Merge branch 'drm-intel-fixes' of git://people.freedesktop.org/~keithp/linux into...
[pandora-kernel.git] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3           Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/mutex.h>
40 #include <linux/buffer_head.h> /* for invalidate_bdev */
41 #include <linux/poll.h>
42 #include <linux/ctype.h>
43 #include <linux/string.h>
44 #include <linux/hdreg.h>
45 #include <linux/proc_fs.h>
46 #include <linux/random.h>
47 #include <linux/module.h>
48 #include <linux/reboot.h>
49 #include <linux/file.h>
50 #include <linux/compat.h>
51 #include <linux/delay.h>
52 #include <linux/raid/md_p.h>
53 #include <linux/raid/md_u.h>
54 #include <linux/slab.h>
55 #include "md.h"
56 #include "bitmap.h"
57
58 #ifndef MODULE
59 static void autostart_arrays(int part);
60 #endif
61
62 /* pers_list is a list of registered personalities protected
63  * by pers_lock.
64  * pers_lock does extra service to protect accesses to
65  * mddev->thread when the mutex cannot be held.
66  */
67 static LIST_HEAD(pers_list);
68 static DEFINE_SPINLOCK(pers_lock);
69
70 static void md_print_devices(void);
71
72 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
73 static struct workqueue_struct *md_wq;
74 static struct workqueue_struct *md_misc_wq;
75
76 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
77
78 /*
79  * Default number of read corrections we'll attempt on an rdev
80  * before ejecting it from the array. We divide the read error
81  * count by 2 for every hour elapsed between read errors.
82  */
83 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
84 /*
85  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
86  * is 1000 KB/sec, so the extra system load does not show up that much.
87  * Increase it if you want to have more _guaranteed_ speed. Note that
88  * the RAID driver will use the maximum available bandwidth if the IO
89  * subsystem is idle. There is also an 'absolute maximum' reconstruction
90  * speed limit - in case reconstruction slows down your system despite
91  * idle IO detection.
92  *
93  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
94  * or /sys/block/mdX/md/sync_speed_{min,max}
95  */
96
97 static int sysctl_speed_limit_min = 1000;
98 static int sysctl_speed_limit_max = 200000;
99 static inline int speed_min(struct mddev *mddev)
100 {
101         return mddev->sync_speed_min ?
102                 mddev->sync_speed_min : sysctl_speed_limit_min;
103 }
104
105 static inline int speed_max(struct mddev *mddev)
106 {
107         return mddev->sync_speed_max ?
108                 mddev->sync_speed_max : sysctl_speed_limit_max;
109 }
110
111 static struct ctl_table_header *raid_table_header;
112
113 static ctl_table raid_table[] = {
114         {
115                 .procname       = "speed_limit_min",
116                 .data           = &sysctl_speed_limit_min,
117                 .maxlen         = sizeof(int),
118                 .mode           = S_IRUGO|S_IWUSR,
119                 .proc_handler   = proc_dointvec,
120         },
121         {
122                 .procname       = "speed_limit_max",
123                 .data           = &sysctl_speed_limit_max,
124                 .maxlen         = sizeof(int),
125                 .mode           = S_IRUGO|S_IWUSR,
126                 .proc_handler   = proc_dointvec,
127         },
128         { }
129 };
130
131 static ctl_table raid_dir_table[] = {
132         {
133                 .procname       = "raid",
134                 .maxlen         = 0,
135                 .mode           = S_IRUGO|S_IXUGO,
136                 .child          = raid_table,
137         },
138         { }
139 };
140
141 static ctl_table raid_root_table[] = {
142         {
143                 .procname       = "dev",
144                 .maxlen         = 0,
145                 .mode           = 0555,
146                 .child          = raid_dir_table,
147         },
148         {  }
149 };
150
151 static const struct block_device_operations md_fops;
152
153 static int start_readonly;
154
155 /* bio_clone_mddev
156  * like bio_clone, but with a local bio set
157  */
158
159 static void mddev_bio_destructor(struct bio *bio)
160 {
161         struct mddev *mddev, **mddevp;
162
163         mddevp = (void*)bio;
164         mddev = mddevp[-1];
165
166         bio_free(bio, mddev->bio_set);
167 }
168
169 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
170                             struct mddev *mddev)
171 {
172         struct bio *b;
173         struct mddev **mddevp;
174
175         if (!mddev || !mddev->bio_set)
176                 return bio_alloc(gfp_mask, nr_iovecs);
177
178         b = bio_alloc_bioset(gfp_mask, nr_iovecs,
179                              mddev->bio_set);
180         if (!b)
181                 return NULL;
182         mddevp = (void*)b;
183         mddevp[-1] = mddev;
184         b->bi_destructor = mddev_bio_destructor;
185         return b;
186 }
187 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
188
189 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
190                             struct mddev *mddev)
191 {
192         struct bio *b;
193         struct mddev **mddevp;
194
195         if (!mddev || !mddev->bio_set)
196                 return bio_clone(bio, gfp_mask);
197
198         b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
199                              mddev->bio_set);
200         if (!b)
201                 return NULL;
202         mddevp = (void*)b;
203         mddevp[-1] = mddev;
204         b->bi_destructor = mddev_bio_destructor;
205         __bio_clone(b, bio);
206         if (bio_integrity(bio)) {
207                 int ret;
208
209                 ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
210
211                 if (ret < 0) {
212                         bio_put(b);
213                         return NULL;
214                 }
215         }
216
217         return b;
218 }
219 EXPORT_SYMBOL_GPL(bio_clone_mddev);
220
221 void md_trim_bio(struct bio *bio, int offset, int size)
222 {
223         /* 'bio' is a cloned bio which we need to trim to match
224          * the given offset and size.
225          * This requires adjusting bi_sector, bi_size, and bi_io_vec
226          */
227         int i;
228         struct bio_vec *bvec;
229         int sofar = 0;
230
231         size <<= 9;
232         if (offset == 0 && size == bio->bi_size)
233                 return;
234
235         bio->bi_sector += offset;
236         bio->bi_size = size;
237         offset <<= 9;
238         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
239
240         while (bio->bi_idx < bio->bi_vcnt &&
241                bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
242                 /* remove this whole bio_vec */
243                 offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
244                 bio->bi_idx++;
245         }
246         if (bio->bi_idx < bio->bi_vcnt) {
247                 bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
248                 bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
249         }
250         /* avoid any complications with bi_idx being non-zero*/
251         if (bio->bi_idx) {
252                 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
253                         (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
254                 bio->bi_vcnt -= bio->bi_idx;
255                 bio->bi_idx = 0;
256         }
257         /* Make sure vcnt and last bv are not too big */
258         bio_for_each_segment(bvec, bio, i) {
259                 if (sofar + bvec->bv_len > size)
260                         bvec->bv_len = size - sofar;
261                 if (bvec->bv_len == 0) {
262                         bio->bi_vcnt = i;
263                         break;
264                 }
265                 sofar += bvec->bv_len;
266         }
267 }
268 EXPORT_SYMBOL_GPL(md_trim_bio);
269
270 /*
271  * We have a system wide 'event count' that is incremented
272  * on any 'interesting' event, and readers of /proc/mdstat
273  * can use 'poll' or 'select' to find out when the event
274  * count increases.
275  *
276  * Events are:
277  *  start array, stop array, error, add device, remove device,
278  *  start build, activate spare
279  */
280 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
281 static atomic_t md_event_count;
282 void md_new_event(struct mddev *mddev)
283 {
284         atomic_inc(&md_event_count);
285         wake_up(&md_event_waiters);
286 }
287 EXPORT_SYMBOL_GPL(md_new_event);
288
289 /* Alternate version that can be called from interrupts
290  * when calling sysfs_notify isn't needed.
291  */
292 static void md_new_event_inintr(struct mddev *mddev)
293 {
294         atomic_inc(&md_event_count);
295         wake_up(&md_event_waiters);
296 }
297
298 /*
299  * Enables to iterate over all existing md arrays
300  * all_mddevs_lock protects this list.
301  */
302 static LIST_HEAD(all_mddevs);
303 static DEFINE_SPINLOCK(all_mddevs_lock);
304
305
306 /*
307  * iterates through all used mddevs in the system.
308  * We take care to grab the all_mddevs_lock whenever navigating
309  * the list, and to always hold a refcount when unlocked.
310  * Any code which breaks out of this loop while own
311  * a reference to the current mddev and must mddev_put it.
312  */
313 #define for_each_mddev(_mddev,_tmp)                                     \
314                                                                         \
315         for (({ spin_lock(&all_mddevs_lock);                            \
316                 _tmp = all_mddevs.next;                                 \
317                 _mddev = NULL;});                                       \
318              ({ if (_tmp != &all_mddevs)                                \
319                         mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
320                 spin_unlock(&all_mddevs_lock);                          \
321                 if (_mddev) mddev_put(_mddev);                          \
322                 _mddev = list_entry(_tmp, struct mddev, all_mddevs);    \
323                 _tmp != &all_mddevs;});                                 \
324              ({ spin_lock(&all_mddevs_lock);                            \
325                 _tmp = _tmp->next;})                                    \
326                 )
327
328
329 /* Rather than calling directly into the personality make_request function,
330  * IO requests come here first so that we can check if the device is
331  * being suspended pending a reconfiguration.
332  * We hold a refcount over the call to ->make_request.  By the time that
333  * call has finished, the bio has been linked into some internal structure
334  * and so is visible to ->quiesce(), so we don't need the refcount any more.
335  */
336 static void md_make_request(struct request_queue *q, struct bio *bio)
337 {
338         const int rw = bio_data_dir(bio);
339         struct mddev *mddev = q->queuedata;
340         int cpu;
341         unsigned int sectors;
342
343         if (mddev == NULL || mddev->pers == NULL
344             || !mddev->ready) {
345                 bio_io_error(bio);
346                 return;
347         }
348         smp_rmb(); /* Ensure implications of  'active' are visible */
349         rcu_read_lock();
350         if (mddev->suspended) {
351                 DEFINE_WAIT(__wait);
352                 for (;;) {
353                         prepare_to_wait(&mddev->sb_wait, &__wait,
354                                         TASK_UNINTERRUPTIBLE);
355                         if (!mddev->suspended)
356                                 break;
357                         rcu_read_unlock();
358                         schedule();
359                         rcu_read_lock();
360                 }
361                 finish_wait(&mddev->sb_wait, &__wait);
362         }
363         atomic_inc(&mddev->active_io);
364         rcu_read_unlock();
365
366         /*
367          * save the sectors now since our bio can
368          * go away inside make_request
369          */
370         sectors = bio_sectors(bio);
371         mddev->pers->make_request(mddev, bio);
372
373         cpu = part_stat_lock();
374         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
375         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
376         part_stat_unlock();
377
378         if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
379                 wake_up(&mddev->sb_wait);
380 }
381
382 /* mddev_suspend makes sure no new requests are submitted
383  * to the device, and that any requests that have been submitted
384  * are completely handled.
385  * Once ->stop is called and completes, the module will be completely
386  * unused.
387  */
388 void mddev_suspend(struct mddev *mddev)
389 {
390         BUG_ON(mddev->suspended);
391         mddev->suspended = 1;
392         synchronize_rcu();
393         wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
394         mddev->pers->quiesce(mddev, 1);
395 }
396 EXPORT_SYMBOL_GPL(mddev_suspend);
397
398 void mddev_resume(struct mddev *mddev)
399 {
400         mddev->suspended = 0;
401         wake_up(&mddev->sb_wait);
402         mddev->pers->quiesce(mddev, 0);
403
404         md_wakeup_thread(mddev->thread);
405         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
406 }
407 EXPORT_SYMBOL_GPL(mddev_resume);
408
409 int mddev_congested(struct mddev *mddev, int bits)
410 {
411         return mddev->suspended;
412 }
413 EXPORT_SYMBOL(mddev_congested);
414
415 /*
416  * Generic flush handling for md
417  */
418
419 static void md_end_flush(struct bio *bio, int err)
420 {
421         struct md_rdev *rdev = bio->bi_private;
422         struct mddev *mddev = rdev->mddev;
423
424         rdev_dec_pending(rdev, mddev);
425
426         if (atomic_dec_and_test(&mddev->flush_pending)) {
427                 /* The pre-request flush has finished */
428                 queue_work(md_wq, &mddev->flush_work);
429         }
430         bio_put(bio);
431 }
432
433 static void md_submit_flush_data(struct work_struct *ws);
434
435 static void submit_flushes(struct work_struct *ws)
436 {
437         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
438         struct md_rdev *rdev;
439
440         INIT_WORK(&mddev->flush_work, md_submit_flush_data);
441         atomic_set(&mddev->flush_pending, 1);
442         rcu_read_lock();
443         list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
444                 if (rdev->raid_disk >= 0 &&
445                     !test_bit(Faulty, &rdev->flags)) {
446                         /* Take two references, one is dropped
447                          * when request finishes, one after
448                          * we reclaim rcu_read_lock
449                          */
450                         struct bio *bi;
451                         atomic_inc(&rdev->nr_pending);
452                         atomic_inc(&rdev->nr_pending);
453                         rcu_read_unlock();
454                         bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev);
455                         bi->bi_end_io = md_end_flush;
456                         bi->bi_private = rdev;
457                         bi->bi_bdev = rdev->bdev;
458                         atomic_inc(&mddev->flush_pending);
459                         submit_bio(WRITE_FLUSH, bi);
460                         rcu_read_lock();
461                         rdev_dec_pending(rdev, mddev);
462                 }
463         rcu_read_unlock();
464         if (atomic_dec_and_test(&mddev->flush_pending))
465                 queue_work(md_wq, &mddev->flush_work);
466 }
467
468 static void md_submit_flush_data(struct work_struct *ws)
469 {
470         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
471         struct bio *bio = mddev->flush_bio;
472
473         if (bio->bi_size == 0)
474                 /* an empty barrier - all done */
475                 bio_endio(bio, 0);
476         else {
477                 bio->bi_rw &= ~REQ_FLUSH;
478                 mddev->pers->make_request(mddev, bio);
479         }
480
481         mddev->flush_bio = NULL;
482         wake_up(&mddev->sb_wait);
483 }
484
485 void md_flush_request(struct mddev *mddev, struct bio *bio)
486 {
487         spin_lock_irq(&mddev->write_lock);
488         wait_event_lock_irq(mddev->sb_wait,
489                             !mddev->flush_bio,
490                             mddev->write_lock, /*nothing*/);
491         mddev->flush_bio = bio;
492         spin_unlock_irq(&mddev->write_lock);
493
494         INIT_WORK(&mddev->flush_work, submit_flushes);
495         queue_work(md_wq, &mddev->flush_work);
496 }
497 EXPORT_SYMBOL(md_flush_request);
498
499 /* Support for plugging.
500  * This mirrors the plugging support in request_queue, but does not
501  * require having a whole queue or request structures.
502  * We allocate an md_plug_cb for each md device and each thread it gets
503  * plugged on.  This links tot the private plug_handle structure in the
504  * personality data where we keep a count of the number of outstanding
505  * plugs so other code can see if a plug is active.
506  */
507 struct md_plug_cb {
508         struct blk_plug_cb cb;
509         struct mddev *mddev;
510 };
511
512 static void plugger_unplug(struct blk_plug_cb *cb)
513 {
514         struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
515         if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
516                 md_wakeup_thread(mdcb->mddev->thread);
517         kfree(mdcb);
518 }
519
520 /* Check that an unplug wakeup will come shortly.
521  * If not, wakeup the md thread immediately
522  */
523 int mddev_check_plugged(struct mddev *mddev)
524 {
525         struct blk_plug *plug = current->plug;
526         struct md_plug_cb *mdcb;
527
528         if (!plug)
529                 return 0;
530
531         list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
532                 if (mdcb->cb.callback == plugger_unplug &&
533                     mdcb->mddev == mddev) {
534                         /* Already on the list, move to top */
535                         if (mdcb != list_first_entry(&plug->cb_list,
536                                                     struct md_plug_cb,
537                                                     cb.list))
538                                 list_move(&mdcb->cb.list, &plug->cb_list);
539                         return 1;
540                 }
541         }
542         /* Not currently on the callback list */
543         mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
544         if (!mdcb)
545                 return 0;
546
547         mdcb->mddev = mddev;
548         mdcb->cb.callback = plugger_unplug;
549         atomic_inc(&mddev->plug_cnt);
550         list_add(&mdcb->cb.list, &plug->cb_list);
551         return 1;
552 }
553 EXPORT_SYMBOL_GPL(mddev_check_plugged);
554
555 static inline struct mddev *mddev_get(struct mddev *mddev)
556 {
557         atomic_inc(&mddev->active);
558         return mddev;
559 }
560
561 static void mddev_delayed_delete(struct work_struct *ws);
562
563 static void mddev_put(struct mddev *mddev)
564 {
565         struct bio_set *bs = NULL;
566
567         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
568                 return;
569         if (!mddev->raid_disks && list_empty(&mddev->disks) &&
570             mddev->ctime == 0 && !mddev->hold_active) {
571                 /* Array is not configured at all, and not held active,
572                  * so destroy it */
573                 list_del(&mddev->all_mddevs);
574                 bs = mddev->bio_set;
575                 mddev->bio_set = NULL;
576                 if (mddev->gendisk) {
577                         /* We did a probe so need to clean up.  Call
578                          * queue_work inside the spinlock so that
579                          * flush_workqueue() after mddev_find will
580                          * succeed in waiting for the work to be done.
581                          */
582                         INIT_WORK(&mddev->del_work, mddev_delayed_delete);
583                         queue_work(md_misc_wq, &mddev->del_work);
584                 } else
585                         kfree(mddev);
586         }
587         spin_unlock(&all_mddevs_lock);
588         if (bs)
589                 bioset_free(bs);
590 }
591
592 void mddev_init(struct mddev *mddev)
593 {
594         mutex_init(&mddev->open_mutex);
595         mutex_init(&mddev->reconfig_mutex);
596         mutex_init(&mddev->bitmap_info.mutex);
597         INIT_LIST_HEAD(&mddev->disks);
598         INIT_LIST_HEAD(&mddev->all_mddevs);
599         init_timer(&mddev->safemode_timer);
600         atomic_set(&mddev->active, 1);
601         atomic_set(&mddev->openers, 0);
602         atomic_set(&mddev->active_io, 0);
603         atomic_set(&mddev->plug_cnt, 0);
604         spin_lock_init(&mddev->write_lock);
605         atomic_set(&mddev->flush_pending, 0);
606         init_waitqueue_head(&mddev->sb_wait);
607         init_waitqueue_head(&mddev->recovery_wait);
608         mddev->reshape_position = MaxSector;
609         mddev->resync_min = 0;
610         mddev->resync_max = MaxSector;
611         mddev->level = LEVEL_NONE;
612 }
613 EXPORT_SYMBOL_GPL(mddev_init);
614
615 static struct mddev * mddev_find(dev_t unit)
616 {
617         struct mddev *mddev, *new = NULL;
618
619         if (unit && MAJOR(unit) != MD_MAJOR)
620                 unit &= ~((1<<MdpMinorShift)-1);
621
622  retry:
623         spin_lock(&all_mddevs_lock);
624
625         if (unit) {
626                 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
627                         if (mddev->unit == unit) {
628                                 mddev_get(mddev);
629                                 spin_unlock(&all_mddevs_lock);
630                                 kfree(new);
631                                 return mddev;
632                         }
633
634                 if (new) {
635                         list_add(&new->all_mddevs, &all_mddevs);
636                         spin_unlock(&all_mddevs_lock);
637                         new->hold_active = UNTIL_IOCTL;
638                         return new;
639                 }
640         } else if (new) {
641                 /* find an unused unit number */
642                 static int next_minor = 512;
643                 int start = next_minor;
644                 int is_free = 0;
645                 int dev = 0;
646                 while (!is_free) {
647                         dev = MKDEV(MD_MAJOR, next_minor);
648                         next_minor++;
649                         if (next_minor > MINORMASK)
650                                 next_minor = 0;
651                         if (next_minor == start) {
652                                 /* Oh dear, all in use. */
653                                 spin_unlock(&all_mddevs_lock);
654                                 kfree(new);
655                                 return NULL;
656                         }
657                                 
658                         is_free = 1;
659                         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
660                                 if (mddev->unit == dev) {
661                                         is_free = 0;
662                                         break;
663                                 }
664                 }
665                 new->unit = dev;
666                 new->md_minor = MINOR(dev);
667                 new->hold_active = UNTIL_STOP;
668                 list_add(&new->all_mddevs, &all_mddevs);
669                 spin_unlock(&all_mddevs_lock);
670                 return new;
671         }
672         spin_unlock(&all_mddevs_lock);
673
674         new = kzalloc(sizeof(*new), GFP_KERNEL);
675         if (!new)
676                 return NULL;
677
678         new->unit = unit;
679         if (MAJOR(unit) == MD_MAJOR)
680                 new->md_minor = MINOR(unit);
681         else
682                 new->md_minor = MINOR(unit) >> MdpMinorShift;
683
684         mddev_init(new);
685
686         goto retry;
687 }
688
689 static inline int mddev_lock(struct mddev * mddev)
690 {
691         return mutex_lock_interruptible(&mddev->reconfig_mutex);
692 }
693
694 static inline int mddev_is_locked(struct mddev *mddev)
695 {
696         return mutex_is_locked(&mddev->reconfig_mutex);
697 }
698
699 static inline int mddev_trylock(struct mddev * mddev)
700 {
701         return mutex_trylock(&mddev->reconfig_mutex);
702 }
703
704 static struct attribute_group md_redundancy_group;
705
706 static void mddev_unlock(struct mddev * mddev)
707 {
708         if (mddev->to_remove) {
709                 /* These cannot be removed under reconfig_mutex as
710                  * an access to the files will try to take reconfig_mutex
711                  * while holding the file unremovable, which leads to
712                  * a deadlock.
713                  * So hold set sysfs_active while the remove in happeing,
714                  * and anything else which might set ->to_remove or my
715                  * otherwise change the sysfs namespace will fail with
716                  * -EBUSY if sysfs_active is still set.
717                  * We set sysfs_active under reconfig_mutex and elsewhere
718                  * test it under the same mutex to ensure its correct value
719                  * is seen.
720                  */
721                 struct attribute_group *to_remove = mddev->to_remove;
722                 mddev->to_remove = NULL;
723                 mddev->sysfs_active = 1;
724                 mutex_unlock(&mddev->reconfig_mutex);
725
726                 if (mddev->kobj.sd) {
727                         if (to_remove != &md_redundancy_group)
728                                 sysfs_remove_group(&mddev->kobj, to_remove);
729                         if (mddev->pers == NULL ||
730                             mddev->pers->sync_request == NULL) {
731                                 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
732                                 if (mddev->sysfs_action)
733                                         sysfs_put(mddev->sysfs_action);
734                                 mddev->sysfs_action = NULL;
735                         }
736                 }
737                 mddev->sysfs_active = 0;
738         } else
739                 mutex_unlock(&mddev->reconfig_mutex);
740
741         /* As we've dropped the mutex we need a spinlock to
742          * make sure the thread doesn't disappear
743          */
744         spin_lock(&pers_lock);
745         md_wakeup_thread(mddev->thread);
746         spin_unlock(&pers_lock);
747 }
748
749 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
750 {
751         struct md_rdev *rdev;
752
753         list_for_each_entry(rdev, &mddev->disks, same_set)
754                 if (rdev->desc_nr == nr)
755                         return rdev;
756
757         return NULL;
758 }
759
760 static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev)
761 {
762         struct md_rdev *rdev;
763
764         list_for_each_entry(rdev, &mddev->disks, same_set)
765                 if (rdev->bdev->bd_dev == dev)
766                         return rdev;
767
768         return NULL;
769 }
770
771 static struct md_personality *find_pers(int level, char *clevel)
772 {
773         struct md_personality *pers;
774         list_for_each_entry(pers, &pers_list, list) {
775                 if (level != LEVEL_NONE && pers->level == level)
776                         return pers;
777                 if (strcmp(pers->name, clevel)==0)
778                         return pers;
779         }
780         return NULL;
781 }
782
783 /* return the offset of the super block in 512byte sectors */
784 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
785 {
786         sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
787         return MD_NEW_SIZE_SECTORS(num_sectors);
788 }
789
790 static int alloc_disk_sb(struct md_rdev * rdev)
791 {
792         if (rdev->sb_page)
793                 MD_BUG();
794
795         rdev->sb_page = alloc_page(GFP_KERNEL);
796         if (!rdev->sb_page) {
797                 printk(KERN_ALERT "md: out of memory.\n");
798                 return -ENOMEM;
799         }
800
801         return 0;
802 }
803
804 static void free_disk_sb(struct md_rdev * rdev)
805 {
806         if (rdev->sb_page) {
807                 put_page(rdev->sb_page);
808                 rdev->sb_loaded = 0;
809                 rdev->sb_page = NULL;
810                 rdev->sb_start = 0;
811                 rdev->sectors = 0;
812         }
813         if (rdev->bb_page) {
814                 put_page(rdev->bb_page);
815                 rdev->bb_page = NULL;
816         }
817 }
818
819
820 static void super_written(struct bio *bio, int error)
821 {
822         struct md_rdev *rdev = bio->bi_private;
823         struct mddev *mddev = rdev->mddev;
824
825         if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
826                 printk("md: super_written gets error=%d, uptodate=%d\n",
827                        error, test_bit(BIO_UPTODATE, &bio->bi_flags));
828                 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
829                 md_error(mddev, rdev);
830         }
831
832         if (atomic_dec_and_test(&mddev->pending_writes))
833                 wake_up(&mddev->sb_wait);
834         bio_put(bio);
835 }
836
837 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
838                    sector_t sector, int size, struct page *page)
839 {
840         /* write first size bytes of page to sector of rdev
841          * Increment mddev->pending_writes before returning
842          * and decrement it on completion, waking up sb_wait
843          * if zero is reached.
844          * If an error occurred, call md_error
845          */
846         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
847
848         bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
849         bio->bi_sector = sector;
850         bio_add_page(bio, page, size, 0);
851         bio->bi_private = rdev;
852         bio->bi_end_io = super_written;
853
854         atomic_inc(&mddev->pending_writes);
855         submit_bio(WRITE_FLUSH_FUA, bio);
856 }
857
858 void md_super_wait(struct mddev *mddev)
859 {
860         /* wait for all superblock writes that were scheduled to complete */
861         DEFINE_WAIT(wq);
862         for(;;) {
863                 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
864                 if (atomic_read(&mddev->pending_writes)==0)
865                         break;
866                 schedule();
867         }
868         finish_wait(&mddev->sb_wait, &wq);
869 }
870
871 static void bi_complete(struct bio *bio, int error)
872 {
873         complete((struct completion*)bio->bi_private);
874 }
875
876 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
877                  struct page *page, int rw, bool metadata_op)
878 {
879         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
880         struct completion event;
881         int ret;
882
883         rw |= REQ_SYNC;
884
885         bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
886                 rdev->meta_bdev : rdev->bdev;
887         if (metadata_op)
888                 bio->bi_sector = sector + rdev->sb_start;
889         else
890                 bio->bi_sector = sector + rdev->data_offset;
891         bio_add_page(bio, page, size, 0);
892         init_completion(&event);
893         bio->bi_private = &event;
894         bio->bi_end_io = bi_complete;
895         submit_bio(rw, bio);
896         wait_for_completion(&event);
897
898         ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
899         bio_put(bio);
900         return ret;
901 }
902 EXPORT_SYMBOL_GPL(sync_page_io);
903
904 static int read_disk_sb(struct md_rdev * rdev, int size)
905 {
906         char b[BDEVNAME_SIZE];
907         if (!rdev->sb_page) {
908                 MD_BUG();
909                 return -EINVAL;
910         }
911         if (rdev->sb_loaded)
912                 return 0;
913
914
915         if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
916                 goto fail;
917         rdev->sb_loaded = 1;
918         return 0;
919
920 fail:
921         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
922                 bdevname(rdev->bdev,b));
923         return -EINVAL;
924 }
925
926 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
927 {
928         return  sb1->set_uuid0 == sb2->set_uuid0 &&
929                 sb1->set_uuid1 == sb2->set_uuid1 &&
930                 sb1->set_uuid2 == sb2->set_uuid2 &&
931                 sb1->set_uuid3 == sb2->set_uuid3;
932 }
933
934 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
935 {
936         int ret;
937         mdp_super_t *tmp1, *tmp2;
938
939         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
940         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
941
942         if (!tmp1 || !tmp2) {
943                 ret = 0;
944                 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
945                 goto abort;
946         }
947
948         *tmp1 = *sb1;
949         *tmp2 = *sb2;
950
951         /*
952          * nr_disks is not constant
953          */
954         tmp1->nr_disks = 0;
955         tmp2->nr_disks = 0;
956
957         ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
958 abort:
959         kfree(tmp1);
960         kfree(tmp2);
961         return ret;
962 }
963
964
965 static u32 md_csum_fold(u32 csum)
966 {
967         csum = (csum & 0xffff) + (csum >> 16);
968         return (csum & 0xffff) + (csum >> 16);
969 }
970
971 static unsigned int calc_sb_csum(mdp_super_t * sb)
972 {
973         u64 newcsum = 0;
974         u32 *sb32 = (u32*)sb;
975         int i;
976         unsigned int disk_csum, csum;
977
978         disk_csum = sb->sb_csum;
979         sb->sb_csum = 0;
980
981         for (i = 0; i < MD_SB_BYTES/4 ; i++)
982                 newcsum += sb32[i];
983         csum = (newcsum & 0xffffffff) + (newcsum>>32);
984
985
986 #ifdef CONFIG_ALPHA
987         /* This used to use csum_partial, which was wrong for several
988          * reasons including that different results are returned on
989          * different architectures.  It isn't critical that we get exactly
990          * the same return value as before (we always csum_fold before
991          * testing, and that removes any differences).  However as we
992          * know that csum_partial always returned a 16bit value on
993          * alphas, do a fold to maximise conformity to previous behaviour.
994          */
995         sb->sb_csum = md_csum_fold(disk_csum);
996 #else
997         sb->sb_csum = disk_csum;
998 #endif
999         return csum;
1000 }
1001
1002
1003 /*
1004  * Handle superblock details.
1005  * We want to be able to handle multiple superblock formats
1006  * so we have a common interface to them all, and an array of
1007  * different handlers.
1008  * We rely on user-space to write the initial superblock, and support
1009  * reading and updating of superblocks.
1010  * Interface methods are:
1011  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1012  *      loads and validates a superblock on dev.
1013  *      if refdev != NULL, compare superblocks on both devices
1014  *    Return:
1015  *      0 - dev has a superblock that is compatible with refdev
1016  *      1 - dev has a superblock that is compatible and newer than refdev
1017  *          so dev should be used as the refdev in future
1018  *     -EINVAL superblock incompatible or invalid
1019  *     -othererror e.g. -EIO
1020  *
1021  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
1022  *      Verify that dev is acceptable into mddev.
1023  *       The first time, mddev->raid_disks will be 0, and data from
1024  *       dev should be merged in.  Subsequent calls check that dev
1025  *       is new enough.  Return 0 or -EINVAL
1026  *
1027  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
1028  *     Update the superblock for rdev with data in mddev
1029  *     This does not write to disc.
1030  *
1031  */
1032
1033 struct super_type  {
1034         char                *name;
1035         struct module       *owner;
1036         int                 (*load_super)(struct md_rdev *rdev, struct md_rdev *refdev,
1037                                           int minor_version);
1038         int                 (*validate_super)(struct mddev *mddev, struct md_rdev *rdev);
1039         void                (*sync_super)(struct mddev *mddev, struct md_rdev *rdev);
1040         unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
1041                                                 sector_t num_sectors);
1042 };
1043
1044 /*
1045  * Check that the given mddev has no bitmap.
1046  *
1047  * This function is called from the run method of all personalities that do not
1048  * support bitmaps. It prints an error message and returns non-zero if mddev
1049  * has a bitmap. Otherwise, it returns 0.
1050  *
1051  */
1052 int md_check_no_bitmap(struct mddev *mddev)
1053 {
1054         if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1055                 return 0;
1056         printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1057                 mdname(mddev), mddev->pers->name);
1058         return 1;
1059 }
1060 EXPORT_SYMBOL(md_check_no_bitmap);
1061
1062 /*
1063  * load_super for 0.90.0 
1064  */
1065 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1066 {
1067         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1068         mdp_super_t *sb;
1069         int ret;
1070
1071         /*
1072          * Calculate the position of the superblock (512byte sectors),
1073          * it's at the end of the disk.
1074          *
1075          * It also happens to be a multiple of 4Kb.
