2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for further copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
35 * The layout of data is defined by
38 * near_copies (stored in low byte of layout)
39 * far_copies (stored in second byte of layout)
40 * far_offset (stored in bit 16 of layout )
41 * use_far_sets (stored in bit 17 of layout )
43 * The data to be stored is divided into chunks using chunksize. Each device
44 * is divided into far_copies sections. In each section, chunks are laid out
45 * in a style similar to raid0, but near_copies copies of each chunk is stored
46 * (each on a different drive). The starting device for each section is offset
47 * near_copies from the starting device of the previous section. Thus there
48 * are (near_copies * far_copies) of each chunk, and each is on a different
49 * drive. near_copies and far_copies must be at least one, and their product
50 * is at most raid_disks.
52 * If far_offset is true, then the far_copies are handled a bit differently.
53 * The copies are still in different stripes, but instead of being very far
54 * apart on disk, there are adjacent stripes.
56 * The far and offset algorithms are handled slightly differently if
57 * 'use_far_sets' is true. In this case, the array's devices are grouped into
58 * sets that are (near_copies * far_copies) in size. The far copied stripes
59 * are still shifted by 'near_copies' devices, but this shifting stays confined
60 * to the set rather than the entire array. This is done to improve the number
61 * of device combinations that can fail without causing the array to fail.
62 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
67 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
68 * [A B] [C D] [A B] [C D E]
69 * |...| |...| |...| | ... |
70 * [B A] [D C] [B A] [E C D]
74 * Number of guaranteed r10bios in case of extreme VM load:
76 #define NR_RAID10_BIOS 256
78 /* when we get a read error on a read-only array, we redirect to another
79 * device without failing the first device, or trying to over-write to
80 * correct the read error. To keep track of bad blocks on a per-bio
81 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
83 #define IO_BLOCKED ((struct bio *)1)
84 /* When we successfully write to a known bad-block, we need to remove the
85 * bad-block marking which must be done from process context. So we record
86 * the success by setting devs[n].bio to IO_MADE_GOOD
88 #define IO_MADE_GOOD ((struct bio *)2)
90 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
92 /* When there are this many requests queued to be written by
93 * the raid10 thread, we become 'congested' to provide back-pressure
96 static int max_queued_requests = 1024;
98 static void allow_barrier(struct r10conf *conf);
99 static void lower_barrier(struct r10conf *conf);
100 static int _enough(struct r10conf *conf, int previous, int ignore);
101 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
103 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
104 static void end_reshape_write(struct bio *bio, int error);
105 static void end_reshape(struct r10conf *conf);
107 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
109 struct r10conf *conf = data;
110 int size = offsetof(struct r10bio, devs[conf->copies]);
112 /* allocate a r10bio with room for raid_disks entries in the
114 return kzalloc(size, gfp_flags);
117 static void r10bio_pool_free(void *r10_bio, void *data)
122 /* Maximum size of each resync request */
123 #define RESYNC_BLOCK_SIZE (64*1024)
124 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
125 /* amount of memory to reserve for resync requests */
126 #define RESYNC_WINDOW (1024*1024)
127 /* maximum number of concurrent requests, memory permitting */
128 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
131 * When performing a resync, we need to read and compare, so
132 * we need as many pages are there are copies.
133 * When performing a recovery, we need 2 bios, one for read,
134 * one for write (we recover only one drive per r10buf)
137 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
139 struct r10conf *conf = data;
141 struct r10bio *r10_bio;
146 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
150 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
151 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
152 nalloc = conf->copies; /* resync */
154 nalloc = 2; /* recovery */
159 for (j = nalloc ; j-- ; ) {
160 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
163 r10_bio->devs[j].bio = bio;
164 if (!conf->have_replacement)
166 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
169 r10_bio->devs[j].repl_bio = bio;
172 * Allocate RESYNC_PAGES data pages and attach them
175 for (j = 0 ; j < nalloc; j++) {
176 struct bio *rbio = r10_bio->devs[j].repl_bio;
177 bio = r10_bio->devs[j].bio;
178 for (i = 0; i < RESYNC_PAGES; i++) {
179 if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
180 &conf->mddev->recovery)) {
181 /* we can share bv_page's during recovery
183 struct bio *rbio = r10_bio->devs[0].bio;
184 page = rbio->bi_io_vec[i].bv_page;
187 page = alloc_page(gfp_flags);
191 bio->bi_io_vec[i].bv_page = page;
193 rbio->bi_io_vec[i].bv_page = page;
201 safe_put_page(bio->bi_io_vec[i-1].bv_page);
203 for (i = 0; i < RESYNC_PAGES ; i++)
204 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
207 for ( ; j < nalloc; j++) {
208 if (r10_bio->devs[j].bio)
209 bio_put(r10_bio->devs[j].bio);
210 if (r10_bio->devs[j].repl_bio)
211 bio_put(r10_bio->devs[j].repl_bio);
213 r10bio_pool_free(r10_bio, conf);
217 static void r10buf_pool_free(void *__r10_bio, void *data)
220 struct r10conf *conf = data;
221 struct r10bio *r10bio = __r10_bio;
224 for (j=0; j < conf->copies; j++) {
225 struct bio *bio = r10bio->devs[j].bio;
227 for (i = 0; i < RESYNC_PAGES; i++) {
228 safe_put_page(bio->bi_io_vec[i].bv_page);
229 bio->bi_io_vec[i].bv_page = NULL;
233 bio = r10bio->devs[j].repl_bio;
237 r10bio_pool_free(r10bio, conf);
240 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
244 for (i = 0; i < conf->copies; i++) {
245 struct bio **bio = & r10_bio->devs[i].bio;
246 if (!BIO_SPECIAL(*bio))
249 bio = &r10_bio->devs[i].repl_bio;
250 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
256 static void free_r10bio(struct r10bio *r10_bio)
258 struct r10conf *conf = r10_bio->mddev->private;
260 put_all_bios(conf, r10_bio);
261 mempool_free(r10_bio, conf->r10bio_pool);
264 static void put_buf(struct r10bio *r10_bio)
266 struct r10conf *conf = r10_bio->mddev->private;
268 mempool_free(r10_bio, conf->r10buf_pool);
273 static void reschedule_retry(struct r10bio *r10_bio)
276 struct mddev *mddev = r10_bio->mddev;
277 struct r10conf *conf = mddev->private;
279 spin_lock_irqsave(&conf->device_lock, flags);
280 list_add(&r10_bio->retry_list, &conf->retry_list);
282 spin_unlock_irqrestore(&conf->device_lock, flags);
284 /* wake up frozen array... */
285 wake_up(&conf->wait_barrier);
287 md_wakeup_thread(mddev->thread);
291 * raid_end_bio_io() is called when we have finished servicing a mirrored
292 * operation and are ready to return a success/failure code to the buffer
295 static void raid_end_bio_io(struct r10bio *r10_bio)
297 struct bio *bio = r10_bio->master_bio;
299 struct r10conf *conf = r10_bio->mddev->private;
301 if (bio->bi_phys_segments) {
303 spin_lock_irqsave(&conf->device_lock, flags);
304 bio->bi_phys_segments--;
305 done = (bio->bi_phys_segments == 0);
306 spin_unlock_irqrestore(&conf->device_lock, flags);
309 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
310 clear_bit(BIO_UPTODATE, &bio->bi_flags);
314 * Wake up any possible resync thread that waits for the device
319 free_r10bio(r10_bio);
323 * Update disk head position estimator based on IRQ completion info.
325 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
327 struct r10conf *conf = r10_bio->mddev->private;
329 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
330 r10_bio->devs[slot].addr + (r10_bio->sectors);
334 * Find the disk number which triggered given bio
336 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
337 struct bio *bio, int *slotp, int *replp)
342 for (slot = 0; slot < conf->copies; slot++) {
343 if (r10_bio->devs[slot].bio == bio)
345 if (r10_bio->devs[slot].repl_bio == bio) {
351 BUG_ON(slot == conf->copies);
352 update_head_pos(slot, r10_bio);
358 return r10_bio->devs[slot].devnum;
361 static void raid10_end_read_request(struct bio *bio, int error)
363 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
364 struct r10bio *r10_bio = bio->bi_private;
366 struct md_rdev *rdev;
367 struct r10conf *conf = r10_bio->mddev->private;
369 slot = r10_bio->read_slot;
370 dev = r10_bio->devs[slot].devnum;
371 rdev = r10_bio->devs[slot].rdev;
373 * this branch is our 'one mirror IO has finished' event handler:
375 update_head_pos(slot, r10_bio);
379 * Set R10BIO_Uptodate in our master bio, so that
380 * we will return a good error code to the higher
381 * levels even if IO on some other mirrored buffer fails.
383 * The 'master' represents the composite IO operation to
384 * user-side. So if something waits for IO, then it will
385 * wait for the 'master' bio.
387 set_bit(R10BIO_Uptodate, &r10_bio->state);
389 /* If all other devices that store this block have
390 * failed, we want to return the error upwards rather
391 * than fail the last device. Here we redefine
392 * "uptodate" to mean "Don't want to retry"
394 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
399 raid_end_bio_io(r10_bio);
400 rdev_dec_pending(rdev, conf->mddev);
403 * oops, read error - keep the refcount on the rdev
405 char b[BDEVNAME_SIZE];
406 printk_ratelimited(KERN_ERR
407 "md/raid10:%s: %s: rescheduling sector %llu\n",
409 bdevname(rdev->bdev, b),
410 (unsigned long long)r10_bio->sector);
411 set_bit(R10BIO_ReadError, &r10_bio->state);
412 reschedule_retry(r10_bio);
416 static void close_write(struct r10bio *r10_bio)
418 /* clear the bitmap if all writes complete successfully */
419 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
421 !test_bit(R10BIO_Degraded, &r10_bio->state),
423 md_write_end(r10_bio->mddev);
426 static void one_write_done(struct r10bio *r10_bio)
428 if (atomic_dec_and_test(&r10_bio->remaining)) {
429 if (test_bit(R10BIO_WriteError, &r10_bio->state))
430 reschedule_retry(r10_bio);
432 close_write(r10_bio);
433 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
434 reschedule_retry(r10_bio);
436 raid_end_bio_io(r10_bio);
441 static void raid10_end_write_request(struct bio *bio, int error)
443 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
444 struct r10bio *r10_bio = bio->bi_private;
447 struct r10conf *conf = r10_bio->mddev->private;
449 struct md_rdev *rdev = NULL;
451 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
454 rdev = conf->mirrors[dev].replacement;
458 rdev = conf->mirrors[dev].rdev;
461 * this branch is our 'one mirror IO has finished' event handler:
465 /* Never record new bad blocks to replacement,
468 md_error(rdev->mddev, rdev);
470 set_bit(WriteErrorSeen, &rdev->flags);
471 if (!test_and_set_bit(WantReplacement, &rdev->flags))
472 set_bit(MD_RECOVERY_NEEDED,
473 &rdev->mddev->recovery);
474 set_bit(R10BIO_WriteError, &r10_bio->state);
479 * Set R10BIO_Uptodate in our master bio, so that
480 * we will return a good error code for to the higher
481 * levels even if IO on some other mirrored buffer fails.
