);
387                         if (noblock && sh == NULL)
388                                 break;
389                         if (!sh) {
390                                 conf->inactive_blocked = 1;
391                                 wait_event_lock_irq(conf->wait_for_stripe,
392                                                     !list_empty(&conf->inactive_list) &&
393                                                     (atomic_read(&conf->active_stripes)
394                                                      < (conf->max_nr_stripes *3/4)
395                                                      || !conf->inactive_blocked),
396                                                     conf->device_lock,
397                                                     raid5_unplug_device(conf->mddev->queue)
398                                         );
399                                 conf->inactive_blocked = 0;
400                         } else
401                                 init_stripe(sh, sector, previous);
402                 } else {
403                         if (atomic_read(&sh->count)) {
404                                 BUG_ON(!list_empty(&sh->lru)
405                                     && !test_bit(STRIPE_EXPANDING, &sh->state));
406                         } else {
407                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
408                                         atomic_inc(&conf->active_stripes);
409                                 if (list_empty(&sh->lru) &&
410                                     !test_bit(STRIPE_EXPANDING, &sh->state))
411                                         BUG();
412                                 list_del_init(&sh->lru);
413                         }
414                 }
415         } while (sh == NULL);
416
417         if (sh)
418                 atomic_inc(&sh->count);
419
420         spin_unlock_irq(&conf->device_lock);
421         return sh;
422 }
423
424 static void
425 raid5_end_read_request(struct bio *bi, int error);
426 static void
427 raid5_end_write_request(struct bio *bi, int error);
428
429 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
430 {
431         raid5_conf_t *conf = sh->raid_conf;
432         int i, disks = sh->disks;
433
434         might_sleep();
435
436         for (i = disks; i--; ) {
437                 int rw;
438                 struct bio *bi;
439                 mdk_rdev_t *rdev;
440                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
441                         rw = WRITE;
442                 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
443                         rw = READ;
444                 else
445                         continue;
446
447                 bi = &sh->dev[i].req;
448
449                 bi->bi_rw = rw;
450                 if (rw == WRITE)
451                         bi->bi_end_io = raid5_end_write_request;
452                 else
453                         bi->bi_end_io = raid5_end_read_request;
454
455                 rcu_read_lock();
456                 rdev = rcu_dereference(conf->disks[i].rdev);
457                 if (rdev && test_bit(Faulty, &rdev->flags))
458                         rdev = NULL;
459                 if (rdev)
460                         atomic_inc(&rdev->nr_pending);
461                 rcu_read_unlock();
462
463                 if (rdev) {
464                         if (s->syncing || s->expanding || s->expanded)
465                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
466
467                         set_bit(STRIPE_IO_STARTED, &sh->state);
468
469                         bi->bi_bdev = rdev->bdev;
470                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
471                                 __func__, (unsigned long long)sh->sector,
472                                 bi->bi_rw, i);
473                         atomic_inc(&sh->count);
474                         bi->bi_sector = sh->sector + rdev->data_offset;
475                         bi->bi_flags = 1 << BIO_UPTODATE;
476                         bi->bi_vcnt = 1;
477                         bi->bi_max_vecs = 1;
478                         bi->bi_idx = 0;
479                         bi->bi_io_vec = &sh->dev[i].vec;
480                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
481                         bi->bi_io_vec[0].bv_offset = 0;
482                         bi->bi_size = STRIPE_SIZE;
483                         bi->bi_next = NULL;
484                         if (rw == WRITE &&
485                             test_bit(R5_ReWrite, &sh->dev[i].flags))
486                                 atomic_add(STRIPE_SECTORS,
487                                         &rdev->corrected_errors);
488                         generic_make_request(bi);
489                 } else {
490                         if (rw == WRITE)
491                                 set_bit(STRIPE_DEGRADED, &sh->state);
492                         pr_debug("skip op %ld on disc %d for sector %llu\n",
493                                 bi->bi_rw, i, (unsigned long long)sh->sector);
494                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
495                         set_bit(STRIPE_HANDLE, &sh->state);
496                 }
497         }
498 }
499
500 static struct dma_async_tx_descriptor *
501 async_copy_data(int frombio, struct bio *bio, struct page *page,
502         sector_t sector, struct dma_async_tx_descriptor *tx)
503 {
504         struct bio_vec *bvl;
505         struct page *bio_page;
506         int i;
507         int page_offset;
508         struct async_submit_ctl submit;
509         enum async_tx_flags flags = 0;
510
511         if (bio->bi_sector >= sector)
512                 page_offset = (signed)(bio->bi_sector - sector) * 512;
513         else
514                 page_offset = (signed)(sector - bio->bi_sector) * -512;
515
516         if (frombio)
517                 flags |= ASYNC_TX_FENCE;
518         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
519
520         bio_for_each_segment(bvl, bio, i) {
521                 int len = bio_iovec_idx(bio, i)->bv_len;
522                 int clen;
523                 int b_offset = 0;
524
525                 if (page_offset < 0) {
526                         b_offset = -page_offset;
527                         page_offset += b_offset;
528                         len -= b_offset;
529                 }
530
531                 if (len > 0 && page_offset + len > STRIPE_SIZE)
532                         clen = STRIPE_SIZE - page_offset;
533                 else
534                         clen = len;
535
536                 if (clen > 0) {
537                         b_offset += bio_iovec_idx(bio, i)->bv_offset;
538                         bio_page = bio_iovec_idx(bio, i)->bv_page;
539                         if (frombio)
540                                 tx = async_memcpy(page, bio_page, page_offset,
541                                                   b_offset, clen, &submit);
542                         else
543                                 tx = async_memcpy(bio_page, page, b_offset,
544                                                   page_offset, clen, &submit);
545                 }
546                 /* chain the operations */
547                 submit.depend_tx = tx;
548
549                 if (clen < len) /* hit end of page */
550                         break;
551                 page_offset +=  len;
552         }
553
554         return tx;
555 }
556
557 static void ops_complete_biofill(void *stripe_head_ref)
558 {
559         struct stripe_head *sh = stripe_head_ref;
560         struct bio *return_bi = NULL;
561         raid5_conf_t *conf = sh->raid_conf;
562         int i;
563
564         pr_debug("%s: stripe %llu\n", __func__,
565                 (unsigned long long)sh->sector);
566
567         /* clear completed biofills */
568         spin_lock_irq(&conf->device_lock);
569         for (i = sh->disks; i--; ) {
570                 struct r5dev *dev = &sh->dev[i];
571
572                 /* acknowledge completion of a biofill operation */
573                 /* and check if we need to reply to a read request,
574                  * new R5_Wantfill requests are held off until
575                  * !STRIPE_BIOFILL_RUN
576                  */
577                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
578                         struct bio *rbi, *rbi2;
579
580                         BUG_ON(!dev->read);
581                         rbi = dev->read;
582                         dev->read = NULL;
583                         while (rbi && rbi->bi_sector <
584                                 dev->sector + STRIPE_SECTORS) {
585                                 rbi2 = r5_next_bio(rbi, dev->sector);
586                                 if (!raid5_dec_bi_phys_segments(rbi)) {
587                                         rbi->bi_next = return_bi;
588                                         return_bi = rbi;
589                                 }
590                                 rbi = rbi2;
591                         }
592                 }
593         }
594         spin_unlock_irq(&conf->device_lock);
595         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
596
597         return_io(return_bi);
598
599         set_bit(STRIPE_HANDLE, &sh->state);
600         release_stripe(sh);
601 }
602
603 static void ops_run_biofill(struct stripe_head *sh)
604 {
605         struct dma_async_tx_descriptor *tx = NULL;
606         raid5_conf_t *conf = sh->raid_conf;
607         struct async_submit_ctl submit;
608         int i;
609
610         pr_debug("%s: stripe %llu\n", __func__,
611                 (unsigned long long)sh->sector);
612
613         for (i = sh->disks; i--; ) {
614                 struct r5dev *dev = &sh->dev[i];
615                 if (test_bit(R5_Wantfill, &dev->flags)) {
616                         struct bio *rbi;
617                         spin_lock_irq(&conf->device_lock);
618                         dev->read = rbi = dev->toread;
619                         dev->toread = NULL;
620                         spin_unlock_irq(&conf->device_lock);
621                         while (rbi && rbi->bi_sector <
622                                 dev->sector + STRIPE_SECTORS) {
623                                 tx = async_copy_data(0, rbi, dev->page,
624                                         dev->sector, tx);
625                                 rbi = r5_next_bio(rbi, dev->sector);
626                         }
627                 }
628         }
629
630         atomic_inc(&sh->count);
631         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
632         async_trigger_callback(&submit);
633 }
634
635 static void mark_target_uptodate(struct stripe_head *sh, int target)
636 {
637         struct r5dev *tgt;
638
639         if (target < 0)
640                 return;
641
642         tgt = &sh->dev[target];
643         set_bit(R5_UPTODATE, &tgt->flags);
644         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
645         clear_bit(R5_Wantcompute, &tgt->flags);
646 }
647
648 static void ops_complete_compute(void *stripe_head_ref)
649 {
650         struct stripe_head *sh = stripe_head_ref;
651
652         pr_debug("%s: stripe %llu\n", __func__,
653                 (unsigned long long)sh->sector);
654
655         /* mark the computed target(s) as uptodate */
656         mark_target_uptodate(sh, sh->ops.target);
657         mark_target_uptodate(sh, sh->ops.target2);
658
659         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
660         if (sh->check_state == check_state_compute_run)
661                 sh->check_state = check_state_compute_result;
662         set_bit(STRIPE_HANDLE, &sh->state);
663         release_stripe(sh);
664 }
665
666 /* return a pointer to the address conversion region of the scribble buffer */
667 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
668                                  struct raid5_percpu *percpu)
669 {
670         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
671 }
672
673 static struct dma_async_tx_descriptor *
674 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
675 {
676         int disks = sh->disks;
677         struct page **xor_srcs = percpu->scribble;
678         int target = sh->ops.target;
679         struct r5dev *tgt = &sh->dev[target];
680         struct page *xor_dest = tgt->page;
681         int count = 0;
682         struct dma_async_tx_descriptor *tx;
683         struct async_submit_ctl submit;
684         int i;
685
686         pr_debug("%s: stripe %llu block: %d\n",
687                 __func__, (unsigned long long)sh->sector, target);
688         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
689
690         for (i = disks; i--; )
691                 if (i != target)
692                         xor_srcs[count++] = sh->dev[i].page;
693
694         atomic_inc(&sh->count);
695
696         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
697                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
698         if (unlikely(count == 1))
699                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
700         else
701                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
702
703         return tx;
704 }
705
706 /* set_syndrome_sources - populate source buffers for gen_syndrome
707  * @srcs - (struct page *) array of size sh->disks
708  * @sh - stripe_head to parse
709  *
710  * Populates srcs in proper layout order for the stripe and returns the
711  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
712  * destination buffer is recorded in srcs[count] and the Q destination
713  * is recorded in srcs[count+1]].
714  */
715 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
716 {
717         int disks = sh->disks;
718         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
719         int d0_idx = raid6_d0(sh);
720         int count;
721         int i;
722
723         for (i = 0; i < disks; i++)
724                 srcs[i] = NULL;
725
726         count = 0;
727         i = d0_idx;
728         do {
729                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
730
731                 srcs[slot] = sh->dev[i].page;
732                 i = raid6_next_disk(i, disks);
733         } while (i != d0_idx);
734
735         return syndrome_disks;
736 }
737
738 static struct dma_async_tx_descriptor *
739 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
740 {
741         int disks = sh->disks;
742         struct page **blocks = percpu->scribble;
743         int target;
744         int qd_idx = sh->qd_idx;
745         struct dma_async_tx_descriptor *tx;
746         struct async_submit_ctl submit;
747         struct r5dev *tgt;
748         struct page *dest;
749         int i;
750         int count;
751
752         if (sh->ops.target < 0)
753                 target = sh->ops.target2;
754         else if (sh->ops.target2 < 0)
755                 target = sh->ops.target;
756         else
757                 /* we should only have one valid target */
758                 BUG();
759         BUG_ON(target < 0);
760         pr_debug("%s: stripe %llu block: %d\n",
761                 __func__, (unsigned long long)sh->sector, target);
762
763         tgt = &sh->dev[target];
764         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
765         dest = tgt->page;
766
767         atomic_inc(&sh->count);
768
769         if (target == qd_idx) {
770                 count = set_syndrome_sources(blocks, sh);
771                 blocks[count] = NULL; /* regenerating p is not necessary */
772                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
773                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
774                                   ops_complete_compute, sh,
775                                   to_addr_conv(sh, percpu));
776                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
777         } else {
778                 /* Compute any data- or p-drive using XOR */
779                 count = 0;
780                 for (i = disks; i-- ; ) {
781                         if (i == target || i == qd_idx)
782                                 continue;
783                         blocks[count++] = sh->dev[i].page;
784                 }
785
786                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
787                                   NULL, ops_complete_compute, sh,
788                                   to_addr_conv(sh, percpu));
789                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
790         }
791
792         return tx;
793 }
794
795 static struct dma_async_tx_descriptor *
796 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
797 {
798         int i, count, disks = sh->disks;
799         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
800         int d0_idx = raid6_d0(sh);
801         int faila = -1, failb = -1;
802         int target = sh->ops.target;
803         int target2 = sh->ops.target2;
804         struct r5dev *tgt = &sh->dev[target];
805         struct r5dev *tgt2 = &sh->dev[target2];
806         struct dma_async_tx_descriptor *tx;
807         struct page **blocks = percpu->scribble;
808         struct async_submit_ctl submit;
809
810         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
811                  __func__, (unsigned long long)sh->sector, target, target2);
812         BUG_ON(target < 0 || target2 < 0);
813         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
814         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
815
816         /* we need to open-code set_syndrome_sources to handle the
817          * slot number conversion for 'faila' and 'failb'
818          */
819         for (i = 0; i < disks ; i++)
820                 blocks[i] = NULL;
821         count = 0;
822         i = d0_idx;
823         do {
824                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
825
826                 blocks[slot] = sh->dev[i].page;
827
828                 if (i == target)
829                         faila = slot;
830                 if (i == target2)
831                         failb = slot;
832                 i = raid6_next_disk(i, disks);
833         } while (i != d0_idx);
834
835         BUG_ON(faila == failb);
836         if (failb < faila)
837                 swap(faila, failb);
838         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
839                  __func__, (unsigned long long)sh->sector, faila, failb);
840
841         atomic_inc(&sh->count);
842
843         if (failb == syndrome_disks+1) {
844                 /* Q disk is one of the missing disks */
845                 if (faila == syndrome_disks) {
846                         /* Missing P+Q, just recompute */
847                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
848                                           ops_complete_compute, sh,
849                                           to_addr_conv(sh, percpu));
850                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
851                                                   STRIPE_SIZE, &submit);
852                 } else {
853                         struct page *dest;
854                         int data_target;
855                         int qd_idx = sh->qd_idx;
856
857                         /* Missing D+Q: recompute D from P, then recompute Q */
858                         if (target == qd_idx)
859                                 data_target = target2;
860                         else
861                                 data_target = target;
862
863                         count = 0;
864                         for (i = disks; i-- ; ) {
865                                 if (i == data_target || i == qd_idx)
866                                         continue;
867                                 blocks[count++] = sh->dev[i].page;
868                         }
869                         dest = sh->dev[data_target].page;
870                         init_async_submit(&submit,
871                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
872                                           NULL, NULL, NULL,
873                                           to_addr_conv(sh, percpu));
874                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
875                                        &submit);
876
877                         count = set_syndrome_sources(blocks, sh);
878                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
879                                           ops_complete_compute, sh,
880                                           to_addr_conv(sh, percpu));
881                         return async_gen_syndrome(blocks, 0, count+2,
882                                                   STRIPE_SIZE, &submit);
883                 }
884         } else {
885                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
886                                   ops_complete_compute, sh,
887                                   to_addr_conv(sh, percpu));
888                 if (failb == syndrome_disks) {
889                         /* We're missing D+P. */
890                         return async_raid6_datap_recov(syndrome_disks+2,
891                                                        STRIPE_SIZE, faila,
892                                                        blocks, &submit);
893                 } else {
894                         /* We're missing D+D. */
895                         return async_raid6_2data_recov(syndrome_disks+2,
896                                                        STRIPE_SIZE, faila, failb,
897                                                        blocks, &submit);
898                 }
899         }
900 }
901
902
903 static void ops_complete_prexor(void *stripe_head_ref)
904 {
905         struct stripe_head *sh = stripe_head_ref;
906
907         pr_debug("%s: stripe %llu\n", __func__,
908                 (unsigned long long)sh->sector);
909 }
910
911 static struct dma_async_tx_descriptor *
912 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
913                struct dma_async_tx_descriptor *tx)
914 {
915         int disks = sh->disks;
916         struct page **xor_srcs = percpu->scribble;
917         int count = 0, pd_idx = sh->pd_idx, i;
918         struct async_submit_ctl submit;
919
920         /* existing parity data subtracted */
921         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
922
923         pr_debug("%s: stripe %llu\n", __func__,
924                 (unsigned long long)sh->sector);
925
926         for (i = disks; i--; ) {
927                 struct r5dev *dev = &sh->dev[i];
928                 /* Only process blocks that are known to be uptodate */
929                 if (test_bit(R5_Wantdrain, &dev->flags))
930                         xor_srcs[count++] = dev->page;
931         }
932
933         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
934                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
935         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
936
937         return tx;
938 }
939
940 static struct dma_async_tx_descriptor *
941 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
942 {
943         int disks = sh->disks;
944         int i;
945
946         pr_debug("%s: stripe %llu\n", __func__,
947                 (unsigned long long)sh->sector);
948
949         for (i = disks; i--; ) {
950                 struct r5dev *dev = &sh->dev[i];
951                 struct bio *chosen;
952
953                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
954                         struct bio *wbi;
955
956                         spin_lock(&sh->lock);
957                         chosen = dev->towrite;
958                         dev->towrite = NULL;
959                         BUG_ON(dev->written);
960                         wbi = dev->written = chosen;
961                         spin_unlock(&sh->lock);
962
963                         while (wbi && wbi->bi_sector <
964                                 dev->sector + STRIPE_SECTORS) {
965                                 tx = async_copy_data(1, wbi, dev->page,
966                                         dev->sector, tx);
967                                 wbi = r5_next_bio(wbi, dev->sector);
968                         }
969                 }
970         }
971
972         return tx;
973 }
974
975 static void ops_complete_reconstruct(void *stripe_head_ref)
976 {
977         struct stripe_head *sh = stripe_head_ref;
978         int disks = sh->disks;
979         int pd_idx = sh->pd_idx;
980         int qd_idx = sh->qd_idx;
981         int i;
982
983         pr_debug("%s: stripe %llu\n", __func__,
984                 (unsigned long long)sh->sector);
985
986         for (i = disks; i--; ) {
987                 struct r5dev *dev = &sh->dev[i];
988
989                 if (dev->written || i == pd_idx || i == qd_idx)
990                         set_bit(R5_UPTODATE, &dev->flags);
991         }
992
993         if (sh->reconstruct_state == reconstruct_state_drain_run)
994                 sh->reconstruct_state = reconstruct_state_drain_result;
995         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
996                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
997         else {
998                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
999                 sh->reconstruct_state = reconstruct_state_result;
1000         }
1001
1002         set_bit(STRIPE_HANDLE, &sh->state);
1003         release_stripe(sh);
1004 }
1005
1006 static void
1007 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1008                      struct dma_async_tx_descriptor *tx)
1009 {
1010         int disks = sh->disks;
1011         struct page **xor_srcs = percpu->scribble;
1012         struct async_submit_ctl submit;
1013         int count = 0, pd_idx = sh->pd_idx, i;
1014         struct page *xor_dest;
1015         int prexor = 0;
1016         unsigned long flags;
1017
1018         pr_debug("%s: stripe %llu\n", __func__,
1019                 (unsigned long long)sh->sector);
1020
1021         /* check if prexor is active which means only process blocks
1022          * that are part of a read-modify-write (written)
1023          */
1024         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1025                 prexor = 1;
1026                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1027                 for (i = disks; i--; ) {
1028                         struct r5dev *dev = &sh->dev[i];
1029                         if (dev->written)
1030                                 xor_srcs[count++] = dev->page;
1031                 }
1032         } else {
1033                 xor_dest = sh->dev[pd_idx].page;
1034                 for (i = disks; i--; ) {
1035                         struct r5dev *dev = &sh->dev[i];
1036                         if (i != pd_idx)
1037                                 xor_srcs[count++] = dev->page;
1038                 }
1039         }
1040
1041         /* 1/ if we prexor'd then the dest is reused as a source
1042          * 2/ if we did not prexor then we are redoing the parity
1043          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1044          * for the synchronous xor case
1045          */
1046         flags = ASYNC_TX_ACK |
1047                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1048
1049         atomic_inc(&sh->count);
1050
1051         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1052                           to_addr_conv(sh, percpu));
1053         if (unlikely(count == 1))
1054                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1055         else
1056                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1057 }
1058
1059 static void
1060 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1061                      struct dma_async_tx_descriptor *tx)
1062 {
1063         struct async_submit_ctl submit;
1064         struct page **blocks = percpu->scribble;
1065         int count;
1066
1067         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1068
1069         count = set_syndrome_sources(blocks, sh);
1070
1071         atomic_inc(&sh->count);
1072
1073         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1074                           sh, to_addr_conv(sh, percpu));
1075         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1076 }
1077
1078 static void ops_complete_check(void *stripe_head_ref)
1079 {
1080         struct stripe_head *sh = stripe_head_ref;
1081
1082         pr_debug("%s: stripe %llu\n", __func__,
1083                 (unsigned long long)sh->sector);
1084
1085         sh->check_state = check_state_check_result;
1086         set_bit(STRIPE_HANDLE, &sh->state);
1087         release_stripe(sh);
1088 }
1089
1090 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1091 {
1092         int disks = sh->disks;
1093         int pd_idx = sh->pd_idx;
1094         int qd_idx = sh->qd_idx;
1095         struct page *xor_dest;
1096         struct page **xor_srcs = percpu->scribble;
1097         struct dma_async_tx_descriptor *tx;
1098         struct async_submit_ctl submit;
1099         int count;
1100         int i;
1101
1102         pr_debug("%s: stripe %llu\n", __func__,
1103                 (unsigned long long)sh->sector);
1104
1105         count = 0;
1106         xor_dest = sh->dev[pd_idx].page;
1107         xor_srcs[count++] = xor_dest;
1108         for (i = disks; i--; ) {
1109                 if (i == pd_idx || i == qd_idx)
1110                         continue;
1111                 xor_srcs[count++] = sh->dev[i].page;
1112         }
1113
1114         init_async_submit(&submit, 0, NULL, NULL, NULL,
1115                           to_addr_conv(sh, percpu));
1116         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1117                            &sh->ops.zero_sum_result, &submit);
1118
1119         atomic_inc(&sh->count);
1120         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1121         tx = async_trigger_callback(&submit);
1122 }
1123
1124 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1125 {
1126         struct page **srcs = percpu->scribble;
1127         struct async_submit_ctl submit;
1128         int count;
1129
1130         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1131                 (unsigned long long)sh->sector, checkp);
1132
1133         count = set_syndrome_sources(srcs, sh);
1134         if (!checkp)
1135                 srcs[count] = NULL;
1136
1137         atomic_inc(&sh->count);
1138         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1139                           sh, to_addr_conv(sh, percpu));
1140         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1141                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1142 }
1143
1144 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1145 {
1146         int overlap_clear = 0, i, disks = sh->disks;
1147         struct dma_async_tx_descriptor *tx = NULL;
1148         raid5_conf_t *conf = sh->raid_conf;
1149         int level = conf->level;
1150         struct raid5_percpu *percpu;
1151         unsigned long cpu;
1152
1153         cpu = get_cpu();
1154         percpu = per_cpu_ptr(conf->percpu, cpu);
1155         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1156                 ops_run_biofill(sh);
1157                 overlap_clear++;
1158         }
1159
1160         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1161                 if (level < 6)
1162                         tx = ops_run_compute5(sh, percpu);
1163                 else {
1164                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1165                                 tx = ops_run_compute6_1(sh, percpu);
1166                         else
1167                                 tx = ops_run_compute6_2(sh, percpu);
1168                 }
1169                 /* terminate the chain if reconstruct is not set to be run */
1170                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1171                         async_tx_ack(tx);
1172         }
1173
1174         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1175                 tx = ops_run_prexor(sh, percpu, tx);
1176
1177         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1178                 tx = ops_run_biodrain(sh, tx);
1179                 overlap_clear++;
1180         }
1181
1182         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1183                 if (level < 6)
1184                         ops_run_reconstruct5(sh, percpu, tx);
1185                 else
1186                         ops_run_reconstruct6(sh, percpu, tx);
1187         }
1188
1189         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1190                 if (sh->check_state == check_state_run)
1191                         ops_run_check_p(sh, percpu);
1192                 else if (sh->check_state == check_state_run_q)
1193                         ops_run_check_pq(sh, percpu, 0);
1194                 else if (sh->check_state == check_state_run_pq)
1195                         ops_run_check_pq(sh, percpu, 1);
1196                 else
1197                         BUG();
1198         }
1199
1200         if (overlap_clear)
1201                 for (i = disks; i--; ) {
1202                         struct r5dev *dev = &sh->dev[i];
1203                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1204                                 wake_up(&sh->raid_conf->wait_for_overlap);
1205                 }
1206         put_cpu();
1207 }
1208
1209 #ifdef CONFIG_MULTICORE_RAID456
1210 static void async_run_ops(void *param, async_cookie_t cookie)
1211 {
1212         struct stripe_head *sh = param;
1213         unsigned long ops_request = sh->ops.request;
1214
1215         clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1216         wake_up(&sh->ops.wait_for_ops);
1217
1218         __raid_run_ops(sh, ops_request);
1219         release_stripe(sh);
1220 }
1221
1222 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1223 {
1224         /* since handle_stripe can be called outside of raid5d context
1225          * we need to ensure sh->ops.request is de-staged before another
1226          * request arrives
1227          */
1228         wait_event(sh->ops.wait_for_ops,
1229                    !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1230         sh->ops.request = ops_request;
1231
1232         atomic_inc(&sh->count);
1233         async_schedule(async_run_ops, sh);
1234 }
1235 #else
1236 #define raid_run_ops __raid_run_ops
1237 #endif
1238
1239 static int grow_one_stripe(raid5_conf_t *conf)
1240 {
1241         struct stripe_head *sh;
1242         int disks = max(conf->raid_disks, conf->previous_raid_disks);
1243         sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
1244         if (!sh)
1245                 return 0;
1246         memset(sh, 0, sizeof(*sh) + (disks-1)*sizeof(struct r5dev));
1247         sh->raid_conf = conf;
1248         spin_lock_init(&sh->lock);
1249         #ifdef CONFIG_MULTICORE_RAID456
1250         init_waitqueue_head(&sh->ops.wait_for_ops);
1251         #endif
1252
1253         if (grow_buffers(sh, disks)) {
1254                 shrink_buffers(sh, disks);
1255                 kmem_cache_free(conf->slab_cache, sh);
1256                 return 0;
1257         }
1258         /* we just created an active stripe so... */
1259         atomic_set(&sh->count, 1);
1260         atomic_inc(&conf->active_stripes);
1261         INIT_LIST_HEAD(&sh->lru);
1262         release_stripe(sh);
1263         return 1;
1264 }
1265
1266 static int grow_stripes(raid5_conf_t *conf, int num)
1267 {
1268         struct kmem_cache *sc;
1269         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1270
1271         sprintf(conf->cache_name[0],
1272                 "raid%d-%s", conf->level, mdname(conf->mddev));
1273         sprintf(conf->cache_name[1],
1274                 "raid%d-%s-alt", conf->level, mdname(conf->mddev));
1275         conf->active_name = 0;
1276         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1277                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1278                                0, 0, NULL);
1279         if (!sc)
1280                 return 1;
1281         conf->slab_cache = sc;
1282         conf->pool_size = devs;
1283         while (num--)
1284                 if (!grow_one_stripe(conf))
1285                         return 1;
1286         return 0;
1287 }
1288
1289 /**
1290  * scribble_len - return the required size of the scribble region
1291  * @num - total number of disks in the array
1292  *
1293  * The size must be enough to contain:
1294  * 1/ a struct page pointer for each device in the array +2
1295  * 2/ room to convert each entry in (1) to its corresponding dma
1296  *    (dma_map_page()) or page (page_address()) address.