1076          */
1077         rdev->sb_start = calc_dev_sboffset(rdev);
1078
1079         ret = read_disk_sb(rdev, MD_SB_BYTES);
1080         if (ret) return ret;
1081
1082         ret = -EINVAL;
1083
1084         bdevname(rdev->bdev, b);
1085         sb = page_address(rdev->sb_page);
1086
1087         if (sb->md_magic != MD_SB_MAGIC) {
1088                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1089                        b);
1090                 goto abort;
1091         }
1092
1093         if (sb->major_version != 0 ||
1094             sb->minor_version < 90 ||
1095             sb->minor_version > 91) {
1096                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1097                         sb->major_version, sb->minor_version,
1098                         b);
1099                 goto abort;
1100         }
1101
1102         if (sb->raid_disks <= 0)
1103                 goto abort;
1104
1105         if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1106                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1107                         b);
1108                 goto abort;
1109         }
1110
1111         rdev->preferred_minor = sb->md_minor;
1112         rdev->data_offset = 0;
1113         rdev->sb_size = MD_SB_BYTES;
1114         rdev->badblocks.shift = -1;
1115
1116         if (sb->level == LEVEL_MULTIPATH)
1117                 rdev->desc_nr = -1;
1118         else
1119                 rdev->desc_nr = sb->this_disk.number;
1120
1121         if (!refdev) {
1122                 ret = 1;
1123         } else {
1124                 __u64 ev1, ev2;
1125                 mdp_super_t *refsb = page_address(refdev->sb_page);
1126                 if (!uuid_equal(refsb, sb)) {
1127                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
1128                                 b, bdevname(refdev->bdev,b2));
1129                         goto abort;
1130                 }
1131                 if (!sb_equal(refsb, sb)) {
1132                         printk(KERN_WARNING "md: %s has same UUID"
1133                                " but different superblock to %s\n",
1134                                b, bdevname(refdev->bdev, b2));
1135                         goto abort;
1136                 }
1137                 ev1 = md_event(sb);
1138                 ev2 = md_event(refsb);
1139                 if (ev1 > ev2)
1140                         ret = 1;
1141                 else 
1142                         ret = 0;
1143         }
1144         rdev->sectors = rdev->sb_start;
1145         /* Limit to 4TB as metadata cannot record more than that */
1146         if (rdev->sectors >= (2ULL << 32))
1147                 rdev->sectors = (2ULL << 32) - 2;
1148
1149         if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1150                 /* "this cannot possibly happen" ... */
1151                 ret = -EINVAL;
1152
1153  abort:
1154         return ret;
1155 }
1156
1157 /*
1158  * validate_super for 0.90.0
1159  */
1160 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1161 {
1162         mdp_disk_t *desc;
1163         mdp_super_t *sb = page_address(rdev->sb_page);
1164         __u64 ev1 = md_event(sb);
1165
1166         rdev->raid_disk = -1;
1167         clear_bit(Faulty, &rdev->flags);
1168         clear_bit(In_sync, &rdev->flags);
1169         clear_bit(WriteMostly, &rdev->flags);
1170
1171         if (mddev->raid_disks == 0) {
1172                 mddev->major_version = 0;
1173                 mddev->minor_version = sb->minor_version;
1174                 mddev->patch_version = sb->patch_version;
1175                 mddev->external = 0;
1176                 mddev->chunk_sectors = sb->chunk_size >> 9;
1177                 mddev->ctime = sb->ctime;
1178                 mddev->utime = sb->utime;
1179                 mddev->level = sb->level;
1180                 mddev->clevel[0] = 0;
1181                 mddev->layout = sb->layout;
1182                 mddev->raid_disks = sb->raid_disks;
1183                 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1184                 mddev->events = ev1;
1185                 mddev->bitmap_info.offset = 0;
1186                 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1187
1188                 if (mddev->minor_version >= 91) {
1189                         mddev->reshape_position = sb->reshape_position;
1190                         mddev->delta_disks = sb->delta_disks;
1191                         mddev->new_level = sb->new_level;
1192                         mddev->new_layout = sb->new_layout;
1193                         mddev->new_chunk_sectors = sb->new_chunk >> 9;
1194                 } else {
1195                         mddev->reshape_position = MaxSector;
1196                         mddev->delta_disks = 0;
1197                         mddev->new_level = mddev->level;
1198                         mddev->new_layout = mddev->layout;
1199                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1200                 }
1201
1202                 if (sb->state & (1<<MD_SB_CLEAN))
1203                         mddev->recovery_cp = MaxSector;
1204                 else {
1205                         if (sb->events_hi == sb->cp_events_hi && 
1206                                 sb->events_lo == sb->cp_events_lo) {
1207                                 mddev->recovery_cp = sb->recovery_cp;
1208                         } else
1209                                 mddev->recovery_cp = 0;
1210                 }
1211
1212                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1213                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1214                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1215                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1216
1217                 mddev->max_disks = MD_SB_DISKS;
1218
1219                 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1220                     mddev->bitmap_info.file == NULL)
1221                         mddev->bitmap_info.offset =
1222                                 mddev->bitmap_info.default_offset;
1223
1224         } else if (mddev->pers == NULL) {
1225                 /* Insist on good event counter while assembling, except
1226                  * for spares (which don't need an event count) */
1227                 ++ev1;
1228                 if (sb->disks[rdev->desc_nr].state & (
1229                             (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1230                         if (ev1 < mddev->events) 
1231                                 return -EINVAL;
1232         } else if (mddev->bitmap) {
1233                 /* if adding to array with a bitmap, then we can accept an
1234                  * older device ... but not too old.
1235                  */
1236                 if (ev1 < mddev->bitmap->events_cleared)
1237                         return 0;
1238         } else {
1239                 if (ev1 < mddev->events)
1240                         /* just a hot-add of a new device, leave raid_disk at -1 */
1241                         return 0;
1242         }
1243
1244         if (mddev->level != LEVEL_MULTIPATH) {
1245                 desc = sb->disks + rdev->desc_nr;
1246
1247                 if (desc->state & (1<<MD_DISK_FAULTY))
1248                         set_bit(Faulty, &rdev->flags);
1249                 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1250                             desc->raid_disk < mddev->raid_disks */) {
1251                         set_bit(In_sync, &rdev->flags);
1252                         rdev->raid_disk = desc->raid_disk;
1253                 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1254                         /* active but not in sync implies recovery up to
1255                          * reshape position.  We don't know exactly where
1256                          * that is, so set to zero for now */
1257                         if (mddev->minor_version >= 91) {
1258                                 rdev->recovery_offset = 0;
1259                                 rdev->raid_disk = desc->raid_disk;
1260                         }
1261                 }
1262                 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1263                         set_bit(WriteMostly, &rdev->flags);
1264         } else /* MULTIPATH are always insync */
1265                 set_bit(In_sync, &rdev->flags);
1266         return 0;
1267 }
1268
1269 /*
1270  * sync_super for 0.90.0
1271  */
1272 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1273 {
1274         mdp_super_t *sb;
1275         struct md_rdev *rdev2;
1276         int next_spare = mddev->raid_disks;
1277
1278
1279         /* make rdev->sb match mddev data..
1280          *
1281          * 1/ zero out disks
1282          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1283          * 3/ any empty disks < next_spare become removed
1284          *
1285          * disks[0] gets initialised to REMOVED because
1286          * we cannot be sure from other fields if it has
1287          * been initialised or not.
1288          */
1289         int i;
1290         int active=0, working=0,failed=0,spare=0,nr_disks=0;
1291
1292         rdev->sb_size = MD_SB_BYTES;
1293
1294         sb = page_address(rdev->sb_page);
1295
1296         memset(sb, 0, sizeof(*sb));
1297
1298         sb->md_magic = MD_SB_MAGIC;
1299         sb->major_version = mddev->major_version;
1300         sb->patch_version = mddev->patch_version;
1301         sb->gvalid_words  = 0; /* ignored */
1302         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1303         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1304         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1305         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1306
1307         sb->ctime = mddev->ctime;
1308         sb->level = mddev->level;
1309         sb->size = mddev->dev_sectors / 2;
1310         sb->raid_disks = mddev->raid_disks;
1311         sb->md_minor = mddev->md_minor;
1312         sb->not_persistent = 0;
1313         sb->utime = mddev->utime;
1314         sb->state = 0;
1315         sb->events_hi = (mddev->events>>32);
1316         sb->events_lo = (u32)mddev->events;
1317
1318         if (mddev->reshape_position == MaxSector)
1319                 sb->minor_version = 90;
1320         else {
1321                 sb->minor_version = 91;
1322                 sb->reshape_position = mddev->reshape_position;
1323                 sb->new_level = mddev->new_level;
1324                 sb->delta_disks = mddev->delta_disks;
1325                 sb->new_layout = mddev->new_layout;
1326                 sb->new_chunk = mddev->new_chunk_sectors << 9;
1327         }
1328         mddev->minor_version = sb->minor_version;
1329         if (mddev->in_sync)
1330         {
1331                 sb->recovery_cp = mddev->recovery_cp;
1332                 sb->cp_events_hi = (mddev->events>>32);
1333                 sb->cp_events_lo = (u32)mddev->events;
1334                 if (mddev->recovery_cp == MaxSector)
1335                         sb->state = (1<< MD_SB_CLEAN);
1336         } else
1337                 sb->recovery_cp = 0;
1338
1339         sb->layout = mddev->layout;
1340         sb->chunk_size = mddev->chunk_sectors << 9;
1341
1342         if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1343                 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1344
1345         sb->disks[0].state = (1<<MD_DISK_REMOVED);
1346         list_for_each_entry(rdev2, &mddev->disks, same_set) {
1347                 mdp_disk_t *d;
1348                 int desc_nr;
1349                 int is_active = test_bit(In_sync, &rdev2->flags);
1350
1351                 if (rdev2->raid_disk >= 0 &&
1352                     sb->minor_version >= 91)
1353                         /* we have nowhere to store the recovery_offset,
1354                          * but if it is not below the reshape_position,
1355                          * we can piggy-back on that.
1356                          */
1357                         is_active = 1;
1358                 if (rdev2->raid_disk < 0 ||
1359                     test_bit(Faulty, &rdev2->flags))
1360                         is_active = 0;
1361                 if (is_active)
1362                         desc_nr = rdev2->raid_disk;
1363                 else
1364                         desc_nr = next_spare++;
1365                 rdev2->desc_nr = desc_nr;
1366                 d = &sb->disks[rdev2->desc_nr];
1367                 nr_disks++;
1368                 d->number = rdev2->desc_nr;
1369                 d->major = MAJOR(rdev2->bdev->bd_dev);
1370                 d->minor = MINOR(rdev2->bdev->bd_dev);
1371                 if (is_active)
1372                         d->raid_disk = rdev2->raid_disk;
1373                 else
1374                         d->raid_disk = rdev2->desc_nr; /* compatibility */
1375                 if (test_bit(Faulty, &rdev2->flags))
1376                         d->state = (1<<MD_DISK_FAULTY);
1377                 else if (is_active) {
1378                         d->state = (1<<MD_DISK_ACTIVE);
1379                         if (test_bit(In_sync, &rdev2->flags))
1380                                 d->state |= (1<<MD_DISK_SYNC);
1381                         active++;
1382                         working++;
1383                 } else {
1384                         d->state = 0;
1385                         spare++;
1386                         working++;
1387                 }
1388                 if (test_bit(WriteMostly, &rdev2->flags))
1389                         d->state |= (1<<MD_DISK_WRITEMOSTLY);
1390         }
1391         /* now set the "removed" and "faulty" bits on any missing devices */
1392         for (i=0 ; i < mddev->raid_disks ; i++) {
1393                 mdp_disk_t *d = &sb->disks[i];
1394                 if (d->state == 0 && d->number == 0) {
1395                         d->number = i;
1396                         d->raid_disk = i;
1397                         d->state = (1<<MD_DISK_REMOVED);
1398                         d->state |= (1<<MD_DISK_FAULTY);
1399                         failed++;
1400                 }
1401         }
1402         sb->nr_disks = nr_disks;
1403         sb->active_disks = active;
1404         sb->working_disks = working;
1405         sb->failed_disks = failed;
1406         sb->spare_disks = spare;
1407
1408         sb->this_disk = sb->disks[rdev->desc_nr];
1409         sb->sb_csum = calc_sb_csum(sb);
1410 }
1411
1412 /*
1413  * rdev_size_change for 0.90.0
1414  */
1415 static unsigned long long
1416 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1417 {
1418         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1419                 return 0; /* component must fit device */
1420         if (rdev->mddev->bitmap_info.offset)
1421                 return 0; /* can't move bitmap */
1422         rdev->sb_start = calc_dev_sboffset(rdev);
1423         if (!num_sectors || num_sectors > rdev->sb_start)
1424                 num_sectors = rdev->sb_start;
1425         /* Limit to 4TB as metadata cannot record more than that.
1426          * 4TB == 2^32 KB, or 2*2^32 sectors.
1427          */
1428         if (num_sectors >= (2ULL << 32))
1429                 num_sectors = (2ULL << 32) - 2;
1430         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1431                        rdev->sb_page);
1432         md_super_wait(rdev->mddev);
1433         return num_sectors;
1434 }
1435
1436
1437 /*
1438  * version 1 superblock
1439  */
1440
1441 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1442 {
1443         __le32 disk_csum;
1444         u32 csum;
1445         unsigned long long newcsum;
1446         int size = 256 + le32_to_cpu(sb->max_dev)*2;
1447         __le32 *isuper = (__le32*)sb;
1448         int i;
1449
1450         disk_csum = sb->sb_csum;
1451         sb->sb_csum = 0;
1452         newcsum = 0;
1453         for (i=0; size>=4; size -= 4 )
1454                 newcsum += le32_to_cpu(*isuper++);
1455
1456         if (size == 2)
1457                 newcsum += le16_to_cpu(*(__le16*) isuper);
1458
1459         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1460         sb->sb_csum = disk_csum;
1461         return cpu_to_le32(csum);
1462 }
1463
1464 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1465                             int acknowledged);
1466 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1467 {
1468         struct mdp_superblock_1 *sb;
1469         int ret;
1470         sector_t sb_start;
1471         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1472         int bmask;
1473
1474         /*
1475          * Calculate the position of the superblock in 512byte sectors.
1476          * It is always aligned to a 4K boundary and
1477          * depeding on minor_version, it can be:
1478          * 0: At least 8K, but less than 12K, from end of device
1479          * 1: At start of device
1480          * 2: 4K from start of device.
1481          */
1482         switch(minor_version) {
1483         case 0:
1484                 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1485                 sb_start -= 8*2;
1486                 sb_start &= ~(sector_t)(4*2-1);
1487                 break;
1488         case 1:
1489                 sb_start = 0;
1490                 break;
1491         case 2:
1492                 sb_start = 8;
1493                 break;
1494         default:
1495                 return -EINVAL;
1496         }
1497         rdev->sb_start = sb_start;
1498
1499         /* superblock is rarely larger than 1K, but it can be larger,
1500          * and it is safe to read 4k, so we do that
1501          */
1502         ret = read_disk_sb(rdev, 4096);
1503         if (ret) return ret;
1504
1505
1506         sb = page_address(rdev->sb_page);
1507
1508         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1509             sb->major_version != cpu_to_le32(1) ||
1510             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1511             le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1512             (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1513                 return -EINVAL;
1514
1515         if (calc_sb_1_csum(sb) != sb->sb_csum) {
1516                 printk("md: invalid superblock checksum on %s\n",
1517                         bdevname(rdev->bdev,b));
1518                 return -EINVAL;
1519         }
1520         if (le64_to_cpu(sb->data_size) < 10) {
1521                 printk("md: data_size too small on %s\n",
1522                        bdevname(rdev->bdev,b));
1523                 return -EINVAL;
1524         }
1525
1526         rdev->preferred_minor = 0xffff;
1527         rdev->data_offset = le64_to_cpu(sb->data_offset);
1528         atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1529
1530         rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1531         bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1532         if (rdev->sb_size & bmask)
1533                 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1534
1535         if (minor_version
1536             && rdev->data_offset < sb_start + (rdev->sb_size/512))
1537                 return -EINVAL;
1538
1539         if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1540                 rdev->desc_nr = -1;
1541         else
1542                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1543
1544         if (!rdev->bb_page) {
1545                 rdev->bb_page = alloc_page(GFP_KERNEL);
1546                 if (!rdev->bb_page)
1547                         return -ENOMEM;
1548         }
1549         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1550             rdev->badblocks.count == 0) {
1551                 /* need to load the bad block list.
1552                  * Currently we limit it to one page.
1553                  */
1554                 s32 offset;
1555                 sector_t bb_sector;
1556                 u64 *bbp;
1557                 int i;
1558                 int sectors = le16_to_cpu(sb->bblog_size);
1559                 if (sectors > (PAGE_SIZE / 512))
1560                         return -EINVAL;
1561                 offset = le32_to_cpu(sb->bblog_offset);
1562                 if (offset == 0)
1563                         return -EINVAL;
1564                 bb_sector = (long long)offset;
1565                 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1566                                   rdev->bb_page, READ, true))
1567                         return -EIO;
1568                 bbp = (u64 *)page_address(rdev->bb_page);
1569                 rdev->badblocks.shift = sb->bblog_shift;
1570                 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1571                         u64 bb = le64_to_cpu(*bbp);
1572                         int count = bb & (0x3ff);
1573                         u64 sector = bb >> 10;
1574                         sector <<= sb->bblog_shift;
1575                         count <<= sb->bblog_shift;
1576                         if (bb + 1 == 0)
1577                                 break;
1578                         if (md_set_badblocks(&rdev->badblocks,
1579                                              sector, count, 1) == 0)
1580                                 return -EINVAL;
1581                 }
1582         } else if (sb->bblog_offset == 0)
1583                 rdev->badblocks.shift = -1;
1584
1585         if (!refdev) {
1586                 ret = 1;
1587         } else {
1588                 __u64 ev1, ev2;
1589                 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1590
1591                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1592                     sb->level != refsb->level ||
1593                     sb->layout != refsb->layout ||
1594                     sb->chunksize != refsb->chunksize) {
1595                         printk(KERN_WARNING "md: %s has strangely different"
1596                                 " superblock to %s\n",
1597                                 bdevname(rdev->bdev,b),
1598                                 bdevname(refdev->bdev,b2));
1599                         return -EINVAL;
1600                 }
1601                 ev1 = le64_to_cpu(sb->events);
1602                 ev2 = le64_to_cpu(refsb->events);
1603
1604                 if (ev1 > ev2)
1605                         ret = 1;
1606                 else
1607                         ret = 0;
1608         }
1609         if (minor_version)
1610                 rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
1611                         le64_to_cpu(sb->data_offset);
1612         else
1613                 rdev->sectors = rdev->sb_start;
1614         if (rdev->sectors < le64_to_cpu(sb->data_size))
1615                 return -EINVAL;
1616         rdev->sectors = le64_to_cpu(sb->data_size);
1617         if (le64_to_cpu(sb->size) > rdev->sectors)
1618                 return -EINVAL;
1619         return ret;
1620 }
1621
1622 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1623 {
1624         struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1625         __u64 ev1 = le64_to_cpu(sb->events);
1626
1627         rdev->raid_disk = -1;
1628         clear_bit(Faulty, &rdev->flags);
1629         clear_bit(In_sync, &rdev->flags);
1630         clear_bit(WriteMostly, &rdev->flags);
1631
1632         if (mddev->raid_disks == 0) {
1633                 mddev->major_version = 1;
1634                 mddev->patch_version = 0;
1635                 mddev->external = 0;
1636                 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1637                 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1638                 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1639                 mddev->level = le32_to_cpu(sb->level);
1640                 mddev->clevel[0] = 0;
1641                 mddev->layout = le32_to_cpu(sb->layout);
1642                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1643                 mddev->dev_sectors = le64_to_cpu(sb->size);
1644                 mddev->events = ev1;
1645                 mddev->bitmap_info.offset = 0;
1646                 mddev->bitmap_info.default_offset = 1024 >> 9;
1647                 
1648                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1649                 memcpy(mddev->uuid, sb->set_uuid, 16);
1650
1651                 mddev->max_disks =  (4096-256)/2;
1652
1653                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1654                     mddev->bitmap_info.file == NULL )
1655                         mddev->bitmap_info.offset =
1656                                 (__s32)le32_to_cpu(sb->bitmap_offset);
1657
1658                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1659                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1660                         mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1661                         mddev->new_level = le32_to_cpu(sb->new_level);
1662                         mddev->new_layout = le32_to_cpu(sb->new_layout);
1663                         mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1664                 } else {
1665                         mddev->reshape_position = MaxSector;
1666                         mddev->delta_disks = 0;
1667                         mddev->new_level = mddev->level;
1668                         mddev->new_layout = mddev->layout;
1669                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1670                 }
1671
1672         } else if (mddev->pers == NULL) {
1673                 /* Insist of good event counter while assembling, except for
1674                  * spares (which don't need an event count) */
1675                 ++ev1;
1676                 if (rdev->desc_nr >= 0 &&
1677                     rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1678                     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1679                         if (ev1 < mddev->events)
1680                                 return -EINVAL;
1681         } else if (mddev->bitmap) {
1682                 /* If adding to array with a bitmap, then we can accept an
1683                  * older device, but not too old.
1684                  */
1685                 if (ev1 < mddev->bitmap->events_cleared)
1686                         return 0;
1687         } else {
1688                 if (ev1 < mddev->events)
1689                         /* just a hot-add of a new device, leave raid_disk at -1 */
1690                         return 0;
1691         }
1692         if (mddev->level != LEVEL_MULTIPATH) {
1693                 int role;
1694                 if (rdev->desc_nr < 0 ||
1695                     rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1696                         role = 0xffff;
1697                         rdev->desc_nr = -1;
1698                 } else
1699                         role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1700                 switch(role) {
1701                 case 0xffff: /* spare */
1702                         break;
1703                 case 0xfffe: /* faulty */
1704                         set_bit(Faulty, &rdev->flags);
1705                         break;
1706                 default:
1707                         if ((le32_to_cpu(sb->feature_map) &
1708                              MD_FEATURE_RECOVERY_OFFSET))
1709                                 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1710                         else
1711                                 set_bit(In_sync, &rdev->flags);
1712                         rdev->raid_disk = role;
1713                         break;
1714                 }
1715                 if (sb->devflags & WriteMostly1)
1716                         set_bit(WriteMostly, &rdev->flags);
1717         } else /* MULTIPATH are always insync */
1718                 set_bit(In_sync, &rdev->flags);
1719
1720         return 0;
1721 }
1722
1723 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1724 {
1725         struct mdp_superblock_1 *sb;
1726         struct md_rdev *rdev2;
1727         int max_dev, i;
1728         /* make rdev->sb match mddev and rdev data. */
1729
1730         sb = page_address(rdev->sb_page);
1731
1732         sb->feature_map = 0;
1733         sb->pad0 = 0;
1734         sb->recovery_offset = cpu_to_le64(0);
1735         memset(sb->pad1, 0, sizeof(sb->pad1));
1736         memset(sb->pad3, 0, sizeof(sb->pad3));
1737
1738         sb->utime = cpu_to_le64((__u64)mddev->utime);
1739         sb->events = cpu_to_le64(mddev->events);
1740         if (mddev->in_sync)
1741                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1742         else
1743                 sb->resync_offset = cpu_to_le64(0);
1744
1745         sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1746
1747         sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1748         sb->size = cpu_to_le64(mddev->dev_sectors);
1749         sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1750         sb->level = cpu_to_le32(mddev->level);
1751         sb->layout = cpu_to_le32(mddev->layout);
1752
1753         if (test_bit(WriteMostly, &rdev->flags))
1754                 sb->devflags |= WriteMostly1;
1755         else
1756                 sb->devflags &= ~WriteMostly1;
1757
1758         if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1759                 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1760                 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1761         }
1762
1763         if (rdev->raid_disk >= 0 &&
1764             !test_bit(In_sync, &rdev->flags)) {
1765                 sb->feature_map |=
1766                         cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1767                 sb->recovery_offset =
1768                         cpu_to_le64(rdev->recovery_offset);
1769         }
1770
1771         if (mddev->reshape_position != MaxSector) {
1772                 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1773                 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1774                 sb->new_layout = cpu_to_le32(mddev->new_layout);
1775                 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1776                 sb->new_level = cpu_to_le32(mddev->new_level);
1777                 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1778         }
1779
1780         if (rdev->badblocks.count == 0)
1781                 /* Nothing to do for bad blocks*/ ;
1782         else if (sb->bblog_offset == 0)
1783                 /* Cannot record bad blocks on this device */
1784                 md_error(mddev, rdev);
1785         else {
1786                 struct badblocks *bb = &rdev->badblocks;
1787                 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1788                 u64 *p = bb->page;
1789                 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1790                 if (bb->changed) {
1791                         unsigned seq;
1792
1793 retry:
1794                         seq = read_seqbegin(&bb->lock);
1795
1796                         memset(bbp, 0xff, PAGE_SIZE);
1797
1798                         for (i = 0 ; i < bb->count ; i++) {
1799                                 u64 internal_bb = *p++;
1800                                 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1801                                                 | BB_LEN(internal_bb));
1802                                 *bbp++ = cpu_to_le64(store_bb);
1803                         }
1804                         if (read_seqretry(&bb->lock, seq))
1805                                 goto retry;
1806
1807                         bb->sector = (rdev->sb_start +
1808                                       (int)le32_to_cpu(sb->bblog_offset));
1809                         bb->size = le16_to_cpu(sb->bblog_size);
1810                         bb->changed = 0;
1811                 }
1812         }
1813
1814         max_dev = 0;
1815         list_for_each_entry(rdev2, &mddev->disks, same_set)
1816                 if (rdev2->desc_nr+1 > max_dev)
1817                         max_dev = rdev2->desc_nr+1;
1818
1819         if (max_dev > le32_to_cpu(sb->max_dev)) {
1820                 int bmask;
1821                 sb->max_dev = cpu_to_le32(max_dev);
1822                 rdev->sb_size = max_dev * 2 + 256;
1823                 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1824                 if (rdev->sb_size & bmask)
1825                         rdev->sb_size = (rdev->sb_size | bmask) + 1;
1826         } else
1827                 max_dev = le32_to_cpu(sb->max_dev);
1828
1829         for (i=0; i<max_dev;i++)
1830                 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1831         
1832         list_for_each_entry(rdev2, &mddev->disks, same_set) {
1833                 i = rdev2->desc_nr;
1834                 if (test_bit(Faulty, &rdev2->flags))
1835                         sb->dev_roles[i] = cpu_to_le16(0xfffe);
1836                 else if (test_bit(In_sync, &rdev2->flags))
1837                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1838                 else if (rdev2->raid_disk >= 0)
1839                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1840                 else
1841                         sb->dev_roles[i] = cpu_to_le16(0xffff);
1842         }
1843
1844         sb->sb_csum = calc_sb_1_csum(sb);
1845 }
1846
1847 static unsigned long long
1848 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1849 {
1850         struct mdp_superblock_1 *sb;
1851         sector_t max_sectors;
1852         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1853                 return 0; /* component must fit device */
1854         if (rdev->sb_start < rdev->data_offset) {
1855                 /* minor versions 1 and 2; superblock before data */
1856                 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1857                 max_sectors -= rdev->data_offset;
1858                 if (!num_sectors || num_sectors > max_sectors)
1859                         num_sectors = max_sectors;
1860         } else if (rdev->mddev->bitmap_info.offset) {
1861                 /* minor version 0 with bitmap we can't move */
1862                 return 0;
1863         } else {
1864                 /* minor version 0; superblock after data */
1865                 sector_t sb_start;
1866                 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1867                 sb_start &= ~(sector_t)(4*2 - 1);
1868                 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1869                 if (!num_sectors || num_sectors > max_sectors)
1870                         num_sectors = max_sectors;
1871                 rdev->sb_start = sb_start;
1872         }
1873         sb = page_address(rdev->sb_page);
1874         sb->data_size = cpu_to_le64(num_sectors);
1875         sb->super_offset = rdev->sb_start;
1876         sb->sb_csum = calc_sb_1_csum(sb);
1877         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1878                        rdev->sb_page);
1879         md_super_wait(rdev->mddev);
1880         return num_sectors;
1881 }
1882
1883 static struct super_type super_types[] = {
1884         [0] = {
1885                 .name   = "0.90.0",
1886                 .owner  = THIS_MODULE,
1887                 .load_super         = super_90_load,
1888                 .validate_super     = super_90_validate,
1889                 .sync_super         = super_90_sync,
1890                 .rdev_size_change   = super_90_rdev_size_change,
1891         },
1892         [1] = {
1893                 .name   = "md-1",
1894                 .owner  = THIS_MODULE,
1895                 .load_super         = super_1_load,
1896                 .validate_super     = super_1_validate,
1897                 .sync_super         = super_1_sync,
1898                 .rdev_size_change   = super_1_rdev_size_change,
1899         },
1900 };
1901
1902 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1903 {
1904         if (mddev->sync_super) {
1905                 mddev->sync_super(mddev, rdev);
1906                 return;
1907         }
1908
1909         BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1910
1911         super_types[mddev->major_version].sync_super(mddev, rdev);
1912 }
1913
1914 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1915 {
1916         struct md_rdev *rdev, *rdev2;
1917
1918         rcu_read_lock();
1919         rdev_for_each_rcu(rdev, mddev1)
1920                 rdev_for_each_rcu(rdev2, mddev2)
1921                         if (rdev->bdev->bd_contains ==
1922                             rdev2->bdev->bd_contains) {
1923                                 rcu_read_unlock();
1924                                 return 1;
1925                         }
1926         rcu_read_unlock();
1927         return 0;
1928 }
1929
1930 static LIST_HEAD(pending_raid_disks);
1931
1932 /*
1933  * Try to register data integrity profile for an mddev
1934  *
1935  * This is called when an array is started and after a disk has been kicked
1936  * from the array. It only succeeds if all working and active component devices
1937  * are integrity capable with matching profiles.
1938  */
1939 int md_integrity_register(struct mddev *mddev)
1940 {
1941         struct md_rdev *rdev, *reference = NULL;
1942
1943         if (list_empty(&mddev->disks))
1944                 return 0; /* nothing to do */
1945         if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1946                 return 0; /* shouldn't register, or already is */
1947         list_for_each_entry(rdev, &mddev->disks, same_set) {
1948                 /* skip spares and non-functional disks */
1949                 if (test_bit(Faulty, &rdev->flags))
1950                         continue;
1951                 if (rdev->raid_disk < 0)
1952                         continue;
1953                 if (!reference) {
1954                         /* Use the first rdev as the reference */
1955                         reference = rdev;
1956                         continue;
1957                 }
1958                 /* does this rdev's profile match the reference profile? */
1959                 if (blk_integrity_compare(reference->bdev->bd_disk,
1960                                 rdev->bdev->bd_disk) < 0)
1961                         return -EINVAL;
1962         }
1963         if (!reference || !bdev_get_integrity(reference->bdev))
1964                 return 0;
1965         /*
1966          * All component devices are integrity capable and have matching
1967          * profiles, register the common profile for the md device.
1968          */
1969         if (blk_integrity_register(mddev->gendisk,
1970                         bdev_get_integrity(reference->bdev)) != 0) {
1971                 printk(KERN_ERR "md: failed to register integrity for %s\n",
1972                         mdname(mddev));
1973                 return -EINVAL;
1974         }
1975         printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1976         if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1977                 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1978                        mdname(mddev));
1979                 return -EINVAL;
1980         }
1981         return 0;
1982 }
1983 EXPORT_SYMBOL(md_integrity_register);
1984
1985 /* Disable data integrity if non-capable/non-matching disk is being added */
1986 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1987 {
1988         struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1989         struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1990
1991         if (!bi_mddev) /* nothing to do */
1992                 return;
1993         if (rdev->raid_disk < 0) /* skip spares */
1994                 return;
1995         if (bi_rdev && blk_integrity_compare(mddev->gendisk,
1996                                              rdev->bdev->bd_disk) >= 0)
1997                 return;
1998         printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
1999         blk_integrity_unregister(mddev->gendisk);
2000 }
2001 EXPORT_SYMBOL(md_integrity_add_rdev);
2002
2003 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2004 {
2005         char b[BDEVNAME_SIZE];
2006         struct kobject *ko;
2007         char *s;
2008         int err;
2009
2010         if (rdev->mddev) {
2011                 MD_BUG();
2012                 return -EINVAL;
2013         }
2014
2015         /* prevent duplicates */
2016         if (find_rdev(mddev, rdev->bdev->bd_dev))
2017                 return -EEXIST;
2018
2019         /* make sure rdev->sectors exceeds mddev->dev_sectors */
2020         if (rdev->sectors && (mddev->dev_sectors == 0 ||
2021                         rdev->sectors < mddev->dev_sectors)) {
2022                 if (mddev->pers) {
2023                         /* Cannot change size, so fail
2024                          * If mddev->level <= 0, then we don't care
2025                          * about aligning sizes (e.g. linear)
2026                          */
2027                         if (mddev->level > 0)
2028                                 return -ENOSPC;
2029                 } else
2030                         mddev->dev_sectors = rdev->sectors;
2031         }
2032
2033         /* Verify rdev->desc_nr is unique.
2034          * If it is -1, assign a free number, else
2035          * check number is not in use
2036          */
2037         if (rdev->desc_nr < 0) {
2038                 int choice = 0;
2039                 if (mddev->pers) choice = mddev->raid_disks;
2040                 while (find_rdev_nr(mddev, choice))
2041                         choice++;
2042                 rdev->desc_nr = choice;
2043         } else {
2044                 if (find_rdev_nr(mddev, rdev->desc_nr))
2045                         return -EBUSY;
2046         }
2047         if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2048                 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2049                        mdname(mddev), mddev->max_disks);
2050                 return -EBUSY;
2051         }
2052         bdevname(rdev->bdev,b);
2053         while ( (s=strchr(b, '/')) != NULL)
2054                 *s = '!';
2055
2056         rdev->mddev = mddev;
2057         printk(KERN_INFO "md: bind<%s>\n", b);
2058
2059         if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2060                 goto fail;
2061
2062         ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2063         if (sysfs_create_link(&rdev->kobj, ko, "block"))
2064                 /* failure here is OK */;
2065         rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2066
2067         list_add_rcu(&rdev->same_set, &mddev->disks);
2068         bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2069
2070         /* May as well allow recovery to be retried once */
2071         mddev->recovery_disabled++;
2072
2073         return 0;
2074
2075  fail:
2076         printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2077                b, mdname(mddev));
2078         return err;
2079 }
2080
2081 static void md_delayed_delete(struct work_struct *ws)
2082 {
2083         struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2084         kobject_del(&rdev->kobj);
2085         kobject_put(&rdev->kobj);
2086 }
2087
2088 static void unbind_rdev_from_array(struct md_rdev * rdev)
2089 {
2090         char b[BDEVNAME_SIZE];
2091         if (!rdev->mddev) {
2092                 MD_BUG();
2093                 return;
2094         }
2095         bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2096         list_del_rcu(&rdev->same_set);
2097         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2098         rdev->mddev = NULL;
2099         sysfs_remove_link(&rdev->kobj, "block");
2100         sysfs_put(rdev->sysfs_state);
2101         rdev->sysfs_state = NULL;
2102         kfree(rdev->badblocks.page);
2103         rdev->badblocks.count = 0;
2104         rdev->badblocks.page = NULL;
2105         /* We need to delay this, otherwise we can deadlock when
2106          * writing to 'remove' to "dev/state".  We also need
2107          * to delay it due to rcu usage.
