5e0b333793d5bbe705f34671b167b064b88cdfd1
[pandora-kernel.git] / drivers / md / raid10.c
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for futher copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 #include <linux/raid/raid10.h>
22
23 /*
24  * RAID10 provides a combination of RAID0 and RAID1 functionality.
25  * The layout of data is defined by
26  *    chunk_size
27  *    raid_disks
28  *    near_copies (stored in low byte of layout)
29  *    far_copies (stored in second byte of layout)
30  *
31  * The data to be stored is divided into chunks using chunksize.
32  * Each device is divided into far_copies sections.
33  * In each section, chunks are laid out in a style similar to raid0, but
34  * near_copies copies of each chunk is stored (each on a different drive).
35  * The starting device for each section is offset near_copies from the starting
36  * device of the previous section.
37  * Thus there are (near_copies*far_copies) of each chunk, and each is on a different
38  * drive.
39  * near_copies and far_copies must be at least one, and their product is at most
40  * raid_disks.
41  */
42
43 /*
44  * Number of guaranteed r10bios in case of extreme VM load:
45  */
46 #define NR_RAID10_BIOS 256
47
48 static void unplug_slaves(mddev_t *mddev);
49
50 static void * r10bio_pool_alloc(unsigned int __nocast gfp_flags, void *data)
51 {
52         conf_t *conf = data;
53         r10bio_t *r10_bio;
54         int size = offsetof(struct r10bio_s, devs[conf->copies]);
55
56         /* allocate a r10bio with room for raid_disks entries in the bios array */
57         r10_bio = kmalloc(size, gfp_flags);
58         if (r10_bio)
59                 memset(r10_bio, 0, size);
60         else
61                 unplug_slaves(conf->mddev);
62
63         return r10_bio;
64 }
65
66 static void r10bio_pool_free(void *r10_bio, void *data)
67 {
68         kfree(r10_bio);
69 }
70
71 #define RESYNC_BLOCK_SIZE (64*1024)
72 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
73 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
74 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
75 #define RESYNC_WINDOW (2048*1024)
76
77 /*
78  * When performing a resync, we need to read and compare, so
79  * we need as many pages are there are copies.
80  * When performing a recovery, we need 2 bios, one for read,
81  * one for write (we recover only one drive per r10buf)
82  *
83  */
84 static void * r10buf_pool_alloc(unsigned int __nocast gfp_flags, void *data)
85 {
86         conf_t *conf = data;
87         struct page *page;
88         r10bio_t *r10_bio;
89         struct bio *bio;
90         int i, j;
91         int nalloc;
92
93         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
94         if (!r10_bio) {
95                 unplug_slaves(conf->mddev);
96                 return NULL;
97         }
98
99         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
100                 nalloc = conf->copies; /* resync */
101         else
102                 nalloc = 2; /* recovery */
103
104         /*
105          * Allocate bios.
106          */
107         for (j = nalloc ; j-- ; ) {
108                 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
109                 if (!bio)
110                         goto out_free_bio;
111                 r10_bio->devs[j].bio = bio;
112         }
113         /*
114          * Allocate RESYNC_PAGES data pages and attach them
115          * where needed.
116          */
117         for (j = 0 ; j < nalloc; j++) {
118                 bio = r10_bio->devs[j].bio;
119                 for (i = 0; i < RESYNC_PAGES; i++) {
120                         page = alloc_page(gfp_flags);
121                         if (unlikely(!page))
122                                 goto out_free_pages;
123
124                         bio->bi_io_vec[i].bv_page = page;
125                 }
126         }
127
128         return r10_bio;
129
130 out_free_pages:
131         for ( ; i > 0 ; i--)
132                 __free_page(bio->bi_io_vec[i-1].bv_page);
133         while (j--)
134                 for (i = 0; i < RESYNC_PAGES ; i++)
135                         __free_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
136         j = -1;
137 out_free_bio:
138         while ( ++j < nalloc )
139                 bio_put(r10_bio->devs[j].bio);
140         r10bio_pool_free(r10_bio, conf);
141         return NULL;
142 }
143
144 static void r10buf_pool_free(void *__r10_bio, void *data)
145 {
146         int i;
147         conf_t *conf = data;
148         r10bio_t *r10bio = __r10_bio;
149         int j;
150
151         for (j=0; j < conf->copies; j++) {
152                 struct bio *bio = r10bio->devs[j].bio;
153                 if (bio) {
154                         for (i = 0; i < RESYNC_PAGES; i++) {
155                                 __free_page(bio->bi_io_vec[i].bv_page);
156                                 bio->bi_io_vec[i].bv_page = NULL;
157                         }
158                         bio_put(bio);
159                 }
160         }
161         r10bio_pool_free(r10bio, conf);
162 }
163
164 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
165 {
166         int i;
167
168         for (i = 0; i < conf->copies; i++) {
169                 struct bio **bio = & r10_bio->devs[i].bio;
170                 if (*bio)
171                         bio_put(*bio);
172                 *bio = NULL;
173         }
174 }
175
176 static inline void free_r10bio(r10bio_t *r10_bio)
177 {
178         unsigned long flags;
179
180         conf_t *conf = mddev_to_conf(r10_bio->mddev);
181
182         /*
183          * Wake up any possible resync thread that waits for the device
184          * to go idle.
185          */
186         spin_lock_irqsave(&conf->resync_lock, flags);
187         if (!--conf->nr_pending) {
188                 wake_up(&conf->wait_idle);
189                 wake_up(&conf->wait_resume);
190         }
191         spin_unlock_irqrestore(&conf->resync_lock, flags);
192
193         put_all_bios(conf, r10_bio);
194         mempool_free(r10_bio, conf->r10bio_pool);
195 }
196
197 static inline void put_buf(r10bio_t *r10_bio)
198 {
199         conf_t *conf = mddev_to_conf(r10_bio->mddev);
200         unsigned long flags;
201
202         mempool_free(r10_bio, conf->r10buf_pool);
203
204         spin_lock_irqsave(&conf->resync_lock, flags);
205         if (!conf->barrier)
206                 BUG();
207         --conf->barrier;
208         wake_up(&conf->wait_resume);
209         wake_up(&conf->wait_idle);
210
211         if (!--conf->nr_pending) {
212                 wake_up(&conf->wait_idle);
213                 wake_up(&conf->wait_resume);
214         }
215         spin_unlock_irqrestore(&conf->resync_lock, flags);
216 }
217
218 static void reschedule_retry(r10bio_t *r10_bio)
219 {
220         unsigned long flags;
221         mddev_t *mddev = r10_bio->mddev;
222         conf_t *conf = mddev_to_conf(mddev);
223
224         spin_lock_irqsave(&conf->device_lock, flags);
225         list_add(&r10_bio->retry_list, &conf->retry_list);
226         spin_unlock_irqrestore(&conf->device_lock, flags);
227
228         md_wakeup_thread(mddev->thread);
229 }
230
231 /*
232  * raid_end_bio_io() is called when we have finished servicing a mirrored
233  * operation and are ready to return a success/failure code to the buffer
234  * cache layer.
235  */
236 static void raid_end_bio_io(r10bio_t *r10_bio)
237 {
238         struct bio *bio = r10_bio->master_bio;
239
240         bio_endio(bio, bio->bi_size,
241                 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
242         free_r10bio(r10_bio);
243 }
244
245 /*
246  * Update disk head position estimator based on IRQ completion info.
