md: fix possible corruption of array metadata on shutdown.
[pandora-kernel.git] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3           Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 /* pers_list is a list of registered personalities protected
62  * by pers_lock.
63  * pers_lock does extra service to protect accesses to
64  * mddev->thread when the mutex cannot be held.
65  */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68
69 static void md_print_devices(void);
70
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74
75 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
76
77 /*
78  * Default number of read corrections we'll attempt on an rdev
79  * before ejecting it from the array. We divide the read error
80  * count by 2 for every hour elapsed between read errors.
81  */
82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
83 /*
84  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
85  * is 1000 KB/sec, so the extra system load does not show up that much.
86  * Increase it if you want to have more _guaranteed_ speed. Note that
87  * the RAID driver will use the maximum available bandwidth if the IO
88  * subsystem is idle. There is also an 'absolute maximum' reconstruction
89  * speed limit - in case reconstruction slows down your system despite
90  * idle IO detection.
91  *
92  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
93  * or /sys/block/mdX/md/sync_speed_{min,max}
94  */
95
96 static int sysctl_speed_limit_min = 1000;
97 static int sysctl_speed_limit_max = 200000;
98 static inline int speed_min(struct mddev *mddev)
99 {
100         return mddev->sync_speed_min ?
101                 mddev->sync_speed_min : sysctl_speed_limit_min;
102 }
103
104 static inline int speed_max(struct mddev *mddev)
105 {
106         return mddev->sync_speed_max ?
107                 mddev->sync_speed_max : sysctl_speed_limit_max;
108 }
109
110 static struct ctl_table_header *raid_table_header;
111
112 static ctl_table raid_table[] = {
113         {
114                 .procname       = "speed_limit_min",
115                 .data           = &sysctl_speed_limit_min,
116                 .maxlen         = sizeof(int),
117                 .mode           = S_IRUGO|S_IWUSR,
118                 .proc_handler   = proc_dointvec,
119         },
120         {
121                 .procname       = "speed_limit_max",
122                 .data           = &sysctl_speed_limit_max,
123                 .maxlen         = sizeof(int),
124                 .mode           = S_IRUGO|S_IWUSR,
125                 .proc_handler   = proc_dointvec,
126         },
127         { }
128 };
129
130 static ctl_table raid_dir_table[] = {
131         {
132                 .procname       = "raid",
133                 .maxlen         = 0,
134                 .mode           = S_IRUGO|S_IXUGO,
135                 .child          = raid_table,
136         },
137         { }
138 };
139
140 static ctl_table raid_root_table[] = {
141         {
142                 .procname       = "dev",
143                 .maxlen         = 0,
144                 .mode           = 0555,
145                 .child          = raid_dir_table,
146         },
147         {  }
148 };
149
150 static const struct block_device_operations md_fops;
151
152 static int start_readonly;
153
154 /* bio_clone_mddev
155  * like bio_clone, but with a local bio set
156  */
157
158 static void mddev_bio_destructor(struct bio *bio)
159 {
160         struct mddev *mddev, **mddevp;
161
162         mddevp = (void*)bio;
163         mddev = mddevp[-1];
164
165         bio_free(bio, mddev->bio_set);
166 }
167
168 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
169                             struct mddev *mddev)
170 {
171         struct bio *b;
172         struct mddev **mddevp;
173
174         if (!mddev || !mddev->bio_set)
175                 return bio_alloc(gfp_mask, nr_iovecs);
176
177         b = bio_alloc_bioset(gfp_mask, nr_iovecs,
178                              mddev->bio_set);
179         if (!b)
180                 return NULL;
181         mddevp = (void*)b;
182         mddevp[-1] = mddev;
183         b->bi_destructor = mddev_bio_destructor;
184         return b;
185 }
186 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
187
188 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
189                             struct mddev *mddev)
190 {
191         struct bio *b;
192         struct mddev **mddevp;
193
194         if (!mddev || !mddev->bio_set)
195                 return bio_clone(bio, gfp_mask);
196
197         b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
198                              mddev->bio_set);
199         if (!b)
200                 return NULL;
201         mddevp = (void*)b;
202         mddevp[-1] = mddev;
203         b->bi_destructor = mddev_bio_destructor;
204         __bio_clone(b, bio);
205         if (bio_integrity(bio)) {
206                 int ret;
207
208                 ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
209
210                 if (ret < 0) {
211                         bio_put(b);
212                         return NULL;
213                 }
214         }
215
216         return b;
217 }
218 EXPORT_SYMBOL_GPL(bio_clone_mddev);
219
220 void md_trim_bio(struct bio *bio, int offset, int size)
221 {
222         /* 'bio' is a cloned bio which we need to trim to match
223          * the given offset and size.
224          * This requires adjusting bi_sector, bi_size, and bi_io_vec
225          */
226         int i;
227         struct bio_vec *bvec;
228         int sofar = 0;
229
230         size <<= 9;
231         if (offset == 0 && size == bio->bi_size)
232                 return;
233
234         bio->bi_sector += offset;
235         bio->bi_size = size;
236         offset <<= 9;
237         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
238
239         while (bio->bi_idx < bio->bi_vcnt &&
240                bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
241                 /* remove this whole bio_vec */
242                 offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
243                 bio->bi_idx++;
244         }
245         if (bio->bi_idx < bio->bi_vcnt) {
246                 bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
247                 bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
248         }
249         /* avoid any complications with bi_idx being non-zero*/
250         if (bio->bi_idx) {
251                 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
252                         (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
253                 bio->bi_vcnt -= bio->bi_idx;
254                 bio->bi_idx = 0;
255         }
256         /* Make sure vcnt and last bv are not too big */
257         bio_for_each_segment(bvec, bio, i) {
258                 if (sofar + bvec->bv_len > size)
259                         bvec->bv_len = size - sofar;
260                 if (bvec->bv_len == 0) {
261                         bio->bi_vcnt = i;
262                         break;
263                 }
264                 sofar += bvec->bv_len;
265         }
266 }
267 EXPORT_SYMBOL_GPL(md_trim_bio);
268
269 /*
270  * We have a system wide 'event count' that is incremented
271  * on any 'interesting' event, and readers of /proc/mdstat
272  * can use 'poll' or 'select' to find out when the event
273  * count increases.
274  *
275  * Events are:
276  *  start array, stop array, error, add device, remove device,
277  *  start build, activate spare
278  */
279 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
280 static atomic_t md_event_count;
281 void md_new_event(struct mddev *mddev)
282 {
283         atomic_inc(&md_event_count);
284         wake_up(&md_event_waiters);
285 }
286 EXPORT_SYMBOL_GPL(md_new_event);
287
288 /* Alternate version that can be called from interrupts
289  * when calling sysfs_notify isn't needed.
290  */
291 static void md_new_event_inintr(struct mddev *mddev)
292 {
293         atomic_inc(&md_event_count);
294         wake_up(&md_event_waiters);
295 }
296
297 /*
298  * Enables to iterate over all existing md arrays
299  * all_mddevs_lock protects this list.
300  */
301 static LIST_HEAD(all_mddevs);
302 static DEFINE_SPINLOCK(all_mddevs_lock);
303
304
305 /*
306  * iterates through all used mddevs in the system.
307  * We take care to grab the all_mddevs_lock whenever navigating
308  * the list, and to always hold a refcount when unlocked.
309  * Any code which breaks out of this loop while own
310  * a reference to the current mddev and must mddev_put it.
311  */
312 #define for_each_mddev(_mddev,_tmp)                                     \
313                                                                         \
314         for (({ spin_lock(&all_mddevs_lock);                            \
315                 _tmp = all_mddevs.next;                                 \
316                 _mddev = NULL;});                                       \
317              ({ if (_tmp != &all_mddevs)                                \
318                         mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
319                 spin_unlock(&all_mddevs_lock);                          \
320                 if (_mddev) mddev_put(_mddev);                          \
321                 _mddev = list_entry(_tmp, struct mddev, all_mddevs);    \
322                 _tmp != &all_mddevs;});                                 \
323              ({ spin_lock(&all_mddevs_lock);                            \
324                 _tmp = _tmp->next;})                                    \
325                 )
326
327
328 /* Rather than calling directly into the personality make_request function,
329  * IO requests come here first so that we can check if the device is
330  * being suspended pending a reconfiguration.
331  * We hold a refcount over the call to ->make_request.  By the time that
332  * call has finished, the bio has been linked into some internal structure
333  * and so is visible to ->quiesce(), so we don't need the refcount any more.
334  */
335 static void md_make_request(struct request_queue *q, struct bio *bio)
336 {
337         const int rw = bio_data_dir(bio);
338         struct mddev *mddev = q->queuedata;
339         int cpu;
340         unsigned int sectors;
341
342         if (mddev == NULL || mddev->pers == NULL
343             || !mddev->ready) {
344                 bio_io_error(bio);
345                 return;
346         }
347         smp_rmb(); /* Ensure implications of  'active' are visible */
348         rcu_read_lock();
349         if (mddev->suspended) {
350                 DEFINE_WAIT(__wait);
351                 for (;;) {
352                         prepare_to_wait(&mddev->sb_wait, &__wait,
353                                         TASK_UNINTERRUPTIBLE);
354                         if (!mddev->suspended)
355                                 break;
356                         rcu_read_unlock();
357                         schedule();
358                         rcu_read_lock();
359                 }
360                 finish_wait(&mddev->sb_wait, &__wait);
361         }
362         atomic_inc(&mddev->active_io);
363         rcu_read_unlock();
364
365         /*
366          * save the sectors now since our bio can
367          * go away inside make_request
368          */
369         sectors = bio_sectors(bio);
370         mddev->pers->make_request(mddev, bio);
371
372         cpu = part_stat_lock();
373         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
374         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
375         part_stat_unlock();
376
377         if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
378                 wake_up(&mddev->sb_wait);
379 }
380
381 /* mddev_suspend makes sure no new requests are submitted
382  * to the device, and that any requests that have been submitted
383  * are completely handled.
384  * Once ->stop is called and completes, the module will be completely
385  * unused.
386  */
387 void mddev_suspend(struct mddev *mddev)
388 {
389         BUG_ON(mddev->suspended);
390         mddev->suspended = 1;
391         synchronize_rcu();
392         wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
393         mddev->pers->quiesce(mddev, 1);
394 }
395 EXPORT_SYMBOL_GPL(mddev_suspend);
396
397 void mddev_resume(struct mddev *mddev)
398 {
399         mddev->suspended = 0;
400         wake_up(&mddev->sb_wait);
401         mddev->pers->quiesce(mddev, 0);
402
403         md_wakeup_thread(mddev->thread);
404         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
405 }
406 EXPORT_SYMBOL_GPL(mddev_resume);
407
408 int mddev_congested(struct mddev *mddev, int bits)
409 {
410         return mddev->suspended;
411 }
412 EXPORT_SYMBOL(mddev_congested);
413
414 /*
415  * Generic flush handling for md
416  */
417
418 static void md_end_flush(struct bio *bio, int err)
419 {
420         struct md_rdev *rdev = bio->bi_private;
421         struct mddev *mddev = rdev->mddev;
422
423         rdev_dec_pending(rdev, mddev);
424
425         if (atomic_dec_and_test(&mddev->flush_pending)) {
426                 /* The pre-request flush has finished */
427                 queue_work(md_wq, &mddev->flush_work);
428         }
429         bio_put(bio);
430 }
431
432 static void md_submit_flush_data(struct work_struct *ws);
433
434 static void submit_flushes(struct work_struct *ws)
435 {
436         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
437         struct md_rdev *rdev;
438
439         INIT_WORK(&mddev->flush_work, md_submit_flush_data);
440         atomic_set(&mddev->flush_pending, 1);
441         rcu_read_lock();
442         rdev_for_each_rcu(rdev, mddev)
443                 if (rdev->raid_disk >= 0 &&
444                     !test_bit(Faulty, &rdev->flags)) {
445                         /* Take two references, one is dropped
446                          * when request finishes, one after
447                          * we reclaim rcu_read_lock
448                          */
449                         struct bio *bi;
450                         atomic_inc(&rdev->nr_pending);
451                         atomic_inc(&rdev->nr_pending);
452                         rcu_read_unlock();
453                         bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev);
454                         bi->bi_end_io = md_end_flush;
455                         bi->bi_private = rdev;
456                         bi->bi_bdev = rdev->bdev;
457                         atomic_inc(&mddev->flush_pending);
458                         submit_bio(WRITE_FLUSH, bi);
459                         rcu_read_lock();
460                         rdev_dec_pending(rdev, mddev);
461                 }
462         rcu_read_unlock();
463         if (atomic_dec_and_test(&mddev->flush_pending))
464                 queue_work(md_wq, &mddev->flush_work);
465 }
466
467 static void md_submit_flush_data(struct work_struct *ws)
468 {
469         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
470         struct bio *bio = mddev->flush_bio;
471
472         if (bio->bi_size == 0)
473                 /* an empty barrier - all done */
474                 bio_endio(bio, 0);
475         else {
476                 bio->bi_rw &= ~REQ_FLUSH;
477                 mddev->pers->make_request(mddev, bio);
478         }
479
480         mddev->flush_bio = NULL;
481         wake_up(&mddev->sb_wait);
482 }
483
484 void md_flush_request(struct mddev *mddev, struct bio *bio)
485 {
486         spin_lock_irq(&mddev->write_lock);
487         wait_event_lock_irq(mddev->sb_wait,
488                             !mddev->flush_bio,
489                             mddev->write_lock, /*nothing*/);
490         mddev->flush_bio = bio;
491         spin_unlock_irq(&mddev->write_lock);
492
493         INIT_WORK(&mddev->flush_work, submit_flushes);
494         queue_work(md_wq, &mddev->flush_work);
495 }
496 EXPORT_SYMBOL(md_flush_request);
497
498 /* Support for plugging.
499  * This mirrors the plugging support in request_queue, but does not
500  * require having a whole queue or request structures.
501  * We allocate an md_plug_cb for each md device and each thread it gets
502  * plugged on.  This links tot the private plug_handle structure in the
503  * personality data where we keep a count of the number of outstanding
504  * plugs so other code can see if a plug is active.
505  */
506 struct md_plug_cb {
507         struct blk_plug_cb cb;
508         struct mddev *mddev;
509 };
510
511 static void plugger_unplug(struct blk_plug_cb *cb)
512 {
513         struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
514         if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
515                 md_wakeup_thread(mdcb->mddev->thread);
516         kfree(mdcb);
517 }
518
519 /* Check that an unplug wakeup will come shortly.
520  * If not, wakeup the md thread immediately
521  */
522 int mddev_check_plugged(struct mddev *mddev)
523 {
524         struct blk_plug *plug = current->plug;
525         struct md_plug_cb *mdcb;
526
527         if (!plug)
528                 return 0;
529
530         list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
531                 if (mdcb->cb.callback == plugger_unplug &&
532                     mdcb->mddev == mddev) {
533                         /* Already on the list, move to top */
534                         if (mdcb != list_first_entry(&plug->cb_list,
535                                                     struct md_plug_cb,
536                                                     cb.list))
537                                 list_move(&mdcb->cb.list, &plug->cb_list);
538                         return 1;
539                 }
540         }
541         /* Not currently on the callback list */
542         mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
543         if (!mdcb)
544                 return 0;
545
546         mdcb->mddev = mddev;
547         mdcb->cb.callback = plugger_unplug;
548         atomic_inc(&mddev->plug_cnt);
549         list_add(&mdcb->cb.list, &plug->cb_list);
550         return 1;
551 }
552 EXPORT_SYMBOL_GPL(mddev_check_plugged);
553
554 static inline struct mddev *mddev_get(struct mddev *mddev)
555 {
556         atomic_inc(&mddev->active);
557         return mddev;
558 }
559
560 static void mddev_delayed_delete(struct work_struct *ws);
561
562 static void mddev_put(struct mddev *mddev)
563 {
564         struct bio_set *bs = NULL;
565
566         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
567                 return;
568         if (!mddev->raid_disks && list_empty(&mddev->disks) &&
569             mddev->ctime == 0 && !mddev->hold_active) {
570                 /* Array is not configured at all, and not held active,
571                  * so destroy it */
572                 list_del_init(&mddev->all_mddevs);
573                 bs = mddev->bio_set;
574                 mddev->bio_set = NULL;
575                 if (mddev->gendisk) {
576                         /* We did a probe so need to clean up.  Call
577                          * queue_work inside the spinlock so that
578                          * flush_workqueue() after mddev_find will
579                          * succeed in waiting for the work to be done.
580                          */
581                         INIT_WORK(&mddev->del_work, mddev_delayed_delete);
582                         queue_work(md_misc_wq, &mddev->del_work);
583                 } else
584                         kfree(mddev);
585         }
586         spin_unlock(&all_mddevs_lock);
587         if (bs)
588                 bioset_free(bs);
589 }
590
591 void mddev_init(struct mddev *mddev)
592 {
593         mutex_init(&mddev->open_mutex);
594         mutex_init(&mddev->reconfig_mutex);
595         mutex_init(&mddev->bitmap_info.mutex);
596         INIT_LIST_HEAD(&mddev->disks);
597         INIT_LIST_HEAD(&mddev->all_mddevs);
598         init_timer(&mddev->safemode_timer);
599         atomic_set(&mddev->active, 1);
600         atomic_set(&mddev->openers, 0);
601         atomic_set(&mddev->active_io, 0);
602         atomic_set(&mddev->plug_cnt, 0);
603         spin_lock_init(&mddev->write_lock);
604         atomic_set(&mddev->flush_pending, 0);
605         init_waitqueue_head(&mddev->sb_wait);
606         init_waitqueue_head(&mddev->recovery_wait);
607         mddev->reshape_position = MaxSector;
608         mddev->resync_min = 0;
609         mddev->resync_max = MaxSector;
610         mddev->level = LEVEL_NONE;
611 }
612 EXPORT_SYMBOL_GPL(mddev_init);
613
614 static struct mddev * mddev_find(dev_t unit)
615 {
616         struct mddev *mddev, *new = NULL;
617
618         if (unit && MAJOR(unit) != MD_MAJOR)
619                 unit &= ~((1<<MdpMinorShift)-1);
620
621  retry:
622         spin_lock(&all_mddevs_lock);
623
624         if (unit) {
625                 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
626                         if (mddev->unit == unit) {
627                                 mddev_get(mddev);
628                                 spin_unlock(&all_mddevs_lock);
629                                 kfree(new);
630                                 return mddev;
631                         }
632
633                 if (new) {
634                         list_add(&new->all_mddevs, &all_mddevs);
635                         spin_unlock(&all_mddevs_lock);
636                         new->hold_active = UNTIL_IOCTL;
637                         return new;
638                 }
639         } else if (new) {
640                 /* find an unused unit number */
641                 static int next_minor = 512;
642                 int start = next_minor;
643                 int is_free = 0;
644                 int dev = 0;
645                 while (!is_free) {
646                         dev = MKDEV(MD_MAJOR, next_minor);
647                         next_minor++;
648                         if (next_minor > MINORMASK)
649                                 next_minor = 0;
650                         if (next_minor == start) {
651                                 /* Oh dear, all in use. */
652                                 spin_unlock(&all_mddevs_lock);
653                                 kfree(new);
654                                 return NULL;
655                         }
656                                 
657                         is_free = 1;
658                         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
659                                 if (mddev->unit == dev) {
660                                         is_free = 0;
661                                         break;
662                                 }
663                 }
664                 new->unit = dev;
665                 new->md_minor = MINOR(dev);
666                 new->hold_active = UNTIL_STOP;
667                 list_add(&new->all_mddevs, &all_mddevs);
668                 spin_unlock(&all_mddevs_lock);
669                 return new;
670         }
671         spin_unlock(&all_mddevs_lock);
672
673         new = kzalloc(sizeof(*new), GFP_KERNEL);
674         if (!new)
675                 return NULL;
676
677         new->unit = unit;
678         if (MAJOR(unit) == MD_MAJOR)
679                 new->md_minor = MINOR(unit);
680         else
681                 new->md_minor = MINOR(unit) >> MdpMinorShift;
682
683         mddev_init(new);
684
685         goto retry;
686 }
687
688 static inline int mddev_lock(struct mddev * mddev)
689 {
690         return mutex_lock_interruptible(&mddev->reconfig_mutex);
691 }
692
693 static inline int mddev_is_locked(struct mddev *mddev)
694 {
695         return mutex_is_locked(&mddev->reconfig_mutex);
696 }
697
698 static inline int mddev_trylock(struct mddev * mddev)
699 {
700         return mutex_trylock(&mddev->reconfig_mutex);
701 }
702
703 static struct attribute_group md_redundancy_group;
704
705 static void mddev_unlock(struct mddev * mddev)
706 {
707         if (mddev->to_remove) {
708                 /* These cannot be removed under reconfig_mutex as
709                  * an access to the files will try to take reconfig_mutex
710                  * while holding the file unremovable, which leads to
711                  * a deadlock.