2108          */
2109         synchronize_rcu();
2110         INIT_WORK(&rdev->del_work, md_delayed_delete);
2111         kobject_get(&rdev->kobj);
2112         queue_work(md_misc_wq, &rdev->del_work);
2113 }
2114
2115 /*
2116  * prevent the device from being mounted, repartitioned or
2117  * otherwise reused by a RAID array (or any other kernel
2118  * subsystem), by bd_claiming the device.
2119  */
2120 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2121 {
2122         int err = 0;
2123         struct block_device *bdev;
2124         char b[BDEVNAME_SIZE];
2125
2126         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2127                                  shared ? (struct md_rdev *)lock_rdev : rdev);
2128         if (IS_ERR(bdev)) {
2129                 printk(KERN_ERR "md: could not open %s.\n",
2130                         __bdevname(dev, b));
2131                 return PTR_ERR(bdev);
2132         }
2133         rdev->bdev = bdev;
2134         return err;
2135 }
2136
2137 static void unlock_rdev(struct md_rdev *rdev)
2138 {
2139         struct block_device *bdev = rdev->bdev;
2140         rdev->bdev = NULL;
2141         if (!bdev)
2142                 MD_BUG();
2143         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2144 }
2145
2146 void md_autodetect_dev(dev_t dev);
2147
2148 static void export_rdev(struct md_rdev * rdev)
2149 {
2150         char b[BDEVNAME_SIZE];
2151         printk(KERN_INFO "md: export_rdev(%s)\n",
2152                 bdevname(rdev->bdev,b));
2153         if (rdev->mddev)
2154                 MD_BUG();
2155         free_disk_sb(rdev);
2156 #ifndef MODULE
2157         if (test_bit(AutoDetected, &rdev->flags))
2158                 md_autodetect_dev(rdev->bdev->bd_dev);
2159 #endif
2160         unlock_rdev(rdev);
2161         kobject_put(&rdev->kobj);
2162 }
2163
2164 static void kick_rdev_from_array(struct md_rdev * rdev)
2165 {
2166         unbind_rdev_from_array(rdev);
2167         export_rdev(rdev);
2168 }
2169
2170 static void export_array(struct mddev *mddev)
2171 {
2172         struct md_rdev *rdev, *tmp;
2173
2174         rdev_for_each(rdev, tmp, mddev) {
2175                 if (!rdev->mddev) {
2176                         MD_BUG();
2177                         continue;
2178                 }
2179                 kick_rdev_from_array(rdev);
2180         }
2181         if (!list_empty(&mddev->disks))
2182                 MD_BUG();
2183         mddev->raid_disks = 0;
2184         mddev->major_version = 0;
2185 }
2186
2187 static void print_desc(mdp_disk_t *desc)
2188 {
2189         printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2190                 desc->major,desc->minor,desc->raid_disk,desc->state);
2191 }
2192
2193 static void print_sb_90(mdp_super_t *sb)
2194 {
2195         int i;
2196
2197         printk(KERN_INFO 
2198                 "md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2199                 sb->major_version, sb->minor_version, sb->patch_version,
2200                 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2201                 sb->ctime);
2202         printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2203                 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2204                 sb->md_minor, sb->layout, sb->chunk_size);
2205         printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2206                 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2207                 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2208                 sb->failed_disks, sb->spare_disks,
2209                 sb->sb_csum, (unsigned long)sb->events_lo);
2210
2211         printk(KERN_INFO);
2212         for (i = 0; i < MD_SB_DISKS; i++) {
2213                 mdp_disk_t *desc;
2214
2215                 desc = sb->disks + i;
2216                 if (desc->number || desc->major || desc->minor ||
2217                     desc->raid_disk || (desc->state && (desc->state != 4))) {
2218                         printk("     D %2d: ", i);
2219                         print_desc(desc);
2220                 }
2221         }
2222         printk(KERN_INFO "md:     THIS: ");
2223         print_desc(&sb->this_disk);
2224 }
2225
2226 static void print_sb_1(struct mdp_superblock_1 *sb)
2227 {
2228         __u8 *uuid;
2229
2230         uuid = sb->set_uuid;
2231         printk(KERN_INFO
2232                "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2233                "md:    Name: \"%s\" CT:%llu\n",
2234                 le32_to_cpu(sb->major_version),
2235                 le32_to_cpu(sb->feature_map),
2236                 uuid,
2237                 sb->set_name,
2238                 (unsigned long long)le64_to_cpu(sb->ctime)
2239                        & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2240
2241         uuid = sb->device_uuid;
2242         printk(KERN_INFO
2243                "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2244                         " RO:%llu\n"
2245                "md:     Dev:%08x UUID: %pU\n"
2246                "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2247                "md:         (MaxDev:%u) \n",
2248                 le32_to_cpu(sb->level),
2249                 (unsigned long long)le64_to_cpu(sb->size),
2250                 le32_to_cpu(sb->raid_disks),
2251                 le32_to_cpu(sb->layout),
2252                 le32_to_cpu(sb->chunksize),
2253                 (unsigned long long)le64_to_cpu(sb->data_offset),
2254                 (unsigned long long)le64_to_cpu(sb->data_size),
2255                 (unsigned long long)le64_to_cpu(sb->super_offset),
2256                 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2257                 le32_to_cpu(sb->dev_number),
2258                 uuid,
2259                 sb->devflags,
2260                 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2261                 (unsigned long long)le64_to_cpu(sb->events),
2262                 (unsigned long long)le64_to_cpu(sb->resync_offset),
2263                 le32_to_cpu(sb->sb_csum),
2264                 le32_to_cpu(sb->max_dev)
2265                 );
2266 }
2267
2268 static void print_rdev(struct md_rdev *rdev, int major_version)
2269 {
2270         char b[BDEVNAME_SIZE];
2271         printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2272                 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2273                 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2274                 rdev->desc_nr);
2275         if (rdev->sb_loaded) {
2276                 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2277                 switch (major_version) {
2278                 case 0:
2279                         print_sb_90(page_address(rdev->sb_page));
2280                         break;
2281                 case 1:
2282                         print_sb_1(page_address(rdev->sb_page));
2283                         break;
2284                 }
2285         } else
2286                 printk(KERN_INFO "md: no rdev superblock!\n");
2287 }
2288
2289 static void md_print_devices(void)
2290 {
2291         struct list_head *tmp;
2292         struct md_rdev *rdev;
2293         struct mddev *mddev;
2294         char b[BDEVNAME_SIZE];
2295
2296         printk("\n");
2297         printk("md:     **********************************\n");
2298         printk("md:     * <COMPLETE RAID STATE PRINTOUT> *\n");
2299         printk("md:     **********************************\n");
2300         for_each_mddev(mddev, tmp) {
2301
2302                 if (mddev->bitmap)
2303                         bitmap_print_sb(mddev->bitmap);
2304                 else
2305                         printk("%s: ", mdname(mddev));
2306                 list_for_each_entry(rdev, &mddev->disks, same_set)
2307                         printk("<%s>", bdevname(rdev->bdev,b));
2308                 printk("\n");
2309
2310                 list_for_each_entry(rdev, &mddev->disks, same_set)
2311                         print_rdev(rdev, mddev->major_version);
2312         }
2313         printk("md:     **********************************\n");
2314         printk("\n");
2315 }
2316
2317
2318 static void sync_sbs(struct mddev * mddev, int nospares)
2319 {
2320         /* Update each superblock (in-memory image), but
2321          * if we are allowed to, skip spares which already
2322          * have the right event counter, or have one earlier
2323          * (which would mean they aren't being marked as dirty
2324          * with the rest of the array)
2325          */
2326         struct md_rdev *rdev;
2327         list_for_each_entry(rdev, &mddev->disks, same_set) {
2328                 if (rdev->sb_events == mddev->events ||
2329                     (nospares &&
2330                      rdev->raid_disk < 0 &&
2331                      rdev->sb_events+1 == mddev->events)) {
2332                         /* Don't update this superblock */
2333                         rdev->sb_loaded = 2;
2334                 } else {
2335                         sync_super(mddev, rdev);
2336                         rdev->sb_loaded = 1;
2337                 }
2338         }
2339 }
2340
2341 static void md_update_sb(struct mddev * mddev, int force_change)
2342 {
2343         struct md_rdev *rdev;
2344         int sync_req;
2345         int nospares = 0;
2346         int any_badblocks_changed = 0;
2347
2348 repeat:
2349         /* First make sure individual recovery_offsets are correct */
2350         list_for_each_entry(rdev, &mddev->disks, same_set) {
2351                 if (rdev->raid_disk >= 0 &&
2352                     mddev->delta_disks >= 0 &&
2353                     !test_bit(In_sync, &rdev->flags) &&
2354                     mddev->curr_resync_completed > rdev->recovery_offset)
2355                                 rdev->recovery_offset = mddev->curr_resync_completed;
2356
2357         }       
2358         if (!mddev->persistent) {
2359                 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2360                 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2361                 if (!mddev->external) {
2362                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2363                         list_for_each_entry(rdev, &mddev->disks, same_set) {
2364                                 if (rdev->badblocks.changed) {
2365                                         md_ack_all_badblocks(&rdev->badblocks);
2366                                         md_error(mddev, rdev);
2367                                 }
2368                                 clear_bit(Blocked, &rdev->flags);
2369                                 clear_bit(BlockedBadBlocks, &rdev->flags);
2370                                 wake_up(&rdev->blocked_wait);
2371                         }
2372                 }
2373                 wake_up(&mddev->sb_wait);
2374                 return;
2375         }
2376
2377         spin_lock_irq(&mddev->write_lock);
2378
2379         mddev->utime = get_seconds();
2380
2381         if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2382                 force_change = 1;
2383         if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2384                 /* just a clean<-> dirty transition, possibly leave spares alone,
2385                  * though if events isn't the right even/odd, we will have to do
2386                  * spares after all
2387                  */
2388                 nospares = 1;
2389         if (force_change)
2390                 nospares = 0;
2391         if (mddev->degraded)
2392                 /* If the array is degraded, then skipping spares is both
2393                  * dangerous and fairly pointless.
2394                  * Dangerous because a device that was removed from the array
2395                  * might have a event_count that still looks up-to-date,
2396                  * so it can be re-added without a resync.
2397                  * Pointless because if there are any spares to skip,
2398                  * then a recovery will happen and soon that array won't
2399                  * be degraded any more and the spare can go back to sleep then.
2400                  */
2401                 nospares = 0;
2402
2403         sync_req = mddev->in_sync;
2404
2405         /* If this is just a dirty<->clean transition, and the array is clean
2406          * and 'events' is odd, we can roll back to the previous clean state */
2407         if (nospares
2408             && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2409             && mddev->can_decrease_events
2410             && mddev->events != 1) {
2411                 mddev->events--;
2412                 mddev->can_decrease_events = 0;
2413         } else {
2414                 /* otherwise we have to go forward and ... */
2415                 mddev->events ++;
2416                 mddev->can_decrease_events = nospares;
2417         }
2418
2419         if (!mddev->events) {
2420                 /*
2421                  * oops, this 64-bit counter should never wrap.
2422                  * Either we are in around ~1 trillion A.C., assuming
2423                  * 1 reboot per second, or we have a bug:
2424                  */
2425                 MD_BUG();
2426                 mddev->events --;
2427         }
2428
2429         list_for_each_entry(rdev, &mddev->disks, same_set) {
2430                 if (rdev->badblocks.changed)
2431                         any_badblocks_changed++;
2432                 if (test_bit(Faulty, &rdev->flags))
2433                         set_bit(FaultRecorded, &rdev->flags);
2434         }
2435
2436         sync_sbs(mddev, nospares);
2437         spin_unlock_irq(&mddev->write_lock);
2438
2439         pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2440                  mdname(mddev), mddev->in_sync);
2441
2442         bitmap_update_sb(mddev->bitmap);
2443         list_for_each_entry(rdev, &mddev->disks, same_set) {
2444                 char b[BDEVNAME_SIZE];
2445
2446                 if (rdev->sb_loaded != 1)
2447                         continue; /* no noise on spare devices */
2448
2449                 if (!test_bit(Faulty, &rdev->flags) &&
2450                     rdev->saved_raid_disk == -1) {
2451                         md_super_write(mddev,rdev,
2452                                        rdev->sb_start, rdev->sb_size,
2453                                        rdev->sb_page);
2454                         pr_debug("md: (write) %s's sb offset: %llu\n",
2455                                  bdevname(rdev->bdev, b),
2456                                  (unsigned long long)rdev->sb_start);
2457                         rdev->sb_events = mddev->events;
2458                         if (rdev->badblocks.size) {
2459                                 md_super_write(mddev, rdev,
2460                                                rdev->badblocks.sector,
2461                                                rdev->badblocks.size << 9,
2462                                                rdev->bb_page);
2463                                 rdev->badblocks.size = 0;
2464                         }
2465
2466                 } else if (test_bit(Faulty, &rdev->flags))
2467                         pr_debug("md: %s (skipping faulty)\n",
2468                                  bdevname(rdev->bdev, b));
2469                 else
2470                         pr_debug("(skipping incremental s/r ");
2471
2472                 if (mddev->level == LEVEL_MULTIPATH)
2473                         /* only need to write one superblock... */
2474                         break;
2475         }
2476         md_super_wait(mddev);
2477         /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2478
2479         spin_lock_irq(&mddev->write_lock);
2480         if (mddev->in_sync != sync_req ||
2481             test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2482                 /* have to write it out again */
2483                 spin_unlock_irq(&mddev->write_lock);
2484                 goto repeat;
2485         }
2486         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2487         spin_unlock_irq(&mddev->write_lock);
2488         wake_up(&mddev->sb_wait);
2489         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2490                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2491
2492         list_for_each_entry(rdev, &mddev->disks, same_set) {
2493                 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2494                         clear_bit(Blocked, &rdev->flags);
2495
2496                 if (any_badblocks_changed)
2497                         md_ack_all_badblocks(&rdev->badblocks);
2498                 clear_bit(BlockedBadBlocks, &rdev->flags);
2499                 wake_up(&rdev->blocked_wait);
2500         }
2501 }
2502
2503 /* words written to sysfs files may, or may not, be \n terminated.
2504  * We want to accept with case. For this we use cmd_match.
2505  */
2506 static int cmd_match(const char *cmd, const char *str)
2507 {
2508         /* See if cmd, written into a sysfs file, matches
2509          * str.  They must either be the same, or cmd can
2510          * have a trailing newline
2511          */
2512         while (*cmd && *str && *cmd == *str) {
2513                 cmd++;
2514                 str++;
2515         }
2516         if (*cmd == '\n')
2517                 cmd++;
2518         if (*str || *cmd)
2519                 return 0;
2520         return 1;
2521 }
2522
2523 struct rdev_sysfs_entry {
2524         struct attribute attr;
2525         ssize_t (*show)(struct md_rdev *, char *);
2526         ssize_t (*store)(struct md_rdev *, const char *, size_t);
2527 };
2528
2529 static ssize_t
2530 state_show(struct md_rdev *rdev, char *page)
2531 {
2532         char *sep = "";
2533         size_t len = 0;
2534
2535         if (test_bit(Faulty, &rdev->flags) ||
2536             rdev->badblocks.unacked_exist) {
2537                 len+= sprintf(page+len, "%sfaulty",sep);
2538                 sep = ",";
2539         }
2540         if (test_bit(In_sync, &rdev->flags)) {
2541                 len += sprintf(page+len, "%sin_sync",sep);
2542                 sep = ",";
2543         }
2544         if (test_bit(WriteMostly, &rdev->flags)) {
2545                 len += sprintf(page+len, "%swrite_mostly",sep);
2546                 sep = ",";
2547         }
2548         if (test_bit(Blocked, &rdev->flags) ||
2549             rdev->badblocks.unacked_exist) {
2550                 len += sprintf(page+len, "%sblocked", sep);
2551                 sep = ",";
2552         }
2553         if (!test_bit(Faulty, &rdev->flags) &&
2554             !test_bit(In_sync, &rdev->flags)) {
2555                 len += sprintf(page+len, "%sspare", sep);
2556                 sep = ",";
2557         }
2558         if (test_bit(WriteErrorSeen, &rdev->flags)) {
2559                 len += sprintf(page+len, "%swrite_error", sep);
2560                 sep = ",";
2561         }
2562         return len+sprintf(page+len, "\n");
2563 }
2564
2565 static ssize_t
2566 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2567 {
2568         /* can write
2569          *  faulty  - simulates an error
2570          *  remove  - disconnects the device
2571          *  writemostly - sets write_mostly
2572          *  -writemostly - clears write_mostly
2573          *  blocked - sets the Blocked flags
2574          *  -blocked - clears the Blocked and possibly simulates an error
2575          *  insync - sets Insync providing device isn't active
2576          *  write_error - sets WriteErrorSeen
2577          *  -write_error - clears WriteErrorSeen
2578          */
2579         int err = -EINVAL;
2580         if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2581                 md_error(rdev->mddev, rdev);
2582                 if (test_bit(Faulty, &rdev->flags))
2583                         err = 0;
2584                 else
2585                         err = -EBUSY;
2586         } else if (cmd_match(buf, "remove")) {
2587                 if (rdev->raid_disk >= 0)
2588                         err = -EBUSY;
2589                 else {
2590                         struct mddev *mddev = rdev->mddev;
2591                         kick_rdev_from_array(rdev);
2592                         if (mddev->pers)
2593                                 md_update_sb(mddev, 1);
2594                         md_new_event(mddev);
2595                         err = 0;
2596                 }
2597         } else if (cmd_match(buf, "writemostly")) {
2598                 set_bit(WriteMostly, &rdev->flags);
2599                 err = 0;
2600         } else if (cmd_match(buf, "-writemostly")) {
2601                 clear_bit(WriteMostly, &rdev->flags);
2602                 err = 0;
2603         } else if (cmd_match(buf, "blocked")) {
2604                 set_bit(Blocked, &rdev->flags);
2605                 err = 0;
2606         } else if (cmd_match(buf, "-blocked")) {
2607                 if (!test_bit(Faulty, &rdev->flags) &&
2608                     rdev->badblocks.unacked_exist) {
2609                         /* metadata handler doesn't understand badblocks,
2610                          * so we need to fail the device
2611                          */
2612                         md_error(rdev->mddev, rdev);
2613                 }
2614                 clear_bit(Blocked, &rdev->flags);
2615                 clear_bit(BlockedBadBlocks, &rdev->flags);
2616                 wake_up(&rdev->blocked_wait);
2617                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2618                 md_wakeup_thread(rdev->mddev->thread);
2619
2620                 err = 0;
2621         } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2622                 set_bit(In_sync, &rdev->flags);
2623                 err = 0;
2624         } else if (cmd_match(buf, "write_error")) {
2625                 set_bit(WriteErrorSeen, &rdev->flags);
2626                 err = 0;
2627         } else if (cmd_match(buf, "-write_error")) {
2628                 clear_bit(WriteErrorSeen, &rdev->flags);
2629                 err = 0;
2630         }
2631         if (!err)
2632                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2633         return err ? err : len;
2634 }
2635 static struct rdev_sysfs_entry rdev_state =
2636 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2637
2638 static ssize_t
2639 errors_show(struct md_rdev *rdev, char *page)
2640 {
2641         return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2642 }
2643
2644 static ssize_t
2645 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2646 {
2647         char *e;
2648         unsigned long n = simple_strtoul(buf, &e, 10);
2649         if (*buf && (*e == 0 || *e == '\n')) {
2650                 atomic_set(&rdev->corrected_errors, n);
2651                 return len;
2652         }
2653         return -EINVAL;
2654 }
2655 static struct rdev_sysfs_entry rdev_errors =
2656 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2657
2658 static ssize_t
2659 slot_show(struct md_rdev *rdev, char *page)
2660 {
2661         if (rdev->raid_disk < 0)
2662                 return sprintf(page, "none\n");
2663         else
2664                 return sprintf(page, "%d\n", rdev->raid_disk);
2665 }
2666
2667 static ssize_t
2668 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2669 {
2670         char *e;
2671         int err;
2672         int slot = simple_strtoul(buf, &e, 10);
2673         if (strncmp(buf, "none", 4)==0)
2674                 slot = -1;
2675         else if (e==buf || (*e && *e!= '\n'))
2676                 return -EINVAL;
2677         if (rdev->mddev->pers && slot == -1) {
2678                 /* Setting 'slot' on an active array requires also
2679                  * updating the 'rd%d' link, and communicating
2680                  * with the personality with ->hot_*_disk.
2681                  * For now we only support removing
2682                  * failed/spare devices.  This normally happens automatically,
2683                  * but not when the metadata is externally managed.
2684                  */
2685                 if (rdev->raid_disk == -1)
2686                         return -EEXIST;
2687                 /* personality does all needed checks */
2688                 if (rdev->mddev->pers->hot_remove_disk == NULL)
2689                         return -EINVAL;
2690                 err = rdev->mddev->pers->
2691                         hot_remove_disk(rdev->mddev, rdev->raid_disk);
2692                 if (err)
2693                         return err;
2694                 sysfs_unlink_rdev(rdev->mddev, rdev);
2695                 rdev->raid_disk = -1;
2696                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2697                 md_wakeup_thread(rdev->mddev->thread);
2698         } else if (rdev->mddev->pers) {
2699                 struct md_rdev *rdev2;
2700                 /* Activating a spare .. or possibly reactivating
2701                  * if we ever get bitmaps working here.
2702                  */
2703
2704                 if (rdev->raid_disk != -1)
2705                         return -EBUSY;
2706
2707                 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2708                         return -EBUSY;
2709
2710                 if (rdev->mddev->pers->hot_add_disk == NULL)
2711                         return -EINVAL;
2712
2713                 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2714                         if (rdev2->raid_disk == slot)
2715                                 return -EEXIST;
2716
2717                 if (slot >= rdev->mddev->raid_disks &&
2718                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2719                         return -ENOSPC;
2720
2721                 rdev->raid_disk = slot;
2722                 if (test_bit(In_sync, &rdev->flags))
2723                         rdev->saved_raid_disk = slot;
2724                 else
2725                         rdev->saved_raid_disk = -1;
2726                 clear_bit(In_sync, &rdev->flags);
2727                 err = rdev->mddev->pers->
2728                         hot_add_disk(rdev->mddev, rdev);
2729                 if (err) {
2730                         rdev->raid_disk = -1;
2731                         return err;
2732                 } else
2733                         sysfs_notify_dirent_safe(rdev->sysfs_state);
2734                 if (sysfs_link_rdev(rdev->mddev, rdev))
2735                         /* failure here is OK */;
2736                 /* don't wakeup anyone, leave that to userspace. */
2737         } else {
2738                 if (slot >= rdev->mddev->raid_disks &&
2739                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2740                         return -ENOSPC;
2741                 rdev->raid_disk = slot;
2742                 /* assume it is working */
2743                 clear_bit(Faulty, &rdev->flags);
2744                 clear_bit(WriteMostly, &rdev->flags);
2745                 set_bit(In_sync, &rdev->flags);
2746                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2747         }
2748         return len;
2749 }
2750
2751
2752 static struct rdev_sysfs_entry rdev_slot =
2753 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2754
2755 static ssize_t
2756 offset_show(struct md_rdev *rdev, char *page)
2757 {
2758         return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2759 }
2760
2761 static ssize_t
2762 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2763 {
2764         char *e;
2765         unsigned long long offset = simple_strtoull(buf, &e, 10);
2766         if (e==buf || (*e && *e != '\n'))
2767                 return -EINVAL;
2768         if (rdev->mddev->pers && rdev->raid_disk >= 0)
2769                 return -EBUSY;
2770         if (rdev->sectors && rdev->mddev->external)
2771                 /* Must set offset before size, so overlap checks
2772                  * can be sane */
2773                 return -EBUSY;
2774         rdev->data_offset = offset;
2775         return len;
2776 }
2777
2778 static struct rdev_sysfs_entry rdev_offset =
2779 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2780
2781 static ssize_t
2782 rdev_size_show(struct md_rdev *rdev, char *page)
2783 {
2784         return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2785 }
2786
2787 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2788 {
2789         /* check if two start/length pairs overlap */
2790         if (s1+l1 <= s2)
2791                 return 0;
2792         if (s2+l2 <= s1)
2793                 return 0;
2794         return 1;
2795 }
2796
2797 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2798 {
2799         unsigned long long blocks;
2800         sector_t new;
2801
2802         if (strict_strtoull(buf, 10, &blocks) < 0)
2803                 return -EINVAL;
2804
2805         if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2806                 return -EINVAL; /* sector conversion overflow */
2807
2808         new = blocks * 2;
2809         if (new != blocks * 2)
2810                 return -EINVAL; /* unsigned long long to sector_t overflow */
2811
2812         *sectors = new;
2813         return 0;
2814 }
2815
2816 static ssize_t
2817 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2818 {
2819         struct mddev *my_mddev = rdev->mddev;
2820         sector_t oldsectors = rdev->sectors;
2821         sector_t sectors;
2822
2823         if (strict_blocks_to_sectors(buf, &sectors) < 0)
2824                 return -EINVAL;
2825         if (my_mddev->pers && rdev->raid_disk >= 0) {
2826                 if (my_mddev->persistent) {
2827                         sectors = super_types[my_mddev->major_version].
2828                                 rdev_size_change(rdev, sectors);
2829                         if (!sectors)
2830                                 return -EBUSY;
2831                 } else if (!sectors)
2832                         sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2833                                 rdev->data_offset;
2834         }
2835         if (sectors < my_mddev->dev_sectors)
2836                 return -EINVAL; /* component must fit device */
2837
2838         rdev->sectors = sectors;
2839         if (sectors > oldsectors && my_mddev->external) {
2840                 /* need to check that all other rdevs with the same ->bdev
2841                  * do not overlap.  We need to unlock the mddev to avoid
2842                  * a deadlock.  We have already changed rdev->sectors, and if
2843                  * we have to change it back, we will have the lock again.
2844                  */
2845                 struct mddev *mddev;
2846                 int overlap = 0;
2847                 struct list_head *tmp;
2848
2849                 mddev_unlock(my_mddev);
2850                 for_each_mddev(mddev, tmp) {
2851                         struct md_rdev *rdev2;
2852
2853                         mddev_lock(mddev);
2854                         list_for_each_entry(rdev2, &mddev->disks, same_set)
2855                                 if (rdev->bdev == rdev2->bdev &&
2856                                     rdev != rdev2 &&
2857                                     overlaps(rdev->data_offset, rdev->sectors,
2858                                              rdev2->data_offset,
2859                                              rdev2->sectors)) {
2860                                         overlap = 1;
2861                                         break;
2862                                 }
2863                         mddev_unlock(mddev);
2864                         if (overlap) {
2865                                 mddev_put(mddev);
2866                                 break;
2867                         }
2868                 }
2869                 mddev_lock(my_mddev);
2870                 if (overlap) {
2871                         /* Someone else could have slipped in a size
2872                          * change here, but doing so is just silly.
2873                          * We put oldsectors back because we *know* it is
2874                          * safe, and trust userspace not to race with
2875                          * itself
2876                          */
2877                         rdev->sectors = oldsectors;
2878                         return -EBUSY;
2879                 }
2880         }
2881         return len;
2882 }
2883
2884 static struct rdev_sysfs_entry rdev_size =
2885 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2886
2887
2888 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2889 {
2890         unsigned long long recovery_start = rdev->recovery_offset;
2891
2892         if (test_bit(In_sync, &rdev->flags) ||
2893             recovery_start == MaxSector)
2894                 return sprintf(page, "none\n");
2895
2896         return sprintf(page, "%llu\n", recovery_start);
2897 }
2898
2899 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2900 {
2901         unsigned long long recovery_start;
2902
2903         if (cmd_match(buf, "none"))
2904                 recovery_start = MaxSector;
2905         else if (strict_strtoull(buf, 10, &recovery_start))
2906                 return -EINVAL;
2907
2908         if (rdev->mddev->pers &&
2909             rdev->raid_disk >= 0)
2910                 return -EBUSY;
2911
2912         rdev->recovery_offset = recovery_start;
2913         if (recovery_start == MaxSector)
2914                 set_bit(In_sync, &rdev->flags);
2915         else
2916                 clear_bit(In_sync, &rdev->flags);
2917         return len;
2918 }
2919
2920 static struct rdev_sysfs_entry rdev_recovery_start =
2921 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2922
2923
2924 static ssize_t
2925 badblocks_show(struct badblocks *bb, char *page, int unack);
2926 static ssize_t
2927 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2928
2929 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2930 {
2931         return badblocks_show(&rdev->badblocks, page, 0);
2932 }
2933 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2934 {
2935         int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2936         /* Maybe that ack was all we needed */
2937         if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2938                 wake_up(&rdev->blocked_wait);
2939         return rv;
2940 }
2941 static struct rdev_sysfs_entry rdev_bad_blocks =
2942 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2943
2944
2945 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2946 {
2947         return badblocks_show(&rdev->badblocks, page, 1);
2948 }
2949 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2950 {
2951         return badblocks_store(&rdev->badblocks, page, len, 1);
2952 }
2953 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2954 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2955
2956 static struct attribute *rdev_default_attrs[] = {
2957         &rdev_state.attr,
2958         &rdev_errors.attr,
2959         &rdev_slot.attr,
2960         &rdev_offset.attr,
2961         &rdev_size.attr,
2962         &rdev_recovery_start.attr,
2963         &rdev_bad_blocks.attr,
2964         &rdev_unack_bad_blocks.attr,
2965         NULL,
2966 };
2967 static ssize_t
2968 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2969 {
2970         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2971         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2972         struct mddev *mddev = rdev->mddev;
2973         ssize_t rv;
2974
2975         if (!entry->show)
2976                 return -EIO;
2977
2978         rv = mddev ? mddev_lock(mddev) : -EBUSY;
2979         if (!rv) {
2980                 if (rdev->mddev == NULL)
2981                         rv = -EBUSY;
2982                 else
2983                         rv = entry->show(rdev, page);
2984                 mddev_unlock(mddev);
2985         }
2986         return rv;
2987 }
2988
2989 static ssize_t
2990 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2991               const char *page, size_t length)
2992 {
2993         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2994         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2995         ssize_t rv;
2996         struct mddev *mddev = rdev->mddev;
2997
2998         if (!entry->store)
2999                 return -EIO;
3000         if (!capable(CAP_SYS_ADMIN))
3001                 return -EACCES;
3002         rv = mddev ? mddev_lock(mddev): -EBUSY;
3003         if (!rv) {
3004                 if (rdev->mddev == NULL)
3005                         rv = -EBUSY;
3006                 else
3007                         rv = entry->store(rdev, page, length);
3008                 mddev_unlock(mddev);
3009         }
3010         return rv;
3011 }
3012
3013 static void rdev_free(struct kobject *ko)
3014 {
3015         struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3016         kfree(rdev);
3017 }
3018 static const struct sysfs_ops rdev_sysfs_ops = {
3019         .show           = rdev_attr_show,
3020         .store          = rdev_attr_store,
3021 };
3022 static struct kobj_type rdev_ktype = {
3023         .release        = rdev_free,
3024         .sysfs_ops      = &rdev_sysfs_ops,
3025         .default_attrs  = rdev_default_attrs,
3026 };
3027
3028 int md_rdev_init(struct md_rdev *rdev)
3029 {
3030         rdev->desc_nr = -1;
3031         rdev->saved_raid_disk = -1;
3032         rdev->raid_disk = -1;
3033         rdev->flags = 0;
3034         rdev->data_offset = 0;
3035         rdev->sb_events = 0;
3036         rdev->last_read_error.tv_sec  = 0;
3037         rdev->last_read_error.tv_nsec = 0;
3038         rdev->sb_loaded = 0;
3039         rdev->bb_page = NULL;
3040         atomic_set(&rdev->nr_pending, 0);
3041         atomic_set(&rdev->read_errors, 0);
3042         atomic_set(&rdev->corrected_errors, 0);
3043
3044         INIT_LIST_HEAD(&rdev->same_set);
3045         init_waitqueue_head(&rdev->blocked_wait);
3046
3047         /* Add space to store bad block list.
3048          * This reserves the space even on arrays where it cannot
3049          * be used - I wonder if that matters
3050          */
3051         rdev->badblocks.count = 0;
3052         rdev->badblocks.shift = 0;
3053         rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3054         seqlock_init(&rdev->badblocks.lock);
3055         if (rdev->badblocks.page == NULL)
3056                 return -ENOMEM;
3057
3058         return 0;
3059 }
3060 EXPORT_SYMBOL_GPL(md_rdev_init);
3061 /*
3062  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3063  *
3064  * mark the device faulty if:
3065  *
3066  *   - the device is nonexistent (zero size)
3067  *   - the device has no valid superblock
3068  *
3069  * a faulty rdev _never_ has rdev->sb set.
3070  */
3071 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3072 {
3073         char b[BDEVNAME_SIZE];
3074         int err;
3075         struct md_rdev *rdev;
3076         sector_t size;
3077
3078         rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3079         if (!rdev) {
3080                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3081                 return ERR_PTR(-ENOMEM);
3082         }
3083
3084         err = md_rdev_init(rdev);
3085         if (err)
3086                 goto abort_free;
3087         err = alloc_disk_sb(rdev);
3088         if (err)
3089                 goto abort_free;
3090
3091         err = lock_rdev(rdev, newdev, super_format == -2);
3092         if (err)
3093                 goto abort_free;
3094
3095         kobject_init(&rdev->kobj, &rdev_ktype);
3096
3097         size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3098         if (!size) {
3099                 printk(KERN_WARNING 
3100                         "md: %s has zero or unknown size, marking faulty!\n",
3101                         bdevname(rdev->bdev,b));
3102                 err = -EINVAL;
3103                 goto abort_free;
3104         }
3105
3106         if (super_format >= 0) {
3107                 err = super_types[super_format].
