md: fix possible corruption of array metadata on shutdown.
[pandora-kernel.git] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3           Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/mutex.h>
40 #include <linux/buffer_head.h> /* for invalidate_bdev */
41 #include <linux/poll.h>
42 #include <linux/ctype.h>
43 #include <linux/string.h>
44 #include <linux/hdreg.h>
45 #include <linux/proc_fs.h>
46 #include <linux/random.h>
47 #include <linux/module.h>
48 #include <linux/reboot.h>
49 #include <linux/file.h>
50 #include <linux/compat.h>
51 #include <linux/delay.h>
52 #include <linux/raid/md_p.h>
53 #include <linux/raid/md_u.h>
54 #include <linux/slab.h>
55 #include "md.h"
56 #include "bitmap.h"
57
58 #ifndef MODULE
59 static void autostart_arrays(int part);
60 #endif
61
62 /* pers_list is a list of registered personalities protected
63  * by pers_lock.
64  * pers_lock does extra service to protect accesses to
65  * mddev->thread when the mutex cannot be held.
66  */
67 static LIST_HEAD(pers_list);
68 static DEFINE_SPINLOCK(pers_lock);
69
70 static void md_print_devices(void);
71
72 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
73 static struct workqueue_struct *md_wq;
74 static struct workqueue_struct *md_misc_wq;
75
76 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
77
78 /*
79  * Default number of read corrections we'll attempt on an rdev
80  * before ejecting it from the array. We divide the read error
81  * count by 2 for every hour elapsed between read errors.
82  */
83 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
84 /*
85  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
86  * is 1000 KB/sec, so the extra system load does not show up that much.
87  * Increase it if you want to have more _guaranteed_ speed. Note that
88  * the RAID driver will use the maximum available bandwidth if the IO
89  * subsystem is idle. There is also an 'absolute maximum' reconstruction
90  * speed limit - in case reconstruction slows down your system despite
91  * idle IO detection.
92  *
93  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
94  * or /sys/block/mdX/md/sync_speed_{min,max}
95  */
96
97 static int sysctl_speed_limit_min = 1000;
98 static int sysctl_speed_limit_max = 200000;
99 static inline int speed_min(struct mddev *mddev)
100 {
101         return mddev->sync_speed_min ?
102                 mddev->sync_speed_min : sysctl_speed_limit_min;
103 }
104
105 static inline int speed_max(struct mddev *mddev)
106 {
107         return mddev->sync_speed_max ?
108                 mddev->sync_speed_max : sysctl_speed_limit_max;
109 }
110
111 static struct ctl_table_header *raid_table_header;
112
113 static ctl_table raid_table[] = {
114         {
115                 .procname       = "speed_limit_min",
116                 .data           = &sysctl_speed_limit_min,
117                 .maxlen         = sizeof(int),
118                 .mode           = S_IRUGO|S_IWUSR,
119                 .proc_handler   = proc_dointvec,
120         },
121         {
122                 .procname       = "speed_limit_max",
123                 .data           = &sysctl_speed_limit_max,
124                 .maxlen         = sizeof(int),
125                 .mode           = S_IRUGO|S_IWUSR,
126                 .proc_handler   = proc_dointvec,
127         },
128         { }
129 };
130
131 static ctl_table raid_dir_table[] = {
132         {
133                 .procname       = "raid",
134                 .maxlen         = 0,
135                 .mode           = S_IRUGO|S_IXUGO,
136                 .child          = raid_table,
137         },
138         { }
139 };
140
141 static ctl_table raid_root_table[] = {
142         {
143                 .procname       = "dev",
144                 .maxlen         = 0,
145                 .mode           = 0555,
146                 .child          = raid_dir_table,
147         },
148         {  }
149 };
150
151 static const struct block_device_operations md_fops;
152
153 static int start_readonly;
154
155 /* bio_clone_mddev
156  * like bio_clone, but with a local bio set
157  */
158
159 static void mddev_bio_destructor(struct bio *bio)
160 {
161         struct mddev *mddev, **mddevp;
162
163         mddevp = (void*)bio;
164         mddev = mddevp[-1];
165
166         bio_free(bio, mddev->bio_set);
167 }
168
169 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
170                             struct mddev *mddev)
171 {
172         struct bio *b;
173         struct mddev **mddevp;
174
175         if (!mddev || !mddev->bio_set)
176                 return bio_alloc(gfp_mask, nr_iovecs);
177
178         b = bio_alloc_bioset(gfp_mask, nr_iovecs,
179                              mddev->bio_set);
180         if (!b)
181                 return NULL;
182         mddevp = (void*)b;
183         mddevp[-1] = mddev;
184         b->bi_destructor = mddev_bio_destructor;
185         return b;
186 }
187 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
188
189 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
190                             struct mddev *mddev)
191 {
192         struct bio *b;
193         struct mddev **mddevp;
194
195         if (!mddev || !mddev->bio_set)
196                 return bio_clone(bio, gfp_mask);
197
198         b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
199                              mddev->bio_set);
200         if (!b)
201                 return NULL;
202         mddevp = (void*)b;
203         mddevp[-1] = mddev;
204         b->bi_destructor = mddev_bio_destructor;
205         __bio_clone(b, bio);
206         if (bio_integrity(bio)) {
207                 int ret;
208
209                 ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
210
211                 if (ret < 0) {
212                         bio_put(b);
213                         return NULL;
214                 }
215         }
216
217         return b;
218 }
219 EXPORT_SYMBOL_GPL(bio_clone_mddev);
220
221 void md_trim_bio(struct bio *bio, int offset, int size)
222 {
223         /* 'bio' is a cloned bio which we need to trim to match
224          * the given offset and size.
225          * This requires adjusting bi_sector, bi_size, and bi_io_vec
226          */
227         int i;
228         struct bio_vec *bvec;
229         int sofar = 0;
230
231         size <<= 9;
232         if (offset == 0 && size == bio->bi_size)
233                 return;
234
235         bio->bi_sector += offset;
236         bio->bi_size = size;
237         offset <<= 9;
238         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
239
240         while (bio->bi_idx < bio->bi_vcnt &&
241                bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
242                 /* remove this whole bio_vec */
243                 offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
244                 bio->bi_idx++;
245         }
246         if (bio->bi_idx < bio->bi_vcnt) {
247                 bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
248                 bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
249         }
250         /* avoid any complications with bi_idx being non-zero*/
251         if (bio->bi_idx) {
252                 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
253                         (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
254                 bio->bi_vcnt -= bio->bi_idx;
255                 bio->bi_idx = 0;
256         }
257         /* Make sure vcnt and last bv are not too big */
258         bio_for_each_segment(bvec, bio, i) {
259                 if (sofar + bvec->bv_len > size)
260                         bvec->bv_len = size - sofar;
261                 if (bvec->bv_len == 0) {
262                         bio->bi_vcnt = i;
263                         break;
264                 }
265                 sofar += bvec->bv_len;
266         }
267 }
268 EXPORT_SYMBOL_GPL(md_trim_bio);
269
270 /*
271  * We have a system wide 'event count' that is incremented
272  * on any 'interesting' event, and readers of /proc/mdstat
273  * can use 'poll' or 'select' to find out when the event
274  * count increases.
275  *
276  * Events are:
277  *  start array, stop array, error, add device, remove device,
278  *  start build, activate spare
279  */
280 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
281 static atomic_t md_event_count;
282 void md_new_event(struct mddev *mddev)
283 {
284         atomic_inc(&md_event_count);
285         wake_up(&md_event_waiters);
286 }
287 EXPORT_SYMBOL_GPL(md_new_event);
288
289 /* Alternate version that can be called from interrupts
290  * when calling sysfs_notify isn't needed.
291  */
292 static void md_new_event_inintr(struct mddev *mddev)
293 {
294         atomic_inc(&md_event_count);
295         wake_up(&md_event_waiters);
296 }
297
298 /*
299  * Enables to iterate over all existing md arrays
300  * all_mddevs_lock protects this list.
301  */
302 static LIST_HEAD(all_mddevs);
303 static DEFINE_SPINLOCK(all_mddevs_lock);
304
305
306 /*
307  * iterates through all used mddevs in the system.
308  * We take care to grab the all_mddevs_lock whenever navigating
309  * the list, and to always hold a refcount when unlocked.
310  * Any code which breaks out of this loop while own
311  * a reference to the current mddev and must mddev_put it.
312  */
313 #define for_each_mddev(_mddev,_tmp)                                     \
314                                                                         \
315         for (({ spin_lock(&all_mddevs_lock);                            \
316                 _tmp = all_mddevs.next;                                 \
317                 _mddev = NULL;});                                       \
318              ({ if (_tmp != &all_mddevs)                                \
319                         mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
320                 spin_unlock(&all_mddevs_lock);                          \
321                 if (_mddev) mddev_put(_mddev);                          \
322                 _mddev = list_entry(_tmp, struct mddev, all_mddevs);    \
323                 _tmp != &all_mddevs;});                                 \
324              ({ spin_lock(&all_mddevs_lock);                            \
325                 _tmp = _tmp->next;})                                    \
326                 )
327
328
329 /* Rather than calling directly into the personality make_request function,
330  * IO requests come here first so that we can check if the device is
331  * being suspended pending a reconfiguration.
332  * We hold a refcount over the call to ->make_request.  By the time that
333  * call has finished, the bio has been linked into some internal structure
334  * and so is visible to ->quiesce(), so we don't need the refcount any more.
335  */
336 static void md_make_request(struct request_queue *q, struct bio *bio)
337 {
338         const int rw = bio_data_dir(bio);
339         struct mddev *mddev = q->queuedata;
340         int cpu;
341         unsigned int sectors;
342
343         if (mddev == NULL || mddev->pers == NULL
344             || !mddev->ready) {
345                 bio_io_error(bio);
346                 return;
347         }
348         smp_rmb(); /* Ensure implications of  'active' are visible */
349         rcu_read_lock();
350         if (mddev->suspended) {
351                 DEFINE_WAIT(__wait);
352                 for (;;) {
353                         prepare_to_wait(&mddev->sb_wait, &__wait,
354                                         TASK_UNINTERRUPTIBLE);
355                         if (!mddev->suspended)
356                                 break;
357                         rcu_read_unlock();
358                         schedule();
359                         rcu_read_lock();
360                 }
361                 finish_wait(&mddev->sb_wait, &__wait);
362         }
363         atomic_inc(&mddev->active_io);
364         rcu_read_unlock();
365
366         /*
367          * save the sectors now since our bio can
368          * go away inside make_request
369          */
370         sectors = bio_sectors(bio);
371         mddev->pers->make_request(mddev, bio);
372
373         cpu = part_stat_lock();
374         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
375         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
376         part_stat_unlock();
377
378         if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
379                 wake_up(&mddev->sb_wait);
380 }
381
382 /* mddev_suspend makes sure no new requests are submitted
383  * to the device, and that any requests that have been submitted
384  * are completely handled.
385  * Once ->stop is called and completes, the module will be completely
386  * unused.
387  */
388 void mddev_suspend(struct mddev *mddev)
389 {
390         BUG_ON(mddev->suspended);
391         mddev->suspended = 1;
392         synchronize_rcu();
393         wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
394         mddev->pers->quiesce(mddev, 1);
395 }
396 EXPORT_SYMBOL_GPL(mddev_suspend);
397
398 void mddev_resume(struct mddev *mddev)
399 {
400         mddev->suspended = 0;
401         wake_up(&mddev->sb_wait);
402         mddev->pers->quiesce(mddev, 0);
403
404         md_wakeup_thread(mddev->thread);
405         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
406 }
407 EXPORT_SYMBOL_GPL(mddev_resume);
408
409 int mddev_congested(struct mddev *mddev, int bits)
410 {
411         return mddev->suspended;
412 }
413 EXPORT_SYMBOL(mddev_congested);
414
415 /*
416  * Generic flush handling for md
417  */
418
419 static void md_end_flush(struct bio *bio, int err)
420 {
421         struct md_rdev *rdev = bio->bi_private;
422         struct mddev *mddev = rdev->mddev;
423
424         rdev_dec_pending(rdev, mddev);
425
426         if (atomic_dec_and_test(&mddev->flush_pending)) {
427                 /* The pre-request flush has finished */
428                 queue_work(md_wq, &mddev->flush_work);
429         }
430         bio_put(bio);
431 }
432
433 static void md_submit_flush_data(struct work_struct *ws);
434
435 static void submit_flushes(struct work_struct *ws)
436 {
437         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
438         struct md_rdev *rdev;
439
440         INIT_WORK(&mddev->flush_work, md_submit_flush_data);
441         atomic_set(&mddev->flush_pending, 1);
442         rcu_read_lock();
443         list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
444                 if (rdev->raid_disk >= 0 &&
445                     !test_bit(Faulty, &rdev->flags)) {
446                         /* Take two references, one is dropped
447                          * when request finishes, one after
448                          * we reclaim rcu_read_lock
449                          */
450                         struct bio *bi;
451                         atomic_inc(&rdev->nr_pending);
452                         atomic_inc(&rdev->nr_pending);
453                         rcu_read_unlock();
454                         bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev);
455                         bi->bi_end_io = md_end_flush;
456                         bi->bi_private = rdev;
457                         bi->bi_bdev = rdev->bdev;
458                         atomic_inc(&mddev->flush_pending);
459                         submit_bio(WRITE_FLUSH, bi);
460                         rcu_read_lock();
461                         rdev_dec_pending(rdev, mddev);
462                 }
463         rcu_read_unlock();
464         if (atomic_dec_and_test(&mddev->flush_pending))
465                 queue_work(md_wq, &mddev->flush_work);
466 }
467
468 static void md_submit_flush_data(struct work_struct *ws)
469 {
470         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
471         struct bio *bio = mddev->flush_bio;
472
473         if (bio->bi_size == 0)
474                 /* an empty barrier - all done */
475                 bio_endio(bio, 0);
476         else {
477                 bio->bi_rw &= ~REQ_FLUSH;
478                 mddev->pers->make_request(mddev, bio);
479         }
480
481         mddev->flush_bio = NULL;
482         wake_up(&mddev->sb_wait);
483 }
484
485 void md_flush_request(struct mddev *mddev, struct bio *bio)
486 {
487         spin_lock_irq(&mddev->write_lock);
488         wait_event_lock_irq(mddev->sb_wait,
489                             !mddev->flush_bio,
490                             mddev->write_lock, /*nothing*/);
491         mddev->flush_bio = bio;
492         spin_unlock_irq(&mddev->write_lock);
493
494         INIT_WORK(&mddev->flush_work, submit_flushes);
495         queue_work(md_wq, &mddev->flush_work);
496 }
497 EXPORT_SYMBOL(md_flush_request);
498
499 /* Support for plugging.
500  * This mirrors the plugging support in request_queue, but does not
501  * require having a whole queue or request structures.
502  * We allocate an md_plug_cb for each md device and each thread it gets
503  * plugged on.  This links tot the private plug_handle structure in the
504  * personality data where we keep a count of the number of outstanding
505  * plugs so other code can see if a plug is active.
506  */
507 struct md_plug_cb {
508         struct blk_plug_cb cb;
509         struct mddev *mddev;
510 };
511
512 static void plugger_unplug(struct blk_plug_cb *cb)
513 {
514         struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
515         if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
516                 md_wakeup_thread(mdcb->mddev->thread);
517         kfree(mdcb);
518 }
519
520 /* Check that an unplug wakeup will come shortly.
521  * If not, wakeup the md thread immediately
522  */
523 int mddev_check_plugged(struct mddev *mddev)
524 {
525         struct blk_plug *plug = current->plug;
526         struct md_plug_cb *mdcb;
527
528         if (!plug)
529                 return 0;
530
531         list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
532                 if (mdcb->cb.callback == plugger_unplug &&
533                     mdcb->mddev == mddev) {
534                         /* Already on the list, move to top */
535                         if (mdcb != list_first_entry(&plug->cb_list,
536                                                     struct md_plug_cb,
537                                                     cb.list))
538                                 list_move(&mdcb->cb.list, &plug->cb_list);
539                         return 1;
540                 }
541         }
542         /* Not currently on the callback list */
543         mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
544         if (!mdcb)
545                 return 0;
546
547         mdcb->mddev = mddev;
548         mdcb->cb.callback = plugger_unplug;
549         atomic_inc(&mddev->plug_cnt);
550         list_add(&mdcb->cb.list, &plug->cb_list);
551         return 1;
552 }
553 EXPORT_SYMBOL_GPL(mddev_check_plugged);
554
555 static inline struct mddev *mddev_get(struct mddev *mddev)
556 {
557         atomic_inc(&mddev->active);
558         return mddev;
559 }
560
561 static void mddev_delayed_delete(struct work_struct *ws);
562
563 static void mddev_put(struct mddev *mddev)
564 {
565         struct bio_set *bs = NULL;
566
567         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
568                 return;
569         if (!mddev->raid_disks && list_empty(&mddev->disks) &&
570             mddev->ctime == 0 && !mddev->hold_active) {
571                 /* Array is not configured at all, and not held active,
572                  * so destroy it */
573                 list_del_init(&mddev->all_mddevs);
574                 bs = mddev->bio_set;
575                 mddev->bio_set = NULL;
576                 if (mddev->gendisk) {
577                         /* We did a probe so need to clean up.  Call
578                          * queue_work inside the spinlock so that
579                          * flush_workqueue() after mddev_find will
580                          * succeed in waiting for the work to be done.
581                          */
582                         INIT_WORK(&mddev->del_work, mddev_delayed_delete);
583                         queue_work(md_misc_wq, &mddev->del_work);
584                 } else
585                         kfree(mddev);
586         }
587         spin_unlock(&all_mddevs_lock);
588         if (bs)
589                 bioset_free(bs);
590 }
591
592 void mddev_init(struct mddev *mddev)
593 {
594         mutex_init(&mddev->open_mutex);
595         mutex_init(&mddev->reconfig_mutex);
596         mutex_init(&mddev->bitmap_info.mutex);
597         INIT_LIST_HEAD(&mddev->disks);
598         INIT_LIST_HEAD(&mddev->all_mddevs);
599         init_timer(&mddev->safemode_timer);
600         atomic_set(&mddev->active, 1);
601         atomic_set(&mddev->openers, 0);
602         atomic_set(&mddev->active_io, 0);
603         atomic_set(&mddev->plug_cnt, 0);
604         spin_lock_init(&mddev->write_lock);
605         atomic_set(&mddev->flush_pending, 0);
606         init_waitqueue_head(&mddev->sb_wait);
607         init_waitqueue_head(&mddev->recovery_wait);
608         mddev->reshape_position = MaxSector;
609         mddev->resync_min = 0;
610         mddev->resync_max = MaxSector;
611         mddev->level = LEVEL_NONE;
612 }
613 EXPORT_SYMBOL_GPL(mddev_init);
614
615 static struct mddev * mddev_find(dev_t unit)
616 {
617         struct mddev *mddev, *new = NULL;
618
619         if (unit && MAJOR(unit) != MD_MAJOR)
620                 unit &= ~((1<<MdpMinorShift)-1);
621
622  retry:
623         spin_lock(&all_mddevs_lock);
624
625         if (unit) {
626                 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
627                         if (mddev->unit == unit) {
628                                 mddev_get(mddev);
629                                 spin_unlock(&all_mddevs_lock);
630                                 kfree(new);
631                                 return mddev;
632                         }
633
634                 if (new) {
635                         list_add(&new->all_mddevs, &all_mddevs);
636                         spin_unlock(&all_mddevs_lock);
637                         new->hold_active = UNTIL_IOCTL;
638                         return new;
639                 }
640         } else if (new) {
641                 /* find an unused unit number */
642                 static int next_minor = 512;
643                 int start = next_minor;
644                 int is_free = 0;
645                 int dev = 0;
646                 while (!is_free) {
647                         dev = MKDEV(MD_MAJOR, next_minor);
648                         next_minor++;
649                         if (next_minor > MINORMASK)
650                                 next_minor = 0;
651                         if (next_minor == start) {
652                                 /* Oh dear, all in use. */
653                                 spin_unlock(&all_mddevs_lock);
654                                 kfree(new);
655                                 return NULL;
656                         }
657                                 
658                         is_free = 1;
659                         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
660                                 if (mddev->unit == dev) {
661                                         is_free = 0;
662                                         break;
663                                 }
664                 }
665                 new->unit = dev;
666                 new->md_minor = MINOR(dev);
667                 new->hold_active = UNTIL_STOP;
668                 list_add(&new->all_mddevs, &all_mddevs);
669                 spin_unlock(&all_mddevs_lock);
670                 return new;
671         }
672         spin_unlock(&all_mddevs_lock);
673
674         new = kzalloc(sizeof(*new), GFP_KERNEL);
675         if (!new)
676                 return NULL;
677
678         new->unit = unit;
679         if (MAJOR(unit) == MD_MAJOR)
680                 new->md_minor = MINOR(unit);
681         else
682                 new->md_minor = MINOR(unit) >> MdpMinorShift;
683
684         mddev_init(new);
685
686         goto retry;
687 }
688
689 static inline int mddev_lock(struct mddev * mddev)
690 {
691         return mutex_lock_interruptible(&mddev->reconfig_mutex);
692 }
693
694 static inline int mddev_is_locked(struct mddev *mddev)
695 {
696         return mutex_is_locked(&mddev->reconfig_mutex);
697 }
698
699 static inline int mddev_trylock(struct mddev * mddev)
700 {
701         return mutex_trylock(&mddev->reconfig_mutex);
702 }
703
704 static struct attribute_group md_redundancy_group;
705
706 static void mddev_unlock(struct mddev * mddev)
707 {
708         if (mddev->to_remove) {
709                 /* These cannot be removed under reconfig_mutex as
710                  * an access to the files will try to take reconfig_mutex
711                  * while holding the file unremovable, which leads to
712                  * a deadlock.
713                  * So hold set sysfs_active while the remove in happeing,
714                  * and anything else which might set ->to_remove or my
715                  * otherwise change the sysfs namespace will fail with
716                  * -EBUSY if sysfs_active is still set.
717                  * We set sysfs_active under reconfig_mutex and elsewhere
718                  * test it under the same mutex to ensure its correct value
719                  * is seen.
720                  */
721                 struct attribute_group *to_remove = mddev->to_remove;
722                 mddev->to_remove = NULL;
723                 mddev->sysfs_active = 1;
724                 mutex_unlock(&mddev->reconfig_mutex);
725
726                 if (mddev->kobj.sd) {
727                         if (to_remove != &md_redundancy_group)
728                                 sysfs_remove_group(&mddev->kobj, to_remove);
729                         if (mddev->pers == NULL ||
730                             mddev->pers->sync_request == NULL) {
731                                 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
732                                 if (mddev->sysfs_action)
733                                         sysfs_put(mddev->sysfs_action);
734                                 mddev->sysfs_action = NULL;
735                         }
736                 }
737                 mddev->sysfs_active = 0;
738         } else
739                 mutex_unlock(&mddev->reconfig_mutex);
740
741         /* As we've dropped the mutex we need a spinlock to
742          * make sure the thread doesn't disappear
743          */
744         spin_lock(&pers_lock);
745         md_wakeup_thread(mddev->thread);
746         spin_unlock(&pers_lock);
747 }
748
749 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
750 {
751         struct md_rdev *rdev;
752
753         list_for_each_entry(rdev, &mddev->disks, same_set)
754                 if (rdev->desc_nr == nr)
755                         return rdev;
756
757         return NULL;
758 }
759
760 static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev)
761 {
762         struct md_rdev *rdev;
763
764         list_for_each_entry(rdev, &mddev->disks, same_set)
765                 if (rdev->bdev->bd_dev == dev)
766                         return rdev;
767
768         return NULL;
769 }
770
771 static struct md_personality *find_pers(int level, char *clevel)
772 {
773         struct md_personality *pers;
774         list_for_each_entry(pers, &pers_list, list) {
775                 if (level != LEVEL_NONE && pers->level == level)
776                         return pers;
777                 if (strcmp(pers->name, clevel)==0)
778                         return pers;
779         }
780         return NULL;
781 }
782
783 /* return the offset of the super block in 512byte sectors */
784 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
785 {
786         sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
787         return MD_NEW_SIZE_SECTORS(num_sectors);
788 }
789
790 static int alloc_disk_sb(struct md_rdev * rdev)
791 {
792         if (rdev->sb_page)
793                 MD_BUG();
794
795         rdev->sb_page = alloc_page(GFP_KERNEL);
796         if (!rdev->sb_page) {
797                 printk(KERN_ALERT "md: out of memory.\n");
798                 return -ENOMEM;
799         }
800
801         return 0;
802 }
803
804 static void free_disk_sb(struct md_rdev * rdev)
805 {
806         if (rdev->sb_page) {
807                 put_page(rdev->sb_page);
808                 rdev->sb_loaded = 0;
809                 rdev->sb_page = NULL;
810                 rdev->sb_start = 0;
811                 rdev->sectors = 0;
812         }
813         if (rdev->bb_page) {
814                 put_page(rdev->bb_page);
815                 rdev->bb_page = NULL;
816         }
817 }
818
819
820 static void super_written(struct bio *bio, int error)
821 {
822         struct md_rdev *rdev = bio->bi_private;
823         struct mddev *mddev = rdev->mddev;
824
825         if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
826                 printk("md: super_written gets error=%d, uptodate=%d\n",
827                        error, test_bit(BIO_UPTODATE, &bio->bi_flags));
828                 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
829                 md_error(mddev, rdev);
830         }
831
832         if (atomic_dec_and_test(&mddev->pending_writes))
833                 wake_up(&mddev->sb_wait);
834         bio_put(bio);
835 }
836
837 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
838                    sector_t sector, int size, struct page *page)
839 {
840         /* write first size bytes of page to sector of rdev
841          * Increment mddev->pending_writes before returning
842          * and decrement it on completion, waking up sb_wait
843          * if zero is reached.
844          * If an error occurred, call md_error
845          */
846         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
847
848         bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
849         bio->bi_sector = sector;
850         bio_add_page(bio, page, size, 0);
851         bio->bi_private = rdev;
852         bio->bi_end_io = super_written;
853
854         atomic_inc(&mddev->pending_writes);
855         submit_bio(WRITE_FLUSH_FUA, bio);
856 }
857
858 void md_super_wait(struct mddev *mddev)
859 {
860         /* wait for all superblock writes that were scheduled to complete */
861         DEFINE_WAIT(wq);
862         for(;;) {
863                 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
864                 if (atomic_read(&mddev->pending_writes)==0)
865                         break;
866                 schedule();
867         }
868         finish_wait(&mddev->sb_wait, &wq);
869 }
870
871 static void bi_complete(struct bio *bio, int error)
872 {
873         complete((struct completion*)bio->bi_private);
874 }
875
876 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
877                  struct page *page, int rw, bool metadata_op)
878 {
879         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
880         struct completion event;
881         int ret;
882
883         rw |= REQ_SYNC;
884
885         bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
886                 rdev->meta_bdev : rdev->bdev;
887         if (metadata_op)
888                 bio->bi_sector = sector + rdev->sb_start;
889         else
890                 bio->bi_sector = sector + rdev->data_offset;
891         bio_add_page(bio, page, size, 0);
892         init_completion(&event);
893         bio->bi_private = &event;
894         bio->bi_end_io = bi_complete;
895         submit_bio(rw, bio);
896         wait_for_completion(&event);
897
898         ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
899         bio_put(bio);
900         return ret;
901 }
902 EXPORT_SYMBOL_GPL(sync_page_io);
903
904 static int read_disk_sb(struct md_rdev * rdev, int size)
905 {
906         char b[BDEVNAME_SIZE];
907         if (!rdev->sb_page) {
908                 MD_BUG();
909                 return -EINVAL;
910         }
911         if (rdev->sb_loaded)
912                 return 0;
913
914
915         if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
916                 goto fail;
917         rdev->sb_loaded = 1;
918         return 0;
919
920 fail:
921         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
922                 bdevname(rdev->bdev,b));
923         return -EINVAL;
924 }
925
926 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
927 {
928         return  sb1->set_uuid0 == sb2->set_uuid0 &&
929                 sb1->set_uuid1 == sb2->set_uuid1 &&
930                 sb1->set_uuid2 == sb2->set_uuid2 &&
931                 sb1->set_uuid3 == sb2->set_uuid3;
932 }
933
934 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
935 {
936         int ret;
937         mdp_super_t *tmp1, *tmp2;
938
939         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
940         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
941
942         if (!tmp1 || !tmp2) {
943                 ret = 0;
944                 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
945                 goto abort;
946         }
947
948         *tmp1 = *sb1;
949         *tmp2 = *sb2;
950
951         /*
952          * nr_disks is not constant
953          */
954         tmp1->nr_disks = 0;
955         tmp2->nr_disks = 0;
956
957         ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
958 abort:
959         kfree(tmp1);
960         kfree(tmp2);
961         return ret;
962 }
963
964
965 static u32 md_csum_fold(u32 csum)
966 {
967         csum = (csum & 0xffff) + (csum >> 16);
968         return (csum & 0xffff) + (csum >> 16);
969 }
970
971 static unsigned int calc_sb_csum(mdp_super_t * sb)
972 {
973         u64 newcsum = 0;
974         u32 *sb32 = (u32*)sb;
975         int i;
976         unsigned int disk_csum, csum;
977
978         disk_csum = sb->sb_csum;
979         sb->sb_csum = 0;
980
981         for (i = 0; i < MD_SB_BYTES/4 ; i++)
982                 newcsum += sb32[i];
983         csum = (newcsum & 0xffffffff) + (newcsum>>32);
984
985
986 #ifdef CONFIG_ALPHA
987         /* This used to use csum_partial, which was wrong for several
988          * reasons including that different results are returned on
989          * different architectures.  It isn't critical that we get exactly
990          * the same return value as before (we always csum_fold before
991          * testing, and that removes any differences).  However as we
992          * know that csum_partial always returned a 16bit value on
993          * alphas, do a fold to maximise conformity to previous behaviour.
994          */
995         sb->sb_csum = md_csum_fold(disk_csum);
996 #else
997         sb->sb_csum = disk_csum;
998 #endif
999         return csum;
1000 }
1001
1002
1003 /*
1004  * Handle superblock details.
1005  * We want to be able to handle multiple superblock formats
1006  * so we have a common interface to them all, and an array of
1007  * different handlers.
1008  * We rely on user-space to write the initial superblock, and support
1009  * reading and updating of superblocks.
1010  * Interface methods are:
1011  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1012  *      loads and validates a superblock on dev.
1013  *      if refdev != NULL, compare superblocks on both devices
1014  *    Return:
1015  *      0 - dev has a superblock that is compatible with refdev
1016  *      1 - dev has a superblock that is compatible and newer than refdev
1017  *          so dev should be used as the refdev in future
1018  *     -EINVAL superblock incompatible or invalid
1019  *     -othererror e.g. -EIO
1020  *
1021  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
1022  *      Verify that dev is acceptable into mddev.
1023  *       The first time, mddev->raid_disks will be 0, and data from
1024  *       dev should be merged in.  Subsequent calls check that dev
1025  *       is new enough.  Return 0 or -EINVAL
1026  *
1027  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
1028  *     Update the superblock for rdev with data in mddev
1029  *     This does not write to disc.
1030  *
1031  */
1032
1033 struct super_type  {
1034         char                *name;
1035         struct module       *owner;
1036         int                 (*load_super)(struct md_rdev *rdev, struct md_rdev *refdev,
1037                                           int minor_version);
1038         int                 (*validate_super)(struct mddev *mddev, struct md_rdev *rdev);
1039         void                (*sync_super)(struct mddev *mddev, struct md_rdev *rdev);
1040         unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
1041                                                 sector_t num_sectors);
1042 };
1043
1044 /*
1045  * Check that the given mddev has no bitmap.
1046  *
1047  * This function is called from the run method of all personalities that do not
1048  * support bitmaps. It prints an error message and returns non-zero if mddev
1049  * has a bitmap. Otherwise, it returns 0.
1050  *
1051  */
1052 int md_check_no_bitmap(struct mddev *mddev)
1053 {
1054         if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1055                 return 0;
1056         printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1057                 mdname(mddev), mddev->pers->name);
1058         return 1;
1059 }
1060 EXPORT_SYMBOL(md_check_no_bitmap);
1061
1062 /*
1063  * load_super for 0.90.0 
1064  */
1065 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1066 {
1067         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1068         mdp_super_t *sb;
1069         int ret;
1070
1071         /*
1072          * Calculate the position of the superblock (512byte sectors),
1073          * it's at the end of the disk.
1074          *
1075          * It also happens to be a multiple of 4Kb.