483 * The 'master' represents the composite IO operation to
484 * user-side. So if something waits for IO, then it will
485 * wait for the 'master' bio.
491 * Do not set R10BIO_Uptodate if the current device is
492 * rebuilding or Faulty. This is because we cannot use
493 * such device for properly reading the data back (we could
494 * potentially use it, if the current write would have felt
495 * before rdev->recovery_offset, but for simplicity we don't
498 if (test_bit(In_sync, &rdev->flags) &&
499 !test_bit(Faulty, &rdev->flags))
500 set_bit(R10BIO_Uptodate, &r10_bio->state);
502 /* Maybe we can clear some bad blocks. */
503 if (is_badblock(rdev,
504 r10_bio->devs[slot].addr,
506 &first_bad, &bad_sectors)) {
509 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
511 r10_bio->devs[slot].bio = IO_MADE_GOOD;
513 set_bit(R10BIO_MadeGood, &r10_bio->state);
519 * Let's see if all mirrored write operations have finished
522 one_write_done(r10_bio);
524 rdev_dec_pending(rdev, conf->mddev);
528 * RAID10 layout manager
529 * As well as the chunksize and raid_disks count, there are two
530 * parameters: near_copies and far_copies.
531 * near_copies * far_copies must be <= raid_disks.
532 * Normally one of these will be 1.
533 * If both are 1, we get raid0.
534 * If near_copies == raid_disks, we get raid1.
536 * Chunks are laid out in raid0 style with near_copies copies of the
537 * first chunk, followed by near_copies copies of the next chunk and
539 * If far_copies > 1, then after 1/far_copies of the array has been assigned
540 * as described above, we start again with a device offset of near_copies.
541 * So we effectively have another copy of the whole array further down all
542 * the drives, but with blocks on different drives.
543 * With this layout, and block is never stored twice on the one device.
545 * raid10_find_phys finds the sector offset of a given virtual sector
546 * on each device that it is on.
548 * raid10_find_virt does the reverse mapping, from a device and a
549 * sector offset to a virtual address
552 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
560 int last_far_set_start, last_far_set_size;
562 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
563 last_far_set_start *= geo->far_set_size;
565 last_far_set_size = geo->far_set_size;
566 last_far_set_size += (geo->raid_disks % geo->far_set_size);
568 /* now calculate first sector/dev */
569 chunk = r10bio->sector >> geo->chunk_shift;
570 sector = r10bio->sector & geo->chunk_mask;
572 chunk *= geo->near_copies;
574 dev = sector_div(stripe, geo->raid_disks);
576 stripe *= geo->far_copies;
578 sector += stripe << geo->chunk_shift;
580 /* and calculate all the others */
581 for (n = 0; n < geo->near_copies; n++) {
585 r10bio->devs[slot].devnum = d;
586 r10bio->devs[slot].addr = s;
589 for (f = 1; f < geo->far_copies; f++) {
590 set = d / geo->far_set_size;
591 d += geo->near_copies;
593 if ((geo->raid_disks % geo->far_set_size) &&
594 (d > last_far_set_start)) {
595 d -= last_far_set_start;
596 d %= last_far_set_size;
597 d += last_far_set_start;
599 d %= geo->far_set_size;
600 d += geo->far_set_size * set;
603 r10bio->devs[slot].devnum = d;
604 r10bio->devs[slot].addr = s;
608 if (dev >= geo->raid_disks) {
610 sector += (geo->chunk_mask + 1);
615 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
617 struct geom *geo = &conf->geo;
619 if (conf->reshape_progress != MaxSector &&
620 ((r10bio->sector >= conf->reshape_progress) !=
621 conf->mddev->reshape_backwards)) {
622 set_bit(R10BIO_Previous, &r10bio->state);
625 clear_bit(R10BIO_Previous, &r10bio->state);
627 __raid10_find_phys(geo, r10bio);
630 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
632 sector_t offset, chunk, vchunk;
633 /* Never use conf->prev as this is only called during resync
634 * or recovery, so reshape isn't happening
636 struct geom *geo = &conf->geo;
637 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
638 int far_set_size = geo->far_set_size;
639 int last_far_set_start;
641 if (geo->raid_disks % geo->far_set_size) {
642 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
643 last_far_set_start *= geo->far_set_size;
645 if (dev >= last_far_set_start) {
646 far_set_size = geo->far_set_size;
647 far_set_size += (geo->raid_disks % geo->far_set_size);
648 far_set_start = last_far_set_start;
652 offset = sector & geo->chunk_mask;
653 if (geo->far_offset) {
655 chunk = sector >> geo->chunk_shift;
656 fc = sector_div(chunk, geo->far_copies);
657 dev -= fc * geo->near_copies;
658 if (dev < far_set_start)
661 while (sector >= geo->stride) {
662 sector -= geo->stride;
663 if (dev < (geo->near_copies + far_set_start))
664 dev += far_set_size - geo->near_copies;
666 dev -= geo->near_copies;
668 chunk = sector >> geo->chunk_shift;
670 vchunk = chunk * geo->raid_disks + dev;
671 sector_div(vchunk, geo->near_copies);
672 return (vchunk << geo->chunk_shift) + offset;
676 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
677 * @mddev: the md device
678 * @bvm: properties of new bio
679 * @biovec: the request that could be merged to it.
681 * Return amount of bytes we can accept at this offset
682 * This requires checking for end-of-chunk if near_copies != raid_disks,
683 * and for subordinate merge_bvec_fns if merge_check_needed.
685 static int raid10_mergeable_bvec(struct mddev *mddev,
686 struct bvec_merge_data *bvm,
687 struct bio_vec *biovec)
689 struct r10conf *conf = mddev->private;
690 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
692 unsigned int chunk_sectors;
693 unsigned int bio_sectors = bvm->bi_size >> 9;
694 struct geom *geo = &conf->geo;
696 chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
697 if (conf->reshape_progress != MaxSector &&
698 ((sector >= conf->reshape_progress) !=
699 conf->mddev->reshape_backwards))
702 if (geo->near_copies < geo->raid_disks) {
703 max = (chunk_sectors - ((sector & (chunk_sectors - 1))
704 + bio_sectors)) << 9;
706 /* bio_add cannot handle a negative return */
708 if (max <= biovec->bv_len && bio_sectors == 0)
709 return biovec->bv_len;
711 max = biovec->bv_len;
713 if (mddev->merge_check_needed) {
715 struct r10bio r10_bio;
716 struct r10dev devs[conf->copies];
718 struct r10bio *r10_bio = &on_stack.r10_bio;
720 if (conf->reshape_progress != MaxSector) {
721 /* Cannot give any guidance during reshape */
722 if (max <= biovec->bv_len && bio_sectors == 0)
723 return biovec->bv_len;
726 r10_bio->sector = sector;
727 raid10_find_phys(conf, r10_bio);
729 for (s = 0; s < conf->copies; s++) {
730 int disk = r10_bio->devs[s].devnum;
731 struct md_rdev *rdev = rcu_dereference(
732 conf->mirrors[disk].rdev);
733 if (rdev && !test_bit(Faulty, &rdev->flags)) {
734 struct request_queue *q =
735 bdev_get_queue(rdev->bdev);
736 if (q->merge_bvec_fn) {
737 bvm->bi_sector = r10_bio->devs[s].addr
739 bvm->bi_bdev = rdev->bdev;
740 max = min(max, q->merge_bvec_fn(
744 rdev = rcu_dereference(conf->mirrors[disk].replacement);
745 if (rdev && !test_bit(Faulty, &rdev->flags)) {
746 struct request_queue *q =
747 bdev_get_queue(rdev->bdev);
748 if (q->merge_bvec_fn) {
749 bvm->bi_sector = r10_bio->devs[s].addr
751 bvm->bi_bdev = rdev->bdev;
752 max = min(max, q->merge_bvec_fn(
763 * This routine returns the disk from which the requested read should
764 * be done. There is a per-array 'next expected sequential IO' sector
765 * number - if this matches on the next IO then we use the last disk.
766 * There is also a per-disk 'last know head position' sector that is
767 * maintained from IRQ contexts, both the normal and the resync IO
768 * completion handlers update this position correctly. If there is no
769 * perfect sequential match then we pick the disk whose head is closest.
771 * If there are 2 mirrors in the same 2 devices, performance degrades
772 * because position is mirror, not device based.
774 * The rdev for the device selected will have nr_pending incremented.
778 * FIXME: possibly should rethink readbalancing and do it differently
779 * depending on near_copies / far_copies geometry.
781 static struct md_rdev *read_balance(struct r10conf *conf,
782 struct r10bio *r10_bio,
785 const sector_t this_sector = r10_bio->sector;
787 int sectors = r10_bio->sectors;
788 int best_good_sectors;
789 sector_t new_distance, best_dist;
790 struct md_rdev *best_rdev, *rdev = NULL;
793 struct geom *geo = &conf->geo;
795 raid10_find_phys(conf, r10_bio);
798 sectors = r10_bio->sectors;
801 best_dist = MaxSector;
802 best_good_sectors = 0;
805 * Check if we can balance. We can balance on the whole
806 * device if no resync is going on (recovery is ok), or below
807 * the resync window. We take the first readable disk when
808 * above the resync window.