3108                         load_super(rdev, NULL, super_minor);
3109                 if (err == -EINVAL) {
3110                         printk(KERN_WARNING
3111                                 "md: %s does not have a valid v%d.%d "
3112                                "superblock, not importing!\n",
3113                                 bdevname(rdev->bdev,b),
3114                                super_format, super_minor);
3115                         goto abort_free;
3116                 }
3117                 if (err < 0) {
3118                         printk(KERN_WARNING 
3119                                 "md: could not read %s's sb, not importing!\n",
3120                                 bdevname(rdev->bdev,b));
3121                         goto abort_free;
3122                 }
3123         }
3124         if (super_format == -1)
3125                 /* hot-add for 0.90, or non-persistent: so no badblocks */
3126                 rdev->badblocks.shift = -1;
3127
3128         return rdev;
3129
3130 abort_free:
3131         if (rdev->bdev)
3132                 unlock_rdev(rdev);
3133         free_disk_sb(rdev);
3134         kfree(rdev->badblocks.page);
3135         kfree(rdev);
3136         return ERR_PTR(err);
3137 }
3138
3139 /*
3140  * Check a full RAID array for plausibility
3141  */
3142
3143
3144 static void analyze_sbs(struct mddev * mddev)
3145 {
3146         int i;
3147         struct md_rdev *rdev, *freshest, *tmp;
3148         char b[BDEVNAME_SIZE];
3149
3150         freshest = NULL;
3151         rdev_for_each(rdev, tmp, mddev)
3152                 switch (super_types[mddev->major_version].
3153                         load_super(rdev, freshest, mddev->minor_version)) {
3154                 case 1:
3155                         freshest = rdev;
3156                         break;
3157                 case 0:
3158                         break;
3159                 default:
3160                         printk( KERN_ERR \
3161                                 "md: fatal superblock inconsistency in %s"
3162                                 " -- removing from array\n", 
3163                                 bdevname(rdev->bdev,b));
3164                         kick_rdev_from_array(rdev);
3165                 }
3166
3167
3168         super_types[mddev->major_version].
3169                 validate_super(mddev, freshest);
3170
3171         i = 0;
3172         rdev_for_each(rdev, tmp, mddev) {
3173                 if (mddev->max_disks &&
3174                     (rdev->desc_nr >= mddev->max_disks ||
3175                      i > mddev->max_disks)) {
3176                         printk(KERN_WARNING
3177                                "md: %s: %s: only %d devices permitted\n",
3178                                mdname(mddev), bdevname(rdev->bdev, b),
3179                                mddev->max_disks);
3180                         kick_rdev_from_array(rdev);
3181                         continue;
3182                 }
3183                 if (rdev != freshest)
3184                         if (super_types[mddev->major_version].
3185                             validate_super(mddev, rdev)) {
3186                                 printk(KERN_WARNING "md: kicking non-fresh %s"
3187                                         " from array!\n",
3188                                         bdevname(rdev->bdev,b));
3189                                 kick_rdev_from_array(rdev);
3190                                 continue;
3191                         }
3192                 if (mddev->level == LEVEL_MULTIPATH) {
3193                         rdev->desc_nr = i++;
3194                         rdev->raid_disk = rdev->desc_nr;
3195                         set_bit(In_sync, &rdev->flags);
3196                 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3197                         rdev->raid_disk = -1;
3198                         clear_bit(In_sync, &rdev->flags);
3199                 }
3200         }
3201 }
3202
3203 /* Read a fixed-point number.
3204  * Numbers in sysfs attributes should be in "standard" units where
3205  * possible, so time should be in seconds.
3206  * However we internally use a a much smaller unit such as 
3207  * milliseconds or jiffies.
3208  * This function takes a decimal number with a possible fractional
3209  * component, and produces an integer which is the result of
3210  * multiplying that number by 10^'scale'.
3211  * all without any floating-point arithmetic.
3212  */
3213 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3214 {
3215         unsigned long result = 0;
3216         long decimals = -1;
3217         while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3218                 if (*cp == '.')
3219                         decimals = 0;
3220                 else if (decimals < scale) {
3221                         unsigned int value;
3222                         value = *cp - '0';
3223                         result = result * 10 + value;
3224                         if (decimals >= 0)
3225                                 decimals++;
3226                 }
3227                 cp++;
3228         }
3229         if (*cp == '\n')
3230                 cp++;
3231         if (*cp)
3232                 return -EINVAL;
3233         if (decimals < 0)
3234                 decimals = 0;
3235         while (decimals < scale) {
3236                 result *= 10;
3237                 decimals ++;
3238         }
3239         *res = result;
3240         return 0;
3241 }
3242
3243
3244 static void md_safemode_timeout(unsigned long data);
3245
3246 static ssize_t
3247 safe_delay_show(struct mddev *mddev, char *page)
3248 {
3249         int msec = (mddev->safemode_delay*1000)/HZ;
3250         return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3251 }
3252 static ssize_t
3253 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3254 {
3255         unsigned long msec;
3256
3257         if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3258                 return -EINVAL;
3259         if (msec == 0)
3260                 mddev->safemode_delay = 0;
3261         else {
3262                 unsigned long old_delay = mddev->safemode_delay;
3263                 mddev->safemode_delay = (msec*HZ)/1000;
3264                 if (mddev->safemode_delay == 0)
3265                         mddev->safemode_delay = 1;
3266                 if (mddev->safemode_delay < old_delay)
3267                         md_safemode_timeout((unsigned long)mddev);
3268         }
3269         return len;
3270 }
3271 static struct md_sysfs_entry md_safe_delay =
3272 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3273
3274 static ssize_t
3275 level_show(struct mddev *mddev, char *page)
3276 {
3277         struct md_personality *p = mddev->pers;
3278         if (p)
3279                 return sprintf(page, "%s\n", p->name);
3280         else if (mddev->clevel[0])
3281                 return sprintf(page, "%s\n", mddev->clevel);
3282         else if (mddev->level != LEVEL_NONE)
3283                 return sprintf(page, "%d\n", mddev->level);
3284         else
3285                 return 0;
3286 }
3287
3288 static ssize_t
3289 level_store(struct mddev *mddev, const char *buf, size_t len)
3290 {
3291         char clevel[16];
3292         ssize_t rv = len;
3293         struct md_personality *pers;
3294         long level;
3295         void *priv;
3296         struct md_rdev *rdev;
3297
3298         if (mddev->pers == NULL) {
3299                 if (len == 0)
3300                         return 0;
3301                 if (len >= sizeof(mddev->clevel))
3302                         return -ENOSPC;
3303                 strncpy(mddev->clevel, buf, len);
3304                 if (mddev->clevel[len-1] == '\n')
3305                         len--;
3306                 mddev->clevel[len] = 0;
3307                 mddev->level = LEVEL_NONE;
3308                 return rv;
3309         }
3310
3311         /* request to change the personality.  Need to ensure:
3312          *  - array is not engaged in resync/recovery/reshape
3313          *  - old personality can be suspended
3314          *  - new personality will access other array.
3315          */
3316
3317         if (mddev->sync_thread ||
3318             mddev->reshape_position != MaxSector ||
3319             mddev->sysfs_active)
3320                 return -EBUSY;
3321
3322         if (!mddev->pers->quiesce) {
3323                 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3324                        mdname(mddev), mddev->pers->name);
3325                 return -EINVAL;
3326         }
3327
3328         /* Now find the new personality */
3329         if (len == 0 || len >= sizeof(clevel))
3330                 return -EINVAL;
3331         strncpy(clevel, buf, len);
3332         if (clevel[len-1] == '\n')
3333                 len--;
3334         clevel[len] = 0;
3335         if (strict_strtol(clevel, 10, &level))
3336                 level = LEVEL_NONE;
3337
3338         if (request_module("md-%s", clevel) != 0)
3339                 request_module("md-level-%s", clevel);
3340         spin_lock(&pers_lock);
3341         pers = find_pers(level, clevel);
3342         if (!pers || !try_module_get(pers->owner)) {
3343                 spin_unlock(&pers_lock);
3344                 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3345                 return -EINVAL;
3346         }
3347         spin_unlock(&pers_lock);
3348
3349         if (pers == mddev->pers) {
3350                 /* Nothing to do! */
3351                 module_put(pers->owner);
3352                 return rv;
3353         }
3354         if (!pers->takeover) {
3355                 module_put(pers->owner);
3356                 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3357                        mdname(mddev), clevel);
3358                 return -EINVAL;
3359         }
3360
3361         list_for_each_entry(rdev, &mddev->disks, same_set)
3362                 rdev->new_raid_disk = rdev->raid_disk;
3363
3364         /* ->takeover must set new_* and/or delta_disks
3365          * if it succeeds, and may set them when it fails.
3366          */
3367         priv = pers->takeover(mddev);
3368         if (IS_ERR(priv)) {
3369                 mddev->new_level = mddev->level;
3370                 mddev->new_layout = mddev->layout;
3371                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3372                 mddev->raid_disks -= mddev->delta_disks;
3373                 mddev->delta_disks = 0;
3374                 module_put(pers->owner);
3375                 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3376                        mdname(mddev), clevel);
3377                 return PTR_ERR(priv);
3378         }
3379
3380         /* Looks like we have a winner */
3381         mddev_suspend(mddev);
3382         mddev->pers->stop(mddev);
3383         
3384         if (mddev->pers->sync_request == NULL &&
3385             pers->sync_request != NULL) {
3386                 /* need to add the md_redundancy_group */
3387                 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3388                         printk(KERN_WARNING
3389                                "md: cannot register extra attributes for %s\n",
3390                                mdname(mddev));
3391                 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3392         }               
3393         if (mddev->pers->sync_request != NULL &&
3394             pers->sync_request == NULL) {
3395                 /* need to remove the md_redundancy_group */
3396                 if (mddev->to_remove == NULL)
3397                         mddev->to_remove = &md_redundancy_group;
3398         }
3399
3400         if (mddev->pers->sync_request == NULL &&
3401             mddev->external) {
3402                 /* We are converting from a no-redundancy array
3403                  * to a redundancy array and metadata is managed
3404                  * externally so we need to be sure that writes
3405                  * won't block due to a need to transition
3406                  *      clean->dirty
3407                  * until external management is started.
3408                  */
3409                 mddev->in_sync = 0;
3410                 mddev->safemode_delay = 0;
3411                 mddev->safemode = 0;
3412         }
3413
3414         list_for_each_entry(rdev, &mddev->disks, same_set) {
3415                 if (rdev->raid_disk < 0)
3416                         continue;
3417                 if (rdev->new_raid_disk >= mddev->raid_disks)
3418                         rdev->new_raid_disk = -1;
3419                 if (rdev->new_raid_disk == rdev->raid_disk)
3420                         continue;
3421                 sysfs_unlink_rdev(mddev, rdev);
3422         }
3423         list_for_each_entry(rdev, &mddev->disks, same_set) {
3424                 if (rdev->raid_disk < 0)
3425                         continue;
3426                 if (rdev->new_raid_disk == rdev->raid_disk)
3427                         continue;
3428                 rdev->raid_disk = rdev->new_raid_disk;
3429                 if (rdev->raid_disk < 0)
3430                         clear_bit(In_sync, &rdev->flags);
3431                 else {
3432                         if (sysfs_link_rdev(mddev, rdev))
3433                                 printk(KERN_WARNING "md: cannot register rd%d"
3434                                        " for %s after level change\n",
3435                                        rdev->raid_disk, mdname(mddev));
3436                 }
3437         }
3438
3439         module_put(mddev->pers->owner);
3440         mddev->pers = pers;
3441         mddev->private = priv;
3442         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3443         mddev->level = mddev->new_level;
3444         mddev->layout = mddev->new_layout;
3445         mddev->chunk_sectors = mddev->new_chunk_sectors;
3446         mddev->delta_disks = 0;
3447         mddev->degraded = 0;
3448         if (mddev->pers->sync_request == NULL) {
3449                 /* this is now an array without redundancy, so
3450                  * it must always be in_sync
3451                  */
3452                 mddev->in_sync = 1;
3453                 del_timer_sync(&mddev->safemode_timer);
3454         }
3455         pers->run(mddev);
3456         mddev_resume(mddev);
3457         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3458         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3459         md_wakeup_thread(mddev->thread);
3460         sysfs_notify(&mddev->kobj, NULL, "level");
3461         md_new_event(mddev);
3462         return rv;
3463 }
3464
3465 static struct md_sysfs_entry md_level =
3466 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3467
3468
3469 static ssize_t
3470 layout_show(struct mddev *mddev, char *page)
3471 {
3472         /* just a number, not meaningful for all levels */
3473         if (mddev->reshape_position != MaxSector &&
3474             mddev->layout != mddev->new_layout)
3475                 return sprintf(page, "%d (%d)\n",
3476                                mddev->new_layout, mddev->layout);
3477         return sprintf(page, "%d\n", mddev->layout);
3478 }
3479
3480 static ssize_t
3481 layout_store(struct mddev *mddev, const char *buf, size_t len)
3482 {
3483         char *e;
3484         unsigned long n = simple_strtoul(buf, &e, 10);
3485
3486         if (!*buf || (*e && *e != '\n'))
3487                 return -EINVAL;
3488
3489         if (mddev->pers) {
3490                 int err;
3491                 if (mddev->pers->check_reshape == NULL)
3492                         return -EBUSY;
3493                 mddev->new_layout = n;
3494                 err = mddev->pers->check_reshape(mddev);
3495                 if (err) {
3496                         mddev->new_layout = mddev->layout;
3497                         return err;
3498                 }
3499         } else {
3500                 mddev->new_layout = n;
3501                 if (mddev->reshape_position == MaxSector)
3502                         mddev->layout = n;
3503         }
3504         return len;
3505 }
3506 static struct md_sysfs_entry md_layout =
3507 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3508
3509
3510 static ssize_t
3511 raid_disks_show(struct mddev *mddev, char *page)
3512 {
3513         if (mddev->raid_disks == 0)
3514                 return 0;
3515         if (mddev->reshape_position != MaxSector &&
3516             mddev->delta_disks != 0)
3517                 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3518                                mddev->raid_disks - mddev->delta_disks);
3519         return sprintf(page, "%d\n", mddev->raid_disks);
3520 }
3521
3522 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3523
3524 static ssize_t
3525 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3526 {
3527         char *e;
3528         int rv = 0;
3529         unsigned long n = simple_strtoul(buf, &e, 10);
3530
3531         if (!*buf || (*e && *e != '\n'))
3532                 return -EINVAL;
3533
3534         if (mddev->pers)
3535                 rv = update_raid_disks(mddev, n);
3536         else if (mddev->reshape_position != MaxSector) {
3537                 int olddisks = mddev->raid_disks - mddev->delta_disks;
3538                 mddev->delta_disks = n - olddisks;
3539                 mddev->raid_disks = n;
3540         } else
3541                 mddev->raid_disks = n;
3542         return rv ? rv : len;
3543 }
3544 static struct md_sysfs_entry md_raid_disks =
3545 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3546
3547 static ssize_t
3548 chunk_size_show(struct mddev *mddev, char *page)
3549 {
3550         if (mddev->reshape_position != MaxSector &&
3551             mddev->chunk_sectors != mddev->new_chunk_sectors)
3552                 return sprintf(page, "%d (%d)\n",
3553                                mddev->new_chunk_sectors << 9,
3554                                mddev->chunk_sectors << 9);
3555         return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3556 }
3557
3558 static ssize_t
3559 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3560 {
3561         char *e;
3562         unsigned long n = simple_strtoul(buf, &e, 10);
3563
3564         if (!*buf || (*e && *e != '\n'))
3565                 return -EINVAL;
3566
3567         if (mddev->pers) {
3568                 int err;
3569                 if (mddev->pers->check_reshape == NULL)
3570                         return -EBUSY;
3571                 mddev->new_chunk_sectors = n >> 9;
3572                 err = mddev->pers->check_reshape(mddev);
3573                 if (err) {
3574                         mddev->new_chunk_sectors = mddev->chunk_sectors;
3575                         return err;
3576                 }
3577         } else {
3578                 mddev->new_chunk_sectors = n >> 9;
3579                 if (mddev->reshape_position == MaxSector)
3580                         mddev->chunk_sectors = n >> 9;
3581         }
3582         return len;
3583 }
3584 static struct md_sysfs_entry md_chunk_size =
3585 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3586
3587 static ssize_t
3588 resync_start_show(struct mddev *mddev, char *page)
3589 {
3590         if (mddev->recovery_cp == MaxSector)
3591                 return sprintf(page, "none\n");
3592         return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3593 }
3594
3595 static ssize_t
3596 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3597 {
3598         char *e;
3599         unsigned long long n = simple_strtoull(buf, &e, 10);
3600
3601         if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3602                 return -EBUSY;
3603         if (cmd_match(buf, "none"))
3604                 n = MaxSector;
3605         else if (!*buf || (*e && *e != '\n'))
3606                 return -EINVAL;
3607
3608         mddev->recovery_cp = n;
3609         return len;
3610 }
3611 static struct md_sysfs_entry md_resync_start =
3612 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3613
3614 /*
3615  * The array state can be:
3616  *
3617  * clear
3618  *     No devices, no size, no level
3619  *     Equivalent to STOP_ARRAY ioctl
3620  * inactive
3621  *     May have some settings, but array is not active
3622  *        all IO results in error
3623  *     When written, doesn't tear down array, but just stops it
3624  * suspended (not supported yet)
3625  *     All IO requests will block. The array can be reconfigured.
3626  *     Writing this, if accepted, will block until array is quiescent
3627  * readonly
3628  *     no resync can happen.  no superblocks get written.
3629  *     write requests fail
3630  * read-auto
3631  *     like readonly, but behaves like 'clean' on a write request.
3632  *
3633  * clean - no pending writes, but otherwise active.
3634  *     When written to inactive array, starts without resync
3635  *     If a write request arrives then
3636  *       if metadata is known, mark 'dirty' and switch to 'active'.
3637  *       if not known, block and switch to write-pending
3638  *     If written to an active array that has pending writes, then fails.
3639  * active
3640  *     fully active: IO and resync can be happening.
3641  *     When written to inactive array, starts with resync
3642  *
3643  * write-pending
3644  *     clean, but writes are blocked waiting for 'active' to be written.
3645  *
3646  * active-idle
3647  *     like active, but no writes have been seen for a while (100msec).
3648  *
3649  */
3650 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3651                    write_pending, active_idle, bad_word};
3652 static char *array_states[] = {
3653         "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3654         "write-pending", "active-idle", NULL };
3655
3656 static int match_word(const char *word, char **list)
3657 {
3658         int n;
3659         for (n=0; list[n]; n++)
3660                 if (cmd_match(word, list[n]))
3661                         break;
3662         return n;
3663 }
3664
3665 static ssize_t
3666 array_state_show(struct mddev *mddev, char *page)
3667 {
3668         enum array_state st = inactive;
3669
3670         if (mddev->pers)
3671                 switch(mddev->ro) {
3672                 case 1:
3673                         st = readonly;
3674                         break;
3675                 case 2:
3676                         st = read_auto;
3677                         break;
3678                 case 0:
3679                         if (mddev->in_sync)
3680                                 st = clean;
3681                         else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3682                                 st = write_pending;
3683                         else if (mddev->safemode)
3684                                 st = active_idle;
3685                         else
3686                                 st = active;
3687                 }
3688         else {
3689                 if (list_empty(&mddev->disks) &&
3690                     mddev->raid_disks == 0 &&
3691                     mddev->dev_sectors == 0)
3692                         st = clear;
3693                 else
3694                         st = inactive;
3695         }
3696         return sprintf(page, "%s\n", array_states[st]);
3697 }
3698
3699 static int do_md_stop(struct mddev * mddev, int ro, int is_open);
3700 static int md_set_readonly(struct mddev * mddev, int is_open);
3701 static int do_md_run(struct mddev * mddev);
3702 static int restart_array(struct mddev *mddev);
3703
3704 static ssize_t
3705 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3706 {
3707         int err = -EINVAL;
3708         enum array_state st = match_word(buf, array_states);
3709         switch(st) {
3710         case bad_word:
3711                 break;
3712         case clear:
3713                 /* stopping an active array */
3714                 if (atomic_read(&mddev->openers) > 0)
3715                         return -EBUSY;
3716                 err = do_md_stop(mddev, 0, 0);
3717                 break;
3718         case inactive:
3719                 /* stopping an active array */
3720                 if (mddev->pers) {
3721                         if (atomic_read(&mddev->openers) > 0)
3722                                 return -EBUSY;
3723                         err = do_md_stop(mddev, 2, 0);
3724                 } else
3725                         err = 0; /* already inactive */
3726                 break;
3727         case suspended:
3728                 break; /* not supported yet */
3729         case readonly:
3730                 if (mddev->pers)
3731                         err = md_set_readonly(mddev, 0);
3732                 else {
3733                         mddev->ro = 1;
3734                         set_disk_ro(mddev->gendisk, 1);
3735                         err = do_md_run(mddev);
3736                 }
3737                 break;
3738         case read_auto:
3739                 if (mddev->pers) {
3740                         if (mddev->ro == 0)
3741                                 err = md_set_readonly(mddev, 0);
3742                         else if (mddev->ro == 1)
3743                                 err = restart_array(mddev);
3744                         if (err == 0) {
3745                                 mddev->ro = 2;
3746                                 set_disk_ro(mddev->gendisk, 0);
3747                         }
3748                 } else {
3749                         mddev->ro = 2;
3750                         err = do_md_run(mddev);
3751                 }
3752                 break;
3753         case clean:
3754                 if (mddev->pers) {
3755                         restart_array(mddev);
3756                         spin_lock_irq(&mddev->write_lock);
3757                         if (atomic_read(&mddev->writes_pending) == 0) {
3758                                 if (mddev->in_sync == 0) {
3759                                         mddev->in_sync = 1;
3760                                         if (mddev->safemode == 1)
3761                                                 mddev->safemode = 0;
3762                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3763                                 }
3764                                 err = 0;
3765                         } else
3766                                 err = -EBUSY;
3767                         spin_unlock_irq(&mddev->write_lock);
3768                 } else
3769                         err = -EINVAL;
3770                 break;
3771         case active:
3772                 if (mddev->pers) {
3773                         restart_array(mddev);
3774                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3775                         wake_up(&mddev->sb_wait);
3776                         err = 0;
3777                 } else {
3778                         mddev->ro = 0;
3779                         set_disk_ro(mddev->gendisk, 0);
3780                         err = do_md_run(mddev);
3781                 }
3782                 break;
3783         case write_pending:
3784         case active_idle:
3785                 /* these cannot be set */
3786                 break;
3787         }
3788         if (err)
3789                 return err;
3790         else {
3791                 sysfs_notify_dirent_safe(mddev->sysfs_state);
3792                 return len;
3793         }
3794 }
3795 static struct md_sysfs_entry md_array_state =
3796 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3797
3798 static ssize_t
3799 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3800         return sprintf(page, "%d\n",
3801                        atomic_read(&mddev->max_corr_read_errors));
3802 }
3803
3804 static ssize_t
3805 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3806 {
3807         char *e;
3808         unsigned long n = simple_strtoul(buf, &e, 10);
3809
3810         if (*buf && (*e == 0 || *e == '\n')) {
3811                 atomic_set(&mddev->max_corr_read_errors, n);
3812                 return len;
3813         }
3814         return -EINVAL;
3815 }
3816
3817 static struct md_sysfs_entry max_corr_read_errors =
3818 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3819         max_corrected_read_errors_store);
3820
3821 static ssize_t
3822 null_show(struct mddev *mddev, char *page)
3823 {
3824         return -EINVAL;
3825 }
3826
3827 static ssize_t
3828 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3829 {
3830         /* buf must be %d:%d\n? giving major and minor numbers */
3831         /* The new device is added to the array.
3832          * If the array has a persistent superblock, we read the
3833          * superblock to initialise info and check validity.
3834          * Otherwise, only checking done is that in bind_rdev_to_array,
3835          * which mainly checks size.
3836          */
3837         char *e;
3838         int major = simple_strtoul(buf, &e, 10);
3839         int minor;
3840         dev_t dev;
3841         struct md_rdev *rdev;
3842         int err;
3843
3844         if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3845                 return -EINVAL;
3846         minor = simple_strtoul(e+1, &e, 10);
3847         if (*e && *e != '\n')
3848                 return -EINVAL;
3849         dev = MKDEV(major, minor);
3850         if (major != MAJOR(dev) ||
3851             minor != MINOR(dev))
3852                 return -EOVERFLOW;
3853
3854
3855         if (mddev->persistent) {
3856                 rdev = md_import_device(dev, mddev->major_version,
3857                                         mddev->minor_version);
3858                 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3859                         struct md_rdev *rdev0
3860                                 = list_entry(mddev->disks.next,
3861                                              struct md_rdev, same_set);
3862                         err = super_types[mddev->major_version]
3863                                 .load_super(rdev, rdev0, mddev->minor_version);
3864                         if (err < 0)
3865                                 goto out;
3866                 }
3867         } else if (mddev->external)
3868                 rdev = md_import_device(dev, -2, -1);
3869         else
3870                 rdev = md_import_device(dev, -1, -1);
3871
3872         if (IS_ERR(rdev))
3873                 return PTR_ERR(rdev);
3874         err = bind_rdev_to_array(rdev, mddev);
3875  out:
3876         if (err)
3877                 export_rdev(rdev);
3878         return err ? err : len;
3879 }
3880
3881 static struct md_sysfs_entry md_new_device =
3882 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3883
3884 static ssize_t
3885 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
3886 {
3887         char *end;
3888         unsigned long chunk, end_chunk;
3889
3890         if (!mddev->bitmap)
3891                 goto out;
3892         /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3893         while (*buf) {
3894                 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3895                 if (buf == end) break;
3896                 if (*end == '-') { /* range */
3897                         buf = end + 1;
3898                         end_chunk = simple_strtoul(buf, &end, 0);
3899                         if (buf == end) break;
3900                 }
3901                 if (*end && !isspace(*end)) break;
3902                 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3903                 buf = skip_spaces(end);
3904         }
3905         bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3906 out:
3907         return len;
3908 }
3909
3910 static struct md_sysfs_entry md_bitmap =
3911 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3912
3913 static ssize_t
3914 size_show(struct mddev *mddev, char *page)
3915 {
3916         return sprintf(page, "%llu\n",
3917                 (unsigned long long)mddev->dev_sectors / 2);
3918 }
3919
3920 static int update_size(struct mddev *mddev, sector_t num_sectors);
3921
3922 static ssize_t
3923 size_store(struct mddev *mddev, const char *buf, size_t len)
3924 {
3925         /* If array is inactive, we can reduce the component size, but
3926          * not increase it (except from 0).
3927          * If array is active, we can try an on-line resize
3928          */
3929         sector_t sectors;
3930         int err = strict_blocks_to_sectors(buf, &sectors);
3931
3932         if (err < 0)
3933                 return err;
3934         if (mddev->pers) {
3935                 err = update_size(mddev, sectors);
3936                 md_update_sb(mddev, 1);
3937         } else {
3938                 if (mddev->dev_sectors == 0 ||
3939                     mddev->dev_sectors > sectors)
3940                         mddev->dev_sectors = sectors;
3941                 else
3942                         err = -ENOSPC;
3943         }
3944         return err ? err : len;
3945 }
3946
3947 static struct md_sysfs_entry md_size =
3948 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3949
3950
3951 /* Metdata version.
3952  * This is one of
3953  *   'none' for arrays with no metadata (good luck...)
3954  *   'external' for arrays with externally managed metadata,
3955  * or N.M for internally known formats
3956  */
3957 static ssize_t
3958 metadata_show(struct mddev *mddev, char *page)
3959 {
3960         if (mddev->persistent)
3961                 return sprintf(page, "%d.%d\n",
3962                                mddev->major_version, mddev->minor_version);
3963         else if (mddev->external)
3964                 return sprintf(page, "external:%s\n", mddev->metadata_type);
3965         else
3966                 return sprintf(page, "none\n");
3967 }
3968
3969 static ssize_t
3970 metadata_store(struct mddev *mddev, const char *buf, size_t len)
3971 {
3972         int major, minor;
3973         char *e;
3974         /* Changing the details of 'external' metadata is
3975          * always permitted.  Otherwise there must be
3976          * no devices attached to the array.
3977          */
3978         if (mddev->external && strncmp(buf, "external:", 9) == 0)
3979                 ;
3980         else if (!list_empty(&mddev->disks))
3981                 return -EBUSY;
3982
3983         if (cmd_match(buf, "none")) {
3984                 mddev->persistent = 0;
3985                 mddev->external = 0;
3986                 mddev->major_version = 0;
3987                 mddev->minor_version = 90;
3988                 return len;
3989         }
3990         if (strncmp(buf, "external:", 9) == 0) {
3991                 size_t namelen = len-9;
3992                 if (namelen >= sizeof(mddev->metadata_type))
3993                         namelen = sizeof(mddev->metadata_type)-1;
3994                 strncpy(mddev->metadata_type, buf+9, namelen);
3995                 mddev->metadata_type[namelen] = 0;
3996                 if (namelen && mddev->metadata_type[namelen-1] == '\n')
3997                         mddev->metadata_type[--namelen] = 0;
3998                 mddev->persistent = 0;
3999                 mddev->external = 1;
4000                 mddev->major_version = 0;
4001                 mddev->minor_version = 90;
4002                 return len;
4003         }
4004         major = simple_strtoul(buf, &e, 10);
4005         if (e==buf || *e != '.')