1297  *
1298  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1299  * calculate over all devices (not just the data blocks), using zeros in place
1300  * of the P and Q blocks.
1301  */
1302 static size_t scribble_len(int num)
1303 {
1304         size_t len;
1305
1306         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1307
1308         return len;
1309 }
1310
1311 static int resize_stripes(raid5_conf_t *conf, int newsize)
1312 {
1313         /* Make all the stripes able to hold 'newsize' devices.
1314          * New slots in each stripe get 'page' set to a new page.
1315          *
1316          * This happens in stages:
1317          * 1/ create a new kmem_cache and allocate the required number of
1318          *    stripe_heads.
1319          * 2/ gather all the old stripe_heads and tranfer the pages across
1320          *    to the new stripe_heads.  This will have the side effect of
1321          *    freezing the array as once all stripe_heads have been collected,
1322          *    no IO will be possible.  Old stripe heads are freed once their
1323          *    pages have been transferred over, and the old kmem_cache is
1324          *    freed when all stripes are done.
1325          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1326          *    we simple return a failre status - no need to clean anything up.
1327          * 4/ allocate new pages for the new slots in the new stripe_heads.
1328          *    If this fails, we don't bother trying the shrink the
1329          *    stripe_heads down again, we just leave them as they are.
1330          *    As each stripe_head is processed the new one is released into
1331          *    active service.
1332          *
1333          * Once step2 is started, we cannot afford to wait for a write,
1334          * so we use GFP_NOIO allocations.
1335          */
1336         struct stripe_head *osh, *nsh;
1337         LIST_HEAD(newstripes);
1338         struct disk_info *ndisks;
1339         unsigned long cpu;
1340         int err;
1341         struct kmem_cache *sc;
1342         int i;
1343
1344         if (newsize <= conf->pool_size)
1345                 return 0; /* never bother to shrink */
1346
1347         err = md_allow_write(conf->mddev);
1348         if (err)
1349                 return err;
1350
1351         /* Step 1 */
1352         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1353                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1354                                0, 0, NULL);
1355         if (!sc)
1356                 return -ENOMEM;
1357
1358         for (i = conf->max_nr_stripes; i; i--) {
1359                 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1360                 if (!nsh)
1361                         break;
1362
1363                 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1364
1365                 nsh->raid_conf = conf;
1366                 spin_lock_init(&nsh->lock);
1367                 #ifdef CONFIG_MULTICORE_RAID456
1368                 init_waitqueue_head(&nsh->ops.wait_for_ops);
1369                 #endif
1370
1371                 list_add(&nsh->lru, &newstripes);
1372         }
1373         if (i) {
1374                 /* didn't get enough, give up */
1375                 while (!list_empty(&newstripes)) {
1376                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1377                         list_del(&nsh->lru);
1378                         kmem_cache_free(sc, nsh);
1379                 }
1380                 kmem_cache_destroy(sc);
1381                 return -ENOMEM;
1382         }
1383         /* Step 2 - Must use GFP_NOIO now.
1384          * OK, we have enough stripes, start collecting inactive
1385          * stripes and copying them over
1386          */
1387         list_for_each_entry(nsh, &newstripes, lru) {
1388                 spin_lock_irq(&conf->device_lock);
1389                 wait_event_lock_irq(conf->wait_for_stripe,
1390                                     !list_empty(&conf->inactive_list),
1391                                     conf->device_lock,
1392                                     unplug_slaves(conf->mddev)
1393                         );
1394                 osh = get_free_stripe(conf);
1395                 spin_unlock_irq(&conf->device_lock);
1396                 atomic_set(&nsh->count, 1);
1397                 for(i=0; i<conf->pool_size; i++)
1398                         nsh->dev[i].page = osh->dev[i].page;
1399                 for( ; i<newsize; i++)
1400                         nsh->dev[i].page = NULL;
1401                 kmem_cache_free(conf->slab_cache, osh);
1402         }
1403         kmem_cache_destroy(conf->slab_cache);
1404
1405         /* Step 3.
1406          * At this point, we are holding all the stripes so the array
1407          * is completely stalled, so now is a good time to resize
1408          * conf->disks and the scribble region
1409          */
1410         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1411         if (ndisks) {
1412                 for (i=0; i<conf->raid_disks; i++)
1413                         ndisks[i] = conf->disks[i];
1414                 kfree(conf->disks);
1415                 conf->disks = ndisks;
1416         } else
1417                 err = -ENOMEM;
1418
1419         get_online_cpus();
1420         conf->scribble_len = scribble_len(newsize);
1421         for_each_present_cpu(cpu) {
1422                 struct raid5_percpu *percpu;
1423                 void *scribble;
1424
1425                 percpu = per_cpu_ptr(conf->percpu, cpu);
1426                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1427
1428                 if (scribble) {
1429                         kfree(percpu->scribble);
1430                         percpu->scribble = scribble;
1431                 } else {
1432                         err = -ENOMEM;
1433                         break;
1434                 }
1435         }
1436         put_online_cpus();
1437
1438         /* Step 4, return new stripes to service */
1439         while(!list_empty(&newstripes)) {
1440                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1441                 list_del_init(&nsh->lru);
1442
1443                 for (i=conf->raid_disks; i < newsize; i++)
1444                         if (nsh->dev[i].page == NULL) {
1445                                 struct page *p = alloc_page(GFP_NOIO);
1446                                 nsh->dev[i].page = p;
1447                                 if (!p)
1448                                         err = -ENOMEM;
1449                         }
1450                 release_stripe(nsh);
1451         }
1452         /* critical section pass, GFP_NOIO no longer needed */
1453
1454         conf->slab_cache = sc;
1455         conf->active_name = 1-conf->active_name;
1456         conf->pool_size = newsize;
1457         return err;
1458 }
1459
1460 static int drop_one_stripe(raid5_conf_t *conf)
1461 {
1462         struct stripe_head *sh;
1463
1464         spin_lock_irq(&conf->device_lock);
1465         sh = get_free_stripe(conf);
1466         spin_unlock_irq(&conf->device_lock);
1467         if (!sh)
1468                 return 0;
1469         BUG_ON(atomic_read(&sh->count));
1470         shrink_buffers(sh, conf->pool_size);
1471         kmem_cache_free(conf->slab_cache, sh);
1472         atomic_dec(&conf->active_stripes);
1473         return 1;
1474 }
1475
1476 static void shrink_stripes(raid5_conf_t *conf)
1477 {
1478         while (drop_one_stripe(conf))
1479                 ;
1480
1481         if (conf->slab_cache)
1482                 kmem_cache_destroy(conf->slab_cache);
1483         conf->slab_cache = NULL;
1484 }
1485
1486 static void raid5_end_read_request(struct bio * bi, int error)
1487 {
1488         struct stripe_head *sh = bi->bi_private;
1489         raid5_conf_t *conf = sh->raid_conf;
1490         int disks = sh->disks, i;
1491         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1492         char b[BDEVNAME_SIZE];
1493         mdk_rdev_t *rdev;
1494
1495
1496         for (i=0 ; i<disks; i++)
1497                 if (bi == &sh->dev[i].req)
1498                         break;
1499
1500         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1501                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1502                 uptodate);
1503         if (i == disks) {
1504                 BUG();
1505                 return;
1506         }
1507
1508         if (uptodate) {
1509                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1510                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1511                         rdev = conf->disks[i].rdev;
1512                         printk_rl(KERN_INFO "raid5:%s: read error corrected"
1513                                   " (%lu sectors at %llu on %s)\n",
1514                                   mdname(conf->mddev), STRIPE_SECTORS,
1515                                   (unsigned long long)(sh->sector
1516                                                        + rdev->data_offset),
1517                                   bdevname(rdev->bdev, b));
1518                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1519                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1520                 }
1521                 if (atomic_read(&conf->disks[i].rdev->read_errors))
1522                         atomic_set(&conf->disks[i].rdev->read_errors, 0);
1523         } else {
1524                 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1525                 int retry = 0;
1526                 rdev = conf->disks[i].rdev;
1527
1528                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1529                 atomic_inc(&rdev->read_errors);
1530                 if (conf->mddev->degraded)
1531                         printk_rl(KERN_WARNING
1532                                   "raid5:%s: read error not correctable "
1533                                   "(sector %llu on %s).\n",
1534                                   mdname(conf->mddev),
1535                                   (unsigned long long)(sh->sector
1536                                                        + rdev->data_offset),
1537                                   bdn);
1538                 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1539                         /* Oh, no!!! */
1540                         printk_rl(KERN_WARNING
1541                                   "raid5:%s: read error NOT corrected!! "
1542                                   "(sector %llu on %s).\n",
1543                                   mdname(conf->mddev),
1544                                   (unsigned long long)(sh->sector
1545                                                        + rdev->data_offset),
1546                                   bdn);
1547                 else if (atomic_read(&rdev->read_errors)
1548                          > conf->max_nr_stripes)
1549                         printk(KERN_WARNING
1550                                "raid5:%s: Too many read errors, failing device %s.\n",
1551                                mdname(conf->mddev), bdn);
1552                 else
1553                         retry = 1;
1554                 if (retry)
1555                         set_bit(R5_ReadError, &sh->dev[i].flags);
1556                 else {
1557                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1558                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1559                         md_error(conf->mddev, rdev);
1560                 }
1561         }
1562         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1563         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1564         set_bit(STRIPE_HANDLE, &sh->state);
1565         release_stripe(sh);
1566 }
1567
1568 static void raid5_end_write_request(struct bio *bi, int error)
1569 {
1570         struct stripe_head *sh = bi->bi_private;
1571         raid5_conf_t *conf = sh->raid_conf;
1572         int disks = sh->disks, i;
1573         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1574
1575         for (i=0 ; i<disks; i++)
1576                 if (bi == &sh->dev[i].req)
1577                         break;
1578
1579         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1580                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1581                 uptodate);
1582         if (i == disks) {
1583                 BUG();
1584                 return;
1585         }
1586
1587         if (!uptodate)
1588                 md_error(conf->mddev, conf->disks[i].rdev);
1589
1590         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1591         
1592         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1593         set_bit(STRIPE_HANDLE, &sh->state);
1594         release_stripe(sh);
1595 }
1596
1597
1598 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1599         
1600 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1601 {
1602         struct r5dev *dev = &sh->dev[i];
1603
1604         bio_init(&dev->req);
1605         dev->req.bi_io_vec = &dev->vec;
1606         dev->req.bi_vcnt++;
1607         dev->req.bi_max_vecs++;
1608         dev->vec.bv_page = dev->page;
1609         dev->vec.bv_len = STRIPE_SIZE;
1610         dev->vec.bv_offset = 0;
1611
1612         dev->req.bi_sector = sh->sector;
1613         dev->req.bi_private = sh;
1614
1615         dev->flags = 0;
1616         dev->sector = compute_blocknr(sh, i, previous);
1617 }
1618
1619 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1620 {
1621         char b[BDEVNAME_SIZE];
1622         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1623         pr_debug("raid5: error called\n");
1624
1625         if (!test_bit(Faulty, &rdev->flags)) {
1626                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1627                 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1628                         unsigned long flags;
1629                         spin_lock_irqsave(&conf->device_lock, flags);
1630                         mddev->degraded++;
1631                         spin_unlock_irqrestore(&conf->device_lock, flags);
1632                         /*
1633                          * if recovery was running, make sure it aborts.
1634                          */
1635                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1636                 }
1637                 set_bit(Faulty, &rdev->flags);
1638                 printk(KERN_ALERT
1639                        "raid5: Disk failure on %s, disabling device.\n"
1640                        "raid5: Operation continuing on %d devices.\n",
1641                        bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1642         }
1643 }
1644
1645 /*
1646  * Input: a 'big' sector number,
1647  * Output: index of the data and parity disk, and the sector # in them.
1648  */
1649 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1650                                      int previous, int *dd_idx,
1651                                      struct stripe_head *sh)
1652 {
1653         sector_t stripe;
1654         sector_t chunk_number;
1655         unsigned int chunk_offset;
1656         int pd_idx, qd_idx;
1657         int ddf_layout = 0;
1658         sector_t new_sector;
1659         int algorithm = previous ? conf->prev_algo
1660                                  : conf->algorithm;
1661         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1662                                          : conf->chunk_sectors;
1663         int raid_disks = previous ? conf->previous_raid_disks
1664                                   : conf->raid_disks;
1665         int data_disks = raid_disks - conf->max_degraded;
1666
1667         /* First compute the information on this sector */
1668
1669         /*
1670          * Compute the chunk number and the sector offset inside the chunk
1671          */
1672         chunk_offset = sector_div(r_sector, sectors_per_chunk);
1673         chunk_number = r_sector;
1674
1675         /*
1676          * Compute the stripe number
1677          */
1678         stripe = chunk_number;
1679         *dd_idx = sector_div(stripe, data_disks);
1680
1681         /*
1682          * Select the parity disk based on the user selected algorithm.
1683          */
1684         pd_idx = qd_idx = ~0;
1685         switch(conf->level) {
1686         case 4:
1687                 pd_idx = data_disks;
1688                 break;
1689         case 5:
1690                 switch (algorithm) {
1691                 case ALGORITHM_LEFT_ASYMMETRIC:
1692                         pd_idx = data_disks - stripe % raid_disks;
1693                         if (*dd_idx >= pd_idx)
1694                                 (*dd_idx)++;
1695                         break;
1696                 case ALGORITHM_RIGHT_ASYMMETRIC:
1697                         pd_idx = stripe % raid_disks;
1698                         if (*dd_idx >= pd_idx)
1699                                 (*dd_idx)++;
1700                         break;
1701                 case ALGORITHM_LEFT_SYMMETRIC:
1702                         pd_idx = data_disks - stripe % raid_disks;
1703                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1704                         break;
1705                 case ALGORITHM_RIGHT_SYMMETRIC:
1706                         pd_idx = stripe % raid_disks;
1707                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1708                         break;
1709                 case ALGORITHM_PARITY_0:
1710                         pd_idx = 0;
1711                         (*dd_idx)++;
1712                         break;
1713                 case ALGORITHM_PARITY_N:
1714                         pd_idx = data_disks;
1715                         break;
1716                 default:
1717                         printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1718                                 algorithm);
1719                         BUG();
1720                 }
1721                 break;
1722         case 6:
1723
1724                 switch (algorithm) {
1725                 case ALGORITHM_LEFT_ASYMMETRIC:
1726                         pd_idx = raid_disks - 1 - (stripe % raid_disks);
1727                         qd_idx = pd_idx + 1;
1728                         if (pd_idx == raid_disks-1) {
1729                                 (*dd_idx)++;    /* Q D D D P */
1730                                 qd_idx = 0;
1731                         } else if (*dd_idx >= pd_idx)
1732                                 (*dd_idx) += 2; /* D D P Q D */
1733                         break;
1734                 case ALGORITHM_RIGHT_ASYMMETRIC:
1735                         pd_idx = stripe % raid_disks;
1736                         qd_idx = pd_idx + 1;
1737                         if (pd_idx == raid_disks-1) {
1738                                 (*dd_idx)++;    /* Q D D D P */
1739                                 qd_idx = 0;
1740                         } else if (*dd_idx >= pd_idx)
1741                                 (*dd_idx) += 2; /* D D P Q D */
1742                         break;
1743                 case ALGORITHM_LEFT_SYMMETRIC:
1744                         pd_idx = raid_disks - 1 - (stripe % raid_disks);
1745                         qd_idx = (pd_idx + 1) % raid_disks;
1746                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1747                         break;
1748                 case ALGORITHM_RIGHT_SYMMETRIC:
1749                         pd_idx = stripe % raid_disks;
1750                         qd_idx = (pd_idx + 1) % raid_disks;
1751                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1752                         break;
1753
1754                 case ALGORITHM_PARITY_0:
1755                         pd_idx = 0;
1756                         qd_idx = 1;
1757                         (*dd_idx) += 2;
1758                         break;
1759                 case ALGORITHM_PARITY_N:
1760                         pd_idx = data_disks;
1761                         qd_idx = data_disks + 1;
1762                         break;
1763
1764                 case ALGORITHM_ROTATING_ZERO_RESTART:
1765                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
1766                          * of blocks for computing Q is different.