810 if (conf->mddev->recovery_cp < MaxSector
811 && (this_sector + sectors >= conf->next_resync))
814 for (slot = 0; slot < conf->copies ; slot++) {
819 if (r10_bio->devs[slot].bio == IO_BLOCKED)
821 disk = r10_bio->devs[slot].devnum;
822 rdev = rcu_dereference(conf->mirrors[disk].replacement);
823 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
824 test_bit(Unmerged, &rdev->flags) ||
825 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
826 rdev = rcu_dereference(conf->mirrors[disk].rdev);
828 test_bit(Faulty, &rdev->flags) ||
829 test_bit(Unmerged, &rdev->flags))
831 if (!test_bit(In_sync, &rdev->flags) &&
832 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
835 dev_sector = r10_bio->devs[slot].addr;
836 if (is_badblock(rdev, dev_sector, sectors,
837 &first_bad, &bad_sectors)) {
838 if (best_dist < MaxSector)
839 /* Already have a better slot */
841 if (first_bad <= dev_sector) {
842 /* Cannot read here. If this is the
843 * 'primary' device, then we must not read
844 * beyond 'bad_sectors' from another device.
846 bad_sectors -= (dev_sector - first_bad);
847 if (!do_balance && sectors > bad_sectors)
848 sectors = bad_sectors;
849 if (best_good_sectors > sectors)
850 best_good_sectors = sectors;
852 sector_t good_sectors =
853 first_bad - dev_sector;
854 if (good_sectors > best_good_sectors) {
855 best_good_sectors = good_sectors;
860 /* Must read from here */
865 best_good_sectors = sectors;
870 /* This optimisation is debatable, and completely destroys
871 * sequential read speed for 'far copies' arrays. So only
872 * keep it for 'near' arrays, and review those later.
874 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
877 /* for far > 1 always use the lowest address */
878 if (geo->far_copies > 1)
879 new_distance = r10_bio->devs[slot].addr;
881 new_distance = abs(r10_bio->devs[slot].addr -
882 conf->mirrors[disk].head_position);
883 if (new_distance < best_dist) {
884 best_dist = new_distance;
889 if (slot >= conf->copies) {
895 atomic_inc(&rdev->nr_pending);
896 if (test_bit(Faulty, &rdev->flags)) {
897 /* Cannot risk returning a device that failed
898 * before we inc'ed nr_pending
900 rdev_dec_pending(rdev, conf->mddev);
903 r10_bio->read_slot = slot;
907 *max_sectors = best_good_sectors;
912 static int raid10_congested(struct mddev *mddev, int bits)
914 struct r10conf *conf = mddev->private;
917 if ((bits & (1 << WB_async_congested)) &&
918 conf->pending_count >= max_queued_requests)
923 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
926 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
927 if (rdev && !test_bit(Faulty, &rdev->flags)) {
928 struct request_queue *q = bdev_get_queue(rdev->bdev);
930 ret |= bdi_congested(&q->backing_dev_info, bits);
937 static void flush_pending_writes(struct r10conf *conf)
939 /* Any writes that have been queued but are awaiting
940 * bitmap updates get flushed here.
942 spin_lock_irq(&conf->device_lock);
944 if (conf->pending_bio_list.head) {
946 bio = bio_list_get(&conf->pending_bio_list);
947 conf->pending_count = 0;
948 spin_unlock_irq(&conf->device_lock);
949 /* flush any pending bitmap writes to disk
950 * before proceeding w/ I/O */
951 bitmap_unplug(conf->mddev->bitmap);
952 wake_up(&conf->wait_barrier);
954 while (bio) { /* submit pending writes */
955 struct bio *next = bio->bi_next;
957 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
958 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
962 generic_make_request(bio);
966 spin_unlock_irq(&conf->device_lock);
970 * Sometimes we need to suspend IO while we do something else,
971 * either some resync/recovery, or reconfigure the array.
972 * To do this we raise a 'barrier'.
973 * The 'barrier' is a counter that can be raised multiple times
974 * to count how many activities are happening which preclude
976 * We can only raise the barrier if there is no pending IO.
977 * i.e. if nr_pending == 0.
978 * We choose only to raise the barrier if no-one is waiting for the
979 * barrier to go down. This means that as soon as an IO request
980 * is ready, no other operations which require a barrier will start
981 * until the IO request has had a chance.
983 * So: regular IO calls 'wait_barrier'. When that returns there
984 * is no backgroup IO happening, It must arrange to call
985 * allow_barrier when it has finished its IO.
986 * backgroup IO calls must call raise_barrier. Once that returns
987 * there is no normal IO happeing. It must arrange to call
988 * lower_barrier when the particular background IO completes.
991 static void raise_barrier(struct r10conf *conf, int force)
993 BUG_ON(force && !conf->barrier);
994 spin_lock_irq(&conf->resync_lock);
996 /* Wait until no block IO is waiting (unless 'force') */
997 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
1000 /* block any new IO from starting */
1003 /* Now wait for all pending IO to complete */
1004 wait_event_lock_irq(conf->wait_barrier,
1005 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
1008 spin_unlock_irq(&conf->resync_lock);
1011 static void lower_barrier(struct r10conf *conf)
1013 unsigned long flags;
1014 spin_lock_irqsave(&conf->resync_lock, flags);
1016 spin_unlock_irqrestore(&conf->resync_lock, flags);
1017 wake_up(&conf->wait_barrier);
1020 static void wait_barrier(struct r10conf *conf)
1022 spin_lock_irq(&conf->resync_lock);
1023 if (conf->barrier) {
1025 /* Wait for the barrier to drop.
1026 * However if there are already pending
1027 * requests (preventing the barrier from
1028 * rising completely), and the
1029 * pre-process bio queue isn't empty,
1030 * then don't wait, as we need to empty
1031 * that queue to get the nr_pending
1034 wait_event_lock_irq(conf->wait_barrier,
1036 (conf->nr_pending &&
1037 current->bio_list &&
1038 !bio_list_empty(current->bio_list)),
1043 spin_unlock_irq(&conf->resync_lock);
1046 static void allow_barrier(struct r10conf *conf)
1048 unsigned long flags;
1049 spin_lock_irqsave(&conf->resync_lock, flags);
1051 spin_unlock_irqrestore(&conf->resync_lock, flags);
1052 wake_up(&conf->wait_barrier);
1055 static void freeze_array(struct r10conf *conf, int extra)
1057 /* stop syncio and normal IO and wait for everything to
1059 * We increment barrier and nr_waiting, and then
1060 * wait until nr_pending match nr_queued+extra
1061 * This is called in the context of one normal IO request
1062 * that has failed. Thus any sync request that might be pending
1063 * will be blocked by nr_pending, and we need to wait for
1064 * pending IO requests to complete or be queued for re-try.
1065 * Thus the number queued (nr_queued) plus this request (extra)
1066 * must match the number of pending IOs (nr_pending) before
1069 spin_lock_irq(&conf->resync_lock);
1072 wait_event_lock_irq_cmd(conf->wait_barrier,
1073 conf->nr_pending == conf->nr_queued+extra,
1075 flush_pending_writes(conf));
1077 spin_unlock_irq(&conf->resync_lock);
1080 static void unfreeze_array(struct r10conf *conf)
1082 /* reverse the effect of the freeze */
1083 spin_lock_irq(&conf->resync_lock);
1086 wake_up(&conf->wait_barrier);
1087 spin_unlock_irq(&conf->resync_lock);
1090 static sector_t choose_data_offset(struct r10bio *r10_bio,
1091 struct md_rdev *rdev)
1093 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1094 test_bit(R10BIO_Previous, &r10_bio->state))
1095 return rdev->data_offset;
1097 return rdev->new_data_offset;
1100 struct raid10_plug_cb {
1101 struct blk_plug_cb cb;
1102 struct bio_list pending;
1106 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1108 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1110 struct mddev *mddev = plug->cb.data;
1111 struct r10conf *conf = mddev->private;
1114 if (from_schedule || current->bio_list) {
1115 spin_lock_irq(&conf->device_lock);
1116 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1117 conf->pending_count += plug->pending_cnt;
1118 spin_unlock_irq(&conf->device_lock);
1119 wake_up(&conf->wait_barrier);
1120 md_wakeup_thread(mddev->thread);
1125 /* we aren't scheduling, so we can do the write-out directly. */
1126 bio = bio_list_get(&plug->pending);
1127 bitmap_unplug(mddev->bitmap);
1128 wake_up(&conf->wait_barrier);
1130 while (bio) { /* submit pending writes */
1131 struct bio *next = bio->bi_next;
1132 bio->bi_next = NULL;
1133 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1134 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1135 /* Just ignore it */
1138 generic_make_request(bio);
1144 static void __make_request(struct mddev *mddev, struct bio *bio)
1146 struct r10conf *conf = mddev->private;
1147 struct r10bio *r10_bio;
1148 struct bio *read_bio;
1150 const int rw = bio_data_dir(bio);
1151 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1152 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1153 const unsigned long do_discard = (bio->bi_rw
1154 & (REQ_DISCARD | REQ_SECURE));
1155 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1156 unsigned long flags;
1157 struct md_rdev *blocked_rdev;
1158 struct blk_plug_cb *cb;
1159 struct raid10_plug_cb *plug = NULL;
1160 int sectors_handled;
1165 * Register the new request and wait if the reconstruction
1166 * thread has put up a bar for new requests.
1167 * Continue immediately if no resync is active currently.
1171 sectors = bio_sectors(bio);
1172 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1173 bio->bi_iter.bi_sector < conf->reshape_progress &&
1174 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1175 /* IO spans the reshape position. Need to wait for
1178 allow_barrier(conf);
1179 wait_event(conf->wait_barrier,
1180 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1181 conf->reshape_progress >= bio->bi_iter.bi_sector +
1185 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1186 bio_data_dir(bio) == WRITE &&
1187 (mddev->reshape_backwards
1188 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1189 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1190 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1191 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1192 /* Need to update reshape_position in metadata */
1193 mddev->reshape_position = conf->reshape_progress;
1194 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1195 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1196 md_wakeup_thread(mddev->thread);
1197 wait_event(mddev->sb_wait,
1198 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1200 conf->reshape_safe = mddev->reshape_position;
1203 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1205 r10_bio->master_bio = bio;
1206 r10_bio->sectors = sectors;
1208 r10_bio->mddev = mddev;
1209 r10_bio->sector = bio->bi_iter.bi_sector;
1212 /* We might need to issue multiple reads to different
1213 * devices if there are bad blocks around, so we keep
1214 * track of the number of reads in bio->bi_phys_segments.