4006                 return -EINVAL;
4007         buf = e+1;
4008         minor = simple_strtoul(buf, &e, 10);
4009         if (e==buf || (*e && *e != '\n') )
4010                 return -EINVAL;
4011         if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4012                 return -ENOENT;
4013         mddev->major_version = major;
4014         mddev->minor_version = minor;
4015         mddev->persistent = 1;
4016         mddev->external = 0;
4017         return len;
4018 }
4019
4020 static struct md_sysfs_entry md_metadata =
4021 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4022
4023 static ssize_t
4024 action_show(struct mddev *mddev, char *page)
4025 {
4026         char *type = "idle";
4027         if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4028                 type = "frozen";
4029         else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4030             (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4031                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4032                         type = "reshape";
4033                 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4034                         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4035                                 type = "resync";
4036                         else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4037                                 type = "check";
4038                         else
4039                                 type = "repair";
4040                 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4041                         type = "recover";
4042         }
4043         return sprintf(page, "%s\n", type);
4044 }
4045
4046 static void reap_sync_thread(struct mddev *mddev);
4047
4048 static ssize_t
4049 action_store(struct mddev *mddev, const char *page, size_t len)
4050 {
4051         if (!mddev->pers || !mddev->pers->sync_request)
4052                 return -EINVAL;
4053
4054         if (cmd_match(page, "frozen"))
4055                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4056         else
4057                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4058
4059         if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4060                 if (mddev->sync_thread) {
4061                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4062                         reap_sync_thread(mddev);
4063                 }
4064         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4065                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4066                 return -EBUSY;
4067         else if (cmd_match(page, "resync"))
4068                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4069         else if (cmd_match(page, "recover")) {
4070                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4071                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4072         } else if (cmd_match(page, "reshape")) {
4073                 int err;
4074                 if (mddev->pers->start_reshape == NULL)
4075                         return -EINVAL;
4076                 err = mddev->pers->start_reshape(mddev);
4077                 if (err)
4078                         return err;
4079                 sysfs_notify(&mddev->kobj, NULL, "degraded");
4080         } else {
4081                 if (cmd_match(page, "check"))
4082                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4083                 else if (!cmd_match(page, "repair"))
4084                         return -EINVAL;
4085                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4086                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4087         }
4088         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4089         md_wakeup_thread(mddev->thread);
4090         sysfs_notify_dirent_safe(mddev->sysfs_action);
4091         return len;
4092 }
4093
4094 static ssize_t
4095 mismatch_cnt_show(struct mddev *mddev, char *page)
4096 {
4097         return sprintf(page, "%llu\n",
4098                        (unsigned long long) mddev->resync_mismatches);
4099 }
4100
4101 static struct md_sysfs_entry md_scan_mode =
4102 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4103
4104
4105 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4106
4107 static ssize_t
4108 sync_min_show(struct mddev *mddev, char *page)
4109 {
4110         return sprintf(page, "%d (%s)\n", speed_min(mddev),
4111                        mddev->sync_speed_min ? "local": "system");
4112 }
4113
4114 static ssize_t
4115 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4116 {
4117         int min;
4118         char *e;
4119         if (strncmp(buf, "system", 6)==0) {
4120                 mddev->sync_speed_min = 0;
4121                 return len;
4122         }
4123         min = simple_strtoul(buf, &e, 10);
4124         if (buf == e || (*e && *e != '\n') || min <= 0)
4125                 return -EINVAL;
4126         mddev->sync_speed_min = min;
4127         return len;
4128 }
4129
4130 static struct md_sysfs_entry md_sync_min =
4131 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4132
4133 static ssize_t
4134 sync_max_show(struct mddev *mddev, char *page)
4135 {
4136         return sprintf(page, "%d (%s)\n", speed_max(mddev),
4137                        mddev->sync_speed_max ? "local": "system");
4138 }
4139
4140 static ssize_t
4141 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4142 {
4143         int max;
4144         char *e;
4145         if (strncmp(buf, "system", 6)==0) {
4146                 mddev->sync_speed_max = 0;
4147                 return len;
4148         }
4149         max = simple_strtoul(buf, &e, 10);
4150         if (buf == e || (*e && *e != '\n') || max <= 0)
4151                 return -EINVAL;
4152         mddev->sync_speed_max = max;
4153         return len;
4154 }
4155
4156 static struct md_sysfs_entry md_sync_max =
4157 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4158
4159 static ssize_t
4160 degraded_show(struct mddev *mddev, char *page)
4161 {
4162         return sprintf(page, "%d\n", mddev->degraded);
4163 }
4164 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4165
4166 static ssize_t
4167 sync_force_parallel_show(struct mddev *mddev, char *page)
4168 {
4169         return sprintf(page, "%d\n", mddev->parallel_resync);
4170 }
4171
4172 static ssize_t
4173 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4174 {
4175         long n;
4176
4177         if (strict_strtol(buf, 10, &n))
4178                 return -EINVAL;
4179
4180         if (n != 0 && n != 1)
4181                 return -EINVAL;
4182
4183         mddev->parallel_resync = n;
4184
4185         if (mddev->sync_thread)
4186                 wake_up(&resync_wait);
4187
4188         return len;
4189 }
4190
4191 /* force parallel resync, even with shared block devices */
4192 static struct md_sysfs_entry md_sync_force_parallel =
4193 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4194        sync_force_parallel_show, sync_force_parallel_store);
4195
4196 static ssize_t
4197 sync_speed_show(struct mddev *mddev, char *page)
4198 {
4199         unsigned long resync, dt, db;
4200         if (mddev->curr_resync == 0)
4201                 return sprintf(page, "none\n");
4202         resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4203         dt = (jiffies - mddev->resync_mark) / HZ;
4204         if (!dt) dt++;
4205         db = resync - mddev->resync_mark_cnt;
4206         return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4207 }
4208
4209 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4210
4211 static ssize_t
4212 sync_completed_show(struct mddev *mddev, char *page)
4213 {
4214         unsigned long long max_sectors, resync;
4215
4216         if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4217                 return sprintf(page, "none\n");
4218
4219         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4220                 max_sectors = mddev->resync_max_sectors;
4221         else
4222                 max_sectors = mddev->dev_sectors;
4223
4224         resync = mddev->curr_resync_completed;
4225         return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4226 }
4227
4228 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4229
4230 static ssize_t
4231 min_sync_show(struct mddev *mddev, char *page)
4232 {
4233         return sprintf(page, "%llu\n",
4234                        (unsigned long long)mddev->resync_min);
4235 }
4236 static ssize_t
4237 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4238 {
4239         unsigned long long min;
4240         if (strict_strtoull(buf, 10, &min))
4241                 return -EINVAL;
4242         if (min > mddev->resync_max)
4243                 return -EINVAL;
4244         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4245                 return -EBUSY;
4246
4247         /* Must be a multiple of chunk_size */
4248         if (mddev->chunk_sectors) {
4249                 sector_t temp = min;
4250                 if (sector_div(temp, mddev->chunk_sectors))
4251                         return -EINVAL;
4252         }
4253         mddev->resync_min = min;
4254
4255         return len;
4256 }
4257
4258 static struct md_sysfs_entry md_min_sync =
4259 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4260
4261 static ssize_t
4262 max_sync_show(struct mddev *mddev, char *page)
4263 {
4264         if (mddev->resync_max == MaxSector)
4265                 return sprintf(page, "max\n");
4266         else
4267                 return sprintf(page, "%llu\n",
4268                                (unsigned long long)mddev->resync_max);
4269 }
4270 static ssize_t
4271 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4272 {
4273         if (strncmp(buf, "max", 3) == 0)
4274                 mddev->resync_max = MaxSector;
4275         else {
4276                 unsigned long long max;
4277                 if (strict_strtoull(buf, 10, &max))
4278                         return -EINVAL;
4279                 if (max < mddev->resync_min)
4280                         return -EINVAL;
4281                 if (max < mddev->resync_max &&
4282                     mddev->ro == 0 &&
4283                     test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4284                         return -EBUSY;
4285
4286                 /* Must be a multiple of chunk_size */
4287                 if (mddev->chunk_sectors) {
4288                         sector_t temp = max;
4289                         if (sector_div(temp, mddev->chunk_sectors))
4290                                 return -EINVAL;
4291                 }
4292                 mddev->resync_max = max;
4293         }
4294         wake_up(&mddev->recovery_wait);
4295         return len;
4296 }
4297
4298 static struct md_sysfs_entry md_max_sync =
4299 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4300
4301 static ssize_t
4302 suspend_lo_show(struct mddev *mddev, char *page)
4303 {
4304         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4305 }
4306
4307 static ssize_t
4308 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4309 {
4310         char *e;
4311         unsigned long long new = simple_strtoull(buf, &e, 10);
4312         unsigned long long old = mddev->suspend_lo;
4313
4314         if (mddev->pers == NULL || 
4315             mddev->pers->quiesce == NULL)
4316                 return -EINVAL;
4317         if (buf == e || (*e && *e != '\n'))
4318                 return -EINVAL;
4319
4320         mddev->suspend_lo = new;
4321         if (new >= old)
4322                 /* Shrinking suspended region */
4323                 mddev->pers->quiesce(mddev, 2);
4324         else {
4325                 /* Expanding suspended region - need to wait */
4326                 mddev->pers->quiesce(mddev, 1);
4327                 mddev->pers->quiesce(mddev, 0);
4328         }
4329         return len;
4330 }
4331 static struct md_sysfs_entry md_suspend_lo =
4332 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4333
4334
4335 static ssize_t
4336 suspend_hi_show(struct mddev *mddev, char *page)
4337 {
4338         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4339 }
4340
4341 static ssize_t
4342 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4343 {
4344         char *e;
4345         unsigned long long new = simple_strtoull(buf, &e, 10);
4346         unsigned long long old = mddev->suspend_hi;
4347
4348         if (mddev->pers == NULL ||
4349             mddev->pers->quiesce == NULL)
4350                 return -EINVAL;
4351         if (buf == e || (*e && *e != '\n'))
4352                 return -EINVAL;
4353
4354         mddev->suspend_hi = new;
4355         if (new <= old)
4356                 /* Shrinking suspended region */
4357                 mddev->pers->quiesce(mddev, 2);
4358         else {
4359                 /* Expanding suspended region - need to wait */
4360                 mddev->pers->quiesce(mddev, 1);
4361                 mddev->pers->quiesce(mddev, 0);
4362         }
4363         return len;
4364 }
4365 static struct md_sysfs_entry md_suspend_hi =
4366 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4367
4368 static ssize_t
4369 reshape_position_show(struct mddev *mddev, char *page)
4370 {
4371         if (mddev->reshape_position != MaxSector)
4372                 return sprintf(page, "%llu\n",
4373                                (unsigned long long)mddev->reshape_position);
4374         strcpy(page, "none\n");
4375         return 5;
4376 }
4377
4378 static ssize_t
4379 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4380 {
4381         char *e;
4382         unsigned long long new = simple_strtoull(buf, &e, 10);
4383         if (mddev->pers)
4384                 return -EBUSY;
4385         if (buf == e || (*e && *e != '\n'))
4386                 return -EINVAL;
4387         mddev->reshape_position = new;
4388         mddev->delta_disks = 0;
4389         mddev->new_level = mddev->level;
4390         mddev->new_layout = mddev->layout;
4391         mddev->new_chunk_sectors = mddev->chunk_sectors;
4392         return len;
4393 }
4394
4395 static struct md_sysfs_entry md_reshape_position =
4396 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4397        reshape_position_store);
4398
4399 static ssize_t
4400 array_size_show(struct mddev *mddev, char *page)
4401 {
4402         if (mddev->external_size)
4403                 return sprintf(page, "%llu\n",
4404                                (unsigned long long)mddev->array_sectors/2);
4405         else
4406                 return sprintf(page, "default\n");
4407 }
4408
4409 static ssize_t
4410 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4411 {
4412         sector_t sectors;
4413
4414         if (strncmp(buf, "default", 7) == 0) {
4415                 if (mddev->pers)
4416                         sectors = mddev->pers->size(mddev, 0, 0);
4417                 else
4418                         sectors = mddev->array_sectors;
4419
4420                 mddev->external_size = 0;
4421         } else {
4422                 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4423                         return -EINVAL;
4424                 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4425                         return -E2BIG;
4426
4427                 mddev->external_size = 1;
4428         }
4429
4430         mddev->array_sectors = sectors;
4431         if (mddev->pers) {
4432                 set_capacity(mddev->gendisk, mddev->array_sectors);
4433                 revalidate_disk(mddev->gendisk);
4434         }
4435         return len;
4436 }
4437
4438 static struct md_sysfs_entry md_array_size =
4439 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4440        array_size_store);
4441
4442 static struct attribute *md_default_attrs[] = {
4443         &md_level.attr,
4444         &md_layout.attr,
4445         &md_raid_disks.attr,
4446         &md_chunk_size.attr,
4447         &md_size.attr,
4448         &md_resync_start.attr,
4449         &md_metadata.attr,
4450         &md_new_device.attr,
4451         &md_safe_delay.attr,
4452         &md_array_state.attr,
4453         &md_reshape_position.attr,
4454         &md_array_size.attr,
4455         &max_corr_read_errors.attr,
4456         NULL,
4457 };
4458
4459 static struct attribute *md_redundancy_attrs[] = {
4460         &md_scan_mode.attr,
4461         &md_mismatches.attr,
4462         &md_sync_min.attr,
4463         &md_sync_max.attr,
4464         &md_sync_speed.attr,
4465         &md_sync_force_parallel.attr,
4466         &md_sync_completed.attr,
4467         &md_min_sync.attr,
4468         &md_max_sync.attr,
4469         &md_suspend_lo.attr,
4470         &md_suspend_hi.attr,
4471         &md_bitmap.attr,
4472         &md_degraded.attr,
4473         NULL,
4474 };
4475 static struct attribute_group md_redundancy_group = {
4476         .name = NULL,
4477         .attrs = md_redundancy_attrs,
4478 };
4479
4480
4481 static ssize_t
4482 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4483 {
4484         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4485         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4486         ssize_t rv;
4487
4488         if (!entry->show)
4489                 return -EIO;
4490         rv = mddev_lock(mddev);
4491         if (!rv) {
4492                 rv = entry->show(mddev, page);
4493                 mddev_unlock(mddev);
4494         }
4495         return rv;
4496 }
4497
4498 static ssize_t
4499 md_attr_store(struct kobject *kobj, struct attribute *attr,
4500               const char *page, size_t length)
4501 {
4502         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4503         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4504         ssize_t rv;
4505
4506         if (!entry->store)
4507                 return -EIO;
4508         if (!capable(CAP_SYS_ADMIN))
4509                 return -EACCES;
4510         rv = mddev_lock(mddev);
4511         if (mddev->hold_active == UNTIL_IOCTL)
4512                 mddev->hold_active = 0;
4513         if (!rv) {
4514                 rv = entry->store(mddev, page, length);
4515                 mddev_unlock(mddev);
4516         }
4517         return rv;
4518 }
4519
4520 static void md_free(struct kobject *ko)
4521 {
4522         struct mddev *mddev = container_of(ko, struct mddev, kobj);
4523
4524         if (mddev->sysfs_state)
4525                 sysfs_put(mddev->sysfs_state);
4526
4527         if (mddev->gendisk) {
4528                 del_gendisk(mddev->gendisk);
4529                 put_disk(mddev->gendisk);
4530         }
4531         if (mddev->queue)
4532                 blk_cleanup_queue(mddev->queue);
4533
4534         kfree(mddev);
4535 }
4536
4537 static const struct sysfs_ops md_sysfs_ops = {
4538         .show   = md_attr_show,
4539         .store  = md_attr_store,
4540 };
4541 static struct kobj_type md_ktype = {
4542         .release        = md_free,
4543         .sysfs_ops      = &md_sysfs_ops,
4544         .default_attrs  = md_default_attrs,
4545 };
4546
4547 int mdp_major = 0;
4548
4549 static void mddev_delayed_delete(struct work_struct *ws)
4550 {
4551         struct mddev *mddev = container_of(ws, struct mddev, del_work);
4552
4553         sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4554         kobject_del(&mddev->kobj);
4555         kobject_put(&mddev->kobj);
4556 }
4557
4558 static int md_alloc(dev_t dev, char *name)
4559 {
4560         static DEFINE_MUTEX(disks_mutex);
4561         struct mddev *mddev = mddev_find(dev);
4562         struct gendisk *disk;
4563         int partitioned;
4564         int shift;
4565         int unit;
4566         int error;
4567
4568         if (!mddev)
4569                 return -ENODEV;
4570
4571         partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4572         shift = partitioned ? MdpMinorShift : 0;
4573         unit = MINOR(mddev->unit) >> shift;
4574
4575         /* wait for any previous instance of this device to be
4576          * completely removed (mddev_delayed_delete).
4577          */
4578         flush_workqueue(md_misc_wq);
4579
4580         mutex_lock(&disks_mutex);
4581         error = -EEXIST;
4582         if (mddev->gendisk)
4583                 goto abort;
4584
4585         if (name) {
4586                 /* Need to ensure that 'name' is not a duplicate.
4587                  */
4588                 struct mddev *mddev2;
4589                 spin_lock(&all_mddevs_lock);
4590
4591                 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4592                         if (mddev2->gendisk &&
4593                             strcmp(mddev2->gendisk->disk_name, name) == 0) {
4594                                 spin_unlock(&all_mddevs_lock);
4595                                 goto abort;
4596                         }
4597                 spin_unlock(&all_mddevs_lock);
4598         }
4599
4600         error = -ENOMEM;
4601         mddev->queue = blk_alloc_queue(GFP_KERNEL);
4602         if (!mddev->queue)
4603                 goto abort;
4604         mddev->queue->queuedata = mddev;
4605
4606         blk_queue_make_request(mddev->queue, md_make_request);
4607
4608         disk = alloc_disk(1 << shift);
4609         if (!disk) {
4610                 blk_cleanup_queue(mddev->queue);
4611                 mddev->queue = NULL;
4612                 goto abort;
4613         }
4614         disk->major = MAJOR(mddev->unit);
4615         disk->first_minor = unit << shift;
4616         if (name)
4617                 strcpy(disk->disk_name, name);
4618         else if (partitioned)
4619                 sprintf(disk->disk_name, "md_d%d", unit);
4620         else
4621                 sprintf(disk->disk_name, "md%d", unit);
4622         disk->fops = &md_fops;
4623         disk->private_data = mddev;
4624         disk->queue = mddev->queue;
4625         blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4626         /* Allow extended partitions.  This makes the
4627          * 'mdp' device redundant, but we can't really
4628          * remove it now.
4629          */
4630         disk->flags |= GENHD_FL_EXT_DEVT;
4631         mddev->gendisk = disk;
4632         /* As soon as we call add_disk(), another thread could get
4633          * through to md_open, so make sure it doesn't get too far
4634          */
4635         mutex_lock(&mddev->open_mutex);
4636         add_disk(disk);
4637
4638         error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4639                                      &disk_to_dev(disk)->kobj, "%s", "md");
4640         if (error) {
4641                 /* This isn't possible, but as kobject_init_and_add is marked
4642                  * __must_check, we must do something with the result
4643                  */
4644                 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4645                        disk->disk_name);
4646                 error = 0;
4647         }
4648         if (mddev->kobj.sd &&
4649             sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4650                 printk(KERN_DEBUG "pointless warning\n");
4651         mutex_unlock(&mddev->open_mutex);
4652  abort:
4653         mutex_unlock(&disks_mutex);
4654         if (!error && mddev->kobj.sd) {
4655                 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4656                 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4657         }
4658         mddev_put(mddev);
4659         return error;
4660 }
4661
4662 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4663 {
4664         md_alloc(dev, NULL);
4665         return NULL;
4666 }
4667
4668 static int add_named_array(const char *val, struct kernel_param *kp)
4669 {
4670         /* val must be "md_*" where * is not all digits.
4671          * We allocate an array with a large free minor number, and
4672          * set the name to val.  val must not already be an active name.
4673          */
4674         int len = strlen(val);
4675         char buf[DISK_NAME_LEN];
4676
4677         while (len && val[len-1] == '\n')
4678                 len--;
4679         if (len >= DISK_NAME_LEN)
4680                 return -E2BIG;
4681         strlcpy(buf, val, len+1);
4682         if (strncmp(buf, "md_", 3) != 0)
4683                 return -EINVAL;
4684         return md_alloc(0, buf);
4685 }
4686
4687 static void md_safemode_timeout(unsigned long data)
4688 {
4689         struct mddev *mddev = (struct mddev *) data;
4690
4691         if (!atomic_read(&mddev->writes_pending)) {
4692                 mddev->safemode = 1;
4693                 if (mddev->external)
4694                         sysfs_notify_dirent_safe(mddev->sysfs_state);
4695         }
4696         md_wakeup_thread(mddev->thread);
4697 }
4698
4699 static int start_dirty_degraded;
4700
4701 int md_run(struct mddev *mddev)
4702 {
4703         int err;
4704         struct md_rdev *rdev;
4705         struct md_personality *pers;
4706
4707         if (list_empty(&mddev->disks))
4708                 /* cannot run an array with no devices.. */
4709                 return -EINVAL;
4710
4711         if (mddev->pers)
4712                 return -EBUSY;
4713         /* Cannot run until previous stop completes properly */
4714         if (mddev->sysfs_active)
4715                 return -EBUSY;
4716
4717         /*
4718          * Analyze all RAID superblock(s)
4719          */
4720         if (!mddev->raid_disks) {
4721                 if (!mddev->persistent)
4722                         return -EINVAL;
4723                 analyze_sbs(mddev);
4724         }
4725
4726         if (mddev->level != LEVEL_NONE)
4727                 request_module("md-level-%d", mddev->level);
4728         else if (mddev->clevel[0])
4729                 request_module("md-%s", mddev->clevel);
4730
4731         /*
4732          * Drop all container device buffers, from now on
4733          * the only valid external interface is through the md
4734          * device.
4735          */
4736         list_for_each_entry(rdev, &mddev->disks, same_set) {
4737                 if (test_bit(Faulty, &rdev->flags))
4738                         continue;
4739                 sync_blockdev(rdev->bdev);
4740                 invalidate_bdev(rdev->bdev);
4741
4742                 /* perform some consistency tests on the device.
4743                  * We don't want the data to overlap the metadata,
4744                  * Internal Bitmap issues have been handled elsewhere.
4745                  */
4746                 if (rdev->meta_bdev) {
4747                         /* Nothing to check */;
4748                 } else if (rdev->data_offset < rdev->sb_start) {
4749                         if (mddev->dev_sectors &&
4750                             rdev->data_offset + mddev->dev_sectors
4751                             > rdev->sb_start) {
4752                                 printk("md: %s: data overlaps metadata\n",
4753                                        mdname(mddev));
4754                                 return -EINVAL;
4755                         }
4756                 } else {
4757                         if (rdev->sb_start + rdev->sb_size/512
4758                             > rdev->data_offset) {
4759                                 printk("md: %s: metadata overlaps data\n",
4760                                        mdname(mddev));
4761                                 return -EINVAL;
4762                         }
4763                 }
4764                 sysfs_notify_dirent_safe(rdev->sysfs_state);
4765         }
4766
4767         if (mddev->bio_set == NULL)
4768                 mddev->bio_set = bioset_create(BIO_POOL_SIZE,
4769                                                sizeof(struct mddev *));
4770
4771         spin_lock(&pers_lock);
4772         pers = find_pers(mddev->level, mddev->clevel);
4773         if (!pers || !try_module_get(pers->owner)) {
4774                 spin_unlock(&pers_lock);
4775                 if (mddev->level != LEVEL_NONE)
4776                         printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4777                                mddev->level);
4778                 else
4779                         printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4780                                mddev->clevel);
4781                 return -EINVAL;
4782         }
4783         mddev->pers = pers;
4784         spin_unlock(&pers_lock);
4785         if (mddev->level != pers->level) {
4786                 mddev->level = pers->level;
4787                 mddev->new_level = pers->level;
4788         }
4789         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4790
4791         if (mddev->reshape_position != MaxSector &&
4792             pers->start_reshape == NULL) {
4793                 /* This personality cannot handle reshaping... */
4794                 mddev->pers = NULL;
4795                 module_put(pers->owner);
4796                 return -EINVAL;
4797         }
4798
4799         if (pers->sync_request) {
4800                 /* Warn if this is a potentially silly
4801                  * configuration.
4802                  */
4803                 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4804                 struct md_rdev *rdev2;
4805                 int warned = 0;
4806
4807                 list_for_each_entry(rdev, &mddev->disks, same_set)
4808                         list_for_each_entry(rdev2, &mddev->disks, same_set) {
4809                                 if (rdev < rdev2 &&
4810                                     rdev->bdev->bd_contains ==
4811                                     rdev2->bdev->bd_contains) {
4812                                         printk(KERN_WARNING
4813                                                "%s: WARNING: %s appears to be"
4814                                                " on the same physical disk as"
4815                                                " %s.\n",
4816                                                mdname(mddev),
4817                                                bdevname(rdev->bdev,b),
4818                                                bdevname(rdev2->bdev,b2));
4819                                         warned = 1;
4820                                 }
4821                         }
4822
4823                 if (warned)
4824                         printk(KERN_WARNING
4825                                "True protection against single-disk"
4826                                " failure might be compromised.\n");
4827         }
4828
4829         mddev->recovery = 0;
4830         /* may be over-ridden by personality */
4831         mddev->resync_max_sectors = mddev->dev_sectors;
4832
4833         mddev->ok_start_degraded = start_dirty_degraded;
4834
4835         if (start_readonly && mddev->ro == 0)
4836                 mddev->ro = 2; /* read-only, but switch on first write */
4837
4838         err = mddev->pers->run(mddev);
4839         if (err)
4840                 printk(KERN_ERR "md: pers->run() failed ...\n");
4841         else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4842                 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4843                           " but 'external_size' not in effect?\n", __func__);
4844                 printk(KERN_ERR
4845                        "md: invalid array_size %llu > default size %llu\n",
4846                        (unsigned long long)mddev->array_sectors / 2,
4847                        (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4848                 err = -EINVAL;
4849                 mddev->pers->stop(mddev);
4850         }
4851         if (err == 0 && mddev->pers->sync_request) {
4852                 err = bitmap_create(mddev);
4853                 if (err) {
4854                         printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4855                                mdname(mddev), err);
4856                         mddev->pers->stop(mddev);
4857                 }
4858         }
4859         if (err) {
4860                 module_put(mddev->pers->owner);
4861                 mddev->pers = NULL;
4862                 bitmap_destroy(mddev);
4863                 return err;
4864         }
4865         if (mddev->pers->sync_request) {
4866                 if (mddev->kobj.sd &&
4867                     sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4868                         printk(KERN_WARNING
4869                                "md: cannot register extra attributes for %s\n",
4870                                mdname(mddev));
4871                 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4872         } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4873                 mddev->ro = 0;
4874
4875         atomic_set(&mddev->writes_pending,0);
4876         atomic_set(&mddev->max_corr_read_errors,
4877                    MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4878         mddev->safemode = 0;
4879         mddev->safemode_timer.function = md_safemode_timeout;
4880         mddev->safemode_timer.data = (unsigned long) mddev;
4881         mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4882         mddev->in_sync = 1;
4883         smp_wmb();
4884         mddev->ready = 1;
4885         list_for_each_entry(rdev, &mddev->disks, same_set)
4886                 if (rdev->raid_disk >= 0)
4887                         if (sysfs_link_rdev(mddev, rdev))
4888                                 /* failure here is OK */;
4889         
4890         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4891         
4892         if (mddev->flags)
4893                 md_update_sb(mddev, 0);
4894
4895         md_new_event(mddev);
4896         sysfs_notify_dirent_safe(mddev->sysfs_state);
4897         sysfs_notify_dirent_safe(mddev->sysfs_action);
4898         sysfs_notify(&mddev->kobj, NULL, "degraded");
4899         return 0;
4900 }
4901 EXPORT_SYMBOL_GPL(md_run);
4902
4903 static int do_md_run(struct mddev *mddev)
4904 {
4905         int err;
4906
4907         err = md_run(mddev);
4908         if (err)
4909                 goto out;
4910         err = bitmap_load(mddev);
4911         if (err) {
4912                 bitmap_destroy(mddev);
4913                 goto out;
4914         }
4915
4916         md_wakeup_thread(mddev->thread);
4917         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4918
4919         set_capacity(mddev->gendisk, mddev->array_sectors);
4920         revalidate_disk(mddev->gendisk);
4921         mddev->changed = 1;
4922         kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4923 out:
4924         return err;
4925 }
4926
4927 static int restart_array(struct mddev *mddev)
4928 {
4929         struct gendisk *disk = mddev->gendisk;
4930
4931         /* Complain if it has no devices */
4932         if (list_empty(&mddev->disks))
4933                 return -ENXIO;
4934         if (!mddev->pers)
4935                 return -EINVAL;
4936         if (!mddev->ro)
4937                 return -EBUSY;
4938         mddev->safemode = 0;
4939         mddev->ro = 0;
4940         set_disk_ro(disk, 0);
4941         printk(KERN_INFO "md: %s switched to read-write mode.\n",
4942                 mdname(mddev));
4943         /* Kick recovery or resync if necessary */
4944         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4945         md_wakeup_thread(mddev->thread);
4946         md_wakeup_thread(mddev->sync_thread);
4947         sysfs_notify_dirent_safe(mddev->sysfs_state);
4948         return 0;
4949 }
4950
4951 /* similar to deny_write_access, but accounts for our holding a reference
4952  * to the file ourselves */
4953 static int deny_bitmap_write_access(struct file * file)
4954 {
4955         struct inode *inode = file->f_mapping->host;
4956
4957         spin_lock(&inode->i_lock);
4958         if (atomic_read(&inode->i_writecount) > 1) {
4959                 spin_unlock(&inode->i_lock);
4960                 return -ETXTBSY;
4961         }
4962         atomic_set(&inode->i_writecount, -1);
4963         spin_unlock(&inode->i_lock);
4964
4965         return 0;
4966 }
4967
4968 void restore_bitmap_write_access(struct file *file)
4969 {
4970         struct inode *inode = file->f_mapping->host;
4971
4972         spin_lock(&inode->i_lock);
4973         atomic_set(&inode->i_writecount, 1);
4974         spin_unlock(&inode->i_lock);
4975 }
4976
4977 static void md_clean(struct mddev *mddev)
4978 {
4979         mddev->array_sectors = 0;
4980         mddev->external_size = 0;
4981         mddev->dev_sectors = 0;
4982         mddev->raid_disks = 0;
4983         mddev->recovery_cp = 0;
4984         mddev->resync_min = 0;
4985         mddev->resync_max = MaxSector;
4986         mddev->reshape_position = MaxSector;
4987         mddev->external = 0;
4988         mddev->persistent = 0;
4989         mddev->level = LEVEL_NONE;
4990         mddev->clevel[0] = 0;
4991         mddev->flags = 0;
4992         mddev->ro = 0;
4993         mddev->metadata_type[0] = 0;
4994         mddev->chunk_sectors = 0;
4995         mddev->ctime = mddev->utime = 0;
4996         mddev->layout = 0;
4997         mddev->max_disks = 0;
4998         mddev->events = 0;
4999         mddev->can_decrease_events = 0;
5000         mddev->delta_disks = 0;
5001         mddev->new_level = LEVEL_NONE;
5002         mddev->new_layout = 0;
5003         mddev->new_chunk_sectors = 0;
5004         mddev->curr_resync = 0;
5005         mddev->resync_mismatches = 0;
5006         mddev->suspend_lo = mddev->suspend_hi = 0;
5007         mddev->sync_speed_min = mddev->sync_speed_max = 0;
5008         mddev->recovery = 0;
5009         mddev->in_sync = 0;
5010         mddev->changed = 0;
5011         mddev->degraded = 0;
5012         mddev->safemode = 0;
5013         mddev->bitmap_info.offset = 0;
5014         mddev->bitmap_info.default_offset = 0;
5015         mddev->bitmap_info.chunksize = 0;
5016         mddev->bitmap_info.daemon_sleep = 0;
5017         mddev->bitmap_info.max_write_behind = 0;
5018 }
5019
5020 static void __md_stop_writes(struct mddev *mddev)
5021 {
5022         if (mddev->sync_thread) {
5023                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5024                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5025                 reap_sync_thread(mddev);
5026         }
5027
5028         del_timer_sync(&mddev->safemode_timer);
5029
5030         bitmap_flush(mddev);
5031         md_super_wait(mddev);
5032
5033         if (!mddev->in_sync || mddev->flags) {
5034                 /* mark array as shutdown cleanly */
5035                 mddev->in_sync = 1;
5036                 md_update_sb(mddev, 1);
5037         }
5038 }
5039
5040 void md_stop_writes(struct mddev *mddev)
5041 {
5042         mddev_lock(mddev);
5043         __md_stop_writes(mddev);
5044         mddev_unlock(mddev);
5045 }
5046 EXPORT_SYMBOL_GPL(md_stop_writes);
5047
5048 void md_stop(struct mddev *mddev)
5049 {
5050         mddev->ready = 0;
5051         mddev->pers->stop(mddev);
5052         if (mddev->pers->sync_request && mddev->to_remove == NULL)
5053                 mddev->to_remove = &md_redundancy_group;
5054         module_put(mddev->pers->owner);
5055         mddev->pers = NULL;
5056         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5057 }
5058 EXPORT_SYMBOL_GPL(md_stop);
5059
5060 static int md_set_readonly(struct mddev *mddev, int is_open)
5061 {
5062         int err = 0;
5063         mutex_lock(&mddev->open_mutex);
5064         if (atomic_read(&mddev->openers) > is_open) {
5065                 printk("md: %s still in use.\n",mdname(mddev));
5066                 err = -EBUSY;
5067                 goto out;
5068         }
5069         if (mddev->pers) {
5070                 __md_stop_writes(mddev);
5071
5072                 err  = -ENXIO;
5073                 if (mddev->ro==1)
5074                         goto out;
5075                 mddev->ro = 1;
5076                 set_disk_ro(mddev->gendisk, 1);
5077                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5078                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5079                 err = 0;        
5080         }
5081 out:
5082         mutex_unlock(&mddev->open_mutex);
5083         return err;
5084 }
5085
5086 /* mode:
5087  *   0 - completely stop and dis-assemble array
5088  *   2 - stop but do not disassemble array
5089  */
5090 static int do_md_stop(struct mddev * mddev, int mode, int is_open)
5091 {
5092         struct gendisk *disk = mddev->gendisk;
5093         struct md_rdev *rdev;
5094
5095         mutex_lock(&mddev->open_mutex);
5096         if (atomic_read(&mddev->openers) > is_open ||
5097             mddev->sysfs_active) {
5098                 printk("md: %s still in use.\n",mdname(mddev));
5099                 mutex_unlock(&mddev->open_mutex);
5100                 return -EBUSY;
5101         }
5102
5103         if (mddev->pers) {
5104                 if (mddev->ro)
5105                         set_disk_ro(disk, 0);
5106
5107                 __md_stop_writes(mddev);
5108                 md_stop(mddev);
5109                 mddev->queue->merge_bvec_fn = NULL;
5110                 mddev->queue->backing_dev_info.congested_fn = NULL;
5111
5112                 /* tell userspace to handle 'inactive' */
5113                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5114
5115                 list_for_each_entry(rdev, &mddev->disks, same_set)
5116                         if (rdev->raid_disk >= 0)
5117                                 sysfs_unlink_rdev(mddev, rdev);
5118
5119                 set_capacity(disk, 0);
5120                 mutex_unlock(&mddev->open_mutex);
5121                 mddev->changed = 1;
5122                 revalidate_disk(disk);
5123
5124                 if (mddev->ro)
5125                         mddev->ro = 0;
5126         } else
5127                 mutex_unlock(&mddev->open_mutex);
5128         /*
5129          * Free resources if final stop
5130          */
5131         if (mode == 0) {
5132                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5133
5134                 bitmap_destroy(mddev);
5135                 if (mddev->bitmap_info.file) {
5136                         restore_bitmap_write_access(mddev->bitmap_info.file);
5137                         fput(mddev->bitmap_info.file);
5138                         mddev->bitmap_info.file = NULL;
5139                 }
5140                 mddev->bitmap_info.offset = 0;
5141
5142                 export_array(mddev);
5143
5144                 md_clean(mddev);
5145                 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5146                 if (mddev->hold_active == UNTIL_STOP)
5147                         mddev->hold_active = 0;
5148         }
5149         blk_integrity_unregister(disk);
5150         md_new_event(mddev);
5151         sysfs_notify_dirent_safe(mddev->sysfs_state);
5152         return 0;
5153 }
5154
5155 #ifndef MODULE
5156 static void autorun_array(struct mddev *mddev)
5157 {
5158         struct md_rdev *rdev;
5159         int err;
5160
5161         if (list_empty(&mddev->disks))
5162                 return;
5163
5164         printk(KERN_INFO "md: running: ");
5165
5166         list_for_each_entry(rdev, &mddev->disks, same_set) {
5167                 char b[BDEVNAME_SIZE];
5168                 printk("<%s>", bdevname(rdev->bdev,b));
5169         }
5170         printk("\n");
5171
5172         err = do_md_run(mddev);
5173         if (err) {
5174                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5175                 do_md_stop(mddev, 0, 0);
5176         }
5177 }
5178
5179 /*
5180  * lets try to run arrays based on all disks that have arrived
5181  * until now. (those are in pending_raid_disks)
5182  *
5183  * the method: pick the first pending disk, collect all disks with
5184  * the same UUID, remove all from the pending list and put them into
5185  * the 'same_array' list. Then order this list based on superblock
5186  * update time (freshest comes first), kick out 'old' disks and
5187  * compare superblocks. If everything's fine then run it.