1767                          */
1768                         pd_idx = stripe % raid_disks;
1769                         qd_idx = pd_idx + 1;
1770                         if (pd_idx == raid_disks-1) {
1771                                 (*dd_idx)++;    /* Q D D D P */
1772                                 qd_idx = 0;
1773                         } else if (*dd_idx >= pd_idx)
1774                                 (*dd_idx) += 2; /* D D P Q D */
1775                         ddf_layout = 1;
1776                         break;
1777
1778                 case ALGORITHM_ROTATING_N_RESTART:
1779                         /* Same a left_asymmetric, by first stripe is
1780                          * D D D P Q  rather than
1781                          * Q D D D P
1782                          */
1783                         pd_idx = raid_disks - 1 - ((stripe + 1) % raid_disks);
1784                         qd_idx = pd_idx + 1;
1785                         if (pd_idx == raid_disks-1) {
1786                                 (*dd_idx)++;    /* Q D D D P */
1787                                 qd_idx = 0;
1788                         } else if (*dd_idx >= pd_idx)
1789                                 (*dd_idx) += 2; /* D D P Q D */
1790                         ddf_layout = 1;
1791                         break;
1792
1793                 case ALGORITHM_ROTATING_N_CONTINUE:
1794                         /* Same as left_symmetric but Q is before P */
1795                         pd_idx = raid_disks - 1 - (stripe % raid_disks);
1796                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1797                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1798                         ddf_layout = 1;
1799                         break;
1800
1801                 case ALGORITHM_LEFT_ASYMMETRIC_6:
1802                         /* RAID5 left_asymmetric, with Q on last device */
1803                         pd_idx = data_disks - stripe % (raid_disks-1);
1804                         if (*dd_idx >= pd_idx)
1805                                 (*dd_idx)++;
1806                         qd_idx = raid_disks - 1;
1807                         break;
1808
1809                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1810                         pd_idx = stripe % (raid_disks-1);
1811                         if (*dd_idx >= pd_idx)
1812                                 (*dd_idx)++;
1813                         qd_idx = raid_disks - 1;
1814                         break;
1815
1816                 case ALGORITHM_LEFT_SYMMETRIC_6:
1817                         pd_idx = data_disks - stripe % (raid_disks-1);
1818                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1819                         qd_idx = raid_disks - 1;
1820                         break;
1821
1822                 case ALGORITHM_RIGHT_SYMMETRIC_6:
1823                         pd_idx = stripe % (raid_disks-1);
1824                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1825                         qd_idx = raid_disks - 1;
1826                         break;
1827
1828                 case ALGORITHM_PARITY_0_6:
1829                         pd_idx = 0;
1830                         (*dd_idx)++;
1831                         qd_idx = raid_disks - 1;
1832                         break;
1833
1834
1835                 default:
1836                         printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1837                                algorithm);
1838                         BUG();
1839                 }
1840                 break;
1841         }
1842
1843         if (sh) {
1844                 sh->pd_idx = pd_idx;
1845                 sh->qd_idx = qd_idx;
1846                 sh->ddf_layout = ddf_layout;
1847         }
1848         /*
1849          * Finally, compute the new sector number
1850          */
1851         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1852         return new_sector;
1853 }
1854
1855
1856 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1857 {
1858         raid5_conf_t *conf = sh->raid_conf;
1859         int raid_disks = sh->disks;
1860         int data_disks = raid_disks - conf->max_degraded;
1861         sector_t new_sector = sh->sector, check;
1862         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1863                                          : conf->chunk_sectors;
1864         int algorithm = previous ? conf->prev_algo
1865                                  : conf->algorithm;
1866         sector_t stripe;
1867         int chunk_offset;
1868         sector_t chunk_number;
1869         int dummy1, dd_idx = i;
1870         sector_t r_sector;
1871         struct stripe_head sh2;
1872
1873
1874         chunk_offset = sector_div(new_sector, sectors_per_chunk);
1875         stripe = new_sector;
1876
1877         if (i == sh->pd_idx)
1878                 return 0;
1879         switch(conf->level) {
1880         case 4: break;
1881         case 5:
1882                 switch (algorithm) {
1883                 case ALGORITHM_LEFT_ASYMMETRIC:
1884                 case ALGORITHM_RIGHT_ASYMMETRIC:
1885                         if (i > sh->pd_idx)
1886                                 i--;
1887                         break;
1888                 case ALGORITHM_LEFT_SYMMETRIC:
1889                 case ALGORITHM_RIGHT_SYMMETRIC:
1890                         if (i < sh->pd_idx)
1891                                 i += raid_disks;
1892                         i -= (sh->pd_idx + 1);
1893                         break;
1894                 case ALGORITHM_PARITY_0:
1895                         i -= 1;
1896                         break;
1897                 case ALGORITHM_PARITY_N:
1898                         break;
1899                 default:
1900                         printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1901                                algorithm);
1902                         BUG();
1903                 }
1904                 break;
1905         case 6:
1906                 if (i == sh->qd_idx)
1907                         return 0; /* It is the Q disk */
1908                 switch (algorithm) {
1909                 case ALGORITHM_LEFT_ASYMMETRIC:
1910                 case ALGORITHM_RIGHT_ASYMMETRIC:
1911                 case ALGORITHM_ROTATING_ZERO_RESTART:
1912                 case ALGORITHM_ROTATING_N_RESTART:
1913                         if (sh->pd_idx == raid_disks-1)
1914                                 i--;    /* Q D D D P */
1915                         else if (i > sh->pd_idx)
1916                                 i -= 2; /* D D P Q D */
1917                         break;
1918                 case ALGORITHM_LEFT_SYMMETRIC:
1919                 case ALGORITHM_RIGHT_SYMMETRIC:
1920                         if (sh->pd_idx == raid_disks-1)
1921                                 i--; /* Q D D D P */
1922                         else {
1923                                 /* D D P Q D */
1924                                 if (i < sh->pd_idx)
1925                                         i += raid_disks;
1926                                 i -= (sh->pd_idx + 2);
1927                         }
1928                         break;
1929                 case ALGORITHM_PARITY_0:
1930                         i -= 2;
1931                         break;
1932                 case ALGORITHM_PARITY_N:
1933                         break;
1934                 case ALGORITHM_ROTATING_N_CONTINUE:
1935                         /* Like left_symmetric, but P is before Q */
1936                         if (sh->pd_idx == 0)
1937                                 i--;    /* P D D D Q */
1938                         else {
1939                                 /* D D Q P D */
1940                                 if (i < sh->pd_idx)
1941                                         i += raid_disks;
1942                                 i -= (sh->pd_idx + 1);
1943                         }
1944                         break;
1945                 case ALGORITHM_LEFT_ASYMMETRIC_6:
1946                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1947                         if (i > sh->pd_idx)
1948                                 i--;
1949                         break;
1950                 case ALGORITHM_LEFT_SYMMETRIC_6:
1951                 case ALGORITHM_RIGHT_SYMMETRIC_6:
1952                         if (i < sh->pd_idx)
1953                                 i += data_disks + 1;
1954                         i -= (sh->pd_idx + 1);
1955                         break;
1956                 case ALGORITHM_PARITY_0_6:
1957                         i -= 1;
1958                         break;
1959                 default:
1960                         printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1961                                algorithm);
1962                         BUG();
1963                 }
1964                 break;
1965         }
1966
1967         chunk_number = stripe * data_disks + i;
1968         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1969
1970         check = raid5_compute_sector(conf, r_sector,
1971                                      previous, &dummy1, &sh2);
1972         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
1973                 || sh2.qd_idx != sh->qd_idx) {
1974                 printk(KERN_ERR "compute_blocknr: map not correct\n");
1975                 return 0;
1976         }
1977         return r_sector;
1978 }
1979
1980
1981 static void
1982 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
1983                          int rcw, int expand)
1984 {
1985         int i, pd_idx = sh->pd_idx, disks = sh->disks;
1986         raid5_conf_t *conf = sh->raid_conf;
1987         int level = conf->level;
1988
1989         if (rcw) {
1990                 /* if we are not expanding this is a proper write request, and
1991                  * there will be bios with new data to be drained into the
1992                  * stripe cache
1993                  */
1994                 if (!expand) {
1995                         sh->reconstruct_state = reconstruct_state_drain_run;
1996                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1997                 } else
1998                         sh->reconstruct_state = reconstruct_state_run;
1999
2000                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2001
2002                 for (i = disks; i--; ) {
2003                         struct r5dev *dev = &sh->dev[i];
2004
2005                         if (dev->towrite) {
2006                                 set_bit(R5_LOCKED, &dev->flags);
2007                                 set_bit(R5_Wantdrain, &dev->flags);
2008                                 if (!expand)
2009                                         clear_bit(R5_UPTODATE, &dev->flags);
2010                                 s->locked++;
2011                         }
2012                 }
2013                 if (s->locked + conf->max_degraded == disks)
2014                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2015                                 atomic_inc(&conf->pending_full_writes);
2016         } else {
2017                 BUG_ON(level == 6);
2018                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2019                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2020
2021                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2022                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2023                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2024                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2025
2026                 for (i = disks; i--; ) {
2027                         struct r5dev *dev = &sh->dev[i];
2028                         if (i == pd_idx)
2029                                 continue;
2030
2031                         if (dev->towrite &&
2032                             (test_bit(R5_UPTODATE, &dev->flags) ||
2033                              test_bit(R5_Wantcompute, &dev->flags))) {
2034                                 set_bit(R5_Wantdrain, &dev->flags);
2035                                 set_bit(R5_LOCKED, &dev->flags);
2036                                 clear_bit(R5_UPTODATE, &dev->flags);
2037                                 s->locked++;
2038                         }
2039                 }
2040         }
2041
2042         /* keep the parity disk(s) locked while asynchronous operations
2043          * are in flight
2044          */
2045         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2046         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2047         s->locked++;
2048
2049         if (level == 6) {
2050                 int qd_idx = sh->qd_idx;
2051                 struct r5dev *dev = &sh->dev[qd_idx];
2052
2053                 set_bit(R5_LOCKED, &dev->flags);
2054                 clear_bit(R5_UPTODATE, &dev->flags);
2055                 s->locked++;
2056         }
2057
2058         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2059                 __func__, (unsigned long long)sh->sector,
2060                 s->locked, s->ops_request);
2061 }
2062
2063 /*
2064  * Each stripe/dev can have one or more bion attached.
2065  * toread/towrite point to the first in a chain.
2066  * The bi_next chain must be in order.
2067  */
2068 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2069 {
2070         struct bio **bip;
2071         raid5_conf_t *conf = sh->raid_conf;
2072         int firstwrite=0;
2073
2074         pr_debug("adding bh b#%llu to stripe s#%llu\n",
2075                 (unsigned long long)bi->bi_sector,
2076                 (unsigned long long)sh->sector);
2077
2078
2079         spin_lock(&sh->lock);
2080         spin_lock_irq(&conf->device_lock);
2081         if (forwrite) {
2082                 bip = &sh->dev[dd_idx].towrite;
2083                 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2084                         firstwrite = 1;
2085         } else
2086                 bip = &sh->dev[dd_idx].toread;
2087         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2088                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2089                         goto overlap;
2090                 bip = & (*bip)->bi_next;
2091         }
2092         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2093                 goto overlap;
2094
2095         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2096         if (*bip)
2097                 bi->bi_next = *bip;
2098         *bip = bi;
2099         bi->bi_phys_segments++;
2100         spin_unlock_irq(&conf->device_lock);
2101         spin_unlock(&sh->lock);
2102
2103         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2104                 (unsigned long long)bi->bi_sector,
2105                 (unsigned long long)sh->sector, dd_idx);
2106
2107         if (conf->mddev->bitmap && firstwrite) {
2108                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2109                                   STRIPE_SECTORS, 0);
2110                 sh->bm_seq = conf->seq_flush+1;
2111                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2112         }
2113
2114         if (forwrite) {
2115                 /* check if page is covered */
2116                 sector_t sector = sh->dev[dd_idx].sector;
2117                 for (bi=sh->dev[dd_idx].towrite;
2118                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2119                              bi && bi->bi_sector <= sector;
2120                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2121                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2122                                 sector = bi->bi_sector + (bi->bi_size>>9);
2123                 }
2124                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2125                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2126         }
2127         return 1;
2128
2129  overlap:
2130         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2131         spin_unlock_irq(&conf->device_lock);
2132         spin_unlock(&sh->lock);
2133         return 0;
2134 }
2135
2136 static void end_reshape(raid5_conf_t *conf);
2137
2138 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2139                             struct stripe_head *sh)
2140 {
2141         int sectors_per_chunk =
2142                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2143         int dd_idx;
2144         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2145         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2146
2147         raid5_compute_sector(conf,
2148                              stripe * (disks - conf->max_degraded)
2149                              *sectors_per_chunk + chunk_offset,
2150                              previous,
2151                              &dd_idx, sh);
2152 }
2153
2154 static void
2155 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2156                                 struct stripe_head_state *s, int disks,
2157                                 struct bio **return_bi)
2158 {
2159         int i;
2160         for (i = disks; i--; ) {
2161                 struct bio *bi;
2162                 int bitmap_end = 0;
2163
2164                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2165                         mdk_rdev_t *rdev;
2166                         rcu_read_lock();
2167                         rdev = rcu_dereference(conf->disks[i].rdev);
2168                         if (rdev && test_bit(In_sync, &rdev->flags))
2169                                 /* multiple read failures in one stripe */
2170                                 md_error(conf->mddev, rdev);
2171                         rcu_read_unlock();
2172                 }
2173                 spin_lock_irq(&conf->device_lock);
2174                 /* fail all writes first */
2175                 bi = sh->dev[i].towrite;
2176                 sh->dev[i].towrite = NULL;
2177                 if (bi) {
2178                         s->to_write--;
2179                         bitmap_end = 1;
2180                 }
2181
2182                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2183                         wake_up(&conf->wait_for_overlap);
2184
2185                 while (bi && bi->bi_sector <
2186                         sh->dev[i].sector + STRIPE_SECTORS) {
2187                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2188                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2189                         if (!raid5_dec_bi_phys_segments(bi)) {
2190                                 md_write_end(conf->mddev);
2191                                 bi->bi_next = *return_bi;
2192                                 *return_bi = bi;
2193                         }
2194                         bi = nextbi;
2195                 }
2196                 /* and fail all 'written' */
2197                 bi = sh->dev[i].written;
2198                 sh->dev[i].written = NULL;
2199                 if (bi) bitmap_end = 1;
2200                 while (bi && bi->bi_sector <
2201                        sh->dev[i].sector + STRIPE_SECTORS) {
2202                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2203                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2204                         if (!raid5_dec_bi_phys_segments(bi)) {
2205                                 md_write_end(conf->mddev);
2206                                 bi->bi_next = *return_bi;
2207                                 *return_bi = bi;
2208                         }
2209                         bi = bi2;
2210                 }
2211
2212                 /* fail any reads if this device is non-operational and
2213                  * the data has not reached the cache yet.
2214                  */
2215                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2216                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2217                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2218                         bi = sh->dev[i].toread;
2219                         sh->dev[i].toread = NULL;
2220                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2221                                 wake_up(&conf->wait_for_overlap);
2222                         if (bi) s->to_read--;
2223                         while (bi && bi->bi_sector <
2224                                sh->dev[i].sector + STRIPE_SECTORS) {
2225                                 struct bio *nextbi =
2226                                         r5_next_bio(bi, sh->dev[i].sector);
2227                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2228                                 if (!raid5_dec_bi_phys_segments(bi)) {
2229                                         bi->bi_next = *return_bi;
2230                                         *return_bi = bi;
2231                                 }
2232                                 bi = nextbi;
2233                         }
2234                 }
2235                 spin_unlock_irq(&conf->device_lock);
2236                 if (bitmap_end)
2237                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2238                                         STRIPE_SECTORS, 0, 0);
2239         }
2240
2241         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2242                 if (atomic_dec_and_test(&conf->pending_full_writes))
2243                         md_wakeup_thread(conf->mddev->thread);
2244 }
2245
2246 /* fetch_block5 - checks the given member device to see if its data needs
2247  * to be read or computed to satisfy a request.
2248  *
2249  * Returns 1 when no more member devices need to be checked, otherwise returns
2250  * 0 to tell the loop in handle_stripe_fill5 to continue
2251  */
2252 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2253                         int disk_idx, int disks)
2254 {
2255         struct r5dev *dev = &sh->dev[disk_idx];
2256         struct r5dev *failed_dev = &sh->dev[s->failed_num];
2257
2258         /* is the data in this block needed, and can we get it? */
2259         if (!test_bit(R5_LOCKED, &dev->flags) &&
2260             !test_bit(R5_UPTODATE, &dev->flags) &&
2261             (dev->toread ||
2262              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2263              s->syncing || s->expanding ||
2264              (s->failed &&
2265               (failed_dev->toread ||
2266                (failed_dev->towrite &&
2267                 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2268                 /* We would like to get this block, possibly by computing it,
2269                  * otherwise read it if the backing disk is insync
2270                  */
2271                 if ((s->uptodate == disks - 1) &&
2272                     (s->failed && disk_idx == s->failed_num)) {
2273                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2274                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2275                         set_bit(R5_Wantcompute, &dev->flags);
2276                         sh->ops.target = disk_idx;
2277                         sh->ops.target2 = -1;
2278                         s->req_compute = 1;
2279                         /* Careful: from this point on 'uptodate' is in the eye
2280                          * of raid_run_ops which services 'compute' operations
2281                          * before writes. R5_Wantcompute flags a block that will
2282                          * be R5_UPTODATE by the time it is needed for a
2283                          * subsequent operation.
2284                          */
2285                         s->uptodate++;
2286                         return 1; /* uptodate + compute == disks */
2287                 } else if (test_bit(R5_Insync, &dev->flags)) {
2288                         set_bit(R5_LOCKED, &dev->flags);
2289                         set_bit(R5_Wantread, &dev->flags);
2290                         s->locked++;
2291                         pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2292                                 s->syncing);
2293                 }
2294         }
2295
2296         return 0;
2297 }
2298
2299 /**
2300  * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2301  */
2302 static void handle_stripe_fill5(struct stripe_head *sh,
2303                         struct stripe_head_state *s, int disks)
2304 {
2305         int i;
2306
2307         /* look for blocks to read/compute, skip this if a compute
2308          * is already in flight, or if the stripe contents are in the
2309          * midst of changing due to a write
2310          */
2311         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2312             !sh->reconstruct_state)
2313                 for (i = disks; i--; )
2314                         if (fetch_block5(sh, s, i, disks))
2315                                 break;
2316         set_bit(STRIPE_HANDLE, &sh->state);
2317 }
2318
2319 /* fetch_block6 - checks the given member device to see if its data needs
2320  * to be read or computed to satisfy a request.
2321  *
2322  * Returns 1 when no more member devices need to be checked, otherwise returns
2323  * 0 to tell the loop in handle_stripe_fill6 to continue
2324  */
2325 static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
2326                          struct r6_state *r6s, int disk_idx, int disks)
2327 {
2328         struct r5dev *dev = &sh->dev[disk_idx];
2329         struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
2330                                   &sh->dev[r6s->failed_num[1]] };
2331
2332         if (!test_bit(R5_LOCKED, &dev->flags) &&
2333             !test_bit(R5_UPTODATE, &dev->flags) &&
2334             (dev->toread ||
2335              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2336              s->syncing || s->expanding ||
2337              (s->failed >= 1 &&
2338               (fdev[0]->toread || s->to_write)) ||
2339              (s->failed >= 2 &&
2340               (fdev[1]->toread || s->to_write)))) {
2341                 /* we would like to get this block, possibly by computing it,
2342                  * otherwise read it if the backing disk is insync
2343                  */
2344                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2345                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2346                 if ((s->uptodate == disks - 1) &&
2347                     (s->failed && (disk_idx == r6s->failed_num[0] ||
2348                                    disk_idx == r6s->failed_num[1]))) {
2349                         /* have disk failed, and we're requested to fetch it;
2350                          * do compute it
2351                          */
2352                         pr_debug("Computing stripe %llu block %d\n",
2353                                (unsigned long long)sh->sector, disk_idx);
2354                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2355                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2356                         set_bit(R5_Wantcompute, &dev->flags);
2357                         sh->ops.target = disk_idx;
2358                         sh->ops.target2 = -1; /* no 2nd target */
2359                         s->req_compute = 1;
2360                         s->uptodate++;
2361                         return 1;
2362                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2363                         /* Computing 2-failure is *very* expensive; only
2364                          * do it if failed >= 2
2365                          */
2366                         int other;
2367                         for (other = disks; other--; ) {
2368                                 if (other == disk_idx)
2369                                         continue;
2370                                 if (!test_bit(R5_UPTODATE,
2371                                       &sh->dev[other].flags))
2372                                         break;
2373                         }
2374                         BUG_ON(other < 0);
2375                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2376                                (unsigned long long)sh->sector,
2377                                disk_idx, other);
2378                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2379                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2380                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2381                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2382                         sh->ops.target = disk_idx;
2383                         sh->ops.target2 = other;
2384                         s->uptodate += 2;
2385                         s->req_compute = 1;
2386                         return 1;
2387                 } else if (test_bit(R5_Insync, &dev->flags)) {
2388                         set_bit(R5_LOCKED, &dev->flags);
2389                         set_bit(R5_Wantread, &dev->flags);
2390                         s->locked++;
2391                         pr_debug("Reading block %d (sync=%d)\n",
2392                                 disk_idx, s->syncing);
2393                 }
2394         }
2395
2396         return 0;
2397 }
2398
2399 /**
2400  * handle_stripe_fill6 - read or compute data to satisfy pending requests.
2401  */
2402 static void handle_stripe_fill6(struct stripe_head *sh,
2403                         struct stripe_head_state *s, struct r6_state *r6s,
2404                         int disks)
2405 {
2406         int i;
2407
2408         /* look for blocks to read/compute, skip this if a compute
2409          * is already in flight, or if the stripe contents are in the
2410          * midst of changing due to a write
2411          */
2412         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2413             !sh->reconstruct_state)
2414                 for (i = disks; i--; )
2415                         if (fetch_block6(sh, s, r6s, i, disks))
2416                                 break;
2417         set_bit(STRIPE_HANDLE, &sh->state);
2418 }
2419
2420
2421 /* handle_stripe_clean_event
2422  * any written block on an uptodate or failed drive can be returned.
2423  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2424  * never LOCKED, so we don't need to test 'failed' directly.
2425  */
2426 static void handle_stripe_clean_event(raid5_conf_t *conf,
2427         struct stripe_head *sh, int disks, struct bio **return_bi)
2428 {
2429         int i;
2430         struct r5dev *dev;
2431
2432         for (i = disks; i--; )
2433                 if (sh->dev[i].written) {
2434                         dev = &sh->dev[i];
2435                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2436                                 test_bit(R5_UPTODATE, &dev->flags)) {
2437                                 /* We can return any write requests */
2438                                 struct bio *wbi, *wbi2;
2439                                 int bitmap_end = 0;
2440                                 pr_debug("Return write for disc %d\n", i);
2441                                 spin_lock_irq(&conf->device_lock);
2442                                 wbi = dev->written;
2443                                 dev->written = NULL;
2444                                 while (wbi && wbi->bi_sector <
2445                                         dev->sector + STRIPE_SECTORS) {
2446                                         wbi2 = r5_next_bio(wbi, dev->sector);
2447                                         if (!raid5_dec_bi_phys_segments(wbi)) {
2448                                                 md_write_end(conf->mddev);
2449                                                 wbi->bi_next = *return_bi;
2450                                                 *return_bi = wbi;
2451                                         }
2452                                         wbi = wbi2;
2453                                 }
2454                                 if (dev->towrite == NULL)
2455                                         bitmap_end = 1;
2456                                 spin_unlock_irq(&conf->device_lock);
2457                                 if (bitmap_end)
2458                                         bitmap_endwrite(conf->mddev->bitmap,
2459                                                         sh->sector,
2460                                                         STRIPE_SECTORS,
2461                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2462                                                         0);
2463                         }
2464                 }
2465
2466         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2467                 if (atomic_dec_and_test(&conf->pending_full_writes))
2468                         md_wakeup_thread(conf->mddev->thread);
2469 }
2470
2471 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2472                 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2473 {
2474         int rmw = 0, rcw = 0, i;
2475         for (i = disks; i--; ) {
2476                 /* would I have to read this buffer for read_modify_write */
2477                 struct r5dev *dev = &sh->dev[i];
2478                 if ((dev->towrite || i == sh->pd_idx) &&
2479                     !test_bit(R5_LOCKED, &dev->flags) &&
2480                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2481                       test_bit(R5_Wantcompute, &dev->flags))) {
2482                         if (test_bit(R5_Insync, &dev->flags))
2483                                 rmw++;
2484                         else
2485                                 rmw += 2*disks;  /* cannot read it */
2486                 }
2487                 /* Would I have to read this buffer for reconstruct_write */
2488                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2489                     !test_bit(R5_LOCKED, &dev->flags) &&
2490                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2491                     test_bit(R5_Wantcompute, &dev->flags))) {
2492                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2493                         else
2494                                 rcw += 2*disks;
2495                 }
2496         }
2497         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2498                 (unsigned long long)sh->sector, rmw, rcw);
2499         set_bit(STRIPE_HANDLE, &sh->state);
2500         if (rmw < rcw && rmw > 0)
2501                 /* prefer read-modify-write, but need to get some data */
2502                 for (i = disks; i--; ) {
2503                         struct r5dev *dev = &sh->dev[i];
2504                         if ((dev->towrite || i == sh->pd_idx) &&
2505                             !test_bit(R5_LOCKED, &dev->flags) &&
2506                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2507                             test_bit(R5_Wantcompute, &dev->flags)) &&
2508                             test_bit(R5_Insync, &dev->flags)) {
2509                                 if (
2510                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2511                                         pr_debug("Read_old block "
2512                                                 "%d for r-m-w\n", i);
2513                                         set_bit(R5_LOCKED, &dev->flags);
2514                                         set_bit(R5_Wantread, &dev->flags);
2515                                         s->locked++;
2516                                 } else {
2517                                         set_bit(STRIPE_DELAYED, &sh->state);
2518                                         set_bit(STRIPE_HANDLE, &sh->state);
2519                                 }
2520                         }
2521                 }
2522         if (rcw <= rmw && rcw > 0)
2523                 /* want reconstruct write, but need to get some data */
2524                 for (i = disks; i--; ) {
2525                         struct r5dev *dev = &sh->dev[i];
2526                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2527                             i != sh->pd_idx &&
2528                             !test_bit(R5_LOCKED, &dev->flags) &&
2529                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2530                             test_bit(R5_Wantcompute, &dev->flags)) &&
2531                             test_bit(R5_Insync, &dev->flags)) {
2532                                 if (
2533                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2534                                         pr_debug("Read_old block "
2535                                                 "%d for Reconstruct\n", i);
2536                                         set_bit(R5_LOCKED, &dev->flags);
2537                                         set_bit(R5_Wantread, &dev->flags);
2538                                         s->locked++;
2539                                 } else {
2540                                         set_bit(STRIPE_DELAYED, &sh->state);
2541                                         set_bit(STRIPE_HANDLE, &sh->state);
2542                                 }
2543                         }
2544                 }
2545         /* now if nothing is locked, and if we have enough data,
2546          * we can start a write request
2547          */
2548         /* since handle_stripe can be called at any time we need to handle the
2549          * case where a compute block operation has been submitted and then a
2550          * subsequent call wants to start a write request.  raid_run_ops only
2551          * handles the case where compute block and reconstruct are requested
2552          * simultaneously.  If this is not the case then new writes need to be
2553          * held off until the compute completes.