712                  * So hold set sysfs_active while the remove in happeing,
713                  * and anything else which might set ->to_remove or my
714                  * otherwise change the sysfs namespace will fail with
715                  * -EBUSY if sysfs_active is still set.
716                  * We set sysfs_active under reconfig_mutex and elsewhere
717                  * test it under the same mutex to ensure its correct value
718                  * is seen.
719                  */
720                 struct attribute_group *to_remove = mddev->to_remove;
721                 mddev->to_remove = NULL;
722                 mddev->sysfs_active = 1;
723                 mutex_unlock(&mddev->reconfig_mutex);
724
725                 if (mddev->kobj.sd) {
726                         if (to_remove != &md_redundancy_group)
727                                 sysfs_remove_group(&mddev->kobj, to_remove);
728                         if (mddev->pers == NULL ||
729                             mddev->pers->sync_request == NULL) {
730                                 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
731                                 if (mddev->sysfs_action)
732                                         sysfs_put(mddev->sysfs_action);
733                                 mddev->sysfs_action = NULL;
734                         }
735                 }
736                 mddev->sysfs_active = 0;
737         } else
738                 mutex_unlock(&mddev->reconfig_mutex);
739
740         /* As we've dropped the mutex we need a spinlock to
741          * make sure the thread doesn't disappear
742          */
743         spin_lock(&pers_lock);
744         md_wakeup_thread(mddev->thread);
745         spin_unlock(&pers_lock);
746 }
747
748 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
749 {
750         struct md_rdev *rdev;
751
752         rdev_for_each(rdev, mddev)
753                 if (rdev->desc_nr == nr)
754                         return rdev;
755
756         return NULL;
757 }
758
759 static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev)
760 {
761         struct md_rdev *rdev;
762
763         rdev_for_each(rdev, mddev)
764                 if (rdev->bdev->bd_dev == dev)
765                         return rdev;
766
767         return NULL;
768 }
769
770 static struct md_personality *find_pers(int level, char *clevel)
771 {
772         struct md_personality *pers;
773         list_for_each_entry(pers, &pers_list, list) {
774                 if (level != LEVEL_NONE && pers->level == level)
775                         return pers;
776                 if (strcmp(pers->name, clevel)==0)
777                         return pers;
778         }
779         return NULL;
780 }
781
782 /* return the offset of the super block in 512byte sectors */
783 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
784 {
785         sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
786         return MD_NEW_SIZE_SECTORS(num_sectors);
787 }
788
789 static int alloc_disk_sb(struct md_rdev * rdev)
790 {
791         if (rdev->sb_page)
792                 MD_BUG();
793
794         rdev->sb_page = alloc_page(GFP_KERNEL);
795         if (!rdev->sb_page) {
796                 printk(KERN_ALERT "md: out of memory.\n");
797                 return -ENOMEM;
798         }
799
800         return 0;
801 }
802
803 static void free_disk_sb(struct md_rdev * rdev)
804 {
805         if (rdev->sb_page) {
806                 put_page(rdev->sb_page);
807                 rdev->sb_loaded = 0;
808                 rdev->sb_page = NULL;
809                 rdev->sb_start = 0;
810                 rdev->sectors = 0;
811         }
812         if (rdev->bb_page) {
813                 put_page(rdev->bb_page);
814                 rdev->bb_page = NULL;
815         }
816 }
817
818
819 static void super_written(struct bio *bio, int error)
820 {
821         struct md_rdev *rdev = bio->bi_private;
822         struct mddev *mddev = rdev->mddev;
823
824         if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
825                 printk("md: super_written gets error=%d, uptodate=%d\n",
826                        error, test_bit(BIO_UPTODATE, &bio->bi_flags));
827                 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
828                 md_error(mddev, rdev);
829         }
830
831         if (atomic_dec_and_test(&mddev->pending_writes))
832                 wake_up(&mddev->sb_wait);
833         bio_put(bio);
834 }
835
836 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
837                    sector_t sector, int size, struct page *page)
838 {
839         /* write first size bytes of page to sector of rdev
840          * Increment mddev->pending_writes before returning
841          * and decrement it on completion, waking up sb_wait
842          * if zero is reached.
843          * If an error occurred, call md_error
844          */
845         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
846
847         bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
848         bio->bi_sector = sector;
849         bio_add_page(bio, page, size, 0);
850         bio->bi_private = rdev;
851         bio->bi_end_io = super_written;
852
853         atomic_inc(&mddev->pending_writes);
854         submit_bio(WRITE_FLUSH_FUA, bio);
855 }
856
857 void md_super_wait(struct mddev *mddev)
858 {
859         /* wait for all superblock writes that were scheduled to complete */
860         DEFINE_WAIT(wq);
861         for(;;) {
862                 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
863                 if (atomic_read(&mddev->pending_writes)==0)
864                         break;
865                 schedule();
866         }
867         finish_wait(&mddev->sb_wait, &wq);
868 }
869
870 static void bi_complete(struct bio *bio, int error)
871 {
872         complete((struct completion*)bio->bi_private);
873 }
874
875 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
876                  struct page *page, int rw, bool metadata_op)
877 {
878         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
879         struct completion event;
880         int ret;
881
882         rw |= REQ_SYNC;
883
884         bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
885                 rdev->meta_bdev : rdev->bdev;
886         if (metadata_op)
887                 bio->bi_sector = sector + rdev->sb_start;
888         else
889                 bio->bi_sector = sector + rdev->data_offset;
890         bio_add_page(bio, page, size, 0);
891         init_completion(&event);
892         bio->bi_private = &event;
893         bio->bi_end_io = bi_complete;
894         submit_bio(rw, bio);
895         wait_for_completion(&event);
896
897         ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
898         bio_put(bio);
899         return ret;
900 }
901 EXPORT_SYMBOL_GPL(sync_page_io);
902
903 static int read_disk_sb(struct md_rdev * rdev, int size)
904 {
905         char b[BDEVNAME_SIZE];
906         if (!rdev->sb_page) {
907                 MD_BUG();
908                 return -EINVAL;
909         }
910         if (rdev->sb_loaded)
911                 return 0;
912
913
914         if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
915                 goto fail;
916         rdev->sb_loaded = 1;
917         return 0;
918
919 fail:
920         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
921                 bdevname(rdev->bdev,b));
922         return -EINVAL;
923 }
924
925 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
926 {
927         return  sb1->set_uuid0 == sb2->set_uuid0 &&
928                 sb1->set_uuid1 == sb2->set_uuid1 &&
929                 sb1->set_uuid2 == sb2->set_uuid2 &&
930                 sb1->set_uuid3 == sb2->set_uuid3;
931 }
932
933 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
934 {
935         int ret;
936         mdp_super_t *tmp1, *tmp2;
937
938         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
939         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
940
941         if (!tmp1 || !tmp2) {
942                 ret = 0;
943                 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
944                 goto abort;
945         }
946
947         *tmp1 = *sb1;
948         *tmp2 = *sb2;
949
950         /*
951          * nr_disks is not constant
952          */
953         tmp1->nr_disks = 0;
954         tmp2->nr_disks = 0;
955
956         ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
957 abort:
958         kfree(tmp1);
959         kfree(tmp2);
960         return ret;
961 }
962
963
964 static u32 md_csum_fold(u32 csum)
965 {
966         csum = (csum & 0xffff) + (csum >> 16);
967         return (csum & 0xffff) + (csum >> 16);
968 }
969
970 static unsigned int calc_sb_csum(mdp_super_t * sb)
971 {
972         u64 newcsum = 0;
973         u32 *sb32 = (u32*)sb;
974         int i;
975         unsigned int disk_csum, csum;
976
977         disk_csum = sb->sb_csum;
978         sb->sb_csum = 0;
979
980         for (i = 0; i < MD_SB_BYTES/4 ; i++)
981                 newcsum += sb32[i];
982         csum = (newcsum & 0xffffffff) + (newcsum>>32);
983
984
985 #ifdef CONFIG_ALPHA
986         /* This used to use csum_partial, which was wrong for several
987          * reasons including that different results are returned on
988          * different architectures.  It isn't critical that we get exactly
989          * the same return value as before (we always csum_fold before
990          * testing, and that removes any differences).  However as we
991          * know that csum_partial always returned a 16bit value on
992          * alphas, do a fold to maximise conformity to previous behaviour.
993          */
994         sb->sb_csum = md_csum_fold(disk_csum);
995 #else
996         sb->sb_csum = disk_csum;
997 #endif
998         return csum;
999 }
1000
1001
1002 /*
1003  * Handle superblock details.
1004  * We want to be able to handle multiple superblock formats
1005  * so we have a common interface to them all, and an array of
1006  * different handlers.
1007  * We rely on user-space to write the initial superblock, and support
1008  * reading and updating of superblocks.
1009  * Interface methods are:
1010  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1011  *      loads and validates a superblock on dev.
1012  *      if refdev != NULL, compare superblocks on both devices
1013  *    Return:
1014  *      0 - dev has a superblock that is compatible with refdev
1015  *      1 - dev has a superblock that is compatible and newer than refdev
1016  *          so dev should be used as the refdev in future
1017  *     -EINVAL superblock incompatible or invalid
1018  *     -othererror e.g. -EIO
1019  *
1020  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
1021  *      Verify that dev is acceptable into mddev.
1022  *       The first time, mddev->raid_disks will be 0, and data from
1023  *       dev should be merged in.  Subsequent calls check that dev
1024  *       is new enough.  Return 0 or -EINVAL
1025  *
1026  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
1027  *     Update the superblock for rdev with data in mddev
1028  *     This does not write to disc.
1029  *
1030  */
1031
1032 struct super_type  {
1033         char                *name;
1034         struct module       *owner;
1035         int                 (*load_super)(struct md_rdev *rdev, struct md_rdev *refdev,
1036                                           int minor_version);
1037         int                 (*validate_super)(struct mddev *mddev, struct md_rdev *rdev);
1038         void                (*sync_super)(struct mddev *mddev, struct md_rdev *rdev);
1039         unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
1040                                                 sector_t num_sectors);
1041 };
1042
1043 /*
1044  * Check that the given mddev has no bitmap.
1045  *
1046  * This function is called from the run method of all personalities that do not
1047  * support bitmaps. It prints an error message and returns non-zero if mddev
1048  * has a bitmap. Otherwise, it returns 0.
1049  *
1050  */
1051 int md_check_no_bitmap(struct mddev *mddev)
1052 {
1053         if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1054                 return 0;
1055         printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1056                 mdname(mddev), mddev->pers->name);
1057         return 1;
1058 }
1059 EXPORT_SYMBOL(md_check_no_bitmap);
1060
1061 /*
1062  * load_super for 0.90.0 
1063  */
1064 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1065 {
1066         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1067         mdp_super_t *sb;
1068         int ret;
1069
1070         /*
1071          * Calculate the position of the superblock (512byte sectors),
1072          * it's at the end of the disk.
1073          *
1074          * It also happens to be a multiple of 4Kb.
1075          */
1076         rdev->sb_start = calc_dev_sboffset(rdev);
1077
1078         ret = read_disk_sb(rdev, MD_SB_BYTES);
1079         if (ret) return ret;
1080
1081         ret = -EINVAL;
1082
1083         bdevname(rdev->bdev, b);
1084         sb = page_address(rdev->sb_page);
1085
1086         if (sb->md_magic != MD_SB_MAGIC) {
1087                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1088                        b);
1089                 goto abort;
1090         }
1091
1092         if (sb->major_version != 0 ||
1093             sb->minor_version < 90 ||
1094             sb->minor_version > 91) {
1095                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1096                         sb->major_version, sb->minor_version,
1097                         b);
1098                 goto abort;
1099         }
1100
1101         if (sb->raid_disks <= 0)
1102                 goto abort;
1103
1104         if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1105                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1106                         b);
1107                 goto abort;
1108         }
1109
1110         rdev->preferred_minor = sb->md_minor;
1111         rdev->data_offset = 0;
1112         rdev->sb_size = MD_SB_BYTES;
1113         rdev->badblocks.shift = -1;
1114
1115         if (sb->level == LEVEL_MULTIPATH)
1116                 rdev->desc_nr = -1;
1117         else
1118                 rdev->desc_nr = sb->this_disk.number;
1119
1120         if (!refdev) {
1121                 ret = 1;
1122         } else {
1123                 __u64 ev1, ev2;
1124                 mdp_super_t *refsb = page_address(refdev->sb_page);
1125                 if (!uuid_equal(refsb, sb)) {
1126                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
1127                                 b, bdevname(refdev->bdev,b2));
1128                         goto abort;
1129                 }
1130                 if (!sb_equal(refsb, sb)) {
1131                         printk(KERN_WARNING "md: %s has same UUID"
1132                                " but different superblock to %s\n",
1133                                b, bdevname(refdev->bdev, b2));
1134                         goto abort;
1135                 }
1136                 ev1 = md_event(sb);
1137                 ev2 = md_event(refsb);
1138                 if (ev1 > ev2)
1139                         ret = 1;
1140                 else 
1141                         ret = 0;
1142         }
1143         rdev->sectors = rdev->sb_start;
1144         /* Limit to 4TB as metadata cannot record more than that */
1145         if (rdev->sectors >= (2ULL << 32))
1146                 rdev->sectors = (2ULL << 32) - 2;
1147
1148         if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1149                 /* "this cannot possibly happen" ... */
1150                 ret = -EINVAL;
1151
1152  abort:
1153         return ret;
1154 }
1155
1156 /*
1157  * validate_super for 0.90.0
1158  */
1159 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1160 {
1161         mdp_disk_t *desc;
1162         mdp_super_t *sb = page_address(rdev->sb_page);
1163         __u64 ev1 = md_event(sb);
1164
1165         rdev->raid_disk = -1;
1166         clear_bit(Faulty, &rdev->flags);
1167         clear_bit(In_sync, &rdev->flags);
1168         clear_bit(WriteMostly, &rdev->flags);
1169
1170         if (mddev->raid_disks == 0) {
1171                 mddev->major_version = 0;
1172                 mddev->minor_version = sb->minor_version;
1173                 mddev->patch_version = sb->patch_version;
1174                 mddev->external = 0;
1175                 mddev->chunk_sectors = sb->chunk_size >> 9;
1176                 mddev->ctime = sb->ctime;
1177                 mddev->utime = sb->utime;
1178                 mddev->level = sb->level;
1179                 mddev->clevel[0] = 0;
1180                 mddev->layout = sb->layout;
1181                 mddev->raid_disks = sb->raid_disks;
1182                 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1183                 mddev->events = ev1;
1184                 mddev->bitmap_info.offset = 0;
1185                 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1186
1187                 if (mddev->minor_version >= 91) {
1188                         mddev->reshape_position = sb->reshape_position;
1189                         mddev->delta_disks = sb->delta_disks;
1190                         mddev->new_level = sb->new_level;
1191                         mddev->new_layout = sb->new_layout;
1192                         mddev->new_chunk_sectors = sb->new_chunk >> 9;
1193                 } else {
1194                         mddev->reshape_position = MaxSector;
1195                         mddev->delta_disks = 0;
1196                         mddev->new_level = mddev->level;
1197                         mddev->new_layout = mddev->layout;
1198                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1199                 }
1200
1201                 if (sb->state & (1<<MD_SB_CLEAN))
1202                         mddev->recovery_cp = MaxSector;
1203                 else {
1204                         if (sb->events_hi == sb->cp_events_hi && 
1205                                 sb->events_lo == sb->cp_events_lo) {
1206                                 mddev->recovery_cp = sb->recovery_cp;
1207                         } else
1208                                 mddev->recovery_cp = 0;
1209                 }
1210
1211                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1212                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1213                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1214                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1215
1216                 mddev->max_disks = MD_SB_DISKS;
1217
1218                 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1219                     mddev->bitmap_info.file == NULL)
1220                         mddev->bitmap_info.offset =
1221                                 mddev->bitmap_info.default_offset;
1222
1223         } else if (mddev->pers == NULL) {
1224                 /* Insist on good event counter while assembling, except
1225                  * for spares (which don't need an event count) */
1226                 ++ev1;
1227                 if (sb->disks[rdev->desc_nr].state & (
1228                             (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1229                         if (ev1 < mddev->events) 
1230                                 return -EINVAL;
1231         } else if (mddev->bitmap) {
1232                 /* if adding to array with a bitmap, then we can accept an
1233                  * older device ... but not too old.
1234                  */
1235                 if (ev1 < mddev->bitmap->events_cleared)
1236                         return 0;
1237         } else {
1238                 if (ev1 < mddev->events)
1239                         /* just a hot-add of a new device, leave raid_disk at -1 */
1240                         return 0;
1241         }
1242
1243         if (mddev->level != LEVEL_MULTIPATH) {
1244                 desc = sb->disks + rdev->desc_nr;
1245
1246                 if (desc->state & (1<<MD_DISK_FAULTY))
1247                         set_bit(Faulty, &rdev->flags);
1248                 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1249                             desc->raid_disk < mddev->raid_disks */) {
1250                         set_bit(In_sync, &rdev->flags);
1251                         rdev->raid_disk = desc->raid_disk;
1252                 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1253                         /* active but not in sync implies recovery up to
1254                          * reshape position.  We don't know exactly where
1255                          * that is, so set to zero for now */
1256                         if (mddev->minor_version >= 91) {
1257                                 rdev->recovery_offset = 0;
1258                                 rdev->raid_disk = desc->raid_disk;
1259                         }
1260                 }
1261                 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1262                         set_bit(WriteMostly, &rdev->flags);
1263         } else /* MULTIPATH are always insync */
1264                 set_bit(In_sync, &rdev->flags);
1265         return 0;
1266 }
1267
1268 /*
1269  * sync_super for 0.90.0
1270  */
1271 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1272 {
1273         mdp_super_t *sb;
1274         struct md_rdev *rdev2;
1275         int next_spare = mddev->raid_disks;
1276
1277
1278         /* make rdev->sb match mddev data..
1279          *
1280          * 1/ zero out disks
1281          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1282          * 3/ any empty disks < next_spare become removed
1283          *
1284          * disks[0] gets initialised to REMOVED because
1285          * we cannot be sure from other fields if it has
1286          * been initialised or not.
1287          */
1288         int i;
1289         int active=0, working=0,failed=0,spare=0,nr_disks=0;
1290
1291         rdev->sb_size = MD_SB_BYTES;
1292
1293         sb = page_address(rdev->sb_page);
1294
1295         memset(sb, 0, sizeof(*sb));
1296
1297         sb->md_magic = MD_SB_MAGIC;
1298         sb->major_version = mddev->major_version;
1299         sb->patch_version = mddev->patch_version;
1300         sb->gvalid_words  = 0; /* ignored */
1301         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1302         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1303         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1304         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1305
1306         sb->ctime = mddev->ctime;
1307         sb->level = mddev->level;
1308         sb->size = mddev->dev_sectors / 2;
1309         sb->raid_disks = mddev->raid_disks;
1310         sb->md_minor = mddev->md_minor;
1311         sb->not_persistent = 0;
1312         sb->utime = mddev->utime;
1313         sb->state = 0;
1314         sb->events_hi = (mddev->events>>32);
1315         sb->events_lo = (u32)mddev->events;
1316
1317         if (mddev->reshape_position == MaxSector)
1318                 sb->minor_version = 90;
1319         else {
1320                 sb->minor_version = 91;
1321                 sb->reshape_position = mddev->reshape_position;
1322                 sb->new_level = mddev->new_level;
1323                 sb->delta_disks = mddev->delta_disks;
1324                 sb->new_layout = mddev->new_layout;
1325                 sb->new_chunk = mddev->new_chunk_sectors << 9;
1326         }
1327         mddev->minor_version = sb->minor_version;
1328         if (mddev->in_sync)
1329         {
1330                 sb->recovery_cp = mddev->recovery_cp;
1331                 sb->cp_events_hi = (mddev->events>>32);
1332                 sb->cp_events_lo = (u32)mddev->events;
1333                 if (mddev->recovery_cp == MaxSector)
1334                         sb->state = (1<< MD_SB_CLEAN);
1335         } else
1336                 sb->recovery_cp = 0;
1337
1338         sb->layout = mddev->layout;
1339         sb->chunk_size = mddev->chunk_sectors << 9;
1340
1341         if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1342                 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1343
1344         sb->disks[0].state = (1<<MD_DISK_REMOVED);
1345         rdev_for_each(rdev2, mddev) {
1346                 mdp_disk_t *d;
1347                 int desc_nr;
1348                 int is_active = test_bit(In_sync, &rdev2->flags);
1349
1350                 if (rdev2->raid_disk >= 0 &&
1351                     sb->minor_version >= 91)
1352                         /* we have nowhere to store the recovery_offset,
1353                          * but if it is not below the reshape_position,
1354                          * we can piggy-back on that.