5188  *
5189  * If "unit" is allocated, then bump its reference count
5190  */
5191 static void autorun_devices(int part)
5192 {
5193         struct md_rdev *rdev0, *rdev, *tmp;
5194         struct mddev *mddev;
5195         char b[BDEVNAME_SIZE];
5196
5197         printk(KERN_INFO "md: autorun ...\n");
5198         while (!list_empty(&pending_raid_disks)) {
5199                 int unit;
5200                 dev_t dev;
5201                 LIST_HEAD(candidates);
5202                 rdev0 = list_entry(pending_raid_disks.next,
5203                                          struct md_rdev, same_set);
5204
5205                 printk(KERN_INFO "md: considering %s ...\n",
5206                         bdevname(rdev0->bdev,b));
5207                 INIT_LIST_HEAD(&candidates);
5208                 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5209                         if (super_90_load(rdev, rdev0, 0) >= 0) {
5210                                 printk(KERN_INFO "md:  adding %s ...\n",
5211                                         bdevname(rdev->bdev,b));
5212                                 list_move(&rdev->same_set, &candidates);
5213                         }
5214                 /*
5215                  * now we have a set of devices, with all of them having
5216                  * mostly sane superblocks. It's time to allocate the
5217                  * mddev.
5218                  */
5219                 if (part) {
5220                         dev = MKDEV(mdp_major,
5221                                     rdev0->preferred_minor << MdpMinorShift);
5222                         unit = MINOR(dev) >> MdpMinorShift;
5223                 } else {
5224                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5225                         unit = MINOR(dev);
5226                 }
5227                 if (rdev0->preferred_minor != unit) {
5228                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5229                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5230                         break;
5231                 }
5232
5233                 md_probe(dev, NULL, NULL);
5234                 mddev = mddev_find(dev);
5235                 if (!mddev || !mddev->gendisk) {
5236                         if (mddev)
5237                                 mddev_put(mddev);
5238                         printk(KERN_ERR
5239                                 "md: cannot allocate memory for md drive.\n");
5240                         break;
5241                 }
5242                 if (mddev_lock(mddev)) 
5243                         printk(KERN_WARNING "md: %s locked, cannot run\n",
5244                                mdname(mddev));
5245                 else if (mddev->raid_disks || mddev->major_version
5246                          || !list_empty(&mddev->disks)) {
5247                         printk(KERN_WARNING 
5248                                 "md: %s already running, cannot run %s\n",
5249                                 mdname(mddev), bdevname(rdev0->bdev,b));
5250                         mddev_unlock(mddev);
5251                 } else {
5252                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
5253                         mddev->persistent = 1;
5254                         rdev_for_each_list(rdev, tmp, &candidates) {
5255                                 list_del_init(&rdev->same_set);
5256                                 if (bind_rdev_to_array(rdev, mddev))
5257                                         export_rdev(rdev);
5258                         }
5259                         autorun_array(mddev);
5260                         mddev_unlock(mddev);
5261                 }
5262                 /* on success, candidates will be empty, on error
5263                  * it won't...
5264                  */
5265                 rdev_for_each_list(rdev, tmp, &candidates) {
5266                         list_del_init(&rdev->same_set);
5267                         export_rdev(rdev);
5268                 }
5269                 mddev_put(mddev);
5270         }
5271         printk(KERN_INFO "md: ... autorun DONE.\n");
5272 }
5273 #endif /* !MODULE */
5274
5275 static int get_version(void __user * arg)
5276 {
5277         mdu_version_t ver;
5278
5279         ver.major = MD_MAJOR_VERSION;
5280         ver.minor = MD_MINOR_VERSION;
5281         ver.patchlevel = MD_PATCHLEVEL_VERSION;
5282
5283         if (copy_to_user(arg, &ver, sizeof(ver)))
5284                 return -EFAULT;
5285
5286         return 0;
5287 }
5288
5289 static int get_array_info(struct mddev * mddev, void __user * arg)
5290 {
5291         mdu_array_info_t info;
5292         int nr,working,insync,failed,spare;
5293         struct md_rdev *rdev;
5294
5295         nr=working=insync=failed=spare=0;
5296         list_for_each_entry(rdev, &mddev->disks, same_set) {
5297                 nr++;
5298                 if (test_bit(Faulty, &rdev->flags))
5299                         failed++;
5300                 else {
5301                         working++;
5302                         if (test_bit(In_sync, &rdev->flags))
5303                                 insync++;       
5304                         else
5305                                 spare++;
5306                 }
5307         }
5308
5309         info.major_version = mddev->major_version;
5310         info.minor_version = mddev->minor_version;
5311         info.patch_version = MD_PATCHLEVEL_VERSION;
5312         info.ctime         = mddev->ctime;
5313         info.level         = mddev->level;
5314         info.size          = mddev->dev_sectors / 2;
5315         if (info.size != mddev->dev_sectors / 2) /* overflow */
5316                 info.size = -1;
5317         info.nr_disks      = nr;
5318         info.raid_disks    = mddev->raid_disks;
5319         info.md_minor      = mddev->md_minor;
5320         info.not_persistent= !mddev->persistent;
5321
5322         info.utime         = mddev->utime;
5323         info.state         = 0;
5324         if (mddev->in_sync)
5325                 info.state = (1<<MD_SB_CLEAN);
5326         if (mddev->bitmap && mddev->bitmap_info.offset)
5327                 info.state = (1<<MD_SB_BITMAP_PRESENT);
5328         info.active_disks  = insync;
5329         info.working_disks = working;
5330         info.failed_disks  = failed;
5331         info.spare_disks   = spare;
5332
5333         info.layout        = mddev->layout;
5334         info.chunk_size    = mddev->chunk_sectors << 9;
5335
5336         if (copy_to_user(arg, &info, sizeof(info)))
5337                 return -EFAULT;
5338
5339         return 0;
5340 }
5341
5342 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5343 {
5344         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5345         char *ptr, *buf = NULL;
5346         int err = -ENOMEM;
5347
5348         if (md_allow_write(mddev))
5349                 file = kmalloc(sizeof(*file), GFP_NOIO);
5350         else
5351                 file = kmalloc(sizeof(*file), GFP_KERNEL);
5352
5353         if (!file)
5354                 goto out;
5355
5356         /* bitmap disabled, zero the first byte and copy out */
5357         if (!mddev->bitmap || !mddev->bitmap->file) {
5358                 file->pathname[0] = '\0';
5359                 goto copy_out;
5360         }
5361
5362         buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5363         if (!buf)
5364                 goto out;
5365
5366         ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5367         if (IS_ERR(ptr))
5368                 goto out;
5369
5370         strcpy(file->pathname, ptr);
5371
5372 copy_out:
5373         err = 0;
5374         if (copy_to_user(arg, file, sizeof(*file)))
5375                 err = -EFAULT;
5376 out:
5377         kfree(buf);
5378         kfree(file);
5379         return err;
5380 }
5381
5382 static int get_disk_info(struct mddev * mddev, void __user * arg)
5383 {
5384         mdu_disk_info_t info;
5385         struct md_rdev *rdev;
5386
5387         if (copy_from_user(&info, arg, sizeof(info)))
5388                 return -EFAULT;
5389
5390         rdev = find_rdev_nr(mddev, info.number);
5391         if (rdev) {
5392                 info.major = MAJOR(rdev->bdev->bd_dev);
5393                 info.minor = MINOR(rdev->bdev->bd_dev);
5394                 info.raid_disk = rdev->raid_disk;
5395                 info.state = 0;
5396                 if (test_bit(Faulty, &rdev->flags))
5397                         info.state |= (1<<MD_DISK_FAULTY);
5398                 else if (test_bit(In_sync, &rdev->flags)) {
5399                         info.state |= (1<<MD_DISK_ACTIVE);
5400                         info.state |= (1<<MD_DISK_SYNC);
5401                 }
5402                 if (test_bit(WriteMostly, &rdev->flags))
5403                         info.state |= (1<<MD_DISK_WRITEMOSTLY);
5404         } else {
5405                 info.major = info.minor = 0;
5406                 info.raid_disk = -1;
5407                 info.state = (1<<MD_DISK_REMOVED);
5408         }
5409
5410         if (copy_to_user(arg, &info, sizeof(info)))
5411                 return -EFAULT;
5412
5413         return 0;
5414 }
5415
5416 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5417 {
5418         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5419         struct md_rdev *rdev;
5420         dev_t dev = MKDEV(info->major,info->minor);
5421
5422         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5423                 return -EOVERFLOW;
5424
5425         if (!mddev->raid_disks) {
5426                 int err;
5427                 /* expecting a device which has a superblock */
5428                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5429                 if (IS_ERR(rdev)) {
5430                         printk(KERN_WARNING 
5431                                 "md: md_import_device returned %ld\n",
5432                                 PTR_ERR(rdev));
5433                         return PTR_ERR(rdev);
5434                 }
5435                 if (!list_empty(&mddev->disks)) {
5436                         struct md_rdev *rdev0
5437                                 = list_entry(mddev->disks.next,
5438                                              struct md_rdev, same_set);
5439                         err = super_types[mddev->major_version]
5440                                 .load_super(rdev, rdev0, mddev->minor_version);
5441                         if (err < 0) {
5442                                 printk(KERN_WARNING 
5443                                         "md: %s has different UUID to %s\n",
5444                                         bdevname(rdev->bdev,b), 
5445                                         bdevname(rdev0->bdev,b2));
5446                                 export_rdev(rdev);
5447                                 return -EINVAL;
5448                         }
5449                 }
5450                 err = bind_rdev_to_array(rdev, mddev);
5451                 if (err)
5452                         export_rdev(rdev);
5453                 return err;
5454         }
5455
5456         /*
5457          * add_new_disk can be used once the array is assembled
5458          * to add "hot spares".  They must already have a superblock
5459          * written
5460          */
5461         if (mddev->pers) {
5462                 int err;
5463                 if (!mddev->pers->hot_add_disk) {
5464                         printk(KERN_WARNING 
5465                                 "%s: personality does not support diskops!\n",
5466                                mdname(mddev));
5467                         return -EINVAL;
5468                 }
5469                 if (mddev->persistent)
5470                         rdev = md_import_device(dev, mddev->major_version,
5471                                                 mddev->minor_version);
5472                 else
5473                         rdev = md_import_device(dev, -1, -1);
5474                 if (IS_ERR(rdev)) {
5475                         printk(KERN_WARNING 
5476                                 "md: md_import_device returned %ld\n",
5477                                 PTR_ERR(rdev));
5478                         return PTR_ERR(rdev);
5479                 }
5480                 /* set saved_raid_disk if appropriate */
5481                 if (!mddev->persistent) {
5482                         if (info->state & (1<<MD_DISK_SYNC)  &&
5483                             info->raid_disk < mddev->raid_disks) {
5484                                 rdev->raid_disk = info->raid_disk;
5485                                 set_bit(In_sync, &rdev->flags);
5486                         } else
5487                                 rdev->raid_disk = -1;
5488                 } else
5489                         super_types[mddev->major_version].
5490                                 validate_super(mddev, rdev);
5491                 if ((info->state & (1<<MD_DISK_SYNC)) &&
5492                     (!test_bit(In_sync, &rdev->flags) ||
5493                      rdev->raid_disk != info->raid_disk)) {
5494                         /* This was a hot-add request, but events doesn't
5495                          * match, so reject it.
5496                          */
5497                         export_rdev(rdev);
5498                         return -EINVAL;
5499                 }
5500
5501                 if (test_bit(In_sync, &rdev->flags))
5502                         rdev->saved_raid_disk = rdev->raid_disk;
5503                 else
5504                         rdev->saved_raid_disk = -1;
5505
5506                 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5507                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5508                         set_bit(WriteMostly, &rdev->flags);
5509                 else
5510                         clear_bit(WriteMostly, &rdev->flags);
5511
5512                 rdev->raid_disk = -1;
5513                 err = bind_rdev_to_array(rdev, mddev);
5514                 if (!err && !mddev->pers->hot_remove_disk) {
5515                         /* If there is hot_add_disk but no hot_remove_disk
5516                          * then added disks for geometry changes,
5517                          * and should be added immediately.
5518                          */
5519                         super_types[mddev->major_version].
5520                                 validate_super(mddev, rdev);
5521                         err = mddev->pers->hot_add_disk(mddev, rdev);
5522                         if (err)
5523                                 unbind_rdev_from_array(rdev);
5524                 }
5525                 if (err)
5526                         export_rdev(rdev);
5527                 else
5528                         sysfs_notify_dirent_safe(rdev->sysfs_state);
5529
5530                 md_update_sb(mddev, 1);
5531                 if (mddev->degraded)
5532                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5533                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5534                 if (!err)
5535                         md_new_event(mddev);
5536                 md_wakeup_thread(mddev->thread);
5537                 return err;
5538         }
5539
5540         /* otherwise, add_new_disk is only allowed
5541          * for major_version==0 superblocks
5542          */
5543         if (mddev->major_version != 0) {
5544                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5545                        mdname(mddev));
5546                 return -EINVAL;
5547         }
5548
5549         if (!(info->state & (1<<MD_DISK_FAULTY))) {
5550                 int err;
5551                 rdev = md_import_device(dev, -1, 0);
5552                 if (IS_ERR(rdev)) {
5553                         printk(KERN_WARNING 
5554                                 "md: error, md_import_device() returned %ld\n",
5555                                 PTR_ERR(rdev));
5556                         return PTR_ERR(rdev);
5557                 }
5558                 rdev->desc_nr = info->number;
5559                 if (info->raid_disk < mddev->raid_disks)
5560                         rdev->raid_disk = info->raid_disk;
5561                 else
5562                         rdev->raid_disk = -1;
5563
5564                 if (rdev->raid_disk < mddev->raid_disks)
5565                         if (info->state & (1<<MD_DISK_SYNC))
5566                                 set_bit(In_sync, &rdev->flags);
5567
5568                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5569                         set_bit(WriteMostly, &rdev->flags);
5570
5571                 if (!mddev->persistent) {
5572                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
5573                         rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5574                 } else
5575                         rdev->sb_start = calc_dev_sboffset(rdev);
5576                 rdev->sectors = rdev->sb_start;
5577
5578                 err = bind_rdev_to_array(rdev, mddev);
5579                 if (err) {
5580                         export_rdev(rdev);
5581                         return err;
5582                 }
5583         }
5584
5585         return 0;
5586 }
5587
5588 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5589 {
5590         char b[BDEVNAME_SIZE];
5591         struct md_rdev *rdev;
5592
5593         rdev = find_rdev(mddev, dev);
5594         if (!rdev)
5595                 return -ENXIO;
5596
5597         if (rdev->raid_disk >= 0)
5598                 goto busy;
5599
5600         kick_rdev_from_array(rdev);
5601         md_update_sb(mddev, 1);
5602         md_new_event(mddev);
5603
5604         return 0;
5605 busy:
5606         printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5607                 bdevname(rdev->bdev,b), mdname(mddev));
5608         return -EBUSY;
5609 }
5610
5611 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5612 {
5613         char b[BDEVNAME_SIZE];
5614         int err;
5615         struct md_rdev *rdev;
5616
5617         if (!mddev->pers)
5618                 return -ENODEV;
5619
5620         if (mddev->major_version != 0) {
5621                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5622                         " version-0 superblocks.\n",
5623                         mdname(mddev));
5624                 return -EINVAL;
5625         }
5626         if (!mddev->pers->hot_add_disk) {
5627                 printk(KERN_WARNING 
5628                         "%s: personality does not support diskops!\n",
5629                         mdname(mddev));
5630                 return -EINVAL;
5631         }
5632
5633         rdev = md_import_device(dev, -1, 0);
5634         if (IS_ERR(rdev)) {
5635                 printk(KERN_WARNING 
5636                         "md: error, md_import_device() returned %ld\n",
5637                         PTR_ERR(rdev));
5638                 return -EINVAL;
5639         }
5640
5641         if (mddev->persistent)
5642                 rdev->sb_start = calc_dev_sboffset(rdev);
5643         else
5644                 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5645
5646         rdev->sectors = rdev->sb_start;
5647
5648         if (test_bit(Faulty, &rdev->flags)) {
5649                 printk(KERN_WARNING 
5650                         "md: can not hot-add faulty %s disk to %s!\n",
5651                         bdevname(rdev->bdev,b), mdname(mddev));
5652                 err = -EINVAL;
5653                 goto abort_export;
5654         }
5655         clear_bit(In_sync, &rdev->flags);
5656         rdev->desc_nr = -1;
5657         rdev->saved_raid_disk = -1;
5658         err = bind_rdev_to_array(rdev, mddev);
5659         if (err)
5660                 goto abort_export;
5661
5662         /*
5663          * The rest should better be atomic, we can have disk failures
5664          * noticed in interrupt contexts ...
5665          */
5666
5667         rdev->raid_disk = -1;
5668
5669         md_update_sb(mddev, 1);
5670
5671         /*
5672          * Kick recovery, maybe this spare has to be added to the
5673          * array immediately.
5674          */
5675         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5676         md_wakeup_thread(mddev->thread);
5677         md_new_event(mddev);
5678         return 0;
5679
5680 abort_export:
5681         export_rdev(rdev);
5682         return err;
5683 }
5684
5685 static int set_bitmap_file(struct mddev *mddev, int fd)
5686 {
5687         int err;
5688
5689         if (mddev->pers) {
5690                 if (!mddev->pers->quiesce)
5691                         return -EBUSY;
5692                 if (mddev->recovery || mddev->sync_thread)
5693                         return -EBUSY;
5694                 /* we should be able to change the bitmap.. */
5695         }
5696
5697
5698         if (fd >= 0) {
5699                 if (mddev->bitmap)
5700                         return -EEXIST; /* cannot add when bitmap is present */
5701                 mddev->bitmap_info.file = fget(fd);
5702
5703                 if (mddev->bitmap_info.file == NULL) {
5704                         printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5705                                mdname(mddev));
5706                         return -EBADF;
5707                 }
5708
5709                 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5710                 if (err) {
5711                         printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5712                                mdname(mddev));
5713                         fput(mddev->bitmap_info.file);
5714                         mddev->bitmap_info.file = NULL;
5715                         return err;
5716                 }
5717                 mddev->bitmap_info.offset = 0; /* file overrides offset */
5718         } else if (mddev->bitmap == NULL)
5719                 return -ENOENT; /* cannot remove what isn't there */
5720         err = 0;
5721         if (mddev->pers) {
5722                 mddev->pers->quiesce(mddev, 1);
5723                 if (fd >= 0) {
5724                         err = bitmap_create(mddev);
5725                         if (!err)
5726                                 err = bitmap_load(mddev);
5727                 }
5728                 if (fd < 0 || err) {
5729                         bitmap_destroy(mddev);
5730                         fd = -1; /* make sure to put the file */
5731                 }
5732                 mddev->pers->quiesce(mddev, 0);
5733         }
5734         if (fd < 0) {
5735                 if (mddev->bitmap_info.file) {
5736                         restore_bitmap_write_access(mddev->bitmap_info.file);
5737                         fput(mddev->bitmap_info.file);
5738                 }
5739                 mddev->bitmap_info.file = NULL;
5740         }
5741
5742         return err;
5743 }
5744
5745 /*
5746  * set_array_info is used two different ways
5747  * The original usage is when creating a new array.
5748  * In this usage, raid_disks is > 0 and it together with
5749  *  level, size, not_persistent,layout,chunksize determine the
5750  *  shape of the array.
5751  *  This will always create an array with a type-0.90.0 superblock.
5752  * The newer usage is when assembling an array.
5753  *  In this case raid_disks will be 0, and the major_version field is
5754  *  use to determine which style super-blocks are to be found on the devices.
5755  *  The minor and patch _version numbers are also kept incase the
5756  *  super_block handler wishes to interpret them.
5757  */
5758 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
5759 {
5760
5761         if (info->raid_disks == 0) {
5762                 /* just setting version number for superblock loading */
5763                 if (info->major_version < 0 ||
5764                     info->major_version >= ARRAY_SIZE(super_types) ||
5765                     super_types[info->major_version].name == NULL) {
5766                         /* maybe try to auto-load a module? */
5767                         printk(KERN_INFO 
5768                                 "md: superblock version %d not known\n",
5769                                 info->major_version);
5770                         return -EINVAL;
5771                 }
5772                 mddev->major_version = info->major_version;
5773                 mddev->minor_version = info->minor_version;
5774                 mddev->patch_version = info->patch_version;
5775                 mddev->persistent = !info->not_persistent;
5776                 /* ensure mddev_put doesn't delete this now that there
5777                  * is some minimal configuration.
5778                  */
5779                 mddev->ctime         = get_seconds();
5780                 return 0;
5781         }
5782         mddev->major_version = MD_MAJOR_VERSION;
5783         mddev->minor_version = MD_MINOR_VERSION;
5784         mddev->patch_version = MD_PATCHLEVEL_VERSION;
5785         mddev->ctime         = get_seconds();
5786
5787         mddev->level         = info->level;
5788         mddev->clevel[0]     = 0;
5789         mddev->dev_sectors   = 2 * (sector_t)info->size;
5790         mddev->raid_disks    = info->raid_disks;
5791         /* don't set md_minor, it is determined by which /dev/md* was
5792          * openned
5793          */
5794         if (info->state & (1<<MD_SB_CLEAN))
5795                 mddev->recovery_cp = MaxSector;
5796         else
5797                 mddev->recovery_cp = 0;
5798         mddev->persistent    = ! info->not_persistent;
5799         mddev->external      = 0;
5800
5801         mddev->layout        = info->layout;
5802         mddev->chunk_sectors = info->chunk_size >> 9;
5803
5804         mddev->max_disks     = MD_SB_DISKS;
5805
5806         if (mddev->persistent)
5807                 mddev->flags         = 0;
5808         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5809
5810         mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5811         mddev->bitmap_info.offset = 0;
5812
5813         mddev->reshape_position = MaxSector;
5814
5815         /*
5816          * Generate a 128 bit UUID
5817          */
5818         get_random_bytes(mddev->uuid, 16);
5819
5820         mddev->new_level = mddev->level;
5821         mddev->new_chunk_sectors = mddev->chunk_sectors;
5822         mddev->new_layout = mddev->layout;
5823         mddev->delta_disks = 0;
5824
5825         return 0;
5826 }
5827
5828 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
5829 {
5830         WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5831
5832         if (mddev->external_size)
5833                 return;
5834
5835         mddev->array_sectors = array_sectors;
5836 }
5837 EXPORT_SYMBOL(md_set_array_sectors);
5838
5839 static int update_size(struct mddev *mddev, sector_t num_sectors)
5840 {
5841         struct md_rdev *rdev;
5842         int rv;
5843         int fit = (num_sectors == 0);
5844
5845         if (mddev->pers->resize == NULL)
5846                 return -EINVAL;
5847         /* The "num_sectors" is the number of sectors of each device that
5848          * is used.  This can only make sense for arrays with redundancy.
5849          * linear and raid0 always use whatever space is available. We can only
5850          * consider changing this number if no resync or reconstruction is
5851          * happening, and if the new size is acceptable. It must fit before the
5852          * sb_start or, if that is <data_offset, it must fit before the size
5853          * of each device.  If num_sectors is zero, we find the largest size
5854          * that fits.
5855          */
5856         if (mddev->sync_thread)
5857                 return -EBUSY;
5858         if (mddev->bitmap)
5859                 /* Sorry, cannot grow a bitmap yet, just remove it,
5860                  * grow, and re-add.
5861                  */
5862                 return -EBUSY;
5863         list_for_each_entry(rdev, &mddev->disks, same_set) {
5864                 sector_t avail = rdev->sectors;
5865
5866                 if (fit && (num_sectors == 0 || num_sectors > avail))
5867                         num_sectors = avail;
5868                 if (avail < num_sectors)
5869                         return -ENOSPC;
5870         }
5871         rv = mddev->pers->resize(mddev, num_sectors);
5872         if (!rv)
5873                 revalidate_disk(mddev->gendisk);
5874         return rv;
5875 }
5876
5877 static int update_raid_disks(struct mddev *mddev, int raid_disks)
5878 {
5879         int rv;
5880         /* change the number of raid disks */
5881         if (mddev->pers->check_reshape == NULL)
5882                 return -EINVAL;
5883         if (raid_disks <= 0 ||
5884             (mddev->max_disks && raid_disks >= mddev->max_disks))
5885                 return -EINVAL;
5886         if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5887                 return -EBUSY;
5888         mddev->delta_disks = raid_disks - mddev->raid_disks;
5889
5890         rv = mddev->pers->check_reshape(mddev);
5891         if (rv < 0)
5892                 mddev->delta_disks = 0;
5893         return rv;
5894 }
5895
5896
5897 /*
5898  * update_array_info is used to change the configuration of an
5899  * on-line array.
5900  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5901  * fields in the info are checked against the array.
5902  * Any differences that cannot be handled will cause an error.
5903  * Normally, only one change can be managed at a time.
5904  */
5905 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
5906 {
5907         int rv = 0;
5908         int cnt = 0;
5909         int state = 0;
5910
5911         /* calculate expected state,ignoring low bits */
5912         if (mddev->bitmap && mddev->bitmap_info.offset)
5913                 state |= (1 << MD_SB_BITMAP_PRESENT);
5914
5915         if (mddev->major_version != info->major_version ||
5916             mddev->minor_version != info->minor_version ||
5917 /*          mddev->patch_version != info->patch_version || */
5918             mddev->ctime         != info->ctime         ||
5919             mddev->level         != info->level         ||
5920 /*          mddev->layout        != info->layout        || */
5921             !mddev->persistent   != info->not_persistent||
5922             mddev->chunk_sectors != info->chunk_size >> 9 ||
5923             /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5924             ((state^info->state) & 0xfffffe00)
5925                 )
5926                 return -EINVAL;
5927         /* Check there is only one change */
5928         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5929                 cnt++;
5930         if (mddev->raid_disks != info->raid_disks)
5931                 cnt++;
5932         if (mddev->layout != info->layout)
5933                 cnt++;
5934         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5935                 cnt++;
5936         if (cnt == 0)
5937                 return 0;
5938         if (cnt > 1)
5939                 return -EINVAL;
5940
5941         if (mddev->layout != info->layout) {
5942                 /* Change layout
5943                  * we don't need to do anything at the md level, the
5944                  * personality will take care of it all.
5945                  */
5946                 if (mddev->pers->check_reshape == NULL)
5947                         return -EINVAL;
5948                 else {
5949                         mddev->new_layout = info->layout;
5950                         rv = mddev->pers->check_reshape(mddev);
5951                         if (rv)
5952                                 mddev->new_layout = mddev->layout;
5953                         return rv;
5954                 }
5955         }
5956         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5957                 rv = update_size(mddev, (sector_t)info->size * 2);
5958
5959         if (mddev->raid_disks    != info->raid_disks)
5960                 rv = update_raid_disks(mddev, info->raid_disks);
5961
5962         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5963                 if (mddev->pers->quiesce == NULL)
5964                         return -EINVAL;
5965                 if (mddev->recovery || mddev->sync_thread)
5966                         return -EBUSY;
5967                 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
5968                         /* add the bitmap */
5969                         if (mddev->bitmap)
5970                                 return -EEXIST;
5971                         if (mddev->bitmap_info.default_offset == 0)
5972                                 return -EINVAL;
5973                         mddev->bitmap_info.offset =
5974                                 mddev->bitmap_info.default_offset;
5975                         mddev->pers->quiesce(mddev, 1);
5976                         rv = bitmap_create(mddev);
5977                         if (!rv)
5978                                 rv = bitmap_load(mddev);
5979                         if (rv)
5980                                 bitmap_destroy(mddev);
5981                         mddev->pers->quiesce(mddev, 0);
5982                 } else {
5983                         /* remove the bitmap */
5984                         if (!mddev->bitmap)
5985                                 return -ENOENT;
5986                         if (mddev->bitmap->file)
5987                                 return -EINVAL;
5988                         mddev->pers->quiesce(mddev, 1);
5989                         bitmap_destroy(mddev);
5990                         mddev->pers->quiesce(mddev, 0);
5991                         mddev->bitmap_info.offset = 0;
5992                 }
5993         }
5994         md_update_sb(mddev, 1);
5995         return rv;
5996 }
5997
5998 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
5999 {
6000         struct md_rdev *rdev;
6001
6002         if (mddev->pers == NULL)
6003                 return -ENODEV;
6004
6005         rdev = find_rdev(mddev, dev);
6006         if (!rdev)
6007                 return -ENODEV;
6008
6009         md_error(mddev, rdev);
6010         if (!test_bit(Faulty, &rdev->flags))
6011                 return -EBUSY;
6012         return 0;
6013 }
6014
6015 /*
6016  * We have a problem here : there is no easy way to give a CHS
6017  * virtual geometry. We currently pretend that we have a 2 heads
6018  * 4 sectors (with a BIG number of cylinders...). This drives
6019  * dosfs just mad... ;-)
6020  */
6021 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6022 {
6023         struct mddev *mddev = bdev->bd_disk->private_data;
6024
6025         geo->heads = 2;
6026         geo->sectors = 4;
6027         geo->cylinders = mddev->array_sectors / 8;
6028         return 0;
6029 }
6030
6031 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6032                         unsigned int cmd, unsigned long arg)
6033 {
6034         int err = 0;
6035         void __user *argp = (void __user *)arg;
6036         struct mddev *mddev = NULL;
6037         int ro;
6038
6039         if (!capable(CAP_SYS_ADMIN))
6040                 return -EACCES;
6041
6042         /*
6043          * Commands dealing with the RAID driver but not any
6044          * particular array:
6045          */
6046         switch (cmd)
6047         {
6048                 case RAID_VERSION:
6049                         err = get_version(argp);
6050                         goto done;
6051
6052                 case PRINT_RAID_DEBUG:
6053                         err = 0;
6054                         md_print_devices();
6055                         goto done;
6056
6057 #ifndef MODULE
6058                 case RAID_AUTORUN:
6059                         err = 0;
6060                         autostart_arrays(arg);
6061                         goto done;
6062 #endif
6063                 default:;
6064         }
6065
6066         /*
6067          * Commands creating/starting a new array:
6068          */
6069
6070         mddev = bdev->bd_disk->private_data;
6071
6072         if (!mddev) {
6073                 BUG();
6074                 goto abort;
6075         }
6076
6077         err = mddev_lock(mddev);
6078         if (err) {
6079                 printk(KERN_INFO 
6080                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
6081                         err, cmd);
6082                 goto abort;
6083         }
6084
6085         switch (cmd)
6086         {
6087                 case SET_ARRAY_INFO:
6088                         {
6089                                 mdu_array_info_t info;
6090                                 if (!arg)
6091                                         memset(&info, 0, sizeof(info));
6092                                 else if (copy_from_user(&info, argp, sizeof(info))) {
6093                                         err = -EFAULT;
6094                                         goto abort_unlock;
6095                                 }
6096                                 if (mddev->pers) {
6097                                         err = update_array_info(mddev, &info);
6098                                         if (err) {
6099                                                 printk(KERN_WARNING "md: couldn't update"
6100                                                        " array info. %d\n", err);
6101                                                 goto abort_unlock;
6102                                         }
6103                                         goto done_unlock;
6104                                 }
6105                                 if (!list_empty(&mddev->disks)) {
6106                                         printk(KERN_WARNING
6107                                                "md: array %s already has disks!\n",
6108                                                mdname(mddev));
6109                                         err = -EBUSY;
6110                                         goto abort_unlock;
6111                                 }
6112                                 if (mddev->raid_disks) {
6113                                         printk(KERN_WARNING
6114                                                "md: array %s already initialised!\n",
6115                                                mdname(mddev));
6116                                         err = -EBUSY;
6117                                         goto abort_unlock;
6118                                 }
6119                                 err = set_array_info(mddev, &info);
6120                                 if (err) {
6121                                         printk(KERN_WARNING "md: couldn't set"
6122                                                " array info. %d\n", err);
6123                                         goto abort_unlock;
6124                                 }
6125                         }
6126                         goto done_unlock;
6127
6128                 default:;
6129         }
6130
6131         /*
6132          * Commands querying/configuring an existing array:
6133          */
6134         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6135          * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6136         if ((!mddev->raid_disks && !mddev->external)
6137             && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6138             && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6139             && cmd != GET_BITMAP_FILE) {
6140                 err = -ENODEV;
6141                 goto abort_unlock;
6142         }
6143
6144         /*
6145          * Commands even a read-only array can execute:
6146          */
6147         switch (cmd)
6148         {
6149                 case GET_ARRAY_INFO:
6150                         err = get_array_info(mddev, argp);
6151                         goto done_unlock;
6152
6153                 case GET_BITMAP_FILE:
6154                         err = get_bitmap_file(mddev, argp);
6155                         goto done_unlock;
6156
6157                 case GET_DISK_INFO:
6158                         err = get_disk_info(mddev, argp);
6159                         goto done_unlock;
6160
6161                 case RESTART_ARRAY_RW:
6162                         err = restart_array(mddev);
6163                         goto done_unlock;
6164
6165                 case STOP_ARRAY:
6166                         err = do_md_stop(mddev, 0, 1);
6167                         goto done_unlock;
6168
6169                 case STOP_ARRAY_RO:
6170                         err = md_set_readonly(mddev, 1);
6171                         goto done_unlock;
6172
6173                 case BLKROSET:
6174                         if (get_user(ro, (int __user *)(arg))) {
6175                                 err = -EFAULT;
6176                                 goto done_unlock;
6177                         }
6178                         err = -EINVAL;
6179
6180                         /* if the bdev is going readonly the value of mddev->ro
6181                          * does not matter, no writes are coming
6182                          */
6183                         if (ro)
6184                                 goto done_unlock;
6185
6186                         /* are we are already prepared for writes? */
6187                         if (mddev->ro != 1)
6188                                 goto done_unlock;
6189
6190                         /* transitioning to readauto need only happen for
6191                          * arrays that call md_write_start
6192                          */
6193                         if (mddev->pers) {
6194                                 err = restart_array(mddev);
6195                                 if (err == 0) {
6196                                         mddev->ro = 2;
6197                                         set_disk_ro(mddev->gendisk, 0);
6198                                 }
6199                         }
6200                         goto done_unlock;
6201         }
6202
6203         /*
6204          * The remaining ioctls are changing the state of the
6205          * superblock, so we do not allow them on read-only arrays.
6206          * However non-MD ioctls (e.g. get-size) will still come through
6207          * here and hit the 'default' below, so only disallow
6208          * 'md' ioctls, and switch to rw mode if started auto-readonly.