247  */
248 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
249 {
250         conf_t *conf = mddev_to_conf(r10_bio->mddev);
251
252         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
253                 r10_bio->devs[slot].addr + (r10_bio->sectors);
254 }
255
256 static int raid10_end_read_request(struct bio *bio, unsigned int bytes_done, int error)
257 {
258         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
259         r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
260         int slot, dev;
261         conf_t *conf = mddev_to_conf(r10_bio->mddev);
262
263         if (bio->bi_size)
264                 return 1;
265
266         slot = r10_bio->read_slot;
267         dev = r10_bio->devs[slot].devnum;
268         /*
269          * this branch is our 'one mirror IO has finished' event handler:
270          */
271         if (!uptodate)
272                 md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
273         else
274                 /*
275                  * Set R10BIO_Uptodate in our master bio, so that
276                  * we will return a good error code to the higher
277                  * levels even if IO on some other mirrored buffer fails.
278                  *
279                  * The 'master' represents the composite IO operation to
280                  * user-side. So if something waits for IO, then it will
281                  * wait for the 'master' bio.
282                  */
283                 set_bit(R10BIO_Uptodate, &r10_bio->state);
284
285         update_head_pos(slot, r10_bio);
286
287         /*
288          * we have only one bio on the read side
289          */
290         if (uptodate)
291                 raid_end_bio_io(r10_bio);
292         else {
293                 /*
294                  * oops, read error:
295                  */
296                 char b[BDEVNAME_SIZE];
297                 if (printk_ratelimit())
298                         printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n",
299                                bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
300                 reschedule_retry(r10_bio);
301         }
302
303         rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
304         return 0;
305 }
306
307 static int raid10_end_write_request(struct bio *bio, unsigned int bytes_done, int error)
308 {
309         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
310         r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
311         int slot, dev;
312         conf_t *conf = mddev_to_conf(r10_bio->mddev);
313
314         if (bio->bi_size)
315                 return 1;
316
317         for (slot = 0; slot < conf->copies; slot++)
318                 if (r10_bio->devs[slot].bio == bio)
319                         break;
320         dev = r10_bio->devs[slot].devnum;
321
322         /*
323          * this branch is our 'one mirror IO has finished' event handler:
324          */
325         if (!uptodate)
326                 md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
327         else
328                 /*
329                  * Set R10BIO_Uptodate in our master bio, so that
330                  * we will return a good error code for to the higher
331                  * levels even if IO on some other mirrored buffer fails.
332                  *
333                  * The 'master' represents the composite IO operation to
334                  * user-side. So if something waits for IO, then it will
335                  * wait for the 'master' bio.
336                  */
337                 set_bit(R10BIO_Uptodate, &r10_bio->state);
338
339         update_head_pos(slot, r10_bio);
340
341         /*
342          *
343          * Let's see if all mirrored write operations have finished
344          * already.
345          */
346         if (atomic_dec_and_test(&r10_bio->remaining)) {
347                 md_write_end(r10_bio->mddev);
348                 raid_end_bio_io(r10_bio);
349         }
350
351         rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
352         return 0;
353 }
354
355
356 /*
357  * RAID10 layout manager
358  * Aswell as the chunksize and raid_disks count, there are two
359  * parameters: near_copies and far_copies.
360  * near_copies * far_copies must be <= raid_disks.
361  * Normally one of these will be 1.
362  * If both are 1, we get raid0.
363  * If near_copies == raid_disks, we get raid1.
364  *
365  * Chunks are layed out in raid0 style with near_copies copies of the
366  * first chunk, followed by near_copies copies of the next chunk and
367  * so on.
368  * If far_copies > 1, then after 1/far_copies of the array has been assigned
369  * as described above, we start again with a device offset of near_copies.
370  * So we effectively have another copy of the whole array further down all
371  * the drives, but with blocks on different drives.
372  * With this layout, and block is never stored twice on the one device.
373  *
374  * raid10_find_phys finds the sector offset of a given virtual sector
375  * on each device that it is on. If a block isn't on a device,
376  * that entry in the array is set to MaxSector.
377  *
378  * raid10_find_virt does the reverse mapping, from a device and a
379  * sector offset to a virtual address
380  */
381
382 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
383 {
384         int n,f;
385         sector_t sector;
386         sector_t chunk;
387         sector_t stripe;
388         int dev;
389
390         int slot = 0;
391
392         /* now calculate first sector/dev */
393         chunk = r10bio->sector >> conf->chunk_shift;
394         sector = r10bio->sector & conf->chunk_mask;
395
396         chunk *= conf->near_copies;
397         stripe = chunk;
398         dev = sector_div(stripe, conf->raid_disks);
399
400         sector += stripe << conf->chunk_shift;
401
402         /* and calculate all the others */
403         for (n=0; n < conf->near_copies; n++) {
404                 int d = dev;
405                 sector_t s = sector;
406                 r10bio->devs[slot].addr = sector;
407                 r10bio->devs[slot].devnum = d;
408                 slot++;
409
410                 for (f = 1; f < conf->far_copies; f++) {
411                         d += conf->near_copies;
412                         if (d >= conf->raid_disks)
413                                 d -= conf->raid_disks;
414                         s += conf->stride;
415                         r10bio->devs[slot].devnum = d;
416                         r10bio->devs[slot].addr = s;
417                         slot++;
418                 }
419                 dev++;
420                 if (dev >= conf->raid_disks) {
421                         dev = 0;
422                         sector += (conf->chunk_mask + 1);
423                 }
424         }
425         BUG_ON(slot != conf->copies);
426 }
427
428 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
429 {
430         sector_t offset, chunk, vchunk;
431
432         while (sector > conf->stride) {
433                 sector -= conf->stride;
434                 if (dev < conf->near_copies)
435                         dev += conf->raid_disks - conf->near_copies;
436                 else
437                         dev -= conf->near_copies;
438         }
439
440         offset = sector & conf->chunk_mask;
441         chunk = sector >> conf->chunk_shift;
442         vchunk = chunk * conf->raid_disks + dev;
443         sector_div(vchunk, conf->near_copies);
444         return (vchunk << conf->chunk_shift) + offset;
445 }
446
447 /**
448  *      raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
449  *      @q: request queue
450  *      @bio: the buffer head that's been built up so far
451  *      @biovec: the request that could be merged to it.
452  *
453  *      Return amount of bytes we can accept at this offset
454  *      If near_copies == raid_disk, there are no striping issues,
455  *      but in that case, the function isn't called at all.
456  */
457 static int raid10_mergeable_bvec(request_queue_t *q, struct bio *bio,
458                                 struct bio_vec *bio_vec)
459 {
460         mddev_t *mddev = q->queuedata;
461         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
462         int max;
463         unsigned int chunk_sectors = mddev->chunk_size >> 9;
464         unsigned int bio_sectors = bio->bi_size >> 9;
465
466         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
467         if (max < 0) max = 0; /* bio_add cannot handle a negative return */
468         if (max <= bio_vec->bv_len && bio_sectors == 0)
469                 return bio_vec->bv_len;
470         else
471                 return max;
472 }
473
474 /*
475  * This routine returns the disk from which the requested read should
476  * be done. There is a per-array 'next expected sequential IO' sector
477  * number - if this matches on the next IO then we use the last disk.
478  * There is also a per-disk 'last know head position' sector that is
479  * maintained from IRQ contexts, both the normal and the resync IO
480  * completion handlers update this position correctly. If there is no
481  * perfect sequential match then we pick the disk whose head is closest.
482  *
483  * If there are 2 mirrors in the same 2 devices, performance degrades
484  * because position is mirror, not device based.
485  *
486  * The rdev for the device selected will have nr_pending incremented.
487  */
488
489 /*
490  * FIXME: possibly should rethink readbalancing and do it differently
491  * depending on near_copies / far_copies geometry.