1215 * If this is 0, there is only one r10_bio and no locking
1216 * will be needed when the request completes. If it is
1217 * non-zero, then it is the number of not-completed requests.
1219 bio->bi_phys_segments = 0;
1220 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1224 * read balancing logic:
1226 struct md_rdev *rdev;
1230 rdev = read_balance(conf, r10_bio, &max_sectors);
1232 raid_end_bio_io(r10_bio);
1235 slot = r10_bio->read_slot;
1237 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1238 bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
1241 r10_bio->devs[slot].bio = read_bio;
1242 r10_bio->devs[slot].rdev = rdev;
1244 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1245 choose_data_offset(r10_bio, rdev);
1246 read_bio->bi_bdev = rdev->bdev;
1247 read_bio->bi_end_io = raid10_end_read_request;
1248 read_bio->bi_rw = READ | do_sync;
1249 read_bio->bi_private = r10_bio;
1251 if (max_sectors < r10_bio->sectors) {
1252 /* Could not read all from this device, so we will
1253 * need another r10_bio.
1255 sectors_handled = (r10_bio->sector + max_sectors
1256 - bio->bi_iter.bi_sector);
1257 r10_bio->sectors = max_sectors;
1258 spin_lock_irq(&conf->device_lock);
1259 if (bio->bi_phys_segments == 0)
1260 bio->bi_phys_segments = 2;
1262 bio->bi_phys_segments++;
1263 spin_unlock_irq(&conf->device_lock);
1264 /* Cannot call generic_make_request directly
1265 * as that will be queued in __generic_make_request
1266 * and subsequent mempool_alloc might block
1267 * waiting for it. so hand bio over to raid10d.
1269 reschedule_retry(r10_bio);
1271 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1273 r10_bio->master_bio = bio;
1274 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1276 r10_bio->mddev = mddev;
1277 r10_bio->sector = bio->bi_iter.bi_sector +
1281 generic_make_request(read_bio);
1288 if (conf->pending_count >= max_queued_requests) {
1289 md_wakeup_thread(mddev->thread);
1290 wait_event(conf->wait_barrier,
1291 conf->pending_count < max_queued_requests);
1293 /* first select target devices under rcu_lock and
1294 * inc refcount on their rdev. Record them by setting
1296 * If there are known/acknowledged bad blocks on any device
1297 * on which we have seen a write error, we want to avoid
1298 * writing to those blocks. This potentially requires several
1299 * writes to write around the bad blocks. Each set of writes
1300 * gets its own r10_bio with a set of bios attached. The number
1301 * of r10_bios is recored in bio->bi_phys_segments just as with
1305 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1306 raid10_find_phys(conf, r10_bio);
1308 blocked_rdev = NULL;
1310 max_sectors = r10_bio->sectors;
1312 for (i = 0; i < conf->copies; i++) {
1313 int d = r10_bio->devs[i].devnum;
1314 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1315 struct md_rdev *rrdev = rcu_dereference(
1316 conf->mirrors[d].replacement);
1319 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1320 atomic_inc(&rdev->nr_pending);
1321 blocked_rdev = rdev;
1324 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1325 atomic_inc(&rrdev->nr_pending);
1326 blocked_rdev = rrdev;
1329 if (rdev && (test_bit(Faulty, &rdev->flags)
1330 || test_bit(Unmerged, &rdev->flags)))
1332 if (rrdev && (test_bit(Faulty, &rrdev->flags)
1333 || test_bit(Unmerged, &rrdev->flags)))
1336 r10_bio->devs[i].bio = NULL;
1337 r10_bio->devs[i].repl_bio = NULL;
1339 if (!rdev && !rrdev) {
1340 set_bit(R10BIO_Degraded, &r10_bio->state);
1343 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1345 sector_t dev_sector = r10_bio->devs[i].addr;
1349 is_bad = is_badblock(rdev, dev_sector,
1351 &first_bad, &bad_sectors);
1353 /* Mustn't write here until the bad block
1356 atomic_inc(&rdev->nr_pending);
1357 set_bit(BlockedBadBlocks, &rdev->flags);
1358 blocked_rdev = rdev;
1361 if (is_bad && first_bad <= dev_sector) {
1362 /* Cannot write here at all */
1363 bad_sectors -= (dev_sector - first_bad);
1364 if (bad_sectors < max_sectors)
1365 /* Mustn't write more than bad_sectors
1366 * to other devices yet
1368 max_sectors = bad_sectors;
1369 /* We don't set R10BIO_Degraded as that
1370 * only applies if the disk is missing,
1371 * so it might be re-added, and we want to
1372 * know to recover this chunk.
1373 * In this case the device is here, and the
1374 * fact that this chunk is not in-sync is
1375 * recorded in the bad block log.
1380 int good_sectors = first_bad - dev_sector;
1381 if (good_sectors < max_sectors)
1382 max_sectors = good_sectors;
1386 r10_bio->devs[i].bio = bio;
1387 atomic_inc(&rdev->nr_pending);
1390 r10_bio->devs[i].repl_bio = bio;
1391 atomic_inc(&rrdev->nr_pending);
1396 if (unlikely(blocked_rdev)) {
1397 /* Have to wait for this device to get unblocked, then retry */
1401 for (j = 0; j < i; j++) {
1402 if (r10_bio->devs[j].bio) {
1403 d = r10_bio->devs[j].devnum;
1404 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1406 if (r10_bio->devs[j].repl_bio) {
1407 struct md_rdev *rdev;
1408 d = r10_bio->devs[j].devnum;
1409 rdev = conf->mirrors[d].replacement;
1411 /* Race with remove_disk */
1413 rdev = conf->mirrors[d].rdev;
1415 rdev_dec_pending(rdev, mddev);
1418 allow_barrier(conf);
1419 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1424 if (max_sectors < r10_bio->sectors) {
1425 /* We are splitting this into multiple parts, so
1426 * we need to prepare for allocating another r10_bio.
1428 r10_bio->sectors = max_sectors;
1429 spin_lock_irq(&conf->device_lock);
1430 if (bio->bi_phys_segments == 0)
1431 bio->bi_phys_segments = 2;
1433 bio->bi_phys_segments++;
1434 spin_unlock_irq(&conf->device_lock);
1436 sectors_handled = r10_bio->sector + max_sectors -
1437 bio->bi_iter.bi_sector;
1439 atomic_set(&r10_bio->remaining, 1);
1440 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1442 for (i = 0; i < conf->copies; i++) {
1444 int d = r10_bio->devs[i].devnum;
1445 if (r10_bio->devs[i].bio) {
1446 struct md_rdev *rdev = conf->mirrors[d].rdev;
1447 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1448 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1450 r10_bio->devs[i].bio = mbio;
1452 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
1453 choose_data_offset(r10_bio,
1455 mbio->bi_bdev = rdev->bdev;
1456 mbio->bi_end_io = raid10_end_write_request;
1458 WRITE | do_sync | do_fua | do_discard | do_same;
1459 mbio->bi_private = r10_bio;
1461 atomic_inc(&r10_bio->remaining);
1463 cb = blk_check_plugged(raid10_unplug, mddev,
1466 plug = container_of(cb, struct raid10_plug_cb,
1470 spin_lock_irqsave(&conf->device_lock, flags);
1472 bio_list_add(&plug->pending, mbio);
1473 plug->pending_cnt++;
1475 bio_list_add(&conf->pending_bio_list, mbio);
1476 conf->pending_count++;
1478 spin_unlock_irqrestore(&conf->device_lock, flags);
1480 md_wakeup_thread(mddev->thread);
1483 if (r10_bio->devs[i].repl_bio) {
1484 struct md_rdev *rdev = conf->mirrors[d].replacement;
1486 /* Replacement just got moved to main 'rdev' */
1488 rdev = conf->mirrors[d].rdev;
1490 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1491 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1493 r10_bio->devs[i].repl_bio = mbio;
1495 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr +
1498 mbio->bi_bdev = rdev->bdev;
1499 mbio->bi_end_io = raid10_end_write_request;
1501 WRITE | do_sync | do_fua | do_discard | do_same;
1502 mbio->bi_private = r10_bio;
1504 atomic_inc(&r10_bio->remaining);
1505 spin_lock_irqsave(&conf->device_lock, flags);
1506 bio_list_add(&conf->pending_bio_list, mbio);
1507 conf->pending_count++;
1508 spin_unlock_irqrestore(&conf->device_lock, flags);
1509 if (!mddev_check_plugged(mddev))
1510 md_wakeup_thread(mddev->thread);
1514 /* Don't remove the bias on 'remaining' (one_write_done) until
1515 * after checking if we need to go around again.
1518 if (sectors_handled < bio_sectors(bio)) {
1519 one_write_done(r10_bio);
1520 /* We need another r10_bio. It has already been counted
1521 * in bio->bi_phys_segments.
1523 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1525 r10_bio->master_bio = bio;
1526 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1528 r10_bio->mddev = mddev;
1529 r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1533 one_write_done(r10_bio);
1536 static void make_request(struct mddev *mddev, struct bio *bio)
1538 struct r10conf *conf = mddev->private;
1539 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1540 int chunk_sects = chunk_mask + 1;
1544 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1545 md_flush_request(mddev, bio);
1549 md_write_start(mddev, bio);
1554 * If this request crosses a chunk boundary, we need to split
1557 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1558 bio_sectors(bio) > chunk_sects
1559 && (conf->geo.near_copies < conf->geo.raid_disks
1560 || conf->prev.near_copies <
1561 conf->prev.raid_disks))) {
1562 split = bio_split(bio, chunk_sects -
1563 (bio->bi_iter.bi_sector &
1565 GFP_NOIO, fs_bio_set);
1566 bio_chain(split, bio);
1571 __make_request(mddev, split);
1572 } while (split != bio);
1574 /* In case raid10d snuck in to freeze_array */
1575 wake_up(&conf->wait_barrier);
1578 static void status(struct seq_file *seq, struct mddev *mddev)
1580 struct r10conf *conf = mddev->private;
1583 if (conf->geo.near_copies < conf->geo.raid_disks)
1584 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1585 if (conf->geo.near_copies > 1)
1586 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1587 if (conf->geo.far_copies > 1) {
1588 if (conf->geo.far_offset)
1589 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1591 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1593 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1594 conf->geo.raid_disks - mddev->degraded);
1595 for (i = 0; i < conf->geo.raid_disks; i++)
1596 seq_printf(seq, "%s",
1597 conf->mirrors[i].rdev &&
1598 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1599 seq_printf(seq, "]");
1602 /* check if there are enough drives for
1603 * every block to appear on atleast one.