2554          */
2555         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2556             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2557             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2558                 schedule_reconstruction(sh, s, rcw == 0, 0);
2559 }
2560
2561 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2562                 struct stripe_head *sh, struct stripe_head_state *s,
2563                 struct r6_state *r6s, int disks)
2564 {
2565         int rcw = 0, pd_idx = sh->pd_idx, i;
2566         int qd_idx = sh->qd_idx;
2567
2568         set_bit(STRIPE_HANDLE, &sh->state);
2569         for (i = disks; i--; ) {
2570                 struct r5dev *dev = &sh->dev[i];
2571                 /* check if we haven't enough data */
2572                 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2573                     i != pd_idx && i != qd_idx &&
2574                     !test_bit(R5_LOCKED, &dev->flags) &&
2575                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2576                       test_bit(R5_Wantcompute, &dev->flags))) {
2577                         rcw++;
2578                         if (!test_bit(R5_Insync, &dev->flags))
2579                                 continue; /* it's a failed drive */
2580
2581                         if (
2582                           test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2583                                 pr_debug("Read_old stripe %llu "
2584                                         "block %d for Reconstruct\n",
2585                                      (unsigned long long)sh->sector, i);
2586                                 set_bit(R5_LOCKED, &dev->flags);
2587                                 set_bit(R5_Wantread, &dev->flags);
2588                                 s->locked++;
2589                         } else {
2590                                 pr_debug("Request delayed stripe %llu "
2591                                         "block %d for Reconstruct\n",
2592                                      (unsigned long long)sh->sector, i);
2593                                 set_bit(STRIPE_DELAYED, &sh->state);
2594                                 set_bit(STRIPE_HANDLE, &sh->state);
2595                         }
2596                 }
2597         }
2598         /* now if nothing is locked, and if we have enough data, we can start a
2599          * write request
2600          */
2601         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2602             s->locked == 0 && rcw == 0 &&
2603             !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2604                 schedule_reconstruction(sh, s, 1, 0);
2605         }
2606 }
2607
2608 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2609                                 struct stripe_head_state *s, int disks)
2610 {
2611         struct r5dev *dev = NULL;
2612
2613         set_bit(STRIPE_HANDLE, &sh->state);
2614
2615         switch (sh->check_state) {
2616         case check_state_idle:
2617                 /* start a new check operation if there are no failures */
2618                 if (s->failed == 0) {
2619                         BUG_ON(s->uptodate != disks);
2620                         sh->check_state = check_state_run;
2621                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2622                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2623                         s->uptodate--;
2624                         break;
2625                 }
2626                 dev = &sh->dev[s->failed_num];
2627                 /* fall through */
2628         case check_state_compute_result:
2629                 sh->check_state = check_state_idle;
2630                 if (!dev)
2631                         dev = &sh->dev[sh->pd_idx];
2632
2633                 /* check that a write has not made the stripe insync */
2634                 if (test_bit(STRIPE_INSYNC, &sh->state))
2635                         break;
2636
2637                 /* either failed parity check, or recovery is happening */
2638                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2639                 BUG_ON(s->uptodate != disks);
2640
2641                 set_bit(R5_LOCKED, &dev->flags);
2642                 s->locked++;
2643                 set_bit(R5_Wantwrite, &dev->flags);
2644
2645                 clear_bit(STRIPE_DEGRADED, &sh->state);
2646                 set_bit(STRIPE_INSYNC, &sh->state);
2647                 break;
2648         case check_state_run:
2649                 break; /* we will be called again upon completion */
2650         case check_state_check_result:
2651                 sh->check_state = check_state_idle;
2652
2653                 /* if a failure occurred during the check operation, leave
2654                  * STRIPE_INSYNC not set and let the stripe be handled again
2655                  */
2656                 if (s->failed)
2657                         break;
2658
2659                 /* handle a successful check operation, if parity is correct
2660                  * we are done.  Otherwise update the mismatch count and repair
2661                  * parity if !MD_RECOVERY_CHECK
2662                  */
2663                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2664                         /* parity is correct (on disc,
2665                          * not in buffer any more)
2666                          */
2667                         set_bit(STRIPE_INSYNC, &sh->state);
2668                 else {
2669                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2670                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2671                                 /* don't try to repair!! */
2672                                 set_bit(STRIPE_INSYNC, &sh->state);
2673                         else {
2674                                 sh->check_state = check_state_compute_run;
2675                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2676                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2677                                 set_bit(R5_Wantcompute,
2678                                         &sh->dev[sh->pd_idx].flags);
2679                                 sh->ops.target = sh->pd_idx;
2680                                 sh->ops.target2 = -1;
2681                                 s->uptodate++;
2682                         }
2683                 }
2684                 break;
2685         case check_state_compute_run:
2686                 break;
2687         default:
2688                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2689                        __func__, sh->check_state,
2690                        (unsigned long long) sh->sector);
2691                 BUG();
2692         }
2693 }
2694
2695
2696 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2697                                   struct stripe_head_state *s,
2698                                   struct r6_state *r6s, int disks)
2699 {
2700         int pd_idx = sh->pd_idx;
2701         int qd_idx = sh->qd_idx;
2702         struct r5dev *dev;
2703
2704         set_bit(STRIPE_HANDLE, &sh->state);
2705
2706         BUG_ON(s->failed > 2);
2707
2708         /* Want to check and possibly repair P and Q.
2709          * However there could be one 'failed' device, in which
2710          * case we can only check one of them, possibly using the
2711          * other to generate missing data
2712          */
2713
2714         switch (sh->check_state) {
2715         case check_state_idle:
2716                 /* start a new check operation if there are < 2 failures */
2717                 if (s->failed == r6s->q_failed) {
2718                         /* The only possible failed device holds Q, so it
2719                          * makes sense to check P (If anything else were failed,
2720                          * we would have used P to recreate it).
2721                          */
2722                         sh->check_state = check_state_run;
2723                 }
2724                 if (!r6s->q_failed && s->failed < 2) {
2725                         /* Q is not failed, and we didn't use it to generate
2726                          * anything, so it makes sense to check it
2727                          */
2728                         if (sh->check_state == check_state_run)
2729                                 sh->check_state = check_state_run_pq;
2730                         else
2731                                 sh->check_state = check_state_run_q;
2732                 }
2733
2734                 /* discard potentially stale zero_sum_result */
2735                 sh->ops.zero_sum_result = 0;
2736
2737                 if (sh->check_state == check_state_run) {
2738                         /* async_xor_zero_sum destroys the contents of P */
2739                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2740                         s->uptodate--;
2741                 }
2742                 if (sh->check_state >= check_state_run &&
2743                     sh->check_state <= check_state_run_pq) {
2744                         /* async_syndrome_zero_sum preserves P and Q, so
2745                          * no need to mark them !uptodate here
2746                          */
2747                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2748                         break;
2749                 }
2750
2751                 /* we have 2-disk failure */
2752                 BUG_ON(s->failed != 2);
2753                 /* fall through */
2754         case check_state_compute_result:
2755                 sh->check_state = check_state_idle;
2756
2757                 /* check that a write has not made the stripe insync */
2758                 if (test_bit(STRIPE_INSYNC, &sh->state))
2759                         break;
2760
2761                 /* now write out any block on a failed drive,
2762                  * or P or Q if they were recomputed
2763                  */
2764                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2765                 if (s->failed == 2) {
2766                         dev = &sh->dev[r6s->failed_num[1]];
2767                         s->locked++;
2768                         set_bit(R5_LOCKED, &dev->flags);
2769                         set_bit(R5_Wantwrite, &dev->flags);
2770                 }
2771                 if (s->failed >= 1) {
2772                         dev = &sh->dev[r6s->failed_num[0]];
2773                         s->locked++;
2774                         set_bit(R5_LOCKED, &dev->flags);
2775                         set_bit(R5_Wantwrite, &dev->flags);
2776                 }
2777                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2778                         dev = &sh->dev[pd_idx];
2779                         s->locked++;
2780                         set_bit(R5_LOCKED, &dev->flags);
2781                         set_bit(R5_Wantwrite, &dev->flags);
2782                 }
2783                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2784                         dev = &sh->dev[qd_idx];
2785                         s->locked++;
2786                         set_bit(R5_LOCKED, &dev->flags);
2787                         set_bit(R5_Wantwrite, &dev->flags);
2788                 }
2789                 clear_bit(STRIPE_DEGRADED, &sh->state);
2790
2791                 set_bit(STRIPE_INSYNC, &sh->state);
2792                 break;
2793         case check_state_run:
2794         case check_state_run_q:
2795         case check_state_run_pq:
2796                 break; /* we will be called again upon completion */
2797         case check_state_check_result:
2798                 sh->check_state = check_state_idle;
2799
2800                 /* handle a successful check operation, if parity is correct
2801                  * we are done.  Otherwise update the mismatch count and repair
2802                  * parity if !MD_RECOVERY_CHECK
2803                  */
2804                 if (sh->ops.zero_sum_result == 0) {
2805                         /* both parities are correct */
2806                         if (!s->failed)
2807                                 set_bit(STRIPE_INSYNC, &sh->state);
2808                         else {
2809                                 /* in contrast to the raid5 case we can validate
2810                                  * parity, but still have a failure to write
2811                                  * back
2812                                  */
2813                                 sh->check_state = check_state_compute_result;
2814                                 /* Returning at this point means that we may go
2815                                  * off and bring p and/or q uptodate again so
2816                                  * we make sure to check zero_sum_result again
2817                                  * to verify if p or q need writeback
2818                                  */
2819                         }
2820                 } else {
2821                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2822                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2823                                 /* don't try to repair!! */
2824                                 set_bit(STRIPE_INSYNC, &sh->state);
2825                         else {
2826                                 int *target = &sh->ops.target;
2827
2828                                 sh->ops.target = -1;
2829                                 sh->ops.target2 = -1;
2830                                 sh->check_state = check_state_compute_run;
2831                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2832                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2833                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2834                                         set_bit(R5_Wantcompute,
2835                                                 &sh->dev[pd_idx].flags);
2836                                         *target = pd_idx;
2837                                         target = &sh->ops.target2;
2838                                         s->uptodate++;
2839                                 }
2840                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2841                                         set_bit(R5_Wantcompute,
2842                                                 &sh->dev[qd_idx].flags);
2843                                         *target = qd_idx;
2844                                         s->uptodate++;
2845                                 }
2846                         }
2847                 }
2848                 break;
2849         case check_state_compute_run:
2850                 break;
2851         default:
2852                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2853                        __func__, sh->check_state,
2854                        (unsigned long long) sh->sector);
2855                 BUG();
2856         }
2857 }
2858
2859 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2860                                 struct r6_state *r6s)
2861 {
2862         int i;
2863
2864         /* We have read all the blocks in this stripe and now we need to
2865          * copy some of them into a target stripe for expand.
2866          */
2867         struct dma_async_tx_descriptor *tx = NULL;
2868         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2869         for (i = 0; i < sh->disks; i++)
2870                 if (i != sh->pd_idx && i != sh->qd_idx) {
2871                         int dd_idx, j;
2872                         struct stripe_head *sh2;
2873                         struct async_submit_ctl submit;
2874
2875                         sector_t bn = compute_blocknr(sh, i, 1);
2876                         sector_t s = raid5_compute_sector(conf, bn, 0,
2877                                                           &dd_idx, NULL);
2878                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
2879                         if (sh2 == NULL)
2880                                 /* so far only the early blocks of this stripe
2881                                  * have been requested.  When later blocks
2882                                  * get requested, we will try again
2883                                  */
2884                                 continue;
2885                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2886                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2887                                 /* must have already done this block */
2888                                 release_stripe(sh2);
2889                                 continue;
2890                         }
2891
2892                         /* place all the copies on one channel */
2893                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2894                         tx = async_memcpy(sh2->dev[dd_idx].page,
2895                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
2896                                           &submit);
2897
2898                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2899                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2900                         for (j = 0; j < conf->raid_disks; j++)
2901                                 if (j != sh2->pd_idx &&
2902                                     (!r6s || j != sh2->qd_idx) &&
2903                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
2904                                         break;
2905                         if (j == conf->raid_disks) {
2906                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2907                                 set_bit(STRIPE_HANDLE, &sh2->state);
2908                         }
2909                         release_stripe(sh2);
2910
2911                 }
2912         /* done submitting copies, wait for them to complete */
2913         if (tx) {
2914                 async_tx_ack(tx);
2915                 dma_wait_for_async_tx(tx);
2916         }
2917 }
2918
2919
2920 /*
2921  * handle_stripe - do things to a stripe.
2922  *
2923  * We lock the stripe and then examine the state of various bits
2924  * to see what needs to be done.
2925  * Possible results:
2926  *    return some read request which now have data
2927  *    return some write requests which are safely on disc
2928  *    schedule a read on some buffers
2929  *    schedule a write of some buffers
2930  *    return confirmation of parity correctness
2931  *
2932  * buffers are taken off read_list or write_list, and bh_cache buffers
2933  * get BH_Lock set before the stripe lock is released.
2934  *
2935  */
2936
2937 static void handle_stripe5(struct stripe_head *sh)
2938 {
2939         raid5_conf_t *conf = sh->raid_conf;
2940         int disks = sh->disks, i;
2941         struct bio *return_bi = NULL;
2942         struct stripe_head_state s;
2943         struct r5dev *dev;
2944         mdk_rdev_t *blocked_rdev = NULL;
2945         int prexor;
2946         int dec_preread_active = 0;
2947
2948         memset(&s, 0, sizeof(s));
2949         pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2950                  "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
2951                  atomic_read(&sh->count), sh->pd_idx, sh->check_state,
2952                  sh->reconstruct_state);
2953
2954         spin_lock(&sh->lock);
2955         clear_bit(STRIPE_HANDLE, &sh->state);
2956         clear_bit(STRIPE_DELAYED, &sh->state);
2957
2958         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2959         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2960         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2961
2962         /* Now to look around and see what can be done */
2963         rcu_read_lock();
2964         for (i=disks; i--; ) {
2965                 mdk_rdev_t *rdev;
2966
2967                 dev = &sh->dev[i];
2968                 clear_bit(R5_Insync, &dev->flags);
2969
2970                 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2971                         "written %p\n", i, dev->flags, dev->toread, dev->read,
2972                         dev->towrite, dev->written);
2973
2974                 /* maybe we can request a biofill operation
2975                  *
2976                  * new wantfill requests are only permitted while
2977                  * ops_complete_biofill is guaranteed to be inactive
2978                  */
2979                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2980                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2981                         set_bit(R5_Wantfill, &dev->flags);
2982
2983                 /* now count some things */
2984                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2985                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2986                 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2987
2988                 if (test_bit(R5_Wantfill, &dev->flags))
2989                         s.to_fill++;
2990                 else if (dev->toread)
2991                         s.to_read++;
2992                 if (dev->towrite) {
2993                         s.to_write++;
2994                         if (!test_bit(R5_OVERWRITE, &dev->flags))
2995                                 s.non_overwrite++;
2996                 }
2997                 if (dev->written)
2998                         s.written++;
2999                 rdev = rcu_dereference(conf->disks[i].rdev);
3000                 if (blocked_rdev == NULL &&
3001                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3002                         blocked_rdev = rdev;
3003                         atomic_inc(&rdev->nr_pending);
3004                 }
3005                 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3006                         /* The ReadError flag will just be confusing now */
3007                         clear_bit(R5_ReadError, &dev->flags);
3008                         clear_bit(R5_ReWrite, &dev->flags);
3009                 }
3010                 if (!rdev || !test_bit(In_sync, &rdev->flags)
3011                     || test_bit(R5_ReadError, &dev->flags)) {
3012                         s.failed++;
3013                         s.failed_num = i;
3014                 } else
3015                         set_bit(R5_Insync, &dev->flags);
3016         }
3017         rcu_read_unlock();
3018
3019         if (unlikely(blocked_rdev)) {
3020                 if (s.syncing || s.expanding || s.expanded ||
3021                     s.to_write || s.written) {
3022                         set_bit(STRIPE_HANDLE, &sh->state);
3023                         goto unlock;
3024                 }
3025                 /* There is nothing for the blocked_rdev to block */
3026                 rdev_dec_pending(blocked_rdev, conf->mddev);
3027                 blocked_rdev = NULL;
3028         }
3029
3030         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3031                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3032                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3033         }
3034
3035         pr_debug("locked=%d uptodate=%d to_read=%d"
3036                 " to_write=%d failed=%d failed_num=%d\n",
3037                 s.locked, s.uptodate, s.to_read, s.to_write,
3038                 s.failed, s.failed_num);
3039         /* check if the array has lost two devices and, if so, some requests might
3040          * need to be failed
3041          */
3042         if (s.failed > 1 && s.to_read+s.to_write+s.written)
3043                 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3044         if (s.failed > 1 && s.syncing) {
3045                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3046                 clear_bit(STRIPE_SYNCING, &sh->state);
3047                 s.syncing = 0;
3048         }
3049
3050         /* might be able to return some write requests if the parity block
3051          * is safe, or on a failed drive
3052          */
3053         dev = &sh->dev[sh->pd_idx];
3054         if ( s.written &&
3055              ((test_bit(R5_Insync, &dev->flags) &&
3056                !test_bit(R5_LOCKED, &dev->flags) &&
3057                test_bit(R5_UPTODATE, &dev->flags)) ||
3058                (s.failed == 1 && s.failed_num == sh->pd_idx)))
3059                 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3060
3061         /* Now we might consider reading some blocks, either to check/generate
3062          * parity, or to satisfy requests
3063          * or to load a block that is being partially written.
3064          */
3065         if (s.to_read || s.non_overwrite ||
3066             (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3067                 handle_stripe_fill5(sh, &s, disks);
3068
3069         /* Now we check to see if any write operations have recently
3070          * completed
3071          */
3072         prexor = 0;
3073         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3074                 prexor = 1;
3075         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3076             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3077                 sh->reconstruct_state = reconstruct_state_idle;
3078
3079                 /* All the 'written' buffers and the parity block are ready to
3080                  * be written back to disk
3081                  */
3082                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3083                 for (i = disks; i--; ) {
3084                         dev = &sh->dev[i];
3085                         if (test_bit(R5_LOCKED, &dev->flags) &&
3086                                 (i == sh->pd_idx || dev->written)) {
3087                                 pr_debug("Writing block %d\n", i);
3088                                 set_bit(R5_Wantwrite, &dev->flags);
3089                                 if (prexor)
3090                                         continue;
3091                                 if (!test_bit(R5_Insync, &dev->flags) ||
3092                                     (i == sh->pd_idx && s.failed == 0))
3093                                         set_bit(STRIPE_INSYNC, &sh->state);
3094                         }
3095                 }
3096                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3097                         dec_preread_active = 1;
3098         }
3099
3100         /* Now to consider new write requests and what else, if anything
3101          * should be read.  We do not handle new writes when:
3102          * 1/ A 'write' operation (copy+xor) is already in flight.
3103          * 2/ A 'check' operation is in flight, as it may clobber the parity
3104          *    block.
3105          */
3106         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3107                 handle_stripe_dirtying5(conf, sh, &s, disks);
3108
3109         /* maybe we need to check and possibly fix the parity for this stripe
3110          * Any reads will already have been scheduled, so we just see if enough
3111          * data is available.  The parity check is held off while parity
3112          * dependent operations are in flight.
3113          */
3114         if (sh->check_state ||
3115             (s.syncing && s.locked == 0 &&
3116              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3117              !test_bit(STRIPE_INSYNC, &sh->state)))
3118                 handle_parity_checks5(conf, sh, &s, disks);
3119
3120         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3121                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3122                 clear_bit(STRIPE_SYNCING, &sh->state);
3123         }
3124
3125         /* If the failed drive is just a ReadError, then we might need to progress
3126          * the repair/check process
3127          */
3128         if (s.failed == 1 && !conf->mddev->ro &&
3129             test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
3130             && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
3131             && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
3132                 ) {
3133                 dev = &sh->dev[s.failed_num];
3134                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3135                         set_bit(R5_Wantwrite, &dev->flags);
3136                         set_bit(R5_ReWrite, &dev->flags);
3137                         set_bit(R5_LOCKED, &dev->flags);
3138                         s.locked++;
3139                 } else {
3140                         /* let's read it back */
3141                         set_bit(R5_Wantread, &dev->flags);
3142                         set_bit(R5_LOCKED, &dev->flags);
3143                         s.locked++;
3144                 }
3145         }
3146
3147         /* Finish reconstruct operations initiated by the expansion process */
3148         if (sh->reconstruct_state == reconstruct_state_result) {
3149                 struct stripe_head *sh2
3150                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3151                 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3152                         /* sh cannot be written until sh2 has been read.
3153                          * so arrange for sh to be delayed a little
3154                          */
3155                         set_bit(STRIPE_DELAYED, &sh->state);
3156                         set_bit(STRIPE_HANDLE, &sh->state);
3157                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3158                                               &sh2->state))
3159                                 atomic_inc(&conf->preread_active_stripes);
3160                         release_stripe(sh2);
3161                         goto unlock;
3162                 }
3163                 if (sh2)
3164                         release_stripe(sh2);
3165
3166                 sh->reconstruct_state = reconstruct_state_idle;
3167                 clear_bit(STRIPE_EXPANDING, &sh->state);
3168                 for (i = conf->raid_disks; i--; ) {
3169                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3170                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3171                         s.locked++;
3172                 }
3173         }
3174
3175         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3176             !sh->reconstruct_state) {
3177                 /* Need to write out all blocks after computing parity */
3178                 sh->disks = conf->raid_disks;
3179                 stripe_set_idx(sh->sector, conf, 0, sh);
3180                 schedule_reconstruction(sh, &s, 1, 1);
3181         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3182                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3183                 atomic_dec(&conf->reshape_stripes);
3184                 wake_up(&conf->wait_for_overlap);
3185                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3186         }
3187
3188         if (s.expanding && s.locked == 0 &&
3189             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3190                 handle_stripe_expansion(conf, sh, NULL);
3191
3192  unlock:
3193         spin_unlock(&sh->lock);
3194
3195         /* wait for this device to become unblocked */
3196         if (unlikely(blocked_rdev))
3197                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3198
3199         if (s.ops_request)
3200                 raid_run_ops(sh, s.ops_request);
3201
3202         ops_run_io(sh, &s);
3203
3204         if (dec_preread_active) {
3205                 /* We delay this until after ops_run_io so that if make_request
3206                  * is waiting on a barrier, it won't continue until the writes
3207                  * have actually been submitted.