492  */
493 static int read_balance(conf_t *conf, r10bio_t *r10_bio)
494 {
495         const unsigned long this_sector = r10_bio->sector;
496         int disk, slot, nslot;
497         const int sectors = r10_bio->sectors;
498         sector_t new_distance, current_distance;
499
500         raid10_find_phys(conf, r10_bio);
501         rcu_read_lock();
502         /*
503          * Check if we can balance. We can balance on the whole
504          * device if no resync is going on, or below the resync window.
505          * We take the first readable disk when above the resync window.
506          */
507         if (conf->mddev->recovery_cp < MaxSector
508             && (this_sector + sectors >= conf->next_resync)) {
509                 /* make sure that disk is operational */
510                 slot = 0;
511                 disk = r10_bio->devs[slot].devnum;
512
513                 while (!conf->mirrors[disk].rdev ||
514                        !conf->mirrors[disk].rdev->in_sync) {
515                         slot++;
516                         if (slot == conf->copies) {
517                                 slot = 0;
518                                 disk = -1;
519                                 break;
520                         }
521                         disk = r10_bio->devs[slot].devnum;
522                 }
523                 goto rb_out;
524         }
525
526
527         /* make sure the disk is operational */
528         slot = 0;
529         disk = r10_bio->devs[slot].devnum;
530         while (!conf->mirrors[disk].rdev ||
531                !conf->mirrors[disk].rdev->in_sync) {
532                 slot ++;
533                 if (slot == conf->copies) {
534                         disk = -1;
535                         goto rb_out;
536                 }
537                 disk = r10_bio->devs[slot].devnum;
538         }
539
540
541         current_distance = abs(r10_bio->devs[slot].addr -
542                                conf->mirrors[disk].head_position);
543
544         /* Find the disk whose head is closest */
545
546         for (nslot = slot; nslot < conf->copies; nslot++) {
547                 int ndisk = r10_bio->devs[nslot].devnum;
548
549
550                 if (!conf->mirrors[ndisk].rdev ||
551                     !conf->mirrors[ndisk].rdev->in_sync)
552                         continue;
553
554                 if (!atomic_read(&conf->mirrors[ndisk].rdev->nr_pending)) {
555                         disk = ndisk;
556                         slot = nslot;
557                         break;
558                 }
559                 new_distance = abs(r10_bio->devs[nslot].addr -
560                                    conf->mirrors[ndisk].head_position);
561                 if (new_distance < current_distance) {
562                         current_distance = new_distance;
563                         disk = ndisk;
564                         slot = nslot;
565                 }
566         }
567
568 rb_out:
569         r10_bio->read_slot = slot;
570 /*      conf->next_seq_sect = this_sector + sectors;*/
571
572         if (disk >= 0 && conf->mirrors[disk].rdev)
573                 atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
574         rcu_read_unlock();
575
576         return disk;
577 }
578
579 static void unplug_slaves(mddev_t *mddev)
580 {
581         conf_t *conf = mddev_to_conf(mddev);
582         int i;
583
584         rcu_read_lock();
585         for (i=0; i<mddev->raid_disks; i++) {
586                 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
587                 if (rdev && !rdev->faulty && atomic_read(&rdev->nr_pending)) {
588                         request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
589
590                         atomic_inc(&rdev->nr_pending);
591                         rcu_read_unlock();
592
593                         if (r_queue->unplug_fn)
594                                 r_queue->unplug_fn(r_queue);
595
596                         rdev_dec_pending(rdev, mddev);
597                         rcu_read_lock();
598                 }
599         }
600         rcu_read_unlock();
601 }
602
603 static void raid10_unplug(request_queue_t *q)
604 {
605         unplug_slaves(q->queuedata);
606 }
607
608 static int raid10_issue_flush(request_queue_t *q, struct gendisk *disk,
609                              sector_t *error_sector)
610 {
611         mddev_t *mddev = q->queuedata;
612         conf_t *conf = mddev_to_conf(mddev);
613         int i, ret = 0;
614
615         rcu_read_lock();
616         for (i=0; i<mddev->raid_disks && ret == 0; i++) {
617                 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
618                 if (rdev && !rdev->faulty) {
619                         struct block_device *bdev = rdev->bdev;
620                         request_queue_t *r_queue = bdev_get_queue(bdev);
621
622                         if (!r_queue->issue_flush_fn)
623                                 ret = -EOPNOTSUPP;
624                         else {
625                                 atomic_inc(&rdev->nr_pending);
626                                 rcu_read_unlock();
627                                 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
628                                                               error_sector);
629                                 rdev_dec_pending(rdev, mddev);
630                                 rcu_read_lock();
631                         }
632                 }
633         }
634         rcu_read_unlock();
635         return ret;
636 }
637
638 /*
639  * Throttle resync depth, so that we can both get proper overlapping of
640  * requests, but are still able to handle normal requests quickly.
641  */
642 #define RESYNC_DEPTH 32
643
644 static void device_barrier(conf_t *conf, sector_t sect)
645 {
646         spin_lock_irq(&conf->resync_lock);
647         wait_event_lock_irq(conf->wait_idle, !waitqueue_active(&conf->wait_resume),
648                             conf->resync_lock, unplug_slaves(conf->mddev));
649
650         if (!conf->barrier++) {
651                 wait_event_lock_irq(conf->wait_idle, !conf->nr_pending,
652                                     conf->resync_lock, unplug_slaves(conf->mddev));
653                 if (conf->nr_pending)
654                         BUG();
655         }
656         wait_event_lock_irq(conf->wait_resume, conf->barrier < RESYNC_DEPTH,
657                             conf->resync_lock, unplug_slaves(conf->mddev));
658         conf->next_resync = sect;
659         spin_unlock_irq(&conf->resync_lock);
660 }
661
662 static int make_request(request_queue_t *q, struct bio * bio)
663 {
664         mddev_t *mddev = q->queuedata;
665         conf_t *conf = mddev_to_conf(mddev);
666         mirror_info_t *mirror;
667         r10bio_t *r10_bio;
668         struct bio *read_bio;
669         int i;
670         int chunk_sects = conf->chunk_mask + 1;
671
672         if (unlikely(bio_barrier(bio))) {
673                 bio_endio(bio, bio->bi_size, -EOPNOTSUPP);
674                 return 0;
675         }
676
677         /* If this request crosses a chunk boundary, we need to
678          * split it.  This will only happen for 1 PAGE (or less) requests.
679          */
680         if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
681                       > chunk_sects &&
682                     conf->near_copies < conf->raid_disks)) {
683                 struct bio_pair *bp;
684                 /* Sanity check -- queue functions should prevent this happening */
685                 if (bio->bi_vcnt != 1 ||
686                     bio->bi_idx != 0)
687                         goto bad_map;
688                 /* This is a one page bio that upper layers
689                  * refuse to split for us, so we need to split it.
690                  */
691                 bp = bio_split(bio, bio_split_pool,
692                                chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
693                 if (make_request(q, &bp->bio1))
694                         generic_make_request(&bp->bio1);
695                 if (make_request(q, &bp->bio2))
696                         generic_make_request(&bp->bio2);
697
698                 bio_pair_release(bp);
699                 return 0;
700         bad_map:
701                 printk("raid10_make_request bug: can't convert block across chunks"
702                        " or bigger than %dk %llu %d\n", chunk_sects/2,
703                        (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
704
705                 bio_io_error(bio, bio->bi_size);
706                 return 0;
707         }
708
709         md_write_start(mddev, bio);
710
711         /*
712          * Register the new request and wait if the reconstruction
713          * thread has put up a bar for new requests.
714          * Continue immediately if no resync is active currently.