1355                          */
1356                         is_active = 1;
1357                 if (rdev2->raid_disk < 0 ||
1358                     test_bit(Faulty, &rdev2->flags))
1359                         is_active = 0;
1360                 if (is_active)
1361                         desc_nr = rdev2->raid_disk;
1362                 else
1363                         desc_nr = next_spare++;
1364                 rdev2->desc_nr = desc_nr;
1365                 d = &sb->disks[rdev2->desc_nr];
1366                 nr_disks++;
1367                 d->number = rdev2->desc_nr;
1368                 d->major = MAJOR(rdev2->bdev->bd_dev);
1369                 d->minor = MINOR(rdev2->bdev->bd_dev);
1370                 if (is_active)
1371                         d->raid_disk = rdev2->raid_disk;
1372                 else
1373                         d->raid_disk = rdev2->desc_nr; /* compatibility */
1374                 if (test_bit(Faulty, &rdev2->flags))
1375                         d->state = (1<<MD_DISK_FAULTY);
1376                 else if (is_active) {
1377                         d->state = (1<<MD_DISK_ACTIVE);
1378                         if (test_bit(In_sync, &rdev2->flags))
1379                                 d->state |= (1<<MD_DISK_SYNC);
1380                         active++;
1381                         working++;
1382                 } else {
1383                         d->state = 0;
1384                         spare++;
1385                         working++;
1386                 }
1387                 if (test_bit(WriteMostly, &rdev2->flags))
1388                         d->state |= (1<<MD_DISK_WRITEMOSTLY);
1389         }
1390         /* now set the "removed" and "faulty" bits on any missing devices */
1391         for (i=0 ; i < mddev->raid_disks ; i++) {
1392                 mdp_disk_t *d = &sb->disks[i];
1393                 if (d->state == 0 && d->number == 0) {
1394                         d->number = i;
1395                         d->raid_disk = i;
1396                         d->state = (1<<MD_DISK_REMOVED);
1397                         d->state |= (1<<MD_DISK_FAULTY);
1398                         failed++;
1399                 }
1400         }
1401         sb->nr_disks = nr_disks;
1402         sb->active_disks = active;
1403         sb->working_disks = working;
1404         sb->failed_disks = failed;
1405         sb->spare_disks = spare;
1406
1407         sb->this_disk = sb->disks[rdev->desc_nr];
1408         sb->sb_csum = calc_sb_csum(sb);
1409 }
1410
1411 /*
1412  * rdev_size_change for 0.90.0
1413  */
1414 static unsigned long long
1415 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1416 {
1417         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1418                 return 0; /* component must fit device */
1419         if (rdev->mddev->bitmap_info.offset)
1420                 return 0; /* can't move bitmap */
1421         rdev->sb_start = calc_dev_sboffset(rdev);
1422         if (!num_sectors || num_sectors > rdev->sb_start)
1423                 num_sectors = rdev->sb_start;
1424         /* Limit to 4TB as metadata cannot record more than that.
1425          * 4TB == 2^32 KB, or 2*2^32 sectors.
1426          */
1427         if (num_sectors >= (2ULL << 32))
1428                 num_sectors = (2ULL << 32) - 2;
1429         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1430                        rdev->sb_page);
1431         md_super_wait(rdev->mddev);
1432         return num_sectors;
1433 }
1434
1435
1436 /*
1437  * version 1 superblock
1438  */
1439
1440 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1441 {
1442         __le32 disk_csum;
1443         u32 csum;
1444         unsigned long long newcsum;
1445         int size = 256 + le32_to_cpu(sb->max_dev)*2;
1446         __le32 *isuper = (__le32*)sb;
1447         int i;
1448
1449         disk_csum = sb->sb_csum;
1450         sb->sb_csum = 0;
1451         newcsum = 0;
1452         for (i=0; size>=4; size -= 4 )
1453                 newcsum += le32_to_cpu(*isuper++);
1454
1455         if (size == 2)
1456                 newcsum += le16_to_cpu(*(__le16*) isuper);
1457
1458         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1459         sb->sb_csum = disk_csum;
1460         return cpu_to_le32(csum);
1461 }
1462
1463 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1464                             int acknowledged);
1465 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1466 {
1467         struct mdp_superblock_1 *sb;
1468         int ret;
1469         sector_t sb_start;
1470         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1471         int bmask;
1472
1473         /*
1474          * Calculate the position of the superblock in 512byte sectors.
1475          * It is always aligned to a 4K boundary and
1476          * depeding on minor_version, it can be:
1477          * 0: At least 8K, but less than 12K, from end of device
1478          * 1: At start of device
1479          * 2: 4K from start of device.
1480          */
1481         switch(minor_version) {
1482         case 0:
1483                 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1484                 sb_start -= 8*2;
1485                 sb_start &= ~(sector_t)(4*2-1);
1486                 break;
1487         case 1:
1488                 sb_start = 0;
1489                 break;
1490         case 2:
1491                 sb_start = 8;
1492                 break;
1493         default:
1494                 return -EINVAL;
1495         }
1496         rdev->sb_start = sb_start;
1497
1498         /* superblock is rarely larger than 1K, but it can be larger,
1499          * and it is safe to read 4k, so we do that
1500          */
1501         ret = read_disk_sb(rdev, 4096);
1502         if (ret) return ret;
1503
1504
1505         sb = page_address(rdev->sb_page);
1506
1507         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1508             sb->major_version != cpu_to_le32(1) ||
1509             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1510             le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1511             (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1512                 return -EINVAL;
1513
1514         if (calc_sb_1_csum(sb) != sb->sb_csum) {
1515                 printk("md: invalid superblock checksum on %s\n",
1516                         bdevname(rdev->bdev,b));
1517                 return -EINVAL;
1518         }
1519         if (le64_to_cpu(sb->data_size) < 10) {
1520                 printk("md: data_size too small on %s\n",
1521                        bdevname(rdev->bdev,b));
1522                 return -EINVAL;
1523         }
1524
1525         rdev->preferred_minor = 0xffff;
1526         rdev->data_offset = le64_to_cpu(sb->data_offset);
1527         atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1528
1529         rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1530         bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1531         if (rdev->sb_size & bmask)
1532                 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1533
1534         if (minor_version
1535             && rdev->data_offset < sb_start + (rdev->sb_size/512))
1536                 return -EINVAL;
1537
1538         if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1539                 rdev->desc_nr = -1;
1540         else
1541                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1542
1543         if (!rdev->bb_page) {
1544                 rdev->bb_page = alloc_page(GFP_KERNEL);
1545                 if (!rdev->bb_page)
1546                         return -ENOMEM;
1547         }
1548         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1549             rdev->badblocks.count == 0) {
1550                 /* need to load the bad block list.
1551                  * Currently we limit it to one page.
1552                  */
1553                 s32 offset;
1554                 sector_t bb_sector;
1555                 u64 *bbp;
1556                 int i;
1557                 int sectors = le16_to_cpu(sb->bblog_size);
1558                 if (sectors > (PAGE_SIZE / 512))
1559                         return -EINVAL;
1560                 offset = le32_to_cpu(sb->bblog_offset);
1561                 if (offset == 0)
1562                         return -EINVAL;
1563                 bb_sector = (long long)offset;
1564                 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1565                                   rdev->bb_page, READ, true))
1566                         return -EIO;
1567                 bbp = (u64 *)page_address(rdev->bb_page);
1568                 rdev->badblocks.shift = sb->bblog_shift;
1569                 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1570                         u64 bb = le64_to_cpu(*bbp);
1571                         int count = bb & (0x3ff);
1572                         u64 sector = bb >> 10;
1573                         sector <<= sb->bblog_shift;
1574                         count <<= sb->bblog_shift;
1575                         if (bb + 1 == 0)
1576                                 break;
1577                         if (md_set_badblocks(&rdev->badblocks,
1578                                              sector, count, 1) == 0)
1579                                 return -EINVAL;
1580                 }
1581         } else if (sb->bblog_offset == 0)
1582                 rdev->badblocks.shift = -1;
1583
1584         if (!refdev) {
1585                 ret = 1;
1586         } else {
1587                 __u64 ev1, ev2;
1588                 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1589
1590                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1591                     sb->level != refsb->level ||
1592                     sb->layout != refsb->layout ||
1593                     sb->chunksize != refsb->chunksize) {
1594                         printk(KERN_WARNING "md: %s has strangely different"
1595                                 " superblock to %s\n",
1596                                 bdevname(rdev->bdev,b),
1597                                 bdevname(refdev->bdev,b2));
1598                         return -EINVAL;
1599                 }
1600                 ev1 = le64_to_cpu(sb->events);
1601                 ev2 = le64_to_cpu(refsb->events);
1602
1603                 if (ev1 > ev2)
1604                         ret = 1;
1605                 else
1606                         ret = 0;
1607         }
1608         if (minor_version)
1609                 rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
1610                         le64_to_cpu(sb->data_offset);
1611         else
1612                 rdev->sectors = rdev->sb_start;
1613         if (rdev->sectors < le64_to_cpu(sb->data_size))
1614                 return -EINVAL;
1615         rdev->sectors = le64_to_cpu(sb->data_size);
1616         if (le64_to_cpu(sb->size) > rdev->sectors)
1617                 return -EINVAL;
1618         return ret;
1619 }
1620
1621 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1622 {
1623         struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1624         __u64 ev1 = le64_to_cpu(sb->events);
1625
1626         rdev->raid_disk = -1;
1627         clear_bit(Faulty, &rdev->flags);
1628         clear_bit(In_sync, &rdev->flags);
1629         clear_bit(WriteMostly, &rdev->flags);
1630
1631         if (mddev->raid_disks == 0) {
1632                 mddev->major_version = 1;
1633                 mddev->patch_version = 0;
1634                 mddev->external = 0;
1635                 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1636                 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1637                 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1638                 mddev->level = le32_to_cpu(sb->level);
1639                 mddev->clevel[0] = 0;
1640                 mddev->layout = le32_to_cpu(sb->layout);
1641                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1642                 mddev->dev_sectors = le64_to_cpu(sb->size);
1643                 mddev->events = ev1;
1644                 mddev->bitmap_info.offset = 0;
1645                 mddev->bitmap_info.default_offset = 1024 >> 9;
1646                 
1647                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1648                 memcpy(mddev->uuid, sb->set_uuid, 16);
1649
1650                 mddev->max_disks =  (4096-256)/2;
1651
1652                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1653                     mddev->bitmap_info.file == NULL )
1654                         mddev->bitmap_info.offset =
1655                                 (__s32)le32_to_cpu(sb->bitmap_offset);
1656
1657                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1658                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1659                         mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1660                         mddev->new_level = le32_to_cpu(sb->new_level);
1661                         mddev->new_layout = le32_to_cpu(sb->new_layout);
1662                         mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1663                 } else {
1664                         mddev->reshape_position = MaxSector;
1665                         mddev->delta_disks = 0;
1666                         mddev->new_level = mddev->level;
1667                         mddev->new_layout = mddev->layout;
1668                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1669                 }
1670
1671         } else if (mddev->pers == NULL) {
1672                 /* Insist of good event counter while assembling, except for
1673                  * spares (which don't need an event count) */
1674                 ++ev1;
1675                 if (rdev->desc_nr >= 0 &&
1676                     rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1677                     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1678                         if (ev1 < mddev->events)
1679                                 return -EINVAL;
1680         } else if (mddev->bitmap) {
1681                 /* If adding to array with a bitmap, then we can accept an
1682                  * older device, but not too old.
1683                  */
1684                 if (ev1 < mddev->bitmap->events_cleared)
1685                         return 0;
1686         } else {
1687                 if (ev1 < mddev->events)
1688                         /* just a hot-add of a new device, leave raid_disk at -1 */
1689                         return 0;
1690         }
1691         if (mddev->level != LEVEL_MULTIPATH) {
1692                 int role;
1693                 if (rdev->desc_nr < 0 ||
1694                     rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1695                         role = 0xffff;
1696                         rdev->desc_nr = -1;
1697                 } else
1698                         role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1699                 switch(role) {
1700                 case 0xffff: /* spare */
1701                         break;
1702                 case 0xfffe: /* faulty */
1703                         set_bit(Faulty, &rdev->flags);
1704                         break;
1705                 default:
1706                         if ((le32_to_cpu(sb->feature_map) &
1707                              MD_FEATURE_RECOVERY_OFFSET))
1708                                 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1709                         else
1710                                 set_bit(In_sync, &rdev->flags);
1711                         rdev->raid_disk = role;
1712                         break;
1713                 }
1714                 if (sb->devflags & WriteMostly1)
1715                         set_bit(WriteMostly, &rdev->flags);
1716                 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1717                         set_bit(Replacement, &rdev->flags);
1718         } else /* MULTIPATH are always insync */
1719                 set_bit(In_sync, &rdev->flags);
1720
1721         return 0;
1722 }
1723
1724 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1725 {
1726         struct mdp_superblock_1 *sb;
1727         struct md_rdev *rdev2;
1728         int max_dev, i;
1729         /* make rdev->sb match mddev and rdev data. */
1730
1731         sb = page_address(rdev->sb_page);
1732
1733         sb->feature_map = 0;
1734         sb->pad0 = 0;
1735         sb->recovery_offset = cpu_to_le64(0);
1736         memset(sb->pad1, 0, sizeof(sb->pad1));
1737         memset(sb->pad3, 0, sizeof(sb->pad3));
1738
1739         sb->utime = cpu_to_le64((__u64)mddev->utime);
1740         sb->events = cpu_to_le64(mddev->events);
1741         if (mddev->in_sync)
1742                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1743         else
1744                 sb->resync_offset = cpu_to_le64(0);
1745
1746         sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1747
1748         sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1749         sb->size = cpu_to_le64(mddev->dev_sectors);
1750         sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1751         sb->level = cpu_to_le32(mddev->level);
1752         sb->layout = cpu_to_le32(mddev->layout);
1753
1754         if (test_bit(WriteMostly, &rdev->flags))
1755                 sb->devflags |= WriteMostly1;
1756         else
1757                 sb->devflags &= ~WriteMostly1;
1758
1759         if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1760                 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1761                 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1762         }
1763
1764         if (rdev->raid_disk >= 0 &&
1765             !test_bit(In_sync, &rdev->flags)) {
1766                 sb->feature_map |=
1767                         cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1768                 sb->recovery_offset =
1769                         cpu_to_le64(rdev->recovery_offset);
1770         }
1771         if (test_bit(Replacement, &rdev->flags))
1772                 sb->feature_map |=
1773                         cpu_to_le32(MD_FEATURE_REPLACEMENT);
1774
1775         if (mddev->reshape_position != MaxSector) {
1776                 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1777                 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1778                 sb->new_layout = cpu_to_le32(mddev->new_layout);
1779                 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1780                 sb->new_level = cpu_to_le32(mddev->new_level);
1781                 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1782         }
1783
1784         if (rdev->badblocks.count == 0)
1785                 /* Nothing to do for bad blocks*/ ;
1786         else if (sb->bblog_offset == 0)
1787                 /* Cannot record bad blocks on this device */
1788                 md_error(mddev, rdev);
1789         else {
1790                 struct badblocks *bb = &rdev->badblocks;
1791                 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1792                 u64 *p = bb->page;
1793                 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1794                 if (bb->changed) {
1795                         unsigned seq;
1796
1797 retry:
1798                         seq = read_seqbegin(&bb->lock);
1799
1800                         memset(bbp, 0xff, PAGE_SIZE);
1801
1802                         for (i = 0 ; i < bb->count ; i++) {
1803                                 u64 internal_bb = *p++;
1804                                 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1805                                                 | BB_LEN(internal_bb));
1806                                 *bbp++ = cpu_to_le64(store_bb);
1807                         }
1808                         bb->changed = 0;
1809                         if (read_seqretry(&bb->lock, seq))
1810                                 goto retry;
1811
1812                         bb->sector = (rdev->sb_start +
1813                                       (int)le32_to_cpu(sb->bblog_offset));
1814                         bb->size = le16_to_cpu(sb->bblog_size);
1815                 }
1816         }
1817
1818         max_dev = 0;
1819         rdev_for_each(rdev2, mddev)
1820                 if (rdev2->desc_nr+1 > max_dev)
1821                         max_dev = rdev2->desc_nr+1;
1822
1823         if (max_dev > le32_to_cpu(sb->max_dev)) {
1824                 int bmask;
1825                 sb->max_dev = cpu_to_le32(max_dev);
1826                 rdev->sb_size = max_dev * 2 + 256;
1827                 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1828                 if (rdev->sb_size & bmask)
1829                         rdev->sb_size = (rdev->sb_size | bmask) + 1;
1830         } else
1831                 max_dev = le32_to_cpu(sb->max_dev);
1832
1833         for (i=0; i<max_dev;i++)
1834                 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1835         
1836         rdev_for_each(rdev2, mddev) {
1837                 i = rdev2->desc_nr;
1838                 if (test_bit(Faulty, &rdev2->flags))
1839                         sb->dev_roles[i] = cpu_to_le16(0xfffe);
1840                 else if (test_bit(In_sync, &rdev2->flags))
1841                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1842                 else if (rdev2->raid_disk >= 0)
1843                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1844                 else
1845                         sb->dev_roles[i] = cpu_to_le16(0xffff);
1846         }
1847
1848         sb->sb_csum = calc_sb_1_csum(sb);
1849 }
1850
1851 static unsigned long long
1852 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1853 {
1854         struct mdp_superblock_1 *sb;
1855         sector_t max_sectors;
1856         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1857                 return 0; /* component must fit device */
1858         if (rdev->sb_start < rdev->data_offset) {
1859                 /* minor versions 1 and 2; superblock before data */
1860                 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1861                 max_sectors -= rdev->data_offset;
1862                 if (!num_sectors || num_sectors > max_sectors)
1863                         num_sectors = max_sectors;
1864         } else if (rdev->mddev->bitmap_info.offset) {
1865                 /* minor version 0 with bitmap we can't move */
1866                 return 0;
1867         } else {
1868                 /* minor version 0; superblock after data */
1869                 sector_t sb_start;
1870                 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1871                 sb_start &= ~(sector_t)(4*2 - 1);
1872                 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1873                 if (!num_sectors || num_sectors > max_sectors)
1874                         num_sectors = max_sectors;
1875                 rdev->sb_start = sb_start;
1876         }
1877         sb = page_address(rdev->sb_page);
1878         sb->data_size = cpu_to_le64(num_sectors);
1879         sb->super_offset = rdev->sb_start;
1880         sb->sb_csum = calc_sb_1_csum(sb);
1881         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1882                        rdev->sb_page);
1883         md_super_wait(rdev->mddev);
1884         return num_sectors;
1885 }
1886
1887 static struct super_type super_types[] = {
1888         [0] = {
1889                 .name   = "0.90.0",
1890                 .owner  = THIS_MODULE,
1891                 .load_super         = super_90_load,
1892                 .validate_super     = super_90_validate,
1893                 .sync_super         = super_90_sync,
1894                 .rdev_size_change   = super_90_rdev_size_change,
1895         },
1896         [1] = {
1897                 .name   = "md-1",
1898                 .owner  = THIS_MODULE,
1899                 .load_super         = super_1_load,
1900                 .validate_super     = super_1_validate,
1901                 .sync_super         = super_1_sync,
1902                 .rdev_size_change   = super_1_rdev_size_change,
1903         },
1904 };
1905
1906 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1907 {
1908         if (mddev->sync_super) {
1909                 mddev->sync_super(mddev, rdev);
1910                 return;
1911         }
1912
1913         BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1914
1915         super_types[mddev->major_version].sync_super(mddev, rdev);
1916 }
1917
1918 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1919 {
1920         struct md_rdev *rdev, *rdev2;
1921
1922         rcu_read_lock();
1923         rdev_for_each_rcu(rdev, mddev1)
1924                 rdev_for_each_rcu(rdev2, mddev2)
1925                         if (rdev->bdev->bd_contains ==
1926                             rdev2->bdev->bd_contains) {
1927                                 rcu_read_unlock();
1928                                 return 1;
1929                         }
1930         rcu_read_unlock();
1931         return 0;
1932 }
1933
1934 static LIST_HEAD(pending_raid_disks);
1935
1936 /*
1937  * Try to register data integrity profile for an mddev
1938  *
1939  * This is called when an array is started and after a disk has been kicked
1940  * from the array. It only succeeds if all working and active component devices
1941  * are integrity capable with matching profiles.
1942  */
1943 int md_integrity_register(struct mddev *mddev)
1944 {
1945         struct md_rdev *rdev, *reference = NULL;
1946
1947         if (list_empty(&mddev->disks))
1948                 return 0; /* nothing to do */
1949         if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1950                 return 0; /* shouldn't register, or already is */
1951         rdev_for_each(rdev, mddev) {
1952                 /* skip spares and non-functional disks */
1953                 if (test_bit(Faulty, &rdev->flags))
1954                         continue;
1955                 if (rdev->raid_disk < 0)
1956                         continue;
1957                 if (!reference) {
1958                         /* Use the first rdev as the reference */
1959                         reference = rdev;
1960                         continue;
1961                 }
1962                 /* does this rdev's profile match the reference profile? */
1963                 if (blk_integrity_compare(reference->bdev->bd_disk,
1964                                 rdev->bdev->bd_disk) < 0)
1965                         return -EINVAL;
1966         }
1967         if (!reference || !bdev_get_integrity(reference->bdev))
1968                 return 0;
1969         /*
1970          * All component devices are integrity capable and have matching
1971          * profiles, register the common profile for the md device.