1076          */
1077         rdev->sb_start = calc_dev_sboffset(rdev);
1078
1079         ret = read_disk_sb(rdev, MD_SB_BYTES);
1080         if (ret) return ret;
1081
1082         ret = -EINVAL;
1083
1084         bdevname(rdev->bdev, b);
1085         sb = page_address(rdev->sb_page);
1086
1087         if (sb->md_magic != MD_SB_MAGIC) {
1088                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1089                        b);
1090                 goto abort;
1091         }
1092
1093         if (sb->major_version != 0 ||
1094             sb->minor_version < 90 ||
1095             sb->minor_version > 91) {
1096                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1097                         sb->major_version, sb->minor_version,
1098                         b);
1099                 goto abort;
1100         }
1101
1102         if (sb->raid_disks <= 0)
1103                 goto abort;
1104
1105         if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1106                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1107                         b);
1108                 goto abort;
1109         }
1110
1111         rdev->preferred_minor = sb->md_minor;
1112         rdev->data_offset = 0;
1113         rdev->sb_size = MD_SB_BYTES;
1114         rdev->badblocks.shift = -1;
1115
1116         if (sb->level == LEVEL_MULTIPATH)
1117                 rdev->desc_nr = -1;
1118         else
1119                 rdev->desc_nr = sb->this_disk.number;
1120
1121         if (!refdev) {
1122                 ret = 1;
1123         } else {
1124                 __u64 ev1, ev2;
1125                 mdp_super_t *refsb = page_address(refdev->sb_page);
1126                 if (!uuid_equal(refsb, sb)) {
1127                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
1128                                 b, bdevname(refdev->bdev,b2));
1129                         goto abort;
1130                 }
1131                 if (!sb_equal(refsb, sb)) {
1132                         printk(KERN_WARNING "md: %s has same UUID"
1133                                " but different superblock to %s\n",
1134                                b, bdevname(refdev->bdev, b2));
1135                         goto abort;
1136                 }
1137                 ev1 = md_event(sb);
1138                 ev2 = md_event(refsb);
1139                 if (ev1 > ev2)
1140                         ret = 1;
1141                 else 
1142                         ret = 0;
1143         }
1144         rdev->sectors = rdev->sb_start;
1145         /* Limit to 4TB as metadata cannot record more than that */
1146         if (rdev->sectors >= (2ULL << 32))
1147                 rdev->sectors = (2ULL << 32) - 2;
1148
1149         if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1150                 /* "this cannot possibly happen" ... */
1151                 ret = -EINVAL;
1152
1153  abort:
1154         return ret;
1155 }
1156
1157 /*
1158  * validate_super for 0.90.0
1159  */
1160 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1161 {
1162         mdp_disk_t *desc;
1163         mdp_super_t *sb = page_address(rdev->sb_page);
1164         __u64 ev1 = md_event(sb);
1165
1166         rdev->raid_disk = -1;
1167         clear_bit(Faulty, &rdev->flags);
1168         clear_bit(In_sync, &rdev->flags);
1169         clear_bit(WriteMostly, &rdev->flags);
1170
1171         if (mddev->raid_disks == 0) {
1172                 mddev->major_version = 0;
1173                 mddev->minor_version = sb->minor_version;
1174                 mddev->patch_version = sb->patch_version;
1175                 mddev->external = 0;
1176                 mddev->chunk_sectors = sb->chunk_size >> 9;
1177                 mddev->ctime = sb->ctime;
1178                 mddev->utime = sb->utime;
1179                 mddev->level = sb->level;
1180                 mddev->clevel[0] = 0;
1181                 mddev->layout = sb->layout;
1182                 mddev->raid_disks = sb->raid_disks;
1183                 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1184                 mddev->events = ev1;
1185                 mddev->bitmap_info.offset = 0;
1186                 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1187
1188                 if (mddev->minor_version >= 91) {
1189                         mddev->reshape_position = sb->reshape_position;
1190                         mddev->delta_disks = sb->delta_disks;
1191                         mddev->new_level = sb->new_level;
1192                         mddev->new_layout = sb->new_layout;
1193                         mddev->new_chunk_sectors = sb->new_chunk >> 9;
1194                 } else {
1195                         mddev->reshape_position = MaxSector;
1196                         mddev->delta_disks = 0;
1197                         mddev->new_level = mddev->level;
1198                         mddev->new_layout = mddev->layout;
1199                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1200                 }
1201
1202                 if (sb->state & (1<<MD_SB_CLEAN))
1203                         mddev->recovery_cp = MaxSector;
1204                 else {
1205                         if (sb->events_hi == sb->cp_events_hi && 
1206                                 sb->events_lo == sb->cp_events_lo) {
1207                                 mddev->recovery_cp = sb->recovery_cp;
1208                         } else
1209                                 mddev->recovery_cp = 0;
1210                 }
1211
1212                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1213                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1214                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1215                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1216
1217                 mddev->max_disks = MD_SB_DISKS;
1218
1219                 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1220                     mddev->bitmap_info.file == NULL)
1221                         mddev->bitmap_info.offset =
1222                                 mddev->bitmap_info.default_offset;
1223
1224         } else if (mddev->pers == NULL) {
1225                 /* Insist on good event counter while assembling, except
1226                  * for spares (which don't need an event count) */
1227                 ++ev1;
1228                 if (sb->disks[rdev->desc_nr].state & (
1229                             (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1230                         if (ev1 < mddev->events) 
1231                                 return -EINVAL;
1232         } else if (mddev->bitmap) {
1233                 /* if adding to array with a bitmap, then we can accept an
1234                  * older device ... but not too old.
1235                  */
1236                 if (ev1 < mddev->bitmap->events_cleared)
1237                         return 0;
1238         } else {
1239                 if (ev1 < mddev->events)
1240                         /* just a hot-add of a new device, leave raid_disk at -1 */
1241                         return 0;
1242         }
1243
1244         if (mddev->level != LEVEL_MULTIPATH) {
1245                 desc = sb->disks + rdev->desc_nr;
1246
1247                 if (desc->state & (1<<MD_DISK_FAULTY))
1248                         set_bit(Faulty, &rdev->flags);
1249                 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1250                             desc->raid_disk < mddev->raid_disks */) {
1251                         set_bit(In_sync, &rdev->flags);
1252                         rdev->raid_disk = desc->raid_disk;
1253                 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1254                         /* active but not in sync implies recovery up to
1255                          * reshape position.  We don't know exactly where
1256                          * that is, so set to zero for now */
1257                         if (mddev->minor_version >= 91) {
1258                                 rdev->recovery_offset = 0;
1259                                 rdev->raid_disk = desc->raid_disk;
1260                         }
1261                 }
1262                 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1263                         set_bit(WriteMostly, &rdev->flags);
1264         } else /* MULTIPATH are always insync */
1265                 set_bit(In_sync, &rdev->flags);
1266         return 0;
1267 }
1268
1269 /*
1270  * sync_super for 0.90.0
1271  */
1272 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1273 {
1274         mdp_super_t *sb;
1275         struct md_rdev *rdev2;
1276         int next_spare = mddev->raid_disks;
1277
1278
1279         /* make rdev->sb match mddev data..
1280          *
1281          * 1/ zero out disks
1282          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1283          * 3/ any empty disks < next_spare become removed
1284          *
1285          * disks[0] gets initialised to REMOVED because
1286          * we cannot be sure from other fields if it has
1287          * been initialised or not.
1288          */
1289         int i;
1290         int active=0, working=0,failed=0,spare=0,nr_disks=0;
1291
1292         rdev->sb_size = MD_SB_BYTES;
1293
1294         sb = page_address(rdev->sb_page);
1295
1296         memset(sb, 0, sizeof(*sb));
1297
1298         sb->md_magic = MD_SB_MAGIC;
1299         sb->major_version = mddev->major_version;
1300         sb->patch_version = mddev->patch_version;
1301         sb->gvalid_words  = 0; /* ignored */
1302         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1303         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1304         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1305         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1306
1307         sb->ctime = mddev->ctime;
1308         sb->level = mddev->level;
1309         sb->size = mddev->dev_sectors / 2;
1310         sb->raid_disks = mddev->raid_disks;
1311         sb->md_minor = mddev->md_minor;
1312         sb->not_persistent = 0;
1313         sb->utime = mddev->utime;
1314         sb->state = 0;
1315         sb->events_hi = (mddev->events>>32);
1316         sb->events_lo = (u32)mddev->events;
1317
1318         if (mddev->reshape_position == MaxSector)
1319                 sb->minor_version = 90;
1320         else {
1321                 sb->minor_version = 91;
1322                 sb->reshape_position = mddev->reshape_position;
1323                 sb->new_level = mddev->new_level;
1324                 sb->delta_disks = mddev->delta_disks;
1325                 sb->new_layout = mddev->new_layout;
1326                 sb->new_chunk = mddev->new_chunk_sectors << 9;
1327         }
1328         mddev->minor_version = sb->minor_version;
1329         if (mddev->in_sync)
1330         {
1331                 sb->recovery_cp = mddev->recovery_cp;
1332                 sb->cp_events_hi = (mddev->events>>32);
1333                 sb->cp_events_lo = (u32)mddev->events;
1334                 if (mddev->recovery_cp == MaxSector)
1335                         sb->state = (1<< MD_SB_CLEAN);
1336         } else
1337                 sb->recovery_cp = 0;
1338
1339         sb->layout = mddev->layout;
1340         sb->chunk_size = mddev->chunk_sectors << 9;
1341
1342         if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1343                 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1344
1345         sb->disks[0].state = (1<<MD_DISK_REMOVED);
1346         list_for_each_entry(rdev2, &mddev->disks, same_set) {
1347                 mdp_disk_t *d;
1348                 int desc_nr;
1349                 int is_active = test_bit(In_sync, &rdev2->flags);
1350
1351                 if (rdev2->raid_disk >= 0 &&
1352                     sb->minor_version >= 91)
1353                         /* we have nowhere to store the recovery_offset,
1354                          * but if it is not below the reshape_position,
1355                          * we can piggy-back on that.
1356                          */
1357                         is_active = 1;
1358                 if (rdev2->raid_disk < 0 ||
1359                     test_bit(Faulty, &rdev2->flags))
1360                         is_active = 0;
1361                 if (is_active)
1362                         desc_nr = rdev2->raid_disk;
1363                 else
1364                         desc_nr = next_spare++;
1365                 rdev2->desc_nr = desc_nr;
1366                 d = &sb->disks[rdev2->desc_nr];
1367                 nr_disks++;
1368                 d->number = rdev2->desc_nr;
1369                 d->major = MAJOR(rdev2->bdev->bd_dev);
1370                 d->minor = MINOR(rdev2->bdev->bd_dev);
1371                 if (is_active)
1372                         d->raid_disk = rdev2->raid_disk;
1373                 else
1374                         d->raid_disk = rdev2->desc_nr; /* compatibility */
1375                 if (test_bit(Faulty, &rdev2->flags))
1376                         d->state = (1<<MD_DISK_FAULTY);
1377                 else if (is_active) {
1378                         d->state = (1<<MD_DISK_ACTIVE);
1379                         if (test_bit(In_sync, &rdev2->flags))
1380                                 d->state |= (1<<MD_DISK_SYNC);
1381                         active++;
1382                         working++;
1383                 } else {
1384                         d->state = 0;
1385                         spare++;
1386                         working++;
1387                 }
1388                 if (test_bit(WriteMostly, &rdev2->flags))
1389                         d->state |= (1<<MD_DISK_WRITEMOSTLY);
1390         }
1391         /* now set the "removed" and "faulty" bits on any missing devices */
1392         for (i=0 ; i < mddev->raid_disks ; i++) {
1393                 mdp_disk_t *d = &sb->disks[i];
1394                 if (d->state == 0 && d->number == 0) {
1395                         d->number = i;
1396                         d->raid_disk = i;
1397                         d->state = (1<<MD_DISK_REMOVED);
1398                         d->state |= (1<<MD_DISK_FAULTY);
1399                         failed++;
1400                 }
1401         }
1402         sb->nr_disks = nr_disks;
1403         sb->active_disks = active;
1404         sb->working_disks = working;
1405         sb->failed_disks = failed;
1406         sb->spare_disks = spare;
1407
1408         sb->this_disk = sb->disks[rdev->desc_nr];
1409         sb->sb_csum = calc_sb_csum(sb);
1410 }
1411
1412 /*
1413  * rdev_size_change for 0.90.0
1414  */
1415 static unsigned long long
1416 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1417 {
1418         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1419                 return 0; /* component must fit device */
1420         if (rdev->mddev->bitmap_info.offset)
1421                 return 0; /* can't move bitmap */
1422         rdev->sb_start = calc_dev_sboffset(rdev);
1423         if (!num_sectors || num_sectors > rdev->sb_start)
1424                 num_sectors = rdev->sb_start;
1425         /* Limit to 4TB as metadata cannot record more than that.
1426          * 4TB == 2^32 KB, or 2*2^32 sectors.
1427          */
1428         if (num_sectors >= (2ULL << 32))
1429                 num_sectors = (2ULL << 32) - 2;
1430         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1431                        rdev->sb_page);
1432         md_super_wait(rdev->mddev);
1433         return num_sectors;
1434 }
1435
1436
1437 /*
1438  * version 1 superblock
1439  */
1440
1441 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1442 {
1443         __le32 disk_csum;
1444         u32 csum;
1445         unsigned long long newcsum;
1446         int size = 256 + le32_to_cpu(sb->max_dev)*2;
1447         __le32 *isuper = (__le32*)sb;
1448         int i;
1449
1450         disk_csum = sb->sb_csum;
1451         sb->sb_csum = 0;
1452         newcsum = 0;
1453         for (i=0; size>=4; size -= 4 )
1454                 newcsum += le32_to_cpu(*isuper++);
1455
1456         if (size == 2)
1457                 newcsum += le16_to_cpu(*(__le16*) isuper);
1458
1459         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1460         sb->sb_csum = disk_csum;
1461         return cpu_to_le32(csum);
1462 }
1463
1464 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1465                             int acknowledged);
1466 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1467 {
1468         struct mdp_superblock_1 *sb;
1469         int ret;
1470         sector_t sb_start;
1471         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1472         int bmask;
1473
1474         /*
1475          * Calculate the position of the superblock in 512byte sectors.
1476          * It is always aligned to a 4K boundary and
1477          * depeding on minor_version, it can be:
1478          * 0: At least 8K, but less than 12K, from end of device
1479          * 1: At start of device
1480          * 2: 4K from start of device.
1481          */
1482         switch(minor_version) {
1483         case 0:
1484                 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1485                 sb_start -= 8*2;
1486                 sb_start &= ~(sector_t)(4*2-1);
1487                 break;
1488         case 1:
1489                 sb_start = 0;
1490                 break;
1491         case 2:
1492                 sb_start = 8;
1493                 break;
1494         default:
1495                 return -EINVAL;
1496         }
1497         rdev->sb_start = sb_start;
1498
1499         /* superblock is rarely larger than 1K, but it can be larger,
1500          * and it is safe to read 4k, so we do that
1501          */
1502         ret = read_disk_sb(rdev, 4096);
1503         if (ret) return ret;
1504
1505
1506         sb = page_address(rdev->sb_page);
1507
1508         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1509             sb->major_version != cpu_to_le32(1) ||
1510             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1511             le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1512             (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1513                 return -EINVAL;
1514
1515         if (calc_sb_1_csum(sb) != sb->sb_csum) {
1516                 printk("md: invalid superblock checksum on %s\n",
1517                         bdevname(rdev->bdev,b));
1518                 return -EINVAL;
1519         }
1520         if (le64_to_cpu(sb->data_size) < 10) {
1521                 printk("md: data_size too small on %s\n",
1522                        bdevname(rdev->bdev,b));
1523                 return -EINVAL;
1524         }
1525
1526         rdev->preferred_minor = 0xffff;
1527         rdev->data_offset = le64_to_cpu(sb->data_offset);
1528         atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1529
1530         rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1531         bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1532         if (rdev->sb_size & bmask)
1533                 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1534
1535         if (minor_version
1536             && rdev->data_offset < sb_start + (rdev->sb_size/512))
1537                 return -EINVAL;
1538
1539         if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1540                 rdev->desc_nr = -1;
1541         else
1542                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1543
1544         if (!rdev->bb_page) {
1545                 rdev->bb_page = alloc_page(GFP_KERNEL);
1546                 if (!rdev->bb_page)
1547                         return -ENOMEM;
1548         }
1549         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1550             rdev->badblocks.count == 0) {
1551                 /* need to load the bad block list.
1552                  * Currently we limit it to one page.
1553                  */
1554                 s32 offset;
1555                 sector_t bb_sector;
1556                 u64 *bbp;
1557                 int i;
1558                 int sectors = le16_to_cpu(sb->bblog_size);
1559                 if (sectors > (PAGE_SIZE / 512))
1560                         return -EINVAL;
1561                 offset = le32_to_cpu(sb->bblog_offset);
1562                 if (offset == 0)
1563                         return -EINVAL;
1564                 bb_sector = (long long)offset;
1565                 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1566                                   rdev->bb_page, READ, true))
1567                         return -EIO;
1568                 bbp = (u64 *)page_address(rdev->bb_page);
1569                 rdev->badblocks.shift = sb->bblog_shift;
1570                 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1571                         u64 bb = le64_to_cpu(*bbp);
1572                         int count = bb & (0x3ff);
1573                         u64 sector = bb >> 10;
1574                         sector <<= sb->bblog_shift;
1575                         count <<= sb->bblog_shift;
1576                         if (bb + 1 == 0)
1577                                 break;
1578                         if (md_set_badblocks(&rdev->badblocks,
1579                                              sector, count, 1) == 0)
1580                                 return -EINVAL;
1581                 }
1582         } else if (sb->bblog_offset == 0)
1583                 rdev->badblocks.shift = -1;
1584
1585         if (!refdev) {
1586                 ret = 1;
1587         } else {
1588                 __u64 ev1, ev2;
1589                 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1590
1591                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1592                     sb->level != refsb->level ||
1593                     sb->layout != refsb->layout ||
1594                     sb->chunksize != refsb->chunksize) {
1595                         printk(KERN_WARNING "md: %s has strangely different"
1596                                 " superblock to %s\n",
1597                                 bdevname(rdev->bdev,b),
1598                                 bdevname(refdev->bdev,b2));
1599                         return -EINVAL;
1600                 }
1601                 ev1 = le64_to_cpu(sb->events);
1602                 ev2 = le64_to_cpu(refsb->events);
1603
1604                 if (ev1 > ev2)
1605                         ret = 1;
1606                 else
1607                         ret = 0;
1608         }
1609         if (minor_version)
1610                 rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
1611                         le64_to_cpu(sb->data_offset);
1612         else
1613                 rdev->sectors = rdev->sb_start;
1614         if (rdev->sectors < le64_to_cpu(sb->data_size))
1615                 return -EINVAL;
1616         rdev->sectors = le64_to_cpu(sb->data_size);
1617         if (le64_to_cpu(sb->size) > rdev->sectors)
1618                 return -EINVAL;
1619         return ret;
1620 }
1621
1622 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1623 {
1624         struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1625         __u64 ev1 = le64_to_cpu(sb->events);
1626
1627         rdev->raid_disk = -1;
1628         clear_bit(Faulty, &rdev->flags);
1629         clear_bit(In_sync, &rdev->flags);
1630         clear_bit(WriteMostly, &rdev->flags);
1631
1632         if (mddev->raid_disks == 0) {
1633                 mddev->major_version = 1;
1634                 mddev->patch_version = 0;
1635                 mddev->external = 0;
1636                 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1637                 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1638                 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1639                 mddev->level = le32_to_cpu(sb->level);
1640                 mddev->clevel[0] = 0;
1641                 mddev->layout = le32_to_cpu(sb->layout);
1642                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1643                 mddev->dev_sectors = le64_to_cpu(sb->size);
1644                 mddev->events = ev1;
1645                 mddev->bitmap_info.offset = 0;
1646                 mddev->bitmap_info.default_offset = 1024 >> 9;
1647                 
1648                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1649                 memcpy(mddev->uuid, sb->set_uuid, 16);
1650
1651                 mddev->max_disks =  (4096-256)/2;
1652
1653                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1654                     mddev->bitmap_info.file == NULL )
1655                         mddev->bitmap_info.offset =
1656                                 (__s32)le32_to_cpu(sb->bitmap_offset);
1657
1658                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1659                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1660                         mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1661                         mddev->new_level = le32_to_cpu(sb->new_level);
1662                         mddev->new_layout = le32_to_cpu(sb->new_layout);
1663                         mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1664                 } else {
1665                         mddev->reshape_position = MaxSector;
1666                         mddev->delta_disks = 0;
1667                         mddev->new_level = mddev->level;
1668                         mddev->new_layout = mddev->layout;
1669                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1670                 }
1671
1672         } else if (mddev->pers == NULL) {
1673                 /* Insist of good event counter while assembling, except for
1674                  * spares (which don't need an event count) */
1675                 ++ev1;
1676                 if (rdev->desc_nr >= 0 &&
1677                     rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1678                     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1679                         if (ev1 < mddev->events)
1680                                 return -EINVAL;
1681         } else if (mddev->bitmap) {
1682                 /* If adding to array with a bitmap, then we can accept an
1683                  * older device, but not too old.
1684                  */
1685                 if (ev1 < mddev->bitmap->events_cleared)
1686                         return 0;
1687         } else {
1688                 if (ev1 < mddev->events)
1689                         /* just a hot-add of a new device, leave raid_disk at -1 */
1690                         return 0;
1691         }
1692         if (mddev->level != LEVEL_MULTIPATH) {
1693                 int role;
1694                 if (rdev->desc_nr < 0 ||
1695                     rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1696                         role = 0xffff;
1697                         rdev->desc_nr = -1;
1698                 } else
1699                         role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1700                 switch(role) {
1701                 case 0xffff: /* spare */
1702                         break;
1703                 case 0xfffe: /* faulty */
1704                         set_bit(Faulty, &rdev->flags);
1705                         break;
1706                 default:
1707                         if ((le32_to_cpu(sb->feature_map) &
1708                              MD_FEATURE_RECOVERY_OFFSET))
1709                                 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1710                         else
1711                                 set_bit(In_sync, &rdev->flags);
1712                         rdev->raid_disk = role;
1713                         break;
1714                 }
1715                 if (sb->devflags & WriteMostly1)
1716                         set_bit(WriteMostly, &rdev->flags);
1717         } else /* MULTIPATH are always insync */
1718                 set_bit(In_sync, &rdev->flags);
1719
1720         return 0;
1721 }
1722
1723 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1724 {
1725         struct mdp_superblock_1 *sb;
1726         struct md_rdev *rdev2;
1727         int max_dev, i;
1728         /* make rdev->sb match mddev and rdev data. */
1729
1730         sb = page_address(rdev->sb_page);
1731
1732         sb->feature_map = 0;
1733         sb->pad0 = 0;
1734         sb->recovery_offset = cpu_to_le64(0);
1735         memset(sb->pad1, 0, sizeof(sb->pad1));
1736         memset(sb->pad3, 0, sizeof(sb->pad3));
1737
1738         sb->utime = cpu_to_le64((__u64)mddev->utime);
1739         sb->events = cpu_to_le64(mddev->events);
1740         if (mddev->in_sync)
1741                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1742         else
1743                 sb->resync_offset = cpu_to_le64(0);
1744
1745         sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1746
1747         sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1748         sb->size = cpu_to_le64(mddev->dev_sectors);
1749         sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1750         sb->level = cpu_to_le32(mddev->level);
1751         sb->layout = cpu_to_le32(mddev->layout);
1752
1753         if (test_bit(WriteMostly, &rdev->flags))
1754                 sb->devflags |= WriteMostly1;
1755         else
1756                 sb->devflags &= ~WriteMostly1;
1757
1758         if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1759                 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1760                 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1761         }
1762
1763         if (rdev->raid_disk >= 0 &&
1764             !test_bit(In_sync, &rdev->flags)) {
1765                 sb->feature_map |=
1766                         cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1767                 sb->recovery_offset =
1768                         cpu_to_le64(rdev->recovery_offset);
1769         }
1770
1771         if (mddev->reshape_position != MaxSector) {
1772                 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1773                 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1774                 sb->new_layout = cpu_to_le32(mddev->new_layout);
1775                 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1776                 sb->new_level = cpu_to_le32(mddev->new_level);
1777                 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1778         }
1779
1780         if (rdev->badblocks.count == 0)
1781                 /* Nothing to do for bad blocks*/ ;
1782         else if (sb->bblog_offset == 0)
1783                 /* Cannot record bad blocks on this device */
1784                 md_error(mddev, rdev);
1785         else {
1786                 struct badblocks *bb = &rdev->badblocks;
1787                 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1788                 u64 *p = bb->page;
1789                 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1790                 if (bb->changed) {
1791                         unsigned seq;
1792
1793 retry:
1794                         seq = read_seqbegin(&bb->lock);
1795
1796                         memset(bbp, 0xff, PAGE_SIZE);
1797
1798                         for (i = 0 ; i < bb->count ; i++) {
1799                                 u64 internal_bb = *p++;
1800                                 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1801                                                 | BB_LEN(internal_bb));
1802                                 *bbp++ = cpu_to_le64(store_bb);
1803                         }
1804                         bb->changed = 0;
1805                         if (read_seqretry(&bb->lock, seq))
1806                                 goto retry;
1807
1808                         bb->sector = (rdev->sb_start +
1809                                       (int)le32_to_cpu(sb->bblog_offset));
1810                         bb->size = le16_to_cpu(sb->bblog_size);
1811                 }
1812         }
1813
1814         max_dev = 0;
1815         list_for_each_entry(rdev2, &mddev->disks, same_set)
1816                 if (rdev2->desc_nr+1 > max_dev)
1817                         max_dev = rdev2->desc_nr+1;
1818
1819         if (max_dev > le32_to_cpu(sb->max_dev)) {
1820                 int bmask;
1821                 sb->max_dev = cpu_to_le32(max_dev);
1822                 rdev->sb_size = max_dev * 2 + 256;
1823                 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1824                 if (rdev->sb_size & bmask)
1825                         rdev->sb_size = (rdev->sb_size | bmask) + 1;
1826         } else
1827                 max_dev = le32_to_cpu(sb->max_dev);
1828
1829         for (i=0; i<max_dev;i++)
1830                 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1831         
1832         list_for_each_entry(rdev2, &mddev->disks, same_set) {
1833                 i = rdev2->desc_nr;
1834                 if (test_bit(Faulty, &rdev2->flags))
1835                         sb->dev_roles[i] = cpu_to_le16(0xfffe);
1836                 else if (test_bit(In_sync, &rdev2->flags))
1837                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1838                 else if (rdev2->raid_disk >= 0)
1839                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1840                 else
1841                         sb->dev_roles[i] = cpu_to_le16(0xffff);
1842         }
1843
1844         sb->sb_csum = calc_sb_1_csum(sb);
1845 }
1846
1847 static unsigned long long
1848 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1849 {
1850         struct mdp_superblock_1 *sb;
1851         sector_t max_sectors;
1852         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1853                 return 0; /* component must fit device */
1854         if (rdev->sb_start < rdev->data_offset) {
1855                 /* minor versions 1 and 2; superblock before data */
1856                 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1857                 max_sectors -= rdev->data_offset;
1858                 if (!num_sectors || num_sectors > max_sectors)
1859                         num_sectors = max_sectors;
1860         } else if (rdev->mddev->bitmap_info.offset) {
1861                 /* minor version 0 with bitmap we can't move */
1862                 return 0;
1863         } else {
1864                 /* minor version 0; superblock after data */
1865                 sector_t sb_start;
1866                 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1867                 sb_start &= ~(sector_t)(4*2 - 1);
1868                 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1869                 if (!num_sectors || num_sectors > max_sectors)
1870                         num_sectors = max_sectors;
1871                 rdev->sb_start = sb_start;
1872         }
1873         sb = page_address(rdev->sb_page);
1874         sb->data_size = cpu_to_le64(num_sectors);
1875         sb->super_offset = rdev->sb_start;
1876         sb->sb_csum = calc_sb_1_csum(sb);
1877         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1878                        rdev->sb_page);
1879         md_super_wait(rdev->mddev);
1880         return num_sectors;
1881 }
1882
1883 static struct super_type super_types[] = {
1884         [0] = {
1885                 .name   = "0.90.0",
1886                 .owner  = THIS_MODULE,
1887                 .load_super         = super_90_load,
1888                 .validate_super     = super_90_validate,
1889                 .sync_super         = super_90_sync,
1890                 .rdev_size_change   = super_90_rdev_size_change,
1891         },
1892         [1] = {
1893                 .name   = "md-1",
1894                 .owner  = THIS_MODULE,
1895                 .load_super         = super_1_load,
1896                 .validate_super     = super_1_validate,
1897                 .sync_super         = super_1_sync,
1898                 .rdev_size_change   = super_1_rdev_size_change,
1899         },
1900 };
1901
1902 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1903 {
1904         if (mddev->sync_super) {
1905                 mddev->sync_super(mddev, rdev);
1906                 return;
1907         }
1908
1909         BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1910
1911         super_types[mddev->major_version].sync_super(mddev, rdev);
1912 }
1913
1914 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1915 {
1916         struct md_rdev *rdev, *rdev2;
1917
1918         rcu_read_lock();
1919         rdev_for_each_rcu(rdev, mddev1)
1920                 rdev_for_each_rcu(rdev2, mddev2)
1921                         if (rdev->bdev->bd_contains ==
1922                             rdev2->bdev->bd_contains) {
1923                                 rcu_read_unlock();
1924                                 return 1;
1925                         }
1926         rcu_read_unlock();
1927         return 0;
1928 }
1929
1930 static LIST_HEAD(pending_raid_disks);
1931
1932 /*
1933  * Try to register data integrity profile for an mddev
1934  *
1935  * This is called when an array is started and after a disk has been kicked
1936  * from the array. It only succeeds if all working and active component devices
1937  * are integrity capable with matching profiles.
1938  */
1939 int md_integrity_register(struct mddev *mddev)
1940 {
1941         struct md_rdev *rdev, *reference = NULL;
1942
1943         if (list_empty(&mddev->disks))
1944                 return 0; /* nothing to do */
1945         if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1946                 return 0; /* shouldn't register, or already is */
1947         list_for_each_entry(rdev, &mddev->disks, same_set) {
1948                 /* skip spares and non-functional disks */
1949                 if (test_bit(Faulty, &rdev->flags))
1950                         continue;
1951                 if (rdev->raid_disk < 0)
1952                         continue;
1953                 if (!reference) {
1954                         /* Use the first rdev as the reference */
1955                         reference = rdev;
1956                         continue;
1957                 }
1958                 /* does this rdev's profile match the reference profile? */
1959                 if (blk_integrity_compare(reference->bdev->bd_disk,
1960                                 rdev->bdev->bd_disk) < 0)
1961                         return -EINVAL;
1962         }
1963         if (!reference || !bdev_get_integrity(reference->bdev))
1964                 return 0;
1965         /*
1966          * All component devices are integrity capable and have matching
1967          * profiles, register the common profile for the md device.
1968          */
1969         if (blk_integrity_register(mddev->gendisk,
1970                         bdev_get_integrity(reference->bdev)) != 0) {
1971                 printk(KERN_ERR "md: failed to register integrity for %s\n",
1972                         mdname(mddev));
1973                 return -EINVAL;
1974         }
1975         printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1976         if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1977                 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1978                        mdname(mddev));
1979                 return -EINVAL;
1980         }
1981         return 0;
1982 }
1983 EXPORT_SYMBOL(md_integrity_register);
1984
1985 /* Disable data integrity if non-capable/non-matching disk is being added */
1986 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1987 {
1988         struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1989         struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1990
1991         if (!bi_mddev) /* nothing to do */
1992                 return;
1993         if (rdev->raid_disk < 0) /* skip spares */
1994                 return;
1995         if (bi_rdev && blk_integrity_compare(mddev->gendisk,
1996                                              rdev->bdev->bd_disk) >= 0)
1997                 return;
1998         printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
1999         blk_integrity_unregister(mddev->gendisk);
2000 }
2001 EXPORT_SYMBOL(md_integrity_add_rdev);
2002
2003 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2004 {
2005         char b[BDEVNAME_SIZE];
2006         struct kobject *ko;
2007         char *s;
2008         int err;
2009
2010         if (rdev->mddev) {
2011                 MD_BUG();
2012                 return -EINVAL;
2013         }
2014
2015         /* prevent duplicates */
2016         if (find_rdev(mddev, rdev->bdev->bd_dev))
2017                 return -EEXIST;
2018
2019         /* make sure rdev->sectors exceeds mddev->dev_sectors */
2020         if (rdev->sectors && (mddev->dev_sectors == 0 ||
2021                         rdev->sectors < mddev->dev_sectors)) {
2022                 if (mddev->pers) {
2023                         /* Cannot change size, so fail
2024                          * If mddev->level <= 0, then we don't care
2025                          * about aligning sizes (e.g. linear)
2026                          */
2027                         if (mddev->level > 0)
2028                                 return -ENOSPC;
2029                 } else
2030                         mddev->dev_sectors = rdev->sectors;
2031         }
2032
2033         /* Verify rdev->desc_nr is unique.
2034          * If it is -1, assign a free number, else
2035          * check number is not in use
2036          */
2037         if (rdev->desc_nr < 0) {
2038                 int choice = 0;
2039                 if (mddev->pers) choice = mddev->raid_disks;
2040                 while (find_rdev_nr(mddev, choice))
2041                         choice++;
2042                 rdev->desc_nr = choice;
2043         } else {
2044                 if (find_rdev_nr(mddev, rdev->desc_nr))
2045                         return -EBUSY;
2046         }
2047         if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2048                 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2049                        mdname(mddev), mddev->max_disks);
2050                 return -EBUSY;
2051         }
2052         bdevname(rdev->bdev,b);
2053         while ( (s=strchr(b, '/')) != NULL)
2054                 *s = '!';
2055
2056         rdev->mddev = mddev;
2057         printk(KERN_INFO "md: bind<%s>\n", b);
2058
2059         if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2060                 goto fail;
2061
2062         ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2063         if (sysfs_create_link(&rdev->kobj, ko, "block"))
2064                 /* failure here is OK */;
2065         rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2066
2067         list_add_rcu(&rdev->same_set, &mddev->disks);
2068         bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2069
2070         /* May as well allow recovery to be retried once */
2071         mddev->recovery_disabled++;
2072
2073         return 0;
2074
2075  fail:
2076         printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2077                b, mdname(mddev));
2078         return err;
2079 }
2080
2081 static void md_delayed_delete(struct work_struct *ws)
2082 {
2083         struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2084         kobject_del(&rdev->kobj);
2085         kobject_put(&rdev->kobj);
2086 }
2087
2088 static void unbind_rdev_from_array(struct md_rdev * rdev)
2089 {
2090         char b[BDEVNAME_SIZE];
2091         if (!rdev->mddev) {
2092                 MD_BUG();
2093                 return;
2094         }
2095         bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2096         list_del_rcu(&rdev->same_set);
2097         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2098         rdev->mddev = NULL;
2099         sysfs_remove_link(&rdev->kobj, "block");
2100         sysfs_put(rdev->sysfs_state);
2101         rdev->sysfs_state = NULL;
2102         kfree(rdev->badblocks.page);
2103         rdev->badblocks.count = 0;
2104         rdev->badblocks.page = NULL;
2105         /* We need to delay this, otherwise we can deadlock when
2106          * writing to 'remove' to "dev/state".  We also need
2107          * to delay it due to rcu usage.