715          */
716         spin_lock_irq(&conf->resync_lock);
717         wait_event_lock_irq(conf->wait_resume, !conf->barrier, conf->resync_lock, );
718         conf->nr_pending++;
719         spin_unlock_irq(&conf->resync_lock);
720
721         if (bio_data_dir(bio)==WRITE) {
722                 disk_stat_inc(mddev->gendisk, writes);
723                 disk_stat_add(mddev->gendisk, write_sectors, bio_sectors(bio));
724         } else {
725                 disk_stat_inc(mddev->gendisk, reads);
726                 disk_stat_add(mddev->gendisk, read_sectors, bio_sectors(bio));
727         }
728
729         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
730
731         r10_bio->master_bio = bio;
732         r10_bio->sectors = bio->bi_size >> 9;
733
734         r10_bio->mddev = mddev;
735         r10_bio->sector = bio->bi_sector;
736
737         if (bio_data_dir(bio) == READ) {
738                 /*
739                  * read balancing logic:
740                  */
741                 int disk = read_balance(conf, r10_bio);
742                 int slot = r10_bio->read_slot;
743                 if (disk < 0) {
744                         raid_end_bio_io(r10_bio);
745                         return 0;
746                 }
747                 mirror = conf->mirrors + disk;
748
749                 read_bio = bio_clone(bio, GFP_NOIO);
750
751                 r10_bio->devs[slot].bio = read_bio;
752
753                 read_bio->bi_sector = r10_bio->devs[slot].addr +
754                         mirror->rdev->data_offset;
755                 read_bio->bi_bdev = mirror->rdev->bdev;
756                 read_bio->bi_end_io = raid10_end_read_request;
757                 read_bio->bi_rw = READ;
758                 read_bio->bi_private = r10_bio;
759
760                 generic_make_request(read_bio);
761                 return 0;
762         }
763
764         /*
765          * WRITE:
766          */
767         /* first select target devices under spinlock and
768          * inc refcount on their rdev.  Record them by setting
769          * bios[x] to bio
770          */
771         raid10_find_phys(conf, r10_bio);
772         rcu_read_lock();
773         for (i = 0;  i < conf->copies; i++) {
774                 int d = r10_bio->devs[i].devnum;
775                 if (conf->mirrors[d].rdev &&
776                     !conf->mirrors[d].rdev->faulty) {
777                         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
778                         r10_bio->devs[i].bio = bio;
779                 } else
780                         r10_bio->devs[i].bio = NULL;
781         }
782         rcu_read_unlock();
783
784         atomic_set(&r10_bio->remaining, 1);
785
786         for (i = 0; i < conf->copies; i++) {
787                 struct bio *mbio;
788                 int d = r10_bio->devs[i].devnum;
789                 if (!r10_bio->devs[i].bio)
790                         continue;
791
792                 mbio = bio_clone(bio, GFP_NOIO);
793                 r10_bio->devs[i].bio = mbio;
794
795                 mbio->bi_sector = r10_bio->devs[i].addr+
796                         conf->mirrors[d].rdev->data_offset;
797                 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
798                 mbio->bi_end_io = raid10_end_write_request;
799                 mbio->bi_rw = WRITE;
800                 mbio->bi_private = r10_bio;
801
802                 atomic_inc(&r10_bio->remaining);
803                 generic_make_request(mbio);
804         }
805
806         if (atomic_dec_and_test(&r10_bio->remaining)) {
807                 md_write_end(mddev);
808                 raid_end_bio_io(r10_bio);
809         }
810
811         return 0;
812 }
813
814 static void status(struct seq_file *seq, mddev_t *mddev)
815 {
816         conf_t *conf = mddev_to_conf(mddev);
817         int i;
818
819         if (conf->near_copies < conf->raid_disks)
820                 seq_printf(seq, " %dK chunks", mddev->chunk_size/1024);
821         if (conf->near_copies > 1)
822                 seq_printf(seq, " %d near-copies", conf->near_copies);
823         if (conf->far_copies > 1)
824                 seq_printf(seq, " %d far-copies", conf->far_copies);
825
826         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
827                                                 conf->working_disks);
828         for (i = 0; i < conf->raid_disks; i++)
829                 seq_printf(seq, "%s",
830                               conf->mirrors[i].rdev &&
831                               conf->mirrors[i].rdev->in_sync ? "U" : "_");
832         seq_printf(seq, "]");
833 }
834
835 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
836 {
837         char b[BDEVNAME_SIZE];
838         conf_t *conf = mddev_to_conf(mddev);
839
840         /*
841          * If it is not operational, then we have already marked it as dead
842          * else if it is the last working disks, ignore the error, let the
843          * next level up know.
844          * else mark the drive as failed
845          */
846         if (rdev->in_sync
847             && conf->working_disks == 1)
848                 /*
849                  * Don't fail the drive, just return an IO error.
850                  * The test should really be more sophisticated than
851                  * "working_disks == 1", but it isn't critical, and
852                  * can wait until we do more sophisticated "is the drive
853                  * really dead" tests...
854                  */
855                 return;
856         if (rdev->in_sync) {
857                 mddev->degraded++;
858                 conf->working_disks--;
859                 /*
860                  * if recovery is running, make sure it aborts.
861                  */
862                 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
863         }
864         rdev->in_sync = 0;
865         rdev->faulty = 1;
866         mddev->sb_dirty = 1;
867         printk(KERN_ALERT "raid10: Disk failure on %s, disabling device. \n"
868                 "       Operation continuing on %d devices\n",
869                 bdevname(rdev->bdev,b), conf->working_disks);
870 }
871
872 static void print_conf(conf_t *conf)
873 {
874         int i;
875         mirror_info_t *tmp;
876
877         printk("RAID10 conf printout:\n");
878         if (!conf) {
879                 printk("(!conf)\n");
880                 return;
881         }
882         printk(" --- wd:%d rd:%d\n", conf->working_disks,
883                 conf->raid_disks);
884
885         for (i = 0; i < conf->raid_disks; i++) {
886                 char b[BDEVNAME_SIZE];
887                 tmp = conf->mirrors + i;
888                 if (tmp->rdev)
889                         printk(" disk %d, wo:%d, o:%d, dev:%s\n",
890                                 i, !tmp->rdev->in_sync, !tmp->rdev->faulty,
891                                 bdevname(tmp->rdev->bdev,b));
892         }
893 }
894
895 static void close_sync(conf_t *conf)
896 {
897         spin_lock_irq(&conf->resync_lock);
898         wait_event_lock_irq(conf->wait_resume, !conf->barrier,
899                             conf->resync_lock,  unplug_slaves(conf->mddev));
900         spin_unlock_irq(&conf->resync_lock);
901
902         if (conf->barrier) BUG();
903         if (waitqueue_active(&conf->wait_idle)) BUG();
904
905         mempool_destroy(conf->r10buf_pool);
906         conf->r10buf_pool = NULL;
907 }
908
909 static int raid10_spare_active(mddev_t *mddev)
910 {
911         int i;
912         conf_t *conf = mddev->private;
913         mirror_info_t *tmp;
914
915         /*
916          * Find all non-in_sync disks within the RAID10 configuration
917          * and mark them in_sync
918          */
919         for (i = 0; i < conf->raid_disks; i++) {
920                 tmp = conf->mirrors + i;
921                 if (tmp->rdev
922                     && !tmp->rdev->faulty
923                     && !tmp->rdev->in_sync) {
924                         conf->working_disks++;
925                         mddev->degraded--;
926                         tmp->rdev->in_sync = 1;
927                 }
928         }
929
930         print_conf(conf);
931         return 0;
932 }
933
934
935 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
936 {
937         conf_t *conf = mddev->private;
938         int found = 0;
939         int mirror;
940         mirror_info_t *p;
941
942         if (mddev->recovery_cp < MaxSector)
943                 /* only hot-add to in-sync arrays, as recovery is
944                  * very different from resync
945                  */
946                 return 0;
947
948         for (mirror=0; mirror < mddev->raid_disks; mirror++)
949                 if ( !(p=conf->mirrors+mirror)->rdev) {
950
951                         blk_queue_stack_limits(mddev->queue,
952                                                rdev->bdev->bd_disk->queue);
953                         /* as we don't honour merge_bvec_fn, we must never risk
954                          * violating it, so limit ->max_sector to one PAGE, as
955                          * a one page request is never in violation.