1972          */
1973         if (blk_integrity_register(mddev->gendisk,
1974                         bdev_get_integrity(reference->bdev)) != 0) {
1975                 printk(KERN_ERR "md: failed to register integrity for %s\n",
1976                         mdname(mddev));
1977                 return -EINVAL;
1978         }
1979         printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1980         if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1981                 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1982                        mdname(mddev));
1983                 return -EINVAL;
1984         }
1985         return 0;
1986 }
1987 EXPORT_SYMBOL(md_integrity_register);
1988
1989 /* Disable data integrity if non-capable/non-matching disk is being added */
1990 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1991 {
1992         struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1993         struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1994
1995         if (!bi_mddev) /* nothing to do */
1996                 return;
1997         if (rdev->raid_disk < 0) /* skip spares */
1998                 return;
1999         if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2000                                              rdev->bdev->bd_disk) >= 0)
2001                 return;
2002         printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2003         blk_integrity_unregister(mddev->gendisk);
2004 }
2005 EXPORT_SYMBOL(md_integrity_add_rdev);
2006
2007 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2008 {
2009         char b[BDEVNAME_SIZE];
2010         struct kobject *ko;
2011         char *s;
2012         int err;
2013
2014         if (rdev->mddev) {
2015                 MD_BUG();
2016                 return -EINVAL;
2017         }
2018
2019         /* prevent duplicates */
2020         if (find_rdev(mddev, rdev->bdev->bd_dev))
2021                 return -EEXIST;
2022
2023         /* make sure rdev->sectors exceeds mddev->dev_sectors */
2024         if (rdev->sectors && (mddev->dev_sectors == 0 ||
2025                         rdev->sectors < mddev->dev_sectors)) {
2026                 if (mddev->pers) {
2027                         /* Cannot change size, so fail
2028                          * If mddev->level <= 0, then we don't care
2029                          * about aligning sizes (e.g. linear)
2030                          */
2031                         if (mddev->level > 0)
2032                                 return -ENOSPC;
2033                 } else
2034                         mddev->dev_sectors = rdev->sectors;
2035         }
2036
2037         /* Verify rdev->desc_nr is unique.
2038          * If it is -1, assign a free number, else
2039          * check number is not in use
2040          */
2041         if (rdev->desc_nr < 0) {
2042                 int choice = 0;
2043                 if (mddev->pers) choice = mddev->raid_disks;
2044                 while (find_rdev_nr(mddev, choice))
2045                         choice++;
2046                 rdev->desc_nr = choice;
2047         } else {
2048                 if (find_rdev_nr(mddev, rdev->desc_nr))
2049                         return -EBUSY;
2050         }
2051         if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2052                 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2053                        mdname(mddev), mddev->max_disks);
2054                 return -EBUSY;
2055         }
2056         bdevname(rdev->bdev,b);
2057         while ( (s=strchr(b, '/')) != NULL)
2058                 *s = '!';
2059
2060         rdev->mddev = mddev;
2061         printk(KERN_INFO "md: bind<%s>\n", b);
2062
2063         if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2064                 goto fail;
2065
2066         ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2067         if (sysfs_create_link(&rdev->kobj, ko, "block"))
2068                 /* failure here is OK */;
2069         rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2070
2071         list_add_rcu(&rdev->same_set, &mddev->disks);
2072         bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2073
2074         /* May as well allow recovery to be retried once */
2075         mddev->recovery_disabled++;
2076
2077         return 0;
2078
2079  fail:
2080         printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2081                b, mdname(mddev));
2082         return err;
2083 }
2084
2085 static void md_delayed_delete(struct work_struct *ws)
2086 {
2087         struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2088         kobject_del(&rdev->kobj);
2089         kobject_put(&rdev->kobj);
2090 }
2091
2092 static void unbind_rdev_from_array(struct md_rdev * rdev)
2093 {
2094         char b[BDEVNAME_SIZE];
2095         if (!rdev->mddev) {
2096                 MD_BUG();
2097                 return;
2098         }
2099         bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2100         list_del_rcu(&rdev->same_set);
2101         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2102         rdev->mddev = NULL;
2103         sysfs_remove_link(&rdev->kobj, "block");
2104         sysfs_put(rdev->sysfs_state);
2105         rdev->sysfs_state = NULL;
2106         kfree(rdev->badblocks.page);
2107         rdev->badblocks.count = 0;
2108         rdev->badblocks.page = NULL;
2109         /* We need to delay this, otherwise we can deadlock when
2110          * writing to 'remove' to "dev/state".  We also need
2111          * to delay it due to rcu usage.
2112          */
2113         synchronize_rcu();
2114         INIT_WORK(&rdev->del_work, md_delayed_delete);
2115         kobject_get(&rdev->kobj);
2116         queue_work(md_misc_wq, &rdev->del_work);
2117 }
2118
2119 /*
2120  * prevent the device from being mounted, repartitioned or
2121  * otherwise reused by a RAID array (or any other kernel
2122  * subsystem), by bd_claiming the device.
2123  */
2124 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2125 {
2126         int err = 0;
2127         struct block_device *bdev;
2128         char b[BDEVNAME_SIZE];
2129
2130         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2131                                  shared ? (struct md_rdev *)lock_rdev : rdev);
2132         if (IS_ERR(bdev)) {
2133                 printk(KERN_ERR "md: could not open %s.\n",
2134                         __bdevname(dev, b));
2135                 return PTR_ERR(bdev);
2136         }
2137         rdev->bdev = bdev;
2138         return err;
2139 }
2140
2141 static void unlock_rdev(struct md_rdev *rdev)
2142 {
2143         struct block_device *bdev = rdev->bdev;
2144         rdev->bdev = NULL;
2145         if (!bdev)
2146                 MD_BUG();
2147         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2148 }
2149
2150 void md_autodetect_dev(dev_t dev);
2151
2152 static void export_rdev(struct md_rdev * rdev)
2153 {
2154         char b[BDEVNAME_SIZE];
2155         printk(KERN_INFO "md: export_rdev(%s)\n",
2156                 bdevname(rdev->bdev,b));
2157         if (rdev->mddev)
2158                 MD_BUG();
2159         free_disk_sb(rdev);
2160 #ifndef MODULE
2161         if (test_bit(AutoDetected, &rdev->flags))
2162                 md_autodetect_dev(rdev->bdev->bd_dev);
2163 #endif
2164         unlock_rdev(rdev);
2165         kobject_put(&rdev->kobj);
2166 }
2167
2168 static void kick_rdev_from_array(struct md_rdev * rdev)
2169 {
2170         unbind_rdev_from_array(rdev);
2171         export_rdev(rdev);
2172 }
2173
2174 static void export_array(struct mddev *mddev)
2175 {
2176         struct md_rdev *rdev, *tmp;
2177
2178         rdev_for_each_safe(rdev, tmp, mddev) {
2179                 if (!rdev->mddev) {
2180                         MD_BUG();
2181                         continue;
2182                 }
2183                 kick_rdev_from_array(rdev);
2184         }
2185         if (!list_empty(&mddev->disks))
2186                 MD_BUG();
2187         mddev->raid_disks = 0;
2188         mddev->major_version = 0;
2189 }
2190
2191 static void print_desc(mdp_disk_t *desc)
2192 {
2193         printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2194                 desc->major,desc->minor,desc->raid_disk,desc->state);
2195 }
2196
2197 static void print_sb_90(mdp_super_t *sb)
2198 {
2199         int i;
2200
2201         printk(KERN_INFO 
2202                 "md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2203                 sb->major_version, sb->minor_version, sb->patch_version,
2204                 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2205                 sb->ctime);
2206         printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2207                 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2208                 sb->md_minor, sb->layout, sb->chunk_size);
2209         printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2210                 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2211                 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2212                 sb->failed_disks, sb->spare_disks,
2213                 sb->sb_csum, (unsigned long)sb->events_lo);
2214
2215         printk(KERN_INFO);
2216         for (i = 0; i < MD_SB_DISKS; i++) {
2217                 mdp_disk_t *desc;
2218
2219                 desc = sb->disks + i;
2220                 if (desc->number || desc->major || desc->minor ||
2221                     desc->raid_disk || (desc->state && (desc->state != 4))) {
2222                         printk("     D %2d: ", i);
2223                         print_desc(desc);
2224                 }
2225         }
2226         printk(KERN_INFO "md:     THIS: ");
2227         print_desc(&sb->this_disk);
2228 }
2229
2230 static void print_sb_1(struct mdp_superblock_1 *sb)
2231 {
2232         __u8 *uuid;
2233
2234         uuid = sb->set_uuid;
2235         printk(KERN_INFO
2236                "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2237                "md:    Name: \"%s\" CT:%llu\n",
2238                 le32_to_cpu(sb->major_version),
2239                 le32_to_cpu(sb->feature_map),
2240                 uuid,
2241                 sb->set_name,
2242                 (unsigned long long)le64_to_cpu(sb->ctime)
2243                        & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2244
2245         uuid = sb->device_uuid;
2246         printk(KERN_INFO
2247                "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2248                         " RO:%llu\n"
2249                "md:     Dev:%08x UUID: %pU\n"
2250                "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2251                "md:         (MaxDev:%u) \n",
2252                 le32_to_cpu(sb->level),
2253                 (unsigned long long)le64_to_cpu(sb->size),
2254                 le32_to_cpu(sb->raid_disks),
2255                 le32_to_cpu(sb->layout),
2256                 le32_to_cpu(sb->chunksize),
2257                 (unsigned long long)le64_to_cpu(sb->data_offset),
2258                 (unsigned long long)le64_to_cpu(sb->data_size),
2259                 (unsigned long long)le64_to_cpu(sb->super_offset),
2260                 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2261                 le32_to_cpu(sb->dev_number),
2262                 uuid,
2263                 sb->devflags,
2264                 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2265                 (unsigned long long)le64_to_cpu(sb->events),
2266                 (unsigned long long)le64_to_cpu(sb->resync_offset),
2267                 le32_to_cpu(sb->sb_csum),
2268                 le32_to_cpu(sb->max_dev)
2269                 );
2270 }
2271
2272 static void print_rdev(struct md_rdev *rdev, int major_version)
2273 {
2274         char b[BDEVNAME_SIZE];
2275         printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2276                 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2277                 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2278                 rdev->desc_nr);
2279         if (rdev->sb_loaded) {
2280                 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2281                 switch (major_version) {
2282                 case 0:
2283                         print_sb_90(page_address(rdev->sb_page));
2284                         break;
2285                 case 1:
2286                         print_sb_1(page_address(rdev->sb_page));
2287                         break;
2288                 }
2289         } else
2290                 printk(KERN_INFO "md: no rdev superblock!\n");
2291 }
2292
2293 static void md_print_devices(void)
2294 {
2295         struct list_head *tmp;
2296         struct md_rdev *rdev;
2297         struct mddev *mddev;
2298         char b[BDEVNAME_SIZE];
2299
2300         printk("\n");
2301         printk("md:     **********************************\n");
2302         printk("md:     * <COMPLETE RAID STATE PRINTOUT> *\n");
2303         printk("md:     **********************************\n");
2304         for_each_mddev(mddev, tmp) {
2305
2306                 if (mddev->bitmap)
2307                         bitmap_print_sb(mddev->bitmap);
2308                 else
2309                         printk("%s: ", mdname(mddev));
2310                 rdev_for_each(rdev, mddev)
2311                         printk("<%s>", bdevname(rdev->bdev,b));
2312                 printk("\n");
2313
2314                 rdev_for_each(rdev, mddev)
2315                         print_rdev(rdev, mddev->major_version);
2316         }
2317         printk("md:     **********************************\n");
2318         printk("\n");
2319 }
2320
2321
2322 static void sync_sbs(struct mddev * mddev, int nospares)
2323 {
2324         /* Update each superblock (in-memory image), but
2325          * if we are allowed to, skip spares which already
2326          * have the right event counter, or have one earlier
2327          * (which would mean they aren't being marked as dirty
2328          * with the rest of the array)
2329          */
2330         struct md_rdev *rdev;
2331         rdev_for_each(rdev, mddev) {
2332                 if (rdev->sb_events == mddev->events ||
2333                     (nospares &&
2334                      rdev->raid_disk < 0 &&
2335                      rdev->sb_events+1 == mddev->events)) {
2336                         /* Don't update this superblock */
2337                         rdev->sb_loaded = 2;
2338                 } else {
2339                         sync_super(mddev, rdev);
2340                         rdev->sb_loaded = 1;
2341                 }
2342         }
2343 }
2344
2345 static void md_update_sb(struct mddev * mddev, int force_change)
2346 {
2347         struct md_rdev *rdev;
2348         int sync_req;
2349         int nospares = 0;
2350         int any_badblocks_changed = 0;
2351
2352 repeat:
2353         /* First make sure individual recovery_offsets are correct */
2354         rdev_for_each(rdev, mddev) {
2355                 if (rdev->raid_disk >= 0 &&
2356                     mddev->delta_disks >= 0 &&
2357                     !test_bit(In_sync, &rdev->flags) &&
2358                     mddev->curr_resync_completed > rdev->recovery_offset)
2359                                 rdev->recovery_offset = mddev->curr_resync_completed;
2360
2361         }       
2362         if (!mddev->persistent) {
2363                 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2364                 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2365                 if (!mddev->external) {
2366                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2367                         rdev_for_each(rdev, mddev) {
2368                                 if (rdev->badblocks.changed) {
2369                                         rdev->badblocks.changed = 0;
2370                                         md_ack_all_badblocks(&rdev->badblocks);
2371                                         md_error(mddev, rdev);
2372                                 }
2373                                 clear_bit(Blocked, &rdev->flags);
2374                                 clear_bit(BlockedBadBlocks, &rdev->flags);
2375                                 wake_up(&rdev->blocked_wait);
2376                         }
2377                 }
2378                 wake_up(&mddev->sb_wait);
2379                 return;
2380         }
2381
2382         spin_lock_irq(&mddev->write_lock);
2383
2384         mddev->utime = get_seconds();
2385
2386         if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2387                 force_change = 1;
2388         if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2389                 /* just a clean<-> dirty transition, possibly leave spares alone,
2390                  * though if events isn't the right even/odd, we will have to do
2391                  * spares after all
2392                  */
2393                 nospares = 1;
2394         if (force_change)
2395                 nospares = 0;
2396         if (mddev->degraded)
2397                 /* If the array is degraded, then skipping spares is both
2398                  * dangerous and fairly pointless.
2399                  * Dangerous because a device that was removed from the array
2400                  * might have a event_count that still looks up-to-date,
2401                  * so it can be re-added without a resync.
2402                  * Pointless because if there are any spares to skip,
2403                  * then a recovery will happen and soon that array won't
2404                  * be degraded any more and the spare can go back to sleep then.
2405                  */
2406                 nospares = 0;
2407
2408         sync_req = mddev->in_sync;
2409
2410         /* If this is just a dirty<->clean transition, and the array is clean
2411          * and 'events' is odd, we can roll back to the previous clean state */
2412         if (nospares
2413             && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2414             && mddev->can_decrease_events
2415             && mddev->events != 1) {
2416                 mddev->events--;
2417                 mddev->can_decrease_events = 0;
2418         } else {
2419                 /* otherwise we have to go forward and ... */
2420                 mddev->events ++;
2421                 mddev->can_decrease_events = nospares;
2422         }
2423
2424         if (!mddev->events) {
2425                 /*
2426                  * oops, this 64-bit counter should never wrap.
2427                  * Either we are in around ~1 trillion A.C., assuming
2428                  * 1 reboot per second, or we have a bug:
2429                  */
2430                 MD_BUG();
2431                 mddev->events --;
2432         }
2433
2434         rdev_for_each(rdev, mddev) {
2435                 if (rdev->badblocks.changed)
2436                         any_badblocks_changed++;
2437                 if (test_bit(Faulty, &rdev->flags))
2438                         set_bit(FaultRecorded, &rdev->flags);
2439         }
2440
2441         sync_sbs(mddev, nospares);
2442         spin_unlock_irq(&mddev->write_lock);
2443
2444         pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2445                  mdname(mddev), mddev->in_sync);
2446
2447         bitmap_update_sb(mddev->bitmap);
2448         rdev_for_each(rdev, mddev) {
2449                 char b[BDEVNAME_SIZE];
2450
2451                 if (rdev->sb_loaded != 1)
2452                         continue; /* no noise on spare devices */
2453
2454                 if (!test_bit(Faulty, &rdev->flags) &&
2455                     rdev->saved_raid_disk == -1) {
2456                         md_super_write(mddev,rdev,
2457                                        rdev->sb_start, rdev->sb_size,
2458                                        rdev->sb_page);
2459                         pr_debug("md: (write) %s's sb offset: %llu\n",
2460                                  bdevname(rdev->bdev, b),
2461                                  (unsigned long long)rdev->sb_start);
2462                         rdev->sb_events = mddev->events;
2463                         if (rdev->badblocks.size) {
2464                                 md_super_write(mddev, rdev,
2465                                                rdev->badblocks.sector,
2466                                                rdev->badblocks.size << 9,
2467                                                rdev->bb_page);
2468                                 rdev->badblocks.size = 0;
2469                         }
2470
2471                 } else if (test_bit(Faulty, &rdev->flags))
2472                         pr_debug("md: %s (skipping faulty)\n",
2473                                  bdevname(rdev->bdev, b));
2474                 else
2475                         pr_debug("(skipping incremental s/r ");
2476
2477                 if (mddev->level == LEVEL_MULTIPATH)
2478                         /* only need to write one superblock... */
2479                         break;
2480         }
2481         md_super_wait(mddev);
2482         /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2483
2484         spin_lock_irq(&mddev->write_lock);
2485         if (mddev->in_sync != sync_req ||
2486             test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2487                 /* have to write it out again */
2488                 spin_unlock_irq(&mddev->write_lock);
2489                 goto repeat;
2490         }
2491         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2492         spin_unlock_irq(&mddev->write_lock);
2493         wake_up(&mddev->sb_wait);
2494         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2495                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2496
2497         rdev_for_each(rdev, mddev) {
2498                 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2499                         clear_bit(Blocked, &rdev->flags);
2500
2501                 if (any_badblocks_changed)
2502                         md_ack_all_badblocks(&rdev->badblocks);
2503                 clear_bit(BlockedBadBlocks, &rdev->flags);
2504                 wake_up(&rdev->blocked_wait);
2505         }
2506 }
2507
2508 /* words written to sysfs files may, or may not, be \n terminated.
2509  * We want to accept with case. For this we use cmd_match.