1604 * Don't consider the device numbered 'ignore'
1605 * as we might be about to remove it.
1607 static int _enough(struct r10conf *conf, int previous, int ignore)
1613 disks = conf->prev.raid_disks;
1614 ncopies = conf->prev.near_copies;
1616 disks = conf->geo.raid_disks;
1617 ncopies = conf->geo.near_copies;
1622 int n = conf->copies;
1626 struct md_rdev *rdev;
1627 if (this != ignore &&
1628 (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1629 test_bit(In_sync, &rdev->flags))
1631 this = (this+1) % disks;
1635 first = (first + ncopies) % disks;
1636 } while (first != 0);
1643 static int enough(struct r10conf *conf, int ignore)
1645 /* when calling 'enough', both 'prev' and 'geo' must
1647 * This is ensured if ->reconfig_mutex or ->device_lock
1650 return _enough(conf, 0, ignore) &&
1651 _enough(conf, 1, ignore);
1654 static void error(struct mddev *mddev, struct md_rdev *rdev)
1656 char b[BDEVNAME_SIZE];
1657 struct r10conf *conf = mddev->private;
1658 unsigned long flags;
1661 * If it is not operational, then we have already marked it as dead
1662 * else if it is the last working disks, ignore the error, let the
1663 * next level up know.
1664 * else mark the drive as failed
1666 spin_lock_irqsave(&conf->device_lock, flags);
1667 if (test_bit(In_sync, &rdev->flags)
1668 && !enough(conf, rdev->raid_disk)) {
1670 * Don't fail the drive, just return an IO error.
1672 spin_unlock_irqrestore(&conf->device_lock, flags);
1675 if (test_and_clear_bit(In_sync, &rdev->flags))
1678 * If recovery is running, make sure it aborts.
1680 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1681 set_bit(Blocked, &rdev->flags);
1682 set_bit(Faulty, &rdev->flags);
1683 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1684 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1685 spin_unlock_irqrestore(&conf->device_lock, flags);
1687 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1688 "md/raid10:%s: Operation continuing on %d devices.\n",
1689 mdname(mddev), bdevname(rdev->bdev, b),
1690 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1693 static void print_conf(struct r10conf *conf)
1696 struct raid10_info *tmp;
1698 printk(KERN_DEBUG "RAID10 conf printout:\n");
1700 printk(KERN_DEBUG "(!conf)\n");
1703 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1704 conf->geo.raid_disks);
1706 for (i = 0; i < conf->geo.raid_disks; i++) {
1707 char b[BDEVNAME_SIZE];
1708 tmp = conf->mirrors + i;
1710 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1711 i, !test_bit(In_sync, &tmp->rdev->flags),
1712 !test_bit(Faulty, &tmp->rdev->flags),
1713 bdevname(tmp->rdev->bdev,b));
1717 static void close_sync(struct r10conf *conf)
1720 allow_barrier(conf);
1722 mempool_destroy(conf->r10buf_pool);
1723 conf->r10buf_pool = NULL;
1726 static int raid10_spare_active(struct mddev *mddev)
1729 struct r10conf *conf = mddev->private;
1730 struct raid10_info *tmp;
1732 unsigned long flags;
1735 * Find all non-in_sync disks within the RAID10 configuration
1736 * and mark them in_sync
1738 for (i = 0; i < conf->geo.raid_disks; i++) {
1739 tmp = conf->mirrors + i;
1740 if (tmp->replacement
1741 && tmp->replacement->recovery_offset == MaxSector
1742 && !test_bit(Faulty, &tmp->replacement->flags)
1743 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1744 /* Replacement has just become active */
1746 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1749 /* Replaced device not technically faulty,
1750 * but we need to be sure it gets removed
1751 * and never re-added.
1753 set_bit(Faulty, &tmp->rdev->flags);
1754 sysfs_notify_dirent_safe(
1755 tmp->rdev->sysfs_state);
1757 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1758 } else if (tmp->rdev
1759 && tmp->rdev->recovery_offset == MaxSector
1760 && !test_bit(Faulty, &tmp->rdev->flags)
1761 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1763 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1766 spin_lock_irqsave(&conf->device_lock, flags);
1767 mddev->degraded -= count;
1768 spin_unlock_irqrestore(&conf->device_lock, flags);
1774 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1776 struct r10conf *conf = mddev->private;
1780 int last = conf->geo.raid_disks - 1;
1781 struct request_queue *q = bdev_get_queue(rdev->bdev);
1783 if (mddev->recovery_cp < MaxSector)
1784 /* only hot-add to in-sync arrays, as recovery is
1785 * very different from resync
1788 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1791 if (rdev->raid_disk >= 0)
1792 first = last = rdev->raid_disk;
1794 if (q->merge_bvec_fn) {
1795 set_bit(Unmerged, &rdev->flags);
1796 mddev->merge_check_needed = 1;
1799 if (rdev->saved_raid_disk >= first &&
1800 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1801 mirror = rdev->saved_raid_disk;
1804 for ( ; mirror <= last ; mirror++) {
1805 struct raid10_info *p = &conf->mirrors[mirror];
1806 if (p->recovery_disabled == mddev->recovery_disabled)
1809 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1810 p->replacement != NULL)
1812 clear_bit(In_sync, &rdev->flags);
1813 set_bit(Replacement, &rdev->flags);
1814 rdev->raid_disk = mirror;
1817 disk_stack_limits(mddev->gendisk, rdev->bdev,
1818 rdev->data_offset << 9);
1820 rcu_assign_pointer(p->replacement, rdev);
1825 disk_stack_limits(mddev->gendisk, rdev->bdev,
1826 rdev->data_offset << 9);
1828 p->head_position = 0;
1829 p->recovery_disabled = mddev->recovery_disabled - 1;
1830 rdev->raid_disk = mirror;
1832 if (rdev->saved_raid_disk != mirror)
1834 rcu_assign_pointer(p->rdev, rdev);
1837 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1838 /* Some requests might not have seen this new
1839 * merge_bvec_fn. We must wait for them to complete
1840 * before merging the device fully.
1841 * First we make sure any code which has tested
1842 * our function has submitted the request, then
1843 * we wait for all outstanding requests to complete.
1845 synchronize_sched();
1846 freeze_array(conf, 0);
1847 unfreeze_array(conf);
1848 clear_bit(Unmerged, &rdev->flags);
1850 md_integrity_add_rdev(rdev, mddev);
1851 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1852 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1858 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1860 struct r10conf *conf = mddev->private;
1862 int number = rdev->raid_disk;
1863 struct md_rdev **rdevp;
1864 struct raid10_info *p = conf->mirrors + number;
1867 if (rdev == p->rdev)
1869 else if (rdev == p->replacement)
1870 rdevp = &p->replacement;
1874 if (test_bit(In_sync, &rdev->flags) ||
1875 atomic_read(&rdev->nr_pending)) {
1879 /* Only remove faulty devices if recovery
1882 if (!test_bit(Faulty, &rdev->flags) &&
1883 mddev->recovery_disabled != p->recovery_disabled &&
1884 (!p->replacement || p->replacement == rdev) &&
1885 number < conf->geo.raid_disks &&
1892 if (atomic_read(&rdev->nr_pending)) {
1893 /* lost the race, try later */
1897 } else if (p->replacement) {
1898 /* We must have just cleared 'rdev' */
1899 p->rdev = p->replacement;
1900 clear_bit(Replacement, &p->replacement->flags);
1901 smp_mb(); /* Make sure other CPUs may see both as identical
1902 * but will never see neither -- if they are careful.
1904 p->replacement = NULL;
1905 clear_bit(WantReplacement, &rdev->flags);
1907 /* We might have just remove the Replacement as faulty
1908 * Clear the flag just in case
1910 clear_bit(WantReplacement, &rdev->flags);
1912 err = md_integrity_register(mddev);
1920 static void end_sync_read(struct bio *bio, int error)
1922 struct r10bio *r10_bio = bio->bi_private;
1923 struct r10conf *conf = r10_bio->mddev->private;
1926 if (bio == r10_bio->master_bio) {
1927 /* this is a reshape read */
1928 d = r10_bio->read_slot; /* really the read dev */
1930 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1932 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1933 set_bit(R10BIO_Uptodate, &r10_bio->state);
1935 /* The write handler will notice the lack of
1936 * R10BIO_Uptodate and record any errors etc
1938 atomic_add(r10_bio->sectors,
1939 &conf->mirrors[d].rdev->corrected_errors);
1941 /* for reconstruct, we always reschedule after a read.
1942 * for resync, only after all reads
1944 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1945 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1946 atomic_dec_and_test(&r10_bio->remaining)) {
1947 /* we have read all the blocks,
1948 * do the comparison in process context in raid10d
1950 reschedule_retry(r10_bio);
1954 static void end_sync_request(struct r10bio *r10_bio)
1956 struct mddev *mddev = r10_bio->mddev;
1958 while (atomic_dec_and_test(&r10_bio->remaining)) {
1959 if (r10_bio->master_bio == NULL) {
1960 /* the primary of several recovery bios */
1961 sector_t s = r10_bio->sectors;
1962 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1963 test_bit(R10BIO_WriteError, &r10_bio->state))
1964 reschedule_retry(r10_bio);
1967 md_done_sync(mddev, s, 1);
1970 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1971 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1972 test_bit(R10BIO_WriteError, &r10_bio->state))
1973 reschedule_retry(r10_bio);
1981 static void end_sync_write(struct bio *bio, int error)
1983 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1984 struct r10bio *r10_bio = bio->bi_private;
1985 struct mddev *mddev = r10_bio->mddev;
1986 struct r10conf *conf = mddev->private;
1992 struct md_rdev *rdev = NULL;
1994 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1996 rdev = conf->mirrors[d].replacement;
1998 rdev = conf->mirrors[d].rdev;
2002 md_error(mddev, rdev);
2004 set_bit(WriteErrorSeen, &rdev->flags);
2005 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2006 set_bit(MD_RECOVERY_NEEDED,
2007 &rdev->mddev->recovery);
2008 set_bit(R10BIO_WriteError, &r10_bio->state);
2010 } else if (is_badblock(rdev,
2011 r10_bio->devs[slot].addr,
2013 &first_bad, &bad_sectors))
2014 set_bit(R10BIO_MadeGood, &r10_bio->state);
2016 rdev_dec_pending(rdev, mddev);
2018 end_sync_request(r10_bio);
2022 * Note: sync and recover and handled very differently for raid10
2023 * This code is for resync.