6209          */
6210         if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6211                 if (mddev->ro == 2) {
6212                         mddev->ro = 0;
6213                         sysfs_notify_dirent_safe(mddev->sysfs_state);
6214                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6215                         md_wakeup_thread(mddev->thread);
6216                 } else {
6217                         err = -EROFS;
6218                         goto abort_unlock;
6219                 }
6220         }
6221
6222         switch (cmd)
6223         {
6224                 case ADD_NEW_DISK:
6225                 {
6226                         mdu_disk_info_t info;
6227                         if (copy_from_user(&info, argp, sizeof(info)))
6228                                 err = -EFAULT;
6229                         else
6230                                 err = add_new_disk(mddev, &info);
6231                         goto done_unlock;
6232                 }
6233
6234                 case HOT_REMOVE_DISK:
6235                         err = hot_remove_disk(mddev, new_decode_dev(arg));
6236                         goto done_unlock;
6237
6238                 case HOT_ADD_DISK:
6239                         err = hot_add_disk(mddev, new_decode_dev(arg));
6240                         goto done_unlock;
6241
6242                 case SET_DISK_FAULTY:
6243                         err = set_disk_faulty(mddev, new_decode_dev(arg));
6244                         goto done_unlock;
6245
6246                 case RUN_ARRAY:
6247                         err = do_md_run(mddev);
6248                         goto done_unlock;
6249
6250                 case SET_BITMAP_FILE:
6251                         err = set_bitmap_file(mddev, (int)arg);
6252                         goto done_unlock;
6253
6254                 default:
6255                         err = -EINVAL;
6256                         goto abort_unlock;
6257         }
6258
6259 done_unlock:
6260 abort_unlock:
6261         if (mddev->hold_active == UNTIL_IOCTL &&
6262             err != -EINVAL)
6263                 mddev->hold_active = 0;
6264         mddev_unlock(mddev);
6265
6266         return err;
6267 done:
6268         if (err)
6269                 MD_BUG();
6270 abort:
6271         return err;
6272 }
6273 #ifdef CONFIG_COMPAT
6274 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6275                     unsigned int cmd, unsigned long arg)
6276 {
6277         switch (cmd) {
6278         case HOT_REMOVE_DISK:
6279         case HOT_ADD_DISK:
6280         case SET_DISK_FAULTY:
6281         case SET_BITMAP_FILE:
6282                 /* These take in integer arg, do not convert */
6283                 break;
6284         default:
6285                 arg = (unsigned long)compat_ptr(arg);
6286                 break;
6287         }
6288
6289         return md_ioctl(bdev, mode, cmd, arg);
6290 }
6291 #endif /* CONFIG_COMPAT */
6292
6293 static int md_open(struct block_device *bdev, fmode_t mode)
6294 {
6295         /*
6296          * Succeed if we can lock the mddev, which confirms that
6297          * it isn't being stopped right now.
6298          */
6299         struct mddev *mddev = mddev_find(bdev->bd_dev);
6300         int err;
6301
6302         if (mddev->gendisk != bdev->bd_disk) {
6303                 /* we are racing with mddev_put which is discarding this
6304                  * bd_disk.
6305                  */
6306                 mddev_put(mddev);
6307                 /* Wait until bdev->bd_disk is definitely gone */
6308                 flush_workqueue(md_misc_wq);
6309                 /* Then retry the open from the top */
6310                 return -ERESTARTSYS;
6311         }
6312         BUG_ON(mddev != bdev->bd_disk->private_data);
6313
6314         if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6315                 goto out;
6316
6317         err = 0;
6318         atomic_inc(&mddev->openers);
6319         mutex_unlock(&mddev->open_mutex);
6320
6321         check_disk_change(bdev);
6322  out:
6323         return err;
6324 }
6325
6326 static int md_release(struct gendisk *disk, fmode_t mode)
6327 {
6328         struct mddev *mddev = disk->private_data;
6329
6330         BUG_ON(!mddev);
6331         atomic_dec(&mddev->openers);
6332         mddev_put(mddev);
6333
6334         return 0;
6335 }
6336
6337 static int md_media_changed(struct gendisk *disk)
6338 {
6339         struct mddev *mddev = disk->private_data;
6340
6341         return mddev->changed;
6342 }
6343
6344 static int md_revalidate(struct gendisk *disk)
6345 {
6346         struct mddev *mddev = disk->private_data;
6347
6348         mddev->changed = 0;
6349         return 0;
6350 }
6351 static const struct block_device_operations md_fops =
6352 {
6353         .owner          = THIS_MODULE,
6354         .open           = md_open,
6355         .release        = md_release,
6356         .ioctl          = md_ioctl,
6357 #ifdef CONFIG_COMPAT
6358         .compat_ioctl   = md_compat_ioctl,
6359 #endif
6360         .getgeo         = md_getgeo,
6361         .media_changed  = md_media_changed,
6362         .revalidate_disk= md_revalidate,
6363 };
6364
6365 static int md_thread(void * arg)
6366 {
6367         struct md_thread *thread = arg;
6368
6369         /*
6370          * md_thread is a 'system-thread', it's priority should be very
6371          * high. We avoid resource deadlocks individually in each
6372          * raid personality. (RAID5 does preallocation) We also use RR and
6373          * the very same RT priority as kswapd, thus we will never get
6374          * into a priority inversion deadlock.
6375          *
6376          * we definitely have to have equal or higher priority than
6377          * bdflush, otherwise bdflush will deadlock if there are too
6378          * many dirty RAID5 blocks.
6379          */
6380
6381         allow_signal(SIGKILL);
6382         while (!kthread_should_stop()) {
6383
6384                 /* We need to wait INTERRUPTIBLE so that
6385                  * we don't add to the load-average.
6386                  * That means we need to be sure no signals are
6387                  * pending
6388                  */
6389                 if (signal_pending(current))
6390                         flush_signals(current);
6391
6392                 wait_event_interruptible_timeout
6393                         (thread->wqueue,
6394                          test_bit(THREAD_WAKEUP, &thread->flags)
6395                          || kthread_should_stop(),
6396                          thread->timeout);
6397
6398                 clear_bit(THREAD_WAKEUP, &thread->flags);
6399                 if (!kthread_should_stop())
6400                         thread->run(thread->mddev);
6401         }
6402
6403         return 0;
6404 }
6405
6406 void md_wakeup_thread(struct md_thread *thread)
6407 {
6408         if (thread) {
6409                 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6410                 set_bit(THREAD_WAKEUP, &thread->flags);
6411                 wake_up(&thread->wqueue);
6412         }
6413 }
6414
6415 struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev,
6416                                  const char *name)
6417 {
6418         struct md_thread *thread;
6419
6420         thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6421         if (!thread)
6422                 return NULL;
6423
6424         init_waitqueue_head(&thread->wqueue);
6425
6426         thread->run = run;
6427         thread->mddev = mddev;
6428         thread->timeout = MAX_SCHEDULE_TIMEOUT;
6429         thread->tsk = kthread_run(md_thread, thread,
6430                                   "%s_%s",
6431                                   mdname(thread->mddev),
6432                                   name ?: mddev->pers->name);
6433         if (IS_ERR(thread->tsk)) {
6434                 kfree(thread);
6435                 return NULL;
6436         }
6437         return thread;
6438 }
6439
6440 void md_unregister_thread(struct md_thread **threadp)
6441 {
6442         struct md_thread *thread = *threadp;
6443         if (!thread)
6444                 return;
6445         pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6446         /* Locking ensures that mddev_unlock does not wake_up a
6447          * non-existent thread
6448          */
6449         spin_lock(&pers_lock);
6450         *threadp = NULL;
6451         spin_unlock(&pers_lock);
6452
6453         kthread_stop(thread->tsk);
6454         kfree(thread);
6455 }
6456
6457 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6458 {
6459         if (!mddev) {
6460                 MD_BUG();
6461                 return;
6462         }
6463
6464         if (!rdev || test_bit(Faulty, &rdev->flags))
6465                 return;
6466
6467         if (!mddev->pers || !mddev->pers->error_handler)
6468                 return;
6469         mddev->pers->error_handler(mddev,rdev);
6470         if (mddev->degraded)
6471                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6472         sysfs_notify_dirent_safe(rdev->sysfs_state);
6473         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6474         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6475         md_wakeup_thread(mddev->thread);
6476         if (mddev->event_work.func)
6477                 queue_work(md_misc_wq, &mddev->event_work);
6478         md_new_event_inintr(mddev);
6479 }
6480
6481 /* seq_file implementation /proc/mdstat */
6482
6483 static void status_unused(struct seq_file *seq)
6484 {
6485         int i = 0;
6486         struct md_rdev *rdev;
6487
6488         seq_printf(seq, "unused devices: ");
6489
6490         list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6491                 char b[BDEVNAME_SIZE];
6492                 i++;
6493                 seq_printf(seq, "%s ",
6494                               bdevname(rdev->bdev,b));
6495         }
6496         if (!i)
6497                 seq_printf(seq, "<none>");
6498
6499         seq_printf(seq, "\n");
6500 }
6501
6502
6503 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6504 {
6505         sector_t max_sectors, resync, res;
6506         unsigned long dt, db;
6507         sector_t rt;
6508         int scale;
6509         unsigned int per_milli;
6510
6511         resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6512
6513         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6514                 max_sectors = mddev->resync_max_sectors;
6515         else
6516                 max_sectors = mddev->dev_sectors;
6517
6518         /*
6519          * Should not happen.
6520          */
6521         if (!max_sectors) {
6522                 MD_BUG();
6523                 return;
6524         }
6525         /* Pick 'scale' such that (resync>>scale)*1000 will fit
6526          * in a sector_t, and (max_sectors>>scale) will fit in a
6527          * u32, as those are the requirements for sector_div.
6528          * Thus 'scale' must be at least 10
6529          */
6530         scale = 10;
6531         if (sizeof(sector_t) > sizeof(unsigned long)) {
6532                 while ( max_sectors/2 > (1ULL<<(scale+32)))
6533                         scale++;
6534         }
6535         res = (resync>>scale)*1000;
6536         sector_div(res, (u32)((max_sectors>>scale)+1));
6537
6538         per_milli = res;
6539         {
6540                 int i, x = per_milli/50, y = 20-x;
6541                 seq_printf(seq, "[");
6542                 for (i = 0; i < x; i++)
6543                         seq_printf(seq, "=");
6544                 seq_printf(seq, ">");
6545                 for (i = 0; i < y; i++)
6546                         seq_printf(seq, ".");
6547                 seq_printf(seq, "] ");
6548         }
6549         seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6550                    (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6551                     "reshape" :
6552                     (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6553                      "check" :
6554                      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6555                       "resync" : "recovery"))),
6556                    per_milli/10, per_milli % 10,
6557                    (unsigned long long) resync/2,
6558                    (unsigned long long) max_sectors/2);
6559
6560         /*
6561          * dt: time from mark until now
6562          * db: blocks written from mark until now
6563          * rt: remaining time
6564          *
6565          * rt is a sector_t, so could be 32bit or 64bit.
6566          * So we divide before multiply in case it is 32bit and close
6567          * to the limit.
6568          * We scale the divisor (db) by 32 to avoid losing precision
6569          * near the end of resync when the number of remaining sectors
6570          * is close to 'db'.
6571          * We then divide rt by 32 after multiplying by db to compensate.
6572          * The '+1' avoids division by zero if db is very small.
6573          */
6574         dt = ((jiffies - mddev->resync_mark) / HZ);
6575         if (!dt) dt++;
6576         db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6577                 - mddev->resync_mark_cnt;
6578
6579         rt = max_sectors - resync;    /* number of remaining sectors */
6580         sector_div(rt, db/32+1);
6581         rt *= dt;
6582         rt >>= 5;
6583
6584         seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6585                    ((unsigned long)rt % 60)/6);
6586
6587         seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6588 }
6589
6590 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6591 {
6592         struct list_head *tmp;
6593         loff_t l = *pos;
6594         struct mddev *mddev;
6595
6596         if (l >= 0x10000)
6597                 return NULL;
6598         if (!l--)
6599                 /* header */
6600                 return (void*)1;
6601
6602         spin_lock(&all_mddevs_lock);
6603         list_for_each(tmp,&all_mddevs)
6604                 if (!l--) {
6605                         mddev = list_entry(tmp, struct mddev, all_mddevs);
6606                         mddev_get(mddev);
6607                         spin_unlock(&all_mddevs_lock);
6608                         return mddev;
6609                 }
6610         spin_unlock(&all_mddevs_lock);
6611         if (!l--)
6612                 return (void*)2;/* tail */
6613         return NULL;
6614 }
6615
6616 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6617 {
6618         struct list_head *tmp;
6619         struct mddev *next_mddev, *mddev = v;
6620         
6621         ++*pos;
6622         if (v == (void*)2)
6623                 return NULL;
6624
6625         spin_lock(&all_mddevs_lock);
6626         if (v == (void*)1)
6627                 tmp = all_mddevs.next;
6628         else
6629                 tmp = mddev->all_mddevs.next;
6630         if (tmp != &all_mddevs)
6631                 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6632         else {
6633                 next_mddev = (void*)2;
6634                 *pos = 0x10000;
6635         }               
6636         spin_unlock(&all_mddevs_lock);
6637
6638         if (v != (void*)1)
6639                 mddev_put(mddev);
6640         return next_mddev;
6641
6642 }
6643
6644 static void md_seq_stop(struct seq_file *seq, void *v)
6645 {
6646         struct mddev *mddev = v;
6647
6648         if (mddev && v != (void*)1 && v != (void*)2)
6649                 mddev_put(mddev);
6650 }
6651
6652 static int md_seq_show(struct seq_file *seq, void *v)
6653 {
6654         struct mddev *mddev = v;
6655         sector_t sectors;
6656         struct md_rdev *rdev;
6657         struct bitmap *bitmap;
6658
6659         if (v == (void*)1) {
6660                 struct md_personality *pers;
6661                 seq_printf(seq, "Personalities : ");
6662                 spin_lock(&pers_lock);
6663                 list_for_each_entry(pers, &pers_list, list)
6664                         seq_printf(seq, "[%s] ", pers->name);
6665
6666                 spin_unlock(&pers_lock);
6667                 seq_printf(seq, "\n");
6668                 seq->poll_event = atomic_read(&md_event_count);
6669                 return 0;
6670         }
6671         if (v == (void*)2) {
6672                 status_unused(seq);
6673                 return 0;
6674         }
6675
6676         if (mddev_lock(mddev) < 0)
6677                 return -EINTR;
6678
6679         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6680                 seq_printf(seq, "%s : %sactive", mdname(mddev),
6681                                                 mddev->pers ? "" : "in");
6682                 if (mddev->pers) {
6683                         if (mddev->ro==1)
6684                                 seq_printf(seq, " (read-only)");
6685                         if (mddev->ro==2)
6686                                 seq_printf(seq, " (auto-read-only)");
6687                         seq_printf(seq, " %s", mddev->pers->name);
6688                 }
6689
6690                 sectors = 0;
6691                 list_for_each_entry(rdev, &mddev->disks, same_set) {
6692                         char b[BDEVNAME_SIZE];
6693                         seq_printf(seq, " %s[%d]",
6694                                 bdevname(rdev->bdev,b), rdev->desc_nr);
6695                         if (test_bit(WriteMostly, &rdev->flags))
6696                                 seq_printf(seq, "(W)");
6697                         if (test_bit(Faulty, &rdev->flags)) {
6698                                 seq_printf(seq, "(F)");
6699                                 continue;
6700                         } else if (rdev->raid_disk < 0)
6701                                 seq_printf(seq, "(S)"); /* spare */
6702                         sectors += rdev->sectors;
6703                 }
6704
6705                 if (!list_empty(&mddev->disks)) {
6706                         if (mddev->pers)
6707                                 seq_printf(seq, "\n      %llu blocks",
6708                                            (unsigned long long)
6709                                            mddev->array_sectors / 2);
6710                         else
6711                                 seq_printf(seq, "\n      %llu blocks",
6712                                            (unsigned long long)sectors / 2);
6713                 }
6714                 if (mddev->persistent) {
6715                         if (mddev->major_version != 0 ||
6716                             mddev->minor_version != 90) {
6717                                 seq_printf(seq," super %d.%d",
6718                                            mddev->major_version,
6719                                            mddev->minor_version);
6720                         }
6721                 } else if (mddev->external)
6722                         seq_printf(seq, " super external:%s",
6723                                    mddev->metadata_type);
6724                 else
6725                         seq_printf(seq, " super non-persistent");
6726
6727                 if (mddev->pers) {
6728                         mddev->pers->status(seq, mddev);
6729                         seq_printf(seq, "\n      ");
6730                         if (mddev->pers->sync_request) {
6731                                 if (mddev->curr_resync > 2) {
6732                                         status_resync(seq, mddev);
6733                                         seq_printf(seq, "\n      ");
6734                                 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6735                                         seq_printf(seq, "\tresync=DELAYED\n      ");
6736                                 else if (mddev->recovery_cp < MaxSector)
6737                                         seq_printf(seq, "\tresync=PENDING\n      ");
6738                         }
6739                 } else
6740                         seq_printf(seq, "\n       ");
6741
6742                 if ((bitmap = mddev->bitmap)) {
6743                         unsigned long chunk_kb;
6744                         unsigned long flags;
6745                         spin_lock_irqsave(&bitmap->lock, flags);
6746                         chunk_kb = mddev->bitmap_info.chunksize >> 10;
6747                         seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
6748                                 "%lu%s chunk",
6749                                 bitmap->pages - bitmap->missing_pages,
6750                                 bitmap->pages,
6751                                 (bitmap->pages - bitmap->missing_pages)
6752                                         << (PAGE_SHIFT - 10),
6753                                 chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
6754                                 chunk_kb ? "KB" : "B");
6755                         if (bitmap->file) {
6756                                 seq_printf(seq, ", file: ");
6757                                 seq_path(seq, &bitmap->file->f_path, " \t\n");
6758                         }
6759
6760                         seq_printf(seq, "\n");
6761                         spin_unlock_irqrestore(&bitmap->lock, flags);
6762                 }
6763
6764                 seq_printf(seq, "\n");
6765         }
6766         mddev_unlock(mddev);
6767         
6768         return 0;
6769 }
6770
6771 static const struct seq_operations md_seq_ops = {
6772         .start  = md_seq_start,
6773         .next   = md_seq_next,
6774         .stop   = md_seq_stop,
6775         .show   = md_seq_show,
6776 };
6777
6778 static int md_seq_open(struct inode *inode, struct file *file)
6779 {
6780         struct seq_file *seq;
6781         int error;
6782
6783         error = seq_open(file, &md_seq_ops);
6784         if (error)
6785                 return error;
6786
6787         seq = file->private_data;
6788         seq->poll_event = atomic_read(&md_event_count);
6789         return error;
6790 }
6791
6792 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6793 {
6794         struct seq_file *seq = filp->private_data;
6795         int mask;
6796
6797         poll_wait(filp, &md_event_waiters, wait);
6798
6799         /* always allow read */
6800         mask = POLLIN | POLLRDNORM;
6801
6802         if (seq->poll_event != atomic_read(&md_event_count))
6803                 mask |= POLLERR | POLLPRI;
6804         return mask;
6805 }
6806
6807 static const struct file_operations md_seq_fops = {
6808         .owner          = THIS_MODULE,
6809         .open           = md_seq_open,
6810         .read           = seq_read,
6811         .llseek         = seq_lseek,
6812         .release        = seq_release_private,
6813         .poll           = mdstat_poll,
6814 };
6815
6816 int register_md_personality(struct md_personality *p)
6817 {
6818         spin_lock(&pers_lock);
6819         list_add_tail(&p->list, &pers_list);
6820         printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6821         spin_unlock(&pers_lock);
6822         return 0;
6823 }
6824
6825 int unregister_md_personality(struct md_personality *p)
6826 {
6827         printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6828         spin_lock(&pers_lock);
6829         list_del_init(&p->list);
6830         spin_unlock(&pers_lock);
6831         return 0;
6832 }
6833
6834 static int is_mddev_idle(struct mddev *mddev, int init)
6835 {
6836         struct md_rdev * rdev;
6837         int idle;
6838         int curr_events;
6839
6840         idle = 1;
6841         rcu_read_lock();
6842         rdev_for_each_rcu(rdev, mddev) {
6843                 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6844                 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6845                               (int)part_stat_read(&disk->part0, sectors[1]) -
6846                               atomic_read(&disk->sync_io);
6847                 /* sync IO will cause sync_io to increase before the disk_stats
6848                  * as sync_io is counted when a request starts, and
6849                  * disk_stats is counted when it completes.
6850                  * So resync activity will cause curr_events to be smaller than
6851                  * when there was no such activity.
6852                  * non-sync IO will cause disk_stat to increase without
6853                  * increasing sync_io so curr_events will (eventually)
6854                  * be larger than it was before.  Once it becomes
6855                  * substantially larger, the test below will cause
6856                  * the array to appear non-idle, and resync will slow
6857                  * down.
6858                  * If there is a lot of outstanding resync activity when
6859                  * we set last_event to curr_events, then all that activity
6860                  * completing might cause the array to appear non-idle
6861                  * and resync will be slowed down even though there might
6862                  * not have been non-resync activity.  This will only
6863                  * happen once though.  'last_events' will soon reflect
6864                  * the state where there is little or no outstanding
6865                  * resync requests, and further resync activity will
6866                  * always make curr_events less than last_events.
6867                  *
6868                  */
6869                 if (init || curr_events - rdev->last_events > 64) {
6870                         rdev->last_events = curr_events;
6871                         idle = 0;
6872                 }
6873         }
6874         rcu_read_unlock();
6875         return idle;
6876 }
6877
6878 void md_done_sync(struct mddev *mddev, int blocks, int ok)
6879 {
6880         /* another "blocks" (512byte) blocks have been synced */
6881         atomic_sub(blocks, &mddev->recovery_active);
6882         wake_up(&mddev->recovery_wait);
6883         if (!ok) {
6884                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6885                 md_wakeup_thread(mddev->thread);
6886                 // stop recovery, signal do_sync ....
6887         }
6888 }
6889
6890
6891 /* md_write_start(mddev, bi)
6892  * If we need to update some array metadata (e.g. 'active' flag
6893  * in superblock) before writing, schedule a superblock update
6894  * and wait for it to complete.
6895  */
6896 void md_write_start(struct mddev *mddev, struct bio *bi)
6897 {
6898         int did_change = 0;
6899         if (bio_data_dir(bi) != WRITE)
6900                 return;
6901
6902         BUG_ON(mddev->ro == 1);
6903         if (mddev->ro == 2) {
6904                 /* need to switch to read/write */
6905                 mddev->ro = 0;
6906                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6907                 md_wakeup_thread(mddev->thread);
6908                 md_wakeup_thread(mddev->sync_thread);
6909                 did_change = 1;
6910         }
6911         atomic_inc(&mddev->writes_pending);
6912         if (mddev->safemode == 1)
6913                 mddev->safemode = 0;
6914         if (mddev->in_sync) {
6915                 spin_lock_irq(&mddev->write_lock);
6916                 if (mddev->in_sync) {
6917                         mddev->in_sync = 0;
6918                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6919                         set_bit(MD_CHANGE_PENDING, &mddev->flags);
6920                         md_wakeup_thread(mddev->thread);
6921                         did_change = 1;
6922                 }
6923                 spin_unlock_irq(&mddev->write_lock);
6924         }
6925         if (did_change)
6926                 sysfs_notify_dirent_safe(mddev->sysfs_state);
6927         wait_event(mddev->sb_wait,
6928                    !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6929 }
6930
6931 void md_write_end(struct mddev *mddev)
6932 {
6933         if (atomic_dec_and_test(&mddev->writes_pending)) {
6934                 if (mddev->safemode == 2)
6935                         md_wakeup_thread(mddev->thread);
6936                 else if (mddev->safemode_delay)
6937                         mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6938         }
6939 }
6940
6941 /* md_allow_write(mddev)
6942  * Calling this ensures that the array is marked 'active' so that writes
6943  * may proceed without blocking.  It is important to call this before
6944  * attempting a GFP_KERNEL allocation while holding the mddev lock.
6945  * Must be called with mddev_lock held.
6946  *
6947  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6948  * is dropped, so return -EAGAIN after notifying userspace.
6949  */
6950 int md_allow_write(struct mddev *mddev)
6951 {
6952         if (!mddev->pers)
6953                 return 0;
6954         if (mddev->ro)
6955                 return 0;
6956         if (!mddev->pers->sync_request)
6957                 return 0;
6958
6959         spin_lock_irq(&mddev->write_lock);
6960         if (mddev->in_sync) {
6961                 mddev->in_sync = 0;
6962                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6963                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6964                 if (mddev->safemode_delay &&
6965                     mddev->safemode == 0)
6966                         mddev->safemode = 1;
6967                 spin_unlock_irq(&mddev->write_lock);
6968                 md_update_sb(mddev, 0);
6969                 sysfs_notify_dirent_safe(mddev->sysfs_state);
6970         } else
6971                 spin_unlock_irq(&mddev->write_lock);
6972
6973         if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
6974                 return -EAGAIN;
6975         else
6976                 return 0;
6977 }
6978 EXPORT_SYMBOL_GPL(md_allow_write);
6979
6980 #define SYNC_MARKS      10
6981 #define SYNC_MARK_STEP  (3*HZ)
6982 void md_do_sync(struct mddev *mddev)
6983 {
6984         struct mddev *mddev2;
6985         unsigned int currspeed = 0,
6986                  window;
6987         sector_t max_sectors,j, io_sectors;
6988         unsigned long mark[SYNC_MARKS];
6989         sector_t mark_cnt[SYNC_MARKS];
6990         int last_mark,m;
6991         struct list_head *tmp;
6992         sector_t last_check;
6993         int skipped = 0;
6994         struct md_rdev *rdev;
6995         char *desc;
6996
6997         /* just incase thread restarts... */
6998         if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
6999                 return;
7000         if (mddev->ro) /* never try to sync a read-only array */
7001                 return;
7002
7003         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7004                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7005                         desc = "data-check";
7006                 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7007                         desc = "requested-resync";
7008                 else
7009                         desc = "resync";
7010         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7011                 desc = "reshape";
7012         else
7013                 desc = "recovery";
7014
7015         /* we overload curr_resync somewhat here.
7016          * 0 == not engaged in resync at all
7017          * 2 == checking that there is no conflict with another sync
7018          * 1 == like 2, but have yielded to allow conflicting resync to
7019          *              commense
7020          * other == active in resync - this many blocks
7021          *
7022          * Before starting a resync we must have set curr_resync to
7023          * 2, and then checked that every "conflicting" array has curr_resync
7024          * less than ours.  When we find one that is the same or higher
7025          * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7026          * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7027          * This will mean we have to start checking from the beginning again.
7028          *
7029          */
7030
7031         do {
7032                 mddev->curr_resync = 2;
7033
7034         try_again:
7035                 if (kthread_should_stop())
7036                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7037
7038                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7039                         goto skip;
7040                 for_each_mddev(mddev2, tmp) {
7041                         if (mddev2 == mddev)
7042                                 continue;
7043                         if (!mddev->parallel_resync
7044                         &&  mddev2->curr_resync
7045                         &&  match_mddev_units(mddev, mddev2)) {
7046                                 DEFINE_WAIT(wq);
7047                                 if (mddev < mddev2 && mddev->curr_resync == 2) {
7048                                         /* arbitrarily yield */
7049                                         mddev->curr_resync = 1;
7050                                         wake_up(&resync_wait);
7051                                 }
7052                                 if (mddev > mddev2 && mddev->curr_resync == 1)
7053                                         /* no need to wait here, we can wait the next
7054                                          * time 'round when curr_resync == 2
7055                                          */
7056                                         continue;
7057                                 /* We need to wait 'interruptible' so as not to
7058                                  * contribute to the load average, and not to
7059                                  * be caught by 'softlockup'
7060                                  */
7061                                 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7062                                 if (!kthread_should_stop() &&
7063                                     mddev2->curr_resync >= mddev->curr_resync) {
7064                                         printk(KERN_INFO "md: delaying %s of %s"
7065                                                " until %s has finished (they"
7066                                                " share one or more physical units)\n",
7067                                                desc, mdname(mddev), mdname(mddev2));
7068                                         mddev_put(mddev2);
7069                                         if (signal_pending(current))
7070                                                 flush_signals(current);
7071                                         schedule();
7072                                         finish_wait(&resync_wait, &wq);
7073                                         goto try_again;
7074                                 }
7075                                 finish_wait(&resync_wait, &wq);
7076                         }
7077                 }
7078         } while (mddev->curr_resync < 2);
7079
7080         j = 0;
7081         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7082                 /* resync follows the size requested by the personality,
7083                  * which defaults to physical size, but can be virtual size
7084                  */
7085                 max_sectors = mddev->resync_max_sectors;
7086                 mddev->resync_mismatches = 0;
7087                 /* we don't use the checkpoint if there's a bitmap */
7088                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7089                         j = mddev->resync_min;
7090                 else if (!mddev->bitmap)
7091                         j = mddev->recovery_cp;
7092
7093         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7094                 max_sectors = mddev->dev_sectors;
7095         else {
7096                 /* recovery follows the physical size of devices */
7097                 max_sectors = mddev->dev_sectors;
7098                 j = MaxSector;
7099                 rcu_read_lock();
7100                 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7101                         if (rdev->raid_disk >= 0 &&
7102                             !test_bit(Faulty, &rdev->flags) &&
7103                             !test_bit(In_sync, &rdev->flags) &&
7104                             rdev->recovery_offset < j)
7105                                 j = rdev->recovery_offset;
7106                 rcu_read_unlock();
7107         }
7108
7109         printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7110         printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7111                 " %d KB/sec/disk.\n", speed_min(mddev));
7112         printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7113                "(but not more than %d KB/sec) for %s.\n",
7114                speed_max(mddev), desc);
7115
7116         is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7117
7118         io_sectors = 0;
7119         for (m = 0; m < SYNC_MARKS; m++) {
7120                 mark[m] = jiffies;
7121                 mark_cnt[m] = io_sectors;
7122         }
7123         last_mark = 0;
7124         mddev->resync_mark = mark[last_mark];
7125         mddev->resync_mark_cnt = mark_cnt[last_mark];
7126
7127         /*
7128          * Tune reconstruction:
7129          */
7130         window = 32*(PAGE_SIZE/512);
7131         printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7132                 window/2, (unsigned long long)max_sectors/2);
7133
7134         atomic_set(&mddev->recovery_active, 0);
7135         last_check = 0;
7136
7137         if (j>2) {
7138                 printk(KERN_INFO 
7139                        "md: resuming %s of %s from checkpoint.\n",
7140                        desc, mdname(mddev));
7141                 mddev->curr_resync = j;
7142         }
7143         mddev->curr_resync_completed = j;
7144
7145         while (j < max_sectors) {
7146                 sector_t sectors;
7147
7148                 skipped = 0;
7149
7150                 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7151                     ((mddev->curr_resync > mddev->curr_resync_completed &&
7152                       (mddev->curr_resync - mddev->curr_resync_completed)
7153                       > (max_sectors >> 4)) ||
7154                      (j - mddev->curr_resync_completed)*2
7155                      >= mddev->resync_max - mddev->curr_resync_completed
7156                             )) {
7157                         /* time to update curr_resync_completed */
7158                         wait_event(mddev->recovery_wait,
7159                                    atomic_read(&mddev->recovery_active) == 0);
7160                         mddev->curr_resync_completed = j;
7161                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7162                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7163                 }
7164
7165                 while (j >= mddev->resync_max && !kthread_should_stop()) {
7166                         /* As this condition is controlled by user-space,
7167                          * we can block indefinitely, so use '_interruptible'
7168                          * to avoid triggering warnings.
7169                          */
7170                         flush_signals(current); /* just in case */
7171                         wait_event_interruptible(mddev->recovery_wait,
7172                                                  mddev->resync_max > j
7173                                                  || kthread_should_stop());
7174                 }
7175
7176                 if (kthread_should_stop())
7177                         goto interrupted;
7178
7179                 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7180                                                   currspeed < speed_min(mddev));
7181                 if (sectors == 0) {
7182                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7183                         goto out;
7184                 }
7185
7186                 if (!skipped) { /* actual IO requested */
7187                         io_sectors += sectors;
7188                         atomic_add(sectors, &mddev->recovery_active);
7189                 }
7190
7191                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7192                         break;
7193
7194                 j += sectors;
7195                 if (j>1) mddev->curr_resync = j;
7196                 mddev->curr_mark_cnt = io_sectors;
7197                 if (last_check == 0)
7198                         /* this is the earliest that rebuild will be
7199                          * visible in /proc/mdstat
7200                          */
7201                         md_new_event(mddev);
7202
7203                 if (last_check + window > io_sectors || j == max_sectors)
7204                         continue;
7205
7206                 last_check = io_sectors;
7207         repeat:
7208                 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7209                         /* step marks */
7210                         int next = (last_mark+1) % SYNC_MARKS;
7211
7212                         mddev->resync_mark = mark[next];
7213                         mddev->resync_mark_cnt = mark_cnt[next];
7214                         mark[next] = jiffies;
7215                         mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7216                         last_mark = next;
7217                 }
7218
7219
7220                 if (kthread_should_stop())
7221                         goto interrupted;
7222
7223
7224                 /*
7225                  * this loop exits only if either when we are slower than
7226                  * the 'hard' speed limit, or the system was IO-idle for
7227                  * a jiffy.