2510  */
2511 static int cmd_match(const char *cmd, const char *str)
2512 {
2513         /* See if cmd, written into a sysfs file, matches
2514          * str.  They must either be the same, or cmd can
2515          * have a trailing newline
2516          */
2517         while (*cmd && *str && *cmd == *str) {
2518                 cmd++;
2519                 str++;
2520         }
2521         if (*cmd == '\n')
2522                 cmd++;
2523         if (*str || *cmd)
2524                 return 0;
2525         return 1;
2526 }
2527
2528 struct rdev_sysfs_entry {
2529         struct attribute attr;
2530         ssize_t (*show)(struct md_rdev *, char *);
2531         ssize_t (*store)(struct md_rdev *, const char *, size_t);
2532 };
2533
2534 static ssize_t
2535 state_show(struct md_rdev *rdev, char *page)
2536 {
2537         char *sep = "";
2538         size_t len = 0;
2539
2540         if (test_bit(Faulty, &rdev->flags) ||
2541             rdev->badblocks.unacked_exist) {
2542                 len+= sprintf(page+len, "%sfaulty",sep);
2543                 sep = ",";
2544         }
2545         if (test_bit(In_sync, &rdev->flags)) {
2546                 len += sprintf(page+len, "%sin_sync",sep);
2547                 sep = ",";
2548         }
2549         if (test_bit(WriteMostly, &rdev->flags)) {
2550                 len += sprintf(page+len, "%swrite_mostly",sep);
2551                 sep = ",";
2552         }
2553         if (test_bit(Blocked, &rdev->flags) ||
2554             (rdev->badblocks.unacked_exist
2555              && !test_bit(Faulty, &rdev->flags))) {
2556                 len += sprintf(page+len, "%sblocked", sep);
2557                 sep = ",";
2558         }
2559         if (!test_bit(Faulty, &rdev->flags) &&
2560             !test_bit(In_sync, &rdev->flags)) {
2561                 len += sprintf(page+len, "%sspare", sep);
2562                 sep = ",";
2563         }
2564         if (test_bit(WriteErrorSeen, &rdev->flags)) {
2565                 len += sprintf(page+len, "%swrite_error", sep);
2566                 sep = ",";
2567         }
2568         if (test_bit(WantReplacement, &rdev->flags)) {
2569                 len += sprintf(page+len, "%swant_replacement", sep);
2570                 sep = ",";
2571         }
2572         if (test_bit(Replacement, &rdev->flags)) {
2573                 len += sprintf(page+len, "%sreplacement", sep);
2574                 sep = ",";
2575         }
2576
2577         return len+sprintf(page+len, "\n");
2578 }
2579
2580 static ssize_t
2581 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2582 {
2583         /* can write
2584          *  faulty  - simulates an error
2585          *  remove  - disconnects the device
2586          *  writemostly - sets write_mostly
2587          *  -writemostly - clears write_mostly
2588          *  blocked - sets the Blocked flags
2589          *  -blocked - clears the Blocked and possibly simulates an error
2590          *  insync - sets Insync providing device isn't active
2591          *  write_error - sets WriteErrorSeen
2592          *  -write_error - clears WriteErrorSeen
2593          */
2594         int err = -EINVAL;
2595         if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2596                 md_error(rdev->mddev, rdev);
2597                 if (test_bit(Faulty, &rdev->flags))
2598                         err = 0;
2599                 else
2600                         err = -EBUSY;
2601         } else if (cmd_match(buf, "remove")) {
2602                 if (rdev->raid_disk >= 0)
2603                         err = -EBUSY;
2604                 else {
2605                         struct mddev *mddev = rdev->mddev;
2606                         kick_rdev_from_array(rdev);
2607                         if (mddev->pers)
2608                                 md_update_sb(mddev, 1);
2609                         md_new_event(mddev);
2610                         err = 0;
2611                 }
2612         } else if (cmd_match(buf, "writemostly")) {
2613                 set_bit(WriteMostly, &rdev->flags);
2614                 err = 0;
2615         } else if (cmd_match(buf, "-writemostly")) {
2616                 clear_bit(WriteMostly, &rdev->flags);
2617                 err = 0;
2618         } else if (cmd_match(buf, "blocked")) {
2619                 set_bit(Blocked, &rdev->flags);
2620                 err = 0;
2621         } else if (cmd_match(buf, "-blocked")) {
2622                 if (!test_bit(Faulty, &rdev->flags) &&
2623                     rdev->badblocks.unacked_exist) {
2624                         /* metadata handler doesn't understand badblocks,
2625                          * so we need to fail the device
2626                          */
2627                         md_error(rdev->mddev, rdev);
2628                 }
2629                 clear_bit(Blocked, &rdev->flags);
2630                 clear_bit(BlockedBadBlocks, &rdev->flags);
2631                 wake_up(&rdev->blocked_wait);
2632                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2633                 md_wakeup_thread(rdev->mddev->thread);
2634
2635                 err = 0;
2636         } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2637                 set_bit(In_sync, &rdev->flags);
2638                 err = 0;
2639         } else if (cmd_match(buf, "write_error")) {
2640                 set_bit(WriteErrorSeen, &rdev->flags);
2641                 err = 0;
2642         } else if (cmd_match(buf, "-write_error")) {
2643                 clear_bit(WriteErrorSeen, &rdev->flags);
2644                 err = 0;
2645         } else if (cmd_match(buf, "want_replacement")) {
2646                 /* Any non-spare device that is not a replacement can
2647                  * become want_replacement at any time, but we then need to
2648                  * check if recovery is needed.
2649                  */
2650                 if (rdev->raid_disk >= 0 &&
2651                     !test_bit(Replacement, &rdev->flags))
2652                         set_bit(WantReplacement, &rdev->flags);
2653                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2654                 md_wakeup_thread(rdev->mddev->thread);
2655                 err = 0;
2656         } else if (cmd_match(buf, "-want_replacement")) {
2657                 /* Clearing 'want_replacement' is always allowed.
2658                  * Once replacements starts it is too late though.
2659                  */
2660                 err = 0;
2661                 clear_bit(WantReplacement, &rdev->flags);
2662         } else if (cmd_match(buf, "replacement")) {
2663                 /* Can only set a device as a replacement when array has not
2664                  * yet been started.  Once running, replacement is automatic
2665                  * from spares, or by assigning 'slot'.
2666                  */
2667                 if (rdev->mddev->pers)
2668                         err = -EBUSY;
2669                 else {
2670                         set_bit(Replacement, &rdev->flags);
2671                         err = 0;
2672                 }
2673         } else if (cmd_match(buf, "-replacement")) {
2674                 /* Similarly, can only clear Replacement before start */
2675                 if (rdev->mddev->pers)
2676                         err = -EBUSY;
2677                 else {
2678                         clear_bit(Replacement, &rdev->flags);
2679                         err = 0;
2680                 }
2681         }
2682         if (!err)
2683                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2684         return err ? err : len;
2685 }
2686 static struct rdev_sysfs_entry rdev_state =
2687 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2688
2689 static ssize_t
2690 errors_show(struct md_rdev *rdev, char *page)
2691 {
2692         return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2693 }
2694
2695 static ssize_t
2696 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2697 {
2698         char *e;
2699         unsigned long n = simple_strtoul(buf, &e, 10);
2700         if (*buf && (*e == 0 || *e == '\n')) {
2701                 atomic_set(&rdev->corrected_errors, n);
2702                 return len;
2703         }
2704         return -EINVAL;
2705 }
2706 static struct rdev_sysfs_entry rdev_errors =
2707 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2708
2709 static ssize_t
2710 slot_show(struct md_rdev *rdev, char *page)
2711 {
2712         if (rdev->raid_disk < 0)
2713                 return sprintf(page, "none\n");
2714         else
2715                 return sprintf(page, "%d\n", rdev->raid_disk);
2716 }
2717
2718 static ssize_t
2719 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2720 {
2721         char *e;
2722         int err;
2723         int slot = simple_strtoul(buf, &e, 10);
2724         if (strncmp(buf, "none", 4)==0)
2725                 slot = -1;
2726         else if (e==buf || (*e && *e!= '\n'))
2727                 return -EINVAL;
2728         if (rdev->mddev->pers && slot == -1) {
2729                 /* Setting 'slot' on an active array requires also
2730                  * updating the 'rd%d' link, and communicating
2731                  * with the personality with ->hot_*_disk.
2732                  * For now we only support removing
2733                  * failed/spare devices.  This normally happens automatically,
2734                  * but not when the metadata is externally managed.
2735                  */
2736                 if (rdev->raid_disk == -1)
2737                         return -EEXIST;
2738                 /* personality does all needed checks */
2739                 if (rdev->mddev->pers->hot_remove_disk == NULL)
2740                         return -EINVAL;
2741                 err = rdev->mddev->pers->
2742                         hot_remove_disk(rdev->mddev, rdev);
2743                 if (err)
2744                         return err;
2745                 sysfs_unlink_rdev(rdev->mddev, rdev);
2746                 rdev->raid_disk = -1;
2747                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2748                 md_wakeup_thread(rdev->mddev->thread);
2749         } else if (rdev->mddev->pers) {
2750                 /* Activating a spare .. or possibly reactivating
2751                  * if we ever get bitmaps working here.
2752                  */
2753
2754                 if (rdev->raid_disk != -1)
2755                         return -EBUSY;
2756
2757                 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2758                         return -EBUSY;
2759
2760                 if (rdev->mddev->pers->hot_add_disk == NULL)
2761                         return -EINVAL;
2762
2763                 if (slot >= rdev->mddev->raid_disks &&
2764                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2765                         return -ENOSPC;
2766
2767                 rdev->raid_disk = slot;
2768                 if (test_bit(In_sync, &rdev->flags))
2769                         rdev->saved_raid_disk = slot;
2770                 else
2771                         rdev->saved_raid_disk = -1;
2772                 clear_bit(In_sync, &rdev->flags);
2773                 err = rdev->mddev->pers->
2774                         hot_add_disk(rdev->mddev, rdev);
2775                 if (err) {
2776                         rdev->raid_disk = -1;
2777                         return err;
2778                 } else
2779                         sysfs_notify_dirent_safe(rdev->sysfs_state);
2780                 if (sysfs_link_rdev(rdev->mddev, rdev))
2781                         /* failure here is OK */;
2782                 /* don't wakeup anyone, leave that to userspace. */
2783         } else {
2784                 if (slot >= rdev->mddev->raid_disks &&
2785                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2786                         return -ENOSPC;
2787                 rdev->raid_disk = slot;
2788                 /* assume it is working */
2789                 clear_bit(Faulty, &rdev->flags);
2790                 clear_bit(WriteMostly, &rdev->flags);
2791                 set_bit(In_sync, &rdev->flags);
2792                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2793         }
2794         return len;
2795 }
2796
2797
2798 static struct rdev_sysfs_entry rdev_slot =
2799 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2800
2801 static ssize_t
2802 offset_show(struct md_rdev *rdev, char *page)
2803 {
2804         return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2805 }
2806
2807 static ssize_t
2808 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2809 {
2810         char *e;
2811         unsigned long long offset = simple_strtoull(buf, &e, 10);
2812         if (e==buf || (*e && *e != '\n'))
2813                 return -EINVAL;
2814         if (rdev->mddev->pers && rdev->raid_disk >= 0)
2815                 return -EBUSY;
2816         if (rdev->sectors && rdev->mddev->external)
2817                 /* Must set offset before size, so overlap checks
2818                  * can be sane */
2819                 return -EBUSY;
2820         rdev->data_offset = offset;
2821         return len;
2822 }
2823
2824 static struct rdev_sysfs_entry rdev_offset =
2825 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2826
2827 static ssize_t
2828 rdev_size_show(struct md_rdev *rdev, char *page)
2829 {
2830         return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2831 }
2832
2833 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2834 {
2835         /* check if two start/length pairs overlap */
2836         if (s1+l1 <= s2)
2837                 return 0;
2838         if (s2+l2 <= s1)
2839                 return 0;
2840         return 1;
2841 }
2842
2843 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2844 {
2845         unsigned long long blocks;
2846         sector_t new;
2847
2848         if (strict_strtoull(buf, 10, &blocks) < 0)
2849                 return -EINVAL;
2850
2851         if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2852                 return -EINVAL; /* sector conversion overflow */
2853
2854         new = blocks * 2;
2855         if (new != blocks * 2)
2856                 return -EINVAL; /* unsigned long long to sector_t overflow */
2857
2858         *sectors = new;
2859         return 0;
2860 }
2861
2862 static ssize_t
2863 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2864 {
2865         struct mddev *my_mddev = rdev->mddev;
2866         sector_t oldsectors = rdev->sectors;
2867         sector_t sectors;
2868
2869         if (strict_blocks_to_sectors(buf, &sectors) < 0)
2870                 return -EINVAL;
2871         if (my_mddev->pers && rdev->raid_disk >= 0) {
2872                 if (my_mddev->persistent) {
2873                         sectors = super_types[my_mddev->major_version].
2874                                 rdev_size_change(rdev, sectors);
2875                         if (!sectors)
2876                                 return -EBUSY;
2877                 } else if (!sectors)
2878                         sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2879                                 rdev->data_offset;
2880         }
2881         if (sectors < my_mddev->dev_sectors)
2882                 return -EINVAL; /* component must fit device */
2883
2884         rdev->sectors = sectors;
2885         if (sectors > oldsectors && my_mddev->external) {
2886                 /* need to check that all other rdevs with the same ->bdev
2887                  * do not overlap.  We need to unlock the mddev to avoid
2888                  * a deadlock.  We have already changed rdev->sectors, and if
2889                  * we have to change it back, we will have the lock again.
2890                  */
2891                 struct mddev *mddev;
2892                 int overlap = 0;
2893                 struct list_head *tmp;
2894
2895                 mddev_unlock(my_mddev);
2896                 for_each_mddev(mddev, tmp) {
2897                         struct md_rdev *rdev2;
2898
2899                         mddev_lock(mddev);
2900                         rdev_for_each(rdev2, mddev)
2901                                 if (rdev->bdev == rdev2->bdev &&
2902                                     rdev != rdev2 &&
2903                                     overlaps(rdev->data_offset, rdev->sectors,
2904                                              rdev2->data_offset,
2905                                              rdev2->sectors)) {
2906                                         overlap = 1;
2907                                         break;
2908                                 }
2909                         mddev_unlock(mddev);
2910                         if (overlap) {
2911                                 mddev_put(mddev);
2912                                 break;
2913                         }
2914                 }
2915                 mddev_lock(my_mddev);
2916                 if (overlap) {
2917                         /* Someone else could have slipped in a size
2918                          * change here, but doing so is just silly.
2919                          * We put oldsectors back because we *know* it is
2920                          * safe, and trust userspace not to race with
2921                          * itself
2922                          */
2923                         rdev->sectors = oldsectors;
2924                         return -EBUSY;
2925                 }
2926         }
2927         return len;
2928 }
2929
2930 static struct rdev_sysfs_entry rdev_size =
2931 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2932
2933
2934 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2935 {
2936         unsigned long long recovery_start = rdev->recovery_offset;
2937
2938         if (test_bit(In_sync, &rdev->flags) ||
2939             recovery_start == MaxSector)
2940                 return sprintf(page, "none\n");
2941
2942         return sprintf(page, "%llu\n", recovery_start);
2943 }
2944
2945 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2946 {
2947         unsigned long long recovery_start;
2948
2949         if (cmd_match(buf, "none"))
2950                 recovery_start = MaxSector;
2951         else if (strict_strtoull(buf, 10, &recovery_start))
2952                 return -EINVAL;
2953
2954         if (rdev->mddev->pers &&
2955             rdev->raid_disk >= 0)
2956                 return -EBUSY;
2957
2958         rdev->recovery_offset = recovery_start;
2959         if (recovery_start == MaxSector)
2960                 set_bit(In_sync, &rdev->flags);
2961         else
2962                 clear_bit(In_sync, &rdev->flags);
2963         return len;
2964 }
2965
2966 static struct rdev_sysfs_entry rdev_recovery_start =
2967 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2968
2969
2970 static ssize_t
2971 badblocks_show(struct badblocks *bb, char *page, int unack);
2972 static ssize_t
2973 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2974
2975 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2976 {
2977         return badblocks_show(&rdev->badblocks, page, 0);
2978 }
2979 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2980 {
2981         int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2982         /* Maybe that ack was all we needed */
2983         if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2984                 wake_up(&rdev->blocked_wait);
2985         return rv;
2986 }
2987 static struct rdev_sysfs_entry rdev_bad_blocks =
2988 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2989
2990
2991 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2992 {
2993         return badblocks_show(&rdev->badblocks, page, 1);
2994 }
2995 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2996 {
2997         return badblocks_store(&rdev->badblocks, page, len, 1);
2998 }
2999 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3000 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3001
3002 static struct attribute *rdev_default_attrs[] = {
3003         &rdev_state.attr,
3004         &rdev_errors.attr,
3005         &rdev_slot.attr,
3006         &rdev_offset.attr,
3007         &rdev_size.attr,
3008         &rdev_recovery_start.attr,
3009         &rdev_bad_blocks.attr,
3010         &rdev_unack_bad_blocks.attr,
3011         NULL,
3012 };
3013 static ssize_t
3014 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3015 {
3016         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3017         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3018         struct mddev *mddev = rdev->mddev;
3019         ssize_t rv;
3020
3021         if (!entry->show)
3022                 return -EIO;
3023
3024         rv = mddev ? mddev_lock(mddev) : -EBUSY;
3025         if (!rv) {
3026                 if (rdev->mddev == NULL)
3027                         rv = -EBUSY;
3028                 else
3029                         rv = entry->show(rdev, page);
3030                 mddev_unlock(mddev);
3031         }
3032         return rv;
3033 }
3034
3035 static ssize_t
3036 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3037               const char *page, size_t length)
3038 {
3039         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3040         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3041         ssize_t rv;
3042         struct mddev *mddev = rdev->mddev;
3043
3044         if (!entry->store)
3045                 return -EIO;
3046         if (!capable(CAP_SYS_ADMIN))
3047                 return -EACCES;
3048         rv = mddev ? mddev_lock(mddev): -EBUSY;
3049         if (!rv) {
3050                 if (rdev->mddev == NULL)
3051                         rv = -EBUSY;
3052                 else
3053                         rv = entry->store(rdev, page, length);
3054                 mddev_unlock(mddev);
3055         }
3056         return rv;
3057 }
3058
3059 static void rdev_free(struct kobject *ko)
3060 {
3061         struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3062         kfree(rdev);
3063 }
3064 static const struct sysfs_ops rdev_sysfs_ops = {
3065         .show           = rdev_attr_show,
3066         .store          = rdev_attr_store,
3067 };
3068 static struct kobj_type rdev_ktype = {
3069         .release        = rdev_free,
3070         .sysfs_ops      = &rdev_sysfs_ops,
3071         .default_attrs  = rdev_default_attrs,
3072 };
3073
3074 int md_rdev_init(struct md_rdev *rdev)
3075 {
3076         rdev->desc_nr = -1;
3077         rdev->saved_raid_disk = -1;
3078         rdev->raid_disk = -1;
3079         rdev->flags = 0;
3080         rdev->data_offset = 0;
3081         rdev->sb_events = 0;
3082         rdev->last_read_error.tv_sec  = 0;
3083         rdev->last_read_error.tv_nsec = 0;
3084         rdev->sb_loaded = 0;
3085         rdev->bb_page = NULL;
3086         atomic_set(&rdev->nr_pending, 0);
3087         atomic_set(&rdev->read_errors, 0);
3088         atomic_set(&rdev->corrected_errors, 0);
3089
3090         INIT_LIST_HEAD(&rdev->same_set);
3091         init_waitqueue_head(&rdev->blocked_wait);
3092
3093         /* Add space to store bad block list.
3094          * This reserves the space even on arrays where it cannot
3095          * be used - I wonder if that matters
3096          */
3097         rdev->badblocks.count = 0;
3098         rdev->badblocks.shift = 0;
3099         rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3100         seqlock_init(&rdev->badblocks.lock);
3101         if (rdev->badblocks.page == NULL)
3102                 return -ENOMEM;
3103
3104         return 0;
3105 }
3106 EXPORT_SYMBOL_GPL(md_rdev_init);
3107 /*
3108  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3109  *
3110  * mark the device faulty if:
3111  *
3112  *   - the device is nonexistent (zero size)
3113  *   - the device has no valid superblock
3114  *
3115  * a faulty rdev _never_ has rdev->sb set.
3116  */
3117 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3118 {
3119         char b[BDEVNAME_SIZE];
3120         int err;
3121         struct md_rdev *rdev;
3122         sector_t size;
3123
3124         rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3125         if (!rdev) {
3126                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3127                 return ERR_PTR(-ENOMEM);
3128         }
3129
3130         err = md_rdev_init(rdev);
3131         if (err)
3132                 goto abort_free;
3133         err = alloc_disk_sb(rdev);
3134         if (err)
3135                 goto abort_free;
3136
3137         err = lock_rdev(rdev, newdev, super_format == -2);
3138         if (err)
3139                 goto abort_free;
3140
3141         kobject_init(&rdev->kobj, &rdev_ktype);
3142
3143         size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3144         if (!size) {
3145                 printk(KERN_WARNING 
3146                         "md: %s has zero or unknown size, marking faulty!\n",
3147                         bdevname(rdev->bdev,b));
3148                 err = -EINVAL;
3149                 goto abort_free;
3150         }
3151
3152         if (super_format >= 0) {
3153                 err = super_types[super_format].
3154                         load_super(rdev, NULL, super_minor);
3155                 if (err == -EINVAL) {
3156                         printk(KERN_WARNING
3157                                 "md: %s does not have a valid v%d.%d "
3158                                "superblock, not importing!\n",
3159                                 bdevname(rdev->bdev,b),
3160                                super_format, super_minor);
3161                         goto abort_free;
3162                 }
3163                 if (err < 0) {
3164                         printk(KERN_WARNING 
3165                                 "md: could not read %s's sb, not importing!\n",
3166                                 bdevname(rdev->bdev,b));
3167                         goto abort_free;
3168                 }
3169         }
3170         if (super_format == -1)
3171                 /* hot-add for 0.90, or non-persistent: so no badblocks */
3172                 rdev->badblocks.shift = -1;
3173
3174         return rdev;
3175
3176 abort_free:
3177         if (rdev->bdev)
3178                 unlock_rdev(rdev);
3179         free_disk_sb(rdev);
3180         kfree(rdev->badblocks.page);
3181         kfree(rdev);
3182         return ERR_PTR(err);
3183 }
3184
3185 /*
3186  * Check a full RAID array for plausibility
3187  */
3188
3189
3190 static void analyze_sbs(struct mddev * mddev)
3191 {
3192         int i;
3193         struct md_rdev *rdev, *freshest, *tmp;
3194         char b[BDEVNAME_SIZE];
3195
3196         freshest = NULL;
3197         rdev_for_each_safe(rdev, tmp, mddev)
3198                 switch (super_types[mddev->major_version].
3199                         load_super(rdev, freshest, mddev->minor_version)) {
3200                 case 1:
3201                         freshest = rdev;
3202                         break;
3203                 case 0:
3204                         break;
3205                 default:
3206                         printk( KERN_ERR \
3207                                 "md: fatal superblock inconsistency in %s"
3208                                 " -- removing from array\n", 
3209                                 bdevname(rdev->bdev,b));
3210                         kick_rdev_from_array(rdev);
3211                 }
3212
3213
3214         super_types[mddev->major_version].