956                          */
957                         if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
958                             mddev->queue->max_sectors > (PAGE_SIZE>>9))
959                                 mddev->queue->max_sectors = (PAGE_SIZE>>9);
960
961                         p->head_position = 0;
962                         rdev->raid_disk = mirror;
963                         found = 1;
964                         p->rdev = rdev;
965                         break;
966                 }
967
968         print_conf(conf);
969         return found;
970 }
971
972 static int raid10_remove_disk(mddev_t *mddev, int number)
973 {
974         conf_t *conf = mddev->private;
975         int err = 0;
976         mdk_rdev_t *rdev;
977         mirror_info_t *p = conf->mirrors+ number;
978
979         print_conf(conf);
980         rdev = p->rdev;
981         if (rdev) {
982                 if (rdev->in_sync ||
983                     atomic_read(&rdev->nr_pending)) {
984                         err = -EBUSY;
985                         goto abort;
986                 }
987                 p->rdev = NULL;
988                 synchronize_rcu();
989                 if (atomic_read(&rdev->nr_pending)) {
990                         /* lost the race, try later */
991                         err = -EBUSY;
992                         p->rdev = rdev;
993                 }
994         }
995 abort:
996
997         print_conf(conf);
998         return err;
999 }
1000
1001
1002 static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error)
1003 {
1004         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1005         r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1006         conf_t *conf = mddev_to_conf(r10_bio->mddev);
1007         int i,d;
1008
1009         if (bio->bi_size)
1010                 return 1;
1011
1012         for (i=0; i<conf->copies; i++)
1013                 if (r10_bio->devs[i].bio == bio)
1014                         break;
1015         if (i == conf->copies)
1016                 BUG();
1017         update_head_pos(i, r10_bio);
1018         d = r10_bio->devs[i].devnum;
1019         if (!uptodate)
1020                 md_error(r10_bio->mddev,
1021                          conf->mirrors[d].rdev);
1022
1023         /* for reconstruct, we always reschedule after a read.
1024          * for resync, only after all reads
1025          */
1026         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1027             atomic_dec_and_test(&r10_bio->remaining)) {
1028                 /* we have read all the blocks,
1029                  * do the comparison in process context in raid10d
1030                  */
1031                 reschedule_retry(r10_bio);
1032         }
1033         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1034         return 0;
1035 }
1036
1037 static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error)
1038 {
1039         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1040         r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1041         mddev_t *mddev = r10_bio->mddev;
1042         conf_t *conf = mddev_to_conf(mddev);
1043         int i,d;
1044
1045         if (bio->bi_size)
1046                 return 1;
1047
1048         for (i = 0; i < conf->copies; i++)
1049                 if (r10_bio->devs[i].bio == bio)
1050                         break;
1051         d = r10_bio->devs[i].devnum;
1052
1053         if (!uptodate)
1054                 md_error(mddev, conf->mirrors[d].rdev);
1055         update_head_pos(i, r10_bio);
1056
1057         while (atomic_dec_and_test(&r10_bio->remaining)) {
1058                 if (r10_bio->master_bio == NULL) {
1059                         /* the primary of several recovery bios */
1060                         md_done_sync(mddev, r10_bio->sectors, 1);
1061                         put_buf(r10_bio);
1062                         break;
1063                 } else {
1064                         r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1065                         put_buf(r10_bio);
1066                         r10_bio = r10_bio2;
1067                 }
1068         }
1069         rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1070         return 0;
1071 }
1072
1073 /*
1074  * Note: sync and recover and handled very differently for raid10
1075  * This code is for resync.
1076  * For resync, we read through virtual addresses and read all blocks.
1077  * If there is any error, we schedule a write.  The lowest numbered
1078  * drive is authoritative.
1079  * However requests come for physical address, so we need to map.
1080  * For every physical address there are raid_disks/copies virtual addresses,
1081  * which is always are least one, but is not necessarly an integer.
1082  * This means that a physical address can span multiple chunks, so we may
1083  * have to submit multiple io requests for a single sync request.
1084  */
1085 /*
1086  * We check if all blocks are in-sync and only write to blocks that
1087  * aren't in sync
1088  */
1089 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1090 {
1091         conf_t *conf = mddev_to_conf(mddev);
1092         int i, first;
1093         struct bio *tbio, *fbio;
1094
1095         atomic_set(&r10_bio->remaining, 1);
1096
1097         /* find the first device with a block */
1098         for (i=0; i<conf->copies; i++)
1099                 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1100                         break;
1101
1102         if (i == conf->copies)
1103                 goto done;
1104
1105         first = i;
1106         fbio = r10_bio->devs[i].bio;
1107
1108         /* now find blocks with errors */
1109         for (i=first+1 ; i < conf->copies ; i++) {
1110                 int vcnt, j, d;
1111
1112                 if (!test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1113                         continue;
1114                 /* We know that the bi_io_vec layout is the same for
1115                  * both 'first' and 'i', so we just compare them.
1116                  * All vec entries are PAGE_SIZE;
1117                  */
1118                 tbio = r10_bio->devs[i].bio;
1119                 vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1120                 for (j = 0; j < vcnt; j++)
1121                         if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1122                                    page_address(tbio->bi_io_vec[j].bv_page),
1123                                    PAGE_SIZE))
1124                                 break;
1125                 if (j == vcnt)
1126                         continue;
1127                 /* Ok, we need to write this bio
1128                  * First we need to fixup bv_offset, bv_len and
1129                  * bi_vecs, as the read request might have corrupted these
1130                  */
1131                 tbio->bi_vcnt = vcnt;
1132                 tbio->bi_size = r10_bio->sectors << 9;
1133                 tbio->bi_idx = 0;
1134                 tbio->bi_phys_segments = 0;
1135                 tbio->bi_hw_segments = 0;
1136                 tbio->bi_hw_front_size = 0;
1137                 tbio->bi_hw_back_size = 0;
1138                 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1139                 tbio->bi_flags |= 1 << BIO_UPTODATE;
1140                 tbio->bi_next = NULL;
1141                 tbio->bi_rw = WRITE;
1142                 tbio->bi_private = r10_bio;
1143                 tbio->bi_sector = r10_bio->devs[i].addr;
1144
1145                 for (j=0; j < vcnt ; j++) {
1146                         tbio->bi_io_vec[j].bv_offset = 0;
1147                         tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1148
1149                         memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1150                                page_address(fbio->bi_io_vec[j].bv_page),
1151                                PAGE_SIZE);
1152                 }
1153                 tbio->bi_end_io = end_sync_write;
1154
1155                 d = r10_bio->devs[i].devnum;
1156                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1157                 atomic_inc(&r10_bio->remaining);
1158                 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1159
1160                 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1161                 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1162                 generic_make_request(tbio);
1163         }
1164
1165 done:
1166         if (atomic_dec_and_test(&r10_bio->remaining)) {
1167                 md_done_sync(mddev, r10_bio->sectors, 1);
1168                 put_buf(r10_bio);
1169         }
1170 }
1171
1172 /*
1173  * Now for the recovery code.