2108          */
2109         synchronize_rcu();
2110         INIT_WORK(&rdev->del_work, md_delayed_delete);
2111         kobject_get(&rdev->kobj);
2112         queue_work(md_misc_wq, &rdev->del_work);
2113 }
2114
2115 /*
2116  * prevent the device from being mounted, repartitioned or
2117  * otherwise reused by a RAID array (or any other kernel
2118  * subsystem), by bd_claiming the device.
2119  */
2120 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2121 {
2122         int err = 0;
2123         struct block_device *bdev;
2124         char b[BDEVNAME_SIZE];
2125
2126         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2127                                  shared ? (struct md_rdev *)lock_rdev : rdev);
2128         if (IS_ERR(bdev)) {
2129                 printk(KERN_ERR "md: could not open %s.\n",
2130                         __bdevname(dev, b));
2131                 return PTR_ERR(bdev);
2132         }
2133         rdev->bdev = bdev;
2134         return err;
2135 }
2136
2137 static void unlock_rdev(struct md_rdev *rdev)
2138 {
2139         struct block_device *bdev = rdev->bdev;
2140         rdev->bdev = NULL;
2141         if (!bdev)
2142                 MD_BUG();
2143         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2144 }
2145
2146 void md_autodetect_dev(dev_t dev);
2147
2148 static void export_rdev(struct md_rdev * rdev)
2149 {
2150         char b[BDEVNAME_SIZE];
2151         printk(KERN_INFO "md: export_rdev(%s)\n",
2152                 bdevname(rdev->bdev,b));
2153         if (rdev->mddev)
2154                 MD_BUG();
2155         free_disk_sb(rdev);
2156 #ifndef MODULE
2157         if (test_bit(AutoDetected, &rdev->flags))
2158                 md_autodetect_dev(rdev->bdev->bd_dev);
2159 #endif
2160         unlock_rdev(rdev);
2161         kobject_put(&rdev->kobj);
2162 }
2163
2164 static void kick_rdev_from_array(struct md_rdev * rdev)
2165 {
2166         unbind_rdev_from_array(rdev);
2167         export_rdev(rdev);
2168 }
2169
2170 static void export_array(struct mddev *mddev)
2171 {
2172         struct md_rdev *rdev, *tmp;
2173
2174         rdev_for_each(rdev, tmp, mddev) {
2175                 if (!rdev->mddev) {
2176                         MD_BUG();
2177                         continue;
2178                 }
2179                 kick_rdev_from_array(rdev);
2180         }
2181         if (!list_empty(&mddev->disks))
2182                 MD_BUG();
2183         mddev->raid_disks = 0;
2184         mddev->major_version = 0;
2185 }
2186
2187 static void print_desc(mdp_disk_t *desc)
2188 {
2189         printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2190                 desc->major,desc->minor,desc->raid_disk,desc->state);
2191 }
2192
2193 static void print_sb_90(mdp_super_t *sb)
2194 {
2195         int i;
2196
2197         printk(KERN_INFO 
2198                 "md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2199                 sb->major_version, sb->minor_version, sb->patch_version,
2200                 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2201                 sb->ctime);
2202         printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2203                 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2204                 sb->md_minor, sb->layout, sb->chunk_size);
2205         printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2206                 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2207                 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2208                 sb->failed_disks, sb->spare_disks,
2209                 sb->sb_csum, (unsigned long)sb->events_lo);
2210
2211         printk(KERN_INFO);
2212         for (i = 0; i < MD_SB_DISKS; i++) {
2213                 mdp_disk_t *desc;
2214
2215                 desc = sb->disks + i;
2216                 if (desc->number || desc->major || desc->minor ||
2217                     desc->raid_disk || (desc->state && (desc->state != 4))) {
2218                         printk("     D %2d: ", i);
2219                         print_desc(desc);
2220                 }
2221         }
2222         printk(KERN_INFO "md:     THIS: ");
2223         print_desc(&sb->this_disk);
2224 }
2225
2226 static void print_sb_1(struct mdp_superblock_1 *sb)
2227 {
2228         __u8 *uuid;
2229
2230         uuid = sb->set_uuid;
2231         printk(KERN_INFO
2232                "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2233                "md:    Name: \"%s\" CT:%llu\n",
2234                 le32_to_cpu(sb->major_version),
2235                 le32_to_cpu(sb->feature_map),
2236                 uuid,
2237                 sb->set_name,
2238                 (unsigned long long)le64_to_cpu(sb->ctime)
2239                        & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2240
2241         uuid = sb->device_uuid;
2242         printk(KERN_INFO
2243                "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2244                         " RO:%llu\n"
2245                "md:     Dev:%08x UUID: %pU\n"
2246                "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2247                "md:         (MaxDev:%u) \n",
2248                 le32_to_cpu(sb->level),
2249                 (unsigned long long)le64_to_cpu(sb->size),
2250                 le32_to_cpu(sb->raid_disks),
2251                 le32_to_cpu(sb->layout),
2252                 le32_to_cpu(sb->chunksize),
2253                 (unsigned long long)le64_to_cpu(sb->data_offset),
2254                 (unsigned long long)le64_to_cpu(sb->data_size),
2255                 (unsigned long long)le64_to_cpu(sb->super_offset),
2256                 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2257                 le32_to_cpu(sb->dev_number),
2258                 uuid,
2259                 sb->devflags,
2260                 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2261                 (unsigned long long)le64_to_cpu(sb->events),
2262                 (unsigned long long)le64_to_cpu(sb->resync_offset),
2263                 le32_to_cpu(sb->sb_csum),
2264                 le32_to_cpu(sb->max_dev)
2265                 );
2266 }
2267
2268 static void print_rdev(struct md_rdev *rdev, int major_version)
2269 {
2270         char b[BDEVNAME_SIZE];
2271         printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2272                 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2273                 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2274                 rdev->desc_nr);
2275         if (rdev->sb_loaded) {
2276                 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2277                 switch (major_version) {
2278                 case 0:
2279                         print_sb_90(page_address(rdev->sb_page));
2280                         break;
2281                 case 1:
2282                         print_sb_1(page_address(rdev->sb_page));
2283                         break;
2284                 }
2285         } else
2286                 printk(KERN_INFO "md: no rdev superblock!\n");
2287 }
2288
2289 static void md_print_devices(void)
2290 {
2291         struct list_head *tmp;
2292         struct md_rdev *rdev;
2293         struct mddev *mddev;
2294         char b[BDEVNAME_SIZE];
2295
2296         printk("\n");
2297         printk("md:     **********************************\n");
2298         printk("md:     * <COMPLETE RAID STATE PRINTOUT> *\n");
2299         printk("md:     **********************************\n");
2300         for_each_mddev(mddev, tmp) {
2301
2302                 if (mddev->bitmap)
2303                         bitmap_print_sb(mddev->bitmap);
2304                 else
2305                         printk("%s: ", mdname(mddev));
2306                 list_for_each_entry(rdev, &mddev->disks, same_set)
2307                         printk("<%s>", bdevname(rdev->bdev,b));
2308                 printk("\n");
2309
2310                 list_for_each_entry(rdev, &mddev->disks, same_set)
2311                         print_rdev(rdev, mddev->major_version);
2312         }
2313         printk("md:     **********************************\n");
2314         printk("\n");
2315 }
2316
2317
2318 static void sync_sbs(struct mddev * mddev, int nospares)
2319 {
2320         /* Update each superblock (in-memory image), but
2321          * if we are allowed to, skip spares which already
2322          * have the right event counter, or have one earlier
2323          * (which would mean they aren't being marked as dirty
2324          * with the rest of the array)
2325          */
2326         struct md_rdev *rdev;
2327         list_for_each_entry(rdev, &mddev->disks, same_set) {
2328                 if (rdev->sb_events == mddev->events ||
2329                     (nospares &&
2330                      rdev->raid_disk < 0 &&
2331                      rdev->sb_events+1 == mddev->events)) {
2332                         /* Don't update this superblock */
2333                         rdev->sb_loaded = 2;
2334                 } else {
2335                         sync_super(mddev, rdev);
2336                         rdev->sb_loaded = 1;
2337                 }
2338         }
2339 }
2340
2341 static void md_update_sb(struct mddev * mddev, int force_change)
2342 {
2343         struct md_rdev *rdev;
2344         int sync_req;
2345         int nospares = 0;
2346         int any_badblocks_changed = 0;
2347
2348 repeat:
2349         /* First make sure individual recovery_offsets are correct */
2350         list_for_each_entry(rdev, &mddev->disks, same_set) {
2351                 if (rdev->raid_disk >= 0 &&
2352                     mddev->delta_disks >= 0 &&
2353                     !test_bit(In_sync, &rdev->flags) &&
2354                     mddev->curr_resync_completed > rdev->recovery_offset)
2355                                 rdev->recovery_offset = mddev->curr_resync_completed;
2356
2357         }       
2358         if (!mddev->persistent) {
2359                 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2360                 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2361                 if (!mddev->external) {
2362                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2363                         list_for_each_entry(rdev, &mddev->disks, same_set) {
2364                                 if (rdev->badblocks.changed) {
2365                                         rdev->badblocks.changed = 0;
2366                                         md_ack_all_badblocks(&rdev->badblocks);
2367                                         md_error(mddev, rdev);
2368                                 }
2369                                 clear_bit(Blocked, &rdev->flags);
2370                                 clear_bit(BlockedBadBlocks, &rdev->flags);
2371                                 wake_up(&rdev->blocked_wait);
2372                         }
2373                 }
2374                 wake_up(&mddev->sb_wait);
2375                 return;
2376         }
2377
2378         spin_lock_irq(&mddev->write_lock);
2379
2380         mddev->utime = get_seconds();
2381
2382         if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2383                 force_change = 1;
2384         if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2385                 /* just a clean<-> dirty transition, possibly leave spares alone,
2386                  * though if events isn't the right even/odd, we will have to do
2387                  * spares after all
2388                  */
2389                 nospares = 1;
2390         if (force_change)
2391                 nospares = 0;
2392         if (mddev->degraded)
2393                 /* If the array is degraded, then skipping spares is both
2394                  * dangerous and fairly pointless.
2395                  * Dangerous because a device that was removed from the array
2396                  * might have a event_count that still looks up-to-date,
2397                  * so it can be re-added without a resync.
2398                  * Pointless because if there are any spares to skip,
2399                  * then a recovery will happen and soon that array won't
2400                  * be degraded any more and the spare can go back to sleep then.
2401                  */
2402                 nospares = 0;
2403
2404         sync_req = mddev->in_sync;
2405
2406         /* If this is just a dirty<->clean transition, and the array is clean
2407          * and 'events' is odd, we can roll back to the previous clean state */
2408         if (nospares
2409             && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2410             && mddev->can_decrease_events
2411             && mddev->events != 1) {
2412                 mddev->events--;
2413                 mddev->can_decrease_events = 0;
2414         } else {
2415                 /* otherwise we have to go forward and ... */
2416                 mddev->events ++;
2417                 mddev->can_decrease_events = nospares;
2418         }
2419
2420         if (!mddev->events) {
2421                 /*
2422                  * oops, this 64-bit counter should never wrap.
2423                  * Either we are in around ~1 trillion A.C., assuming
2424                  * 1 reboot per second, or we have a bug:
2425                  */
2426                 MD_BUG();
2427                 mddev->events --;
2428         }
2429
2430         list_for_each_entry(rdev, &mddev->disks, same_set) {
2431                 if (rdev->badblocks.changed)
2432                         any_badblocks_changed++;
2433                 if (test_bit(Faulty, &rdev->flags))
2434                         set_bit(FaultRecorded, &rdev->flags);
2435         }
2436
2437         sync_sbs(mddev, nospares);
2438         spin_unlock_irq(&mddev->write_lock);
2439
2440         pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2441                  mdname(mddev), mddev->in_sync);
2442
2443         bitmap_update_sb(mddev->bitmap);
2444         list_for_each_entry(rdev, &mddev->disks, same_set) {
2445                 char b[BDEVNAME_SIZE];
2446
2447                 if (rdev->sb_loaded != 1)
2448                         continue; /* no noise on spare devices */
2449
2450                 if (!test_bit(Faulty, &rdev->flags) &&
2451                     rdev->saved_raid_disk == -1) {
2452                         md_super_write(mddev,rdev,
2453                                        rdev->sb_start, rdev->sb_size,
2454                                        rdev->sb_page);
2455                         pr_debug("md: (write) %s's sb offset: %llu\n",
2456                                  bdevname(rdev->bdev, b),
2457                                  (unsigned long long)rdev->sb_start);
2458                         rdev->sb_events = mddev->events;
2459                         if (rdev->badblocks.size) {
2460                                 md_super_write(mddev, rdev,
2461                                                rdev->badblocks.sector,
2462                                                rdev->badblocks.size << 9,
2463                                                rdev->bb_page);
2464                                 rdev->badblocks.size = 0;
2465                         }
2466
2467                 } else if (test_bit(Faulty, &rdev->flags))
2468                         pr_debug("md: %s (skipping faulty)\n",
2469                                  bdevname(rdev->bdev, b));
2470                 else
2471                         pr_debug("(skipping incremental s/r ");
2472
2473                 if (mddev->level == LEVEL_MULTIPATH)
2474                         /* only need to write one superblock... */
2475                         break;
2476         }
2477         md_super_wait(mddev);
2478         /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2479
2480         spin_lock_irq(&mddev->write_lock);
2481         if (mddev->in_sync != sync_req ||
2482             test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2483                 /* have to write it out again */
2484                 spin_unlock_irq(&mddev->write_lock);
2485                 goto repeat;
2486         }
2487         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2488         spin_unlock_irq(&mddev->write_lock);
2489         wake_up(&mddev->sb_wait);
2490         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2491                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2492
2493         list_for_each_entry(rdev, &mddev->disks, same_set) {
2494                 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2495                         clear_bit(Blocked, &rdev->flags);
2496
2497                 if (any_badblocks_changed)
2498                         md_ack_all_badblocks(&rdev->badblocks);
2499                 clear_bit(BlockedBadBlocks, &rdev->flags);
2500                 wake_up(&rdev->blocked_wait);
2501         }
2502 }
2503
2504 /* words written to sysfs files may, or may not, be \n terminated.
2505  * We want to accept with case. For this we use cmd_match.
2506  */
2507 static int cmd_match(const char *cmd, const char *str)
2508 {
2509         /* See if cmd, written into a sysfs file, matches
2510          * str.  They must either be the same, or cmd can
2511          * have a trailing newline
2512          */
2513         while (*cmd && *str && *cmd == *str) {
2514                 cmd++;
2515                 str++;
2516         }
2517         if (*cmd == '\n')
2518                 cmd++;
2519         if (*str || *cmd)
2520                 return 0;
2521         return 1;
2522 }
2523
2524 struct rdev_sysfs_entry {
2525         struct attribute attr;
2526         ssize_t (*show)(struct md_rdev *, char *);
2527         ssize_t (*store)(struct md_rdev *, const char *, size_t);
2528 };
2529
2530 static ssize_t
2531 state_show(struct md_rdev *rdev, char *page)
2532 {
2533         char *sep = "";
2534         size_t len = 0;
2535
2536         if (test_bit(Faulty, &rdev->flags) ||
2537             rdev->badblocks.unacked_exist) {
2538                 len+= sprintf(page+len, "%sfaulty",sep);
2539                 sep = ",";
2540         }
2541         if (test_bit(In_sync, &rdev->flags)) {
2542                 len += sprintf(page+len, "%sin_sync",sep);
2543                 sep = ",";
2544         }
2545         if (test_bit(WriteMostly, &rdev->flags)) {
2546                 len += sprintf(page+len, "%swrite_mostly",sep);
2547                 sep = ",";
2548         }
2549         if (test_bit(Blocked, &rdev->flags) ||
2550             (rdev->badblocks.unacked_exist
2551              && !test_bit(Faulty, &rdev->flags))) {
2552                 len += sprintf(page+len, "%sblocked", sep);
2553                 sep = ",";
2554         }
2555         if (!test_bit(Faulty, &rdev->flags) &&
2556             !test_bit(In_sync, &rdev->flags)) {
2557                 len += sprintf(page+len, "%sspare", sep);
2558                 sep = ",";
2559         }
2560         if (test_bit(WriteErrorSeen, &rdev->flags)) {
2561                 len += sprintf(page+len, "%swrite_error", sep);
2562                 sep = ",";
2563         }
2564         return len+sprintf(page+len, "\n");
2565 }
2566
2567 static ssize_t
2568 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2569 {
2570         /* can write
2571          *  faulty  - simulates an error
2572          *  remove  - disconnects the device
2573          *  writemostly - sets write_mostly
2574          *  -writemostly - clears write_mostly
2575          *  blocked - sets the Blocked flags
2576          *  -blocked - clears the Blocked and possibly simulates an error
2577          *  insync - sets Insync providing device isn't active
2578          *  write_error - sets WriteErrorSeen
2579          *  -write_error - clears WriteErrorSeen
2580          */
2581         int err = -EINVAL;
2582         if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2583                 md_error(rdev->mddev, rdev);
2584                 if (test_bit(Faulty, &rdev->flags))
2585                         err = 0;
2586                 else
2587                         err = -EBUSY;
2588         } else if (cmd_match(buf, "remove")) {
2589                 if (rdev->raid_disk >= 0)
2590                         err = -EBUSY;
2591                 else {
2592                         struct mddev *mddev = rdev->mddev;
2593                         kick_rdev_from_array(rdev);
2594                         if (mddev->pers)
2595                                 md_update_sb(mddev, 1);
2596                         md_new_event(mddev);
2597                         err = 0;
2598                 }
2599         } else if (cmd_match(buf, "writemostly")) {
2600                 set_bit(WriteMostly, &rdev->flags);
2601                 err = 0;
2602         } else if (cmd_match(buf, "-writemostly")) {
2603                 clear_bit(WriteMostly, &rdev->flags);
2604                 err = 0;
2605         } else if (cmd_match(buf, "blocked")) {
2606                 set_bit(Blocked, &rdev->flags);
2607                 err = 0;
2608         } else if (cmd_match(buf, "-blocked")) {
2609                 if (!test_bit(Faulty, &rdev->flags) &&
2610                     rdev->badblocks.unacked_exist) {
2611                         /* metadata handler doesn't understand badblocks,
2612                          * so we need to fail the device
2613                          */
2614                         md_error(rdev->mddev, rdev);
2615                 }
2616                 clear_bit(Blocked, &rdev->flags);
2617                 clear_bit(BlockedBadBlocks, &rdev->flags);
2618                 wake_up(&rdev->blocked_wait);
2619                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2620                 md_wakeup_thread(rdev->mddev->thread);
2621
2622                 err = 0;
2623         } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2624                 set_bit(In_sync, &rdev->flags);
2625                 err = 0;
2626         } else if (cmd_match(buf, "write_error")) {
2627                 set_bit(WriteErrorSeen, &rdev->flags);
2628                 err = 0;
2629         } else if (cmd_match(buf, "-write_error")) {
2630                 clear_bit(WriteErrorSeen, &rdev->flags);
2631                 err = 0;
2632         }
2633         if (!err)
2634                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2635         return err ? err : len;
2636 }
2637 static struct rdev_sysfs_entry rdev_state =
2638 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2639
2640 static ssize_t
2641 errors_show(struct md_rdev *rdev, char *page)
2642 {
2643         return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2644 }
2645
2646 static ssize_t
2647 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2648 {
2649         char *e;
2650         unsigned long n = simple_strtoul(buf, &e, 10);
2651         if (*buf && (*e == 0 || *e == '\n')) {
2652                 atomic_set(&rdev->corrected_errors, n);
2653                 return len;
2654         }
2655         return -EINVAL;
2656 }
2657 static struct rdev_sysfs_entry rdev_errors =
2658 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2659
2660 static ssize_t
2661 slot_show(struct md_rdev *rdev, char *page)
2662 {
2663         if (rdev->raid_disk < 0)
2664                 return sprintf(page, "none\n");
2665         else
2666                 return sprintf(page, "%d\n", rdev->raid_disk);
2667 }
2668
2669 static ssize_t
2670 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2671 {
2672         char *e;
2673         int err;
2674         int slot = simple_strtoul(buf, &e, 10);
2675         if (strncmp(buf, "none", 4)==0)
2676                 slot = -1;
2677         else if (e==buf || (*e && *e!= '\n'))
2678                 return -EINVAL;
2679         if (rdev->mddev->pers && slot == -1) {
2680                 /* Setting 'slot' on an active array requires also
2681                  * updating the 'rd%d' link, and communicating
2682                  * with the personality with ->hot_*_disk.
2683                  * For now we only support removing
2684                  * failed/spare devices.  This normally happens automatically,
2685                  * but not when the metadata is externally managed.
2686                  */
2687                 if (rdev->raid_disk == -1)
2688                         return -EEXIST;
2689                 /* personality does all needed checks */
2690                 if (rdev->mddev->pers->hot_remove_disk == NULL)
2691                         return -EINVAL;
2692                 err = rdev->mddev->pers->
2693                         hot_remove_disk(rdev->mddev, rdev->raid_disk);
2694                 if (err)
2695                         return err;
2696                 sysfs_unlink_rdev(rdev->mddev, rdev);
2697                 rdev->raid_disk = -1;
2698                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2699                 md_wakeup_thread(rdev->mddev->thread);
2700         } else if (rdev->mddev->pers) {
2701                 struct md_rdev *rdev2;
2702                 /* Activating a spare .. or possibly reactivating
2703                  * if we ever get bitmaps working here.
2704                  */
2705
2706                 if (rdev->raid_disk != -1)
2707                         return -EBUSY;
2708
2709                 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2710                         return -EBUSY;
2711
2712                 if (rdev->mddev->pers->hot_add_disk == NULL)
2713                         return -EINVAL;
2714
2715                 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2716                         if (rdev2->raid_disk == slot)
2717                                 return -EEXIST;
2718
2719                 if (slot >= rdev->mddev->raid_disks &&
2720                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2721                         return -ENOSPC;
2722
2723                 rdev->raid_disk = slot;
2724                 if (test_bit(In_sync, &rdev->flags))
2725                         rdev->saved_raid_disk = slot;
2726                 else
2727                         rdev->saved_raid_disk = -1;
2728                 clear_bit(In_sync, &rdev->flags);
2729                 err = rdev->mddev->pers->
2730                         hot_add_disk(rdev->mddev, rdev);
2731                 if (err) {
2732                         rdev->raid_disk = -1;
2733                         return err;
2734                 } else
2735                         sysfs_notify_dirent_safe(rdev->sysfs_state);
2736                 if (sysfs_link_rdev(rdev->mddev, rdev))
2737                         /* failure here is OK */;
2738                 /* don't wakeup anyone, leave that to userspace. */
2739         } else {
2740                 if (slot >= rdev->mddev->raid_disks &&
2741                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2742                         return -ENOSPC;
2743                 rdev->raid_disk = slot;
2744                 /* assume it is working */
2745                 clear_bit(Faulty, &rdev->flags);
2746                 clear_bit(WriteMostly, &rdev->flags);
2747                 set_bit(In_sync, &rdev->flags);
2748                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2749         }
2750         return len;
2751 }
2752
2753
2754 static struct rdev_sysfs_entry rdev_slot =
2755 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2756
2757 static ssize_t
2758 offset_show(struct md_rdev *rdev, char *page)
2759 {
2760         return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2761 }
2762
2763 static ssize_t
2764 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2765 {
2766         char *e;
2767         unsigned long long offset = simple_strtoull(buf, &e, 10);
2768         if (e==buf || (*e && *e != '\n'))
2769                 return -EINVAL;
2770         if (rdev->mddev->pers && rdev->raid_disk >= 0)
2771                 return -EBUSY;
2772         if (rdev->sectors && rdev->mddev->external)
2773                 /* Must set offset before size, so overlap checks
2774                  * can be sane */
2775                 return -EBUSY;
2776         rdev->data_offset = offset;
2777         return len;
2778 }
2779
2780 static struct rdev_sysfs_entry rdev_offset =
2781 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2782
2783 static ssize_t
2784 rdev_size_show(struct md_rdev *rdev, char *page)
2785 {
2786         return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2787 }
2788
2789 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2790 {
2791         /* check if two start/length pairs overlap */
2792         if (s1+l1 <= s2)
2793                 return 0;
2794         if (s2+l2 <= s1)
2795                 return 0;
2796         return 1;
2797 }
2798
2799 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2800 {
2801         unsigned long long blocks;
2802         sector_t new;
2803
2804         if (strict_strtoull(buf, 10, &blocks) < 0)
2805                 return -EINVAL;
2806
2807         if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2808                 return -EINVAL; /* sector conversion overflow */
2809
2810         new = blocks * 2;
2811         if (new != blocks * 2)
2812                 return -EINVAL; /* unsigned long long to sector_t overflow */
2813
2814         *sectors = new;
2815         return 0;
2816 }
2817
2818 static ssize_t
2819 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2820 {
2821         struct mddev *my_mddev = rdev->mddev;
2822         sector_t oldsectors = rdev->sectors;
2823         sector_t sectors;
2824
2825         if (strict_blocks_to_sectors(buf, &sectors) < 0)
2826                 return -EINVAL;
2827         if (my_mddev->pers && rdev->raid_disk >= 0) {
2828                 if (my_mddev->persistent) {
2829                         sectors = super_types[my_mddev->major_version].
2830                                 rdev_size_change(rdev, sectors);
2831                         if (!sectors)
2832                                 return -EBUSY;
2833                 } else if (!sectors)
2834                         sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2835                                 rdev->data_offset;
2836         }
2837         if (sectors < my_mddev->dev_sectors)
2838                 return -EINVAL; /* component must fit device */
2839
2840         rdev->sectors = sectors;
2841         if (sectors > oldsectors && my_mddev->external) {
2842                 /* need to check that all other rdevs with the same ->bdev
2843                  * do not overlap.  We need to unlock the mddev to avoid
2844                  * a deadlock.  We have already changed rdev->sectors, and if
2845                  * we have to change it back, we will have the lock again.
2846                  */
2847                 struct mddev *mddev;
2848                 int overlap = 0;
2849                 struct list_head *tmp;
2850
2851                 mddev_unlock(my_mddev);
2852                 for_each_mddev(mddev, tmp) {
2853                         struct md_rdev *rdev2;
2854
2855                         mddev_lock(mddev);
2856                         list_for_each_entry(rdev2, &mddev->disks, same_set)
2857                                 if (rdev->bdev == rdev2->bdev &&
2858                                     rdev != rdev2 &&
2859                                     overlaps(rdev->data_offset, rdev->sectors,
2860                                              rdev2->data_offset,
2861                                              rdev2->sectors)) {
2862                                         overlap = 1;
2863                                         break;
2864                                 }
2865                         mddev_unlock(mddev);
2866                         if (overlap) {
2867                                 mddev_put(mddev);
2868                                 break;
2869                         }
2870                 }
2871                 mddev_lock(my_mddev);
2872                 if (overlap) {
2873                         /* Someone else could have slipped in a size
2874                          * change here, but doing so is just silly.
2875                          * We put oldsectors back because we *know* it is
2876                          * safe, and trust userspace not to race with
2877                          * itself
2878                          */
2879                         rdev->sectors = oldsectors;
2880                         return -EBUSY;
2881                 }
2882         }
2883         return len;
2884 }
2885
2886 static struct rdev_sysfs_entry rdev_size =
2887 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2888
2889
2890 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2891 {
2892         unsigned long long recovery_start = rdev->recovery_offset;
2893
2894         if (test_bit(In_sync, &rdev->flags) ||
2895             recovery_start == MaxSector)
2896                 return sprintf(page, "none\n");
2897
2898         return sprintf(page, "%llu\n", recovery_start);
2899 }
2900
2901 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2902 {
2903         unsigned long long recovery_start;
2904
2905         if (cmd_match(buf, "none"))
2906                 recovery_start = MaxSector;
2907         else if (strict_strtoull(buf, 10, &recovery_start))
2908                 return -EINVAL;
2909
2910         if (rdev->mddev->pers &&
2911             rdev->raid_disk >= 0)
2912                 return -EBUSY;
2913
2914         rdev->recovery_offset = recovery_start;
2915         if (recovery_start == MaxSector)
2916                 set_bit(In_sync, &rdev->flags);
2917         else
2918                 clear_bit(In_sync, &rdev->flags);
2919         return len;
2920 }
2921
2922 static struct rdev_sysfs_entry rdev_recovery_start =
2923 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2924
2925
2926 static ssize_t
2927 badblocks_show(struct badblocks *bb, char *page, int unack);
2928 static ssize_t
2929 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2930
2931 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2932 {
2933         return badblocks_show(&rdev->badblocks, page, 0);
2934 }
2935 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2936 {
2937         int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2938         /* Maybe that ack was all we needed */
2939         if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2940                 wake_up(&rdev->blocked_wait);
2941         return rv;
2942 }
2943 static struct rdev_sysfs_entry rdev_bad_blocks =
2944 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2945
2946
2947 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2948 {
2949         return badblocks_show(&rdev->badblocks, page, 1);
2950 }
2951 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2952 {
2953         return badblocks_store(&rdev->badblocks, page, len, 1);
2954 }
2955 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2956 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2957
2958 static struct attribute *rdev_default_attrs[] = {
2959         &rdev_state.attr,
2960         &rdev_errors.attr,
2961         &rdev_slot.attr,
2962         &rdev_offset.attr,
2963         &rdev_size.attr,
2964         &rdev_recovery_start.attr,
2965         &rdev_bad_blocks.attr,
2966         &rdev_unack_bad_blocks.attr,
2967         NULL,
2968 };
2969 static ssize_t
2970 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2971 {
2972         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2973         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2974         struct mddev *mddev = rdev->mddev;
2975         ssize_t rv;
2976
2977         if (!entry->show)
2978                 return -EIO;
2979
2980         rv = mddev ? mddev_lock(mddev) : -EBUSY;
2981         if (!rv) {
2982                 if (rdev->mddev == NULL)
2983                         rv = -EBUSY;
2984                 else
2985                         rv = entry->show(rdev, page);
2986                 mddev_unlock(mddev);
2987         }
2988         return rv;
2989 }
2990
2991 static ssize_t
2992 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2993               const char *page, size_t length)
2994 {
2995         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2996         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2997         ssize_t rv;
2998         struct mddev *mddev = rdev->mddev;
2999
3000         if (!entry->store)
3001                 return -EIO;
3002         if (!capable(CAP_SYS_ADMIN))
3003                 return -EACCES;
3004         rv = mddev ? mddev_lock(mddev): -EBUSY;
3005         if (!rv) {
3006                 if (rdev->mddev == NULL)
3007                         rv = -EBUSY;
3008                 else
3009                         rv = entry->store(rdev, page, length);
3010                 mddev_unlock(mddev);
3011         }
3012         return rv;
3013 }
3014
3015 static void rdev_free(struct kobject *ko)
3016 {
3017         struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3018         kfree(rdev);
3019 }
3020 static const struct sysfs_ops rdev_sysfs_ops = {
3021         .show           = rdev_attr_show,
3022         .store          = rdev_attr_store,
3023 };
3024 static struct kobj_type rdev_ktype = {
3025         .release        = rdev_free,
3026         .sysfs_ops      = &rdev_sysfs_ops,
3027         .default_attrs  = rdev_default_attrs,
3028 };
3029
3030 int md_rdev_init(struct md_rdev *rdev)
3031 {
3032         rdev->desc_nr = -1;
3033         rdev->saved_raid_disk = -1;
3034         rdev->raid_disk = -1;
3035         rdev->flags = 0;
3036         rdev->data_offset = 0;
3037         rdev->sb_events = 0;
3038         rdev->last_read_error.tv_sec  = 0;
3039         rdev->last_read_error.tv_nsec = 0;
3040         rdev->sb_loaded = 0;
3041         rdev->bb_page = NULL;
3042         atomic_set(&rdev->nr_pending, 0);
3043         atomic_set(&rdev->read_errors, 0);
3044         atomic_set(&rdev->corrected_errors, 0);
3045
3046         INIT_LIST_HEAD(&rdev->same_set);
3047         init_waitqueue_head(&rdev->blocked_wait);
3048
3049         /* Add space to store bad block list.
3050          * This reserves the space even on arrays where it cannot
3051          * be used - I wonder if that matters
3052          */
3053         rdev->badblocks.count = 0;
3054         rdev->badblocks.shift = 0;
3055         rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3056         seqlock_init(&rdev->badblocks.lock);
3057         if (rdev->badblocks.page == NULL)
3058                 return -ENOMEM;
3059
3060         return 0;
3061 }
3062 EXPORT_SYMBOL_GPL(md_rdev_init);
3063 /*
3064  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3065  *
3066  * mark the device faulty if:
3067  *
3068  *   - the device is nonexistent (zero size)
3069  *   - the device has no valid superblock
3070  *
3071  * a faulty rdev _never_ has rdev->sb set.
3072  */
3073 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3074 {
3075         char b[BDEVNAME_SIZE];
3076         int err;
3077         struct md_rdev *rdev;
3078         sector_t size;
3079
3080         rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3081         if (!rdev) {
3082                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3083                 return ERR_PTR(-ENOMEM);
3084         }
3085
3086         err = md_rdev_init(rdev);
3087         if (err)
3088                 goto abort_free;
3089         err = alloc_disk_sb(rdev);
3090         if (err)
3091                 goto abort_free;
3092
3093         err = lock_rdev(rdev, newdev, super_format == -2);
3094         if (err)
3095                 goto abort_free;
3096
3097         kobject_init(&rdev->kobj, &rdev_ktype);
3098
3099         size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3100         if (!size) {
3101                 printk(KERN_WARNING 
3102                         "md: %s has zero or unknown size, marking faulty!\n",
3103                         bdevname(rdev->bdev,b));
3104                 err = -EINVAL;
3105                 goto abort_free;
3106         }
3107
3108         if (super_format >= 0) {
3109                 err = super_types[super_format].