3215                 validate_super(mddev, freshest);
3216
3217         i = 0;
3218         rdev_for_each_safe(rdev, tmp, mddev) {
3219                 if (mddev->max_disks &&
3220                     (rdev->desc_nr >= mddev->max_disks ||
3221                      i > mddev->max_disks)) {
3222                         printk(KERN_WARNING
3223                                "md: %s: %s: only %d devices permitted\n",
3224                                mdname(mddev), bdevname(rdev->bdev, b),
3225                                mddev->max_disks);
3226                         kick_rdev_from_array(rdev);
3227                         continue;
3228                 }
3229                 if (rdev != freshest)
3230                         if (super_types[mddev->major_version].
3231                             validate_super(mddev, rdev)) {
3232                                 printk(KERN_WARNING "md: kicking non-fresh %s"
3233                                         " from array!\n",
3234                                         bdevname(rdev->bdev,b));
3235                                 kick_rdev_from_array(rdev);
3236                                 continue;
3237                         }
3238                 if (mddev->level == LEVEL_MULTIPATH) {
3239                         rdev->desc_nr = i++;
3240                         rdev->raid_disk = rdev->desc_nr;
3241                         set_bit(In_sync, &rdev->flags);
3242                 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3243                         rdev->raid_disk = -1;
3244                         clear_bit(In_sync, &rdev->flags);
3245                 }
3246         }
3247 }
3248
3249 /* Read a fixed-point number.
3250  * Numbers in sysfs attributes should be in "standard" units where
3251  * possible, so time should be in seconds.
3252  * However we internally use a a much smaller unit such as 
3253  * milliseconds or jiffies.
3254  * This function takes a decimal number with a possible fractional
3255  * component, and produces an integer which is the result of
3256  * multiplying that number by 10^'scale'.
3257  * all without any floating-point arithmetic.
3258  */
3259 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3260 {
3261         unsigned long result = 0;
3262         long decimals = -1;
3263         while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3264                 if (*cp == '.')
3265                         decimals = 0;
3266                 else if (decimals < scale) {
3267                         unsigned int value;
3268                         value = *cp - '0';
3269                         result = result * 10 + value;
3270                         if (decimals >= 0)
3271                                 decimals++;
3272                 }
3273                 cp++;
3274         }
3275         if (*cp == '\n')
3276                 cp++;
3277         if (*cp)
3278                 return -EINVAL;
3279         if (decimals < 0)
3280                 decimals = 0;
3281         while (decimals < scale) {
3282                 result *= 10;
3283                 decimals ++;
3284         }
3285         *res = result;
3286         return 0;
3287 }
3288
3289
3290 static void md_safemode_timeout(unsigned long data);
3291
3292 static ssize_t
3293 safe_delay_show(struct mddev *mddev, char *page)
3294 {
3295         int msec = (mddev->safemode_delay*1000)/HZ;
3296         return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3297 }
3298 static ssize_t
3299 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3300 {
3301         unsigned long msec;
3302
3303         if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3304                 return -EINVAL;
3305         if (msec == 0)
3306                 mddev->safemode_delay = 0;
3307         else {
3308                 unsigned long old_delay = mddev->safemode_delay;
3309                 mddev->safemode_delay = (msec*HZ)/1000;
3310                 if (mddev->safemode_delay == 0)
3311                         mddev->safemode_delay = 1;
3312                 if (mddev->safemode_delay < old_delay)
3313                         md_safemode_timeout((unsigned long)mddev);
3314         }
3315         return len;
3316 }
3317 static struct md_sysfs_entry md_safe_delay =
3318 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3319
3320 static ssize_t
3321 level_show(struct mddev *mddev, char *page)
3322 {
3323         struct md_personality *p = mddev->pers;
3324         if (p)
3325                 return sprintf(page, "%s\n", p->name);
3326         else if (mddev->clevel[0])
3327                 return sprintf(page, "%s\n", mddev->clevel);
3328         else if (mddev->level != LEVEL_NONE)
3329                 return sprintf(page, "%d\n", mddev->level);
3330         else
3331                 return 0;
3332 }
3333
3334 static ssize_t
3335 level_store(struct mddev *mddev, const char *buf, size_t len)
3336 {
3337         char clevel[16];
3338         ssize_t rv = len;
3339         struct md_personality *pers;
3340         long level;
3341         void *priv;
3342         struct md_rdev *rdev;
3343
3344         if (mddev->pers == NULL) {
3345                 if (len == 0)
3346                         return 0;
3347                 if (len >= sizeof(mddev->clevel))
3348                         return -ENOSPC;
3349                 strncpy(mddev->clevel, buf, len);
3350                 if (mddev->clevel[len-1] == '\n')
3351                         len--;
3352                 mddev->clevel[len] = 0;
3353                 mddev->level = LEVEL_NONE;
3354                 return rv;
3355         }
3356
3357         /* request to change the personality.  Need to ensure:
3358          *  - array is not engaged in resync/recovery/reshape
3359          *  - old personality can be suspended
3360          *  - new personality will access other array.
3361          */
3362
3363         if (mddev->sync_thread ||
3364             mddev->reshape_position != MaxSector ||
3365             mddev->sysfs_active)
3366                 return -EBUSY;
3367
3368         if (!mddev->pers->quiesce) {
3369                 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3370                        mdname(mddev), mddev->pers->name);
3371                 return -EINVAL;
3372         }
3373
3374         /* Now find the new personality */
3375         if (len == 0 || len >= sizeof(clevel))
3376                 return -EINVAL;
3377         strncpy(clevel, buf, len);
3378         if (clevel[len-1] == '\n')
3379                 len--;
3380         clevel[len] = 0;
3381         if (strict_strtol(clevel, 10, &level))
3382                 level = LEVEL_NONE;
3383
3384         if (request_module("md-%s", clevel) != 0)
3385                 request_module("md-level-%s", clevel);
3386         spin_lock(&pers_lock);
3387         pers = find_pers(level, clevel);
3388         if (!pers || !try_module_get(pers->owner)) {
3389                 spin_unlock(&pers_lock);
3390                 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3391                 return -EINVAL;
3392         }
3393         spin_unlock(&pers_lock);
3394
3395         if (pers == mddev->pers) {
3396                 /* Nothing to do! */
3397                 module_put(pers->owner);
3398                 return rv;
3399         }
3400         if (!pers->takeover) {
3401                 module_put(pers->owner);
3402                 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3403                        mdname(mddev), clevel);
3404                 return -EINVAL;
3405         }
3406
3407         rdev_for_each(rdev, mddev)
3408                 rdev->new_raid_disk = rdev->raid_disk;
3409
3410         /* ->takeover must set new_* and/or delta_disks
3411          * if it succeeds, and may set them when it fails.
3412          */
3413         priv = pers->takeover(mddev);
3414         if (IS_ERR(priv)) {
3415                 mddev->new_level = mddev->level;
3416                 mddev->new_layout = mddev->layout;
3417                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3418                 mddev->raid_disks -= mddev->delta_disks;
3419                 mddev->delta_disks = 0;
3420                 module_put(pers->owner);
3421                 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3422                        mdname(mddev), clevel);
3423                 return PTR_ERR(priv);
3424         }
3425
3426         /* Looks like we have a winner */
3427         mddev_suspend(mddev);
3428         mddev->pers->stop(mddev);
3429         
3430         if (mddev->pers->sync_request == NULL &&
3431             pers->sync_request != NULL) {
3432                 /* need to add the md_redundancy_group */
3433                 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3434                         printk(KERN_WARNING
3435                                "md: cannot register extra attributes for %s\n",
3436                                mdname(mddev));
3437                 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3438         }               
3439         if (mddev->pers->sync_request != NULL &&
3440             pers->sync_request == NULL) {
3441                 /* need to remove the md_redundancy_group */
3442                 if (mddev->to_remove == NULL)
3443                         mddev->to_remove = &md_redundancy_group;
3444         }
3445
3446         if (mddev->pers->sync_request == NULL &&
3447             mddev->external) {
3448                 /* We are converting from a no-redundancy array
3449                  * to a redundancy array and metadata is managed
3450                  * externally so we need to be sure that writes
3451                  * won't block due to a need to transition
3452                  *      clean->dirty
3453                  * until external management is started.
3454                  */
3455                 mddev->in_sync = 0;
3456                 mddev->safemode_delay = 0;
3457                 mddev->safemode = 0;
3458         }
3459
3460         rdev_for_each(rdev, mddev) {
3461                 if (rdev->raid_disk < 0)
3462                         continue;
3463                 if (rdev->new_raid_disk >= mddev->raid_disks)
3464                         rdev->new_raid_disk = -1;
3465                 if (rdev->new_raid_disk == rdev->raid_disk)
3466                         continue;
3467                 sysfs_unlink_rdev(mddev, rdev);
3468         }
3469         rdev_for_each(rdev, mddev) {
3470                 if (rdev->raid_disk < 0)
3471                         continue;
3472                 if (rdev->new_raid_disk == rdev->raid_disk)
3473                         continue;
3474                 rdev->raid_disk = rdev->new_raid_disk;
3475                 if (rdev->raid_disk < 0)
3476                         clear_bit(In_sync, &rdev->flags);
3477                 else {
3478                         if (sysfs_link_rdev(mddev, rdev))
3479                                 printk(KERN_WARNING "md: cannot register rd%d"
3480                                        " for %s after level change\n",
3481                                        rdev->raid_disk, mdname(mddev));
3482                 }
3483         }
3484
3485         module_put(mddev->pers->owner);
3486         mddev->pers = pers;
3487         mddev->private = priv;
3488         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3489         mddev->level = mddev->new_level;
3490         mddev->layout = mddev->new_layout;
3491         mddev->chunk_sectors = mddev->new_chunk_sectors;
3492         mddev->delta_disks = 0;
3493         mddev->degraded = 0;
3494         if (mddev->pers->sync_request == NULL) {
3495                 /* this is now an array without redundancy, so
3496                  * it must always be in_sync
3497                  */
3498                 mddev->in_sync = 1;
3499                 del_timer_sync(&mddev->safemode_timer);
3500         }
3501         pers->run(mddev);
3502         mddev_resume(mddev);
3503         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3504         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3505         md_wakeup_thread(mddev->thread);
3506         sysfs_notify(&mddev->kobj, NULL, "level");
3507         md_new_event(mddev);
3508         return rv;
3509 }
3510
3511 static struct md_sysfs_entry md_level =
3512 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3513
3514
3515 static ssize_t
3516 layout_show(struct mddev *mddev, char *page)
3517 {
3518         /* just a number, not meaningful for all levels */
3519         if (mddev->reshape_position != MaxSector &&
3520             mddev->layout != mddev->new_layout)
3521                 return sprintf(page, "%d (%d)\n",
3522                                mddev->new_layout, mddev->layout);
3523         return sprintf(page, "%d\n", mddev->layout);
3524 }
3525
3526 static ssize_t
3527 layout_store(struct mddev *mddev, const char *buf, size_t len)
3528 {
3529         char *e;
3530         unsigned long n = simple_strtoul(buf, &e, 10);
3531
3532         if (!*buf || (*e && *e != '\n'))
3533                 return -EINVAL;
3534
3535         if (mddev->pers) {
3536                 int err;
3537                 if (mddev->pers->check_reshape == NULL)
3538                         return -EBUSY;
3539                 mddev->new_layout = n;
3540                 err = mddev->pers->check_reshape(mddev);
3541                 if (err) {
3542                         mddev->new_layout = mddev->layout;
3543                         return err;
3544                 }
3545         } else {
3546                 mddev->new_layout = n;
3547                 if (mddev->reshape_position == MaxSector)
3548                         mddev->layout = n;
3549         }
3550         return len;
3551 }
3552 static struct md_sysfs_entry md_layout =
3553 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3554
3555
3556 static ssize_t
3557 raid_disks_show(struct mddev *mddev, char *page)
3558 {
3559         if (mddev->raid_disks == 0)
3560                 return 0;
3561         if (mddev->reshape_position != MaxSector &&
3562             mddev->delta_disks != 0)
3563                 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3564                                mddev->raid_disks - mddev->delta_disks);
3565         return sprintf(page, "%d\n", mddev->raid_disks);
3566 }
3567
3568 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3569
3570 static ssize_t
3571 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3572 {
3573         char *e;
3574         int rv = 0;
3575         unsigned long n = simple_strtoul(buf, &e, 10);
3576
3577         if (!*buf || (*e && *e != '\n'))
3578                 return -EINVAL;
3579
3580         if (mddev->pers)
3581                 rv = update_raid_disks(mddev, n);
3582         else if (mddev->reshape_position != MaxSector) {
3583                 int olddisks = mddev->raid_disks - mddev->delta_disks;
3584                 mddev->delta_disks = n - olddisks;
3585                 mddev->raid_disks = n;
3586         } else
3587                 mddev->raid_disks = n;
3588         return rv ? rv : len;
3589 }
3590 static struct md_sysfs_entry md_raid_disks =
3591 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3592
3593 static ssize_t
3594 chunk_size_show(struct mddev *mddev, char *page)
3595 {
3596         if (mddev->reshape_position != MaxSector &&
3597             mddev->chunk_sectors != mddev->new_chunk_sectors)
3598                 return sprintf(page, "%d (%d)\n",
3599                                mddev->new_chunk_sectors << 9,
3600                                mddev->chunk_sectors << 9);
3601         return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3602 }
3603
3604 static ssize_t
3605 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3606 {
3607         char *e;
3608         unsigned long n = simple_strtoul(buf, &e, 10);
3609
3610         if (!*buf || (*e && *e != '\n'))
3611                 return -EINVAL;
3612
3613         if (mddev->pers) {
3614                 int err;
3615                 if (mddev->pers->check_reshape == NULL)
3616                         return -EBUSY;
3617                 mddev->new_chunk_sectors = n >> 9;
3618                 err = mddev->pers->check_reshape(mddev);
3619                 if (err) {
3620                         mddev->new_chunk_sectors = mddev->chunk_sectors;
3621                         return err;
3622                 }
3623         } else {
3624                 mddev->new_chunk_sectors = n >> 9;
3625                 if (mddev->reshape_position == MaxSector)
3626                         mddev->chunk_sectors = n >> 9;
3627         }
3628         return len;
3629 }
3630 static struct md_sysfs_entry md_chunk_size =
3631 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3632
3633 static ssize_t
3634 resync_start_show(struct mddev *mddev, char *page)
3635 {
3636         if (mddev->recovery_cp == MaxSector)
3637                 return sprintf(page, "none\n");
3638         return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3639 }
3640
3641 static ssize_t
3642 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3643 {
3644         char *e;
3645         unsigned long long n = simple_strtoull(buf, &e, 10);
3646
3647         if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3648                 return -EBUSY;
3649         if (cmd_match(buf, "none"))
3650                 n = MaxSector;
3651         else if (!*buf || (*e && *e != '\n'))
3652                 return -EINVAL;
3653
3654         mddev->recovery_cp = n;
3655         return len;
3656 }
3657 static struct md_sysfs_entry md_resync_start =
3658 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3659
3660 /*
3661  * The array state can be:
3662  *
3663  * clear
3664  *     No devices, no size, no level
3665  *     Equivalent to STOP_ARRAY ioctl
3666  * inactive
3667  *     May have some settings, but array is not active
3668  *        all IO results in error
3669  *     When written, doesn't tear down array, but just stops it
3670  * suspended (not supported yet)
3671  *     All IO requests will block. The array can be reconfigured.
3672  *     Writing this, if accepted, will block until array is quiescent
3673  * readonly
3674  *     no resync can happen.  no superblocks get written.
3675  *     write requests fail
3676  * read-auto
3677  *     like readonly, but behaves like 'clean' on a write request.
3678  *
3679  * clean - no pending writes, but otherwise active.
3680  *     When written to inactive array, starts without resync
3681  *     If a write request arrives then
3682  *       if metadata is known, mark 'dirty' and switch to 'active'.
3683  *       if not known, block and switch to write-pending
3684  *     If written to an active array that has pending writes, then fails.
3685  * active
3686  *     fully active: IO and resync can be happening.
3687  *     When written to inactive array, starts with resync
3688  *
3689  * write-pending
3690  *     clean, but writes are blocked waiting for 'active' to be written.
3691  *
3692  * active-idle
3693  *     like active, but no writes have been seen for a while (100msec).
3694  *
3695  */
3696 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3697                    write_pending, active_idle, bad_word};
3698 static char *array_states[] = {
3699         "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3700         "write-pending", "active-idle", NULL };
3701
3702 static int match_word(const char *word, char **list)
3703 {
3704         int n;
3705         for (n=0; list[n]; n++)
3706                 if (cmd_match(word, list[n]))
3707                         break;
3708         return n;
3709 }
3710
3711 static ssize_t
3712 array_state_show(struct mddev *mddev, char *page)
3713 {
3714         enum array_state st = inactive;
3715
3716         if (mddev->pers)
3717                 switch(mddev->ro) {
3718                 case 1:
3719                         st = readonly;
3720                         break;
3721                 case 2:
3722                         st = read_auto;
3723                         break;
3724                 case 0:
3725                         if (mddev->in_sync)
3726                                 st = clean;
3727                         else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3728                                 st = write_pending;
3729                         else if (mddev->safemode)
3730                                 st = active_idle;
3731                         else
3732                                 st = active;
3733                 }
3734         else {
3735                 if (list_empty(&mddev->disks) &&
3736                     mddev->raid_disks == 0 &&
3737                     mddev->dev_sectors == 0)
3738                         st = clear;
3739                 else
3740                         st = inactive;
3741         }
3742         return sprintf(page, "%s\n", array_states[st]);
3743 }
3744
3745 static int do_md_stop(struct mddev * mddev, int ro, int is_open);
3746 static int md_set_readonly(struct mddev * mddev, int is_open);
3747 static int do_md_run(struct mddev * mddev);
3748 static int restart_array(struct mddev *mddev);
3749
3750 static ssize_t
3751 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3752 {
3753         int err = -EINVAL;
3754         enum array_state st = match_word(buf, array_states);
3755         switch(st) {
3756         case bad_word:
3757                 break;
3758         case clear:
3759                 /* stopping an active array */
3760                 if (atomic_read(&mddev->openers) > 0)
3761                         return -EBUSY;
3762                 err = do_md_stop(mddev, 0, 0);
3763                 break;
3764         case inactive:
3765                 /* stopping an active array */
3766                 if (mddev->pers) {
3767                         if (atomic_read(&mddev->openers) > 0)
3768                                 return -EBUSY;
3769                         err = do_md_stop(mddev, 2, 0);
3770                 } else
3771                         err = 0; /* already inactive */
3772                 break;
3773         case suspended:
3774                 break; /* not supported yet */
3775         case readonly:
3776                 if (mddev->pers)
3777                         err = md_set_readonly(mddev, 0);
3778                 else {
3779                         mddev->ro = 1;
3780                         set_disk_ro(mddev->gendisk, 1);
3781                         err = do_md_run(mddev);
3782                 }
3783                 break;
3784         case read_auto:
3785                 if (mddev->pers) {
3786                         if (mddev->ro == 0)
3787                                 err = md_set_readonly(mddev, 0);
3788                         else if (mddev->ro == 1)
3789                                 err = restart_array(mddev);
3790                         if (err == 0) {
3791                                 mddev->ro = 2;
3792                                 set_disk_ro(mddev->gendisk, 0);
3793                         }
3794                 } else {
3795                         mddev->ro = 2;
3796                         err = do_md_run(mddev);
3797                 }
3798                 break;
3799         case clean:
3800                 if (mddev->pers) {
3801                         restart_array(mddev);
3802                         spin_lock_irq(&mddev->write_lock);
3803                         if (atomic_read(&mddev->writes_pending) == 0) {
3804                                 if (mddev->in_sync == 0) {
3805                                         mddev->in_sync = 1;
3806                                         if (mddev->safemode == 1)
3807                                                 mddev->safemode = 0;
3808                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3809                                 }
3810                                 err = 0;
3811                         } else
3812                                 err = -EBUSY;
3813                         spin_unlock_irq(&mddev->write_lock);
3814                 } else
3815                         err = -EINVAL;
3816                 break;
3817         case active:
3818                 if (mddev->pers) {
3819                         restart_array(mddev);
3820                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3821                         wake_up(&mddev->sb_wait);
3822                         err = 0;
3823                 } else {
3824                         mddev->ro = 0;
3825                         set_disk_ro(mddev->gendisk, 0);
3826                         err = do_md_run(mddev);
3827                 }
3828                 break;
3829         case write_pending:
3830         case active_idle:
3831                 /* these cannot be set */
3832                 break;
3833         }
3834         if (err)
3835                 return err;
3836         else {
3837                 if (mddev->hold_active == UNTIL_IOCTL)
3838                         mddev->hold_active = 0;
3839                 sysfs_notify_dirent_safe(mddev->sysfs_state);
3840                 return len;
3841         }
3842 }
3843 static struct md_sysfs_entry md_array_state =
3844 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3845
3846 static ssize_t
3847 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3848         return sprintf(page, "%d\n",
3849                        atomic_read(&mddev->max_corr_read_errors));
3850 }
3851
3852 static ssize_t
3853 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3854 {
3855         char *e;
3856         unsigned long n = simple_strtoul(buf, &e, 10);
3857
3858         if (*buf && (*e == 0 || *e == '\n')) {
3859                 atomic_set(&mddev->max_corr_read_errors, n);
3860                 return len;
3861         }
3862         return -EINVAL;
3863 }
3864
3865 static struct md_sysfs_entry max_corr_read_errors =
3866 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3867         max_corrected_read_errors_store);
3868
3869 static ssize_t
3870 null_show(struct mddev *mddev, char *page)
3871 {
3872         return -EINVAL;
3873 }
3874
3875 static ssize_t
3876 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3877 {
3878         /* buf must be %d:%d\n? giving major and minor numbers */
3879         /* The new device is added to the array.