1174  * Recovery happens across physical sectors.
1175  * We recover all non-is_sync drives by finding the virtual address of
1176  * each, and then choose a working drive that also has that virt address.
1177  * There is a separate r10_bio for each non-in_sync drive.
1178  * Only the first two slots are in use. The first for reading,
1179  * The second for writing.
1180  *
1181  */
1182
1183 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1184 {
1185         conf_t *conf = mddev_to_conf(mddev);
1186         int i, d;
1187         struct bio *bio, *wbio;
1188
1189
1190         /* move the pages across to the second bio
1191          * and submit the write request
1192          */
1193         bio = r10_bio->devs[0].bio;
1194         wbio = r10_bio->devs[1].bio;
1195         for (i=0; i < wbio->bi_vcnt; i++) {
1196                 struct page *p = bio->bi_io_vec[i].bv_page;
1197                 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1198                 wbio->bi_io_vec[i].bv_page = p;
1199         }
1200         d = r10_bio->devs[1].devnum;
1201
1202         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1203         md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1204         generic_make_request(wbio);
1205 }
1206
1207
1208 /*
1209  * This is a kernel thread which:
1210  *
1211  *      1.      Retries failed read operations on working mirrors.
1212  *      2.      Updates the raid superblock when problems encounter.
1213  *      3.      Performs writes following reads for array syncronising.
1214  */
1215
1216 static void raid10d(mddev_t *mddev)
1217 {
1218         r10bio_t *r10_bio;
1219         struct bio *bio;
1220         unsigned long flags;
1221         conf_t *conf = mddev_to_conf(mddev);
1222         struct list_head *head = &conf->retry_list;
1223         int unplug=0;
1224         mdk_rdev_t *rdev;
1225
1226         md_check_recovery(mddev);
1227
1228         for (;;) {
1229                 char b[BDEVNAME_SIZE];
1230                 spin_lock_irqsave(&conf->device_lock, flags);
1231                 if (list_empty(head))
1232                         break;
1233                 r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1234                 list_del(head->prev);
1235                 spin_unlock_irqrestore(&conf->device_lock, flags);
1236
1237                 mddev = r10_bio->mddev;
1238                 conf = mddev_to_conf(mddev);
1239                 if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
1240                         sync_request_write(mddev, r10_bio);
1241                         unplug = 1;
1242                 } else  if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1243                         recovery_request_write(mddev, r10_bio);
1244                         unplug = 1;
1245                 } else {
1246                         int mirror;
1247                         bio = r10_bio->devs[r10_bio->read_slot].bio;
1248                         r10_bio->devs[r10_bio->read_slot].bio = NULL;
1249                         bio_put(bio);
1250                         mirror = read_balance(conf, r10_bio);
1251                         if (mirror == -1) {
1252                                 printk(KERN_ALERT "raid10: %s: unrecoverable I/O"
1253                                        " read error for block %llu\n",
1254                                        bdevname(bio->bi_bdev,b),
1255                                        (unsigned long long)r10_bio->sector);
1256                                 raid_end_bio_io(r10_bio);
1257                         } else {
1258                                 rdev = conf->mirrors[mirror].rdev;
1259                                 if (printk_ratelimit())
1260                                         printk(KERN_ERR "raid10: %s: redirecting sector %llu to"
1261                                                " another mirror\n",
1262                                                bdevname(rdev->bdev,b),
1263                                                (unsigned long long)r10_bio->sector);
1264                                 bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
1265                                 r10_bio->devs[r10_bio->read_slot].bio = bio;
1266                                 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1267                                         + rdev->data_offset;
1268                                 bio->bi_bdev = rdev->bdev;
1269                                 bio->bi_rw = READ;
1270                                 bio->bi_private = r10_bio;
1271                                 bio->bi_end_io = raid10_end_read_request;
1272                                 unplug = 1;
1273                                 generic_make_request(bio);
1274                         }
1275                 }
1276         }
1277         spin_unlock_irqrestore(&conf->device_lock, flags);
1278         if (unplug)
1279                 unplug_slaves(mddev);
1280 }
1281
1282
1283 static int init_resync(conf_t *conf)
1284 {
1285         int buffs;
1286
1287         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1288         if (conf->r10buf_pool)
1289                 BUG();
1290         conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1291         if (!conf->r10buf_pool)
1292                 return -ENOMEM;
1293         conf->next_resync = 0;
1294         return 0;
1295 }
1296
1297 /*
1298  * perform a "sync" on one "block"
1299  *
1300  * We need to make sure that no normal I/O request - particularly write
1301  * requests - conflict with active sync requests.
1302  *
1303  * This is achieved by tracking pending requests and a 'barrier' concept
1304  * that can be installed to exclude normal IO requests.
1305  *
1306  * Resync and recovery are handled very differently.
1307  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1308  *
1309  * For resync, we iterate over virtual addresses, read all copies,
1310  * and update if there are differences.  If only one copy is live,
1311  * skip it.
1312  * For recovery, we iterate over physical addresses, read a good
1313  * value for each non-in_sync drive, and over-write.
1314  *
1315  * So, for recovery we may have several outstanding complex requests for a
1316  * given address, one for each out-of-sync device.  We model this by allocating
1317  * a number of r10_bio structures, one for each out-of-sync device.
1318  * As we setup these structures, we collect all bio's together into a list
1319  * which we then process collectively to add pages, and then process again
1320  * to pass to generic_make_request.
1321  *
1322  * The r10_bio structures are linked using a borrowed master_bio pointer.
1323  * This link is counted in ->remaining.  When the r10_bio that points to NULL
1324  * has its remaining count decremented to 0, the whole complex operation
1325  * is complete.
1326  *
1327  */
1328
1329 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1330 {
1331         conf_t *conf = mddev_to_conf(mddev);
1332         r10bio_t *r10_bio;
1333         struct bio *biolist = NULL, *bio;
1334         sector_t max_sector, nr_sectors;
1335         int disk;
1336         int i;
1337
1338         sector_t sectors_skipped = 0;
1339         int chunks_skipped = 0;
1340
1341         if (!conf->r10buf_pool)
1342                 if (init_resync(conf))
1343                         return 0;
1344
1345  skipped:
1346         max_sector = mddev->size << 1;
1347         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1348                 max_sector = mddev->resync_max_sectors;
1349         if (sector_nr >= max_sector) {
1350                 close_sync(conf);
1351                 *skipped = 1;
1352                 return sectors_skipped;
1353         }
1354         if (chunks_skipped >= conf->raid_disks) {
1355                 /* if there has been nothing to do on any drive,
1356                  * then there is nothing to do at all..
1357                  */
1358                 *skipped = 1;
1359                 return (max_sector - sector_nr) + sectors_skipped;
1360         }
1361
1362         /* make sure whole request will fit in a chunk - if chunks
1363          * are meaningful
1364          */
1365         if (conf->near_copies < conf->raid_disks &&
1366             max_sector > (sector_nr | conf->chunk_mask))
1367                 max_sector = (sector_nr | conf->chunk_mask) + 1;
1368         /*
1369          * If there is non-resync activity waiting for us then
1370          * put in a delay to throttle resync.
1371          */
1372         if (!go_faster && waitqueue_active(&conf->wait_resume))
1373                 msleep_interruptible(1000);
1374         device_barrier(conf, sector_nr + RESYNC_SECTORS);
1375
1376         /* Again, very different code for resync and recovery.
1377          * Both must result in an r10bio with a list of bios that
1378          * have bi_end_io, bi_sector, bi_bdev set,
1379          * and bi_private set to the r10bio.
1380          * For recovery, we may actually create several r10bios
1381          * with 2 bios in each, that correspond to the bios in the main one.