3208                  */
3209                 atomic_dec(&conf->preread_active_stripes);
3210                 if (atomic_read(&conf->preread_active_stripes) <
3211                     IO_THRESHOLD)
3212                         md_wakeup_thread(conf->mddev->thread);
3213         }
3214         return_io(return_bi);
3215 }
3216
3217 static void handle_stripe6(struct stripe_head *sh)
3218 {
3219         raid5_conf_t *conf = sh->raid_conf;
3220         int disks = sh->disks;
3221         struct bio *return_bi = NULL;
3222         int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3223         struct stripe_head_state s;
3224         struct r6_state r6s;
3225         struct r5dev *dev, *pdev, *qdev;
3226         mdk_rdev_t *blocked_rdev = NULL;
3227         int dec_preread_active = 0;
3228
3229         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3230                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3231                (unsigned long long)sh->sector, sh->state,
3232                atomic_read(&sh->count), pd_idx, qd_idx,
3233                sh->check_state, sh->reconstruct_state);
3234         memset(&s, 0, sizeof(s));
3235
3236         spin_lock(&sh->lock);
3237         clear_bit(STRIPE_HANDLE, &sh->state);
3238         clear_bit(STRIPE_DELAYED, &sh->state);
3239
3240         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3241         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3242         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3243         /* Now to look around and see what can be done */
3244
3245         rcu_read_lock();
3246         for (i=disks; i--; ) {
3247                 mdk_rdev_t *rdev;
3248                 dev = &sh->dev[i];
3249                 clear_bit(R5_Insync, &dev->flags);
3250
3251                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3252                         i, dev->flags, dev->toread, dev->towrite, dev->written);
3253                 /* maybe we can reply to a read
3254                  *
3255                  * new wantfill requests are only permitted while
3256                  * ops_complete_biofill is guaranteed to be inactive
3257                  */
3258                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3259                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3260                         set_bit(R5_Wantfill, &dev->flags);
3261
3262                 /* now count some things */
3263                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3264                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3265                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3266                         s.compute++;
3267                         BUG_ON(s.compute > 2);
3268                 }
3269
3270                 if (test_bit(R5_Wantfill, &dev->flags)) {
3271                         s.to_fill++;
3272                 } else if (dev->toread)
3273                         s.to_read++;
3274                 if (dev->towrite) {
3275                         s.to_write++;
3276                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3277                                 s.non_overwrite++;
3278                 }
3279                 if (dev->written)
3280                         s.written++;
3281                 rdev = rcu_dereference(conf->disks[i].rdev);
3282                 if (blocked_rdev == NULL &&
3283                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3284                         blocked_rdev = rdev;
3285                         atomic_inc(&rdev->nr_pending);
3286                 }
3287                 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3288                         /* The ReadError flag will just be confusing now */
3289                         clear_bit(R5_ReadError, &dev->flags);
3290                         clear_bit(R5_ReWrite, &dev->flags);
3291                 }
3292                 if (!rdev || !test_bit(In_sync, &rdev->flags)
3293                     || test_bit(R5_ReadError, &dev->flags)) {
3294                         if (s.failed < 2)
3295                                 r6s.failed_num[s.failed] = i;
3296                         s.failed++;
3297                 } else
3298                         set_bit(R5_Insync, &dev->flags);
3299         }
3300         rcu_read_unlock();
3301
3302         if (unlikely(blocked_rdev)) {
3303                 if (s.syncing || s.expanding || s.expanded ||
3304                     s.to_write || s.written) {
3305                         set_bit(STRIPE_HANDLE, &sh->state);
3306                         goto unlock;
3307                 }
3308                 /* There is nothing for the blocked_rdev to block */
3309                 rdev_dec_pending(blocked_rdev, conf->mddev);
3310                 blocked_rdev = NULL;
3311         }
3312
3313         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3314                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3315                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3316         }
3317
3318         pr_debug("locked=%d uptodate=%d to_read=%d"
3319                " to_write=%d failed=%d failed_num=%d,%d\n",
3320                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3321                r6s.failed_num[0], r6s.failed_num[1]);
3322         /* check if the array has lost >2 devices and, if so, some requests
3323          * might need to be failed
3324          */
3325         if (s.failed > 2 && s.to_read+s.to_write+s.written)
3326                 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3327         if (s.failed > 2 && s.syncing) {
3328                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3329                 clear_bit(STRIPE_SYNCING, &sh->state);
3330                 s.syncing = 0;
3331         }
3332
3333         /*
3334          * might be able to return some write requests if the parity blocks
3335          * are safe, or on a failed drive
3336          */
3337         pdev = &sh->dev[pd_idx];
3338         r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3339                 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3340         qdev = &sh->dev[qd_idx];
3341         r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3342                 || (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3343
3344         if ( s.written &&
3345              ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3346                              && !test_bit(R5_LOCKED, &pdev->flags)
3347                              && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3348              ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3349                              && !test_bit(R5_LOCKED, &qdev->flags)
3350                              && test_bit(R5_UPTODATE, &qdev->flags)))))
3351                 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3352
3353         /* Now we might consider reading some blocks, either to check/generate
3354          * parity, or to satisfy requests
3355          * or to load a block that is being partially written.
3356          */
3357         if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3358             (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3359                 handle_stripe_fill6(sh, &s, &r6s, disks);
3360
3361         /* Now we check to see if any write operations have recently
3362          * completed
3363          */
3364         if (sh->reconstruct_state == reconstruct_state_drain_result) {
3365
3366                 sh->reconstruct_state = reconstruct_state_idle;
3367                 /* All the 'written' buffers and the parity blocks are ready to
3368                  * be written back to disk
3369                  */
3370                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3371                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
3372                 for (i = disks; i--; ) {
3373                         dev = &sh->dev[i];
3374                         if (test_bit(R5_LOCKED, &dev->flags) &&
3375                             (i == sh->pd_idx || i == qd_idx ||
3376                              dev->written)) {
3377                                 pr_debug("Writing block %d\n", i);
3378                                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3379                                 set_bit(R5_Wantwrite, &dev->flags);
3380                                 if (!test_bit(R5_Insync, &dev->flags) ||
3381                                     ((i == sh->pd_idx || i == qd_idx) &&
3382                                       s.failed == 0))
3383                                         set_bit(STRIPE_INSYNC, &sh->state);
3384                         }
3385                 }
3386                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3387                         dec_preread_active = 1;
3388         }
3389
3390         /* Now to consider new write requests and what else, if anything
3391          * should be read.  We do not handle new writes when:
3392          * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
3393          * 2/ A 'check' operation is in flight, as it may clobber the parity
3394          *    block.
3395          */
3396         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3397                 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3398
3399         /* maybe we need to check and possibly fix the parity for this stripe
3400          * Any reads will already have been scheduled, so we just see if enough
3401          * data is available.  The parity check is held off while parity
3402          * dependent operations are in flight.
3403          */
3404         if (sh->check_state ||
3405             (s.syncing && s.locked == 0 &&
3406              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3407              !test_bit(STRIPE_INSYNC, &sh->state)))
3408                 handle_parity_checks6(conf, sh, &s, &r6s, disks);
3409
3410         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3411                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3412                 clear_bit(STRIPE_SYNCING, &sh->state);
3413         }
3414
3415         /* If the failed drives are just a ReadError, then we might need
3416          * to progress the repair/check process
3417          */
3418         if (s.failed <= 2 && !conf->mddev->ro)
3419                 for (i = 0; i < s.failed; i++) {
3420                         dev = &sh->dev[r6s.failed_num[i]];
3421                         if (test_bit(R5_ReadError, &dev->flags)
3422                             && !test_bit(R5_LOCKED, &dev->flags)
3423                             && test_bit(R5_UPTODATE, &dev->flags)
3424                                 ) {
3425                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3426                                         set_bit(R5_Wantwrite, &dev->flags);
3427                                         set_bit(R5_ReWrite, &dev->flags);
3428                                         set_bit(R5_LOCKED, &dev->flags);
3429                                         s.locked++;
3430                                 } else {
3431                                         /* let's read it back */
3432                                         set_bit(R5_Wantread, &dev->flags);
3433                                         set_bit(R5_LOCKED, &dev->flags);
3434                                         s.locked++;
3435                                 }
3436                         }
3437                 }
3438
3439         /* Finish reconstruct operations initiated by the expansion process */
3440         if (sh->reconstruct_state == reconstruct_state_result) {
3441                 sh->reconstruct_state = reconstruct_state_idle;
3442                 clear_bit(STRIPE_EXPANDING, &sh->state);
3443                 for (i = conf->raid_disks; i--; ) {
3444                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3445                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3446                         s.locked++;
3447                 }
3448         }
3449
3450         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3451             !sh->reconstruct_state) {
3452                 struct stripe_head *sh2
3453                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3454                 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3455                         /* sh cannot be written until sh2 has been read.
3456                          * so arrange for sh to be delayed a little
3457                          */
3458                         set_bit(STRIPE_DELAYED, &sh->state);
3459                         set_bit(STRIPE_HANDLE, &sh->state);
3460                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3461                                               &sh2->state))
3462                                 atomic_inc(&conf->preread_active_stripes);
3463                         release_stripe(sh2);
3464                         goto unlock;
3465                 }
3466                 if (sh2)
3467                         release_stripe(sh2);
3468
3469                 /* Need to write out all blocks after computing P&Q */
3470                 sh->disks = conf->raid_disks;
3471                 stripe_set_idx(sh->sector, conf, 0, sh);
3472                 schedule_reconstruction(sh, &s, 1, 1);
3473         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3474                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3475                 atomic_dec(&conf->reshape_stripes);
3476                 wake_up(&conf->wait_for_overlap);
3477                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3478         }
3479
3480         if (s.expanding && s.locked == 0 &&
3481             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3482                 handle_stripe_expansion(conf, sh, &r6s);
3483
3484  unlock:
3485         spin_unlock(&sh->lock);
3486
3487         /* wait for this device to become unblocked */
3488         if (unlikely(blocked_rdev))
3489                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3490
3491         if (s.ops_request)
3492                 raid_run_ops(sh, s.ops_request);
3493
3494         ops_run_io(sh, &s);
3495
3496
3497         if (dec_preread_active) {
3498                 /* We delay this until after ops_run_io so that if make_request
3499                  * is waiting on a barrier, it won't continue until the writes
3500                  * have actually been submitted.
3501                  */
3502                 atomic_dec(&conf->preread_active_stripes);
3503                 if (atomic_read(&conf->preread_active_stripes) <
3504                     IO_THRESHOLD)
3505                         md_wakeup_thread(conf->mddev->thread);
3506         }
3507
3508         return_io(return_bi);
3509 }
3510
3511 static void handle_stripe(struct stripe_head *sh)
3512 {
3513         if (sh->raid_conf->level == 6)
3514                 handle_stripe6(sh);
3515         else
3516                 handle_stripe5(sh);
3517 }
3518
3519 static void raid5_activate_delayed(raid5_conf_t *conf)
3520 {
3521         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3522                 while (!list_empty(&conf->delayed_list)) {
3523                         struct list_head *l = conf->delayed_list.next;
3524                         struct stripe_head *sh;
3525                         sh = list_entry(l, struct stripe_head, lru);
3526                         list_del_init(l);
3527                         clear_bit(STRIPE_DELAYED, &sh->state);
3528                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3529                                 atomic_inc(&conf->preread_active_stripes);
3530                         list_add_tail(&sh->lru, &conf->hold_list);
3531                 }
3532         } else
3533                 blk_plug_device(conf->mddev->queue);
3534 }
3535
3536 static void activate_bit_delay(raid5_conf_t *conf)
3537 {
3538         /* device_lock is held */
3539         struct list_head head;
3540         list_add(&head, &conf->bitmap_list);
3541         list_del_init(&conf->bitmap_list);
3542         while (!list_empty(&head)) {
3543                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3544                 list_del_init(&sh->lru);
3545                 atomic_inc(&sh->count);
3546                 __release_stripe(conf, sh);
3547         }
3548 }
3549
3550 static void unplug_slaves(mddev_t *mddev)
3551 {
3552         raid5_conf_t *conf = mddev->private;
3553         int i;
3554         int devs = max(conf->raid_disks, conf->previous_raid_disks);
3555
3556         rcu_read_lock();
3557         for (i = 0; i < devs; i++) {
3558                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3559                 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3560                         struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3561
3562                         atomic_inc(&rdev->nr_pending);
3563                         rcu_read_unlock();
3564
3565                         blk_unplug(r_queue);
3566
3567                         rdev_dec_pending(rdev, mddev);
3568                         rcu_read_lock();
3569                 }
3570         }
3571         rcu_read_unlock();
3572 }
3573
3574 static void raid5_unplug_device(struct request_queue *q)
3575 {
3576         mddev_t *mddev = q->queuedata;
3577         raid5_conf_t *conf = mddev->private;
3578         unsigned long flags;
3579
3580         spin_lock_irqsave(&conf->device_lock, flags);
3581
3582         if (blk_remove_plug(q)) {
3583                 conf->seq_flush++;
3584                 raid5_activate_delayed(conf);
3585         }
3586         md_wakeup_thread(mddev->thread);
3587
3588         spin_unlock_irqrestore(&conf->device_lock, flags);
3589
3590         unplug_slaves(mddev);
3591 }
3592
3593 static int raid5_congested(void *data, int bits)
3594 {
3595         mddev_t *mddev = data;
3596         raid5_conf_t *conf = mddev->private;
3597
3598         /* No difference between reads and writes.  Just check
3599          * how busy the stripe_cache is
3600          */
3601
3602         if (mddev_congested(mddev, bits))
3603                 return 1;
3604         if (conf->inactive_blocked)
3605                 return 1;
3606         if (conf->quiesce)
3607                 return 1;
3608         if (list_empty_careful(&conf->inactive_list))
3609                 return 1;
3610
3611         return 0;
3612 }
3613
3614 /* We want read requests to align with chunks where possible,
3615  * but write requests don't need to.
3616  */
3617 static int raid5_mergeable_bvec(struct request_queue *q,
3618                                 struct bvec_merge_data *bvm,
3619                                 struct bio_vec *biovec)
3620 {
3621         mddev_t *mddev = q->queuedata;
3622         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3623         int max;
3624         unsigned int chunk_sectors = mddev->chunk_sectors;
3625         unsigned int bio_sectors = bvm->bi_size >> 9;
3626
3627         if ((bvm->bi_rw & 1) == WRITE)
3628                 return biovec->bv_len; /* always allow writes to be mergeable */
3629
3630         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3631                 chunk_sectors = mddev->new_chunk_sectors;
3632         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3633         if (max < 0) max = 0;
3634         if (max <= biovec->bv_len && bio_sectors == 0)
3635                 return biovec->bv_len;
3636         else
3637                 return max;
3638 }
3639
3640
3641 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3642 {
3643         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3644         unsigned int chunk_sectors = mddev->chunk_sectors;
3645         unsigned int bio_sectors = bio->bi_size >> 9;
3646
3647         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3648                 chunk_sectors = mddev->new_chunk_sectors;
3649         return  chunk_sectors >=
3650                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3651 }
3652
3653 /*
3654  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3655  *  later sampled by raid5d.
3656  */
3657 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3658 {
3659         unsigned long flags;
3660
3661         spin_lock_irqsave(&conf->device_lock, flags);
3662
3663         bi->bi_next = conf->retry_read_aligned_list;
3664         conf->retry_read_aligned_list = bi;
3665
3666         spin_unlock_irqrestore(&conf->device_lock, flags);
3667         md_wakeup_thread(conf->mddev->thread);
3668 }
3669
3670
3671 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3672 {
3673         struct bio *bi;
3674
3675         bi = conf->retry_read_aligned;
3676         if (bi) {
3677                 conf->retry_read_aligned = NULL;
3678                 return bi;
3679         }
3680         bi = conf->retry_read_aligned_list;
3681         if(bi) {
3682                 conf->retry_read_aligned_list = bi->bi_next;
3683                 bi->bi_next = NULL;
3684                 /*
3685                  * this sets the active strip count to 1 and the processed
3686                  * strip count to zero (upper 8 bits)
3687                  */
3688                 bi->bi_phys_segments = 1; /* biased count of active stripes */
3689         }
3690
3691         return bi;
3692 }
3693
3694
3695 /*
3696  *  The "raid5_align_endio" should check if the read succeeded and if it
3697  *  did, call bio_endio on the original bio (having bio_put the new bio
3698  *  first).
3699  *  If the read failed..
3700  */
3701 static void raid5_align_endio(struct bio *bi, int error)
3702 {
3703         struct bio* raid_bi  = bi->bi_private;
3704         mddev_t *mddev;
3705         raid5_conf_t *conf;
3706         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3707         mdk_rdev_t *rdev;
3708
3709         bio_put(bi);
3710
3711         mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3712         conf = mddev->private;
3713         rdev = (void*)raid_bi->bi_next;
3714         raid_bi->bi_next = NULL;
3715
3716         rdev_dec_pending(rdev, conf->mddev);
3717
3718         if (!error && uptodate) {
3719                 bio_endio(raid_bi, 0);
3720                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3721                         wake_up(&conf->wait_for_stripe);
3722                 return;
3723         }
3724
3725
3726         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3727
3728         add_bio_to_retry(raid_bi, conf);
3729 }
3730
3731 static int bio_fits_rdev(struct bio *bi)
3732 {
3733         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3734
3735         if ((bi->bi_size>>9) > queue_max_sectors(q))
3736                 return 0;
3737         blk_recount_segments(q, bi);
3738         if (bi->bi_phys_segments > queue_max_segments(q))
3739                 return 0;
3740
3741         if (q->merge_bvec_fn)
3742                 /* it's too hard to apply the merge_bvec_fn at this stage,
3743                  * just just give up
3744                  */
3745                 return 0;
3746
3747         return 1;
3748 }
3749
3750
3751 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3752 {
3753         mddev_t *mddev = q->queuedata;
3754         raid5_conf_t *conf = mddev->private;
3755         int dd_idx;
3756         struct bio* align_bi;
3757         mdk_rdev_t *rdev;
3758
3759         if (!in_chunk_boundary(mddev, raid_bio)) {
3760                 pr_debug("chunk_aligned_read : non aligned\n");
3761                 return 0;
3762         }
3763         /*
3764          * use bio_clone to make a copy of the bio
3765          */
3766         align_bi = bio_clone(raid_bio, GFP_NOIO);
3767         if (!align_bi)
3768                 return 0;
3769         /*
3770          *   set bi_end_io to a new function, and set bi_private to the
3771          *     original bio.
3772          */
3773         align_bi->bi_end_io  = raid5_align_endio;
3774         align_bi->bi_private = raid_bio;
3775         /*
3776          *      compute position
3777          */
3778         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3779                                                     0,
3780                                                     &dd_idx, NULL);
3781
3782         rcu_read_lock();
3783         rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3784         if (rdev && test_bit(In_sync, &rdev->flags)) {
3785                 atomic_inc(&rdev->nr_pending);
3786                 rcu_read_unlock();
3787                 raid_bio->bi_next = (void*)rdev;
3788                 align_bi->bi_bdev =  rdev->bdev;
3789                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3790                 align_bi->bi_sector += rdev->data_offset;
3791
3792                 if (!bio_fits_rdev(align_bi)) {
3793                         /* too big in some way */
3794                         bio_put(align_bi);
3795                         rdev_dec_pending(rdev, mddev);
3796                         return 0;
3797                 }
3798
3799                 spin_lock_irq(&conf->device_lock);
3800                 wait_event_lock_irq(conf->wait_for_stripe,
3801                                     conf->quiesce == 0,
3802                                     conf->device_lock, /* nothing */);
3803                 atomic_inc(&conf->active_aligned_reads);
3804                 spin_unlock_irq(&conf->device_lock);
3805
3806                 generic_make_request(align_bi);
3807                 return 1;
3808         } else {
3809                 rcu_read_unlock();
3810                 bio_put(align_bi);
3811                 return 0;
3812         }
3813 }
3814
3815 /* __get_priority_stripe - get the next stripe to process
3816  *
3817  * Full stripe writes are allowed to pass preread active stripes up until
3818  * the bypass_threshold is exceeded.  In general the bypass_count
3819  * increments when the handle_list is handled before the hold_list; however, it
3820  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3821  * stripe with in flight i/o.  The bypass_count will be reset when the
3822  * head of the hold_list has changed, i.e. the head was promoted to the
3823  * handle_list.
3824  */
3825 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3826 {
3827         struct stripe_head *sh;
3828
3829         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3830                   __func__,
3831                   list_empty(&conf->handle_list) ? "empty" : "busy",
3832                   list_empty(&conf->hold_list) ? "empty" : "busy",
3833                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
3834
3835         if (!list_empty(&conf->handle_list)) {
3836                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3837
3838                 if (list_empty(&conf->hold_list))
3839                         conf->bypass_count = 0;
3840                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3841                         if (conf->hold_list.next == conf->last_hold)
3842                                 conf->bypass_count++;
3843                         else {
3844                                 conf->last_hold = conf->hold_list.next;
3845                                 conf->bypass_count -= conf->bypass_threshold;
3846                                 if (conf->bypass_count < 0)
3847                                         conf->bypass_count = 0;
3848                         }
3849                 }
3850         } else if (!list_empty(&conf->hold_list) &&
3851                    ((conf->bypass_threshold &&
3852                      conf->bypass_count > conf->bypass_threshold) ||
3853                     atomic_read(&conf->pending_full_writes) == 0)) {
3854                 sh = list_entry(conf->hold_list.next,
3855                                 typeof(*sh), lru);
3856                 conf->bypass_count -= conf->bypass_threshold;
3857                 if (conf->bypass_count < 0)
3858                         conf->bypass_count = 0;
3859         } else
3860                 return NULL;
3861
3862         list_del_init(&sh->lru);
3863         atomic_inc(&sh->count);
3864         BUG_ON(atomic_read(&sh->count) != 1);
3865         return sh;
3866 }
3867
3868 static int make_request(struct request_queue *q, struct bio * bi)
3869 {
3870         mddev_t *mddev = q->queuedata;
3871         raid5_conf_t *conf = mddev->private;
3872         int dd_idx;
3873         sector_t new_sector;
3874         sector_t logical_sector, last_sector;
3875         struct stripe_head *sh;
3876         const int rw = bio_data_dir(bi);
3877         int cpu, remaining;
3878
3879         if (unlikely(bio_rw_flagged(bi, BIO_RW_BARRIER))) {
3880                 /* Drain all pending writes.  We only really need
3881                  * to ensure they have been submitted, but this is
3882                  * easier.