3110                         load_super(rdev, NULL, super_minor);
3111                 if (err == -EINVAL) {
3112                         printk(KERN_WARNING
3113                                 "md: %s does not have a valid v%d.%d "
3114                                "superblock, not importing!\n",
3115                                 bdevname(rdev->bdev,b),
3116                                super_format, super_minor);
3117                         goto abort_free;
3118                 }
3119                 if (err < 0) {
3120                         printk(KERN_WARNING 
3121                                 "md: could not read %s's sb, not importing!\n",
3122                                 bdevname(rdev->bdev,b));
3123                         goto abort_free;
3124                 }
3125         }
3126         if (super_format == -1)
3127                 /* hot-add for 0.90, or non-persistent: so no badblocks */
3128                 rdev->badblocks.shift = -1;
3129
3130         return rdev;
3131
3132 abort_free:
3133         if (rdev->bdev)
3134                 unlock_rdev(rdev);
3135         free_disk_sb(rdev);
3136         kfree(rdev->badblocks.page);
3137         kfree(rdev);
3138         return ERR_PTR(err);
3139 }
3140
3141 /*
3142  * Check a full RAID array for plausibility
3143  */
3144
3145
3146 static void analyze_sbs(struct mddev * mddev)
3147 {
3148         int i;
3149         struct md_rdev *rdev, *freshest, *tmp;
3150         char b[BDEVNAME_SIZE];
3151
3152         freshest = NULL;
3153         rdev_for_each(rdev, tmp, mddev)
3154                 switch (super_types[mddev->major_version].
3155                         load_super(rdev, freshest, mddev->minor_version)) {
3156                 case 1:
3157                         freshest = rdev;
3158                         break;
3159                 case 0:
3160                         break;
3161                 default:
3162                         printk( KERN_ERR \
3163                                 "md: fatal superblock inconsistency in %s"
3164                                 " -- removing from array\n", 
3165                                 bdevname(rdev->bdev,b));
3166                         kick_rdev_from_array(rdev);
3167                 }
3168
3169
3170         super_types[mddev->major_version].
3171                 validate_super(mddev, freshest);
3172
3173         i = 0;
3174         rdev_for_each(rdev, tmp, mddev) {
3175                 if (mddev->max_disks &&
3176                     (rdev->desc_nr >= mddev->max_disks ||
3177                      i > mddev->max_disks)) {
3178                         printk(KERN_WARNING
3179                                "md: %s: %s: only %d devices permitted\n",
3180                                mdname(mddev), bdevname(rdev->bdev, b),
3181                                mddev->max_disks);
3182                         kick_rdev_from_array(rdev);
3183                         continue;
3184                 }
3185                 if (rdev != freshest)
3186                         if (super_types[mddev->major_version].
3187                             validate_super(mddev, rdev)) {
3188                                 printk(KERN_WARNING "md: kicking non-fresh %s"
3189                                         " from array!\n",
3190                                         bdevname(rdev->bdev,b));
3191                                 kick_rdev_from_array(rdev);
3192                                 continue;
3193                         }
3194                 if (mddev->level == LEVEL_MULTIPATH) {
3195                         rdev->desc_nr = i++;
3196                         rdev->raid_disk = rdev->desc_nr;
3197                         set_bit(In_sync, &rdev->flags);
3198                 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3199                         rdev->raid_disk = -1;
3200                         clear_bit(In_sync, &rdev->flags);
3201                 }
3202         }
3203 }
3204
3205 /* Read a fixed-point number.
3206  * Numbers in sysfs attributes should be in "standard" units where
3207  * possible, so time should be in seconds.
3208  * However we internally use a a much smaller unit such as 
3209  * milliseconds or jiffies.
3210  * This function takes a decimal number with a possible fractional
3211  * component, and produces an integer which is the result of
3212  * multiplying that number by 10^'scale'.
3213  * all without any floating-point arithmetic.
3214  */
3215 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3216 {
3217         unsigned long result = 0;
3218         long decimals = -1;
3219         while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3220                 if (*cp == '.')
3221                         decimals = 0;
3222                 else if (decimals < scale) {
3223                         unsigned int value;
3224                         value = *cp - '0';
3225                         result = result * 10 + value;
3226                         if (decimals >= 0)
3227                                 decimals++;
3228                 }
3229                 cp++;
3230         }
3231         if (*cp == '\n')
3232                 cp++;
3233         if (*cp)
3234                 return -EINVAL;
3235         if (decimals < 0)
3236                 decimals = 0;
3237         while (decimals < scale) {
3238                 result *= 10;
3239                 decimals ++;
3240         }
3241         *res = result;
3242         return 0;
3243 }
3244
3245
3246 static void md_safemode_timeout(unsigned long data);
3247
3248 static ssize_t
3249 safe_delay_show(struct mddev *mddev, char *page)
3250 {
3251         int msec = (mddev->safemode_delay*1000)/HZ;
3252         return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3253 }
3254 static ssize_t
3255 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3256 {
3257         unsigned long msec;
3258
3259         if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3260                 return -EINVAL;
3261         if (msec == 0)
3262                 mddev->safemode_delay = 0;
3263         else {
3264                 unsigned long old_delay = mddev->safemode_delay;
3265                 mddev->safemode_delay = (msec*HZ)/1000;
3266                 if (mddev->safemode_delay == 0)
3267                         mddev->safemode_delay = 1;
3268                 if (mddev->safemode_delay < old_delay)
3269                         md_safemode_timeout((unsigned long)mddev);
3270         }
3271         return len;
3272 }
3273 static struct md_sysfs_entry md_safe_delay =
3274 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3275
3276 static ssize_t
3277 level_show(struct mddev *mddev, char *page)
3278 {
3279         struct md_personality *p = mddev->pers;
3280         if (p)
3281                 return sprintf(page, "%s\n", p->name);
3282         else if (mddev->clevel[0])
3283                 return sprintf(page, "%s\n", mddev->clevel);
3284         else if (mddev->level != LEVEL_NONE)
3285                 return sprintf(page, "%d\n", mddev->level);
3286         else
3287                 return 0;
3288 }
3289
3290 static ssize_t
3291 level_store(struct mddev *mddev, const char *buf, size_t len)
3292 {
3293         char clevel[16];
3294         ssize_t rv = len;
3295         struct md_personality *pers;
3296         long level;
3297         void *priv;
3298         struct md_rdev *rdev;
3299
3300         if (mddev->pers == NULL) {
3301                 if (len == 0)
3302                         return 0;
3303                 if (len >= sizeof(mddev->clevel))
3304                         return -ENOSPC;
3305                 strncpy(mddev->clevel, buf, len);
3306                 if (mddev->clevel[len-1] == '\n')
3307                         len--;
3308                 mddev->clevel[len] = 0;
3309                 mddev->level = LEVEL_NONE;
3310                 return rv;
3311         }
3312
3313         /* request to change the personality.  Need to ensure:
3314          *  - array is not engaged in resync/recovery/reshape
3315          *  - old personality can be suspended
3316          *  - new personality will access other array.
3317          */
3318
3319         if (mddev->sync_thread ||
3320             mddev->reshape_position != MaxSector ||
3321             mddev->sysfs_active)
3322                 return -EBUSY;
3323
3324         if (!mddev->pers->quiesce) {
3325                 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3326                        mdname(mddev), mddev->pers->name);
3327                 return -EINVAL;
3328         }
3329
3330         /* Now find the new personality */
3331         if (len == 0 || len >= sizeof(clevel))
3332                 return -EINVAL;
3333         strncpy(clevel, buf, len);
3334         if (clevel[len-1] == '\n')
3335                 len--;
3336         clevel[len] = 0;
3337         if (strict_strtol(clevel, 10, &level))
3338                 level = LEVEL_NONE;
3339
3340         if (request_module("md-%s", clevel) != 0)
3341                 request_module("md-level-%s", clevel);
3342         spin_lock(&pers_lock);
3343         pers = find_pers(level, clevel);
3344         if (!pers || !try_module_get(pers->owner)) {
3345                 spin_unlock(&pers_lock);
3346                 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3347                 return -EINVAL;
3348         }
3349         spin_unlock(&pers_lock);
3350
3351         if (pers == mddev->pers) {
3352                 /* Nothing to do! */
3353                 module_put(pers->owner);
3354                 return rv;
3355         }
3356         if (!pers->takeover) {
3357                 module_put(pers->owner);
3358                 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3359                        mdname(mddev), clevel);
3360                 return -EINVAL;
3361         }
3362
3363         list_for_each_entry(rdev, &mddev->disks, same_set)
3364                 rdev->new_raid_disk = rdev->raid_disk;
3365
3366         /* ->takeover must set new_* and/or delta_disks
3367          * if it succeeds, and may set them when it fails.
3368          */
3369         priv = pers->takeover(mddev);
3370         if (IS_ERR(priv)) {
3371                 mddev->new_level = mddev->level;
3372                 mddev->new_layout = mddev->layout;
3373                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3374                 mddev->raid_disks -= mddev->delta_disks;
3375                 mddev->delta_disks = 0;
3376                 module_put(pers->owner);
3377                 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3378                        mdname(mddev), clevel);
3379                 return PTR_ERR(priv);
3380         }
3381
3382         /* Looks like we have a winner */
3383         mddev_suspend(mddev);
3384         mddev->pers->stop(mddev);
3385         
3386         if (mddev->pers->sync_request == NULL &&
3387             pers->sync_request != NULL) {
3388                 /* need to add the md_redundancy_group */
3389                 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3390                         printk(KERN_WARNING
3391                                "md: cannot register extra attributes for %s\n",
3392                                mdname(mddev));
3393                 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3394         }               
3395         if (mddev->pers->sync_request != NULL &&
3396             pers->sync_request == NULL) {
3397                 /* need to remove the md_redundancy_group */
3398                 if (mddev->to_remove == NULL)
3399                         mddev->to_remove = &md_redundancy_group;
3400         }
3401
3402         if (mddev->pers->sync_request == NULL &&
3403             mddev->external) {
3404                 /* We are converting from a no-redundancy array
3405                  * to a redundancy array and metadata is managed
3406                  * externally so we need to be sure that writes
3407                  * won't block due to a need to transition
3408                  *      clean->dirty
3409                  * until external management is started.
3410                  */
3411                 mddev->in_sync = 0;
3412                 mddev->safemode_delay = 0;
3413                 mddev->safemode = 0;
3414         }
3415
3416         list_for_each_entry(rdev, &mddev->disks, same_set) {
3417                 if (rdev->raid_disk < 0)
3418                         continue;
3419                 if (rdev->new_raid_disk >= mddev->raid_disks)
3420                         rdev->new_raid_disk = -1;
3421                 if (rdev->new_raid_disk == rdev->raid_disk)
3422                         continue;
3423                 sysfs_unlink_rdev(mddev, rdev);
3424         }
3425         list_for_each_entry(rdev, &mddev->disks, same_set) {
3426                 if (rdev->raid_disk < 0)
3427                         continue;
3428                 if (rdev->new_raid_disk == rdev->raid_disk)
3429                         continue;
3430                 rdev->raid_disk = rdev->new_raid_disk;
3431                 if (rdev->raid_disk < 0)
3432                         clear_bit(In_sync, &rdev->flags);
3433                 else {
3434                         if (sysfs_link_rdev(mddev, rdev))
3435                                 printk(KERN_WARNING "md: cannot register rd%d"
3436                                        " for %s after level change\n",
3437                                        rdev->raid_disk, mdname(mddev));
3438                 }
3439         }
3440
3441         module_put(mddev->pers->owner);
3442         mddev->pers = pers;
3443         mddev->private = priv;
3444         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3445         mddev->level = mddev->new_level;
3446         mddev->layout = mddev->new_layout;
3447         mddev->chunk_sectors = mddev->new_chunk_sectors;
3448         mddev->delta_disks = 0;
3449         mddev->degraded = 0;
3450         if (mddev->pers->sync_request == NULL) {
3451                 /* this is now an array without redundancy, so
3452                  * it must always be in_sync
3453                  */
3454                 mddev->in_sync = 1;
3455                 del_timer_sync(&mddev->safemode_timer);
3456         }
3457         pers->run(mddev);
3458         mddev_resume(mddev);
3459         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3460         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3461         md_wakeup_thread(mddev->thread);
3462         sysfs_notify(&mddev->kobj, NULL, "level");
3463         md_new_event(mddev);
3464         return rv;
3465 }
3466
3467 static struct md_sysfs_entry md_level =
3468 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3469
3470
3471 static ssize_t
3472 layout_show(struct mddev *mddev, char *page)
3473 {
3474         /* just a number, not meaningful for all levels */
3475         if (mddev->reshape_position != MaxSector &&
3476             mddev->layout != mddev->new_layout)
3477                 return sprintf(page, "%d (%d)\n",
3478                                mddev->new_layout, mddev->layout);
3479         return sprintf(page, "%d\n", mddev->layout);
3480 }
3481
3482 static ssize_t
3483 layout_store(struct mddev *mddev, const char *buf, size_t len)
3484 {
3485         char *e;
3486         unsigned long n = simple_strtoul(buf, &e, 10);
3487
3488         if (!*buf || (*e && *e != '\n'))
3489                 return -EINVAL;
3490
3491         if (mddev->pers) {
3492                 int err;
3493                 if (mddev->pers->check_reshape == NULL)
3494                         return -EBUSY;
3495                 mddev->new_layout = n;
3496                 err = mddev->pers->check_reshape(mddev);
3497                 if (err) {
3498                         mddev->new_layout = mddev->layout;
3499                         return err;
3500                 }
3501         } else {
3502                 mddev->new_layout = n;
3503                 if (mddev->reshape_position == MaxSector)
3504                         mddev->layout = n;
3505         }
3506         return len;
3507 }
3508 static struct md_sysfs_entry md_layout =
3509 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3510
3511
3512 static ssize_t
3513 raid_disks_show(struct mddev *mddev, char *page)
3514 {
3515         if (mddev->raid_disks == 0)
3516                 return 0;
3517         if (mddev->reshape_position != MaxSector &&
3518             mddev->delta_disks != 0)
3519                 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3520                                mddev->raid_disks - mddev->delta_disks);
3521         return sprintf(page, "%d\n", mddev->raid_disks);
3522 }
3523
3524 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3525
3526 static ssize_t
3527 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3528 {
3529         char *e;
3530         int rv = 0;
3531         unsigned long n = simple_strtoul(buf, &e, 10);
3532
3533         if (!*buf || (*e && *e != '\n'))
3534                 return -EINVAL;
3535
3536         if (mddev->pers)
3537                 rv = update_raid_disks(mddev, n);
3538         else if (mddev->reshape_position != MaxSector) {
3539                 int olddisks = mddev->raid_disks - mddev->delta_disks;
3540                 mddev->delta_disks = n - olddisks;
3541                 mddev->raid_disks = n;
3542         } else
3543                 mddev->raid_disks = n;
3544         return rv ? rv : len;
3545 }
3546 static struct md_sysfs_entry md_raid_disks =
3547 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3548
3549 static ssize_t
3550 chunk_size_show(struct mddev *mddev, char *page)
3551 {
3552         if (mddev->reshape_position != MaxSector &&
3553             mddev->chunk_sectors != mddev->new_chunk_sectors)
3554                 return sprintf(page, "%d (%d)\n",
3555                                mddev->new_chunk_sectors << 9,
3556                                mddev->chunk_sectors << 9);
3557         return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3558 }
3559
3560 static ssize_t
3561 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3562 {
3563         char *e;
3564         unsigned long n = simple_strtoul(buf, &e, 10);
3565
3566         if (!*buf || (*e && *e != '\n'))
3567                 return -EINVAL;
3568
3569         if (mddev->pers) {
3570                 int err;
3571                 if (mddev->pers->check_reshape == NULL)
3572                         return -EBUSY;
3573                 mddev->new_chunk_sectors = n >> 9;
3574                 err = mddev->pers->check_reshape(mddev);
3575                 if (err) {
3576                         mddev->new_chunk_sectors = mddev->chunk_sectors;
3577                         return err;
3578                 }
3579         } else {
3580                 mddev->new_chunk_sectors = n >> 9;
3581                 if (mddev->reshape_position == MaxSector)
3582                         mddev->chunk_sectors = n >> 9;
3583         }
3584         return len;
3585 }
3586 static struct md_sysfs_entry md_chunk_size =
3587 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3588
3589 static ssize_t
3590 resync_start_show(struct mddev *mddev, char *page)
3591 {
3592         if (mddev->recovery_cp == MaxSector)
3593                 return sprintf(page, "none\n");
3594         return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3595 }
3596
3597 static ssize_t
3598 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3599 {
3600         char *e;
3601         unsigned long long n = simple_strtoull(buf, &e, 10);
3602
3603         if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3604                 return -EBUSY;
3605         if (cmd_match(buf, "none"))
3606                 n = MaxSector;
3607         else if (!*buf || (*e && *e != '\n'))
3608                 return -EINVAL;
3609
3610         mddev->recovery_cp = n;
3611         return len;
3612 }
3613 static struct md_sysfs_entry md_resync_start =
3614 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3615
3616 /*
3617  * The array state can be:
3618  *
3619  * clear
3620  *     No devices, no size, no level
3621  *     Equivalent to STOP_ARRAY ioctl
3622  * inactive
3623  *     May have some settings, but array is not active
3624  *        all IO results in error
3625  *     When written, doesn't tear down array, but just stops it
3626  * suspended (not supported yet)
3627  *     All IO requests will block. The array can be reconfigured.
3628  *     Writing this, if accepted, will block until array is quiescent
3629  * readonly
3630  *     no resync can happen.  no superblocks get written.
3631  *     write requests fail
3632  * read-auto
3633  *     like readonly, but behaves like 'clean' on a write request.
3634  *
3635  * clean - no pending writes, but otherwise active.
3636  *     When written to inactive array, starts without resync
3637  *     If a write request arrives then
3638  *       if metadata is known, mark 'dirty' and switch to 'active'.
3639  *       if not known, block and switch to write-pending
3640  *     If written to an active array that has pending writes, then fails.
3641  * active
3642  *     fully active: IO and resync can be happening.
3643  *     When written to inactive array, starts with resync
3644  *
3645  * write-pending
3646  *     clean, but writes are blocked waiting for 'active' to be written.
3647  *
3648  * active-idle
3649  *     like active, but no writes have been seen for a while (100msec).
3650  *
3651  */
3652 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3653                    write_pending, active_idle, bad_word};
3654 static char *array_states[] = {
3655         "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3656         "write-pending", "active-idle", NULL };
3657
3658 static int match_word(const char *word, char **list)
3659 {
3660         int n;
3661         for (n=0; list[n]; n++)
3662                 if (cmd_match(word, list[n]))
3663                         break;
3664         return n;
3665 }
3666
3667 static ssize_t
3668 array_state_show(struct mddev *mddev, char *page)
3669 {
3670         enum array_state st = inactive;
3671
3672         if (mddev->pers)
3673                 switch(mddev->ro) {
3674                 case 1:
3675                         st = readonly;
3676                         break;
3677                 case 2:
3678                         st = read_auto;
3679                         break;
3680                 case 0:
3681                         if (mddev->in_sync)
3682                                 st = clean;
3683                         else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3684                                 st = write_pending;
3685                         else if (mddev->safemode)
3686                                 st = active_idle;
3687                         else
3688                                 st = active;
3689                 }
3690         else {
3691                 if (list_empty(&mddev->disks) &&
3692                     mddev->raid_disks == 0 &&
3693                     mddev->dev_sectors == 0)
3694                         st = clear;
3695                 else
3696                         st = inactive;
3697         }
3698         return sprintf(page, "%s\n", array_states[st]);
3699 }
3700
3701 static int do_md_stop(struct mddev * mddev, int ro, int is_open);
3702 static int md_set_readonly(struct mddev * mddev, int is_open);
3703 static int do_md_run(struct mddev * mddev);
3704 static int restart_array(struct mddev *mddev);
3705
3706 static ssize_t
3707 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3708 {
3709         int err = -EINVAL;
3710         enum array_state st = match_word(buf, array_states);
3711         switch(st) {
3712         case bad_word:
3713                 break;
3714         case clear:
3715                 /* stopping an active array */
3716                 if (atomic_read(&mddev->openers) > 0)
3717                         return -EBUSY;
3718                 err = do_md_stop(mddev, 0, 0);
3719                 break;
3720         case inactive:
3721                 /* stopping an active array */
3722                 if (mddev->pers) {
3723                         if (atomic_read(&mddev->openers) > 0)
3724                                 return -EBUSY;
3725                         err = do_md_stop(mddev, 2, 0);
3726                 } else
3727                         err = 0; /* already inactive */
3728                 break;
3729         case suspended:
3730                 break; /* not supported yet */
3731         case readonly:
3732                 if (mddev->pers)
3733                         err = md_set_readonly(mddev, 0);
3734                 else {
3735                         mddev->ro = 1;
3736                         set_disk_ro(mddev->gendisk, 1);
3737                         err = do_md_run(mddev);
3738                 }
3739                 break;
3740         case read_auto:
3741                 if (mddev->pers) {
3742                         if (mddev->ro == 0)
3743                                 err = md_set_readonly(mddev, 0);
3744                         else if (mddev->ro == 1)
3745                                 err = restart_array(mddev);
3746                         if (err == 0) {
3747                                 mddev->ro = 2;
3748                                 set_disk_ro(mddev->gendisk, 0);
3749                         }
3750                 } else {
3751                         mddev->ro = 2;
3752                         err = do_md_run(mddev);
3753                 }
3754                 break;
3755         case clean:
3756                 if (mddev->pers) {
3757                         restart_array(mddev);
3758                         spin_lock_irq(&mddev->write_lock);
3759                         if (atomic_read(&mddev->writes_pending) == 0) {
3760                                 if (mddev->in_sync == 0) {
3761                                         mddev->in_sync = 1;
3762                                         if (mddev->safemode == 1)
3763                                                 mddev->safemode = 0;
3764                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3765                                 }
3766                                 err = 0;
3767                         } else
3768                                 err = -EBUSY;
3769                         spin_unlock_irq(&mddev->write_lock);
3770                 } else
3771                         err = -EINVAL;
3772                 break;
3773         case active:
3774                 if (mddev->pers) {
3775                         restart_array(mddev);
3776                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3777                         wake_up(&mddev->sb_wait);
3778                         err = 0;
3779                 } else {
3780                         mddev->ro = 0;
3781                         set_disk_ro(mddev->gendisk, 0);
3782                         err = do_md_run(mddev);
3783                 }
3784                 break;
3785         case write_pending:
3786         case active_idle:
3787                 /* these cannot be set */
3788                 break;
3789         }
3790         if (err)
3791                 return err;
3792         else {
3793                 if (mddev->hold_active == UNTIL_IOCTL)
3794                         mddev->hold_active = 0;
3795                 sysfs_notify_dirent_safe(mddev->sysfs_state);
3796                 return len;
3797         }
3798 }
3799 static struct md_sysfs_entry md_array_state =
3800 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3801
3802 static ssize_t
3803 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3804         return sprintf(page, "%d\n",
3805                        atomic_read(&mddev->max_corr_read_errors));
3806 }
3807
3808 static ssize_t
3809 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3810 {
3811         char *e;
3812         unsigned long n = simple_strtoul(buf, &e, 10);
3813
3814         if (*buf && (*e == 0 || *e == '\n')) {
3815                 atomic_set(&mddev->max_corr_read_errors, n);
3816                 return len;
3817         }
3818         return -EINVAL;
3819 }
3820
3821 static struct md_sysfs_entry max_corr_read_errors =
3822 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3823         max_corrected_read_errors_store);
3824
3825 static ssize_t
3826 null_show(struct mddev *mddev, char *page)
3827 {
3828         return -EINVAL;
3829 }
3830
3831 static ssize_t
3832 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3833 {
3834         /* buf must be %d:%d\n? giving major and minor numbers */
3835         /* The new device is added to the array.
3836          * If the array has a persistent superblock, we read the
3837          * superblock to initialise info and check validity.
3838          * Otherwise, only checking done is that in bind_rdev_to_array,
3839          * which mainly checks size.
3840          */
3841         char *e;
3842         int major = simple_strtoul(buf, &e, 10);
3843         int minor;
3844         dev_t dev;
3845         struct md_rdev *rdev;
3846         int err;
3847
3848         if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3849                 return -EINVAL;
3850         minor = simple_strtoul(e+1, &e, 10);
3851         if (*e && *e != '\n')
3852                 return -EINVAL;
3853         dev = MKDEV(major, minor);
3854         if (major != MAJOR(dev) ||
3855             minor != MINOR(dev))
3856                 return -EOVERFLOW;
3857
3858
3859         if (mddev->persistent) {
3860                 rdev = md_import_device(dev, mddev->major_version,
3861                                         mddev->minor_version);
3862                 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3863                         struct md_rdev *rdev0
3864                                 = list_entry(mddev->disks.next,
3865                                              struct md_rdev, same_set);
3866                         err = super_types[mddev->major_version]
3867                                 .load_super(rdev, rdev0, mddev->minor_version);
3868                         if (err < 0)
3869                                 goto out;
3870                 }
3871         } else if (mddev->external)
3872                 rdev = md_import_device(dev, -2, -1);
3873         else
3874                 rdev = md_import_device(dev, -1, -1);
3875
3876         if (IS_ERR(rdev))
3877                 return PTR_ERR(rdev);
3878         err = bind_rdev_to_array(rdev, mddev);
3879  out:
3880         if (err)
3881                 export_rdev(rdev);
3882         return err ? err : len;
3883 }
3884
3885 static struct md_sysfs_entry md_new_device =
3886 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3887
3888 static ssize_t
3889 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
3890 {
3891         char *end;
3892         unsigned long chunk, end_chunk;
3893
3894         if (!mddev->bitmap)
3895                 goto out;
3896         /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3897         while (*buf) {
3898                 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3899                 if (buf == end) break;
3900                 if (*end == '-') { /* range */
3901                         buf = end + 1;
3902                         end_chunk = simple_strtoul(buf, &end, 0);
3903                         if (buf == end) break;
3904                 }
3905                 if (*end && !isspace(*end)) break;
3906                 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3907                 buf = skip_spaces(end);
3908         }
3909         bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3910 out:
3911         return len;
3912 }
3913
3914 static struct md_sysfs_entry md_bitmap =
3915 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3916
3917 static ssize_t
3918 size_show(struct mddev *mddev, char *page)
3919 {
3920         return sprintf(page, "%llu\n",
3921                 (unsigned long long)mddev->dev_sectors / 2);
3922 }
3923
3924 static int update_size(struct mddev *mddev, sector_t num_sectors);
3925
3926 static ssize_t
3927 size_store(struct mddev *mddev, const char *buf, size_t len)
3928 {
3929         /* If array is inactive, we can reduce the component size, but
3930          * not increase it (except from 0).
3931          * If array is active, we can try an on-line resize
3932          */
3933         sector_t sectors;
3934         int err = strict_blocks_to_sectors(buf, &sectors);
3935
3936         if (err < 0)
3937                 return err;
3938         if (mddev->pers) {
3939                 err = update_size(mddev, sectors);
3940                 md_update_sb(mddev, 1);
3941         } else {
3942                 if (mddev->dev_sectors == 0 ||
3943                     mddev->dev_sectors > sectors)
3944                         mddev->dev_sectors = sectors;
3945                 else
3946                         err = -ENOSPC;
3947         }
3948         return err ? err : len;
3949 }
3950
3951 static struct md_sysfs_entry md_size =
3952 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3953
3954
3955 /* Metdata version.
3956  * This is one of
3957  *   'none' for arrays with no metadata (good luck...)
3958  *   'external' for arrays with externally managed metadata,
3959  * or N.M for internally known formats
3960  */
3961 static ssize_t
3962 metadata_show(struct mddev *mddev, char *page)
3963 {
3964         if (mddev->persistent)
3965                 return sprintf(page, "%d.%d\n",
3966                                mddev->major_version, mddev->minor_version);
3967         else if (mddev->external)
3968                 return sprintf(page, "external:%s\n", mddev->metadata_type);
3969         else
3970                 return sprintf(page, "none\n");
3971 }
3972
3973 static ssize_t
3974 metadata_store(struct mddev *mddev, const char *buf, size_t len)
3975 {
3976         int major, minor;
3977         char *e;
3978         /* Changing the details of 'external' metadata is
3979          * always permitted.  Otherwise there must be
3980          * no devices attached to the array.
3981          */
3982         if (mddev->external && strncmp(buf, "external:", 9) == 0)
3983                 ;
3984         else if (!list_empty(&mddev->disks))
3985                 return -EBUSY;
3986
3987         if (cmd_match(buf, "none")) {
3988                 mddev->persistent = 0;
3989                 mddev->external = 0;
3990                 mddev->major_version = 0;
3991                 mddev->minor_version = 90;
3992                 return len;
3993         }
3994         if (strncmp(buf, "external:", 9) == 0) {
3995                 size_t namelen = len-9;
3996                 if (namelen >= sizeof(mddev->metadata_type))
3997                         namelen = sizeof(mddev->metadata_type)-1;
3998                 strncpy(mddev->metadata_type, buf+9, namelen);
3999                 mddev->metadata_type[namelen] = 0;
4000                 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4001                         mddev->metadata_type[--namelen] = 0;
4002                 mddev->persistent = 0;
4003                 mddev->external = 1;
4004                 mddev->major_version = 0;
4005                 mddev->minor_version = 90;
4006                 return len;
4007         }
4008         major = simple_strtoul(buf, &e, 10);
4009         if (e==buf || *e != '.')