1382          * In this case, the subordinate r10bios link back through a
1383          * borrowed master_bio pointer, and the counter in the master
1384          * includes a ref from each subordinate.
1385          */
1386         /* First, we decide what to do and set ->bi_end_io
1387          * To end_sync_read if we want to read, and
1388          * end_sync_write if we will want to write.
1389          */
1390
1391         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1392                 /* recovery... the complicated one */
1393                 int i, j, k;
1394                 r10_bio = NULL;
1395
1396                 for (i=0 ; i<conf->raid_disks; i++)
1397                         if (conf->mirrors[i].rdev &&
1398                             !conf->mirrors[i].rdev->in_sync) {
1399                                 /* want to reconstruct this device */
1400                                 r10bio_t *rb2 = r10_bio;
1401
1402                                 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1403                                 spin_lock_irq(&conf->resync_lock);
1404                                 conf->nr_pending++;
1405                                 if (rb2) conf->barrier++;
1406                                 spin_unlock_irq(&conf->resync_lock);
1407                                 atomic_set(&r10_bio->remaining, 0);
1408
1409                                 r10_bio->master_bio = (struct bio*)rb2;
1410                                 if (rb2)
1411                                         atomic_inc(&rb2->remaining);
1412                                 r10_bio->mddev = mddev;
1413                                 set_bit(R10BIO_IsRecover, &r10_bio->state);
1414                                 r10_bio->sector = raid10_find_virt(conf, sector_nr, i);
1415                                 raid10_find_phys(conf, r10_bio);
1416                                 for (j=0; j<conf->copies;j++) {
1417                                         int d = r10_bio->devs[j].devnum;
1418                                         if (conf->mirrors[d].rdev &&
1419                                             conf->mirrors[d].rdev->in_sync) {
1420                                                 /* This is where we read from */
1421                                                 bio = r10_bio->devs[0].bio;
1422                                                 bio->bi_next = biolist;
1423                                                 biolist = bio;
1424                                                 bio->bi_private = r10_bio;
1425                                                 bio->bi_end_io = end_sync_read;
1426                                                 bio->bi_rw = 0;
1427                                                 bio->bi_sector = r10_bio->devs[j].addr +
1428                                                         conf->mirrors[d].rdev->data_offset;
1429                                                 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1430                                                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1431                                                 atomic_inc(&r10_bio->remaining);
1432                                                 /* and we write to 'i' */
1433
1434                                                 for (k=0; k<conf->copies; k++)
1435                                                         if (r10_bio->devs[k].devnum == i)
1436                                                                 break;
1437                                                 bio = r10_bio->devs[1].bio;
1438                                                 bio->bi_next = biolist;
1439                                                 biolist = bio;
1440                                                 bio->bi_private = r10_bio;
1441                                                 bio->bi_end_io = end_sync_write;
1442                                                 bio->bi_rw = 1;
1443                                                 bio->bi_sector = r10_bio->devs[k].addr +
1444                                                         conf->mirrors[i].rdev->data_offset;
1445                                                 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1446
1447                                                 r10_bio->devs[0].devnum = d;
1448                                                 r10_bio->devs[1].devnum = i;
1449
1450                                                 break;
1451                                         }
1452                                 }
1453                                 if (j == conf->copies) {
1454                                         BUG();
1455                                 }
1456                         }
1457                 if (biolist == NULL) {
1458                         while (r10_bio) {
1459                                 r10bio_t *rb2 = r10_bio;
1460                                 r10_bio = (r10bio_t*) rb2->master_bio;
1461                                 rb2->master_bio = NULL;
1462                                 put_buf(rb2);
1463                         }
1464                         goto giveup;
1465                 }
1466         } else {
1467                 /* resync. Schedule a read for every block at this virt offset */
1468                 int count = 0;
1469                 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1470
1471                 spin_lock_irq(&conf->resync_lock);
1472                 conf->nr_pending++;
1473                 spin_unlock_irq(&conf->resync_lock);
1474
1475                 r10_bio->mddev = mddev;
1476                 atomic_set(&r10_bio->remaining, 0);
1477
1478                 r10_bio->master_bio = NULL;
1479                 r10_bio->sector = sector_nr;
1480                 set_bit(R10BIO_IsSync, &r10_bio->state);
1481                 raid10_find_phys(conf, r10_bio);
1482                 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
1483
1484                 for (i=0; i<conf->copies; i++) {
1485                         int d = r10_bio->devs[i].devnum;
1486                         bio = r10_bio->devs[i].bio;
1487                         bio->bi_end_io = NULL;
1488                         if (conf->mirrors[d].rdev == NULL ||
1489                             conf->mirrors[d].rdev->faulty)
1490                                 continue;
1491                         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1492                         atomic_inc(&r10_bio->remaining);
1493                         bio->bi_next = biolist;
1494                         biolist = bio;
1495                         bio->bi_private = r10_bio;
1496                         bio->bi_end_io = end_sync_read;
1497                         bio->bi_rw = 0;
1498                         bio->bi_sector = r10_bio->devs[i].addr +
1499                                 conf->mirrors[d].rdev->data_offset;
1500                         bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1501                         count++;
1502                 }
1503
1504                 if (count < 2) {
1505                         for (i=0; i<conf->copies; i++) {
1506                                 int d = r10_bio->devs[i].devnum;
1507                                 if (r10_bio->devs[i].bio->bi_end_io)
1508                                         rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1509                         }
1510                         put_buf(r10_bio);
1511                         biolist = NULL;
1512                         goto giveup;
1513                 }
1514         }
1515
1516         for (bio = biolist; bio ; bio=bio->bi_next) {
1517
1518                 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1519                 if (bio->bi_end_io)
1520                         bio->bi_flags |= 1 << BIO_UPTODATE;
1521                 bio->bi_vcnt = 0;
1522                 bio->bi_idx = 0;
1523                 bio->bi_phys_segments = 0;
1524                 bio->bi_hw_segments = 0;
1525                 bio->bi_size = 0;
1526         }
1527
1528         nr_sectors = 0;
1529         do {
1530                 struct page *page;
1531                 int len = PAGE_SIZE;
1532                 disk = 0;
1533                 if (sector_nr + (len>>9) > max_sector)
1534                         len = (max_sector - sector_nr) << 9;
1535                 if (len == 0)
1536                         break;
1537                 for (bio= biolist ; bio ; bio=bio->bi_next) {
1538                         page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1539                         if (bio_add_page(bio, page, len, 0) == 0) {
1540                                 /* stop here */
1541                                 struct bio *bio2;
1542                                 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1543                                 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
1544                                         /* remove last page from this bio */
1545                                         bio2->bi_vcnt--;
1546                                         bio2->bi_size -= len;
1547                                         bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1548                                 }
1549                                 goto bio_full;
1550                         }
1551                         disk = i;
1552                 }
1553                 nr_sectors += len>>9;
1554                 sector_nr += len>>9;
1555         } while (biolist->bi_vcnt < RESYNC_PAGES);
1556  bio_full:
1557         r10_bio->sectors = nr_sectors;
1558
1559         while (biolist) {
1560                 bio = biolist;
1561                 biolist = biolist->bi_next;
1562
1563                 bio->bi_next = NULL;
1564                 r10_bio = bio->bi_private;
1565                 r10_bio->sectors = nr_sectors;
1566
1567                 if (bio->bi_end_io == end_sync_read) {
1568                         md_sync_acct(bio->bi_bdev, nr_sectors);
1569                         generic_make_request(bio);
1570                 }
1571         }
1572
1573         if (sectors_skipped)
1574                 /* pretend they weren't skipped, it makes
1575                  * no important difference in this case
1576                  */
1577                 md_done_sync(mddev, sectors_skipped, 1);
1578
1579         return sectors_skipped + nr_sectors;
1580  giveup:
1581         /* There is nowhere to write, so all non-sync
1582          * drives must be failed, so try the next chunk...