2024 * For resync, we read through virtual addresses and read all blocks.
2025 * If there is any error, we schedule a write. The lowest numbered
2026 * drive is authoritative.
2027 * However requests come for physical address, so we need to map.
2028 * For every physical address there are raid_disks/copies virtual addresses,
2029 * which is always are least one, but is not necessarly an integer.
2030 * This means that a physical address can span multiple chunks, so we may
2031 * have to submit multiple io requests for a single sync request.
2034 * We check if all blocks are in-sync and only write to blocks that
2037 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2039 struct r10conf *conf = mddev->private;
2041 struct bio *tbio, *fbio;
2044 atomic_set(&r10_bio->remaining, 1);
2046 /* find the first device with a block */
2047 for (i=0; i<conf->copies; i++)
2048 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
2051 if (i == conf->copies)
2055 fbio = r10_bio->devs[i].bio;
2057 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2058 /* now find blocks with errors */
2059 for (i=0 ; i < conf->copies ; i++) {
2062 tbio = r10_bio->devs[i].bio;
2064 if (tbio->bi_end_io != end_sync_read)
2068 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
2069 /* We know that the bi_io_vec layout is the same for
2070 * both 'first' and 'i', so we just compare them.
2071 * All vec entries are PAGE_SIZE;
2073 int sectors = r10_bio->sectors;
2074 for (j = 0; j < vcnt; j++) {
2075 int len = PAGE_SIZE;
2076 if (sectors < (len / 512))
2077 len = sectors * 512;
2078 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2079 page_address(tbio->bi_io_vec[j].bv_page),
2086 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2087 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2088 /* Don't fix anything. */
2091 /* Ok, we need to write this bio, either to correct an
2092 * inconsistency or to correct an unreadable block.
2093 * First we need to fixup bv_offset, bv_len and
2094 * bi_vecs, as the read request might have corrupted these
2098 tbio->bi_vcnt = vcnt;
2099 tbio->bi_iter.bi_size = r10_bio->sectors << 9;
2100 tbio->bi_rw = WRITE;
2101 tbio->bi_private = r10_bio;
2102 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2103 tbio->bi_end_io = end_sync_write;
2105 bio_copy_data(tbio, fbio);
2107 d = r10_bio->devs[i].devnum;
2108 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2109 atomic_inc(&r10_bio->remaining);
2110 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2112 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2113 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2114 generic_make_request(tbio);
2117 /* Now write out to any replacement devices
2120 for (i = 0; i < conf->copies; i++) {
2123 tbio = r10_bio->devs[i].repl_bio;
2124 if (!tbio || !tbio->bi_end_io)
2126 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2127 && r10_bio->devs[i].bio != fbio)
2128 bio_copy_data(tbio, fbio);
2129 d = r10_bio->devs[i].devnum;
2130 atomic_inc(&r10_bio->remaining);
2131 md_sync_acct(conf->mirrors[d].replacement->bdev,
2133 generic_make_request(tbio);
2137 if (atomic_dec_and_test(&r10_bio->remaining)) {
2138 md_done_sync(mddev, r10_bio->sectors, 1);
2144 * Now for the recovery code.
2145 * Recovery happens across physical sectors.
2146 * We recover all non-is_sync drives by finding the virtual address of
2147 * each, and then choose a working drive that also has that virt address.
2148 * There is a separate r10_bio for each non-in_sync drive.
2149 * Only the first two slots are in use. The first for reading,
2150 * The second for writing.
2153 static void fix_recovery_read_error(struct r10bio *r10_bio)
2155 /* We got a read error during recovery.
2156 * We repeat the read in smaller page-sized sections.
2157 * If a read succeeds, write it to the new device or record
2158 * a bad block if we cannot.
2159 * If a read fails, record a bad block on both old and
2162 struct mddev *mddev = r10_bio->mddev;
2163 struct r10conf *conf = mddev->private;
2164 struct bio *bio = r10_bio->devs[0].bio;
2166 int sectors = r10_bio->sectors;
2168 int dr = r10_bio->devs[0].devnum;
2169 int dw = r10_bio->devs[1].devnum;
2173 struct md_rdev *rdev;
2177 if (s > (PAGE_SIZE>>9))
2180 rdev = conf->mirrors[dr].rdev;
2181 addr = r10_bio->devs[0].addr + sect,
2182 ok = sync_page_io(rdev,
2185 bio->bi_io_vec[idx].bv_page,
2188 rdev = conf->mirrors[dw].rdev;
2189 addr = r10_bio->devs[1].addr + sect;
2190 ok = sync_page_io(rdev,
2193 bio->bi_io_vec[idx].bv_page,
2196 set_bit(WriteErrorSeen, &rdev->flags);
2197 if (!test_and_set_bit(WantReplacement,
2199 set_bit(MD_RECOVERY_NEEDED,
2200 &rdev->mddev->recovery);
2204 /* We don't worry if we cannot set a bad block -
2205 * it really is bad so there is no loss in not
2208 rdev_set_badblocks(rdev, addr, s, 0);
2210 if (rdev != conf->mirrors[dw].rdev) {
2211 /* need bad block on destination too */
2212 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2213 addr = r10_bio->devs[1].addr + sect;
2214 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2216 /* just abort the recovery */
2218 "md/raid10:%s: recovery aborted"
2219 " due to read error\n",
2222 conf->mirrors[dw].recovery_disabled
2223 = mddev->recovery_disabled;
2224 set_bit(MD_RECOVERY_INTR,
2237 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2239 struct r10conf *conf = mddev->private;
2241 struct bio *wbio, *wbio2;
2243 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2244 fix_recovery_read_error(r10_bio);
2245 end_sync_request(r10_bio);
2250 * share the pages with the first bio
2251 * and submit the write request
2253 d = r10_bio->devs[1].devnum;
2254 wbio = r10_bio->devs[1].bio;
2255 wbio2 = r10_bio->devs[1].repl_bio;
2256 /* Need to test wbio2->bi_end_io before we call
2257 * generic_make_request as if the former is NULL,
2258 * the latter is free to free wbio2.
2260 if (wbio2 && !wbio2->bi_end_io)
2262 if (wbio->bi_end_io) {
2263 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2264 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2265 generic_make_request(wbio);
2268 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2269 md_sync_acct(conf->mirrors[d].replacement->bdev,
2270 bio_sectors(wbio2));
2271 generic_make_request(wbio2);
2276 * Used by fix_read_error() to decay the per rdev read_errors.
2277 * We halve the read error count for every hour that has elapsed
2278 * since the last recorded read error.
2281 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2283 struct timespec cur_time_mon;
2284 unsigned long hours_since_last;
2285 unsigned int read_errors = atomic_read(&rdev->read_errors);
2287 ktime_get_ts(&cur_time_mon);
2289 if (rdev->last_read_error.tv_sec == 0 &&
2290 rdev->last_read_error.tv_nsec == 0) {
2291 /* first time we've seen a read error */
2292 rdev->last_read_error = cur_time_mon;
2296 hours_since_last = (cur_time_mon.tv_sec -
2297 rdev->last_read_error.tv_sec) / 3600;
2299 rdev->last_read_error = cur_time_mon;
2302 * if hours_since_last is > the number of bits in read_errors
2303 * just set read errors to 0. We do this to avoid
2304 * overflowing the shift of read_errors by hours_since_last.
2306 if (hours_since_last >= 8 * sizeof(read_errors))
2307 atomic_set(&rdev->read_errors, 0);
2309 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2312 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2313 int sectors, struct page *page, int rw)
2318 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2319 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2321 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2325 set_bit(WriteErrorSeen, &rdev->flags);
2326 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2327 set_bit(MD_RECOVERY_NEEDED,
2328 &rdev->mddev->recovery);
2330 /* need to record an error - either for the block or the device */
2331 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2332 md_error(rdev->mddev, rdev);
2337 * This is a kernel thread which:
2339 * 1. Retries failed read operations on working mirrors.
2340 * 2. Updates the raid superblock when problems encounter.
2341 * 3. Performs writes following reads for array synchronising.
2344 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2346 int sect = 0; /* Offset from r10_bio->sector */
2347 int sectors = r10_bio->sectors;
2348 struct md_rdev*rdev;
2349 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2350 int d = r10_bio->devs[r10_bio->read_slot].devnum;
2352 /* still own a reference to this rdev, so it cannot
2353 * have been cleared recently.