3880          * If the array has a persistent superblock, we read the
3881          * superblock to initialise info and check validity.
3882          * Otherwise, only checking done is that in bind_rdev_to_array,
3883          * which mainly checks size.
3884          */
3885         char *e;
3886         int major = simple_strtoul(buf, &e, 10);
3887         int minor;
3888         dev_t dev;
3889         struct md_rdev *rdev;
3890         int err;
3891
3892         if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3893                 return -EINVAL;
3894         minor = simple_strtoul(e+1, &e, 10);
3895         if (*e && *e != '\n')
3896                 return -EINVAL;
3897         dev = MKDEV(major, minor);
3898         if (major != MAJOR(dev) ||
3899             minor != MINOR(dev))
3900                 return -EOVERFLOW;
3901
3902
3903         if (mddev->persistent) {
3904                 rdev = md_import_device(dev, mddev->major_version,
3905                                         mddev->minor_version);
3906                 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3907                         struct md_rdev *rdev0
3908                                 = list_entry(mddev->disks.next,
3909                                              struct md_rdev, same_set);
3910                         err = super_types[mddev->major_version]
3911                                 .load_super(rdev, rdev0, mddev->minor_version);
3912                         if (err < 0)
3913                                 goto out;
3914                 }
3915         } else if (mddev->external)
3916                 rdev = md_import_device(dev, -2, -1);
3917         else
3918                 rdev = md_import_device(dev, -1, -1);
3919
3920         if (IS_ERR(rdev))
3921                 return PTR_ERR(rdev);
3922         err = bind_rdev_to_array(rdev, mddev);
3923  out:
3924         if (err)
3925                 export_rdev(rdev);
3926         return err ? err : len;
3927 }
3928
3929 static struct md_sysfs_entry md_new_device =
3930 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3931
3932 static ssize_t
3933 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
3934 {
3935         char *end;
3936         unsigned long chunk, end_chunk;
3937
3938         if (!mddev->bitmap)
3939                 goto out;
3940         /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3941         while (*buf) {
3942                 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3943                 if (buf == end) break;
3944                 if (*end == '-') { /* range */
3945                         buf = end + 1;
3946                         end_chunk = simple_strtoul(buf, &end, 0);
3947                         if (buf == end) break;
3948                 }
3949                 if (*end && !isspace(*end)) break;
3950                 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3951                 buf = skip_spaces(end);
3952         }
3953         bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3954 out:
3955         return len;
3956 }
3957
3958 static struct md_sysfs_entry md_bitmap =
3959 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3960
3961 static ssize_t
3962 size_show(struct mddev *mddev, char *page)
3963 {
3964         return sprintf(page, "%llu\n",
3965                 (unsigned long long)mddev->dev_sectors / 2);
3966 }
3967
3968 static int update_size(struct mddev *mddev, sector_t num_sectors);
3969
3970 static ssize_t
3971 size_store(struct mddev *mddev, const char *buf, size_t len)
3972 {
3973         /* If array is inactive, we can reduce the component size, but
3974          * not increase it (except from 0).
3975          * If array is active, we can try an on-line resize
3976          */
3977         sector_t sectors;
3978         int err = strict_blocks_to_sectors(buf, &sectors);
3979
3980         if (err < 0)
3981                 return err;
3982         if (mddev->pers) {
3983                 err = update_size(mddev, sectors);
3984                 md_update_sb(mddev, 1);
3985         } else {
3986                 if (mddev->dev_sectors == 0 ||
3987                     mddev->dev_sectors > sectors)
3988                         mddev->dev_sectors = sectors;
3989                 else
3990                         err = -ENOSPC;
3991         }
3992         return err ? err : len;
3993 }
3994
3995 static struct md_sysfs_entry md_size =
3996 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3997
3998
3999 /* Metdata version.
4000  * This is one of
4001  *   'none' for arrays with no metadata (good luck...)
4002  *   'external' for arrays with externally managed metadata,
4003  * or N.M for internally known formats
4004  */
4005 static ssize_t
4006 metadata_show(struct mddev *mddev, char *page)
4007 {
4008         if (mddev->persistent)
4009                 return sprintf(page, "%d.%d\n",
4010                                mddev->major_version, mddev->minor_version);
4011         else if (mddev->external)
4012                 return sprintf(page, "external:%s\n", mddev->metadata_type);
4013         else
4014                 return sprintf(page, "none\n");
4015 }
4016
4017 static ssize_t
4018 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4019 {
4020         int major, minor;
4021         char *e;
4022         /* Changing the details of 'external' metadata is
4023          * always permitted.  Otherwise there must be
4024          * no devices attached to the array.
4025          */
4026         if (mddev->external && strncmp(buf, "external:", 9) == 0)
4027                 ;
4028         else if (!list_empty(&mddev->disks))
4029                 return -EBUSY;
4030
4031         if (cmd_match(buf, "none")) {
4032                 mddev->persistent = 0;
4033                 mddev->external = 0;
4034                 mddev->major_version = 0;
4035                 mddev->minor_version = 90;
4036                 return len;
4037         }
4038         if (strncmp(buf, "external:", 9) == 0) {
4039                 size_t namelen = len-9;
4040                 if (namelen >= sizeof(mddev->metadata_type))
4041                         namelen = sizeof(mddev->metadata_type)-1;
4042                 strncpy(mddev->metadata_type, buf+9, namelen);
4043                 mddev->metadata_type[namelen] = 0;
4044                 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4045                         mddev->metadata_type[--namelen] = 0;
4046                 mddev->persistent = 0;
4047                 mddev->external = 1;
4048                 mddev->major_version = 0;
4049                 mddev->minor_version = 90;
4050                 return len;
4051         }
4052         major = simple_strtoul(buf, &e, 10);
4053         if (e==buf || *e != '.')
4054                 return -EINVAL;
4055         buf = e+1;
4056         minor = simple_strtoul(buf, &e, 10);
4057         if (e==buf || (*e && *e != '\n') )
4058                 return -EINVAL;
4059         if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4060                 return -ENOENT;
4061         mddev->major_version = major;
4062         mddev->minor_version = minor;
4063         mddev->persistent = 1;
4064         mddev->external = 0;
4065         return len;
4066 }
4067
4068 static struct md_sysfs_entry md_metadata =
4069 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4070
4071 static ssize_t
4072 action_show(struct mddev *mddev, char *page)
4073 {
4074         char *type = "idle";
4075         if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4076                 type = "frozen";
4077         else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4078             (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4079                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4080                         type = "reshape";
4081                 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4082                         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4083                                 type = "resync";
4084                         else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4085                                 type = "check";
4086                         else
4087                                 type = "repair";
4088                 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4089                         type = "recover";
4090         }
4091         return sprintf(page, "%s\n", type);
4092 }
4093
4094 static void reap_sync_thread(struct mddev *mddev);
4095
4096 static ssize_t
4097 action_store(struct mddev *mddev, const char *page, size_t len)
4098 {
4099         if (!mddev->pers || !mddev->pers->sync_request)
4100                 return -EINVAL;
4101
4102         if (cmd_match(page, "frozen"))
4103                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4104         else
4105                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4106
4107         if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4108                 if (mddev->sync_thread) {
4109                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4110                         reap_sync_thread(mddev);
4111                 }
4112         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4113                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4114                 return -EBUSY;
4115         else if (cmd_match(page, "resync"))
4116                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4117         else if (cmd_match(page, "recover")) {
4118                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4119                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4120         } else if (cmd_match(page, "reshape")) {
4121                 int err;
4122                 if (mddev->pers->start_reshape == NULL)
4123                         return -EINVAL;
4124                 err = mddev->pers->start_reshape(mddev);
4125                 if (err)
4126                         return err;
4127                 sysfs_notify(&mddev->kobj, NULL, "degraded");
4128         } else {
4129                 if (cmd_match(page, "check"))
4130                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4131                 else if (!cmd_match(page, "repair"))
4132                         return -EINVAL;
4133                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4134                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4135         }
4136         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4137         md_wakeup_thread(mddev->thread);
4138         sysfs_notify_dirent_safe(mddev->sysfs_action);
4139         return len;
4140 }
4141
4142 static ssize_t
4143 mismatch_cnt_show(struct mddev *mddev, char *page)
4144 {
4145         return sprintf(page, "%llu\n",
4146                        (unsigned long long) mddev->resync_mismatches);
4147 }
4148
4149 static struct md_sysfs_entry md_scan_mode =
4150 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4151
4152
4153 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4154
4155 static ssize_t
4156 sync_min_show(struct mddev *mddev, char *page)
4157 {
4158         return sprintf(page, "%d (%s)\n", speed_min(mddev),
4159                        mddev->sync_speed_min ? "local": "system");
4160 }
4161
4162 static ssize_t
4163 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4164 {
4165         int min;
4166         char *e;
4167         if (strncmp(buf, "system", 6)==0) {
4168                 mddev->sync_speed_min = 0;
4169                 return len;
4170         }
4171         min = simple_strtoul(buf, &e, 10);
4172         if (buf == e || (*e && *e != '\n') || min <= 0)
4173                 return -EINVAL;
4174         mddev->sync_speed_min = min;
4175         return len;
4176 }
4177
4178 static struct md_sysfs_entry md_sync_min =
4179 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4180
4181 static ssize_t
4182 sync_max_show(struct mddev *mddev, char *page)
4183 {
4184         return sprintf(page, "%d (%s)\n", speed_max(mddev),
4185                        mddev->sync_speed_max ? "local": "system");
4186 }
4187
4188 static ssize_t
4189 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4190 {
4191         int max;
4192         char *e;
4193         if (strncmp(buf, "system", 6)==0) {
4194                 mddev->sync_speed_max = 0;
4195                 return len;
4196         }
4197         max = simple_strtoul(buf, &e, 10);
4198         if (buf == e || (*e && *e != '\n') || max <= 0)
4199                 return -EINVAL;
4200         mddev->sync_speed_max = max;
4201         return len;
4202 }
4203
4204 static struct md_sysfs_entry md_sync_max =
4205 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4206
4207 static ssize_t
4208 degraded_show(struct mddev *mddev, char *page)
4209 {
4210         return sprintf(page, "%d\n", mddev->degraded);
4211 }
4212 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4213
4214 static ssize_t
4215 sync_force_parallel_show(struct mddev *mddev, char *page)
4216 {
4217         return sprintf(page, "%d\n", mddev->parallel_resync);
4218 }
4219
4220 static ssize_t
4221 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4222 {
4223         long n;
4224
4225         if (strict_strtol(buf, 10, &n))
4226                 return -EINVAL;
4227
4228         if (n != 0 && n != 1)
4229                 return -EINVAL;
4230
4231         mddev->parallel_resync = n;
4232
4233         if (mddev->sync_thread)
4234                 wake_up(&resync_wait);
4235
4236         return len;
4237 }
4238
4239 /* force parallel resync, even with shared block devices */
4240 static struct md_sysfs_entry md_sync_force_parallel =
4241 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4242        sync_force_parallel_show, sync_force_parallel_store);
4243
4244 static ssize_t
4245 sync_speed_show(struct mddev *mddev, char *page)
4246 {
4247         unsigned long resync, dt, db;
4248         if (mddev->curr_resync == 0)
4249                 return sprintf(page, "none\n");
4250         resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4251         dt = (jiffies - mddev->resync_mark) / HZ;
4252         if (!dt) dt++;
4253         db = resync - mddev->resync_mark_cnt;
4254         return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4255 }
4256
4257 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4258
4259 static ssize_t
4260 sync_completed_show(struct mddev *mddev, char *page)
4261 {
4262         unsigned long long max_sectors, resync;
4263
4264         if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4265                 return sprintf(page, "none\n");
4266
4267         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4268                 max_sectors = mddev->resync_max_sectors;
4269         else
4270                 max_sectors = mddev->dev_sectors;
4271
4272         resync = mddev->curr_resync_completed;
4273         return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4274 }
4275
4276 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4277
4278 static ssize_t
4279 min_sync_show(struct mddev *mddev, char *page)
4280 {
4281         return sprintf(page, "%llu\n",
4282                        (unsigned long long)mddev->resync_min);
4283 }
4284 static ssize_t
4285 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4286 {
4287         unsigned long long min;
4288         if (strict_strtoull(buf, 10, &min))
4289                 return -EINVAL;
4290         if (min > mddev->resync_max)
4291                 return -EINVAL;
4292         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4293                 return -EBUSY;
4294
4295         /* Must be a multiple of chunk_size */
4296         if (mddev->chunk_sectors) {
4297                 sector_t temp = min;
4298                 if (sector_div(temp, mddev->chunk_sectors))
4299                         return -EINVAL;
4300         }
4301         mddev->resync_min = min;
4302
4303         return len;
4304 }
4305
4306 static struct md_sysfs_entry md_min_sync =
4307 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4308
4309 static ssize_t
4310 max_sync_show(struct mddev *mddev, char *page)
4311 {
4312         if (mddev->resync_max == MaxSector)
4313                 return sprintf(page, "max\n");
4314         else
4315                 return sprintf(page, "%llu\n",
4316                                (unsigned long long)mddev->resync_max);
4317 }
4318 static ssize_t
4319 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4320 {
4321         if (strncmp(buf, "max", 3) == 0)
4322                 mddev->resync_max = MaxSector;
4323         else {
4324                 unsigned long long max;
4325                 if (strict_strtoull(buf, 10, &max))
4326                         return -EINVAL;
4327                 if (max < mddev->resync_min)
4328                         return -EINVAL;
4329                 if (max < mddev->resync_max &&
4330                     mddev->ro == 0 &&
4331                     test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4332                         return -EBUSY;
4333
4334                 /* Must be a multiple of chunk_size */
4335                 if (mddev->chunk_sectors) {
4336                         sector_t temp = max;
4337                         if (sector_div(temp, mddev->chunk_sectors))
4338                                 return -EINVAL;
4339                 }
4340                 mddev->resync_max = max;
4341         }
4342         wake_up(&mddev->recovery_wait);
4343         return len;
4344 }
4345
4346 static struct md_sysfs_entry md_max_sync =
4347 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4348
4349 static ssize_t
4350 suspend_lo_show(struct mddev *mddev, char *page)
4351 {
4352         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4353 }
4354
4355 static ssize_t
4356 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4357 {
4358         char *e;
4359         unsigned long long new = simple_strtoull(buf, &e, 10);
4360         unsigned long long old = mddev->suspend_lo;
4361
4362         if (mddev->pers == NULL || 
4363             mddev->pers->quiesce == NULL)
4364                 return -EINVAL;
4365         if (buf == e || (*e && *e != '\n'))
4366                 return -EINVAL;
4367
4368         mddev->suspend_lo = new;
4369         if (new >= old)
4370                 /* Shrinking suspended region */
4371                 mddev->pers->quiesce(mddev, 2);
4372         else {
4373                 /* Expanding suspended region - need to wait */
4374                 mddev->pers->quiesce(mddev, 1);
4375                 mddev->pers->quiesce(mddev, 0);
4376         }
4377         return len;
4378 }
4379 static struct md_sysfs_entry md_suspend_lo =
4380 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4381
4382
4383 static ssize_t
4384 suspend_hi_show(struct mddev *mddev, char *page)
4385 {
4386         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4387 }
4388
4389 static ssize_t
4390 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4391 {
4392         char *e;
4393         unsigned long long new = simple_strtoull(buf, &e, 10);
4394         unsigned long long old = mddev->suspend_hi;
4395
4396         if (mddev->pers == NULL ||
4397             mddev->pers->quiesce == NULL)
4398                 return -EINVAL;
4399         if (buf == e || (*e && *e != '\n'))
4400                 return -EINVAL;
4401
4402         mddev->suspend_hi = new;
4403         if (new <= old)
4404                 /* Shrinking suspended region */
4405                 mddev->pers->quiesce(mddev, 2);
4406         else {
4407                 /* Expanding suspended region - need to wait */
4408                 mddev->pers->quiesce(mddev, 1);
4409                 mddev->pers->quiesce(mddev, 0);
4410         }
4411         return len;
4412 }
4413 static struct md_sysfs_entry md_suspend_hi =
4414 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4415
4416 static ssize_t
4417 reshape_position_show(struct mddev *mddev, char *page)
4418 {
4419         if (mddev->reshape_position != MaxSector)
4420                 return sprintf(page, "%llu\n",
4421                                (unsigned long long)mddev->reshape_position);
4422         strcpy(page, "none\n");
4423         return 5;
4424 }
4425
4426 static ssize_t
4427 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4428 {
4429         char *e;
4430         unsigned long long new = simple_strtoull(buf, &e, 10);
4431         if (mddev->pers)
4432                 return -EBUSY;
4433         if (buf == e || (*e && *e != '\n'))
4434                 return -EINVAL;
4435         mddev->reshape_position = new;
4436         mddev->delta_disks = 0;
4437         mddev->new_level = mddev->level;
4438         mddev->new_layout = mddev->layout;
4439         mddev->new_chunk_sectors = mddev->chunk_sectors;
4440         return len;
4441 }
4442
4443 static struct md_sysfs_entry md_reshape_position =
4444 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4445        reshape_position_store);
4446
4447 static ssize_t
4448 array_size_show(struct mddev *mddev, char *page)
4449 {
4450         if (mddev->external_size)
4451                 return sprintf(page, "%llu\n",
4452                                (unsigned long long)mddev->array_sectors/2);
4453         else
4454                 return sprintf(page, "default\n");
4455 }
4456
4457 static ssize_t
4458 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4459 {
4460         sector_t sectors;
4461
4462         if (strncmp(buf, "default", 7) == 0) {
4463                 if (mddev->pers)
4464                         sectors = mddev->pers->size(mddev, 0, 0);
4465                 else
4466                         sectors = mddev->array_sectors;
4467
4468                 mddev->external_size = 0;
4469         } else {
4470                 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4471                         return -EINVAL;
4472                 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4473                         return -E2BIG;
4474
4475                 mddev->external_size = 1;
4476         }
4477
4478         mddev->array_sectors = sectors;
4479         if (mddev->pers) {
4480                 set_capacity(mddev->gendisk, mddev->array_sectors);
4481                 revalidate_disk(mddev->gendisk);
4482         }
4483         return len;
4484 }
4485
4486 static struct md_sysfs_entry md_array_size =
4487 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4488        array_size_store);
4489
4490 static struct attribute *md_default_attrs[] = {
4491         &md_level.attr,
4492         &md_layout.attr,
4493         &md_raid_disks.attr,
4494         &md_chunk_size.attr,
4495         &md_size.attr,
4496         &md_resync_start.attr,
4497         &md_metadata.attr,
4498         &md_new_device.attr,
4499         &md_safe_delay.attr,
4500         &md_array_state.attr,
4501         &md_reshape_position.attr,
4502         &md_array_size.attr,
4503         &max_corr_read_errors.attr,
4504         NULL,
4505 };
4506
4507 static struct attribute *md_redundancy_attrs[] = {
4508         &md_scan_mode.attr,
4509         &md_mismatches.attr,
4510         &md_sync_min.attr,
4511         &md_sync_max.attr,
4512         &md_sync_speed.attr,
4513         &md_sync_force_parallel.attr,
4514         &md_sync_completed.attr,
4515         &md_min_sync.attr,
4516         &md_max_sync.attr,
4517         &md_suspend_lo.attr,
4518         &md_suspend_hi.attr,
4519         &md_bitmap.attr,
4520         &md_degraded.attr,
4521         NULL,
4522 };
4523 static struct attribute_group md_redundancy_group = {
4524         .name = NULL,
4525         .attrs = md_redundancy_attrs,
4526 };
4527
4528
4529 static ssize_t
4530 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4531 {
4532         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4533         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4534         ssize_t rv;
4535
4536         if (!entry->show)
4537                 return -EIO;
4538         spin_lock(&all_mddevs_lock);
4539         if (list_empty(&mddev->all_mddevs)) {
4540                 spin_unlock(&all_mddevs_lock);
4541                 return -EBUSY;
4542         }
4543         mddev_get(mddev);
4544         spin_unlock(&all_mddevs_lock);
4545
4546         rv = mddev_lock(mddev);
4547         if (!rv) {
4548                 rv = entry->show(mddev, page);
4549                 mddev_unlock(mddev);
4550         }
4551         mddev_put(mddev);
4552         return rv;
4553 }
4554
4555 static ssize_t
4556 md_attr_store(struct kobject *kobj, struct attribute *attr,
4557               const char *page, size_t length)
4558 {
4559         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4560         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4561         ssize_t rv;
4562
4563         if (!entry->store)
4564                 return -EIO;
4565         if (!capable(CAP_SYS_ADMIN))
4566                 return -EACCES;
4567         spin_lock(&all_mddevs_lock);
4568         if (list_empty(&mddev->all_mddevs)) {
4569                 spin_unlock(&all_mddevs_lock);
4570                 return -EBUSY;
4571         }
4572         mddev_get(mddev);
4573         spin_unlock(&all_mddevs_lock);
4574         rv = mddev_lock(mddev);
4575         if (!rv) {
4576                 rv = entry->store(mddev, page, length);
4577                 mddev_unlock(mddev);
4578         }
4579         mddev_put(mddev);
4580         return rv;
4581 }
4582
4583 static void md_free(struct kobject *ko)
4584 {
4585         struct mddev *mddev = container_of(ko, struct mddev, kobj);
4586
4587         if (mddev->sysfs_state)
4588                 sysfs_put(mddev->sysfs_state);
4589
4590         if (mddev->gendisk) {
4591                 del_gendisk(mddev->gendisk);
4592                 put_disk(mddev->gendisk);
4593         }
4594         if (mddev->queue)
4595                 blk_cleanup_queue(mddev->queue);
4596
4597         kfree(mddev);
4598 }
4599
4600 static const struct sysfs_ops md_sysfs_ops = {
4601         .show   = md_attr_show,
4602         .store  = md_attr_store,
4603 };
4604 static struct kobj_type md_ktype = {
4605         .release        = md_free,
4606         .sysfs_ops      = &md_sysfs_ops,
4607         .default_attrs  = md_default_attrs,
4608 };
4609
4610 int mdp_major = 0;
4611
4612 static void mddev_delayed_delete(struct work_struct *ws)
4613 {
4614         struct mddev *mddev = container_of(ws, struct mddev, del_work);
4615
4616         sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4617         kobject_del(&mddev->kobj);
4618         kobject_put(&mddev->kobj);
4619 }
4620
4621 static int md_alloc(dev_t dev, char *name)
4622 {
4623         static DEFINE_MUTEX(disks_mutex);
4624         struct mddev *mddev = mddev_find(dev);
4625         struct gendisk *disk;
4626         int partitioned;
4627         int shift;
4628         int unit;
4629         int error;
4630
4631         if (!mddev)
4632                 return -ENODEV;
4633
4634         partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4635         shift = partitioned ? MdpMinorShift : 0;
4636         unit = MINOR(mddev->unit) >> shift;
4637
4638         /* wait for any previous instance of this device to be
4639          * completely removed (mddev_delayed_delete).