4010                 return -EINVAL;
4011         buf = e+1;
4012         minor = simple_strtoul(buf, &e, 10);
4013         if (e==buf || (*e && *e != '\n') )
4014                 return -EINVAL;
4015         if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4016                 return -ENOENT;
4017         mddev->major_version = major;
4018         mddev->minor_version = minor;
4019         mddev->persistent = 1;
4020         mddev->external = 0;
4021         return len;
4022 }
4023
4024 static struct md_sysfs_entry md_metadata =
4025 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4026
4027 static ssize_t
4028 action_show(struct mddev *mddev, char *page)
4029 {
4030         char *type = "idle";
4031         if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4032                 type = "frozen";
4033         else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4034             (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4035                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4036                         type = "reshape";
4037                 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4038                         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4039                                 type = "resync";
4040                         else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4041                                 type = "check";
4042                         else
4043                                 type = "repair";
4044                 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4045                         type = "recover";
4046         }
4047         return sprintf(page, "%s\n", type);
4048 }
4049
4050 static void reap_sync_thread(struct mddev *mddev);
4051
4052 static ssize_t
4053 action_store(struct mddev *mddev, const char *page, size_t len)
4054 {
4055         if (!mddev->pers || !mddev->pers->sync_request)
4056                 return -EINVAL;
4057
4058         if (cmd_match(page, "frozen"))
4059                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4060         else
4061                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4062
4063         if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4064                 if (mddev->sync_thread) {
4065                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4066                         reap_sync_thread(mddev);
4067                 }
4068         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4069                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4070                 return -EBUSY;
4071         else if (cmd_match(page, "resync"))
4072                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4073         else if (cmd_match(page, "recover")) {
4074                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4075                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4076         } else if (cmd_match(page, "reshape")) {
4077                 int err;
4078                 if (mddev->pers->start_reshape == NULL)
4079                         return -EINVAL;
4080                 err = mddev->pers->start_reshape(mddev);
4081                 if (err)
4082                         return err;
4083                 sysfs_notify(&mddev->kobj, NULL, "degraded");
4084         } else {
4085                 if (cmd_match(page, "check"))
4086                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4087                 else if (!cmd_match(page, "repair"))
4088                         return -EINVAL;
4089                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4090                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4091         }
4092         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4093         md_wakeup_thread(mddev->thread);
4094         sysfs_notify_dirent_safe(mddev->sysfs_action);
4095         return len;
4096 }
4097
4098 static ssize_t
4099 mismatch_cnt_show(struct mddev *mddev, char *page)
4100 {
4101         return sprintf(page, "%llu\n",
4102                        (unsigned long long) mddev->resync_mismatches);
4103 }
4104
4105 static struct md_sysfs_entry md_scan_mode =
4106 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4107
4108
4109 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4110
4111 static ssize_t
4112 sync_min_show(struct mddev *mddev, char *page)
4113 {
4114         return sprintf(page, "%d (%s)\n", speed_min(mddev),
4115                        mddev->sync_speed_min ? "local": "system");
4116 }
4117
4118 static ssize_t
4119 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4120 {
4121         int min;
4122         char *e;
4123         if (strncmp(buf, "system", 6)==0) {
4124                 mddev->sync_speed_min = 0;
4125                 return len;
4126         }
4127         min = simple_strtoul(buf, &e, 10);
4128         if (buf == e || (*e && *e != '\n') || min <= 0)
4129                 return -EINVAL;
4130         mddev->sync_speed_min = min;
4131         return len;
4132 }
4133
4134 static struct md_sysfs_entry md_sync_min =
4135 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4136
4137 static ssize_t
4138 sync_max_show(struct mddev *mddev, char *page)
4139 {
4140         return sprintf(page, "%d (%s)\n", speed_max(mddev),
4141                        mddev->sync_speed_max ? "local": "system");
4142 }
4143
4144 static ssize_t
4145 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4146 {
4147         int max;
4148         char *e;
4149         if (strncmp(buf, "system", 6)==0) {
4150                 mddev->sync_speed_max = 0;
4151                 return len;
4152         }
4153         max = simple_strtoul(buf, &e, 10);
4154         if (buf == e || (*e && *e != '\n') || max <= 0)
4155                 return -EINVAL;
4156         mddev->sync_speed_max = max;
4157         return len;
4158 }
4159
4160 static struct md_sysfs_entry md_sync_max =
4161 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4162
4163 static ssize_t
4164 degraded_show(struct mddev *mddev, char *page)
4165 {
4166         return sprintf(page, "%d\n", mddev->degraded);
4167 }
4168 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4169
4170 static ssize_t
4171 sync_force_parallel_show(struct mddev *mddev, char *page)
4172 {
4173         return sprintf(page, "%d\n", mddev->parallel_resync);
4174 }
4175
4176 static ssize_t
4177 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4178 {
4179         long n;
4180
4181         if (strict_strtol(buf, 10, &n))
4182                 return -EINVAL;
4183
4184         if (n != 0 && n != 1)
4185                 return -EINVAL;
4186
4187         mddev->parallel_resync = n;
4188
4189         if (mddev->sync_thread)
4190                 wake_up(&resync_wait);
4191
4192         return len;
4193 }
4194
4195 /* force parallel resync, even with shared block devices */
4196 static struct md_sysfs_entry md_sync_force_parallel =
4197 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4198        sync_force_parallel_show, sync_force_parallel_store);
4199
4200 static ssize_t
4201 sync_speed_show(struct mddev *mddev, char *page)
4202 {
4203         unsigned long resync, dt, db;
4204         if (mddev->curr_resync == 0)
4205                 return sprintf(page, "none\n");
4206         resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4207         dt = (jiffies - mddev->resync_mark) / HZ;
4208         if (!dt) dt++;
4209         db = resync - mddev->resync_mark_cnt;
4210         return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4211 }
4212
4213 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4214
4215 static ssize_t
4216 sync_completed_show(struct mddev *mddev, char *page)
4217 {
4218         unsigned long long max_sectors, resync;
4219
4220         if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4221                 return sprintf(page, "none\n");
4222
4223         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4224                 max_sectors = mddev->resync_max_sectors;
4225         else
4226                 max_sectors = mddev->dev_sectors;
4227
4228         resync = mddev->curr_resync_completed;
4229         return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4230 }
4231
4232 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4233
4234 static ssize_t
4235 min_sync_show(struct mddev *mddev, char *page)
4236 {
4237         return sprintf(page, "%llu\n",
4238                        (unsigned long long)mddev->resync_min);
4239 }
4240 static ssize_t
4241 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4242 {
4243         unsigned long long min;
4244         if (strict_strtoull(buf, 10, &min))
4245                 return -EINVAL;
4246         if (min > mddev->resync_max)
4247                 return -EINVAL;
4248         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4249                 return -EBUSY;
4250
4251         /* Must be a multiple of chunk_size */
4252         if (mddev->chunk_sectors) {
4253                 sector_t temp = min;
4254                 if (sector_div(temp, mddev->chunk_sectors))
4255                         return -EINVAL;
4256         }
4257         mddev->resync_min = min;
4258
4259         return len;
4260 }
4261
4262 static struct md_sysfs_entry md_min_sync =
4263 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4264
4265 static ssize_t
4266 max_sync_show(struct mddev *mddev, char *page)
4267 {
4268         if (mddev->resync_max == MaxSector)
4269                 return sprintf(page, "max\n");
4270         else
4271                 return sprintf(page, "%llu\n",
4272                                (unsigned long long)mddev->resync_max);
4273 }
4274 static ssize_t
4275 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4276 {
4277         if (strncmp(buf, "max", 3) == 0)
4278                 mddev->resync_max = MaxSector;
4279         else {
4280                 unsigned long long max;
4281                 if (strict_strtoull(buf, 10, &max))
4282                         return -EINVAL;
4283                 if (max < mddev->resync_min)
4284                         return -EINVAL;
4285                 if (max < mddev->resync_max &&
4286                     mddev->ro == 0 &&
4287                     test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4288                         return -EBUSY;
4289
4290                 /* Must be a multiple of chunk_size */
4291                 if (mddev->chunk_sectors) {
4292                         sector_t temp = max;
4293                         if (sector_div(temp, mddev->chunk_sectors))
4294                                 return -EINVAL;
4295                 }
4296                 mddev->resync_max = max;
4297         }
4298         wake_up(&mddev->recovery_wait);
4299         return len;
4300 }
4301
4302 static struct md_sysfs_entry md_max_sync =
4303 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4304
4305 static ssize_t
4306 suspend_lo_show(struct mddev *mddev, char *page)
4307 {
4308         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4309 }
4310
4311 static ssize_t
4312 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4313 {
4314         char *e;
4315         unsigned long long new = simple_strtoull(buf, &e, 10);
4316         unsigned long long old = mddev->suspend_lo;
4317
4318         if (mddev->pers == NULL || 
4319             mddev->pers->quiesce == NULL)
4320                 return -EINVAL;
4321         if (buf == e || (*e && *e != '\n'))
4322                 return -EINVAL;
4323
4324         mddev->suspend_lo = new;
4325         if (new >= old)
4326                 /* Shrinking suspended region */
4327                 mddev->pers->quiesce(mddev, 2);
4328         else {
4329                 /* Expanding suspended region - need to wait */
4330                 mddev->pers->quiesce(mddev, 1);
4331                 mddev->pers->quiesce(mddev, 0);
4332         }
4333         return len;
4334 }
4335 static struct md_sysfs_entry md_suspend_lo =
4336 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4337
4338
4339 static ssize_t
4340 suspend_hi_show(struct mddev *mddev, char *page)
4341 {
4342         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4343 }
4344
4345 static ssize_t
4346 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4347 {
4348         char *e;
4349         unsigned long long new = simple_strtoull(buf, &e, 10);
4350         unsigned long long old = mddev->suspend_hi;
4351
4352         if (mddev->pers == NULL ||
4353             mddev->pers->quiesce == NULL)
4354                 return -EINVAL;
4355         if (buf == e || (*e && *e != '\n'))
4356                 return -EINVAL;
4357
4358         mddev->suspend_hi = new;
4359         if (new <= old)
4360                 /* Shrinking suspended region */
4361                 mddev->pers->quiesce(mddev, 2);
4362         else {
4363                 /* Expanding suspended region - need to wait */
4364                 mddev->pers->quiesce(mddev, 1);
4365                 mddev->pers->quiesce(mddev, 0);
4366         }
4367         return len;
4368 }
4369 static struct md_sysfs_entry md_suspend_hi =
4370 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4371
4372 static ssize_t
4373 reshape_position_show(struct mddev *mddev, char *page)
4374 {
4375         if (mddev->reshape_position != MaxSector)
4376                 return sprintf(page, "%llu\n",
4377                                (unsigned long long)mddev->reshape_position);
4378         strcpy(page, "none\n");
4379         return 5;
4380 }
4381
4382 static ssize_t
4383 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4384 {
4385         char *e;
4386         unsigned long long new = simple_strtoull(buf, &e, 10);
4387         if (mddev->pers)
4388                 return -EBUSY;
4389         if (buf == e || (*e && *e != '\n'))
4390                 return -EINVAL;
4391         mddev->reshape_position = new;
4392         mddev->delta_disks = 0;
4393         mddev->new_level = mddev->level;
4394         mddev->new_layout = mddev->layout;
4395         mddev->new_chunk_sectors = mddev->chunk_sectors;
4396         return len;
4397 }
4398
4399 static struct md_sysfs_entry md_reshape_position =
4400 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4401        reshape_position_store);
4402
4403 static ssize_t
4404 array_size_show(struct mddev *mddev, char *page)
4405 {
4406         if (mddev->external_size)
4407                 return sprintf(page, "%llu\n",
4408                                (unsigned long long)mddev->array_sectors/2);
4409         else
4410                 return sprintf(page, "default\n");
4411 }
4412
4413 static ssize_t
4414 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4415 {
4416         sector_t sectors;
4417
4418         if (strncmp(buf, "default", 7) == 0) {
4419                 if (mddev->pers)
4420                         sectors = mddev->pers->size(mddev, 0, 0);
4421                 else
4422                         sectors = mddev->array_sectors;
4423
4424                 mddev->external_size = 0;
4425         } else {
4426                 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4427                         return -EINVAL;
4428                 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4429                         return -E2BIG;
4430
4431                 mddev->external_size = 1;
4432         }
4433
4434         mddev->array_sectors = sectors;
4435         if (mddev->pers) {
4436                 set_capacity(mddev->gendisk, mddev->array_sectors);
4437                 revalidate_disk(mddev->gendisk);
4438         }
4439         return len;
4440 }
4441
4442 static struct md_sysfs_entry md_array_size =
4443 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4444        array_size_store);
4445
4446 static struct attribute *md_default_attrs[] = {
4447         &md_level.attr,
4448         &md_layout.attr,
4449         &md_raid_disks.attr,
4450         &md_chunk_size.attr,
4451         &md_size.attr,
4452         &md_resync_start.attr,
4453         &md_metadata.attr,
4454         &md_new_device.attr,
4455         &md_safe_delay.attr,
4456         &md_array_state.attr,
4457         &md_reshape_position.attr,
4458         &md_array_size.attr,
4459         &max_corr_read_errors.attr,
4460         NULL,
4461 };
4462
4463 static struct attribute *md_redundancy_attrs[] = {
4464         &md_scan_mode.attr,
4465         &md_mismatches.attr,
4466         &md_sync_min.attr,
4467         &md_sync_max.attr,
4468         &md_sync_speed.attr,
4469         &md_sync_force_parallel.attr,
4470         &md_sync_completed.attr,
4471         &md_min_sync.attr,
4472         &md_max_sync.attr,
4473         &md_suspend_lo.attr,
4474         &md_suspend_hi.attr,
4475         &md_bitmap.attr,
4476         &md_degraded.attr,
4477         NULL,
4478 };
4479 static struct attribute_group md_redundancy_group = {
4480         .name = NULL,
4481         .attrs = md_redundancy_attrs,
4482 };
4483
4484
4485 static ssize_t
4486 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4487 {
4488         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4489         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4490         ssize_t rv;
4491
4492         if (!entry->show)
4493                 return -EIO;
4494         spin_lock(&all_mddevs_lock);
4495         if (list_empty(&mddev->all_mddevs)) {
4496                 spin_unlock(&all_mddevs_lock);
4497                 return -EBUSY;
4498         }
4499         mddev_get(mddev);
4500         spin_unlock(&all_mddevs_lock);
4501
4502         rv = mddev_lock(mddev);
4503         if (!rv) {
4504                 rv = entry->show(mddev, page);
4505                 mddev_unlock(mddev);
4506         }
4507         mddev_put(mddev);
4508         return rv;
4509 }
4510
4511 static ssize_t
4512 md_attr_store(struct kobject *kobj, struct attribute *attr,
4513               const char *page, size_t length)
4514 {
4515         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4516         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4517         ssize_t rv;
4518
4519         if (!entry->store)
4520                 return -EIO;
4521         if (!capable(CAP_SYS_ADMIN))
4522                 return -EACCES;
4523         spin_lock(&all_mddevs_lock);
4524         if (list_empty(&mddev->all_mddevs)) {
4525                 spin_unlock(&all_mddevs_lock);
4526                 return -EBUSY;
4527         }
4528         mddev_get(mddev);
4529         spin_unlock(&all_mddevs_lock);
4530         rv = mddev_lock(mddev);
4531         if (!rv) {
4532                 rv = entry->store(mddev, page, length);
4533                 mddev_unlock(mddev);
4534         }
4535         mddev_put(mddev);
4536         return rv;
4537 }
4538
4539 static void md_free(struct kobject *ko)
4540 {
4541         struct mddev *mddev = container_of(ko, struct mddev, kobj);
4542
4543         if (mddev->sysfs_state)
4544                 sysfs_put(mddev->sysfs_state);
4545
4546         if (mddev->gendisk) {
4547                 del_gendisk(mddev->gendisk);
4548                 put_disk(mddev->gendisk);
4549         }
4550         if (mddev->queue)
4551                 blk_cleanup_queue(mddev->queue);
4552
4553         kfree(mddev);
4554 }
4555
4556 static const struct sysfs_ops md_sysfs_ops = {
4557         .show   = md_attr_show,
4558         .store  = md_attr_store,
4559 };
4560 static struct kobj_type md_ktype = {
4561         .release        = md_free,
4562         .sysfs_ops      = &md_sysfs_ops,
4563         .default_attrs  = md_default_attrs,
4564 };
4565
4566 int mdp_major = 0;
4567
4568 static void mddev_delayed_delete(struct work_struct *ws)
4569 {
4570         struct mddev *mddev = container_of(ws, struct mddev, del_work);
4571
4572         sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4573         kobject_del(&mddev->kobj);
4574         kobject_put(&mddev->kobj);
4575 }
4576
4577 static int md_alloc(dev_t dev, char *name)
4578 {
4579         static DEFINE_MUTEX(disks_mutex);
4580         struct mddev *mddev = mddev_find(dev);
4581         struct gendisk *disk;
4582         int partitioned;
4583         int shift;
4584         int unit;
4585         int error;
4586
4587         if (!mddev)
4588                 return -ENODEV;
4589
4590         partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4591         shift = partitioned ? MdpMinorShift : 0;
4592         unit = MINOR(mddev->unit) >> shift;
4593
4594         /* wait for any previous instance of this device to be
4595          * completely removed (mddev_delayed_delete).
4596          */
4597         flush_workqueue(md_misc_wq);
4598
4599         mutex_lock(&disks_mutex);
4600         error = -EEXIST;
4601         if (mddev->gendisk)
4602                 goto abort;
4603
4604         if (name) {
4605                 /* Need to ensure that 'name' is not a duplicate.
4606                  */
4607                 struct mddev *mddev2;
4608                 spin_lock(&all_mddevs_lock);
4609
4610                 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4611                         if (mddev2->gendisk &&
4612                             strcmp(mddev2->gendisk->disk_name, name) == 0) {
4613                                 spin_unlock(&all_mddevs_lock);
4614                                 goto abort;
4615                         }
4616                 spin_unlock(&all_mddevs_lock);
4617         }
4618
4619         error = -ENOMEM;
4620         mddev->queue = blk_alloc_queue(GFP_KERNEL);
4621         if (!mddev->queue)
4622                 goto abort;
4623         mddev->queue->queuedata = mddev;
4624
4625         blk_queue_make_request(mddev->queue, md_make_request);
4626
4627         disk = alloc_disk(1 << shift);
4628         if (!disk) {
4629                 blk_cleanup_queue(mddev->queue);
4630                 mddev->queue = NULL;
4631                 goto abort;
4632         }
4633         disk->major = MAJOR(mddev->unit);
4634         disk->first_minor = unit << shift;
4635         if (name)
4636                 strcpy(disk->disk_name, name);
4637         else if (partitioned)
4638                 sprintf(disk->disk_name, "md_d%d", unit);
4639         else
4640                 sprintf(disk->disk_name, "md%d", unit);
4641         disk->fops = &md_fops;
4642         disk->private_data = mddev;
4643         disk->queue = mddev->queue;
4644         blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4645         /* Allow extended partitions.  This makes the
4646          * 'mdp' device redundant, but we can't really
4647          * remove it now.
4648          */
4649         disk->flags |= GENHD_FL_EXT_DEVT;
4650         mddev->gendisk = disk;
4651         /* As soon as we call add_disk(), another thread could get
4652          * through to md_open, so make sure it doesn't get too far
4653          */
4654         mutex_lock(&mddev->open_mutex);
4655         add_disk(disk);
4656
4657         error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4658                                      &disk_to_dev(disk)->kobj, "%s", "md");
4659         if (error) {
4660                 /* This isn't possible, but as kobject_init_and_add is marked
4661                  * __must_check, we must do something with the result
4662                  */
4663                 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4664                        disk->disk_name);
4665                 error = 0;
4666         }
4667         if (mddev->kobj.sd &&
4668             sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4669                 printk(KERN_DEBUG "pointless warning\n");
4670         mutex_unlock(&mddev->open_mutex);
4671  abort:
4672         mutex_unlock(&disks_mutex);
4673         if (!error && mddev->kobj.sd) {
4674                 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4675                 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4676         }
4677         mddev_put(mddev);
4678         return error;
4679 }
4680
4681 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4682 {
4683         md_alloc(dev, NULL);
4684         return NULL;
4685 }
4686
4687 static int add_named_array(const char *val, struct kernel_param *kp)
4688 {
4689         /* val must be "md_*" where * is not all digits.
4690          * We allocate an array with a large free minor number, and
4691          * set the name to val.  val must not already be an active name.
4692          */
4693         int len = strlen(val);
4694         char buf[DISK_NAME_LEN];
4695
4696         while (len && val[len-1] == '\n')
4697                 len--;
4698         if (len >= DISK_NAME_LEN)
4699                 return -E2BIG;
4700         strlcpy(buf, val, len+1);
4701         if (strncmp(buf, "md_", 3) != 0)
4702                 return -EINVAL;
4703         return md_alloc(0, buf);
4704 }
4705
4706 static void md_safemode_timeout(unsigned long data)
4707 {
4708         struct mddev *mddev = (struct mddev *) data;
4709
4710         if (!atomic_read(&mddev->writes_pending)) {
4711                 mddev->safemode = 1;
4712                 if (mddev->external)
4713                         sysfs_notify_dirent_safe(mddev->sysfs_state);
4714         }
4715         md_wakeup_thread(mddev->thread);
4716 }
4717
4718 static int start_dirty_degraded;
4719
4720 int md_run(struct mddev *mddev)
4721 {
4722         int err;
4723         struct md_rdev *rdev;
4724         struct md_personality *pers;
4725
4726         if (list_empty(&mddev->disks))
4727                 /* cannot run an array with no devices.. */
4728                 return -EINVAL;
4729
4730         if (mddev->pers)
4731                 return -EBUSY;
4732         /* Cannot run until previous stop completes properly */
4733         if (mddev->sysfs_active)
4734                 return -EBUSY;
4735
4736         /*
4737          * Analyze all RAID superblock(s)
4738          */
4739         if (!mddev->raid_disks) {
4740                 if (!mddev->persistent)
4741                         return -EINVAL;
4742                 analyze_sbs(mddev);
4743         }
4744
4745         if (mddev->level != LEVEL_NONE)
4746                 request_module("md-level-%d", mddev->level);
4747         else if (mddev->clevel[0])
4748                 request_module("md-%s", mddev->clevel);
4749
4750         /*
4751          * Drop all container device buffers, from now on
4752          * the only valid external interface is through the md
4753          * device.
4754          */
4755         list_for_each_entry(rdev, &mddev->disks, same_set) {
4756                 if (test_bit(Faulty, &rdev->flags))
4757                         continue;
4758                 sync_blockdev(rdev->bdev);
4759                 invalidate_bdev(rdev->bdev);
4760
4761                 /* perform some consistency tests on the device.
4762                  * We don't want the data to overlap the metadata,
4763                  * Internal Bitmap issues have been handled elsewhere.
4764                  */
4765                 if (rdev->meta_bdev) {
4766                         /* Nothing to check */;
4767                 } else if (rdev->data_offset < rdev->sb_start) {
4768                         if (mddev->dev_sectors &&
4769                             rdev->data_offset + mddev->dev_sectors
4770                             > rdev->sb_start) {
4771                                 printk("md: %s: data overlaps metadata\n",
4772                                        mdname(mddev));
4773                                 return -EINVAL;
4774                         }
4775                 } else {
4776                         if (rdev->sb_start + rdev->sb_size/512
4777                             > rdev->data_offset) {
4778                                 printk("md: %s: metadata overlaps data\n",
4779                                        mdname(mddev));
4780                                 return -EINVAL;
4781                         }
4782                 }
4783                 sysfs_notify_dirent_safe(rdev->sysfs_state);
4784         }
4785
4786         if (mddev->bio_set == NULL)
4787                 mddev->bio_set = bioset_create(BIO_POOL_SIZE,
4788                                                sizeof(struct mddev *));
4789
4790         spin_lock(&pers_lock);
4791         pers = find_pers(mddev->level, mddev->clevel);
4792         if (!pers || !try_module_get(pers->owner)) {
4793                 spin_unlock(&pers_lock);
4794                 if (mddev->level != LEVEL_NONE)
4795                         printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4796                                mddev->level);
4797                 else
4798                         printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4799                                mddev->clevel);
4800                 return -EINVAL;
4801         }
4802         mddev->pers = pers;
4803         spin_unlock(&pers_lock);
4804         if (mddev->level != pers->level) {
4805                 mddev->level = pers->level;
4806                 mddev->new_level = pers->level;
4807         }
4808         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4809
4810         if (mddev->reshape_position != MaxSector &&
4811             pers->start_reshape == NULL) {
4812                 /* This personality cannot handle reshaping... */
4813                 mddev->pers = NULL;
4814                 module_put(pers->owner);
4815                 return -EINVAL;
4816         }
4817
4818         if (pers->sync_request) {
4819                 /* Warn if this is a potentially silly
4820                  * configuration.
4821                  */
4822                 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4823                 struct md_rdev *rdev2;
4824                 int warned = 0;
4825
4826                 list_for_each_entry(rdev, &mddev->disks, same_set)
4827                         list_for_each_entry(rdev2, &mddev->disks, same_set) {
4828                                 if (rdev < rdev2 &&
4829                                     rdev->bdev->bd_contains ==
4830                                     rdev2->bdev->bd_contains) {
4831                                         printk(KERN_WARNING
4832                                                "%s: WARNING: %s appears to be"
4833                                                " on the same physical disk as"
4834                                                " %s.\n",
4835                                                mdname(mddev),
4836                                                bdevname(rdev->bdev,b),
4837                                                bdevname(rdev2->bdev,b2));
4838                                         warned = 1;
4839                                 }
4840                         }
4841
4842                 if (warned)
4843                         printk(KERN_WARNING
4844                                "True protection against single-disk"
4845                                " failure might be compromised.\n");
4846         }
4847
4848         mddev->recovery = 0;
4849         /* may be over-ridden by personality */
4850         mddev->resync_max_sectors = mddev->dev_sectors;
4851
4852         mddev->ok_start_degraded = start_dirty_degraded;
4853
4854         if (start_readonly && mddev->ro == 0)
4855                 mddev->ro = 2; /* read-only, but switch on first write */
4856
4857         err = mddev->pers->run(mddev);
4858         if (err)
4859                 printk(KERN_ERR "md: pers->run() failed ...\n");
4860         else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4861                 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4862                           " but 'external_size' not in effect?\n", __func__);
4863                 printk(KERN_ERR
4864                        "md: invalid array_size %llu > default size %llu\n",
4865                        (unsigned long long)mddev->array_sectors / 2,
4866                        (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4867                 err = -EINVAL;
4868                 mddev->pers->stop(mddev);
4869         }
4870         if (err == 0 && mddev->pers->sync_request) {
4871                 err = bitmap_create(mddev);
4872                 if (err) {
4873                         printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4874                                mdname(mddev), err);
4875                         mddev->pers->stop(mddev);
4876                 }
4877         }
4878         if (err) {
4879                 module_put(mddev->pers->owner);
4880                 mddev->pers = NULL;
4881                 bitmap_destroy(mddev);
4882                 return err;
4883         }
4884         if (mddev->pers->sync_request) {
4885                 if (mddev->kobj.sd &&
4886                     sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4887                         printk(KERN_WARNING
4888                                "md: cannot register extra attributes for %s\n",
4889                                mdname(mddev));
4890                 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4891         } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4892                 mddev->ro = 0;
4893
4894         atomic_set(&mddev->writes_pending,0);
4895         atomic_set(&mddev->max_corr_read_errors,
4896                    MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4897         mddev->safemode = 0;
4898         mddev->safemode_timer.function = md_safemode_timeout;
4899         mddev->safemode_timer.data = (unsigned long) mddev;
4900         mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4901         mddev->in_sync = 1;
4902         smp_wmb();
4903         mddev->ready = 1;
4904         list_for_each_entry(rdev, &mddev->disks, same_set)
4905                 if (rdev->raid_disk >= 0)
4906                         if (sysfs_link_rdev(mddev, rdev))
4907                                 /* failure here is OK */;
4908         
4909         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4910         
4911         if (mddev->flags)
4912                 md_update_sb(mddev, 0);
4913
4914         md_new_event(mddev);
4915         sysfs_notify_dirent_safe(mddev->sysfs_state);
4916         sysfs_notify_dirent_safe(mddev->sysfs_action);
4917         sysfs_notify(&mddev->kobj, NULL, "degraded");
4918         return 0;
4919 }
4920 EXPORT_SYMBOL_GPL(md_run);
4921
4922 static int do_md_run(struct mddev *mddev)
4923 {
4924         int err;
4925
4926         err = md_run(mddev);
4927         if (err)
4928                 goto out;
4929         err = bitmap_load(mddev);
4930         if (err) {
4931                 bitmap_destroy(mddev);
4932                 goto out;
4933         }
4934
4935         md_wakeup_thread(mddev->thread);
4936         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4937
4938         set_capacity(mddev->gendisk, mddev->array_sectors);
4939         revalidate_disk(mddev->gendisk);
4940         mddev->changed = 1;
4941         kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4942 out:
4943         return err;
4944 }
4945
4946 static int restart_array(struct mddev *mddev)
4947 {
4948         struct gendisk *disk = mddev->gendisk;
4949
4950         /* Complain if it has no devices */
4951         if (list_empty(&mddev->disks))
4952                 return -ENXIO;
4953         if (!mddev->pers)
4954                 return -EINVAL;
4955         if (!mddev->ro)
4956                 return -EBUSY;
4957         mddev->safemode = 0;
4958         mddev->ro = 0;
4959         set_disk_ro(disk, 0);
4960         printk(KERN_INFO "md: %s switched to read-write mode.\n",
4961                 mdname(mddev));
4962         /* Kick recovery or resync if necessary */
4963         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4964         md_wakeup_thread(mddev->thread);
4965         md_wakeup_thread(mddev->sync_thread);
4966         sysfs_notify_dirent_safe(mddev->sysfs_state);
4967         return 0;
4968 }
4969
4970 /* similar to deny_write_access, but accounts for our holding a reference
4971  * to the file ourselves */
4972 static int deny_bitmap_write_access(struct file * file)
4973 {
4974         struct inode *inode = file->f_mapping->host;
4975
4976         spin_lock(&inode->i_lock);
4977         if (atomic_read(&inode->i_writecount) > 1) {
4978                 spin_unlock(&inode->i_lock);
4979                 return -ETXTBSY;
4980         }
4981         atomic_set(&inode->i_writecount, -1);
4982         spin_unlock(&inode->i_lock);
4983
4984         return 0;
4985 }
4986
4987 void restore_bitmap_write_access(struct file *file)
4988 {
4989         struct inode *inode = file->f_mapping->host;
4990
4991         spin_lock(&inode->i_lock);
4992         atomic_set(&inode->i_writecount, 1);
4993         spin_unlock(&inode->i_lock);
4994 }
4995
4996 static void md_clean(struct mddev *mddev)
4997 {
4998         mddev->array_sectors = 0;
4999         mddev->external_size = 0;
5000         mddev->dev_sectors = 0;
5001         mddev->raid_disks = 0;
5002         mddev->recovery_cp = 0;
5003         mddev->resync_min = 0;
5004         mddev->resync_max = MaxSector;
5005         mddev->reshape_position = MaxSector;
5006         mddev->external = 0;
5007         mddev->persistent = 0;
5008         mddev->level = LEVEL_NONE;
5009         mddev->clevel[0] = 0;
5010         mddev->flags = 0;
5011         mddev->ro = 0;
5012         mddev->metadata_type[0] = 0;
5013         mddev->chunk_sectors = 0;
5014         mddev->ctime = mddev->utime = 0;
5015         mddev->layout = 0;
5016         mddev->max_disks = 0;
5017         mddev->events = 0;
5018         mddev->can_decrease_events = 0;
5019         mddev->delta_disks = 0;
5020         mddev->new_level = LEVEL_NONE;
5021         mddev->new_layout = 0;
5022         mddev->new_chunk_sectors = 0;
5023         mddev->curr_resync = 0;
5024         mddev->resync_mismatches = 0;
5025         mddev->suspend_lo = mddev->suspend_hi = 0;
5026         mddev->sync_speed_min = mddev->sync_speed_max = 0;
5027         mddev->recovery = 0;
5028         mddev->in_sync = 0;
5029         mddev->changed = 0;
5030         mddev->degraded = 0;
5031         mddev->safemode = 0;
5032         mddev->bitmap_info.offset = 0;
5033         mddev->bitmap_info.default_offset = 0;
5034         mddev->bitmap_info.chunksize = 0;
5035         mddev->bitmap_info.daemon_sleep = 0;
5036         mddev->bitmap_info.max_write_behind = 0;
5037 }
5038
5039 static void __md_stop_writes(struct mddev *mddev)
5040 {
5041         if (mddev->sync_thread) {
5042                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5043                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5044                 reap_sync_thread(mddev);
5045         }
5046
5047         del_timer_sync(&mddev->safemode_timer);
5048
5049         bitmap_flush(mddev);
5050         md_super_wait(mddev);
5051
5052         if (!mddev->in_sync || mddev->flags) {
5053                 /* mark array as shutdown cleanly */
5054                 mddev->in_sync = 1;
5055                 md_update_sb(mddev, 1);
5056         }
5057 }
5058
5059 void md_stop_writes(struct mddev *mddev)
5060 {
5061         mddev_lock(mddev);
5062         __md_stop_writes(mddev);
5063         mddev_unlock(mddev);
5064 }
5065 EXPORT_SYMBOL_GPL(md_stop_writes);
5066
5067 void md_stop(struct mddev *mddev)
5068 {
5069         mddev->ready = 0;
5070         mddev->pers->stop(mddev);
5071         if (mddev->pers->sync_request && mddev->to_remove == NULL)
5072                 mddev->to_remove = &md_redundancy_group;
5073         module_put(mddev->pers->owner);
5074         mddev->pers = NULL;
5075         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5076 }
5077 EXPORT_SYMBOL_GPL(md_stop);
5078
5079 static int md_set_readonly(struct mddev *mddev, int is_open)
5080 {
5081         int err = 0;
5082         mutex_lock(&mddev->open_mutex);
5083         if (atomic_read(&mddev->openers) > is_open) {
5084                 printk("md: %s still in use.\n",mdname(mddev));
5085                 err = -EBUSY;
5086                 goto out;
5087         }
5088         if (mddev->pers) {
5089                 __md_stop_writes(mddev);
5090
5091                 err  = -ENXIO;
5092                 if (mddev->ro==1)
5093                         goto out;
5094                 mddev->ro = 1;
5095                 set_disk_ro(mddev->gendisk, 1);
5096                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5097                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5098                 err = 0;        
5099         }
5100 out:
5101         mutex_unlock(&mddev->open_mutex);
5102         return err;
5103 }
5104
5105 /* mode:
5106  *   0 - completely stop and dis-assemble array
5107  *   2 - stop but do not disassemble array
5108  */
5109 static int do_md_stop(struct mddev * mddev, int mode, int is_open)
5110 {
5111         struct gendisk *disk = mddev->gendisk;
5112         struct md_rdev *rdev;
5113
5114         mutex_lock(&mddev->open_mutex);
5115         if (atomic_read(&mddev->openers) > is_open ||
5116             mddev->sysfs_active) {
5117                 printk("md: %s still in use.\n",mdname(mddev));
5118                 mutex_unlock(&mddev->open_mutex);
5119                 return -EBUSY;
5120         }
5121
5122         if (mddev->pers) {
5123                 if (mddev->ro)
5124                         set_disk_ro(disk, 0);
5125
5126                 __md_stop_writes(mddev);
5127                 md_stop(mddev);
5128                 mddev->queue->merge_bvec_fn = NULL;
5129                 mddev->queue->backing_dev_info.congested_fn = NULL;
5130
5131                 /* tell userspace to handle 'inactive' */
5132                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5133
5134                 list_for_each_entry(rdev, &mddev->disks, same_set)
5135                         if (rdev->raid_disk >= 0)
5136                                 sysfs_unlink_rdev(mddev, rdev);
5137
5138                 set_capacity(disk, 0);
5139                 mutex_unlock(&mddev->open_mutex);
5140                 mddev->changed = 1;
5141                 revalidate_disk(disk);
5142
5143                 if (mddev->ro)
5144                         mddev->ro = 0;
5145         } else
5146                 mutex_unlock(&mddev->open_mutex);
5147         /*
5148          * Free resources if final stop
5149          */
5150         if (mode == 0) {
5151                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5152
5153                 bitmap_destroy(mddev);
5154                 if (mddev->bitmap_info.file) {
5155                         restore_bitmap_write_access(mddev->bitmap_info.file);
5156                         fput(mddev->bitmap_info.file);
5157                         mddev->bitmap_info.file = NULL;
5158                 }
5159                 mddev->bitmap_info.offset = 0;
5160
5161                 export_array(mddev);
5162
5163                 md_clean(mddev);
5164                 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5165                 if (mddev->hold_active == UNTIL_STOP)
5166                         mddev->hold_active = 0;
5167         }
5168         blk_integrity_unregister(disk);
5169         md_new_event(mddev);
5170         sysfs_notify_dirent_safe(mddev->sysfs_state);
5171         return 0;
5172 }
5173
5174 #ifndef MODULE
5175 static void autorun_array(struct mddev *mddev)
5176 {
5177         struct md_rdev *rdev;
5178         int err;
5179
5180         if (list_empty(&mddev->disks))
5181                 return;
5182
5183         printk(KERN_INFO "md: running: ");
5184
5185         list_for_each_entry(rdev, &mddev->disks, same_set) {
5186                 char b[BDEVNAME_SIZE];
5187                 printk("<%s>", bdevname(rdev->bdev,b));
5188         }
5189         printk("\n");
5190
5191         err = do_md_run(mddev);
5192         if (err) {
5193                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5194                 do_md_stop(mddev, 0, 0);
5195         }
5196 }
5197
5198 /*
5199  * lets try to run arrays based on all disks that have arrived
5200  * until now. (those are in pending_raid_disks)
5201  *
5202  * the method: pick the first pending disk, collect all disks with
5203  * the same UUID, remove all from the pending list and put them into
5204  * the 'same_array' list. Then order this list based on superblock
5205  * update time (freshest comes first), kick out 'old' disks and
5206  * compare superblocks. If everything's fine then run it.