2355 rdev = conf->mirrors[d].rdev;
2357 if (test_bit(Faulty, &rdev->flags))
2358 /* drive has already been failed, just ignore any
2359 more fix_read_error() attempts */
2362 check_decay_read_errors(mddev, rdev);
2363 atomic_inc(&rdev->read_errors);
2364 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2365 char b[BDEVNAME_SIZE];
2366 bdevname(rdev->bdev, b);
2369 "md/raid10:%s: %s: Raid device exceeded "
2370 "read_error threshold [cur %d:max %d]\n",
2372 atomic_read(&rdev->read_errors), max_read_errors);
2374 "md/raid10:%s: %s: Failing raid device\n",
2376 md_error(mddev, conf->mirrors[d].rdev);
2377 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2383 int sl = r10_bio->read_slot;
2387 if (s > (PAGE_SIZE>>9))
2395 d = r10_bio->devs[sl].devnum;
2396 rdev = rcu_dereference(conf->mirrors[d].rdev);
2398 !test_bit(Unmerged, &rdev->flags) &&
2399 test_bit(In_sync, &rdev->flags) &&
2400 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2401 &first_bad, &bad_sectors) == 0) {
2402 atomic_inc(&rdev->nr_pending);
2404 success = sync_page_io(rdev,
2405 r10_bio->devs[sl].addr +
2408 conf->tmppage, READ, false);
2409 rdev_dec_pending(rdev, mddev);
2415 if (sl == conf->copies)
2417 } while (!success && sl != r10_bio->read_slot);
2421 /* Cannot read from anywhere, just mark the block
2422 * as bad on the first device to discourage future
2425 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2426 rdev = conf->mirrors[dn].rdev;
2428 if (!rdev_set_badblocks(
2430 r10_bio->devs[r10_bio->read_slot].addr
2433 md_error(mddev, rdev);
2434 r10_bio->devs[r10_bio->read_slot].bio
2441 /* write it back and re-read */
2443 while (sl != r10_bio->read_slot) {
2444 char b[BDEVNAME_SIZE];
2449 d = r10_bio->devs[sl].devnum;
2450 rdev = rcu_dereference(conf->mirrors[d].rdev);
2452 test_bit(Unmerged, &rdev->flags) ||
2453 !test_bit(In_sync, &rdev->flags))
2456 atomic_inc(&rdev->nr_pending);
2458 if (r10_sync_page_io(rdev,
2459 r10_bio->devs[sl].addr +
2461 s, conf->tmppage, WRITE)
2463 /* Well, this device is dead */
2465 "md/raid10:%s: read correction "
2467 " (%d sectors at %llu on %s)\n",
2469 (unsigned long long)(
2471 choose_data_offset(r10_bio,
2473 bdevname(rdev->bdev, b));
2474 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2477 bdevname(rdev->bdev, b));
2479 rdev_dec_pending(rdev, mddev);
2483 while (sl != r10_bio->read_slot) {
2484 char b[BDEVNAME_SIZE];
2489 d = r10_bio->devs[sl].devnum;
2490 rdev = rcu_dereference(conf->mirrors[d].rdev);
2492 !test_bit(In_sync, &rdev->flags))
2495 atomic_inc(&rdev->nr_pending);
2497 switch (r10_sync_page_io(rdev,
2498 r10_bio->devs[sl].addr +
2503 /* Well, this device is dead */
2505 "md/raid10:%s: unable to read back "
2507 " (%d sectors at %llu on %s)\n",
2509 (unsigned long long)(
2511 choose_data_offset(r10_bio, rdev)),
2512 bdevname(rdev->bdev, b));
2513 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2516 bdevname(rdev->bdev, b));
2520 "md/raid10:%s: read error corrected"
2521 " (%d sectors at %llu on %s)\n",
2523 (unsigned long long)(
2525 choose_data_offset(r10_bio, rdev)),
2526 bdevname(rdev->bdev, b));
2527 atomic_add(s, &rdev->corrected_errors);
2530 rdev_dec_pending(rdev, mddev);
2540 static int narrow_write_error(struct r10bio *r10_bio, int i)
2542 struct bio *bio = r10_bio->master_bio;
2543 struct mddev *mddev = r10_bio->mddev;
2544 struct r10conf *conf = mddev->private;
2545 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2546 /* bio has the data to be written to slot 'i' where
2547 * we just recently had a write error.
2548 * We repeatedly clone the bio and trim down to one block,
2549 * then try the write. Where the write fails we record
2551 * It is conceivable that the bio doesn't exactly align with
2552 * blocks. We must handle this.
2554 * We currently own a reference to the rdev.
2560 int sect_to_write = r10_bio->sectors;
2563 if (rdev->badblocks.shift < 0)
2566 block_sectors = roundup(1 << rdev->badblocks.shift,
2567 bdev_logical_block_size(rdev->bdev) >> 9);
2568 sector = r10_bio->sector;
2569 sectors = ((r10_bio->sector + block_sectors)
2570 & ~(sector_t)(block_sectors - 1))
2573 while (sect_to_write) {
2575 if (sectors > sect_to_write)
2576 sectors = sect_to_write;
2577 /* Write at 'sector' for 'sectors' */
2578 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2579 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2580 wbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
2581 choose_data_offset(r10_bio, rdev) +
2582 (sector - r10_bio->sector));
2583 wbio->bi_bdev = rdev->bdev;
2584 if (submit_bio_wait(WRITE, wbio) == 0)
2586 ok = rdev_set_badblocks(rdev, sector,
2591 sect_to_write -= sectors;
2593 sectors = block_sectors;
2598 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2600 int slot = r10_bio->read_slot;
2602 struct r10conf *conf = mddev->private;
2603 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2604 char b[BDEVNAME_SIZE];
2605 unsigned long do_sync;
2608 /* we got a read error. Maybe the drive is bad. Maybe just
2609 * the block and we can fix it.
2610 * We freeze all other IO, and try reading the block from
2611 * other devices. When we find one, we re-write
2612 * and check it that fixes the read error.
2613 * This is all done synchronously while the array is
2616 bio = r10_bio->devs[slot].bio;
2617 bdevname(bio->bi_bdev, b);
2619 r10_bio->devs[slot].bio = NULL;
2621 if (mddev->ro == 0) {
2622 freeze_array(conf, 1);
2623 fix_read_error(conf, mddev, r10_bio);
2624 unfreeze_array(conf);
2626 r10_bio->devs[slot].bio = IO_BLOCKED;
2628 rdev_dec_pending(rdev, mddev);
2631 rdev = read_balance(conf, r10_bio, &max_sectors);
2633 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2634 " read error for block %llu\n",
2636 (unsigned long long)r10_bio->sector);
2637 raid_end_bio_io(r10_bio);
2641 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2642 slot = r10_bio->read_slot;
2645 "md/raid10:%s: %s: redirecting "
2646 "sector %llu to another mirror\n",
2648 bdevname(rdev->bdev, b),
2649 (unsigned long long)r10_bio->sector);
2650 bio = bio_clone_mddev(r10_bio->master_bio,
2652 bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
2653 r10_bio->devs[slot].bio = bio;
2654 r10_bio->devs[slot].rdev = rdev;
2655 bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
2656 + choose_data_offset(r10_bio, rdev);
2657 bio->bi_bdev = rdev->bdev;
2658 bio->bi_rw = READ | do_sync;
2659 bio->bi_private = r10_bio;
2660 bio->bi_end_io = raid10_end_read_request;
2661 if (max_sectors < r10_bio->sectors) {
2662 /* Drat - have to split this up more */
2663 struct bio *mbio = r10_bio->master_bio;
2664 int sectors_handled =
2665 r10_bio->sector + max_sectors
2666 - mbio->bi_iter.bi_sector;
2667 r10_bio->sectors = max_sectors;
2668 spin_lock_irq(&conf->device_lock);
2669 if (mbio->bi_phys_segments == 0)
2670 mbio->bi_phys_segments = 2;
2672 mbio->bi_phys_segments++;
2673 spin_unlock_irq(&conf->device_lock);
2674 generic_make_request(bio);
2676 r10_bio = mempool_alloc(conf->r10bio_pool,
2678 r10_bio->master_bio = mbio;
2679 r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2681 set_bit(R10BIO_ReadError,
2683 r10_bio->mddev = mddev;
2684 r10_bio->sector = mbio->bi_iter.bi_sector
2689 generic_make_request(bio);
2692 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2694 /* Some sort of write request has finished and it
2695 * succeeded in writing where we thought there was a
2696 * bad block. So forget the bad block.
2697 * Or possibly if failed and we need to record
2701 struct md_rdev *rdev;
2703 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2704 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2705 for (m = 0; m < conf->copies; m++) {
2706 int dev = r10_bio->devs[m].devnum;
2707 rdev = conf->mirrors[dev].rdev;
2708 if (r10_bio->devs[m].bio == NULL)
2710 if (test_bit(BIO_UPTODATE,
2711 &r10_bio->devs[m].bio->bi_flags)) {
2712 rdev_clear_badblocks(
2714 r10_bio->devs[m].addr,
2715 r10_bio->sectors, 0);
2717 if (!rdev_set_badblocks(
2719 r10_bio->devs[m].addr,
2720 r10_bio->sectors, 0))
2721 md_error(conf->mddev, rdev);
2723 rdev = conf->mirrors[dev].replacement;
2724 if (r10_bio->devs[m].repl_bio == NULL)
2726 if (test_bit(BIO_UPTODATE,
2727 &r10_bio->devs[m].repl_bio->bi_flags)) {
2728 rdev_clear_badblocks(
2730 r10_bio->devs[m].addr,
2731 r10_bio->sectors, 0);
2733 if (!rdev_set_badblocks(
2735 r10_bio->devs[m].addr,
2736 r10_bio->sectors, 0))
2737 md_error(conf->mddev, rdev);
2743 for (m = 0; m < conf->copies; m++) {
2744 int dev = r10_bio->devs[m].devnum;
2745 struct bio *bio = r10_bio->devs[m].bio;
2746 rdev = conf->mirrors[dev].rdev;
2747 if (bio == IO_MADE_GOOD) {
2748 rdev_clear_badblocks(
2750 r10_bio->devs[m].addr,
2751 r10_bio->sectors, 0);
2752 rdev_dec_pending(rdev, conf->mddev);
2753 } else if (bio != NULL &&
2754 !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2756 if (!narrow_write_error(r10_bio, m)) {
2757 md_error(conf->mddev, rdev);
2758 set_bit(R10BIO_Degraded,
2761 rdev_dec_pending(rdev, conf->mddev);
2763 bio = r10_bio->devs[m].repl_bio;
2764 rdev = conf->mirrors[dev].replacement;
2765 if (rdev && bio == IO_MADE_GOOD) {
2766 rdev_clear_badblocks(
2768 r10_bio->devs[m].addr,
2769 r10_bio->sectors, 0);
2770 rdev_dec_pending(rdev, conf->mddev);
2773 if (test_bit(R10BIO_WriteError,
2775 close_write(r10_bio);
2777 spin_lock_irq(&conf->device_lock);
2778 list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2779 spin_unlock_irq(&conf->device_lock);
2780 md_wakeup_thread(conf->mddev->thread);
2782 raid_end_bio_io(r10_bio);
2786 static void raid10d(struct md_thread *thread)
2788 struct mddev *mddev = thread->mddev;
2789 struct r10bio *r10_bio;
2790 unsigned long flags;
2791 struct r10conf *conf = mddev->private;
2792 struct list_head *head = &conf->retry_list;
2793 struct blk_plug plug;
2795 md_check_recovery(mddev);
2797 if (!list_empty_careful(&conf->bio_end_io_list) &&
2798 !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2800 spin_lock_irqsave(&conf->device_lock, flags);
2801 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2802 list_add(&tmp, &conf->bio_end_io_list);
2803 list_del_init(&conf->bio_end_io_list);
2805 spin_unlock_irqrestore(&conf->device_lock, flags);
2806 while (!list_empty(&tmp)) {
2807 r10_bio = list_first_entry(&conf->bio_end_io_list,
2808 struct r10bio, retry_list);
2809 list_del(&r10_bio->retry_list);
2810 raid_end_bio_io(r10_bio);
2814 blk_start_plug(&plug);
2817 flush_pending_writes(conf);
2819 spin_lock_irqsave(&conf->device_lock, flags);
2820 if (list_empty(head)) {
2821 spin_unlock_irqrestore(&conf->device_lock, flags);
2824 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2825 list_del(head->prev);
2827 spin_unlock_irqrestore(&conf->device_lock, flags);
2829 mddev = r10_bio->mddev;
2830 conf = mddev->private;
2831 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2832 test_bit(R10BIO_WriteError, &r10_bio->state))
2833 handle_write_completed(conf, r10_bio);
2834 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2835 reshape_request_write(mddev, r10_bio);
2836 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2837 sync_request_write(mddev, r10_bio);
2838 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2839 recovery_request_write(mddev, r10_bio);
2840 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2841 handle_read_error(mddev, r10_bio);
2843 /* just a partial read to be scheduled from a
2846 int slot = r10_bio->read_slot;
2847 generic_make_request(r10_bio->devs[slot].bio);
2851 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2852 md_check_recovery(mddev);
2854 blk_finish_plug(&plug);
2857 static int init_resync(struct r10conf *conf)
2862 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2863 BUG_ON(conf->r10buf_pool);
2864 conf->have_replacement = 0;
2865 for (i = 0; i < conf->geo.raid_disks; i++)
2866 if (conf->mirrors[i].replacement)
2867 conf->have_replacement = 1;
2868 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2869 if (!conf->r10buf_pool)
2871 conf->next_resync = 0;
2876 * perform a "sync" on one "block"
2878 * We need to make sure that no normal I/O request - particularly write
2879 * requests - conflict with active sync requests.