7228                  * the system might be non-idle CPU-wise, but we only care
7229                  * about not overloading the IO subsystem. (things like an
7230                  * e2fsck being done on the RAID array should execute fast)
7231                  */
7232                 cond_resched();
7233
7234                 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7235                         /((jiffies-mddev->resync_mark)/HZ +1) +1;
7236
7237                 if (currspeed > speed_min(mddev)) {
7238                         if ((currspeed > speed_max(mddev)) ||
7239                                         !is_mddev_idle(mddev, 0)) {
7240                                 msleep(500);
7241                                 goto repeat;
7242                         }
7243                 }
7244         }
7245         printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7246         /*
7247          * this also signals 'finished resyncing' to md_stop
7248          */
7249  out:
7250         wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7251
7252         /* tell personality that we are finished */
7253         mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7254
7255         if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7256             mddev->curr_resync > 2) {
7257                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7258                         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7259                                 if (mddev->curr_resync >= mddev->recovery_cp) {
7260                                         printk(KERN_INFO
7261                                                "md: checkpointing %s of %s.\n",
7262                                                desc, mdname(mddev));
7263                                         mddev->recovery_cp = mddev->curr_resync;
7264                                 }
7265                         } else
7266                                 mddev->recovery_cp = MaxSector;
7267                 } else {
7268                         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7269                                 mddev->curr_resync = MaxSector;
7270                         rcu_read_lock();
7271                         list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7272                                 if (rdev->raid_disk >= 0 &&
7273                                     mddev->delta_disks >= 0 &&
7274                                     !test_bit(Faulty, &rdev->flags) &&
7275                                     !test_bit(In_sync, &rdev->flags) &&
7276                                     rdev->recovery_offset < mddev->curr_resync)
7277                                         rdev->recovery_offset = mddev->curr_resync;
7278                         rcu_read_unlock();
7279                 }
7280         }
7281         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7282
7283  skip:
7284         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7285                 /* We completed so min/max setting can be forgotten if used. */
7286                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7287                         mddev->resync_min = 0;
7288                 mddev->resync_max = MaxSector;
7289         } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7290                 mddev->resync_min = mddev->curr_resync_completed;
7291         mddev->curr_resync = 0;
7292         wake_up(&resync_wait);
7293         set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7294         md_wakeup_thread(mddev->thread);
7295         return;
7296
7297  interrupted:
7298         /*
7299          * got a signal, exit.
7300          */
7301         printk(KERN_INFO
7302                "md: md_do_sync() got signal ... exiting\n");
7303         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7304         goto out;
7305
7306 }
7307 EXPORT_SYMBOL_GPL(md_do_sync);
7308
7309 static int remove_and_add_spares(struct mddev *mddev)
7310 {
7311         struct md_rdev *rdev;
7312         int spares = 0;
7313
7314         mddev->curr_resync_completed = 0;
7315
7316         list_for_each_entry(rdev, &mddev->disks, same_set)
7317                 if (rdev->raid_disk >= 0 &&
7318                     !test_bit(Blocked, &rdev->flags) &&
7319                     (test_bit(Faulty, &rdev->flags) ||
7320                      ! test_bit(In_sync, &rdev->flags)) &&
7321                     atomic_read(&rdev->nr_pending)==0) {
7322                         if (mddev->pers->hot_remove_disk(
7323                                     mddev, rdev->raid_disk)==0) {
7324                                 sysfs_unlink_rdev(mddev, rdev);
7325                                 rdev->raid_disk = -1;
7326                         }
7327                 }
7328
7329         if (mddev->degraded) {
7330                 list_for_each_entry(rdev, &mddev->disks, same_set) {
7331                         if (rdev->raid_disk >= 0 &&
7332                             !test_bit(In_sync, &rdev->flags) &&
7333                             !test_bit(Faulty, &rdev->flags))
7334                                 spares++;
7335                         if (rdev->raid_disk < 0
7336                             && !test_bit(Faulty, &rdev->flags)) {
7337                                 rdev->recovery_offset = 0;
7338                                 if (mddev->pers->
7339                                     hot_add_disk(mddev, rdev) == 0) {
7340                                         if (sysfs_link_rdev(mddev, rdev))
7341                                                 /* failure here is OK */;
7342                                         spares++;
7343                                         md_new_event(mddev);
7344                                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7345                                 } else
7346                                         break;
7347                         }
7348                 }
7349         }
7350         return spares;
7351 }
7352
7353 static void reap_sync_thread(struct mddev *mddev)
7354 {
7355         struct md_rdev *rdev;
7356
7357         /* resync has finished, collect result */
7358         md_unregister_thread(&mddev->sync_thread);
7359         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7360             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7361                 /* success...*/
7362                 /* activate any spares */
7363                 if (mddev->pers->spare_active(mddev))
7364                         sysfs_notify(&mddev->kobj, NULL,
7365                                      "degraded");
7366         }
7367         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7368             mddev->pers->finish_reshape)
7369                 mddev->pers->finish_reshape(mddev);
7370
7371         /* If array is no-longer degraded, then any saved_raid_disk
7372          * information must be scrapped.  Also if any device is now
7373          * In_sync we must scrape the saved_raid_disk for that device
7374          * do the superblock for an incrementally recovered device
7375          * written out.
7376          */
7377         list_for_each_entry(rdev, &mddev->disks, same_set)
7378                 if (!mddev->degraded ||
7379                     test_bit(In_sync, &rdev->flags))
7380                         rdev->saved_raid_disk = -1;
7381
7382         md_update_sb(mddev, 1);
7383         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7384         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7385         clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7386         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7387         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7388         /* flag recovery needed just to double check */
7389         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7390         sysfs_notify_dirent_safe(mddev->sysfs_action);
7391         md_new_event(mddev);
7392         if (mddev->event_work.func)
7393                 queue_work(md_misc_wq, &mddev->event_work);
7394 }
7395
7396 /*
7397  * This routine is regularly called by all per-raid-array threads to
7398  * deal with generic issues like resync and super-block update.
7399  * Raid personalities that don't have a thread (linear/raid0) do not
7400  * need this as they never do any recovery or update the superblock.
7401  *
7402  * It does not do any resync itself, but rather "forks" off other threads
7403  * to do that as needed.
7404  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7405  * "->recovery" and create a thread at ->sync_thread.
7406  * When the thread finishes it sets MD_RECOVERY_DONE
7407  * and wakeups up this thread which will reap the thread and finish up.
7408  * This thread also removes any faulty devices (with nr_pending == 0).
7409  *
7410  * The overall approach is:
7411  *  1/ if the superblock needs updating, update it.
7412  *  2/ If a recovery thread is running, don't do anything else.
7413  *  3/ If recovery has finished, clean up, possibly marking spares active.
7414  *  4/ If there are any faulty devices, remove them.
7415  *  5/ If array is degraded, try to add spares devices
7416  *  6/ If array has spares or is not in-sync, start a resync thread.
7417  */
7418 void md_check_recovery(struct mddev *mddev)
7419 {
7420         if (mddev->suspended)
7421                 return;
7422
7423         if (mddev->bitmap)
7424                 bitmap_daemon_work(mddev);
7425
7426         if (signal_pending(current)) {
7427                 if (mddev->pers->sync_request && !mddev->external) {
7428                         printk(KERN_INFO "md: %s in immediate safe mode\n",
7429                                mdname(mddev));
7430                         mddev->safemode = 2;
7431                 }
7432                 flush_signals(current);
7433         }
7434
7435         if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7436                 return;
7437         if ( ! (
7438                 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7439                 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7440                 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7441                 (mddev->external == 0 && mddev->safemode == 1) ||
7442                 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7443                  && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7444                 ))
7445                 return;
7446
7447         if (mddev_trylock(mddev)) {
7448                 int spares = 0;
7449
7450                 if (mddev->ro) {
7451                         /* Only thing we do on a ro array is remove
7452                          * failed devices.
7453                          */
7454                         struct md_rdev *rdev;
7455                         list_for_each_entry(rdev, &mddev->disks, same_set)
7456                                 if (rdev->raid_disk >= 0 &&
7457                                     !test_bit(Blocked, &rdev->flags) &&
7458                                     test_bit(Faulty, &rdev->flags) &&
7459                                     atomic_read(&rdev->nr_pending)==0) {
7460                                         if (mddev->pers->hot_remove_disk(
7461                                                     mddev, rdev->raid_disk)==0) {
7462                                                 sysfs_unlink_rdev(mddev, rdev);
7463                                                 rdev->raid_disk = -1;
7464                                         }
7465                                 }
7466                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7467                         goto unlock;
7468                 }
7469
7470                 if (!mddev->external) {
7471                         int did_change = 0;
7472                         spin_lock_irq(&mddev->write_lock);
7473                         if (mddev->safemode &&
7474                             !atomic_read(&mddev->writes_pending) &&
7475                             !mddev->in_sync &&
7476                             mddev->recovery_cp == MaxSector) {
7477                                 mddev->in_sync = 1;
7478                                 did_change = 1;
7479                                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7480                         }
7481                         if (mddev->safemode == 1)
7482                                 mddev->safemode = 0;
7483                         spin_unlock_irq(&mddev->write_lock);
7484                         if (did_change)
7485                                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7486                 }
7487
7488                 if (mddev->flags)
7489                         md_update_sb(mddev, 0);
7490
7491                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7492                     !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7493                         /* resync/recovery still happening */
7494                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7495                         goto unlock;
7496                 }
7497                 if (mddev->sync_thread) {
7498                         reap_sync_thread(mddev);
7499                         goto unlock;
7500                 }
7501                 /* Set RUNNING before clearing NEEDED to avoid
7502                  * any transients in the value of "sync_action".
7503                  */
7504                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7505                 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7506                 /* Clear some bits that don't mean anything, but
7507                  * might be left set
7508                  */
7509                 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7510                 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7511
7512                 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7513                         goto unlock;
7514                 /* no recovery is running.
7515                  * remove any failed drives, then
7516                  * add spares if possible.
7517                  * Spare are also removed and re-added, to allow
7518                  * the personality to fail the re-add.
7519                  */
7520
7521                 if (mddev->reshape_position != MaxSector) {
7522                         if (mddev->pers->check_reshape == NULL ||
7523                             mddev->pers->check_reshape(mddev) != 0)
7524                                 /* Cannot proceed */
7525                                 goto unlock;
7526                         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7527                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7528                 } else if ((spares = remove_and_add_spares(mddev))) {
7529                         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7530                         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7531                         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7532                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7533                 } else if (mddev->recovery_cp < MaxSector) {
7534                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7535                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7536                 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7537                         /* nothing to be done ... */
7538                         goto unlock;
7539
7540                 if (mddev->pers->sync_request) {
7541                         if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7542                                 /* We are adding a device or devices to an array
7543                                  * which has the bitmap stored on all devices.
7544                                  * So make sure all bitmap pages get written
7545                                  */
7546                                 bitmap_write_all(mddev->bitmap);
7547                         }
7548                         mddev->sync_thread = md_register_thread(md_do_sync,
7549                                                                 mddev,
7550                                                                 "resync");
7551                         if (!mddev->sync_thread) {
7552                                 printk(KERN_ERR "%s: could not start resync"
7553                                         " thread...\n", 
7554                                         mdname(mddev));
7555                                 /* leave the spares where they are, it shouldn't hurt */
7556                                 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7557                                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7558                                 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7559                                 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7560                                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7561                         } else
7562                                 md_wakeup_thread(mddev->sync_thread);
7563                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7564                         md_new_event(mddev);
7565                 }
7566         unlock:
7567                 if (!mddev->sync_thread) {
7568                         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7569                         if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7570                                                &mddev->recovery))
7571                                 if (mddev->sysfs_action)
7572                                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7573                 }
7574                 mddev_unlock(mddev);
7575         }
7576 }
7577
7578 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7579 {
7580         sysfs_notify_dirent_safe(rdev->sysfs_state);
7581         wait_event_timeout(rdev->blocked_wait,
7582                            !test_bit(Blocked, &rdev->flags) &&
7583                            !test_bit(BlockedBadBlocks, &rdev->flags),
7584                            msecs_to_jiffies(5000));
7585         rdev_dec_pending(rdev, mddev);
7586 }
7587 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7588
7589
7590 /* Bad block management.
7591  * We can record which blocks on each device are 'bad' and so just
7592  * fail those blocks, or that stripe, rather than the whole device.
7593  * Entries in the bad-block table are 64bits wide.  This comprises:
7594  * Length of bad-range, in sectors: 0-511 for lengths 1-512
7595  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7596  *  A 'shift' can be set so that larger blocks are tracked and
7597  *  consequently larger devices can be covered.
7598  * 'Acknowledged' flag - 1 bit. - the most significant bit.
7599  *
7600  * Locking of the bad-block table uses a seqlock so md_is_badblock
7601  * might need to retry if it is very unlucky.
7602  * We will sometimes want to check for bad blocks in a bi_end_io function,
7603  * so we use the write_seqlock_irq variant.
7604  *
7605  * When looking for a bad block we specify a range and want to
7606  * know if any block in the range is bad.  So we binary-search
7607  * to the last range that starts at-or-before the given endpoint,
7608  * (or "before the sector after the target range")
7609  * then see if it ends after the given start.
7610  * We return
7611  *  0 if there are no known bad blocks in the range
7612  *  1 if there are known bad block which are all acknowledged
7613  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7614  * plus the start/length of the first bad section we overlap.
7615  */
7616 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7617                    sector_t *first_bad, int *bad_sectors)
7618 {
7619         int hi;
7620         int lo = 0;
7621         u64 *p = bb->page;
7622         int rv = 0;
7623         sector_t target = s + sectors;
7624         unsigned seq;
7625
7626         if (bb->shift > 0) {
7627                 /* round the start down, and the end up */
7628                 s >>= bb->shift;
7629                 target += (1<<bb->shift) - 1;
7630                 target >>= bb->shift;
7631                 sectors = target - s;
7632         }
7633         /* 'target' is now the first block after the bad range */
7634
7635 retry:
7636         seq = read_seqbegin(&bb->lock);
7637
7638         hi = bb->count;
7639
7640         /* Binary search between lo and hi for 'target'
7641          * i.e. for the last range that starts before 'target'
7642          */
7643         /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7644          * are known not to be the last range before target.
7645          * VARIANT: hi-lo is the number of possible
7646          * ranges, and decreases until it reaches 1
7647          */
7648         while (hi - lo > 1) {
7649                 int mid = (lo + hi) / 2;
7650                 sector_t a = BB_OFFSET(p[mid]);
7651                 if (a < target)
7652                         /* This could still be the one, earlier ranges
7653                          * could not. */
7654                         lo = mid;
7655                 else
7656                         /* This and later ranges are definitely out. */
7657                         hi = mid;
7658         }
7659         /* 'lo' might be the last that started before target, but 'hi' isn't */
7660         if (hi > lo) {
7661                 /* need to check all range that end after 's' to see if
7662                  * any are unacknowledged.
7663                  */
7664                 while (lo >= 0 &&
7665                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7666                         if (BB_OFFSET(p[lo]) < target) {
7667                                 /* starts before the end, and finishes after
7668                                  * the start, so they must overlap
7669                                  */
7670                                 if (rv != -1 && BB_ACK(p[lo]))
7671                                         rv = 1;
7672                                 else
7673                                         rv = -1;
7674                                 *first_bad = BB_OFFSET(p[lo]);
7675                                 *bad_sectors = BB_LEN(p[lo]);
7676                         }
7677                         lo--;
7678                 }
7679         }
7680
7681         if (read_seqretry(&bb->lock, seq))
7682                 goto retry;
7683
7684         return rv;
7685 }
7686 EXPORT_SYMBOL_GPL(md_is_badblock);
7687
7688 /*
7689  * Add a range of bad blocks to the table.
7690  * This might extend the table, or might contract it
7691  * if two adjacent ranges can be merged.
7692  * We binary-search to find the 'insertion' point, then
7693  * decide how best to handle it.
7694  */
7695 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
7696                             int acknowledged)
7697 {
7698         u64 *p;
7699         int lo, hi;
7700         int rv = 1;
7701
7702         if (bb->shift < 0)
7703                 /* badblocks are disabled */
7704                 return 0;
7705
7706         if (bb->shift) {
7707                 /* round the start down, and the end up */
7708                 sector_t next = s + sectors;
7709                 s >>= bb->shift;
7710                 next += (1<<bb->shift) - 1;
7711                 next >>= bb->shift;
7712                 sectors = next - s;
7713         }
7714
7715         write_seqlock_irq(&bb->lock);
7716
7717         p = bb->page;
7718         lo = 0;
7719         hi = bb->count;
7720         /* Find the last range that starts at-or-before 's' */
7721         while (hi - lo > 1) {
7722                 int mid = (lo + hi) / 2;
7723                 sector_t a = BB_OFFSET(p[mid]);
7724                 if (a <= s)
7725                         lo = mid;
7726                 else
7727                         hi = mid;
7728         }
7729         if (hi > lo && BB_OFFSET(p[lo]) > s)
7730                 hi = lo;
7731
7732         if (hi > lo) {
7733                 /* we found a range that might merge with the start
7734                  * of our new range
7735                  */
7736                 sector_t a = BB_OFFSET(p[lo]);
7737                 sector_t e = a + BB_LEN(p[lo]);
7738                 int ack = BB_ACK(p[lo]);
7739                 if (e >= s) {
7740                         /* Yes, we can merge with a previous range */
7741                         if (s == a && s + sectors >= e)
7742                                 /* new range covers old */
7743                                 ack = acknowledged;
7744                         else
7745                                 ack = ack && acknowledged;
7746
7747                         if (e < s + sectors)
7748                                 e = s + sectors;
7749                         if (e - a <= BB_MAX_LEN) {
7750                                 p[lo] = BB_MAKE(a, e-a, ack);
7751                                 s = e;
7752                         } else {
7753                                 /* does not all fit in one range,
7754                                  * make p[lo] maximal
7755                                  */
7756                                 if (BB_LEN(p[lo]) != BB_MAX_LEN)
7757                                         p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
7758                                 s = a + BB_MAX_LEN;
7759                         }
7760                         sectors = e - s;
7761                 }
7762         }
7763         if (sectors && hi < bb->count) {
7764                 /* 'hi' points to the first range that starts after 's'.
7765                  * Maybe we can merge with the start of that range */
7766                 sector_t a = BB_OFFSET(p[hi]);
7767                 sector_t e = a + BB_LEN(p[hi]);
7768                 int ack = BB_ACK(p[hi]);
7769                 if (a <= s + sectors) {
7770                         /* merging is possible */
7771                         if (e <= s + sectors) {
7772                                 /* full overlap */
7773                                 e = s + sectors;
7774                                 ack = acknowledged;
7775                         } else
7776                                 ack = ack && acknowledged;
7777
7778                         a = s;
7779                         if (e - a <= BB_MAX_LEN) {
7780                                 p[hi] = BB_MAKE(a, e-a, ack);
7781                                 s = e;
7782                         } else {
7783                                 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
7784                                 s = a + BB_MAX_LEN;
7785                         }
7786                         sectors = e - s;
7787                         lo = hi;
7788                         hi++;
7789                 }
7790         }
7791         if (sectors == 0 && hi < bb->count) {
7792                 /* we might be able to combine lo and hi */
7793                 /* Note: 's' is at the end of 'lo' */
7794                 sector_t a = BB_OFFSET(p[hi]);
7795                 int lolen = BB_LEN(p[lo]);
7796                 int hilen = BB_LEN(p[hi]);
7797                 int newlen = lolen + hilen - (s - a);
7798                 if (s >= a && newlen < BB_MAX_LEN) {
7799                         /* yes, we can combine them */
7800                         int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
7801                         p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
7802                         memmove(p + hi, p + hi + 1,
7803                                 (bb->count - hi - 1) * 8);
7804                         bb->count--;
7805                 }
7806         }
7807         while (sectors) {
7808                 /* didn't merge (it all).
7809                  * Need to add a range just before 'hi' */
7810                 if (bb->count >= MD_MAX_BADBLOCKS) {
7811                         /* No room for more */
7812                         rv = 0;
7813                         break;
7814                 } else {
7815                         int this_sectors = sectors;
7816                         memmove(p + hi + 1, p + hi,
7817                                 (bb->count - hi) * 8);
7818                         bb->count++;
7819
7820                         if (this_sectors > BB_MAX_LEN)
7821                                 this_sectors = BB_MAX_LEN;
7822                         p[hi] = BB_MAKE(s, this_sectors, acknowledged);
7823                         sectors -= this_sectors;
7824                         s += this_sectors;
7825                 }
7826         }
7827
7828         bb->changed = 1;
7829         if (!acknowledged)
7830                 bb->unacked_exist = 1;
7831         write_sequnlock_irq(&bb->lock);
7832
7833         return rv;
7834 }
7835
7836 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
7837                        int acknowledged)
7838 {
7839         int rv = md_set_badblocks(&rdev->badblocks,
7840                                   s + rdev->data_offset, sectors, acknowledged);
7841         if (rv) {
7842                 /* Make sure they get written out promptly */
7843                 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
7844                 md_wakeup_thread(rdev->mddev->thread);
7845         }
7846         return rv;
7847 }
7848 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
7849
7850 /*
7851  * Remove a range of bad blocks from the table.
7852  * This may involve extending the table if we spilt a region,
7853  * but it must not fail.  So if the table becomes full, we just
7854  * drop the remove request.
7855  */
7856 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
7857 {
7858         u64 *p;
7859         int lo, hi;
7860         sector_t target = s + sectors;
7861         int rv = 0;
7862
7863         if (bb->shift > 0) {
7864                 /* When clearing we round the start up and the end down.
7865                  * This should not matter as the shift should align with
7866                  * the block size and no rounding should ever be needed.
7867                  * However it is better the think a block is bad when it
7868                  * isn't than to think a block is not bad when it is.
7869                  */
7870                 s += (1<<bb->shift) - 1;
7871                 s >>= bb->shift;
7872                 target >>= bb->shift;
7873                 sectors = target - s;
7874         }
7875
7876         write_seqlock_irq(&bb->lock);
7877
7878         p = bb->page;
7879         lo = 0;
7880         hi = bb->count;
7881         /* Find the last range that starts before 'target' */
7882         while (hi - lo > 1) {
7883                 int mid = (lo + hi) / 2;
7884                 sector_t a = BB_OFFSET(p[mid]);
7885                 if (a < target)
7886                         lo = mid;
7887                 else
7888                         hi = mid;
7889         }
7890         if (hi > lo) {
7891                 /* p[lo] is the last range that could overlap the
7892                  * current range.  Earlier ranges could also overlap,
7893                  * but only this one can overlap the end of the range.
7894                  */
7895                 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
7896                         /* Partial overlap, leave the tail of this range */
7897                         int ack = BB_ACK(p[lo]);
7898                         sector_t a = BB_OFFSET(p[lo]);
7899                         sector_t end = a + BB_LEN(p[lo]);
7900
7901                         if (a < s) {
7902                                 /* we need to split this range */
7903                                 if (bb->count >= MD_MAX_BADBLOCKS) {
7904                                         rv = 0;
7905                                         goto out;
7906                                 }
7907                                 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
7908                                 bb->count++;
7909                                 p[lo] = BB_MAKE(a, s-a, ack);
7910                                 lo++;
7911                         }
7912                         p[lo] = BB_MAKE(target, end - target, ack);
7913                         /* there is no longer an overlap */
7914                         hi = lo;
7915                         lo--;
7916                 }
7917                 while (lo >= 0 &&
7918                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7919                         /* This range does overlap */
7920                         if (BB_OFFSET(p[lo]) < s) {
7921                                 /* Keep the early parts of this range. */
7922                                 int ack = BB_ACK(p[lo]);
7923                                 sector_t start = BB_OFFSET(p[lo]);
7924                                 p[lo] = BB_MAKE(start, s - start, ack);
7925                                 /* now low doesn't overlap, so.. */
7926                                 break;
7927                         }
7928                         lo--;
7929                 }
7930                 /* 'lo' is strictly before, 'hi' is strictly after,
7931                  * anything between needs to be discarded
7932                  */
7933                 if (hi - lo > 1) {
7934                         memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
7935                         bb->count -= (hi - lo - 1);
7936                 }
7937         }
7938
7939         bb->changed = 1;
7940 out:
7941         write_sequnlock_irq(&bb->lock);
7942         return rv;
7943 }
7944
7945 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors)
7946 {
7947         return md_clear_badblocks(&rdev->badblocks,
7948                                   s + rdev->data_offset,
7949                                   sectors);
7950 }
7951 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
7952
7953 /*
7954  * Acknowledge all bad blocks in a list.
7955  * This only succeeds if ->changed is clear.  It is used by
7956  * in-kernel metadata updates
7957  */
7958 void md_ack_all_badblocks(struct badblocks *bb)
7959 {
7960         if (bb->page == NULL || bb->changed)
7961                 /* no point even trying */
7962                 return;
7963         write_seqlock_irq(&bb->lock);
7964
7965         if (bb->changed == 0) {
7966                 u64 *p = bb->page;
7967                 int i;
7968                 for (i = 0; i < bb->count ; i++) {
7969                         if (!BB_ACK(p[i])) {
7970                                 sector_t start = BB_OFFSET(p[i]);
7971                                 int len = BB_LEN(p[i]);
7972                                 p[i] = BB_MAKE(start, len, 1);
7973                         }
7974                 }
7975                 bb->unacked_exist = 0;
7976         }
7977         write_sequnlock_irq(&bb->lock);
7978 }
7979 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
7980
7981 /* sysfs access to bad-blocks list.
7982  * We present two files.
7983  * 'bad-blocks' lists sector numbers and lengths of ranges that
7984  *    are recorded as bad.  The list is truncated to fit within
7985  *    the one-page limit of sysfs.
7986  *    Writing "sector length" to this file adds an acknowledged
7987  *    bad block list.
7988  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
7989  *    been acknowledged.  Writing to this file adds bad blocks
7990  *    without acknowledging them.  This is largely for testing.
7991  */
7992
7993 static ssize_t
7994 badblocks_show(struct badblocks *bb, char *page, int unack)
7995 {
7996         size_t len;
7997         int i;
7998         u64 *p = bb->page;
7999         unsigned seq;
8000
8001         if (bb->shift < 0)
8002                 return 0;
8003
8004 retry:
8005         seq = read_seqbegin(&bb->lock);
8006
8007         len = 0;
8008         i = 0;
8009
8010         while (len < PAGE_SIZE && i < bb->count) {
8011                 sector_t s = BB_OFFSET(p[i]);
8012                 unsigned int length = BB_LEN(p[i]);
8013                 int ack = BB_ACK(p[i]);
8014                 i++;
8015
8016                 if (unack && ack)
8017                         continue;
8018
8019                 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8020                                 (unsigned long long)s << bb->shift,
8021                                 length << bb->shift);
8022         }
8023         if (unack && len == 0)
8024                 bb->unacked_exist = 0;
8025
8026         if (read_seqretry(&bb->lock, seq))
8027                 goto retry;
8028
8029         return len;
8030 }
8031
8032 #define DO_DEBUG 1
8033
8034 static ssize_t
8035 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8036 {
8037         unsigned long long sector;
8038         int length;
8039         char newline;
8040 #ifdef DO_DEBUG
8041         /* Allow clearing via sysfs *only* for testing/debugging.
8042          * Normally only a successful write may clear a badblock
8043          */
8044         int clear = 0;
8045         if (page[0] == '-') {
8046                 clear = 1;
8047                 page++;
8048         }
8049 #endif /* DO_DEBUG */
8050
8051         switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8052         case 3:
8053                 if (newline != '\n')
8054                         return -EINVAL;
8055         case 2:
8056                 if (length <= 0)
8057                         return -EINVAL;
8058                 break;
8059         default:
8060                 return -EINVAL;
8061         }
8062
8063 #ifdef DO_DEBUG
8064         if (clear) {
8065                 md_clear_badblocks(bb, sector, length);
8066                 return len;
8067         }
8068 #endif /* DO_DEBUG */
8069         if (md_set_badblocks(bb, sector, length, !unack))
8070                 return len;
8071         else
8072                 return -ENOSPC;
8073 }
8074
8075 static int md_notify_reboot(struct notifier_block *this,
8076                             unsigned long code, void *x)
8077 {
8078         struct list_head *tmp;
8079         struct mddev *mddev;
8080         int need_delay = 0;
8081
8082         if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
8083
8084                 printk(KERN_INFO "md: stopping all md devices.\n");
8085
8086                 for_each_mddev(mddev, tmp) {
8087                         if (mddev_trylock(mddev)) {
8088                                 /* Force a switch to readonly even array
8089                                  * appears to still be in use.  Hence
8090                                  * the '100'.
8091                                  */
8092                                 md_set_readonly(mddev, 100);
8093                                 mddev_unlock(mddev);
8094                         }
8095                         need_delay = 1;
8096                 }
8097                 /*
8098                  * certain more exotic SCSI devices are known to be
8099                  * volatile wrt too early system reboots. While the
8100                  * right place to handle this issue is the given
8101                  * driver, we do want to have a safe RAID driver ...
8102                  */
8103                 if (need_delay)
8104                         mdelay(1000*1);
8105         }
8106         return NOTIFY_DONE;
8107 }
8108
8109 static struct notifier_block md_notifier = {
8110         .notifier_call  = md_notify_reboot,
8111         .next           = NULL,
8112         .priority       = INT_MAX, /* before any real devices */
8113 };
8114
8115 static void md_geninit(void)
8116 {
8117         pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8118
8119         proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8120 }
8121
8122 static int __init md_init(void)
8123 {
8124         int ret = -ENOMEM;
8125
8126         md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8127         if (!md_wq)
8128                 goto err_wq;
8129
8130         md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8131         if (!md_misc_wq)
8132                 goto err_misc_wq;
8133
8134         if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8135                 goto err_md;
8136
8137         if ((ret = register_blkdev(0, "mdp")) < 0)
8138                 goto err_mdp;
8139         mdp_major = ret;
8140
8141         blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8142                             md_probe, NULL, NULL);
8143         blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8144                             md_probe, NULL, NULL);
8145
8146         register_reboot_notifier(&md_notifier);
8147         raid_table_header = register_sysctl_table(raid_root_table);
8148
8149         md_geninit();
8150         return 0;
8151
8152 err_mdp:
8153         unregister_blkdev(MD_MAJOR, "md");
8154 err_md:
8155         destroy_workqueue(md_misc_wq);
8156 err_misc_wq:
8157         destroy_workqueue(md_wq);
8158 err_wq:
8159         return ret;
8160 }
8161
8162 #ifndef MODULE
8163
8164 /*
8165  * Searches all registered partitions for autorun RAID arrays
8166  * at boot time.
8167  */
8168
8169 static LIST_HEAD(all_detected_devices);
8170 struct detected_devices_node {
8171         struct list_head list;
8172         dev_t dev;
8173 };
8174
8175 void md_autodetect_dev(dev_t dev)
8176 {
8177         struct detected_devices_node *node_detected_dev;
8178
8179         node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8180         if (node_detected_dev) {
8181                 node_detected_dev->dev = dev;
8182                 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8183         } else {
8184                 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8185                         ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8186         }
8187 }
8188
8189
8190 static void autostart_arrays(int part)
8191 {
8192         struct md_rdev *rdev;
8193         struct detected_devices_node *node_detected_dev;
8194         dev_t dev;
8195         int i_scanned, i_passed;
8196
8197         i_scanned = 0;
8198         i_passed = 0;
8199
8200         printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8201
8202         while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8203                 i_scanned++;
8204                 node_detected_dev = list_entry(all_detected_devices.next,
8205                                         struct detected_devices_node, list);
8206                 list_del(&node_detected_dev->list);
8207                 dev = node_detected_dev->dev;
8208                 kfree(node_detected_dev);
8209                 rdev = md_import_device(dev,0, 90);
8210                 if (IS_ERR(rdev))
8211                         continue;
8212
8213                 if (test_bit(Faulty, &rdev->flags)) {
8214                         MD_BUG();
8215                         continue;
8216                 }
8217                 set_bit(AutoDetected, &rdev->flags);
8218                 list_add(&rdev->same_set, &pending_raid_disks);
8219                 i_passed++;
8220         }
8221
8222         printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8223                                                 i_scanned, i_passed);
8224
8225         autorun_devices(part);
8226 }
8227
8228 #endif /* !MODULE */
8229
8230 static __exit void md_exit(void)
8231 {
8232         struct mddev *mddev;
8233         struct list_head *tmp;
8234
8235         blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8236         blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8237
8238         unregister_blkdev(MD_MAJOR,"md");
8239         unregister_blkdev(mdp_major, "mdp");
8240         unregister_reboot_notifier(&md_notifier);
8241         unregister_sysctl_table(raid_table_header);
8242         remove_proc_entry("mdstat", NULL);
8243         for_each_mddev(mddev, tmp) {
8244                 export_array(mddev);
8245                 mddev->hold_active = 0;
8246         }
8247         destroy_workqueue(md_misc_wq);
8248         destroy_workqueue(md_wq);
8249 }
8250
8251 subsys_initcall(md_init);
8252 module_exit(md_exit)
8253
8254 static int get_ro(char *buffer, struct kernel_param *kp)
8255 {
8256         return sprintf(buffer, "%d", start_readonly);
8257 }
8258 static int set_ro(const char *val, struct kernel_param *kp)
8259 {
8260         char *e;
8261         int num = simple_strtoul(val, &e, 10);
8262         if (*val && (*e == '\0' || *e == '\n')) {
8263                 start_readonly = num;
8264                 return 0;
8265         }
8266         return -EINVAL;
8267 }
8268
8269 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8270 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8271
8272 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8273
8274 EXPORT_SYMBOL(register_md_personality);
8275 EXPORT_SYMBOL(unregister_md_personality);
8276 EXPORT_SYMBOL(md_error);
8277 EXPORT_SYMBOL(md_done_sync);
8278 EXPORT_SYMBOL(md_write_start);
8279 EXPORT_SYMBOL(md_write_end);
8280 EXPORT_SYMBOL(md_register_thread);
8281 EXPORT_SYMBOL(md_unregister_thread);
8282 EXPORT_SYMBOL(md_wakeup_thread);
8283 EXPORT_SYMBOL(md_check_recovery);
8284 MODULE_LICENSE("GPL");
8285 MODULE_DESCRIPTION("MD RAID framework");
8286 MODULE_ALIAS("md");
8287 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);