5207  *
5208  * If "unit" is allocated, then bump its reference count
5209  */
5210 static void autorun_devices(int part)
5211 {
5212         struct md_rdev *rdev0, *rdev, *tmp;
5213         struct mddev *mddev;
5214         char b[BDEVNAME_SIZE];
5215
5216         printk(KERN_INFO "md: autorun ...\n");
5217         while (!list_empty(&pending_raid_disks)) {
5218                 int unit;
5219                 dev_t dev;
5220                 LIST_HEAD(candidates);
5221                 rdev0 = list_entry(pending_raid_disks.next,
5222                                          struct md_rdev, same_set);
5223
5224                 printk(KERN_INFO "md: considering %s ...\n",
5225                         bdevname(rdev0->bdev,b));
5226                 INIT_LIST_HEAD(&candidates);
5227                 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5228                         if (super_90_load(rdev, rdev0, 0) >= 0) {
5229                                 printk(KERN_INFO "md:  adding %s ...\n",
5230                                         bdevname(rdev->bdev,b));
5231                                 list_move(&rdev->same_set, &candidates);
5232                         }
5233                 /*
5234                  * now we have a set of devices, with all of them having
5235                  * mostly sane superblocks. It's time to allocate the
5236                  * mddev.
5237                  */
5238                 if (part) {
5239                         dev = MKDEV(mdp_major,
5240                                     rdev0->preferred_minor << MdpMinorShift);
5241                         unit = MINOR(dev) >> MdpMinorShift;
5242                 } else {
5243                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5244                         unit = MINOR(dev);
5245                 }
5246                 if (rdev0->preferred_minor != unit) {
5247                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5248                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5249                         break;
5250                 }
5251
5252                 md_probe(dev, NULL, NULL);
5253                 mddev = mddev_find(dev);
5254                 if (!mddev || !mddev->gendisk) {
5255                         if (mddev)
5256                                 mddev_put(mddev);
5257                         printk(KERN_ERR
5258                                 "md: cannot allocate memory for md drive.\n");
5259                         break;
5260                 }
5261                 if (mddev_lock(mddev)) 
5262                         printk(KERN_WARNING "md: %s locked, cannot run\n",
5263                                mdname(mddev));
5264                 else if (mddev->raid_disks || mddev->major_version
5265                          || !list_empty(&mddev->disks)) {
5266                         printk(KERN_WARNING 
5267                                 "md: %s already running, cannot run %s\n",
5268                                 mdname(mddev), bdevname(rdev0->bdev,b));
5269                         mddev_unlock(mddev);
5270                 } else {
5271                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
5272                         mddev->persistent = 1;
5273                         rdev_for_each_list(rdev, tmp, &candidates) {
5274                                 list_del_init(&rdev->same_set);
5275                                 if (bind_rdev_to_array(rdev, mddev))
5276                                         export_rdev(rdev);
5277                         }
5278                         autorun_array(mddev);
5279                         mddev_unlock(mddev);
5280                 }
5281                 /* on success, candidates will be empty, on error
5282                  * it won't...
5283                  */
5284                 rdev_for_each_list(rdev, tmp, &candidates) {
5285                         list_del_init(&rdev->same_set);
5286                         export_rdev(rdev);
5287                 }
5288                 mddev_put(mddev);
5289         }
5290         printk(KERN_INFO "md: ... autorun DONE.\n");
5291 }
5292 #endif /* !MODULE */
5293
5294 static int get_version(void __user * arg)
5295 {
5296         mdu_version_t ver;
5297
5298         ver.major = MD_MAJOR_VERSION;
5299         ver.minor = MD_MINOR_VERSION;
5300         ver.patchlevel = MD_PATCHLEVEL_VERSION;
5301
5302         if (copy_to_user(arg, &ver, sizeof(ver)))
5303                 return -EFAULT;
5304
5305         return 0;
5306 }
5307
5308 static int get_array_info(struct mddev * mddev, void __user * arg)
5309 {
5310         mdu_array_info_t info;
5311         int nr,working,insync,failed,spare;
5312         struct md_rdev *rdev;
5313
5314         nr=working=insync=failed=spare=0;
5315         list_for_each_entry(rdev, &mddev->disks, same_set) {
5316                 nr++;
5317                 if (test_bit(Faulty, &rdev->flags))
5318                         failed++;
5319                 else {
5320                         working++;
5321                         if (test_bit(In_sync, &rdev->flags))
5322                                 insync++;       
5323                         else
5324                                 spare++;
5325                 }
5326         }
5327
5328         info.major_version = mddev->major_version;
5329         info.minor_version = mddev->minor_version;
5330         info.patch_version = MD_PATCHLEVEL_VERSION;
5331         info.ctime         = mddev->ctime;
5332         info.level         = mddev->level;
5333         info.size          = mddev->dev_sectors / 2;
5334         if (info.size != mddev->dev_sectors / 2) /* overflow */
5335                 info.size = -1;
5336         info.nr_disks      = nr;
5337         info.raid_disks    = mddev->raid_disks;
5338         info.md_minor      = mddev->md_minor;
5339         info.not_persistent= !mddev->persistent;
5340
5341         info.utime         = mddev->utime;
5342         info.state         = 0;
5343         if (mddev->in_sync)
5344                 info.state = (1<<MD_SB_CLEAN);
5345         if (mddev->bitmap && mddev->bitmap_info.offset)
5346                 info.state = (1<<MD_SB_BITMAP_PRESENT);
5347         info.active_disks  = insync;
5348         info.working_disks = working;
5349         info.failed_disks  = failed;
5350         info.spare_disks   = spare;
5351
5352         info.layout        = mddev->layout;
5353         info.chunk_size    = mddev->chunk_sectors << 9;
5354
5355         if (copy_to_user(arg, &info, sizeof(info)))
5356                 return -EFAULT;
5357
5358         return 0;
5359 }
5360
5361 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5362 {
5363         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5364         char *ptr, *buf = NULL;
5365         int err = -ENOMEM;
5366
5367         if (md_allow_write(mddev))
5368                 file = kmalloc(sizeof(*file), GFP_NOIO);
5369         else
5370                 file = kmalloc(sizeof(*file), GFP_KERNEL);
5371
5372         if (!file)
5373                 goto out;
5374
5375         /* bitmap disabled, zero the first byte and copy out */
5376         if (!mddev->bitmap || !mddev->bitmap->file) {
5377                 file->pathname[0] = '\0';
5378                 goto copy_out;
5379         }
5380
5381         buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5382         if (!buf)
5383                 goto out;
5384
5385         ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5386         if (IS_ERR(ptr))
5387                 goto out;
5388
5389         strcpy(file->pathname, ptr);
5390
5391 copy_out:
5392         err = 0;
5393         if (copy_to_user(arg, file, sizeof(*file)))
5394                 err = -EFAULT;
5395 out:
5396         kfree(buf);
5397         kfree(file);
5398         return err;
5399 }
5400
5401 static int get_disk_info(struct mddev * mddev, void __user * arg)
5402 {
5403         mdu_disk_info_t info;
5404         struct md_rdev *rdev;
5405
5406         if (copy_from_user(&info, arg, sizeof(info)))
5407                 return -EFAULT;
5408
5409         rdev = find_rdev_nr(mddev, info.number);
5410         if (rdev) {
5411                 info.major = MAJOR(rdev->bdev->bd_dev);
5412                 info.minor = MINOR(rdev->bdev->bd_dev);
5413                 info.raid_disk = rdev->raid_disk;
5414                 info.state = 0;
5415                 if (test_bit(Faulty, &rdev->flags))
5416                         info.state |= (1<<MD_DISK_FAULTY);
5417                 else if (test_bit(In_sync, &rdev->flags)) {
5418                         info.state |= (1<<MD_DISK_ACTIVE);
5419                         info.state |= (1<<MD_DISK_SYNC);
5420                 }
5421                 if (test_bit(WriteMostly, &rdev->flags))
5422                         info.state |= (1<<MD_DISK_WRITEMOSTLY);
5423         } else {
5424                 info.major = info.minor = 0;
5425                 info.raid_disk = -1;
5426                 info.state = (1<<MD_DISK_REMOVED);
5427         }
5428
5429         if (copy_to_user(arg, &info, sizeof(info)))
5430                 return -EFAULT;
5431
5432         return 0;
5433 }
5434
5435 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5436 {
5437         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5438         struct md_rdev *rdev;
5439         dev_t dev = MKDEV(info->major,info->minor);
5440
5441         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5442                 return -EOVERFLOW;
5443
5444         if (!mddev->raid_disks) {
5445                 int err;
5446                 /* expecting a device which has a superblock */
5447                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5448                 if (IS_ERR(rdev)) {
5449                         printk(KERN_WARNING 
5450                                 "md: md_import_device returned %ld\n",
5451                                 PTR_ERR(rdev));
5452                         return PTR_ERR(rdev);
5453                 }
5454                 if (!list_empty(&mddev->disks)) {
5455                         struct md_rdev *rdev0
5456                                 = list_entry(mddev->disks.next,
5457                                              struct md_rdev, same_set);
5458                         err = super_types[mddev->major_version]
5459                                 .load_super(rdev, rdev0, mddev->minor_version);
5460                         if (err < 0) {
5461                                 printk(KERN_WARNING 
5462                                         "md: %s has different UUID to %s\n",
5463                                         bdevname(rdev->bdev,b), 
5464                                         bdevname(rdev0->bdev,b2));
5465                                 export_rdev(rdev);
5466                                 return -EINVAL;
5467                         }
5468                 }
5469                 err = bind_rdev_to_array(rdev, mddev);
5470                 if (err)
5471                         export_rdev(rdev);
5472                 return err;
5473         }
5474
5475         /*
5476          * add_new_disk can be used once the array is assembled
5477          * to add "hot spares".  They must already have a superblock
5478          * written
5479          */
5480         if (mddev->pers) {
5481                 int err;
5482                 if (!mddev->pers->hot_add_disk) {
5483                         printk(KERN_WARNING 
5484                                 "%s: personality does not support diskops!\n",
5485                                mdname(mddev));
5486                         return -EINVAL;
5487                 }
5488                 if (mddev->persistent)
5489                         rdev = md_import_device(dev, mddev->major_version,
5490                                                 mddev->minor_version);
5491                 else
5492                         rdev = md_import_device(dev, -1, -1);
5493                 if (IS_ERR(rdev)) {
5494                         printk(KERN_WARNING 
5495                                 "md: md_import_device returned %ld\n",
5496                                 PTR_ERR(rdev));
5497                         return PTR_ERR(rdev);
5498                 }
5499                 /* set saved_raid_disk if appropriate */
5500                 if (!mddev->persistent) {
5501                         if (info->state & (1<<MD_DISK_SYNC)  &&
5502                             info->raid_disk < mddev->raid_disks) {
5503                                 rdev->raid_disk = info->raid_disk;
5504                                 set_bit(In_sync, &rdev->flags);
5505                         } else
5506                                 rdev->raid_disk = -1;
5507                 } else
5508                         super_types[mddev->major_version].
5509                                 validate_super(mddev, rdev);
5510                 if ((info->state & (1<<MD_DISK_SYNC)) &&
5511                     (!test_bit(In_sync, &rdev->flags) ||
5512                      rdev->raid_disk != info->raid_disk)) {
5513                         /* This was a hot-add request, but events doesn't
5514                          * match, so reject it.
5515                          */
5516                         export_rdev(rdev);
5517                         return -EINVAL;
5518                 }
5519
5520                 if (test_bit(In_sync, &rdev->flags))
5521                         rdev->saved_raid_disk = rdev->raid_disk;
5522                 else
5523                         rdev->saved_raid_disk = -1;
5524
5525                 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5526                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5527                         set_bit(WriteMostly, &rdev->flags);
5528                 else
5529                         clear_bit(WriteMostly, &rdev->flags);
5530
5531                 rdev->raid_disk = -1;
5532                 err = bind_rdev_to_array(rdev, mddev);
5533                 if (!err && !mddev->pers->hot_remove_disk) {
5534                         /* If there is hot_add_disk but no hot_remove_disk
5535                          * then added disks for geometry changes,
5536                          * and should be added immediately.
5537                          */
5538                         super_types[mddev->major_version].
5539                                 validate_super(mddev, rdev);
5540                         err = mddev->pers->hot_add_disk(mddev, rdev);
5541                         if (err)
5542                                 unbind_rdev_from_array(rdev);
5543                 }
5544                 if (err)
5545                         export_rdev(rdev);
5546                 else
5547                         sysfs_notify_dirent_safe(rdev->sysfs_state);
5548
5549                 md_update_sb(mddev, 1);
5550                 if (mddev->degraded)
5551                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5552                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5553                 if (!err)
5554                         md_new_event(mddev);
5555                 md_wakeup_thread(mddev->thread);
5556                 return err;
5557         }
5558
5559         /* otherwise, add_new_disk is only allowed
5560          * for major_version==0 superblocks
5561          */
5562         if (mddev->major_version != 0) {
5563                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5564                        mdname(mddev));
5565                 return -EINVAL;
5566         }
5567
5568         if (!(info->state & (1<<MD_DISK_FAULTY))) {
5569                 int err;
5570                 rdev = md_import_device(dev, -1, 0);
5571                 if (IS_ERR(rdev)) {
5572                         printk(KERN_WARNING 
5573                                 "md: error, md_import_device() returned %ld\n",
5574                                 PTR_ERR(rdev));
5575                         return PTR_ERR(rdev);
5576                 }
5577                 rdev->desc_nr = info->number;
5578                 if (info->raid_disk < mddev->raid_disks)
5579                         rdev->raid_disk = info->raid_disk;
5580                 else
5581                         rdev->raid_disk = -1;
5582
5583                 if (rdev->raid_disk < mddev->raid_disks)
5584                         if (info->state & (1<<MD_DISK_SYNC))
5585                                 set_bit(In_sync, &rdev->flags);
5586
5587                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5588                         set_bit(WriteMostly, &rdev->flags);
5589
5590                 if (!mddev->persistent) {
5591                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
5592                         rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5593                 } else
5594                         rdev->sb_start = calc_dev_sboffset(rdev);
5595                 rdev->sectors = rdev->sb_start;
5596
5597                 err = bind_rdev_to_array(rdev, mddev);
5598                 if (err) {
5599                         export_rdev(rdev);
5600                         return err;
5601                 }
5602         }
5603
5604         return 0;
5605 }
5606
5607 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5608 {
5609         char b[BDEVNAME_SIZE];
5610         struct md_rdev *rdev;
5611
5612         rdev = find_rdev(mddev, dev);
5613         if (!rdev)
5614                 return -ENXIO;
5615
5616         if (rdev->raid_disk >= 0)
5617                 goto busy;
5618
5619         kick_rdev_from_array(rdev);
5620         md_update_sb(mddev, 1);
5621         md_new_event(mddev);
5622
5623         return 0;
5624 busy:
5625         printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5626                 bdevname(rdev->bdev,b), mdname(mddev));
5627         return -EBUSY;
5628 }
5629
5630 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5631 {
5632         char b[BDEVNAME_SIZE];
5633         int err;
5634         struct md_rdev *rdev;
5635
5636         if (!mddev->pers)
5637                 return -ENODEV;
5638
5639         if (mddev->major_version != 0) {
5640                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5641                         " version-0 superblocks.\n",
5642                         mdname(mddev));
5643                 return -EINVAL;
5644         }
5645         if (!mddev->pers->hot_add_disk) {
5646                 printk(KERN_WARNING 
5647                         "%s: personality does not support diskops!\n",
5648                         mdname(mddev));
5649                 return -EINVAL;
5650         }
5651
5652         rdev = md_import_device(dev, -1, 0);
5653         if (IS_ERR(rdev)) {
5654                 printk(KERN_WARNING 
5655                         "md: error, md_import_device() returned %ld\n",
5656                         PTR_ERR(rdev));
5657                 return -EINVAL;
5658         }
5659
5660         if (mddev->persistent)
5661                 rdev->sb_start = calc_dev_sboffset(rdev);
5662         else
5663                 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5664
5665         rdev->sectors = rdev->sb_start;
5666
5667         if (test_bit(Faulty, &rdev->flags)) {
5668                 printk(KERN_WARNING 
5669                         "md: can not hot-add faulty %s disk to %s!\n",
5670                         bdevname(rdev->bdev,b), mdname(mddev));
5671                 err = -EINVAL;
5672                 goto abort_export;
5673         }
5674         clear_bit(In_sync, &rdev->flags);
5675         rdev->desc_nr = -1;
5676         rdev->saved_raid_disk = -1;
5677         err = bind_rdev_to_array(rdev, mddev);
5678         if (err)
5679                 goto abort_export;
5680
5681         /*
5682          * The rest should better be atomic, we can have disk failures
5683          * noticed in interrupt contexts ...
5684          */
5685
5686         rdev->raid_disk = -1;
5687
5688         md_update_sb(mddev, 1);
5689
5690         /*
5691          * Kick recovery, maybe this spare has to be added to the
5692          * array immediately.
5693          */
5694         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5695         md_wakeup_thread(mddev->thread);
5696         md_new_event(mddev);
5697         return 0;
5698
5699 abort_export:
5700         export_rdev(rdev);
5701         return err;
5702 }
5703
5704 static int set_bitmap_file(struct mddev *mddev, int fd)
5705 {
5706         int err;
5707
5708         if (mddev->pers) {
5709                 if (!mddev->pers->quiesce)
5710                         return -EBUSY;
5711                 if (mddev->recovery || mddev->sync_thread)
5712                         return -EBUSY;
5713                 /* we should be able to change the bitmap.. */
5714         }
5715
5716
5717         if (fd >= 0) {
5718                 if (mddev->bitmap)
5719                         return -EEXIST; /* cannot add when bitmap is present */
5720                 mddev->bitmap_info.file = fget(fd);
5721
5722                 if (mddev->bitmap_info.file == NULL) {
5723                         printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5724                                mdname(mddev));
5725                         return -EBADF;
5726                 }
5727
5728                 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5729                 if (err) {
5730                         printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5731                                mdname(mddev));
5732                         fput(mddev->bitmap_info.file);
5733                         mddev->bitmap_info.file = NULL;
5734                         return err;
5735                 }
5736                 mddev->bitmap_info.offset = 0; /* file overrides offset */
5737         } else if (mddev->bitmap == NULL)
5738                 return -ENOENT; /* cannot remove what isn't there */
5739         err = 0;
5740         if (mddev->pers) {
5741                 mddev->pers->quiesce(mddev, 1);
5742                 if (fd >= 0) {
5743                         err = bitmap_create(mddev);
5744                         if (!err)
5745                                 err = bitmap_load(mddev);
5746                 }
5747                 if (fd < 0 || err) {
5748                         bitmap_destroy(mddev);
5749                         fd = -1; /* make sure to put the file */
5750                 }
5751                 mddev->pers->quiesce(mddev, 0);
5752         }
5753         if (fd < 0) {
5754                 if (mddev->bitmap_info.file) {
5755                         restore_bitmap_write_access(mddev->bitmap_info.file);
5756                         fput(mddev->bitmap_info.file);
5757                 }
5758                 mddev->bitmap_info.file = NULL;
5759         }
5760
5761         return err;
5762 }
5763
5764 /*
5765  * set_array_info is used two different ways
5766  * The original usage is when creating a new array.
5767  * In this usage, raid_disks is > 0 and it together with
5768  *  level, size, not_persistent,layout,chunksize determine the
5769  *  shape of the array.
5770  *  This will always create an array with a type-0.90.0 superblock.
5771  * The newer usage is when assembling an array.
5772  *  In this case raid_disks will be 0, and the major_version field is
5773  *  use to determine which style super-blocks are to be found on the devices.
5774  *  The minor and patch _version numbers are also kept incase the
5775  *  super_block handler wishes to interpret them.
5776  */
5777 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
5778 {
5779
5780         if (info->raid_disks == 0) {
5781                 /* just setting version number for superblock loading */
5782                 if (info->major_version < 0 ||
5783                     info->major_version >= ARRAY_SIZE(super_types) ||
5784                     super_types[info->major_version].name == NULL) {
5785                         /* maybe try to auto-load a module? */
5786                         printk(KERN_INFO 
5787                                 "md: superblock version %d not known\n",
5788                                 info->major_version);
5789                         return -EINVAL;
5790                 }
5791                 mddev->major_version = info->major_version;
5792                 mddev->minor_version = info->minor_version;
5793                 mddev->patch_version = info->patch_version;
5794                 mddev->persistent = !info->not_persistent;
5795                 /* ensure mddev_put doesn't delete this now that there
5796                  * is some minimal configuration.
5797                  */
5798                 mddev->ctime         = get_seconds();
5799                 return 0;
5800         }
5801         mddev->major_version = MD_MAJOR_VERSION;
5802         mddev->minor_version = MD_MINOR_VERSION;
5803         mddev->patch_version = MD_PATCHLEVEL_VERSION;
5804         mddev->ctime         = get_seconds();
5805
5806         mddev->level         = info->level;
5807         mddev->clevel[0]     = 0;
5808         mddev->dev_sectors   = 2 * (sector_t)info->size;
5809         mddev->raid_disks    = info->raid_disks;
5810         /* don't set md_minor, it is determined by which /dev/md* was
5811          * openned
5812          */
5813         if (info->state & (1<<MD_SB_CLEAN))
5814                 mddev->recovery_cp = MaxSector;
5815         else
5816                 mddev->recovery_cp = 0;
5817         mddev->persistent    = ! info->not_persistent;
5818         mddev->external      = 0;
5819
5820         mddev->layout        = info->layout;
5821         mddev->chunk_sectors = info->chunk_size >> 9;
5822
5823         mddev->max_disks     = MD_SB_DISKS;
5824
5825         if (mddev->persistent)
5826                 mddev->flags         = 0;
5827         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5828
5829         mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5830         mddev->bitmap_info.offset = 0;
5831
5832         mddev->reshape_position = MaxSector;
5833
5834         /*
5835          * Generate a 128 bit UUID
5836          */
5837         get_random_bytes(mddev->uuid, 16);
5838
5839         mddev->new_level = mddev->level;
5840         mddev->new_chunk_sectors = mddev->chunk_sectors;
5841         mddev->new_layout = mddev->layout;
5842         mddev->delta_disks = 0;
5843
5844         return 0;
5845 }
5846
5847 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
5848 {
5849         WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5850
5851         if (mddev->external_size)
5852                 return;
5853
5854         mddev->array_sectors = array_sectors;
5855 }
5856 EXPORT_SYMBOL(md_set_array_sectors);
5857
5858 static int update_size(struct mddev *mddev, sector_t num_sectors)
5859 {
5860         struct md_rdev *rdev;
5861         int rv;
5862         int fit = (num_sectors == 0);
5863
5864         if (mddev->pers->resize == NULL)
5865                 return -EINVAL;
5866         /* The "num_sectors" is the number of sectors of each device that
5867          * is used.  This can only make sense for arrays with redundancy.
5868          * linear and raid0 always use whatever space is available. We can only
5869          * consider changing this number if no resync or reconstruction is
5870          * happening, and if the new size is acceptable. It must fit before the
5871          * sb_start or, if that is <data_offset, it must fit before the size
5872          * of each device.  If num_sectors is zero, we find the largest size
5873          * that fits.
5874          */
5875         if (mddev->sync_thread)
5876                 return -EBUSY;
5877         if (mddev->bitmap)
5878                 /* Sorry, cannot grow a bitmap yet, just remove it,
5879                  * grow, and re-add.
5880                  */
5881                 return -EBUSY;
5882         list_for_each_entry(rdev, &mddev->disks, same_set) {
5883                 sector_t avail = rdev->sectors;
5884
5885                 if (fit && (num_sectors == 0 || num_sectors > avail))
5886                         num_sectors = avail;
5887                 if (avail < num_sectors)
5888                         return -ENOSPC;
5889         }
5890         rv = mddev->pers->resize(mddev, num_sectors);
5891         if (!rv)
5892                 revalidate_disk(mddev->gendisk);
5893         return rv;
5894 }
5895
5896 static int update_raid_disks(struct mddev *mddev, int raid_disks)
5897 {
5898         int rv;
5899         /* change the number of raid disks */
5900         if (mddev->pers->check_reshape == NULL)
5901                 return -EINVAL;
5902         if (raid_disks <= 0 ||
5903             (mddev->max_disks && raid_disks >= mddev->max_disks))
5904                 return -EINVAL;
5905         if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5906                 return -EBUSY;
5907         mddev->delta_disks = raid_disks - mddev->raid_disks;
5908
5909         rv = mddev->pers->check_reshape(mddev);
5910         if (rv < 0)
5911                 mddev->delta_disks = 0;
5912         return rv;
5913 }
5914
5915
5916 /*
5917  * update_array_info is used to change the configuration of an
5918  * on-line array.
5919  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5920  * fields in the info are checked against the array.
5921  * Any differences that cannot be handled will cause an error.
5922  * Normally, only one change can be managed at a time.
5923  */
5924 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
5925 {
5926         int rv = 0;
5927         int cnt = 0;
5928         int state = 0;
5929
5930         /* calculate expected state,ignoring low bits */
5931         if (mddev->bitmap && mddev->bitmap_info.offset)
5932                 state |= (1 << MD_SB_BITMAP_PRESENT);
5933
5934         if (mddev->major_version != info->major_version ||
5935             mddev->minor_version != info->minor_version ||
5936 /*          mddev->patch_version != info->patch_version || */
5937             mddev->ctime         != info->ctime         ||
5938             mddev->level         != info->level         ||
5939 /*          mddev->layout        != info->layout        || */
5940             !mddev->persistent   != info->not_persistent||
5941             mddev->chunk_sectors != info->chunk_size >> 9 ||
5942             /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5943             ((state^info->state) & 0xfffffe00)
5944                 )
5945                 return -EINVAL;
5946         /* Check there is only one change */
5947         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5948                 cnt++;
5949         if (mddev->raid_disks != info->raid_disks)
5950                 cnt++;
5951         if (mddev->layout != info->layout)
5952                 cnt++;
5953         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5954                 cnt++;
5955         if (cnt == 0)
5956                 return 0;
5957         if (cnt > 1)
5958                 return -EINVAL;
5959
5960         if (mddev->layout != info->layout) {
5961                 /* Change layout
5962                  * we don't need to do anything at the md level, the
5963                  * personality will take care of it all.
5964                  */
5965                 if (mddev->pers->check_reshape == NULL)
5966                         return -EINVAL;
5967                 else {
5968                         mddev->new_layout = info->layout;
5969                         rv = mddev->pers->check_reshape(mddev);
5970                         if (rv)
5971                                 mddev->new_layout = mddev->layout;
5972                         return rv;
5973                 }
5974         }
5975         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5976                 rv = update_size(mddev, (sector_t)info->size * 2);
5977
5978         if (mddev->raid_disks    != info->raid_disks)
5979                 rv = update_raid_disks(mddev, info->raid_disks);
5980
5981         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5982                 if (mddev->pers->quiesce == NULL)
5983                         return -EINVAL;
5984                 if (mddev->recovery || mddev->sync_thread)
5985                         return -EBUSY;
5986                 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
5987                         /* add the bitmap */
5988                         if (mddev->bitmap)
5989                                 return -EEXIST;
5990                         if (mddev->bitmap_info.default_offset == 0)
5991                                 return -EINVAL;
5992                         mddev->bitmap_info.offset =
5993                                 mddev->bitmap_info.default_offset;
5994                         mddev->pers->quiesce(mddev, 1);
5995                         rv = bitmap_create(mddev);
5996                         if (!rv)
5997                                 rv = bitmap_load(mddev);
5998                         if (rv)
5999                                 bitmap_destroy(mddev);
6000                         mddev->pers->quiesce(mddev, 0);
6001                 } else {
6002                         /* remove the bitmap */
6003                         if (!mddev->bitmap)
6004                                 return -ENOENT;
6005                         if (mddev->bitmap->file)
6006                                 return -EINVAL;
6007                         mddev->pers->quiesce(mddev, 1);
6008                         bitmap_destroy(mddev);
6009                         mddev->pers->quiesce(mddev, 0);
6010                         mddev->bitmap_info.offset = 0;
6011                 }
6012         }
6013         md_update_sb(mddev, 1);
6014         return rv;
6015 }
6016
6017 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6018 {
6019         struct md_rdev *rdev;
6020
6021         if (mddev->pers == NULL)
6022                 return -ENODEV;
6023
6024         rdev = find_rdev(mddev, dev);
6025         if (!rdev)
6026                 return -ENODEV;
6027
6028         md_error(mddev, rdev);
6029         if (!test_bit(Faulty, &rdev->flags))
6030                 return -EBUSY;
6031         return 0;
6032 }
6033
6034 /*
6035  * We have a problem here : there is no easy way to give a CHS
6036  * virtual geometry. We currently pretend that we have a 2 heads
6037  * 4 sectors (with a BIG number of cylinders...). This drives
6038  * dosfs just mad... ;-)
6039  */
6040 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6041 {
6042         struct mddev *mddev = bdev->bd_disk->private_data;
6043
6044         geo->heads = 2;
6045         geo->sectors = 4;
6046         geo->cylinders = mddev->array_sectors / 8;
6047         return 0;
6048 }
6049
6050 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6051                         unsigned int cmd, unsigned long arg)
6052 {
6053         int err = 0;
6054         void __user *argp = (void __user *)arg;
6055         struct mddev *mddev = NULL;
6056         int ro;
6057
6058         if (!capable(CAP_SYS_ADMIN))
6059                 return -EACCES;
6060
6061         /*
6062          * Commands dealing with the RAID driver but not any
6063          * particular array:
6064          */
6065         switch (cmd)
6066         {
6067                 case RAID_VERSION:
6068                         err = get_version(argp);
6069                         goto done;
6070
6071                 case PRINT_RAID_DEBUG:
6072                         err = 0;
6073                         md_print_devices();
6074                         goto done;
6075
6076 #ifndef MODULE
6077                 case RAID_AUTORUN:
6078                         err = 0;
6079                         autostart_arrays(arg);
6080                         goto done;
6081 #endif
6082                 default:;
6083         }
6084
6085         /*
6086          * Commands creating/starting a new array:
6087          */
6088
6089         mddev = bdev->bd_disk->private_data;
6090
6091         if (!mddev) {
6092                 BUG();
6093                 goto abort;
6094         }
6095
6096         err = mddev_lock(mddev);
6097         if (err) {
6098                 printk(KERN_INFO 
6099                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
6100                         err, cmd);
6101                 goto abort;
6102         }
6103
6104         switch (cmd)
6105         {
6106                 case SET_ARRAY_INFO:
6107                         {
6108                                 mdu_array_info_t info;
6109                                 if (!arg)
6110                                         memset(&info, 0, sizeof(info));
6111                                 else if (copy_from_user(&info, argp, sizeof(info))) {
6112                                         err = -EFAULT;
6113                                         goto abort_unlock;
6114                                 }
6115                                 if (mddev->pers) {
6116                                         err = update_array_info(mddev, &info);
6117                                         if (err) {
6118                                                 printk(KERN_WARNING "md: couldn't update"
6119                                                        " array info. %d\n", err);
6120                                                 goto abort_unlock;
6121                                         }
6122                                         goto done_unlock;
6123                                 }
6124                                 if (!list_empty(&mddev->disks)) {
6125                                         printk(KERN_WARNING
6126                                                "md: array %s already has disks!\n",
6127                                                mdname(mddev));
6128                                         err = -EBUSY;
6129                                         goto abort_unlock;
6130                                 }
6131                                 if (mddev->raid_disks) {
6132                                         printk(KERN_WARNING
6133                                                "md: array %s already initialised!\n",
6134                                                mdname(mddev));
6135                                         err = -EBUSY;
6136                                         goto abort_unlock;
6137                                 }
6138                                 err = set_array_info(mddev, &info);
6139                                 if (err) {
6140                                         printk(KERN_WARNING "md: couldn't set"
6141                                                " array info. %d\n", err);
6142                                         goto abort_unlock;
6143                                 }
6144                         }
6145                         goto done_unlock;
6146
6147                 default:;
6148         }
6149
6150         /*
6151          * Commands querying/configuring an existing array:
6152          */
6153         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6154          * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6155         if ((!mddev->raid_disks && !mddev->external)
6156             && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6157             && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6158             && cmd != GET_BITMAP_FILE) {
6159                 err = -ENODEV;
6160                 goto abort_unlock;
6161         }
6162
6163         /*
6164          * Commands even a read-only array can execute:
6165          */
6166         switch (cmd)
6167         {
6168                 case GET_ARRAY_INFO:
6169                         err = get_array_info(mddev, argp);
6170                         goto done_unlock;
6171
6172                 case GET_BITMAP_FILE:
6173                         err = get_bitmap_file(mddev, argp);
6174                         goto done_unlock;
6175
6176                 case GET_DISK_INFO:
6177                         err = get_disk_info(mddev, argp);
6178                         goto done_unlock;
6179
6180                 case RESTART_ARRAY_RW:
6181                         err = restart_array(mddev);
6182                         goto done_unlock;
6183
6184                 case STOP_ARRAY:
6185                         err = do_md_stop(mddev, 0, 1);
6186                         goto done_unlock;
6187
6188                 case STOP_ARRAY_RO:
6189                         err = md_set_readonly(mddev, 1);
6190                         goto done_unlock;
6191
6192                 case BLKROSET:
6193                         if (get_user(ro, (int __user *)(arg))) {
6194                                 err = -EFAULT;
6195                                 goto done_unlock;
6196                         }
6197                         err = -EINVAL;
6198
6199                         /* if the bdev is going readonly the value of mddev->ro
6200                          * does not matter, no writes are coming
6201                          */
6202                         if (ro)
6203                                 goto done_unlock;
6204
6205                         /* are we are already prepared for writes? */
6206                         if (mddev->ro != 1)
6207                                 goto done_unlock;
6208
6209                         /* transitioning to readauto need only happen for
6210                          * arrays that call md_write_start
6211                          */
6212                         if (mddev->pers) {
6213                                 err = restart_array(mddev);
6214                                 if (err == 0) {
6215                                         mddev->ro = 2;
6216                                         set_disk_ro(mddev->gendisk, 0);
6217                                 }
6218                         }
6219                         goto done_unlock;
6220         }
6221
6222         /*
6223          * The remaining ioctls are changing the state of the
6224          * superblock, so we do not allow them on read-only arrays.