2881 * This is achieved by tracking pending requests and a 'barrier' concept
2882 * that can be installed to exclude normal IO requests.
2884 * Resync and recovery are handled very differently.
2885 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2887 * For resync, we iterate over virtual addresses, read all copies,
2888 * and update if there are differences. If only one copy is live,
2890 * For recovery, we iterate over physical addresses, read a good
2891 * value for each non-in_sync drive, and over-write.
2893 * So, for recovery we may have several outstanding complex requests for a
2894 * given address, one for each out-of-sync device. We model this by allocating
2895 * a number of r10_bio structures, one for each out-of-sync device.
2896 * As we setup these structures, we collect all bio's together into a list
2897 * which we then process collectively to add pages, and then process again
2898 * to pass to generic_make_request.
2900 * The r10_bio structures are linked using a borrowed master_bio pointer.
2901 * This link is counted in ->remaining. When the r10_bio that points to NULL
2902 * has its remaining count decremented to 0, the whole complex operation
2907 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2910 struct r10conf *conf = mddev->private;
2911 struct r10bio *r10_bio;
2912 struct bio *biolist = NULL, *bio;
2913 sector_t max_sector, nr_sectors;
2916 sector_t sync_blocks;
2917 sector_t sectors_skipped = 0;
2918 int chunks_skipped = 0;
2919 sector_t chunk_mask = conf->geo.chunk_mask;
2921 if (!conf->r10buf_pool)
2922 if (init_resync(conf))
2926 * Allow skipping a full rebuild for incremental assembly
2927 * of a clean array, like RAID1 does.
2929 if (mddev->bitmap == NULL &&
2930 mddev->recovery_cp == MaxSector &&
2931 mddev->reshape_position == MaxSector &&
2932 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2933 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2934 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2935 conf->fullsync == 0) {
2937 return mddev->dev_sectors - sector_nr;
2941 max_sector = mddev->dev_sectors;
2942 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2943 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2944 max_sector = mddev->resync_max_sectors;
2945 if (sector_nr >= max_sector) {
2946 /* If we aborted, we need to abort the
2947 * sync on the 'current' bitmap chucks (there can
2948 * be several when recovering multiple devices).
2949 * as we may have started syncing it but not finished.
2950 * We can find the current address in
2951 * mddev->curr_resync, but for recovery,
2952 * we need to convert that to several
2953 * virtual addresses.
2955 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2961 if (mddev->curr_resync < max_sector) { /* aborted */
2962 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2963 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2965 else for (i = 0; i < conf->geo.raid_disks; i++) {
2967 raid10_find_virt(conf, mddev->curr_resync, i);
2968 bitmap_end_sync(mddev->bitmap, sect,
2972 /* completed sync */
2973 if ((!mddev->bitmap || conf->fullsync)
2974 && conf->have_replacement
2975 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2976 /* Completed a full sync so the replacements
2977 * are now fully recovered.
2979 for (i = 0; i < conf->geo.raid_disks; i++)
2980 if (conf->mirrors[i].replacement)
2981 conf->mirrors[i].replacement
2987 bitmap_close_sync(mddev->bitmap);
2990 return sectors_skipped;
2993 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2994 return reshape_request(mddev, sector_nr, skipped);
2996 if (chunks_skipped >= conf->geo.raid_disks) {
2997 /* if there has been nothing to do on any drive,
2998 * then there is nothing to do at all..
3001 return (max_sector - sector_nr) + sectors_skipped;
3004 if (max_sector > mddev->resync_max)
3005 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3007 /* make sure whole request will fit in a chunk - if chunks
3010 if (conf->geo.near_copies < conf->geo.raid_disks &&
3011 max_sector > (sector_nr | chunk_mask))
3012 max_sector = (sector_nr | chunk_mask) + 1;
3014 /* Again, very different code for resync and recovery.
3015 * Both must result in an r10bio with a list of bios that
3016 * have bi_end_io, bi_sector, bi_bdev set,
3017 * and bi_private set to the r10bio.
3018 * For recovery, we may actually create several r10bios
3019 * with 2 bios in each, that correspond to the bios in the main one.
3020 * In this case, the subordinate r10bios link back through a
3021 * borrowed master_bio pointer, and the counter in the master
3022 * includes a ref from each subordinate.
3024 /* First, we decide what to do and set ->bi_end_io
3025 * To end_sync_read if we want to read, and
3026 * end_sync_write if we will want to write.
3029 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3030 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3031 /* recovery... the complicated one */
3035 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3041 struct raid10_info *mirror = &conf->mirrors[i];
3043 if ((mirror->rdev == NULL ||
3044 test_bit(In_sync, &mirror->rdev->flags))
3046 (mirror->replacement == NULL ||
3048 &mirror->replacement->flags)))
3052 /* want to reconstruct this device */
3054 sect = raid10_find_virt(conf, sector_nr, i);
3055 if (sect >= mddev->resync_max_sectors) {
3056 /* last stripe is not complete - don't
3057 * try to recover this sector.
3061 /* Unless we are doing a full sync, or a replacement
3062 * we only need to recover the block if it is set in
3065 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3067 if (sync_blocks < max_sync)
3068 max_sync = sync_blocks;
3070 mirror->replacement == NULL &&
3072 /* yep, skip the sync_blocks here, but don't assume
3073 * that there will never be anything to do here
3075 chunks_skipped = -1;
3079 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3081 raise_barrier(conf, rb2 != NULL);
3082 atomic_set(&r10_bio->remaining, 0);
3084 r10_bio->master_bio = (struct bio*)rb2;
3086 atomic_inc(&rb2->remaining);
3087 r10_bio->mddev = mddev;
3088 set_bit(R10BIO_IsRecover, &r10_bio->state);
3089 r10_bio->sector = sect;
3091 raid10_find_phys(conf, r10_bio);
3093 /* Need to check if the array will still be
3096 for (j = 0; j < conf->geo.raid_disks; j++)
3097 if (conf->mirrors[j].rdev == NULL ||
3098 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3103 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3104 &sync_blocks, still_degraded);
3107 for (j=0; j<conf->copies;j++) {
3109 int d = r10_bio->devs[j].devnum;
3110 sector_t from_addr, to_addr;
3111 struct md_rdev *rdev;
3112 sector_t sector, first_bad;
3114 if (!conf->mirrors[d].rdev ||
3115 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3117 /* This is where we read from */
3119 rdev = conf->mirrors[d].rdev;
3120 sector = r10_bio->devs[j].addr;
3122 if (is_badblock(rdev, sector, max_sync,
3123 &first_bad, &bad_sectors)) {
3124 if (first_bad > sector)
3125 max_sync = first_bad - sector;
3127 bad_sectors -= (sector
3129 if (max_sync > bad_sectors)
3130 max_sync = bad_sectors;
3134 bio = r10_bio->devs[0].bio;
3136 bio->bi_next = biolist;
3138 bio->bi_private = r10_bio;
3139 bio->bi_end_io = end_sync_read;
3141 from_addr = r10_bio->devs[j].addr;
3142 bio->bi_iter.bi_sector = from_addr +
3144 bio->bi_bdev = rdev->bdev;
3145 atomic_inc(&rdev->nr_pending);
3146 /* and we write to 'i' (if not in_sync) */
3148 for (k=0; k<conf->copies; k++)
3149 if (r10_bio->devs[k].devnum == i)
3151 BUG_ON(k == conf->copies);
3152 to_addr = r10_bio->devs[k].addr;
3153 r10_bio->devs[0].devnum = d;
3154 r10_bio->devs[0].addr = from_addr;
3155 r10_bio->devs[1].devnum = i;
3156 r10_bio->devs[1].addr = to_addr;
3158 rdev = mirror->rdev;
3159 if (!test_bit(In_sync, &rdev->flags)) {
3160 bio = r10_bio->devs[1].bio;
3162 bio->bi_next = biolist;
3164 bio->bi_private = r10_bio;
3165 bio->bi_end_io = end_sync_write;
3167 bio->bi_iter.bi_sector = to_addr
3168 + rdev->data_offset;
3169 bio->bi_bdev = rdev->bdev;
3170 atomic_inc(&r10_bio->remaining);
3172 r10_bio->devs[1].bio->bi_end_io = NULL;
3174 /* and maybe write to replacement */