3883                  */
3884                 mddev->pers->quiesce(mddev, 1);
3885                 mddev->pers->quiesce(mddev, 0);
3886                 md_barrier_request(mddev, bi);
3887                 return 0;
3888         }
3889
3890         md_write_start(mddev, bi);
3891
3892         cpu = part_stat_lock();
3893         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
3894         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
3895                       bio_sectors(bi));
3896         part_stat_unlock();
3897
3898         if (rw == READ &&
3899              mddev->reshape_position == MaxSector &&
3900              chunk_aligned_read(q,bi))
3901                 return 0;
3902
3903         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3904         last_sector = bi->bi_sector + (bi->bi_size>>9);
3905         bi->bi_next = NULL;
3906         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
3907
3908         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3909                 DEFINE_WAIT(w);
3910                 int disks, data_disks;
3911                 int previous;
3912
3913         retry:
3914                 previous = 0;
3915                 disks = conf->raid_disks;
3916                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3917                 if (unlikely(conf->reshape_progress != MaxSector)) {
3918                         /* spinlock is needed as reshape_progress may be
3919                          * 64bit on a 32bit platform, and so it might be
3920                          * possible to see a half-updated value
3921                          * Ofcourse reshape_progress could change after
3922                          * the lock is dropped, so once we get a reference
3923                          * to the stripe that we think it is, we will have
3924                          * to check again.
3925                          */
3926                         spin_lock_irq(&conf->device_lock);
3927                         if (mddev->delta_disks < 0
3928                             ? logical_sector < conf->reshape_progress
3929                             : logical_sector >= conf->reshape_progress) {
3930                                 disks = conf->previous_raid_disks;
3931                                 previous = 1;
3932                         } else {
3933                                 if (mddev->delta_disks < 0
3934                                     ? logical_sector < conf->reshape_safe
3935                                     : logical_sector >= conf->reshape_safe) {
3936                                         spin_unlock_irq(&conf->device_lock);
3937                                         schedule();
3938                                         goto retry;
3939                                 }
3940                         }
3941                         spin_unlock_irq(&conf->device_lock);
3942                 }
3943                 data_disks = disks - conf->max_degraded;
3944
3945                 new_sector = raid5_compute_sector(conf, logical_sector,
3946                                                   previous,
3947                                                   &dd_idx, NULL);
3948                 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3949                         (unsigned long long)new_sector, 
3950                         (unsigned long long)logical_sector);
3951
3952                 sh = get_active_stripe(conf, new_sector, previous,
3953                                        (bi->bi_rw&RWA_MASK), 0);
3954                 if (sh) {
3955                         if (unlikely(previous)) {
3956                                 /* expansion might have moved on while waiting for a
3957                                  * stripe, so we must do the range check again.
3958                                  * Expansion could still move past after this
3959                                  * test, but as we are holding a reference to
3960                                  * 'sh', we know that if that happens,
3961                                  *  STRIPE_EXPANDING will get set and the expansion
3962                                  * won't proceed until we finish with the stripe.
3963                                  */
3964                                 int must_retry = 0;
3965                                 spin_lock_irq(&conf->device_lock);
3966                                 if (mddev->delta_disks < 0
3967                                     ? logical_sector >= conf->reshape_progress
3968                                     : logical_sector < conf->reshape_progress)
3969                                         /* mismatch, need to try again */
3970                                         must_retry = 1;
3971                                 spin_unlock_irq(&conf->device_lock);
3972                                 if (must_retry) {
3973                                         release_stripe(sh);
3974                                         schedule();
3975                                         goto retry;
3976                                 }
3977                         }
3978
3979                         if (bio_data_dir(bi) == WRITE &&
3980                             logical_sector >= mddev->suspend_lo &&
3981                             logical_sector < mddev->suspend_hi) {
3982                                 release_stripe(sh);
3983                                 /* As the suspend_* range is controlled by
3984                                  * userspace, we want an interruptible
3985                                  * wait.
3986                                  */
3987                                 flush_signals(current);
3988                                 prepare_to_wait(&conf->wait_for_overlap,
3989                                                 &w, TASK_INTERRUPTIBLE);
3990                                 if (logical_sector >= mddev->suspend_lo &&
3991                                     logical_sector < mddev->suspend_hi)
3992                                         schedule();
3993                                 goto retry;
3994                         }
3995
3996                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3997                             !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3998                                 /* Stripe is busy expanding or
3999                                  * add failed due to overlap.  Flush everything
4000                                  * and wait a while
4001                                  */
4002                                 raid5_unplug_device(mddev->queue);
4003                                 release_stripe(sh);
4004                                 schedule();
4005                                 goto retry;
4006                         }
4007                         finish_wait(&conf->wait_for_overlap, &w);
4008                         set_bit(STRIPE_HANDLE, &sh->state);
4009                         clear_bit(STRIPE_DELAYED, &sh->state);
4010                         if (mddev->barrier && 
4011                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4012                                 atomic_inc(&conf->preread_active_stripes);
4013                         release_stripe(sh);
4014                 } else {
4015                         /* cannot get stripe for read-ahead, just give-up */
4016                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
4017                         finish_wait(&conf->wait_for_overlap, &w);
4018                         break;
4019                 }
4020                         
4021         }
4022         spin_lock_irq(&conf->device_lock);
4023         remaining = raid5_dec_bi_phys_segments(bi);
4024         spin_unlock_irq(&conf->device_lock);
4025         if (remaining == 0) {
4026
4027                 if ( rw == WRITE )
4028                         md_write_end(mddev);
4029
4030                 bio_endio(bi, 0);
4031         }
4032
4033         if (mddev->barrier) {
4034                 /* We need to wait for the stripes to all be handled.
4035                  * So: wait for preread_active_stripes to drop to 0.
4036                  */
4037                 wait_event(mddev->thread->wqueue,
4038                            atomic_read(&conf->preread_active_stripes) == 0);
4039         }
4040         return 0;
4041 }
4042
4043 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
4044
4045 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
4046 {
4047         /* reshaping is quite different to recovery/resync so it is
4048          * handled quite separately ... here.
4049          *
4050          * On each call to sync_request, we gather one chunk worth of
4051          * destination stripes and flag them as expanding.
4052          * Then we find all the source stripes and request reads.
4053          * As the reads complete, handle_stripe will copy the data
4054          * into the destination stripe and release that stripe.
4055          */
4056         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4057         struct stripe_head *sh;
4058         sector_t first_sector, last_sector;
4059         int raid_disks = conf->previous_raid_disks;
4060         int data_disks = raid_disks - conf->max_degraded;
4061         int new_data_disks = conf->raid_disks - conf->max_degraded;
4062         int i;
4063         int dd_idx;
4064         sector_t writepos, readpos, safepos;
4065         sector_t stripe_addr;
4066         int reshape_sectors;
4067         struct list_head stripes;
4068
4069         if (sector_nr == 0) {
4070                 /* If restarting in the middle, skip the initial sectors */
4071                 if (mddev->delta_disks < 0 &&
4072                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4073                         sector_nr = raid5_size(mddev, 0, 0)
4074                                 - conf->reshape_progress;
4075                 } else if (mddev->delta_disks >= 0 &&
4076                            conf->reshape_progress > 0)
4077                         sector_nr = conf->reshape_progress;
4078                 sector_div(sector_nr, new_data_disks);
4079                 if (sector_nr) {
4080                         mddev->curr_resync_completed = sector_nr;
4081                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4082                         *skipped = 1;
4083                         return sector_nr;
4084                 }
4085         }
4086
4087         /* We need to process a full chunk at a time.
4088          * If old and new chunk sizes differ, we need to process the
4089          * largest of these
4090          */
4091         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4092                 reshape_sectors = mddev->new_chunk_sectors;
4093         else
4094                 reshape_sectors = mddev->chunk_sectors;
4095
4096         /* we update the metadata when there is more than 3Meg
4097          * in the block range (that is rather arbitrary, should
4098          * probably be time based) or when the data about to be
4099          * copied would over-write the source of the data at
4100          * the front of the range.
4101          * i.e. one new_stripe along from reshape_progress new_maps
4102          * to after where reshape_safe old_maps to
4103          */
4104         writepos = conf->reshape_progress;
4105         sector_div(writepos, new_data_disks);
4106         readpos = conf->reshape_progress;
4107         sector_div(readpos, data_disks);
4108         safepos = conf->reshape_safe;
4109         sector_div(safepos, data_disks);
4110         if (mddev->delta_disks < 0) {
4111                 writepos -= min_t(sector_t, reshape_sectors, writepos);
4112                 readpos += reshape_sectors;
4113                 safepos += reshape_sectors;
4114         } else {
4115                 writepos += reshape_sectors;
4116                 readpos -= min_t(sector_t, reshape_sectors, readpos);
4117                 safepos -= min_t(sector_t, reshape_sectors, safepos);
4118         }
4119
4120         /* 'writepos' is the most advanced device address we might write.
4121          * 'readpos' is the least advanced device address we might read.
4122          * 'safepos' is the least address recorded in the metadata as having
4123          *     been reshaped.
4124          * If 'readpos' is behind 'writepos', then there is no way that we can
4125          * ensure safety in the face of a crash - that must be done by userspace
4126          * making a backup of the data.  So in that case there is no particular
4127          * rush to update metadata.
4128          * Otherwise if 'safepos' is behind 'writepos', then we really need to
4129          * update the metadata to advance 'safepos' to match 'readpos' so that
4130          * we can be safe in the event of a crash.
4131          * So we insist on updating metadata if safepos is behind writepos and
4132          * readpos is beyond writepos.
4133          * In any case, update the metadata every 10 seconds.
4134          * Maybe that number should be configurable, but I'm not sure it is
4135          * worth it.... maybe it could be a multiple of safemode_delay???
4136          */
4137         if ((mddev->delta_disks < 0
4138              ? (safepos > writepos && readpos < writepos)
4139              : (safepos < writepos && readpos > writepos)) ||
4140             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4141                 /* Cannot proceed until we've updated the superblock... */
4142                 wait_event(conf->wait_for_overlap,
4143                            atomic_read(&conf->reshape_stripes)==0);
4144                 mddev->reshape_position = conf->reshape_progress;
4145                 mddev->curr_resync_completed = mddev->curr_resync;
4146                 conf->reshape_checkpoint = jiffies;
4147                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4148                 md_wakeup_thread(mddev->thread);
4149                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4150                            kthread_should_stop());
4151                 spin_lock_irq(&conf->device_lock);
4152                 conf->reshape_safe = mddev->reshape_position;
4153                 spin_unlock_irq(&conf->device_lock);
4154                 wake_up(&conf->wait_for_overlap);
4155                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4156         }
4157
4158         if (mddev->delta_disks < 0) {
4159                 BUG_ON(conf->reshape_progress == 0);
4160                 stripe_addr = writepos;
4161                 BUG_ON((mddev->dev_sectors &
4162                         ~((sector_t)reshape_sectors - 1))
4163                        - reshape_sectors - stripe_addr
4164                        != sector_nr);
4165         } else {
4166                 BUG_ON(writepos != sector_nr + reshape_sectors);
4167                 stripe_addr = sector_nr;
4168         }
4169         INIT_LIST_HEAD(&stripes);
4170         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4171                 int j;
4172                 int skipped_disk = 0;
4173                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4174                 set_bit(STRIPE_EXPANDING, &sh->state);
4175                 atomic_inc(&conf->reshape_stripes);
4176                 /* If any of this stripe is beyond the end of the old
4177                  * array, then we need to zero those blocks
4178                  */
4179                 for (j=sh->disks; j--;) {
4180                         sector_t s;
4181                         if (j == sh->pd_idx)
4182                                 continue;
4183                         if (conf->level == 6 &&
4184                             j == sh->qd_idx)
4185                                 continue;
4186                         s = compute_blocknr(sh, j, 0);
4187                         if (s < raid5_size(mddev, 0, 0)) {
4188                                 skipped_disk = 1;
4189                                 continue;
4190                         }
4191                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4192                         set_bit(R5_Expanded, &sh->dev[j].flags);
4193                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
4194                 }
4195                 if (!skipped_disk) {
4196                         set_bit(STRIPE_EXPAND_READY, &sh->state);
4197                         set_bit(STRIPE_HANDLE, &sh->state);
4198                 }
4199                 list_add(&sh->lru, &stripes);
4200         }
4201         spin_lock_irq(&conf->device_lock);
4202         if (mddev->delta_disks < 0)
4203                 conf->reshape_progress -= reshape_sectors * new_data_disks;
4204         else
4205                 conf->reshape_progress += reshape_sectors * new_data_disks;
4206         spin_unlock_irq(&conf->device_lock);
4207         /* Ok, those stripe are ready. We can start scheduling
4208          * reads on the source stripes.
4209          * The source stripes are determined by mapping the first and last
4210          * block on the destination stripes.
4211          */
4212         first_sector =
4213                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4214                                      1, &dd_idx, NULL);
4215         last_sector =
4216                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4217                                             * new_data_disks - 1),
4218                                      1, &dd_idx, NULL);
4219         if (last_sector >= mddev->dev_sectors)
4220                 last_sector = mddev->dev_sectors - 1;
4221         while (first_sector <= last_sector) {
4222                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4223                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4224                 set_bit(STRIPE_HANDLE, &sh->state);
4225                 release_stripe(sh);
4226                 first_sector += STRIPE_SECTORS;
4227         }
4228         /* Now that the sources are clearly marked, we can release
4229          * the destination stripes
4230          */
4231         while (!list_empty(&stripes)) {
4232                 sh = list_entry(stripes.next, struct stripe_head, lru);
4233                 list_del_init(&sh->lru);
4234                 release_stripe(sh);
4235         }
4236         /* If this takes us to the resync_max point where we have to pause,
4237          * then we need to write out the superblock.
4238          */
4239         sector_nr += reshape_sectors;
4240         if ((sector_nr - mddev->curr_resync_completed) * 2
4241             >= mddev->resync_max - mddev->curr_resync_completed) {
4242                 /* Cannot proceed until we've updated the superblock... */
4243                 wait_event(conf->wait_for_overlap,
4244                            atomic_read(&conf->reshape_stripes) == 0);
4245                 mddev->reshape_position = conf->reshape_progress;
4246                 mddev->curr_resync_completed = mddev->curr_resync + reshape_sectors;
4247                 conf->reshape_checkpoint = jiffies;
4248                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4249                 md_wakeup_thread(mddev->thread);
4250                 wait_event(mddev->sb_wait,
4251                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4252                            || kthread_should_stop());
4253                 spin_lock_irq(&conf->device_lock);
4254                 conf->reshape_safe = mddev->reshape_position;
4255                 spin_unlock_irq(&conf->device_lock);
4256                 wake_up(&conf->wait_for_overlap);
4257                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4258         }
4259         return reshape_sectors;
4260 }
4261
4262 /* FIXME go_faster isn't used */
4263 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4264 {
4265         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4266         struct stripe_head *sh;
4267         sector_t max_sector = mddev->dev_sectors;
4268         int sync_blocks;
4269         int still_degraded = 0;
4270         int i;
4271
4272         if (sector_nr >= max_sector) {
4273                 /* just being told to finish up .. nothing much to do */
4274                 unplug_slaves(mddev);
4275
4276                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4277                         end_reshape(conf);
4278                         return 0;
4279                 }
4280
4281                 if (mddev->curr_resync < max_sector) /* aborted */
4282                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4283                                         &sync_blocks, 1);
4284                 else /* completed sync */
4285                         conf->fullsync = 0;
4286                 bitmap_close_sync(mddev->bitmap);
4287
4288                 return 0;
4289         }
4290
4291         /* Allow raid5_quiesce to complete */
4292         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4293
4294         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4295                 return reshape_request(mddev, sector_nr, skipped);
4296
4297         /* No need to check resync_max as we never do more than one
4298          * stripe, and as resync_max will always be on a chunk boundary,
4299          * if the check in md_do_sync didn't fire, there is no chance
4300          * of overstepping resync_max here
4301          */
4302
4303         /* if there is too many failed drives and we are trying
4304          * to resync, then assert that we are finished, because there is
4305          * nothing we can do.
4306          */
4307         if (mddev->degraded >= conf->max_degraded &&
4308             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4309                 sector_t rv = mddev->dev_sectors - sector_nr;
4310                 *skipped = 1;
4311                 return rv;
4312         }
4313         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4314             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4315             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4316                 /* we can skip this block, and probably more */
4317                 sync_blocks /= STRIPE_SECTORS;
4318                 *skipped = 1;
4319                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4320         }
4321
4322
4323         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4324
4325         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4326         if (sh == NULL) {
4327                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4328                 /* make sure we don't swamp the stripe cache if someone else
4329                  * is trying to get access
4330                  */
4331                 schedule_timeout_uninterruptible(1);
4332         }
4333         /* Need to check if array will still be degraded after recovery/resync
4334          * We don't need to check the 'failed' flag as when that gets set,
4335          * recovery aborts.
4336          */
4337         for (i = 0; i < conf->raid_disks; i++)
4338                 if (conf->disks[i].rdev == NULL)
4339                         still_degraded = 1;
4340
4341         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4342
4343         spin_lock(&sh->lock);
4344         set_bit(STRIPE_SYNCING, &sh->state);
4345         clear_bit(STRIPE_INSYNC, &sh->state);
4346         spin_unlock(&sh->lock);
4347
4348         handle_stripe(sh);
4349         release_stripe(sh);
4350
4351         return STRIPE_SECTORS;
4352 }
4353
4354 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4355 {
4356         /* We may not be able to submit a whole bio at once as there
4357          * may not be enough stripe_heads available.
4358          * We cannot pre-allocate enough stripe_heads as we may need
4359          * more than exist in the cache (if we allow ever large chunks).
4360          * So we do one stripe head at a time and record in
4361          * ->bi_hw_segments how many have been done.
4362          *
4363          * We *know* that this entire raid_bio is in one chunk, so
4364          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4365          */
4366         struct stripe_head *sh;
4367         int dd_idx;
4368         sector_t sector, logical_sector, last_sector;
4369         int scnt = 0;
4370         int remaining;
4371         int handled = 0;
4372
4373         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4374         sector = raid5_compute_sector(conf, logical_sector,
4375                                       0, &dd_idx, NULL);
4376         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4377
4378         for (; logical_sector < last_sector;
4379              logical_sector += STRIPE_SECTORS,
4380                      sector += STRIPE_SECTORS,
4381                      scnt++) {
4382
4383                 if (scnt < raid5_bi_hw_segments(raid_bio))
4384                         /* already done this stripe */
4385                         continue;
4386
4387                 sh = get_active_stripe(conf, sector, 0, 1, 0);
4388
4389                 if (!sh) {
4390                         /* failed to get a stripe - must wait */
4391                         raid5_set_bi_hw_segments(raid_bio, scnt);
4392                         conf->retry_read_aligned = raid_bio;
4393                         return handled;
4394                 }
4395
4396                 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4397                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4398                         release_stripe(sh);
4399                         raid5_set_bi_hw_segments(raid_bio, scnt);
4400                         conf->retry_read_aligned = raid_bio;
4401                         return handled;
4402                 }
4403
4404                 handle_stripe(sh);
4405                 release_stripe(sh);
4406                 handled++;
4407         }
4408         spin_lock_irq(&conf->device_lock);
4409         remaining = raid5_dec_bi_phys_segments(raid_bio);
4410         spin_unlock_irq(&conf->device_lock);
4411         if (remaining == 0)
4412                 bio_endio(raid_bio, 0);
4413         if (atomic_dec_and_test(&conf->active_aligned_reads))
4414                 wake_up(&conf->wait_for_stripe);
4415         return handled;
4416 }
4417
4418
4419 /*
4420  * This is our raid5 kernel thread.
4421  *
4422  * We scan the hash table for stripes which can be handled now.
4423  * During the scan, completed stripes are saved for us by the interrupt
4424  * handler, so that they will not have to wait for our next wakeup.