6225          * However non-MD ioctls (e.g. get-size) will still come through
6226          * here and hit the 'default' below, so only disallow
6227          * 'md' ioctls, and switch to rw mode if started auto-readonly.
6228          */
6229         if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6230                 if (mddev->ro == 2) {
6231                         mddev->ro = 0;
6232                         sysfs_notify_dirent_safe(mddev->sysfs_state);
6233                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6234                         md_wakeup_thread(mddev->thread);
6235                 } else {
6236                         err = -EROFS;
6237                         goto abort_unlock;
6238                 }
6239         }
6240
6241         switch (cmd)
6242         {
6243                 case ADD_NEW_DISK:
6244                 {
6245                         mdu_disk_info_t info;
6246                         if (copy_from_user(&info, argp, sizeof(info)))
6247                                 err = -EFAULT;
6248                         else
6249                                 err = add_new_disk(mddev, &info);
6250                         goto done_unlock;
6251                 }
6252
6253                 case HOT_REMOVE_DISK:
6254                         err = hot_remove_disk(mddev, new_decode_dev(arg));
6255                         goto done_unlock;
6256
6257                 case HOT_ADD_DISK:
6258                         err = hot_add_disk(mddev, new_decode_dev(arg));
6259                         goto done_unlock;
6260
6261                 case SET_DISK_FAULTY:
6262                         err = set_disk_faulty(mddev, new_decode_dev(arg));
6263                         goto done_unlock;
6264
6265                 case RUN_ARRAY:
6266                         err = do_md_run(mddev);
6267                         goto done_unlock;
6268
6269                 case SET_BITMAP_FILE:
6270                         err = set_bitmap_file(mddev, (int)arg);
6271                         goto done_unlock;
6272
6273                 default:
6274                         err = -EINVAL;
6275                         goto abort_unlock;
6276         }
6277
6278 done_unlock:
6279 abort_unlock:
6280         if (mddev->hold_active == UNTIL_IOCTL &&
6281             err != -EINVAL)
6282                 mddev->hold_active = 0;
6283         mddev_unlock(mddev);
6284
6285         return err;
6286 done:
6287         if (err)
6288                 MD_BUG();
6289 abort:
6290         return err;
6291 }
6292 #ifdef CONFIG_COMPAT
6293 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6294                     unsigned int cmd, unsigned long arg)
6295 {
6296         switch (cmd) {
6297         case HOT_REMOVE_DISK:
6298         case HOT_ADD_DISK:
6299         case SET_DISK_FAULTY:
6300         case SET_BITMAP_FILE:
6301                 /* These take in integer arg, do not convert */
6302                 break;
6303         default:
6304                 arg = (unsigned long)compat_ptr(arg);
6305                 break;
6306         }
6307
6308         return md_ioctl(bdev, mode, cmd, arg);
6309 }
6310 #endif /* CONFIG_COMPAT */
6311
6312 static int md_open(struct block_device *bdev, fmode_t mode)
6313 {
6314         /*
6315          * Succeed if we can lock the mddev, which confirms that
6316          * it isn't being stopped right now.
6317          */
6318         struct mddev *mddev = mddev_find(bdev->bd_dev);
6319         int err;
6320
6321         if (mddev->gendisk != bdev->bd_disk) {
6322                 /* we are racing with mddev_put which is discarding this
6323                  * bd_disk.
6324                  */
6325                 mddev_put(mddev);
6326                 /* Wait until bdev->bd_disk is definitely gone */
6327                 flush_workqueue(md_misc_wq);
6328                 /* Then retry the open from the top */
6329                 return -ERESTARTSYS;
6330         }
6331         BUG_ON(mddev != bdev->bd_disk->private_data);
6332
6333         if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6334                 goto out;
6335
6336         err = 0;
6337         atomic_inc(&mddev->openers);
6338         mutex_unlock(&mddev->open_mutex);
6339
6340         check_disk_change(bdev);
6341  out:
6342         return err;
6343 }
6344
6345 static int md_release(struct gendisk *disk, fmode_t mode)
6346 {
6347         struct mddev *mddev = disk->private_data;
6348
6349         BUG_ON(!mddev);
6350         atomic_dec(&mddev->openers);
6351         mddev_put(mddev);
6352
6353         return 0;
6354 }
6355
6356 static int md_media_changed(struct gendisk *disk)
6357 {
6358         struct mddev *mddev = disk->private_data;
6359
6360         return mddev->changed;
6361 }
6362
6363 static int md_revalidate(struct gendisk *disk)
6364 {
6365         struct mddev *mddev = disk->private_data;
6366
6367         mddev->changed = 0;
6368         return 0;
6369 }
6370 static const struct block_device_operations md_fops =
6371 {
6372         .owner          = THIS_MODULE,
6373         .open           = md_open,
6374         .release        = md_release,
6375         .ioctl          = md_ioctl,
6376 #ifdef CONFIG_COMPAT
6377         .compat_ioctl   = md_compat_ioctl,
6378 #endif
6379         .getgeo         = md_getgeo,
6380         .media_changed  = md_media_changed,
6381         .revalidate_disk= md_revalidate,
6382 };
6383
6384 static int md_thread(void * arg)
6385 {
6386         struct md_thread *thread = arg;
6387
6388         /*
6389          * md_thread is a 'system-thread', it's priority should be very
6390          * high. We avoid resource deadlocks individually in each
6391          * raid personality. (RAID5 does preallocation) We also use RR and
6392          * the very same RT priority as kswapd, thus we will never get
6393          * into a priority inversion deadlock.
6394          *
6395          * we definitely have to have equal or higher priority than
6396          * bdflush, otherwise bdflush will deadlock if there are too
6397          * many dirty RAID5 blocks.
6398          */
6399
6400         allow_signal(SIGKILL);
6401         while (!kthread_should_stop()) {
6402
6403                 /* We need to wait INTERRUPTIBLE so that
6404                  * we don't add to the load-average.
6405                  * That means we need to be sure no signals are
6406                  * pending
6407                  */
6408                 if (signal_pending(current))
6409                         flush_signals(current);
6410
6411                 wait_event_interruptible_timeout
6412                         (thread->wqueue,
6413                          test_bit(THREAD_WAKEUP, &thread->flags)
6414                          || kthread_should_stop(),
6415                          thread->timeout);
6416
6417                 clear_bit(THREAD_WAKEUP, &thread->flags);
6418                 if (!kthread_should_stop())
6419                         thread->run(thread->mddev);
6420         }
6421
6422         return 0;
6423 }
6424
6425 void md_wakeup_thread(struct md_thread *thread)
6426 {
6427         if (thread) {
6428                 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6429                 set_bit(THREAD_WAKEUP, &thread->flags);
6430                 wake_up(&thread->wqueue);
6431         }
6432 }
6433
6434 struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev,
6435                                  const char *name)
6436 {
6437         struct md_thread *thread;
6438
6439         thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6440         if (!thread)
6441                 return NULL;
6442
6443         init_waitqueue_head(&thread->wqueue);
6444
6445         thread->run = run;
6446         thread->mddev = mddev;
6447         thread->timeout = MAX_SCHEDULE_TIMEOUT;
6448         thread->tsk = kthread_run(md_thread, thread,
6449                                   "%s_%s",
6450                                   mdname(thread->mddev),
6451                                   name ?: mddev->pers->name);
6452         if (IS_ERR(thread->tsk)) {
6453                 kfree(thread);
6454                 return NULL;
6455         }
6456         return thread;
6457 }
6458
6459 void md_unregister_thread(struct md_thread **threadp)
6460 {
6461         struct md_thread *thread = *threadp;
6462         if (!thread)
6463                 return;
6464         pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6465         /* Locking ensures that mddev_unlock does not wake_up a
6466          * non-existent thread
6467          */
6468         spin_lock(&pers_lock);
6469         *threadp = NULL;
6470         spin_unlock(&pers_lock);
6471
6472         kthread_stop(thread->tsk);
6473         kfree(thread);
6474 }
6475
6476 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6477 {
6478         if (!mddev) {
6479                 MD_BUG();
6480                 return;
6481         }
6482
6483         if (!rdev || test_bit(Faulty, &rdev->flags))
6484                 return;
6485
6486         if (!mddev->pers || !mddev->pers->error_handler)
6487                 return;
6488         mddev->pers->error_handler(mddev,rdev);
6489         if (mddev->degraded)
6490                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6491         sysfs_notify_dirent_safe(rdev->sysfs_state);
6492         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6493         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6494         md_wakeup_thread(mddev->thread);
6495         if (mddev->event_work.func)
6496                 queue_work(md_misc_wq, &mddev->event_work);
6497         md_new_event_inintr(mddev);
6498 }
6499
6500 /* seq_file implementation /proc/mdstat */
6501
6502 static void status_unused(struct seq_file *seq)
6503 {
6504         int i = 0;
6505         struct md_rdev *rdev;
6506
6507         seq_printf(seq, "unused devices: ");
6508
6509         list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6510                 char b[BDEVNAME_SIZE];
6511                 i++;
6512                 seq_printf(seq, "%s ",
6513                               bdevname(rdev->bdev,b));
6514         }
6515         if (!i)
6516                 seq_printf(seq, "<none>");
6517
6518         seq_printf(seq, "\n");
6519 }
6520
6521
6522 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6523 {
6524         sector_t max_sectors, resync, res;
6525         unsigned long dt, db;
6526         sector_t rt;
6527         int scale;
6528         unsigned int per_milli;
6529
6530         resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6531
6532         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6533                 max_sectors = mddev->resync_max_sectors;
6534         else
6535                 max_sectors = mddev->dev_sectors;
6536
6537         /*
6538          * Should not happen.
6539          */
6540         if (!max_sectors) {
6541                 MD_BUG();
6542                 return;
6543         }
6544         /* Pick 'scale' such that (resync>>scale)*1000 will fit
6545          * in a sector_t, and (max_sectors>>scale) will fit in a
6546          * u32, as those are the requirements for sector_div.
6547          * Thus 'scale' must be at least 10
6548          */
6549         scale = 10;
6550         if (sizeof(sector_t) > sizeof(unsigned long)) {
6551                 while ( max_sectors/2 > (1ULL<<(scale+32)))
6552                         scale++;
6553         }
6554         res = (resync>>scale)*1000;
6555         sector_div(res, (u32)((max_sectors>>scale)+1));
6556
6557         per_milli = res;
6558         {
6559                 int i, x = per_milli/50, y = 20-x;
6560                 seq_printf(seq, "[");
6561                 for (i = 0; i < x; i++)
6562                         seq_printf(seq, "=");
6563                 seq_printf(seq, ">");
6564                 for (i = 0; i < y; i++)
6565                         seq_printf(seq, ".");
6566                 seq_printf(seq, "] ");
6567         }
6568         seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6569                    (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6570                     "reshape" :
6571                     (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6572                      "check" :
6573                      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6574                       "resync" : "recovery"))),
6575                    per_milli/10, per_milli % 10,
6576                    (unsigned long long) resync/2,
6577                    (unsigned long long) max_sectors/2);
6578
6579         /*
6580          * dt: time from mark until now
6581          * db: blocks written from mark until now
6582          * rt: remaining time
6583          *
6584          * rt is a sector_t, so could be 32bit or 64bit.
6585          * So we divide before multiply in case it is 32bit and close
6586          * to the limit.
6587          * We scale the divisor (db) by 32 to avoid losing precision
6588          * near the end of resync when the number of remaining sectors
6589          * is close to 'db'.
6590          * We then divide rt by 32 after multiplying by db to compensate.
6591          * The '+1' avoids division by zero if db is very small.
6592          */
6593         dt = ((jiffies - mddev->resync_mark) / HZ);
6594         if (!dt) dt++;
6595         db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6596                 - mddev->resync_mark_cnt;
6597
6598         rt = max_sectors - resync;    /* number of remaining sectors */
6599         sector_div(rt, db/32+1);
6600         rt *= dt;
6601         rt >>= 5;
6602
6603         seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6604                    ((unsigned long)rt % 60)/6);
6605
6606         seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6607 }
6608
6609 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6610 {
6611         struct list_head *tmp;
6612         loff_t l = *pos;
6613         struct mddev *mddev;
6614
6615         if (l >= 0x10000)
6616                 return NULL;
6617         if (!l--)
6618                 /* header */
6619                 return (void*)1;
6620
6621         spin_lock(&all_mddevs_lock);
6622         list_for_each(tmp,&all_mddevs)
6623                 if (!l--) {
6624                         mddev = list_entry(tmp, struct mddev, all_mddevs);
6625                         mddev_get(mddev);
6626                         spin_unlock(&all_mddevs_lock);
6627                         return mddev;
6628                 }
6629         spin_unlock(&all_mddevs_lock);
6630         if (!l--)
6631                 return (void*)2;/* tail */
6632         return NULL;
6633 }
6634
6635 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6636 {
6637         struct list_head *tmp;
6638         struct mddev *next_mddev, *mddev = v;
6639         
6640         ++*pos;
6641         if (v == (void*)2)
6642                 return NULL;
6643
6644         spin_lock(&all_mddevs_lock);
6645         if (v == (void*)1)
6646                 tmp = all_mddevs.next;
6647         else
6648                 tmp = mddev->all_mddevs.next;
6649         if (tmp != &all_mddevs)
6650                 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6651         else {
6652                 next_mddev = (void*)2;
6653                 *pos = 0x10000;
6654         }               
6655         spin_unlock(&all_mddevs_lock);
6656
6657         if (v != (void*)1)
6658                 mddev_put(mddev);
6659         return next_mddev;
6660
6661 }
6662
6663 static void md_seq_stop(struct seq_file *seq, void *v)
6664 {
6665         struct mddev *mddev = v;
6666
6667         if (mddev && v != (void*)1 && v != (void*)2)
6668                 mddev_put(mddev);
6669 }
6670
6671 static int md_seq_show(struct seq_file *seq, void *v)
6672 {
6673         struct mddev *mddev = v;
6674         sector_t sectors;
6675         struct md_rdev *rdev;
6676         struct bitmap *bitmap;
6677
6678         if (v == (void*)1) {
6679                 struct md_personality *pers;
6680                 seq_printf(seq, "Personalities : ");
6681                 spin_lock(&pers_lock);
6682                 list_for_each_entry(pers, &pers_list, list)
6683                         seq_printf(seq, "[%s] ", pers->name);
6684
6685                 spin_unlock(&pers_lock);
6686                 seq_printf(seq, "\n");
6687                 seq->poll_event = atomic_read(&md_event_count);
6688                 return 0;
6689         }
6690         if (v == (void*)2) {
6691                 status_unused(seq);
6692                 return 0;
6693         }
6694
6695         if (mddev_lock(mddev) < 0)
6696                 return -EINTR;
6697
6698         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6699                 seq_printf(seq, "%s : %sactive", mdname(mddev),
6700                                                 mddev->pers ? "" : "in");
6701                 if (mddev->pers) {
6702                         if (mddev->ro==1)
6703                                 seq_printf(seq, " (read-only)");
6704                         if (mddev->ro==2)
6705                                 seq_printf(seq, " (auto-read-only)");
6706                         seq_printf(seq, " %s", mddev->pers->name);
6707                 }
6708
6709                 sectors = 0;
6710                 list_for_each_entry(rdev, &mddev->disks, same_set) {
6711                         char b[BDEVNAME_SIZE];
6712                         seq_printf(seq, " %s[%d]",
6713                                 bdevname(rdev->bdev,b), rdev->desc_nr);
6714                         if (test_bit(WriteMostly, &rdev->flags))
6715                                 seq_printf(seq, "(W)");
6716                         if (test_bit(Faulty, &rdev->flags)) {
6717                                 seq_printf(seq, "(F)");
6718                                 continue;
6719                         } else if (rdev->raid_disk < 0)
6720                                 seq_printf(seq, "(S)"); /* spare */
6721                         sectors += rdev->sectors;
6722                 }
6723
6724                 if (!list_empty(&mddev->disks)) {
6725                         if (mddev->pers)
6726                                 seq_printf(seq, "\n      %llu blocks",
6727                                            (unsigned long long)
6728                                            mddev->array_sectors / 2);
6729                         else
6730                                 seq_printf(seq, "\n      %llu blocks",
6731                                            (unsigned long long)sectors / 2);
6732                 }
6733                 if (mddev->persistent) {
6734                         if (mddev->major_version != 0 ||
6735                             mddev->minor_version != 90) {
6736                                 seq_printf(seq," super %d.%d",
6737                                            mddev->major_version,
6738                                            mddev->minor_version);
6739                         }
6740                 } else if (mddev->external)
6741                         seq_printf(seq, " super external:%s",
6742                                    mddev->metadata_type);
6743                 else
6744                         seq_printf(seq, " super non-persistent");
6745
6746                 if (mddev->pers) {
6747                         mddev->pers->status(seq, mddev);
6748                         seq_printf(seq, "\n      ");
6749                         if (mddev->pers->sync_request) {
6750                                 if (mddev->curr_resync > 2) {
6751                                         status_resync(seq, mddev);
6752                                         seq_printf(seq, "\n      ");
6753                                 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6754                                         seq_printf(seq, "\tresync=DELAYED\n      ");
6755                                 else if (mddev->recovery_cp < MaxSector)
6756                                         seq_printf(seq, "\tresync=PENDING\n      ");
6757                         }
6758                 } else
6759                         seq_printf(seq, "\n       ");
6760
6761                 if ((bitmap = mddev->bitmap)) {
6762                         unsigned long chunk_kb;
6763                         unsigned long flags;
6764                         spin_lock_irqsave(&bitmap->lock, flags);
6765                         chunk_kb = mddev->bitmap_info.chunksize >> 10;
6766                         seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
6767                                 "%lu%s chunk",
6768                                 bitmap->pages - bitmap->missing_pages,
6769                                 bitmap->pages,
6770                                 (bitmap->pages - bitmap->missing_pages)
6771                                         << (PAGE_SHIFT - 10),
6772                                 chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
6773                                 chunk_kb ? "KB" : "B");
6774                         if (bitmap->file) {
6775                                 seq_printf(seq, ", file: ");
6776                                 seq_path(seq, &bitmap->file->f_path, " \t\n");
6777                         }
6778
6779                         seq_printf(seq, "\n");
6780                         spin_unlock_irqrestore(&bitmap->lock, flags);
6781                 }
6782
6783                 seq_printf(seq, "\n");
6784         }
6785         mddev_unlock(mddev);
6786         
6787         return 0;
6788 }
6789
6790 static const struct seq_operations md_seq_ops = {
6791         .start  = md_seq_start,
6792         .next   = md_seq_next,
6793         .stop   = md_seq_stop,
6794         .show   = md_seq_show,
6795 };
6796
6797 static int md_seq_open(struct inode *inode, struct file *file)
6798 {
6799         struct seq_file *seq;
6800         int error;
6801
6802         error = seq_open(file, &md_seq_ops);
6803         if (error)
6804                 return error;
6805
6806         seq = file->private_data;
6807         seq->poll_event = atomic_read(&md_event_count);
6808         return error;
6809 }
6810
6811 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6812 {
6813         struct seq_file *seq = filp->private_data;
6814         int mask;
6815
6816         poll_wait(filp, &md_event_waiters, wait);
6817
6818         /* always allow read */
6819         mask = POLLIN | POLLRDNORM;
6820
6821         if (seq->poll_event != atomic_read(&md_event_count))
6822                 mask |= POLLERR | POLLPRI;
6823         return mask;
6824 }
6825
6826 static const struct file_operations md_seq_fops = {
6827         .owner          = THIS_MODULE,
6828         .open           = md_seq_open,
6829         .read           = seq_read,
6830         .llseek         = seq_lseek,
6831         .release        = seq_release_private,
6832         .poll           = mdstat_poll,
6833 };
6834
6835 int register_md_personality(struct md_personality *p)
6836 {
6837         spin_lock(&pers_lock);
6838         list_add_tail(&p->list, &pers_list);
6839         printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6840         spin_unlock(&pers_lock);
6841         return 0;
6842 }
6843
6844 int unregister_md_personality(struct md_personality *p)
6845 {
6846         printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6847         spin_lock(&pers_lock);
6848         list_del_init(&p->list);
6849         spin_unlock(&pers_lock);
6850         return 0;
6851 }
6852
6853 static int is_mddev_idle(struct mddev *mddev, int init)
6854 {
6855         struct md_rdev * rdev;
6856         int idle;
6857         int curr_events;
6858
6859         idle = 1;
6860         rcu_read_lock();
6861         rdev_for_each_rcu(rdev, mddev) {
6862                 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6863                 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6864                               (int)part_stat_read(&disk->part0, sectors[1]) -
6865                               atomic_read(&disk->sync_io);
6866                 /* sync IO will cause sync_io to increase before the disk_stats
6867                  * as sync_io is counted when a request starts, and
6868                  * disk_stats is counted when it completes.
6869                  * So resync activity will cause curr_events to be smaller than
6870                  * when there was no such activity.
6871                  * non-sync IO will cause disk_stat to increase without
6872                  * increasing sync_io so curr_events will (eventually)
6873                  * be larger than it was before.  Once it becomes
6874                  * substantially larger, the test below will cause
6875                  * the array to appear non-idle, and resync will slow
6876                  * down.
6877                  * If there is a lot of outstanding resync activity when
6878                  * we set last_event to curr_events, then all that activity
6879                  * completing might cause the array to appear non-idle
6880                  * and resync will be slowed down even though there might
6881                  * not have been non-resync activity.  This will only
6882                  * happen once though.  'last_events' will soon reflect
6883                  * the state where there is little or no outstanding
6884                  * resync requests, and further resync activity will
6885                  * always make curr_events less than last_events.
6886                  *
6887                  */
6888                 if (init || curr_events - rdev->last_events > 64) {
6889                         rdev->last_events = curr_events;
6890                         idle = 0;
6891                 }
6892         }
6893         rcu_read_unlock();
6894         return idle;
6895 }
6896
6897 void md_done_sync(struct mddev *mddev, int blocks, int ok)
6898 {
6899         /* another "blocks" (512byte) blocks have been synced */
6900         atomic_sub(blocks, &mddev->recovery_active);
6901         wake_up(&mddev->recovery_wait);
6902         if (!ok) {
6903                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6904                 md_wakeup_thread(mddev->thread);
6905                 // stop recovery, signal do_sync ....
6906         }
6907 }
6908
6909
6910 /* md_write_start(mddev, bi)
6911  * If we need to update some array metadata (e.g. 'active' flag
6912  * in superblock) before writing, schedule a superblock update
6913  * and wait for it to complete.
6914  */
6915 void md_write_start(struct mddev *mddev, struct bio *bi)
6916 {
6917         int did_change = 0;
6918         if (bio_data_dir(bi) != WRITE)
6919                 return;
6920
6921         BUG_ON(mddev->ro == 1);
6922         if (mddev->ro == 2) {
6923                 /* need to switch to read/write */
6924                 mddev->ro = 0;
6925                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6926                 md_wakeup_thread(mddev->thread);
6927                 md_wakeup_thread(mddev->sync_thread);
6928                 did_change = 1;
6929         }
6930         atomic_inc(&mddev->writes_pending);
6931         if (mddev->safemode == 1)
6932                 mddev->safemode = 0;
6933         if (mddev->in_sync) {
6934                 spin_lock_irq(&mddev->write_lock);
6935                 if (mddev->in_sync) {
6936                         mddev->in_sync = 0;
6937                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6938                         set_bit(MD_CHANGE_PENDING, &mddev->flags);
6939                         md_wakeup_thread(mddev->thread);
6940                         did_change = 1;
6941                 }
6942                 spin_unlock_irq(&mddev->write_lock);
6943         }
6944         if (did_change)
6945                 sysfs_notify_dirent_safe(mddev->sysfs_state);
6946         wait_event(mddev->sb_wait,
6947                    !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6948 }
6949
6950 void md_write_end(struct mddev *mddev)
6951 {
6952         if (atomic_dec_and_test(&mddev->writes_pending)) {
6953                 if (mddev->safemode == 2)
6954                         md_wakeup_thread(mddev->thread);
6955                 else if (mddev->safemode_delay)
6956                         mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6957         }
6958 }
6959
6960 /* md_allow_write(mddev)
6961  * Calling this ensures that the array is marked 'active' so that writes
6962  * may proceed without blocking.  It is important to call this before
6963  * attempting a GFP_KERNEL allocation while holding the mddev lock.
6964  * Must be called with mddev_lock held.
6965  *
6966  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6967  * is dropped, so return -EAGAIN after notifying userspace.
6968  */
6969 int md_allow_write(struct mddev *mddev)
6970 {
6971         if (!mddev->pers)
6972                 return 0;
6973         if (mddev->ro)
6974                 return 0;
6975         if (!mddev->pers->sync_request)
6976                 return 0;
6977
6978         spin_lock_irq(&mddev->write_lock);
6979         if (mddev->in_sync) {
6980                 mddev->in_sync = 0;
6981                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6982                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6983                 if (mddev->safemode_delay &&
6984                     mddev->safemode == 0)
6985                         mddev->safemode = 1;
6986                 spin_unlock_irq(&mddev->write_lock);
6987                 md_update_sb(mddev, 0);
6988                 sysfs_notify_dirent_safe(mddev->sysfs_state);
6989         } else
6990                 spin_unlock_irq(&mddev->write_lock);
6991
6992         if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
6993                 return -EAGAIN;
6994         else
6995                 return 0;
6996 }
6997 EXPORT_SYMBOL_GPL(md_allow_write);
6998
6999 #define SYNC_MARKS      10
7000 #define SYNC_MARK_STEP  (3*HZ)
7001 void md_do_sync(struct mddev *mddev)
7002 {
7003         struct mddev *mddev2;
7004         unsigned int currspeed = 0,
7005                  window;
7006         sector_t max_sectors,j, io_sectors;
7007         unsigned long mark[SYNC_MARKS];
7008         sector_t mark_cnt[SYNC_MARKS];
7009         int last_mark,m;
7010         struct list_head *tmp;
7011         sector_t last_check;
7012         int skipped = 0;
7013         struct md_rdev *rdev;
7014         char *desc;
7015
7016         /* just incase thread restarts... */
7017         if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7018                 return;
7019         if (mddev->ro) /* never try to sync a read-only array */
7020                 return;
7021
7022         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7023                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7024                         desc = "data-check";
7025                 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7026                         desc = "requested-resync";
7027                 else
7028                         desc = "resync";
7029         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7030                 desc = "reshape";
7031         else
7032                 desc = "recovery";
7033
7034         /* we overload curr_resync somewhat here.
7035          * 0 == not engaged in resync at all
7036          * 2 == checking that there is no conflict with another sync
7037          * 1 == like 2, but have yielded to allow conflicting resync to
7038          *              commense
7039          * other == active in resync - this many blocks
7040          *
7041          * Before starting a resync we must have set curr_resync to
7042          * 2, and then checked that every "conflicting" array has curr_resync
7043          * less than ours.  When we find one that is the same or higher
7044          * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7045          * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7046          * This will mean we have to start checking from the beginning again.
7047          *
7048          */
7049
7050         do {
7051                 mddev->curr_resync = 2;
7052
7053         try_again:
7054                 if (kthread_should_stop())
7055                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7056
7057                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7058                         goto skip;
7059                 for_each_mddev(mddev2, tmp) {
7060                         if (mddev2 == mddev)
7061                                 continue;
7062                         if (!mddev->parallel_resync
7063                         &&  mddev2->curr_resync
7064                         &&  match_mddev_units(mddev, mddev2)) {
7065                                 DEFINE_WAIT(wq);
7066                                 if (mddev < mddev2 && mddev->curr_resync == 2) {
7067                                         /* arbitrarily yield */
7068                                         mddev->curr_resync = 1;
7069                                         wake_up(&resync_wait);
7070                                 }
7071                                 if (mddev > mddev2 && mddev->curr_resync == 1)
7072                                         /* no need to wait here, we can wait the next
7073                                          * time 'round when curr_resync == 2
7074                                          */
7075                                         continue;
7076                                 /* We need to wait 'interruptible' so as not to
7077                                  * contribute to the load average, and not to
7078                                  * be caught by 'softlockup'
7079                                  */
7080                                 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7081                                 if (!kthread_should_stop() &&
7082                                     mddev2->curr_resync >= mddev->curr_resync) {
7083                                         printk(KERN_INFO "md: delaying %s of %s"
7084                                                " until %s has finished (they"
7085                                                " share one or more physical units)\n",
7086                                                desc, mdname(mddev), mdname(mddev2));
7087                                         mddev_put(mddev2);
7088                                         if (signal_pending(current))
7089                                                 flush_signals(current);
7090                                         schedule();
7091                                         finish_wait(&resync_wait, &wq);
7092                                         goto try_again;
7093                                 }
7094                                 finish_wait(&resync_wait, &wq);
7095                         }
7096                 }
7097         } while (mddev->curr_resync < 2);
7098
7099         j = 0;
7100         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7101                 /* resync follows the size requested by the personality,
7102                  * which defaults to physical size, but can be virtual size
7103                  */
7104                 max_sectors = mddev->resync_max_sectors;
7105                 mddev->resync_mismatches = 0;
7106                 /* we don't use the checkpoint if there's a bitmap */
7107                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7108                         j = mddev->resync_min;
7109                 else if (!mddev->bitmap)
7110                         j = mddev->recovery_cp;
7111
7112         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7113                 max_sectors = mddev->dev_sectors;
7114         else {
7115                 /* recovery follows the physical size of devices */
7116                 max_sectors = mddev->dev_sectors;
7117                 j = MaxSector;
7118                 rcu_read_lock();
7119                 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7120                         if (rdev->raid_disk >= 0 &&
7121                             !test_bit(Faulty, &rdev->flags) &&
7122                             !test_bit(In_sync, &rdev->flags) &&
7123                             rdev->recovery_offset < j)
7124                                 j = rdev->recovery_offset;
7125                 rcu_read_unlock();
7126         }
7127
7128         printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7129         printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7130                 " %d KB/sec/disk.\n", speed_min(mddev));
7131         printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7132                "(but not more than %d KB/sec) for %s.\n",
7133                speed_max(mddev), desc);
7134
7135         is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7136
7137         io_sectors = 0;
7138         for (m = 0; m < SYNC_MARKS; m++) {
7139                 mark[m] = jiffies;
7140                 mark_cnt[m] = io_sectors;
7141         }
7142         last_mark = 0;
7143         mddev->resync_mark = mark[last_mark];
7144         mddev->resync_mark_cnt = mark_cnt[last_mark];
7145
7146         /*
7147          * Tune reconstruction:
7148          */
7149         window = 32*(PAGE_SIZE/512);
7150         printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7151                 window/2, (unsigned long long)max_sectors/2);
7152
7153         atomic_set(&mddev->recovery_active, 0);
7154         last_check = 0;
7155
7156         if (j>2) {
7157                 printk(KERN_INFO 
7158                        "md: resuming %s of %s from checkpoint.\n",
7159                        desc, mdname(mddev));
7160                 mddev->curr_resync = j;
7161         }
7162         mddev->curr_resync_completed = j;
7163
7164         while (j < max_sectors) {
7165                 sector_t sectors;
7166
7167                 skipped = 0;
7168
7169                 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7170                     ((mddev->curr_resync > mddev->curr_resync_completed &&
7171                       (mddev->curr_resync - mddev->curr_resync_completed)
7172                       > (max_sectors >> 4)) ||
7173                      (j - mddev->curr_resync_completed)*2
7174                      >= mddev->resync_max - mddev->curr_resync_completed
7175                             )) {
7176                         /* time to update curr_resync_completed */
7177                         wait_event(mddev->recovery_wait,
7178                                    atomic_read(&mddev->recovery_active) == 0);
7179                         mddev->curr_resync_completed = j;
7180                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7181                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7182                 }
7183
7184                 while (j >= mddev->resync_max && !kthread_should_stop()) {
7185                         /* As this condition is controlled by user-space,
7186                          * we can block indefinitely, so use '_interruptible'
7187                          * to avoid triggering warnings.
7188                          */
7189                         flush_signals(current); /* just in case */
7190                         wait_event_interruptible(mddev->recovery_wait,
7191                                                  mddev->resync_max > j
7192                                                  || kthread_should_stop());
7193                 }
7194
7195                 if (kthread_should_stop())
7196                         goto interrupted;
7197
7198                 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7199                                                   currspeed < speed_min(mddev));
7200                 if (sectors == 0) {
7201                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7202                         goto out;
7203                 }
7204
7205                 if (!skipped) { /* actual IO requested */
7206                         io_sectors += sectors;
7207                         atomic_add(sectors, &mddev->recovery_active);
7208                 }
7209
7210                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7211                         break;
7212
7213                 j += sectors;
7214                 if (j>1) mddev->curr_resync = j;
7215                 mddev->curr_mark_cnt = io_sectors;
7216                 if (last_check == 0)
7217                         /* this is the earliest that rebuild will be
7218                          * visible in /proc/mdstat
7219                          */
7220                         md_new_event(mddev);
7221
7222                 if (last_check + window > io_sectors || j == max_sectors)
7223                         continue;
7224
7225                 last_check = io_sectors;
7226         repeat:
7227                 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7228                         /* step marks */
7229                         int next = (last_mark+1) % SYNC_MARKS;
7230
7231                         mddev->resync_mark = mark[next];
7232                         mddev->resync_mark_cnt = mark_cnt[next];
7233                         mark[next] = jiffies;
7234                         mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7235                         last_mark = next;
7236                 }
7237
7238
7239                 if (kthread_should_stop())
7240                         goto interrupted;
7241
7242
7243                 /*
7244                  * this loop exits only if either when we are slower than
7245                  * the 'hard' speed limit, or the system was IO-idle for
7246                  * a jiffy.