1583          */
1584         {
1585         sector_t sec = max_sector - sector_nr;
1586         sectors_skipped += sec;
1587         chunks_skipped ++;
1588         sector_nr = max_sector;
1589         goto skipped;
1590         }
1591 }
1592
1593 static int run(mddev_t *mddev)
1594 {
1595         conf_t *conf;
1596         int i, disk_idx;
1597         mirror_info_t *disk;
1598         mdk_rdev_t *rdev;
1599         struct list_head *tmp;
1600         int nc, fc;
1601         sector_t stride, size;
1602
1603         if (mddev->level != 10) {
1604                 printk(KERN_ERR "raid10: %s: raid level not set correctly... (%d)\n",
1605                        mdname(mddev), mddev->level);
1606                 goto out;
1607         }
1608         nc = mddev->layout & 255;
1609         fc = (mddev->layout >> 8) & 255;
1610         if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
1611             (mddev->layout >> 16)) {
1612                 printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n",
1613                        mdname(mddev), mddev->layout);
1614                 goto out;
1615         }
1616         /*
1617          * copy the already verified devices into our private RAID10
1618          * bookkeeping area. [whatever we allocate in run(),
1619          * should be freed in stop()]
1620          */
1621         conf = kmalloc(sizeof(conf_t), GFP_KERNEL);
1622         mddev->private = conf;
1623         if (!conf) {
1624                 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
1625                         mdname(mddev));
1626                 goto out;
1627         }
1628         memset(conf, 0, sizeof(*conf));
1629         conf->mirrors = kmalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1630                                  GFP_KERNEL);
1631         if (!conf->mirrors) {
1632                 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
1633                        mdname(mddev));
1634                 goto out_free_conf;
1635         }
1636         memset(conf->mirrors, 0, sizeof(struct mirror_info)*mddev->raid_disks);
1637
1638         conf->near_copies = nc;
1639         conf->far_copies = fc;
1640         conf->copies = nc*fc;
1641         conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1;
1642         conf->chunk_shift = ffz(~mddev->chunk_size) - 9;
1643         stride = mddev->size >> (conf->chunk_shift-1);
1644         sector_div(stride, fc);
1645         conf->stride = stride << conf->chunk_shift;
1646
1647         conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
1648                                                 r10bio_pool_free, conf);
1649         if (!conf->r10bio_pool) {
1650                 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
1651                         mdname(mddev));
1652                 goto out_free_conf;
1653         }
1654
1655         ITERATE_RDEV(mddev, rdev, tmp) {
1656                 disk_idx = rdev->raid_disk;
1657                 if (disk_idx >= mddev->raid_disks
1658                     || disk_idx < 0)
1659                         continue;
1660                 disk = conf->mirrors + disk_idx;
1661
1662                 disk->rdev = rdev;
1663
1664                 blk_queue_stack_limits(mddev->queue,
1665                                        rdev->bdev->bd_disk->queue);
1666                 /* as we don't honour merge_bvec_fn, we must never risk
1667                  * violating it, so limit ->max_sector to one PAGE, as
1668                  * a one page request is never in violation.
1669                  */
1670                 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1671                     mddev->queue->max_sectors > (PAGE_SIZE>>9))
1672                         mddev->queue->max_sectors = (PAGE_SIZE>>9);
1673
1674                 disk->head_position = 0;
1675                 if (!rdev->faulty && rdev->in_sync)
1676                         conf->working_disks++;
1677         }
1678         conf->raid_disks = mddev->raid_disks;
1679         conf->mddev = mddev;
1680         spin_lock_init(&conf->device_lock);
1681         INIT_LIST_HEAD(&conf->retry_list);
1682
1683         spin_lock_init(&conf->resync_lock);
1684         init_waitqueue_head(&conf->wait_idle);
1685         init_waitqueue_head(&conf->wait_resume);
1686
1687         if (!conf->working_disks) {
1688                 printk(KERN_ERR "raid10: no operational mirrors for %s\n",
1689                         mdname(mddev));
1690                 goto out_free_conf;
1691         }
1692
1693         mddev->degraded = 0;
1694         for (i = 0; i < conf->raid_disks; i++) {
1695
1696                 disk = conf->mirrors + i;
1697
1698                 if (!disk->rdev) {
1699                         disk->head_position = 0;
1700                         mddev->degraded++;
1701                 }
1702         }
1703
1704
1705         mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10");
1706         if (!mddev->thread) {
1707                 printk(KERN_ERR
1708                        "raid10: couldn't allocate thread for %s\n",
1709                        mdname(mddev));
1710                 goto out_free_conf;
1711         }
1712
1713         printk(KERN_INFO
1714                 "raid10: raid set %s active with %d out of %d devices\n",
1715                 mdname(mddev), mddev->raid_disks - mddev->degraded,
1716                 mddev->raid_disks);
1717         /*
1718          * Ok, everything is just fine now
1719          */
1720         size = conf->stride * conf->raid_disks;
1721         sector_div(size, conf->near_copies);
1722         mddev->array_size = size/2;
1723         mddev->resync_max_sectors = size;
1724
1725         mddev->queue->unplug_fn = raid10_unplug;
1726         mddev->queue->issue_flush_fn = raid10_issue_flush;
1727
1728         /* Calculate max read-ahead size.
1729          * We need to readahead at least twice a whole stripe....
1730          * maybe...
1731          */
1732         {
1733                 int stripe = conf->raid_disks * mddev->chunk_size / PAGE_CACHE_SIZE;
1734                 stripe /= conf->near_copies;
1735                 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
1736                         mddev->queue->backing_dev_info.ra_pages = 2* stripe;
1737         }
1738
1739         if (conf->near_copies < mddev->raid_disks)
1740                 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
1741         return 0;
1742
1743 out_free_conf:
1744         if (conf->r10bio_pool)
1745                 mempool_destroy(conf->r10bio_pool);
1746         kfree(conf->mirrors);
1747         kfree(conf);
1748         mddev->private = NULL;
1749 out:
1750         return -EIO;
1751 }
1752
1753 static int stop(mddev_t *mddev)
1754 {
1755         conf_t *conf = mddev_to_conf(mddev);
1756
1757         md_unregister_thread(mddev->thread);
1758         mddev->thread = NULL;
1759         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
1760         if (conf->r10bio_pool)
1761                 mempool_destroy(conf->r10bio_pool);
1762         kfree(conf->mirrors);
1763         kfree(conf);
1764         mddev->private = NULL;
1765         return 0;
1766 }
1767
1768
1769 static mdk_personality_t raid10_personality =
1770 {
1771         .name           = "raid10",
1772         .owner          = THIS_MODULE,
1773         .make_request   = make_request,
1774         .run            = run,
1775         .stop           = stop,
1776         .status         = status,
1777         .error_handler  = error,
1778         .hot_add_disk   = raid10_add_disk,
1779         .hot_remove_disk= raid10_remove_disk,
1780         .spare_active   = raid10_spare_active,
1781         .sync_request   = sync_request,
1782 };
1783
1784 static int __init raid_init(void)
1785 {
1786         return register_md_personality(RAID10, &raid10_personality);
1787 }
1788
1789 static void raid_exit(void)
1790 {
1791         unregister_md_personality(RAID10);
1792 }
1793
1794 module_init(raid_init);
1795 module_exit(raid_exit);
1796 MODULE_LICENSE("GPL");
1797 MODULE_ALIAS("md-personality-9"); /* RAID10 */