4425  */
4426 static void raid5d(mddev_t *mddev)
4427 {
4428         struct stripe_head *sh;
4429         raid5_conf_t *conf = mddev->private;
4430         int handled;
4431
4432         pr_debug("+++ raid5d active\n");
4433
4434         md_check_recovery(mddev);
4435
4436         handled = 0;
4437         spin_lock_irq(&conf->device_lock);
4438         while (1) {
4439                 struct bio *bio;
4440
4441                 if (conf->seq_flush != conf->seq_write) {
4442                         int seq = conf->seq_flush;
4443                         spin_unlock_irq(&conf->device_lock);
4444                         bitmap_unplug(mddev->bitmap);
4445                         spin_lock_irq(&conf->device_lock);
4446                         conf->seq_write = seq;
4447                         activate_bit_delay(conf);
4448                 }
4449
4450                 while ((bio = remove_bio_from_retry(conf))) {
4451                         int ok;
4452                         spin_unlock_irq(&conf->device_lock);
4453                         ok = retry_aligned_read(conf, bio);
4454                         spin_lock_irq(&conf->device_lock);
4455                         if (!ok)
4456                                 break;
4457                         handled++;
4458                 }
4459
4460                 sh = __get_priority_stripe(conf);
4461
4462                 if (!sh)
4463                         break;
4464                 spin_unlock_irq(&conf->device_lock);
4465                 
4466                 handled++;
4467                 handle_stripe(sh);
4468                 release_stripe(sh);
4469                 cond_resched();
4470
4471                 spin_lock_irq(&conf->device_lock);
4472         }
4473         pr_debug("%d stripes handled\n", handled);
4474
4475         spin_unlock_irq(&conf->device_lock);
4476
4477         async_tx_issue_pending_all();
4478         unplug_slaves(mddev);
4479
4480         pr_debug("--- raid5d inactive\n");
4481 }
4482
4483 static ssize_t
4484 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4485 {
4486         raid5_conf_t *conf = mddev->private;
4487         if (conf)
4488                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4489         else
4490                 return 0;
4491 }
4492
4493 static ssize_t
4494 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4495 {
4496         raid5_conf_t *conf = mddev->private;
4497         unsigned long new;
4498         int err;
4499
4500         if (len >= PAGE_SIZE)
4501                 return -EINVAL;
4502         if (!conf)
4503                 return -ENODEV;
4504
4505         if (strict_strtoul(page, 10, &new))
4506                 return -EINVAL;
4507         if (new <= 16 || new > 32768)
4508                 return -EINVAL;
4509         while (new < conf->max_nr_stripes) {
4510                 if (drop_one_stripe(conf))
4511                         conf->max_nr_stripes--;
4512                 else
4513                         break;
4514         }
4515         err = md_allow_write(mddev);
4516         if (err)
4517                 return err;
4518         while (new > conf->max_nr_stripes) {
4519                 if (grow_one_stripe(conf))
4520                         conf->max_nr_stripes++;
4521                 else break;
4522         }
4523         return len;
4524 }
4525
4526 static struct md_sysfs_entry
4527 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4528                                 raid5_show_stripe_cache_size,
4529                                 raid5_store_stripe_cache_size);
4530
4531 static ssize_t
4532 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4533 {
4534         raid5_conf_t *conf = mddev->private;
4535         if (conf)
4536                 return sprintf(page, "%d\n", conf->bypass_threshold);
4537         else
4538                 return 0;
4539 }
4540
4541 static ssize_t
4542 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4543 {
4544         raid5_conf_t *conf = mddev->private;
4545         unsigned long new;
4546         if (len >= PAGE_SIZE)
4547                 return -EINVAL;
4548         if (!conf)
4549                 return -ENODEV;
4550
4551         if (strict_strtoul(page, 10, &new))
4552                 return -EINVAL;
4553         if (new > conf->max_nr_stripes)
4554                 return -EINVAL;
4555         conf->bypass_threshold = new;
4556         return len;
4557 }
4558
4559 static struct md_sysfs_entry
4560 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4561                                         S_IRUGO | S_IWUSR,
4562                                         raid5_show_preread_threshold,
4563                                         raid5_store_preread_threshold);
4564
4565 static ssize_t
4566 stripe_cache_active_show(mddev_t *mddev, char *page)
4567 {
4568         raid5_conf_t *conf = mddev->private;
4569         if (conf)
4570                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4571         else
4572                 return 0;
4573 }
4574
4575 static struct md_sysfs_entry
4576 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4577
4578 static struct attribute *raid5_attrs[] =  {
4579         &raid5_stripecache_size.attr,
4580         &raid5_stripecache_active.attr,
4581         &raid5_preread_bypass_threshold.attr,
4582         NULL,
4583 };
4584 static struct attribute_group raid5_attrs_group = {
4585         .name = NULL,
4586         .attrs = raid5_attrs,
4587 };
4588
4589 static sector_t
4590 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4591 {
4592         raid5_conf_t *conf = mddev->private;
4593
4594         if (!sectors)
4595                 sectors = mddev->dev_sectors;
4596         if (!raid_disks)
4597                 /* size is defined by the smallest of previous and new size */
4598                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4599
4600         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4601         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4602         return sectors * (raid_disks - conf->max_degraded);
4603 }
4604
4605 static void raid5_free_percpu(raid5_conf_t *conf)
4606 {
4607         struct raid5_percpu *percpu;
4608         unsigned long cpu;
4609
4610         if (!conf->percpu)
4611                 return;
4612
4613         get_online_cpus();
4614         for_each_possible_cpu(cpu) {
4615                 percpu = per_cpu_ptr(conf->percpu, cpu);
4616                 safe_put_page(percpu->spare_page);
4617                 kfree(percpu->scribble);
4618         }
4619 #ifdef CONFIG_HOTPLUG_CPU
4620         unregister_cpu_notifier(&conf->cpu_notify);
4621 #endif
4622         put_online_cpus();
4623
4624         free_percpu(conf->percpu);
4625 }
4626
4627 static void free_conf(raid5_conf_t *conf)
4628 {
4629         shrink_stripes(conf);
4630         raid5_free_percpu(conf);
4631         kfree(conf->disks);
4632         kfree(conf->stripe_hashtbl);
4633         kfree(conf);
4634 }
4635
4636 #ifdef CONFIG_HOTPLUG_CPU
4637 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4638                               void *hcpu)
4639 {
4640         raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4641         long cpu = (long)hcpu;
4642         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4643
4644         switch (action) {
4645         case CPU_UP_PREPARE:
4646         case CPU_UP_PREPARE_FROZEN:
4647                 if (conf->level == 6 && !percpu->spare_page)
4648                         percpu->spare_page = alloc_page(GFP_KERNEL);
4649                 if (!percpu->scribble)
4650                         percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4651
4652                 if (!percpu->scribble ||
4653                     (conf->level == 6 && !percpu->spare_page)) {
4654                         safe_put_page(percpu->spare_page);
4655                         kfree(percpu->scribble);
4656                         pr_err("%s: failed memory allocation for cpu%ld\n",
4657                                __func__, cpu);
4658                         return NOTIFY_BAD;
4659                 }
4660                 break;
4661         case CPU_DEAD:
4662         case CPU_DEAD_FROZEN:
4663                 safe_put_page(percpu->spare_page);
4664                 kfree(percpu->scribble);
4665                 percpu->spare_page = NULL;
4666                 percpu->scribble = NULL;
4667                 break;
4668         default:
4669                 break;
4670         }
4671         return NOTIFY_OK;
4672 }
4673 #endif
4674
4675 static int raid5_alloc_percpu(raid5_conf_t *conf)
4676 {
4677         unsigned long cpu;
4678         struct page *spare_page;
4679         struct raid5_percpu __percpu *allcpus;
4680         void *scribble;
4681         int err;
4682
4683         allcpus = alloc_percpu(struct raid5_percpu);
4684         if (!allcpus)
4685                 return -ENOMEM;
4686         conf->percpu = allcpus;
4687
4688         get_online_cpus();
4689         err = 0;
4690         for_each_present_cpu(cpu) {
4691                 if (conf->level == 6) {
4692                         spare_page = alloc_page(GFP_KERNEL);
4693                         if (!spare_page) {
4694                                 err = -ENOMEM;
4695                                 break;
4696                         }
4697                         per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4698                 }
4699                 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4700                 if (!scribble) {
4701                         err = -ENOMEM;
4702                         break;
4703                 }
4704                 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4705         }
4706 #ifdef CONFIG_HOTPLUG_CPU
4707         conf->cpu_notify.notifier_call = raid456_cpu_notify;
4708         conf->cpu_notify.priority = 0;
4709         if (err == 0)
4710                 err = register_cpu_notifier(&conf->cpu_notify);
4711 #endif
4712         put_online_cpus();
4713
4714         return err;
4715 }
4716
4717 static raid5_conf_t *setup_conf(mddev_t *mddev)
4718 {
4719         raid5_conf_t *conf;
4720         int raid_disk, memory, max_disks;
4721         mdk_rdev_t *rdev;
4722         struct disk_info *disk;
4723
4724         if (mddev->new_level != 5
4725             && mddev->new_level != 4
4726             && mddev->new_level != 6) {
4727                 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4728                        mdname(mddev), mddev->new_level);
4729                 return ERR_PTR(-EIO);
4730         }
4731         if ((mddev->new_level == 5
4732              && !algorithm_valid_raid5(mddev->new_layout)) ||
4733             (mddev->new_level == 6
4734              && !algorithm_valid_raid6(mddev->new_layout))) {
4735                 printk(KERN_ERR "raid5: %s: layout %d not supported\n",
4736                        mdname(mddev), mddev->new_layout);
4737                 return ERR_PTR(-EIO);
4738         }
4739         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4740                 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4741                        mdname(mddev), mddev->raid_disks);
4742                 return ERR_PTR(-EINVAL);
4743         }
4744
4745         if (!mddev->new_chunk_sectors ||
4746             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4747             !is_power_of_2(mddev->new_chunk_sectors)) {
4748                 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4749                        mddev->new_chunk_sectors << 9, mdname(mddev));
4750                 return ERR_PTR(-EINVAL);
4751         }
4752
4753         conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4754         if (conf == NULL)
4755                 goto abort;
4756         spin_lock_init(&conf->device_lock);
4757         init_waitqueue_head(&conf->wait_for_stripe);
4758         init_waitqueue_head(&conf->wait_for_overlap);
4759         INIT_LIST_HEAD(&conf->handle_list);
4760         INIT_LIST_HEAD(&conf->hold_list);
4761         INIT_LIST_HEAD(&conf->delayed_list);
4762         INIT_LIST_HEAD(&conf->bitmap_list);
4763         INIT_LIST_HEAD(&conf->inactive_list);
4764         atomic_set(&conf->active_stripes, 0);
4765         atomic_set(&conf->preread_active_stripes, 0);
4766         atomic_set(&conf->active_aligned_reads, 0);
4767         conf->bypass_threshold = BYPASS_THRESHOLD;
4768
4769         conf->raid_disks = mddev->raid_disks;
4770         if (mddev->reshape_position == MaxSector)
4771                 conf->previous_raid_disks = mddev->raid_disks;
4772         else
4773                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4774         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4775         conf->scribble_len = scribble_len(max_disks);
4776
4777         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4778                               GFP_KERNEL);
4779         if (!conf->disks)
4780                 goto abort;
4781
4782         conf->mddev = mddev;
4783
4784         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4785                 goto abort;
4786
4787         conf->level = mddev->new_level;
4788         if (raid5_alloc_percpu(conf) != 0)
4789                 goto abort;
4790
4791         pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4792
4793         list_for_each_entry(rdev, &mddev->disks, same_set) {
4794                 raid_disk = rdev->raid_disk;
4795                 if (raid_disk >= max_disks
4796                     || raid_disk < 0)
4797                         continue;
4798                 disk = conf->disks + raid_disk;
4799
4800                 disk->rdev = rdev;
4801
4802                 if (test_bit(In_sync, &rdev->flags)) {
4803                         char b[BDEVNAME_SIZE];
4804                         printk(KERN_INFO "raid5: device %s operational as raid"
4805                                 " disk %d\n", bdevname(rdev->bdev,b),
4806                                 raid_disk);
4807                 } else
4808                         /* Cannot rely on bitmap to complete recovery */
4809                         conf->fullsync = 1;
4810         }
4811
4812         conf->chunk_sectors = mddev->new_chunk_sectors;
4813         conf->level = mddev->new_level;
4814         if (conf->level == 6)
4815                 conf->max_degraded = 2;
4816         else
4817                 conf->max_degraded = 1;
4818         conf->algorithm = mddev->new_layout;
4819         conf->max_nr_stripes = NR_STRIPES;
4820         conf->reshape_progress = mddev->reshape_position;
4821         if (conf->reshape_progress != MaxSector) {
4822                 conf->prev_chunk_sectors = mddev->chunk_sectors;
4823                 conf->prev_algo = mddev->layout;
4824         }
4825
4826         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4827                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4828         if (grow_stripes(conf, conf->max_nr_stripes)) {
4829                 printk(KERN_ERR
4830                         "raid5: couldn't allocate %dkB for buffers\n", memory);
4831                 goto abort;
4832         } else
4833                 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4834                         memory, mdname(mddev));
4835
4836         conf->thread = md_register_thread(raid5d, mddev, NULL);
4837         if (!conf->thread) {
4838                 printk(KERN_ERR
4839                        "raid5: couldn't allocate thread for %s\n",
4840                        mdname(mddev));
4841                 goto abort;
4842         }
4843
4844         return conf;
4845
4846  abort:
4847         if (conf) {
4848                 free_conf(conf);
4849                 return ERR_PTR(-EIO);
4850         } else
4851                 return ERR_PTR(-ENOMEM);
4852 }
4853
4854
4855 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4856 {
4857         switch (algo) {
4858         case ALGORITHM_PARITY_0:
4859                 if (raid_disk < max_degraded)
4860                         return 1;
4861                 break;
4862         case ALGORITHM_PARITY_N:
4863                 if (raid_disk >= raid_disks - max_degraded)
4864                         return 1;
4865                 break;
4866         case ALGORITHM_PARITY_0_6:
4867                 if (raid_disk == 0 || 
4868                     raid_disk == raid_disks - 1)
4869                         return 1;
4870                 break;
4871         case ALGORITHM_LEFT_ASYMMETRIC_6:
4872         case ALGORITHM_RIGHT_ASYMMETRIC_6:
4873         case ALGORITHM_LEFT_SYMMETRIC_6:
4874         case ALGORITHM_RIGHT_SYMMETRIC_6:
4875                 if (raid_disk == raid_disks - 1)
4876                         return 1;
4877         }
4878         return 0;
4879 }
4880
4881 static int run(mddev_t *mddev)
4882 {
4883         raid5_conf_t *conf;
4884         int working_disks = 0, chunk_size;
4885         int dirty_parity_disks = 0;
4886         mdk_rdev_t *rdev;
4887         sector_t reshape_offset = 0;
4888
4889         if (mddev->recovery_cp != MaxSector)
4890                 printk(KERN_NOTICE "raid5: %s is not clean"
4891                        " -- starting background reconstruction\n",
4892                        mdname(mddev));
4893         if (mddev->reshape_position != MaxSector) {
4894                 /* Check that we can continue the reshape.
4895                  * Currently only disks can change, it must
4896                  * increase, and we must be past the point where
4897                  * a stripe over-writes itself
4898                  */
4899                 sector_t here_new, here_old;
4900                 int old_disks;
4901                 int max_degraded = (mddev->level == 6 ? 2 : 1);
4902
4903                 if (mddev->new_level != mddev->level) {
4904                         printk(KERN_ERR "raid5: %s: unsupported reshape "
4905                                "required - aborting.\n",
4906                                mdname(mddev));
4907                         return -EINVAL;
4908                 }
4909                 old_disks = mddev->raid_disks - mddev->delta_disks;
4910                 /* reshape_position must be on a new-stripe boundary, and one
4911                  * further up in new geometry must map after here in old
4912                  * geometry.
4913                  */
4914                 here_new = mddev->reshape_position;
4915                 if (sector_div(here_new, mddev->new_chunk_sectors *
4916                                (mddev->raid_disks - max_degraded))) {
4917                         printk(KERN_ERR "raid5: reshape_position not "
4918                                "on a stripe boundary\n");
4919                         return -EINVAL;
4920                 }
4921                 reshape_offset = here_new * mddev->new_chunk_sectors;
4922                 /* here_new is the stripe we will write to */
4923                 here_old = mddev->reshape_position;
4924                 sector_div(here_old, mddev->chunk_sectors *
4925                            (old_disks-max_degraded));
4926                 /* here_old is the first stripe that we might need to read
4927                  * from */
4928                 if (mddev->delta_disks == 0) {
4929                         /* We cannot be sure it is safe to start an in-place
4930                          * reshape.  It is only safe if user-space if monitoring
4931                          * and taking constant backups.
4932                          * mdadm always starts a situation like this in
4933                          * readonly mode so it can take control before
4934                          * allowing any writes.  So just check for that.
4935                          */
4936                         if ((here_new * mddev->new_chunk_sectors != 
4937                              here_old * mddev->chunk_sectors) ||
4938                             mddev->ro == 0) {
4939                                 printk(KERN_ERR "raid5: in-place reshape must be started"
4940                                        " in read-only mode - aborting\n");
4941                                 return -EINVAL;
4942                         }
4943                 } else if (mddev->delta_disks < 0
4944                     ? (here_new * mddev->new_chunk_sectors <=
4945                        here_old * mddev->chunk_sectors)
4946                     : (here_new * mddev->new_chunk_sectors >=
4947                        here_old * mddev->chunk_sectors)) {
4948                         /* Reading from the same stripe as writing to - bad */
4949                         printk(KERN_ERR "raid5: reshape_position too early for "
4950                                "auto-recovery - aborting.\n");
4951                         return -EINVAL;
4952                 }
4953                 printk(KERN_INFO "raid5: reshape will continue\n");
4954                 /* OK, we should be able to continue; */
4955         } else {
4956                 BUG_ON(mddev->level != mddev->new_level);
4957                 BUG_ON(mddev->layout != mddev->new_layout);
4958                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
4959                 BUG_ON(mddev->delta_disks != 0);
4960         }
4961
4962         if (mddev->private == NULL)
4963                 conf = setup_conf(mddev);
4964         else
4965                 conf = mddev->private;
4966
4967         if (IS_ERR(conf))
4968                 return PTR_ERR(conf);
4969
4970         mddev->thread = conf->thread;
4971         conf->thread = NULL;
4972         mddev->private = conf;
4973
4974         /*
4975          * 0 for a fully functional array, 1 or 2 for a degraded array.
4976          */
4977         list_for_each_entry(rdev, &mddev->disks, same_set) {
4978                 if (rdev->raid_disk < 0)
4979                         continue;
4980                 if (test_bit(In_sync, &rdev->flags))
4981                         working_disks++;
4982                 /* This disc is not fully in-sync.  However if it
4983                  * just stored parity (beyond the recovery_offset),
4984                  * when we don't need to be concerned about the
4985                  * array being dirty.
4986                  * When reshape goes 'backwards', we never have
4987                  * partially completed devices, so we only need
4988                  * to worry about reshape going forwards.
4989                  */
4990                 /* Hack because v0.91 doesn't store recovery_offset properly. */
4991                 if (mddev->major_version == 0 &&
4992                     mddev->minor_version > 90)
4993                         rdev->recovery_offset = reshape_offset;
4994                         
4995                 printk("%d: w=%d pa=%d pr=%d m=%d a=%d r=%d op1=%d op2=%d\n",
4996                        rdev->raid_disk, working_disks, conf->prev_algo,
4997                        conf->previous_raid_disks, conf->max_degraded,
4998                        conf->algorithm, conf->raid_disks, 
4999                        only_parity(rdev->raid_disk,
5000                                    conf->prev_algo,
5001                                    conf->previous_raid_disks,
5002                                    conf->max_degraded),
5003                        only_parity(rdev->raid_disk,
5004                                    conf->algorithm,
5005                                    conf->raid_disks,
5006                                    conf->max_degraded));
5007                 if (rdev->recovery_offset < reshape_offset) {
5008                         /* We need to check old and new layout */
5009                         if (!only_parity(rdev->raid_disk,
5010                                          conf->algorithm,
5011                                          conf->raid_disks,
5012                                          conf->max_degraded))
5013                                 continue;
5014                 }
5015                 if (!only_parity(rdev->raid_disk,
5016                                  conf->prev_algo,
5017                                  conf->previous_raid_disks,
5018                                  conf->max_degraded))
5019                         continue;
5020                 dirty_parity_disks++;
5021         }
5022
5023         mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
5024                            - working_disks);
5025
5026         if (mddev->degraded > conf->max_degraded) {
5027                 printk(KERN_ERR "raid5: not enough operational devices for %s"
5028                         " (%d/%d failed)\n",
5029                         mdname(mddev), mddev->degraded, conf->raid_disks);
5030                 goto abort;
5031         }
5032
5033         /* device size must be a multiple of chunk size */
5034         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5035         mddev->resync_max_sectors = mddev->dev_sectors;
5036
5037         if (mddev->degraded > dirty_parity_disks &&
5038             mddev->recovery_cp != MaxSector) {
5039                 if (mddev->ok_start_degraded)
5040                         printk(KERN_WARNING
5041                                "raid5: starting dirty degraded array: %s"
5042                                "- data corruption possible.\n",
5043                                mdname(mddev));
5044                 else {
5045                         printk(KERN_ERR
5046                                "raid5: cannot start dirty degraded array for %s\n",
5047                                mdname(mddev));
5048                         goto abort;
5049                 }
5050         }
5051
5052         if (mddev->degraded == 0)
5053                 printk("raid5: raid level %d set %s active with %d out of %d"
5054                        " devices, algorithm %d\n", conf->level, mdname(mddev),
5055                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5056                        mddev->new_layout);
5057         else
5058                 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
5059                         " out of %d devices, algorithm %d\n", conf->level,
5060                         mdname(mddev), mddev->raid_disks - mddev->degraded,
5061                         mddev->raid_disks, mddev->new_layout);
5062
5063         print_raid5_conf(conf);
5064
5065         if (conf->reshape_progress != MaxSector) {
5066                 printk("...ok start reshape thread\n");
5067                 conf->reshape_safe = conf->reshape_progress;
5068                 atomic_set(&conf->reshape_stripes, 0);
5069                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5070                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5071                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5072                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5073                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5074                                                         "reshape");
5075         }
5076
5077         /* read-ahead size must cover two whole stripes, which is
5078          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5079          */
5080         {
5081                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5082                 int stripe = data_disks *
5083                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5084                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5085                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5086         }
5087
5088         /* Ok, everything is just fine now */
5089         if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5090                 printk(KERN_WARNING
5091                        "raid5: failed to create sysfs attributes for %s\n",
5092                        mdname(mddev));
5093
5094         mddev->queue->queue_lock = &conf->device_lock;
5095
5096         mddev->queue->unplug_fn = raid5_unplug_device;
5097         mddev->queue->backing_dev_info.congested_data = mddev;
5098         mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5099
5100         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5101
5102         blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5103         chunk_size = mddev->chunk_sectors << 9;
5104         blk_queue_io_min(mddev->queue, chunk_size);
5105         blk_queue_io_opt(mddev->queue, chunk_size *
5106                          (conf->raid_disks - conf->max_degraded));
5107
5108         list_for_each_entry(rdev, &mddev->disks, same_set)
5109                 disk_stack_limits(mddev->gendisk, rdev->bdev,
5110                                   rdev->data_offset << 9);
5111
5112         return 0;
5113 abort:
5114         md_unregister_thread(mddev->thread);
5115         mddev->thread = NULL;
5116         if (conf) {
5117                 print_raid5_conf(conf);
5118                 free_conf(conf);
5119         }
5120         mddev->private = NULL;
5121         printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
5122         return -EIO;
5123 }
5124
5125
5126
5127 static int stop(mddev_t *mddev)
5128 {
5129         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
5130
5131         md_unregister_thread(mddev->thread);
5132         mddev->thread = NULL;
5133         mddev->queue->backing_dev_info.congested_fn = NULL;
5134         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5135         free_conf(conf);
5136         mddev->private = &raid5_attrs_group;
5137         return 0;
5138 }
5139
5140 #ifdef DEBUG
5141 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
5142 {
5143         int i;
5144
5145         seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
5146                    (unsigned long long)sh->sector, sh->pd_idx, sh->state);
5147         seq_printf(seq, "sh %llu,  count %d.\n",
5148                    (unsigned long long)sh->sector, atomic_read(&sh->count));
5149         seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5150         for (i = 0; i < sh->disks; i++) {
5151                 seq_printf(seq, "(cache%d: %p %ld) ",
5152                            i, sh->dev[i].page, sh->dev[i].flags);
5153         }
5154         seq_printf(seq, "\n");
5155 }
5156
5157 static void printall(struct seq_file *seq, raid5_conf_t *conf)
5158 {
5159         struct stripe_head *sh;
5160         struct hlist_node *hn;
5161         int i;
5162
5163         spin_lock_irq(&conf->device_lock);
5164         for (i = 0; i < NR_HASH; i++) {
5165                 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
5166                         if (sh->raid_conf != conf)
5167                                 continue;
5168                         print_sh(seq, sh);
5169                 }
5170         }
5171         spin_unlock_irq(&conf->device_lock);
5172 }
5173 #endif
5174
5175 static void status(struct seq_file *seq, mddev_t *mddev)
5176 {
5177         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
5178         int i;
5179
5180         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5181                 mddev->chunk_sectors / 2, mddev->layout);
5182         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5183         for (i = 0; i < conf->raid_disks; i++)
5184                 seq_printf (seq, "%s",
5185                                conf->disks[i].rdev &&
5186                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5187         seq_printf (seq, "]");
5188 #ifdef DEBUG
5189         seq_printf (seq, "\n");
5190         printall(seq, conf);
5191 #endif
5192 }
5193
5194 static void print_raid5_conf (raid5_conf_t *conf)
5195 {
5196         int i;
5197         struct disk_info *tmp;
5198
5199         printk("RAID5 conf printout:\n");
5200         if (!conf) {
5201                 printk("(conf==NULL)\n");
5202                 return;
5203         }
5204         printk(" --- rd:%d wd:%d\n", conf->raid_disks,
5205                  conf->raid_disks - conf->mddev->degraded);
5206
5207         for (i = 0; i < conf->raid_disks; i++) {
5208                 char b[BDEVNAME_SIZE];
5209                 tmp = conf->disks + i;
5210                 if (tmp->rdev)
5211                 printk(" disk %d, o:%d, dev:%s\n",
5212                         i, !test_bit(Faulty, &tmp->rdev->flags),
5213                         bdevname(tmp->rdev->bdev,b));
5214         }
5215 }
5216
5217 static int raid5_spare_active(mddev_t *mddev)
5218 {
5219         int i;
5220         raid5_conf_t *conf = mddev->private;
5221         struct disk_info *tmp;
5222
5223         for (i = 0; i < conf->raid_disks; i++) {
5224                 tmp = conf->disks + i;
5225                 if (tmp->rdev
5226                     && !test_bit(Faulty, &tmp->rdev->flags)
5227                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5228                         unsigned long flags;
5229                         spin_lock_irqsave(&conf->device_lock, flags);
5230                         mddev->degraded--;
5231                         spin_unlock_irqrestore(&conf->device_lock, flags);
5232                 }
5233         }
5234         print_raid5_conf(conf);
5235         return 0;
5236 }
5237
5238 static int raid5_remove_disk(mddev_t *mddev, int number)
5239 {
5240         raid5_conf_t *conf = mddev->private;
5241         int err = 0;
5242         mdk_rdev_t *rdev;
5243         struct disk_info *p = conf->disks + number;
5244
5245         print_raid5_conf(conf);
5246         rdev = p->rdev;
5247         if (rdev) {
5248                 if (number >= conf->raid_disks &&
5249                     conf->reshape_progress == MaxSector)
5250                         clear_bit(In_sync, &rdev->flags);
5251
5252                 if (test_bit(In_sync, &rdev->flags) ||
5253                     atomic_read(&rdev->nr_pending)) {
5254                         err = -EBUSY;
5255                         goto abort;
5256                 }
5257                 /* Only remove non-faulty devices if recovery
5258                  * isn't possible.