7247                  * the system might be non-idle CPU-wise, but we only care
7248                  * about not overloading the IO subsystem. (things like an
7249                  * e2fsck being done on the RAID array should execute fast)
7250                  */
7251                 cond_resched();
7252
7253                 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7254                         /((jiffies-mddev->resync_mark)/HZ +1) +1;
7255
7256                 if (currspeed > speed_min(mddev)) {
7257                         if ((currspeed > speed_max(mddev)) ||
7258                                         !is_mddev_idle(mddev, 0)) {
7259                                 msleep(500);
7260                                 goto repeat;
7261                         }
7262                 }
7263         }
7264         printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7265         /*
7266          * this also signals 'finished resyncing' to md_stop
7267          */
7268  out:
7269         wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7270
7271         /* tell personality that we are finished */
7272         mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7273
7274         if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7275             mddev->curr_resync > 2) {
7276                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7277                         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7278                                 if (mddev->curr_resync >= mddev->recovery_cp) {
7279                                         printk(KERN_INFO
7280                                                "md: checkpointing %s of %s.\n",
7281                                                desc, mdname(mddev));
7282                                         mddev->recovery_cp = mddev->curr_resync;
7283                                 }
7284                         } else
7285                                 mddev->recovery_cp = MaxSector;
7286                 } else {
7287                         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7288                                 mddev->curr_resync = MaxSector;
7289                         rcu_read_lock();
7290                         list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7291                                 if (rdev->raid_disk >= 0 &&
7292                                     mddev->delta_disks >= 0 &&
7293                                     !test_bit(Faulty, &rdev->flags) &&
7294                                     !test_bit(In_sync, &rdev->flags) &&
7295                                     rdev->recovery_offset < mddev->curr_resync)
7296                                         rdev->recovery_offset = mddev->curr_resync;
7297                         rcu_read_unlock();
7298                 }
7299         }
7300         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7301
7302  skip:
7303         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7304                 /* We completed so min/max setting can be forgotten if used. */
7305                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7306                         mddev->resync_min = 0;
7307                 mddev->resync_max = MaxSector;
7308         } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7309                 mddev->resync_min = mddev->curr_resync_completed;
7310         mddev->curr_resync = 0;
7311         wake_up(&resync_wait);
7312         set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7313         md_wakeup_thread(mddev->thread);
7314         return;
7315
7316  interrupted:
7317         /*
7318          * got a signal, exit.
7319          */
7320         printk(KERN_INFO
7321                "md: md_do_sync() got signal ... exiting\n");
7322         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7323         goto out;
7324
7325 }
7326 EXPORT_SYMBOL_GPL(md_do_sync);
7327
7328 static int remove_and_add_spares(struct mddev *mddev)
7329 {
7330         struct md_rdev *rdev;
7331         int spares = 0;
7332
7333         mddev->curr_resync_completed = 0;
7334
7335         list_for_each_entry(rdev, &mddev->disks, same_set)
7336                 if (rdev->raid_disk >= 0 &&
7337                     !test_bit(Blocked, &rdev->flags) &&
7338                     (test_bit(Faulty, &rdev->flags) ||
7339                      ! test_bit(In_sync, &rdev->flags)) &&
7340                     atomic_read(&rdev->nr_pending)==0) {
7341                         if (mddev->pers->hot_remove_disk(
7342                                     mddev, rdev->raid_disk)==0) {
7343                                 sysfs_unlink_rdev(mddev, rdev);
7344                                 rdev->raid_disk = -1;
7345                         }
7346                 }
7347
7348         if (mddev->degraded) {
7349                 list_for_each_entry(rdev, &mddev->disks, same_set) {
7350                         if (rdev->raid_disk >= 0 &&
7351                             !test_bit(In_sync, &rdev->flags) &&
7352                             !test_bit(Faulty, &rdev->flags))
7353                                 spares++;
7354                         if (rdev->raid_disk < 0
7355                             && !test_bit(Faulty, &rdev->flags)) {
7356                                 rdev->recovery_offset = 0;
7357                                 if (mddev->pers->
7358                                     hot_add_disk(mddev, rdev) == 0) {
7359                                         if (sysfs_link_rdev(mddev, rdev))
7360                                                 /* failure here is OK */;
7361                                         spares++;
7362                                         md_new_event(mddev);
7363                                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7364                                 }
7365                         }
7366                 }
7367         }
7368         return spares;
7369 }
7370
7371 static void reap_sync_thread(struct mddev *mddev)
7372 {
7373         struct md_rdev *rdev;
7374
7375         /* resync has finished, collect result */
7376         md_unregister_thread(&mddev->sync_thread);
7377         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7378             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7379                 /* success...*/
7380                 /* activate any spares */
7381                 if (mddev->pers->spare_active(mddev))
7382                         sysfs_notify(&mddev->kobj, NULL,
7383                                      "degraded");
7384         }
7385         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7386             mddev->pers->finish_reshape)
7387                 mddev->pers->finish_reshape(mddev);
7388
7389         /* If array is no-longer degraded, then any saved_raid_disk
7390          * information must be scrapped.  Also if any device is now
7391          * In_sync we must scrape the saved_raid_disk for that device
7392          * do the superblock for an incrementally recovered device
7393          * written out.
7394          */
7395         list_for_each_entry(rdev, &mddev->disks, same_set)
7396                 if (!mddev->degraded ||
7397                     test_bit(In_sync, &rdev->flags))
7398                         rdev->saved_raid_disk = -1;
7399
7400         md_update_sb(mddev, 1);
7401         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7402         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7403         clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7404         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7405         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7406         /* flag recovery needed just to double check */
7407         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7408         sysfs_notify_dirent_safe(mddev->sysfs_action);
7409         md_new_event(mddev);
7410         if (mddev->event_work.func)
7411                 queue_work(md_misc_wq, &mddev->event_work);
7412 }
7413
7414 /*
7415  * This routine is regularly called by all per-raid-array threads to
7416  * deal with generic issues like resync and super-block update.
7417  * Raid personalities that don't have a thread (linear/raid0) do not
7418  * need this as they never do any recovery or update the superblock.
7419  *
7420  * It does not do any resync itself, but rather "forks" off other threads
7421  * to do that as needed.
7422  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7423  * "->recovery" and create a thread at ->sync_thread.
7424  * When the thread finishes it sets MD_RECOVERY_DONE
7425  * and wakeups up this thread which will reap the thread and finish up.
7426  * This thread also removes any faulty devices (with nr_pending == 0).
7427  *
7428  * The overall approach is:
7429  *  1/ if the superblock needs updating, update it.
7430  *  2/ If a recovery thread is running, don't do anything else.
7431  *  3/ If recovery has finished, clean up, possibly marking spares active.
7432  *  4/ If there are any faulty devices, remove them.
7433  *  5/ If array is degraded, try to add spares devices
7434  *  6/ If array has spares or is not in-sync, start a resync thread.
7435  */
7436 void md_check_recovery(struct mddev *mddev)
7437 {
7438         if (mddev->suspended)
7439                 return;
7440
7441         if (mddev->bitmap)
7442                 bitmap_daemon_work(mddev);
7443
7444         if (signal_pending(current)) {
7445                 if (mddev->pers->sync_request && !mddev->external) {
7446                         printk(KERN_INFO "md: %s in immediate safe mode\n",
7447                                mdname(mddev));
7448                         mddev->safemode = 2;
7449                 }
7450                 flush_signals(current);
7451         }
7452
7453         if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7454                 return;
7455         if ( ! (
7456                 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7457                 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7458                 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7459                 (mddev->external == 0 && mddev->safemode == 1) ||
7460                 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7461                  && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7462                 ))
7463                 return;
7464
7465         if (mddev_trylock(mddev)) {
7466                 int spares = 0;
7467
7468                 if (mddev->ro) {
7469                         /* Only thing we do on a ro array is remove
7470                          * failed devices.
7471                          */
7472                         struct md_rdev *rdev;
7473                         list_for_each_entry(rdev, &mddev->disks, same_set)
7474                                 if (rdev->raid_disk >= 0 &&
7475                                     !test_bit(Blocked, &rdev->flags) &&
7476                                     test_bit(Faulty, &rdev->flags) &&
7477                                     atomic_read(&rdev->nr_pending)==0) {
7478                                         if (mddev->pers->hot_remove_disk(
7479                                                     mddev, rdev->raid_disk)==0) {
7480                                                 sysfs_unlink_rdev(mddev, rdev);
7481                                                 rdev->raid_disk = -1;
7482                                         }
7483                                 }
7484                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7485                         goto unlock;
7486                 }
7487
7488                 if (!mddev->external) {
7489                         int did_change = 0;
7490                         spin_lock_irq(&mddev->write_lock);
7491                         if (mddev->safemode &&
7492                             !atomic_read(&mddev->writes_pending) &&
7493                             !mddev->in_sync &&
7494                             mddev->recovery_cp == MaxSector) {
7495                                 mddev->in_sync = 1;
7496                                 did_change = 1;
7497                                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7498                         }
7499                         if (mddev->safemode == 1)
7500                                 mddev->safemode = 0;
7501                         spin_unlock_irq(&mddev->write_lock);
7502                         if (did_change)
7503                                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7504                 }
7505
7506                 if (mddev->flags)
7507                         md_update_sb(mddev, 0);
7508
7509                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7510                     !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7511                         /* resync/recovery still happening */
7512                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7513                         goto unlock;
7514                 }
7515                 if (mddev->sync_thread) {
7516                         reap_sync_thread(mddev);
7517                         goto unlock;
7518                 }
7519                 /* Set RUNNING before clearing NEEDED to avoid
7520                  * any transients in the value of "sync_action".
7521                  */
7522                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7523                 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7524                 /* Clear some bits that don't mean anything, but
7525                  * might be left set
7526                  */
7527                 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7528                 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7529
7530                 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7531                         goto unlock;
7532                 /* no recovery is running.
7533                  * remove any failed drives, then
7534                  * add spares if possible.
7535                  * Spare are also removed and re-added, to allow
7536                  * the personality to fail the re-add.
7537                  */
7538
7539                 if (mddev->reshape_position != MaxSector) {
7540                         if (mddev->pers->check_reshape == NULL ||
7541                             mddev->pers->check_reshape(mddev) != 0)
7542                                 /* Cannot proceed */
7543                                 goto unlock;
7544                         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7545                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7546                 } else if ((spares = remove_and_add_spares(mddev))) {
7547                         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7548                         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7549                         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7550                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7551                 } else if (mddev->recovery_cp < MaxSector) {
7552                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7553                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7554                 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7555                         /* nothing to be done ... */
7556                         goto unlock;
7557
7558                 if (mddev->pers->sync_request) {
7559                         if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7560                                 /* We are adding a device or devices to an array
7561                                  * which has the bitmap stored on all devices.
7562                                  * So make sure all bitmap pages get written
7563                                  */
7564                                 bitmap_write_all(mddev->bitmap);
7565                         }
7566                         mddev->sync_thread = md_register_thread(md_do_sync,
7567                                                                 mddev,
7568                                                                 "resync");
7569                         if (!mddev->sync_thread) {
7570                                 printk(KERN_ERR "%s: could not start resync"
7571                                         " thread...\n", 
7572                                         mdname(mddev));
7573                                 /* leave the spares where they are, it shouldn't hurt */
7574                                 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7575                                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7576                                 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7577                                 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7578                                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7579                         } else
7580                                 md_wakeup_thread(mddev->sync_thread);
7581                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7582                         md_new_event(mddev);
7583                 }
7584         unlock:
7585                 if (!mddev->sync_thread) {
7586                         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7587                         if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7588                                                &mddev->recovery))
7589                                 if (mddev->sysfs_action)
7590                                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7591                 }
7592                 mddev_unlock(mddev);
7593         }
7594 }
7595
7596 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7597 {
7598         sysfs_notify_dirent_safe(rdev->sysfs_state);
7599         wait_event_timeout(rdev->blocked_wait,
7600                            !test_bit(Blocked, &rdev->flags) &&
7601                            !test_bit(BlockedBadBlocks, &rdev->flags),
7602                            msecs_to_jiffies(5000));
7603         rdev_dec_pending(rdev, mddev);
7604 }
7605 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7606
7607
7608 /* Bad block management.
7609  * We can record which blocks on each device are 'bad' and so just
7610  * fail those blocks, or that stripe, rather than the whole device.
7611  * Entries in the bad-block table are 64bits wide.  This comprises:
7612  * Length of bad-range, in sectors: 0-511 for lengths 1-512
7613  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7614  *  A 'shift' can be set so that larger blocks are tracked and
7615  *  consequently larger devices can be covered.
7616  * 'Acknowledged' flag - 1 bit. - the most significant bit.
7617  *
7618  * Locking of the bad-block table uses a seqlock so md_is_badblock
7619  * might need to retry if it is very unlucky.
7620  * We will sometimes want to check for bad blocks in a bi_end_io function,
7621  * so we use the write_seqlock_irq variant.
7622  *
7623  * When looking for a bad block we specify a range and want to
7624  * know if any block in the range is bad.  So we binary-search
7625  * to the last range that starts at-or-before the given endpoint,
7626  * (or "before the sector after the target range")
7627  * then see if it ends after the given start.
7628  * We return
7629  *  0 if there are no known bad blocks in the range
7630  *  1 if there are known bad block which are all acknowledged
7631  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7632  * plus the start/length of the first bad section we overlap.
7633  */
7634 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7635                    sector_t *first_bad, int *bad_sectors)
7636 {
7637         int hi;
7638         int lo = 0;
7639         u64 *p = bb->page;
7640         int rv = 0;
7641         sector_t target = s + sectors;
7642         unsigned seq;
7643
7644         if (bb->shift > 0) {
7645                 /* round the start down, and the end up */
7646                 s >>= bb->shift;
7647                 target += (1<<bb->shift) - 1;
7648                 target >>= bb->shift;
7649                 sectors = target - s;
7650         }
7651         /* 'target' is now the first block after the bad range */
7652
7653 retry:
7654         seq = read_seqbegin(&bb->lock);
7655
7656         hi = bb->count;
7657
7658         /* Binary search between lo and hi for 'target'
7659          * i.e. for the last range that starts before 'target'
7660          */
7661         /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7662          * are known not to be the last range before target.
7663          * VARIANT: hi-lo is the number of possible
7664          * ranges, and decreases until it reaches 1
7665          */
7666         while (hi - lo > 1) {
7667                 int mid = (lo + hi) / 2;
7668                 sector_t a = BB_OFFSET(p[mid]);
7669                 if (a < target)
7670                         /* This could still be the one, earlier ranges
7671                          * could not. */
7672                         lo = mid;
7673                 else
7674                         /* This and later ranges are definitely out. */
7675                         hi = mid;
7676         }
7677         /* 'lo' might be the last that started before target, but 'hi' isn't */
7678         if (hi > lo) {
7679                 /* need to check all range that end after 's' to see if
7680                  * any are unacknowledged.
7681                  */
7682                 while (lo >= 0 &&
7683                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7684                         if (BB_OFFSET(p[lo]) < target) {
7685                                 /* starts before the end, and finishes after
7686                                  * the start, so they must overlap
7687                                  */
7688                                 if (rv != -1 && BB_ACK(p[lo]))
7689                                         rv = 1;
7690                                 else
7691                                         rv = -1;
7692                                 *first_bad = BB_OFFSET(p[lo]);
7693                                 *bad_sectors = BB_LEN(p[lo]);
7694                         }
7695                         lo--;
7696                 }
7697         }
7698
7699         if (read_seqretry(&bb->lock, seq))
7700                 goto retry;
7701
7702         return rv;
7703 }
7704 EXPORT_SYMBOL_GPL(md_is_badblock);
7705
7706 /*
7707  * Add a range of bad blocks to the table.
7708  * This might extend the table, or might contract it
7709  * if two adjacent ranges can be merged.
7710  * We binary-search to find the 'insertion' point, then
7711  * decide how best to handle it.
7712  */
7713 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
7714                             int acknowledged)
7715 {
7716         u64 *p;
7717         int lo, hi;
7718         int rv = 1;
7719
7720         if (bb->shift < 0)
7721                 /* badblocks are disabled */
7722                 return 0;
7723
7724         if (bb->shift) {
7725                 /* round the start down, and the end up */
7726                 sector_t next = s + sectors;
7727                 s >>= bb->shift;
7728                 next += (1<<bb->shift) - 1;
7729                 next >>= bb->shift;
7730                 sectors = next - s;
7731         }
7732
7733         write_seqlock_irq(&bb->lock);
7734
7735         p = bb->page;
7736         lo = 0;
7737         hi = bb->count;
7738         /* Find the last range that starts at-or-before 's' */
7739         while (hi - lo > 1) {
7740                 int mid = (lo + hi) / 2;
7741                 sector_t a = BB_OFFSET(p[mid]);
7742                 if (a <= s)
7743                         lo = mid;
7744                 else
7745                         hi = mid;
7746         }
7747         if (hi > lo && BB_OFFSET(p[lo]) > s)
7748                 hi = lo;
7749
7750         if (hi > lo) {
7751                 /* we found a range that might merge with the start
7752                  * of our new range
7753                  */
7754                 sector_t a = BB_OFFSET(p[lo]);
7755                 sector_t e = a + BB_LEN(p[lo]);
7756                 int ack = BB_ACK(p[lo]);
7757                 if (e >= s) {
7758                         /* Yes, we can merge with a previous range */
7759                         if (s == a && s + sectors >= e)
7760                                 /* new range covers old */
7761                                 ack = acknowledged;
7762                         else
7763                                 ack = ack && acknowledged;
7764
7765                         if (e < s + sectors)
7766                                 e = s + sectors;
7767                         if (e - a <= BB_MAX_LEN) {
7768                                 p[lo] = BB_MAKE(a, e-a, ack);
7769                                 s = e;
7770                         } else {
7771                                 /* does not all fit in one range,
7772                                  * make p[lo] maximal
7773                                  */
7774                                 if (BB_LEN(p[lo]) != BB_MAX_LEN)
7775                                         p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
7776                                 s = a + BB_MAX_LEN;
7777                         }
7778                         sectors = e - s;
7779                 }
7780         }
7781         if (sectors && hi < bb->count) {
7782                 /* 'hi' points to the first range that starts after 's'.
7783                  * Maybe we can merge with the start of that range */
7784                 sector_t a = BB_OFFSET(p[hi]);
7785                 sector_t e = a + BB_LEN(p[hi]);
7786                 int ack = BB_ACK(p[hi]);
7787                 if (a <= s + sectors) {
7788                         /* merging is possible */
7789                         if (e <= s + sectors) {
7790                                 /* full overlap */
7791                                 e = s + sectors;
7792                                 ack = acknowledged;
7793                         } else
7794                                 ack = ack && acknowledged;
7795
7796                         a = s;
7797                         if (e - a <= BB_MAX_LEN) {
7798                                 p[hi] = BB_MAKE(a, e-a, ack);
7799                                 s = e;
7800                         } else {
7801                                 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
7802                                 s = a + BB_MAX_LEN;
7803                         }
7804                         sectors = e - s;
7805                         lo = hi;
7806                         hi++;
7807                 }
7808         }
7809         if (sectors == 0 && hi < bb->count) {
7810                 /* we might be able to combine lo and hi */
7811                 /* Note: 's' is at the end of 'lo' */
7812                 sector_t a = BB_OFFSET(p[hi]);
7813                 int lolen = BB_LEN(p[lo]);
7814                 int hilen = BB_LEN(p[hi]);
7815                 int newlen = lolen + hilen - (s - a);
7816                 if (s >= a && newlen < BB_MAX_LEN) {
7817                         /* yes, we can combine them */
7818                         int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
7819                         p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
7820                         memmove(p + hi, p + hi + 1,
7821                                 (bb->count - hi - 1) * 8);
7822                         bb->count--;
7823                 }
7824         }
7825         while (sectors) {
7826                 /* didn't merge (it all).
7827                  * Need to add a range just before 'hi' */
7828                 if (bb->count >= MD_MAX_BADBLOCKS) {
7829                         /* No room for more */
7830                         rv = 0;
7831                         break;
7832                 } else {
7833                         int this_sectors = sectors;
7834                         memmove(p + hi + 1, p + hi,
7835                                 (bb->count - hi) * 8);
7836                         bb->count++;
7837
7838                         if (this_sectors > BB_MAX_LEN)
7839                                 this_sectors = BB_MAX_LEN;
7840                         p[hi] = BB_MAKE(s, this_sectors, acknowledged);
7841                         sectors -= this_sectors;
7842                         s += this_sectors;
7843                 }
7844         }
7845
7846         bb->changed = 1;
7847         if (!acknowledged)
7848                 bb->unacked_exist = 1;
7849         write_sequnlock_irq(&bb->lock);
7850
7851         return rv;
7852 }
7853
7854 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
7855                        int acknowledged)
7856 {
7857         int rv = md_set_badblocks(&rdev->badblocks,
7858                                   s + rdev->data_offset, sectors, acknowledged);
7859         if (rv) {
7860                 /* Make sure they get written out promptly */
7861                 sysfs_notify_dirent_safe(rdev->sysfs_state);
7862                 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
7863                 md_wakeup_thread(rdev->mddev->thread);
7864         }
7865         return rv;
7866 }
7867 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
7868
7869 /*
7870  * Remove a range of bad blocks from the table.
7871  * This may involve extending the table if we spilt a region,
7872  * but it must not fail.  So if the table becomes full, we just
7873  * drop the remove request.
7874  */
7875 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
7876 {
7877         u64 *p;
7878         int lo, hi;
7879         sector_t target = s + sectors;
7880         int rv = 0;
7881
7882         if (bb->shift > 0) {
7883                 /* When clearing we round the start up and the end down.
7884                  * This should not matter as the shift should align with
7885                  * the block size and no rounding should ever be needed.
7886                  * However it is better the think a block is bad when it
7887                  * isn't than to think a block is not bad when it is.
7888                  */
7889                 s += (1<<bb->shift) - 1;
7890                 s >>= bb->shift;
7891                 target >>= bb->shift;
7892                 sectors = target - s;
7893         }
7894
7895         write_seqlock_irq(&bb->lock);
7896
7897         p = bb->page;
7898         lo = 0;
7899         hi = bb->count;
7900         /* Find the last range that starts before 'target' */
7901         while (hi - lo > 1) {
7902                 int mid = (lo + hi) / 2;
7903                 sector_t a = BB_OFFSET(p[mid]);
7904                 if (a < target)
7905                         lo = mid;
7906                 else
7907                         hi = mid;
7908         }
7909         if (hi > lo) {
7910                 /* p[lo] is the last range that could overlap the
7911                  * current range.  Earlier ranges could also overlap,
7912                  * but only this one can overlap the end of the range.
7913                  */
7914                 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
7915                         /* Partial overlap, leave the tail of this range */
7916                         int ack = BB_ACK(p[lo]);
7917                         sector_t a = BB_OFFSET(p[lo]);
7918                         sector_t end = a + BB_LEN(p[lo]);
7919
7920                         if (a < s) {
7921                                 /* we need to split this range */
7922                                 if (bb->count >= MD_MAX_BADBLOCKS) {
7923                                         rv = 0;
7924                                         goto out;
7925                                 }
7926                                 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
7927                                 bb->count++;
7928                                 p[lo] = BB_MAKE(a, s-a, ack);
7929                                 lo++;
7930                         }
7931                         p[lo] = BB_MAKE(target, end - target, ack);
7932                         /* there is no longer an overlap */
7933                         hi = lo;
7934                         lo--;
7935                 }
7936                 while (lo >= 0 &&
7937                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7938                         /* This range does overlap */
7939                         if (BB_OFFSET(p[lo]) < s) {
7940                                 /* Keep the early parts of this range. */
7941                                 int ack = BB_ACK(p[lo]);
7942                                 sector_t start = BB_OFFSET(p[lo]);
7943                                 p[lo] = BB_MAKE(start, s - start, ack);
7944                                 /* now low doesn't overlap, so.. */
7945                                 break;
7946                         }
7947                         lo--;
7948                 }
7949                 /* 'lo' is strictly before, 'hi' is strictly after,
7950                  * anything between needs to be discarded
7951                  */
7952                 if (hi - lo > 1) {
7953                         memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
7954                         bb->count -= (hi - lo - 1);
7955                 }
7956         }
7957
7958         bb->changed = 1;
7959 out:
7960         write_sequnlock_irq(&bb->lock);
7961         return rv;
7962 }
7963
7964 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors)
7965 {
7966         return md_clear_badblocks(&rdev->badblocks,
7967                                   s + rdev->data_offset,
7968                                   sectors);
7969 }
7970 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
7971
7972 /*
7973  * Acknowledge all bad blocks in a list.
7974  * This only succeeds if ->changed is clear.  It is used by
7975  * in-kernel metadata updates
7976  */
7977 void md_ack_all_badblocks(struct badblocks *bb)
7978 {
7979         if (bb->page == NULL || bb->changed)
7980                 /* no point even trying */
7981                 return;
7982         write_seqlock_irq(&bb->lock);
7983
7984         if (bb->changed == 0) {
7985                 u64 *p = bb->page;
7986                 int i;
7987                 for (i = 0; i < bb->count ; i++) {
7988                         if (!BB_ACK(p[i])) {
7989                                 sector_t start = BB_OFFSET(p[i]);
7990                                 int len = BB_LEN(p[i]);
7991                                 p[i] = BB_MAKE(start, len, 1);
7992                         }
7993                 }
7994                 bb->unacked_exist = 0;
7995         }
7996         write_sequnlock_irq(&bb->lock);
7997 }
7998 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
7999
8000 /* sysfs access to bad-blocks list.
8001  * We present two files.
8002  * 'bad-blocks' lists sector numbers and lengths of ranges that
8003  *    are recorded as bad.  The list is truncated to fit within
8004  *    the one-page limit of sysfs.
8005  *    Writing "sector length" to this file adds an acknowledged
8006  *    bad block list.
8007  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8008  *    been acknowledged.  Writing to this file adds bad blocks
8009  *    without acknowledging them.  This is largely for testing.
8010  */
8011
8012 static ssize_t
8013 badblocks_show(struct badblocks *bb, char *page, int unack)
8014 {
8015         size_t len;
8016         int i;
8017         u64 *p = bb->page;
8018         unsigned seq;
8019
8020         if (bb->shift < 0)
8021                 return 0;
8022
8023 retry:
8024         seq = read_seqbegin(&bb->lock);
8025
8026         len = 0;
8027         i = 0;
8028
8029         while (len < PAGE_SIZE && i < bb->count) {
8030                 sector_t s = BB_OFFSET(p[i]);
8031                 unsigned int length = BB_LEN(p[i]);
8032                 int ack = BB_ACK(p[i]);
8033                 i++;
8034
8035                 if (unack && ack)
8036                         continue;
8037
8038                 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8039                                 (unsigned long long)s << bb->shift,
8040                                 length << bb->shift);
8041         }
8042         if (unack && len == 0)
8043                 bb->unacked_exist = 0;
8044
8045         if (read_seqretry(&bb->lock, seq))
8046                 goto retry;
8047
8048         return len;
8049 }
8050
8051 #define DO_DEBUG 1
8052
8053 static ssize_t
8054 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8055 {
8056         unsigned long long sector;
8057         int length;
8058         char newline;
8059 #ifdef DO_DEBUG
8060         /* Allow clearing via sysfs *only* for testing/debugging.
8061          * Normally only a successful write may clear a badblock
8062          */
8063         int clear = 0;
8064         if (page[0] == '-') {
8065                 clear = 1;
8066                 page++;
8067         }
8068 #endif /* DO_DEBUG */
8069
8070         switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8071         case 3:
8072                 if (newline != '\n')
8073                         return -EINVAL;
8074         case 2:
8075                 if (length <= 0)
8076                         return -EINVAL;
8077                 break;
8078         default:
8079                 return -EINVAL;
8080         }
8081
8082 #ifdef DO_DEBUG
8083         if (clear) {
8084                 md_clear_badblocks(bb, sector, length);
8085                 return len;
8086         }
8087 #endif /* DO_DEBUG */
8088         if (md_set_badblocks(bb, sector, length, !unack))
8089                 return len;
8090         else
8091                 return -ENOSPC;
8092 }
8093
8094 static int md_notify_reboot(struct notifier_block *this,
8095                             unsigned long code, void *x)
8096 {
8097         struct list_head *tmp;
8098         struct mddev *mddev;
8099         int need_delay = 0;
8100
8101         for_each_mddev(mddev, tmp) {
8102                 if (mddev_trylock(mddev)) {
8103                         if (mddev->pers)
8104                                 __md_stop_writes(mddev);
8105                         mddev->safemode = 2;
8106                         mddev_unlock(mddev);
8107                 }
8108                 need_delay = 1;
8109         }
8110         /*
8111          * certain more exotic SCSI devices are known to be
8112          * volatile wrt too early system reboots. While the
8113          * right place to handle this issue is the given
8114          * driver, we do want to have a safe RAID driver ...
8115          */
8116         if (need_delay)
8117                 mdelay(1000*1);
8118
8119         return NOTIFY_DONE;
8120 }
8121
8122 static struct notifier_block md_notifier = {
8123         .notifier_call  = md_notify_reboot,
8124         .next           = NULL,
8125         .priority       = INT_MAX, /* before any real devices */
8126 };
8127
8128 static void md_geninit(void)
8129 {
8130         pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8131
8132         proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8133 }
8134
8135 static int __init md_init(void)
8136 {
8137         int ret = -ENOMEM;
8138
8139         md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8140         if (!md_wq)
8141                 goto err_wq;
8142
8143         md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8144         if (!md_misc_wq)
8145                 goto err_misc_wq;
8146
8147         if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8148                 goto err_md;
8149
8150         if ((ret = register_blkdev(0, "mdp")) < 0)
8151                 goto err_mdp;
8152         mdp_major = ret;
8153
8154         blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8155                             md_probe, NULL, NULL);
8156         blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8157                             md_probe, NULL, NULL);
8158
8159         register_reboot_notifier(&md_notifier);
8160         raid_table_header = register_sysctl_table(raid_root_table);
8161
8162         md_geninit();
8163         return 0;
8164
8165 err_mdp:
8166         unregister_blkdev(MD_MAJOR, "md");
8167 err_md:
8168         destroy_workqueue(md_misc_wq);
8169 err_misc_wq:
8170         destroy_workqueue(md_wq);
8171 err_wq:
8172         return ret;
8173 }
8174
8175 #ifndef MODULE
8176
8177 /*
8178  * Searches all registered partitions for autorun RAID arrays
8179  * at boot time.
8180  */
8181
8182 static LIST_HEAD(all_detected_devices);
8183 struct detected_devices_node {
8184         struct list_head list;
8185         dev_t dev;
8186 };
8187
8188 void md_autodetect_dev(dev_t dev)
8189 {
8190         struct detected_devices_node *node_detected_dev;
8191
8192         node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8193         if (node_detected_dev) {
8194                 node_detected_dev->dev = dev;
8195                 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8196         } else {
8197                 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8198                         ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8199         }
8200 }
8201
8202
8203 static void autostart_arrays(int part)
8204 {
8205         struct md_rdev *rdev;
8206         struct detected_devices_node *node_detected_dev;
8207         dev_t dev;
8208         int i_scanned, i_passed;
8209
8210         i_scanned = 0;
8211         i_passed = 0;
8212
8213         printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8214
8215         while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8216                 i_scanned++;
8217                 node_detected_dev = list_entry(all_detected_devices.next,
8218                                         struct detected_devices_node, list);
8219                 list_del(&node_detected_dev->list);
8220                 dev = node_detected_dev->dev;
8221                 kfree(node_detected_dev);
8222                 rdev = md_import_device(dev,0, 90);
8223                 if (IS_ERR(rdev))
8224                         continue;
8225
8226                 if (test_bit(Faulty, &rdev->flags)) {
8227                         MD_BUG();
8228                         continue;
8229                 }
8230                 set_bit(AutoDetected, &rdev->flags);
8231                 list_add(&rdev->same_set, &pending_raid_disks);
8232                 i_passed++;
8233         }
8234
8235         printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8236                                                 i_scanned, i_passed);
8237
8238         autorun_devices(part);
8239 }
8240
8241 #endif /* !MODULE */
8242
8243 static __exit void md_exit(void)
8244 {
8245         struct mddev *mddev;
8246         struct list_head *tmp;
8247
8248         blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8249         blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8250
8251         unregister_blkdev(MD_MAJOR,"md");
8252         unregister_blkdev(mdp_major, "mdp");
8253         unregister_reboot_notifier(&md_notifier);
8254         unregister_sysctl_table(raid_table_header);
8255         remove_proc_entry("mdstat", NULL);
8256         for_each_mddev(mddev, tmp) {
8257                 export_array(mddev);
8258                 mddev->hold_active = 0;
8259         }
8260         destroy_workqueue(md_misc_wq);
8261         destroy_workqueue(md_wq);
8262 }
8263
8264 subsys_initcall(md_init);
8265 module_exit(md_exit)
8266
8267 static int get_ro(char *buffer, struct kernel_param *kp)
8268 {
8269         return sprintf(buffer, "%d", start_readonly);
8270 }
8271 static int set_ro(const char *val, struct kernel_param *kp)
8272 {
8273         char *e;
8274         int num = simple_strtoul(val, &e, 10);
8275         if (*val && (*e == '\0' || *e == '\n')) {
8276                 start_readonly = num;
8277                 return 0;
8278         }
8279         return -EINVAL;
8280 }
8281
8282 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8283 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8284
8285 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8286
8287 EXPORT_SYMBOL(register_md_personality);
8288 EXPORT_SYMBOL(unregister_md_personality);
8289 EXPORT_SYMBOL(md_error);
8290 EXPORT_SYMBOL(md_done_sync);
8291 EXPORT_SYMBOL(md_write_start);
8292 EXPORT_SYMBOL(md_write_end);
8293 EXPORT_SYMBOL(md_register_thread);
8294 EXPORT_SYMBOL(md_unregister_thread);
8295 EXPORT_SYMBOL(md_wakeup_thread);
8296 EXPORT_SYMBOL(md_check_recovery);
8297 MODULE_LICENSE("GPL");
8298 MODULE_DESCRIPTION("MD RAID framework");
8299 MODULE_ALIAS("md");
8300 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);