5259                  */
5260                 if (!test_bit(Faulty, &rdev->flags) &&
5261                     mddev->degraded <= conf->max_degraded &&
5262                     number < conf->raid_disks) {
5263                         err = -EBUSY;
5264                         goto abort;
5265                 }
5266                 p->rdev = NULL;
5267                 synchronize_rcu();
5268                 if (atomic_read(&rdev->nr_pending)) {
5269                         /* lost the race, try later */
5270                         err = -EBUSY;
5271                         p->rdev = rdev;
5272                 }
5273         }
5274 abort:
5275
5276         print_raid5_conf(conf);
5277         return err;
5278 }
5279
5280 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5281 {
5282         raid5_conf_t *conf = mddev->private;
5283         int err = -EEXIST;
5284         int disk;
5285         struct disk_info *p;
5286         int first = 0;
5287         int last = conf->raid_disks - 1;
5288
5289         if (mddev->degraded > conf->max_degraded)
5290                 /* no point adding a device */
5291                 return -EINVAL;
5292
5293         if (rdev->raid_disk >= 0)
5294                 first = last = rdev->raid_disk;
5295
5296         /*
5297          * find the disk ... but prefer rdev->saved_raid_disk
5298          * if possible.
5299          */
5300         if (rdev->saved_raid_disk >= 0 &&
5301             rdev->saved_raid_disk >= first &&
5302             conf->disks[rdev->saved_raid_disk].rdev == NULL)
5303                 disk = rdev->saved_raid_disk;
5304         else
5305                 disk = first;
5306         for ( ; disk <= last ; disk++)
5307                 if ((p=conf->disks + disk)->rdev == NULL) {
5308                         clear_bit(In_sync, &rdev->flags);
5309                         rdev->raid_disk = disk;
5310                         err = 0;
5311                         if (rdev->saved_raid_disk != disk)
5312                                 conf->fullsync = 1;
5313                         rcu_assign_pointer(p->rdev, rdev);
5314                         break;
5315                 }
5316         print_raid5_conf(conf);
5317         return err;
5318 }
5319
5320 static int raid5_resize(mddev_t *mddev, sector_t sectors)
5321 {
5322         /* no resync is happening, and there is enough space
5323          * on all devices, so we can resize.
5324          * We need to make sure resync covers any new space.
5325          * If the array is shrinking we should possibly wait until
5326          * any io in the removed space completes, but it hardly seems
5327          * worth it.
5328          */
5329         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5330         md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5331                                                mddev->raid_disks));
5332         if (mddev->array_sectors >
5333             raid5_size(mddev, sectors, mddev->raid_disks))
5334                 return -EINVAL;
5335         set_capacity(mddev->gendisk, mddev->array_sectors);
5336         mddev->changed = 1;
5337         revalidate_disk(mddev->gendisk);
5338         if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
5339                 mddev->recovery_cp = mddev->dev_sectors;
5340                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5341         }
5342         mddev->dev_sectors = sectors;
5343         mddev->resync_max_sectors = sectors;
5344         return 0;
5345 }
5346
5347 static int check_stripe_cache(mddev_t *mddev)
5348 {
5349         /* Can only proceed if there are plenty of stripe_heads.
5350          * We need a minimum of one full stripe,, and for sensible progress
5351          * it is best to have about 4 times that.
5352          * If we require 4 times, then the default 256 4K stripe_heads will
5353          * allow for chunk sizes up to 256K, which is probably OK.
5354          * If the chunk size is greater, user-space should request more
5355          * stripe_heads first.
5356          */
5357         raid5_conf_t *conf = mddev->private;
5358         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5359             > conf->max_nr_stripes ||
5360             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5361             > conf->max_nr_stripes) {
5362                 printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
5363                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5364                         / STRIPE_SIZE)*4);
5365                 return 0;
5366         }
5367         return 1;
5368 }
5369
5370 static int check_reshape(mddev_t *mddev)
5371 {
5372         raid5_conf_t *conf = mddev->private;
5373
5374         if (mddev->delta_disks == 0 &&
5375             mddev->new_layout == mddev->layout &&
5376             mddev->new_chunk_sectors == mddev->chunk_sectors)
5377                 return 0; /* nothing to do */
5378         if (mddev->bitmap)
5379                 /* Cannot grow a bitmap yet */
5380                 return -EBUSY;
5381         if (mddev->degraded > conf->max_degraded)
5382                 return -EINVAL;
5383         if (mddev->delta_disks < 0) {
5384                 /* We might be able to shrink, but the devices must
5385                  * be made bigger first.
5386                  * For raid6, 4 is the minimum size.
5387                  * Otherwise 2 is the minimum
5388                  */
5389                 int min = 2;
5390                 if (mddev->level == 6)
5391                         min = 4;
5392                 if (mddev->raid_disks + mddev->delta_disks < min)
5393                         return -EINVAL;
5394         }
5395
5396         if (!check_stripe_cache(mddev))
5397                 return -ENOSPC;
5398
5399         return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5400 }
5401
5402 static int raid5_start_reshape(mddev_t *mddev)
5403 {
5404         raid5_conf_t *conf = mddev->private;
5405         mdk_rdev_t *rdev;
5406         int spares = 0;
5407         int added_devices = 0;
5408         unsigned long flags;
5409
5410         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5411                 return -EBUSY;
5412
5413         if (!check_stripe_cache(mddev))
5414                 return -ENOSPC;
5415
5416         list_for_each_entry(rdev, &mddev->disks, same_set)
5417                 if (rdev->raid_disk < 0 &&
5418                     !test_bit(Faulty, &rdev->flags))
5419                         spares++;
5420
5421         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5422                 /* Not enough devices even to make a degraded array
5423                  * of that size
5424                  */
5425                 return -EINVAL;
5426
5427         /* Refuse to reduce size of the array.  Any reductions in
5428          * array size must be through explicit setting of array_size
5429          * attribute.
5430          */
5431         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5432             < mddev->array_sectors) {
5433                 printk(KERN_ERR "md: %s: array size must be reduced "
5434                        "before number of disks\n", mdname(mddev));
5435                 return -EINVAL;
5436         }
5437
5438         atomic_set(&conf->reshape_stripes, 0);
5439         spin_lock_irq(&conf->device_lock);
5440         conf->previous_raid_disks = conf->raid_disks;
5441         conf->raid_disks += mddev->delta_disks;
5442         conf->prev_chunk_sectors = conf->chunk_sectors;
5443         conf->chunk_sectors = mddev->new_chunk_sectors;
5444         conf->prev_algo = conf->algorithm;
5445         conf->algorithm = mddev->new_layout;
5446         if (mddev->delta_disks < 0)
5447                 conf->reshape_progress = raid5_size(mddev, 0, 0);
5448         else
5449                 conf->reshape_progress = 0;
5450         conf->reshape_safe = conf->reshape_progress;
5451         conf->generation++;
5452         spin_unlock_irq(&conf->device_lock);
5453
5454         /* Add some new drives, as many as will fit.
5455          * We know there are enough to make the newly sized array work.
5456          */
5457         list_for_each_entry(rdev, &mddev->disks, same_set)
5458                 if (rdev->raid_disk < 0 &&
5459                     !test_bit(Faulty, &rdev->flags)) {
5460                         if (raid5_add_disk(mddev, rdev) == 0) {
5461                                 char nm[20];
5462                                 if (rdev->raid_disk >= conf->previous_raid_disks) {
5463                                         set_bit(In_sync, &rdev->flags);
5464                                         added_devices++;
5465                                 } else
5466                                         rdev->recovery_offset = 0;
5467                                 sprintf(nm, "rd%d", rdev->raid_disk);
5468                                 if (sysfs_create_link(&mddev->kobj,
5469                                                       &rdev->kobj, nm))
5470                                         printk(KERN_WARNING
5471                                                "raid5: failed to create "
5472                                                " link %s for %s\n",
5473                                                nm, mdname(mddev));
5474                         } else
5475                                 break;
5476                 }
5477
5478         /* When a reshape changes the number of devices, ->degraded
5479          * is measured against the large of the pre and post number of
5480          * devices.*/
5481         if (mddev->delta_disks > 0) {
5482                 spin_lock_irqsave(&conf->device_lock, flags);
5483                 mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5484                         - added_devices;
5485                 spin_unlock_irqrestore(&conf->device_lock, flags);
5486         }
5487         mddev->raid_disks = conf->raid_disks;
5488         mddev->reshape_position = conf->reshape_progress;
5489         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5490
5491         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5492         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5493         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5494         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5495         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5496                                                 "reshape");
5497         if (!mddev->sync_thread) {
5498                 mddev->recovery = 0;
5499                 spin_lock_irq(&conf->device_lock);
5500                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5501                 conf->reshape_progress = MaxSector;
5502                 spin_unlock_irq(&conf->device_lock);
5503                 return -EAGAIN;
5504         }
5505         conf->reshape_checkpoint = jiffies;
5506         md_wakeup_thread(mddev->sync_thread);
5507         md_new_event(mddev);
5508         return 0;
5509 }
5510
5511 /* This is called from the reshape thread and should make any
5512  * changes needed in 'conf'
5513  */
5514 static void end_reshape(raid5_conf_t *conf)
5515 {
5516
5517         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5518
5519                 spin_lock_irq(&conf->device_lock);
5520                 conf->previous_raid_disks = conf->raid_disks;
5521                 conf->reshape_progress = MaxSector;
5522                 spin_unlock_irq(&conf->device_lock);
5523                 wake_up(&conf->wait_for_overlap);
5524
5525                 /* read-ahead size must cover two whole stripes, which is
5526                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5527                  */
5528                 {
5529                         int data_disks = conf->raid_disks - conf->max_degraded;
5530                         int stripe = data_disks * ((conf->chunk_sectors << 9)
5531                                                    / PAGE_SIZE);
5532                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5533                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5534                 }
5535         }
5536 }
5537
5538 /* This is called from the raid5d thread with mddev_lock held.
5539  * It makes config changes to the device.
5540  */
5541 static void raid5_finish_reshape(mddev_t *mddev)
5542 {
5543         raid5_conf_t *conf = mddev->private;
5544
5545         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5546
5547                 if (mddev->delta_disks > 0) {
5548                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5549                         set_capacity(mddev->gendisk, mddev->array_sectors);
5550                         mddev->changed = 1;
5551                         revalidate_disk(mddev->gendisk);
5552                 } else {
5553                         int d;
5554                         mddev->degraded = conf->raid_disks;
5555                         for (d = 0; d < conf->raid_disks ; d++)
5556                                 if (conf->disks[d].rdev &&
5557                                     test_bit(In_sync,
5558                                              &conf->disks[d].rdev->flags))
5559                                         mddev->degraded--;
5560                         for (d = conf->raid_disks ;
5561                              d < conf->raid_disks - mddev->delta_disks;
5562                              d++) {
5563                                 mdk_rdev_t *rdev = conf->disks[d].rdev;
5564                                 if (rdev && raid5_remove_disk(mddev, d) == 0) {
5565                                         char nm[20];
5566                                         sprintf(nm, "rd%d", rdev->raid_disk);
5567                                         sysfs_remove_link(&mddev->kobj, nm);
5568                                         rdev->raid_disk = -1;
5569                                 }
5570                         }
5571                 }
5572                 mddev->layout = conf->algorithm;
5573                 mddev->chunk_sectors = conf->chunk_sectors;
5574                 mddev->reshape_position = MaxSector;
5575                 mddev->delta_disks = 0;
5576         }
5577 }
5578
5579 static void raid5_quiesce(mddev_t *mddev, int state)
5580 {
5581         raid5_conf_t *conf = mddev->private;
5582
5583         switch(state) {
5584         case 2: /* resume for a suspend */
5585                 wake_up(&conf->wait_for_overlap);
5586                 break;
5587
5588         case 1: /* stop all writes */
5589                 spin_lock_irq(&conf->device_lock);
5590                 /* '2' tells resync/reshape to pause so that all
5591                  * active stripes can drain
5592                  */
5593                 conf->quiesce = 2;
5594                 wait_event_lock_irq(conf->wait_for_stripe,
5595                                     atomic_read(&conf->active_stripes) == 0 &&
5596                                     atomic_read(&conf->active_aligned_reads) == 0,
5597                                     conf->device_lock, /* nothing */);
5598                 conf->quiesce = 1;
5599                 spin_unlock_irq(&conf->device_lock);
5600                 /* allow reshape to continue */
5601                 wake_up(&conf->wait_for_overlap);
5602                 break;
5603
5604         case 0: /* re-enable writes */
5605                 spin_lock_irq(&conf->device_lock);
5606                 conf->quiesce = 0;
5607                 wake_up(&conf->wait_for_stripe);
5608                 wake_up(&conf->wait_for_overlap);
5609                 spin_unlock_irq(&conf->device_lock);
5610                 break;
5611         }
5612 }
5613
5614
5615 static void *raid5_takeover_raid1(mddev_t *mddev)
5616 {
5617         int chunksect;
5618
5619         if (mddev->raid_disks != 2 ||
5620             mddev->degraded > 1)
5621                 return ERR_PTR(-EINVAL);
5622
5623         /* Should check if there are write-behind devices? */
5624
5625         chunksect = 64*2; /* 64K by default */
5626
5627         /* The array must be an exact multiple of chunksize */
5628         while (chunksect && (mddev->array_sectors & (chunksect-1)))
5629                 chunksect >>= 1;
5630
5631         if ((chunksect<<9) < STRIPE_SIZE)
5632                 /* array size does not allow a suitable chunk size */
5633                 return ERR_PTR(-EINVAL);
5634
5635         mddev->new_level = 5;
5636         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5637         mddev->new_chunk_sectors = chunksect;
5638
5639         return setup_conf(mddev);
5640 }
5641
5642 static void *raid5_takeover_raid6(mddev_t *mddev)
5643 {
5644         int new_layout;
5645
5646         switch (mddev->layout) {
5647         case ALGORITHM_LEFT_ASYMMETRIC_6:
5648                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5649                 break;
5650         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5651                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5652                 break;
5653         case ALGORITHM_LEFT_SYMMETRIC_6:
5654                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5655                 break;
5656         case ALGORITHM_RIGHT_SYMMETRIC_6:
5657                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5658                 break;
5659         case ALGORITHM_PARITY_0_6:
5660                 new_layout = ALGORITHM_PARITY_0;
5661                 break;
5662         case ALGORITHM_PARITY_N:
5663                 new_layout = ALGORITHM_PARITY_N;
5664                 break;
5665         default:
5666                 return ERR_PTR(-EINVAL);
5667         }
5668         mddev->new_level = 5;
5669         mddev->new_layout = new_layout;
5670         mddev->delta_disks = -1;
5671         mddev->raid_disks -= 1;
5672         return setup_conf(mddev);
5673 }
5674
5675
5676 static int raid5_check_reshape(mddev_t *mddev)
5677 {
5678         /* For a 2-drive array, the layout and chunk size can be changed
5679          * immediately as not restriping is needed.
5680          * For larger arrays we record the new value - after validation
5681          * to be used by a reshape pass.
5682          */
5683         raid5_conf_t *conf = mddev->private;
5684         int new_chunk = mddev->new_chunk_sectors;
5685
5686         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5687                 return -EINVAL;
5688         if (new_chunk > 0) {
5689                 if (!is_power_of_2(new_chunk))
5690                         return -EINVAL;
5691                 if (new_chunk < (PAGE_SIZE>>9))
5692                         return -EINVAL;
5693                 if (mddev->array_sectors & (new_chunk-1))
5694                         /* not factor of array size */
5695                         return -EINVAL;
5696         }
5697
5698         /* They look valid */
5699
5700         if (mddev->raid_disks == 2) {
5701                 /* can make the change immediately */
5702                 if (mddev->new_layout >= 0) {
5703                         conf->algorithm = mddev->new_layout;
5704                         mddev->layout = mddev->new_layout;
5705                 }
5706                 if (new_chunk > 0) {
5707                         conf->chunk_sectors = new_chunk ;
5708                         mddev->chunk_sectors = new_chunk;
5709                 }
5710                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5711                 md_wakeup_thread(mddev->thread);
5712         }
5713         return check_reshape(mddev);
5714 }
5715
5716 static int raid6_check_reshape(mddev_t *mddev)
5717 {
5718         int new_chunk = mddev->new_chunk_sectors;
5719
5720         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5721                 return -EINVAL;
5722         if (new_chunk > 0) {
5723                 if (!is_power_of_2(new_chunk))
5724                         return -EINVAL;
5725                 if (new_chunk < (PAGE_SIZE >> 9))
5726                         return -EINVAL;
5727                 if (mddev->array_sectors & (new_chunk-1))
5728                         /* not factor of array size */
5729                         return -EINVAL;
5730         }
5731
5732         /* They look valid */
5733         return check_reshape(mddev);
5734 }
5735
5736 static void *raid5_takeover(mddev_t *mddev)
5737 {
5738         /* raid5 can take over:
5739          *  raid0 - if all devices are the same - make it a raid4 layout
5740          *  raid1 - if there are two drives.  We need to know the chunk size
5741          *  raid4 - trivial - just use a raid4 layout.
5742          *  raid6 - Providing it is a *_6 layout
5743          */
5744
5745         if (mddev->level == 1)
5746                 return raid5_takeover_raid1(mddev);
5747         if (mddev->level == 4) {
5748                 mddev->new_layout = ALGORITHM_PARITY_N;
5749                 mddev->new_level = 5;
5750                 return setup_conf(mddev);
5751         }
5752         if (mddev->level == 6)
5753                 return raid5_takeover_raid6(mddev);
5754
5755         return ERR_PTR(-EINVAL);
5756 }
5757
5758
5759 static struct mdk_personality raid5_personality;
5760
5761 static void *raid6_takeover(mddev_t *mddev)
5762 {
5763         /* Currently can only take over a raid5.  We map the
5764          * personality to an equivalent raid6 personality
5765          * with the Q block at the end.
5766          */
5767         int new_layout;
5768
5769         if (mddev->pers != &raid5_personality)
5770                 return ERR_PTR(-EINVAL);
5771         if (mddev->degraded > 1)
5772                 return ERR_PTR(-EINVAL);
5773         if (mddev->raid_disks > 253)
5774                 return ERR_PTR(-EINVAL);
5775         if (mddev->raid_disks < 3)
5776                 return ERR_PTR(-EINVAL);
5777
5778         switch (mddev->layout) {
5779         case ALGORITHM_LEFT_ASYMMETRIC:
5780                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5781                 break;
5782         case ALGORITHM_RIGHT_ASYMMETRIC:
5783                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5784                 break;
5785         case ALGORITHM_LEFT_SYMMETRIC:
5786                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5787                 break;
5788         case ALGORITHM_RIGHT_SYMMETRIC:
5789                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5790                 break;
5791         case ALGORITHM_PARITY_0:
5792                 new_layout = ALGORITHM_PARITY_0_6;
5793                 break;
5794         case ALGORITHM_PARITY_N:
5795                 new_layout = ALGORITHM_PARITY_N;
5796                 break;
5797         default:
5798                 return ERR_PTR(-EINVAL);
5799         }
5800         mddev->new_level = 6;
5801         mddev->new_layout = new_layout;
5802         mddev->delta_disks = 1;
5803         mddev->raid_disks += 1;
5804         return setup_conf(mddev);
5805 }
5806
5807
5808 static struct mdk_personality raid6_personality =
5809 {
5810         .name           = "raid6",
5811         .level          = 6,
5812         .owner          = THIS_MODULE,
5813         .make_request   = make_request,
5814         .run            = run,
5815         .stop           = stop,
5816         .status         = status,
5817         .error_handler  = error,
5818         .hot_add_disk   = raid5_add_disk,
5819         .hot_remove_disk= raid5_remove_disk,
5820         .spare_active   = raid5_spare_active,
5821         .sync_request   = sync_request,
5822         .resize         = raid5_resize,
5823         .size           = raid5_size,
5824         .check_reshape  = raid6_check_reshape,
5825         .start_reshape  = raid5_start_reshape,
5826         .finish_reshape = raid5_finish_reshape,
5827         .quiesce        = raid5_quiesce,
5828         .takeover       = raid6_takeover,
5829 };
5830 static struct mdk_personality raid5_personality =
5831 {
5832         .name           = "raid5",
5833         .level          = 5,
5834         .owner          = THIS_MODULE,
5835         .make_request   = make_request,
5836         .run            = run,
5837         .stop           = stop,
5838         .status         = status,
5839         .error_handler  = error,
5840         .hot_add_disk   = raid5_add_disk,
5841         .hot_remove_disk= raid5_remove_disk,
5842         .spare_active   = raid5_spare_active,
5843         .sync_request   = sync_request,
5844         .resize         = raid5_resize,
5845         .size           = raid5_size,
5846         .check_reshape  = raid5_check_reshape,
5847         .start_reshape  = raid5_start_reshape,
5848         .finish_reshape = raid5_finish_reshape,
5849         .quiesce        = raid5_quiesce,
5850         .takeover       = raid5_takeover,
5851 };
5852
5853 static struct mdk_personality raid4_personality =
5854 {
5855         .name           = "raid4",
5856         .level          = 4,
5857         .owner          = THIS_MODULE,
5858         .make_request   = make_request,
5859         .run            = run,
5860         .stop           = stop,
5861         .status         = status,
5862         .error_handler  = error,
5863         .hot_add_disk   = raid5_add_disk,
5864         .hot_remove_disk= raid5_remove_disk,
5865         .spare_active   = raid5_spare_active,
5866         .sync_request   = sync_request,
5867         .resize         = raid5_resize,
5868         .size           = raid5_size,
5869         .check_reshape  = raid5_check_reshape,
5870         .start_reshape  = raid5_start_reshape,
5871         .finish_reshape = raid5_finish_reshape,
5872         .quiesce        = raid5_quiesce,
5873 };
5874
5875 static int __init raid5_init(void)
5876 {
5877         register_md_personality(&raid6_personality);
5878         register_md_personality(&raid5_personality);
5879         register_md_personality(&raid4_personality);
5880         return 0;
5881 }
5882
5883 static void raid5_exit(void)
5884 {
5885         unregister_md_personality(&raid6_personality);
5886         unregister_md_personality(&raid5_personality);
5887         unregister_md_personality(&raid4_personality);
5888 }
5889
5890 module_init(raid5_init);
5891 module_exit(raid5_exit);
5892 MODULE_LICENSE("GPL");
5893 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
5894 MODULE_ALIAS("md-personality-4"); /* RAID5 */
5895 MODULE_ALIAS("md-raid5");
5896 MODULE_ALIAS("md-raid4");
5897 MODULE_ALIAS("md-level-5");
5898 MODULE_ALIAS("md-level-4");
5899 MODULE_ALIAS("md-personality-8"); /* RAID6 */
5900 MODULE_ALIAS("md-raid6");
5901 MODULE_ALIAS("md-level-6");
5902
5903 /* This used to be two separate modules, they were: */
5904 MODULE_ALIAS("raid5");
5905 MODULE_ALIAS("raid6");