4640          */
4641         flush_workqueue(md_misc_wq);
4642
4643         mutex_lock(&disks_mutex);
4644         error = -EEXIST;
4645         if (mddev->gendisk)
4646                 goto abort;
4647
4648         if (name) {
4649                 /* Need to ensure that 'name' is not a duplicate.
4650                  */
4651                 struct mddev *mddev2;
4652                 spin_lock(&all_mddevs_lock);
4653
4654                 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4655                         if (mddev2->gendisk &&
4656                             strcmp(mddev2->gendisk->disk_name, name) == 0) {
4657                                 spin_unlock(&all_mddevs_lock);
4658                                 goto abort;
4659                         }
4660                 spin_unlock(&all_mddevs_lock);
4661         }
4662
4663         error = -ENOMEM;
4664         mddev->queue = blk_alloc_queue(GFP_KERNEL);
4665         if (!mddev->queue)
4666                 goto abort;
4667         mddev->queue->queuedata = mddev;
4668
4669         blk_queue_make_request(mddev->queue, md_make_request);
4670         blk_set_stacking_limits(&mddev->queue->limits);
4671
4672         disk = alloc_disk(1 << shift);
4673         if (!disk) {
4674                 blk_cleanup_queue(mddev->queue);
4675                 mddev->queue = NULL;
4676                 goto abort;
4677         }
4678         disk->major = MAJOR(mddev->unit);
4679         disk->first_minor = unit << shift;
4680         if (name)
4681                 strcpy(disk->disk_name, name);
4682         else if (partitioned)
4683                 sprintf(disk->disk_name, "md_d%d", unit);
4684         else
4685                 sprintf(disk->disk_name, "md%d", unit);
4686         disk->fops = &md_fops;
4687         disk->private_data = mddev;
4688         disk->queue = mddev->queue;
4689         blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4690         /* Allow extended partitions.  This makes the
4691          * 'mdp' device redundant, but we can't really
4692          * remove it now.
4693          */
4694         disk->flags |= GENHD_FL_EXT_DEVT;
4695         mddev->gendisk = disk;
4696         /* As soon as we call add_disk(), another thread could get
4697          * through to md_open, so make sure it doesn't get too far
4698          */
4699         mutex_lock(&mddev->open_mutex);
4700         add_disk(disk);
4701
4702         error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4703                                      &disk_to_dev(disk)->kobj, "%s", "md");
4704         if (error) {
4705                 /* This isn't possible, but as kobject_init_and_add is marked
4706                  * __must_check, we must do something with the result
4707                  */
4708                 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4709                        disk->disk_name);
4710                 error = 0;
4711         }
4712         if (mddev->kobj.sd &&
4713             sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4714                 printk(KERN_DEBUG "pointless warning\n");
4715         mutex_unlock(&mddev->open_mutex);
4716  abort:
4717         mutex_unlock(&disks_mutex);
4718         if (!error && mddev->kobj.sd) {
4719                 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4720                 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4721         }
4722         mddev_put(mddev);
4723         return error;
4724 }
4725
4726 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4727 {
4728         md_alloc(dev, NULL);
4729         return NULL;
4730 }
4731
4732 static int add_named_array(const char *val, struct kernel_param *kp)
4733 {
4734         /* val must be "md_*" where * is not all digits.
4735          * We allocate an array with a large free minor number, and
4736          * set the name to val.  val must not already be an active name.
4737          */
4738         int len = strlen(val);
4739         char buf[DISK_NAME_LEN];
4740
4741         while (len && val[len-1] == '\n')
4742                 len--;
4743         if (len >= DISK_NAME_LEN)
4744                 return -E2BIG;
4745         strlcpy(buf, val, len+1);
4746         if (strncmp(buf, "md_", 3) != 0)
4747                 return -EINVAL;
4748         return md_alloc(0, buf);
4749 }
4750
4751 static void md_safemode_timeout(unsigned long data)
4752 {
4753         struct mddev *mddev = (struct mddev *) data;
4754
4755         if (!atomic_read(&mddev->writes_pending)) {
4756                 mddev->safemode = 1;
4757                 if (mddev->external)
4758                         sysfs_notify_dirent_safe(mddev->sysfs_state);
4759         }
4760         md_wakeup_thread(mddev->thread);
4761 }
4762
4763 static int start_dirty_degraded;
4764
4765 int md_run(struct mddev *mddev)
4766 {
4767         int err;
4768         struct md_rdev *rdev;
4769         struct md_personality *pers;
4770
4771         if (list_empty(&mddev->disks))
4772                 /* cannot run an array with no devices.. */
4773                 return -EINVAL;
4774
4775         if (mddev->pers)
4776                 return -EBUSY;
4777         /* Cannot run until previous stop completes properly */
4778         if (mddev->sysfs_active)
4779                 return -EBUSY;
4780
4781         /*
4782          * Analyze all RAID superblock(s)
4783          */
4784         if (!mddev->raid_disks) {
4785                 if (!mddev->persistent)
4786                         return -EINVAL;
4787                 analyze_sbs(mddev);
4788         }
4789
4790         if (mddev->level != LEVEL_NONE)
4791                 request_module("md-level-%d", mddev->level);
4792         else if (mddev->clevel[0])
4793                 request_module("md-%s", mddev->clevel);
4794
4795         /*
4796          * Drop all container device buffers, from now on
4797          * the only valid external interface is through the md
4798          * device.
4799          */
4800         rdev_for_each(rdev, mddev) {
4801                 if (test_bit(Faulty, &rdev->flags))
4802                         continue;
4803                 sync_blockdev(rdev->bdev);
4804                 invalidate_bdev(rdev->bdev);
4805
4806                 /* perform some consistency tests on the device.
4807                  * We don't want the data to overlap the metadata,
4808                  * Internal Bitmap issues have been handled elsewhere.
4809                  */
4810                 if (rdev->meta_bdev) {
4811                         /* Nothing to check */;
4812                 } else if (rdev->data_offset < rdev->sb_start) {
4813                         if (mddev->dev_sectors &&
4814                             rdev->data_offset + mddev->dev_sectors
4815                             > rdev->sb_start) {
4816                                 printk("md: %s: data overlaps metadata\n",
4817                                        mdname(mddev));
4818                                 return -EINVAL;
4819                         }
4820                 } else {
4821                         if (rdev->sb_start + rdev->sb_size/512
4822                             > rdev->data_offset) {
4823                                 printk("md: %s: metadata overlaps data\n",
4824                                        mdname(mddev));
4825                                 return -EINVAL;
4826                         }
4827                 }
4828                 sysfs_notify_dirent_safe(rdev->sysfs_state);
4829         }
4830
4831         if (mddev->bio_set == NULL)
4832                 mddev->bio_set = bioset_create(BIO_POOL_SIZE,
4833                                                sizeof(struct mddev *));
4834
4835         spin_lock(&pers_lock);
4836         pers = find_pers(mddev->level, mddev->clevel);
4837         if (!pers || !try_module_get(pers->owner)) {
4838                 spin_unlock(&pers_lock);
4839                 if (mddev->level != LEVEL_NONE)
4840                         printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4841                                mddev->level);
4842                 else
4843                         printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4844                                mddev->clevel);
4845                 return -EINVAL;
4846         }
4847         mddev->pers = pers;
4848         spin_unlock(&pers_lock);
4849         if (mddev->level != pers->level) {
4850                 mddev->level = pers->level;
4851                 mddev->new_level = pers->level;
4852         }
4853         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4854
4855         if (mddev->reshape_position != MaxSector &&
4856             pers->start_reshape == NULL) {
4857                 /* This personality cannot handle reshaping... */
4858                 mddev->pers = NULL;
4859                 module_put(pers->owner);
4860                 return -EINVAL;
4861         }
4862
4863         if (pers->sync_request) {
4864                 /* Warn if this is a potentially silly
4865                  * configuration.
4866                  */
4867                 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4868                 struct md_rdev *rdev2;
4869                 int warned = 0;
4870
4871                 rdev_for_each(rdev, mddev)
4872                         rdev_for_each(rdev2, mddev) {
4873                                 if (rdev < rdev2 &&
4874                                     rdev->bdev->bd_contains ==
4875                                     rdev2->bdev->bd_contains) {
4876                                         printk(KERN_WARNING
4877                                                "%s: WARNING: %s appears to be"
4878                                                " on the same physical disk as"
4879                                                " %s.\n",
4880                                                mdname(mddev),
4881                                                bdevname(rdev->bdev,b),
4882                                                bdevname(rdev2->bdev,b2));
4883                                         warned = 1;
4884                                 }
4885                         }
4886
4887                 if (warned)
4888                         printk(KERN_WARNING
4889                                "True protection against single-disk"
4890                                " failure might be compromised.\n");
4891         }
4892
4893         mddev->recovery = 0;
4894         /* may be over-ridden by personality */
4895         mddev->resync_max_sectors = mddev->dev_sectors;
4896
4897         mddev->ok_start_degraded = start_dirty_degraded;
4898
4899         if (start_readonly && mddev->ro == 0)
4900                 mddev->ro = 2; /* read-only, but switch on first write */
4901
4902         err = mddev->pers->run(mddev);
4903         if (err)
4904                 printk(KERN_ERR "md: pers->run() failed ...\n");
4905         else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4906                 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4907                           " but 'external_size' not in effect?\n", __func__);
4908                 printk(KERN_ERR
4909                        "md: invalid array_size %llu > default size %llu\n",
4910                        (unsigned long long)mddev->array_sectors / 2,
4911                        (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4912                 err = -EINVAL;
4913                 mddev->pers->stop(mddev);
4914         }
4915         if (err == 0 && mddev->pers->sync_request) {
4916                 err = bitmap_create(mddev);
4917                 if (err) {
4918                         printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4919                                mdname(mddev), err);
4920                         mddev->pers->stop(mddev);
4921                 }
4922         }
4923         if (err) {
4924                 module_put(mddev->pers->owner);
4925                 mddev->pers = NULL;
4926                 bitmap_destroy(mddev);
4927                 return err;
4928         }
4929         if (mddev->pers->sync_request) {
4930                 if (mddev->kobj.sd &&
4931                     sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4932                         printk(KERN_WARNING
4933                                "md: cannot register extra attributes for %s\n",
4934                                mdname(mddev));
4935                 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4936         } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4937                 mddev->ro = 0;
4938
4939         atomic_set(&mddev->writes_pending,0);
4940         atomic_set(&mddev->max_corr_read_errors,
4941                    MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4942         mddev->safemode = 0;
4943         mddev->safemode_timer.function = md_safemode_timeout;
4944         mddev->safemode_timer.data = (unsigned long) mddev;
4945         mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4946         mddev->in_sync = 1;
4947         smp_wmb();
4948         mddev->ready = 1;
4949         rdev_for_each(rdev, mddev)
4950                 if (rdev->raid_disk >= 0)
4951                         if (sysfs_link_rdev(mddev, rdev))
4952                                 /* failure here is OK */;
4953         
4954         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4955         
4956         if (mddev->flags)
4957                 md_update_sb(mddev, 0);
4958
4959         md_new_event(mddev);
4960         sysfs_notify_dirent_safe(mddev->sysfs_state);
4961         sysfs_notify_dirent_safe(mddev->sysfs_action);
4962         sysfs_notify(&mddev->kobj, NULL, "degraded");
4963         return 0;
4964 }
4965 EXPORT_SYMBOL_GPL(md_run);
4966
4967 static int do_md_run(struct mddev *mddev)
4968 {
4969         int err;
4970
4971         err = md_run(mddev);
4972         if (err)
4973                 goto out;
4974         err = bitmap_load(mddev);
4975         if (err) {
4976                 bitmap_destroy(mddev);
4977                 goto out;
4978         }
4979
4980         md_wakeup_thread(mddev->thread);
4981         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4982
4983         set_capacity(mddev->gendisk, mddev->array_sectors);
4984         revalidate_disk(mddev->gendisk);
4985         mddev->changed = 1;
4986         kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4987 out:
4988         return err;
4989 }
4990
4991 static int restart_array(struct mddev *mddev)
4992 {
4993         struct gendisk *disk = mddev->gendisk;
4994
4995         /* Complain if it has no devices */
4996         if (list_empty(&mddev->disks))
4997                 return -ENXIO;
4998         if (!mddev->pers)
4999                 return -EINVAL;
5000         if (!mddev->ro)
5001                 return -EBUSY;
5002         mddev->safemode = 0;
5003         mddev->ro = 0;
5004         set_disk_ro(disk, 0);
5005         printk(KERN_INFO "md: %s switched to read-write mode.\n",
5006                 mdname(mddev));
5007         /* Kick recovery or resync if necessary */
5008         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5009         md_wakeup_thread(mddev->thread);
5010         md_wakeup_thread(mddev->sync_thread);
5011         sysfs_notify_dirent_safe(mddev->sysfs_state);
5012         return 0;
5013 }
5014
5015 /* similar to deny_write_access, but accounts for our holding a reference
5016  * to the file ourselves */
5017 static int deny_bitmap_write_access(struct file * file)
5018 {
5019         struct inode *inode = file->f_mapping->host;
5020
5021         spin_lock(&inode->i_lock);
5022         if (atomic_read(&inode->i_writecount) > 1) {
5023                 spin_unlock(&inode->i_lock);
5024                 return -ETXTBSY;
5025         }
5026         atomic_set(&inode->i_writecount, -1);
5027         spin_unlock(&inode->i_lock);
5028
5029         return 0;
5030 }
5031
5032 void restore_bitmap_write_access(struct file *file)
5033 {
5034         struct inode *inode = file->f_mapping->host;
5035
5036         spin_lock(&inode->i_lock);
5037         atomic_set(&inode->i_writecount, 1);
5038         spin_unlock(&inode->i_lock);
5039 }
5040
5041 static void md_clean(struct mddev *mddev)
5042 {
5043         mddev->array_sectors = 0;
5044         mddev->external_size = 0;
5045         mddev->dev_sectors = 0;
5046         mddev->raid_disks = 0;
5047         mddev->recovery_cp = 0;
5048         mddev->resync_min = 0;
5049         mddev->resync_max = MaxSector;
5050         mddev->reshape_position = MaxSector;
5051         mddev->external = 0;
5052         mddev->persistent = 0;
5053         mddev->level = LEVEL_NONE;
5054         mddev->clevel[0] = 0;
5055         mddev->flags = 0;
5056         mddev->ro = 0;
5057         mddev->metadata_type[0] = 0;
5058         mddev->chunk_sectors = 0;
5059         mddev->ctime = mddev->utime = 0;
5060         mddev->layout = 0;
5061         mddev->max_disks = 0;
5062         mddev->events = 0;
5063         mddev->can_decrease_events = 0;
5064         mddev->delta_disks = 0;
5065         mddev->new_level = LEVEL_NONE;
5066         mddev->new_layout = 0;
5067         mddev->new_chunk_sectors = 0;
5068         mddev->curr_resync = 0;
5069         mddev->resync_mismatches = 0;
5070         mddev->suspend_lo = mddev->suspend_hi = 0;
5071         mddev->sync_speed_min = mddev->sync_speed_max = 0;
5072         mddev->recovery = 0;
5073         mddev->in_sync = 0;
5074         mddev->changed = 0;
5075         mddev->degraded = 0;
5076         mddev->safemode = 0;
5077         mddev->merge_check_needed = 0;
5078         mddev->bitmap_info.offset = 0;
5079         mddev->bitmap_info.default_offset = 0;
5080         mddev->bitmap_info.chunksize = 0;
5081         mddev->bitmap_info.daemon_sleep = 0;
5082         mddev->bitmap_info.max_write_behind = 0;
5083 }
5084
5085 static void __md_stop_writes(struct mddev *mddev)
5086 {
5087         if (mddev->sync_thread) {
5088                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5089                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5090                 reap_sync_thread(mddev);
5091         }
5092
5093         del_timer_sync(&mddev->safemode_timer);
5094
5095         bitmap_flush(mddev);
5096         md_super_wait(mddev);
5097
5098         if (!mddev->in_sync || mddev->flags) {
5099                 /* mark array as shutdown cleanly */
5100                 mddev->in_sync = 1;
5101                 md_update_sb(mddev, 1);
5102         }
5103 }
5104
5105 void md_stop_writes(struct mddev *mddev)
5106 {
5107         mddev_lock(mddev);
5108         __md_stop_writes(mddev);
5109         mddev_unlock(mddev);
5110 }
5111 EXPORT_SYMBOL_GPL(md_stop_writes);
5112
5113 void md_stop(struct mddev *mddev)
5114 {
5115         mddev->ready = 0;
5116         mddev->pers->stop(mddev);
5117         if (mddev->pers->sync_request && mddev->to_remove == NULL)
5118                 mddev->to_remove = &md_redundancy_group;
5119         module_put(mddev->pers->owner);
5120         mddev->pers = NULL;
5121         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5122 }
5123 EXPORT_SYMBOL_GPL(md_stop);
5124
5125 static int md_set_readonly(struct mddev *mddev, int is_open)
5126 {
5127         int err = 0;
5128         mutex_lock(&mddev->open_mutex);
5129         if (atomic_read(&mddev->openers) > is_open) {
5130                 printk("md: %s still in use.\n",mdname(mddev));
5131                 err = -EBUSY;
5132                 goto out;
5133         }
5134         if (mddev->pers) {
5135                 __md_stop_writes(mddev);
5136
5137                 err  = -ENXIO;
5138                 if (mddev->ro==1)
5139                         goto out;
5140                 mddev->ro = 1;
5141                 set_disk_ro(mddev->gendisk, 1);
5142                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5143                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5144                 err = 0;        
5145         }
5146 out:
5147         mutex_unlock(&mddev->open_mutex);
5148         return err;
5149 }
5150
5151 /* mode:
5152  *   0 - completely stop and dis-assemble array
5153  *   2 - stop but do not disassemble array
5154  */
5155 static int do_md_stop(struct mddev * mddev, int mode, int is_open)
5156 {
5157         struct gendisk *disk = mddev->gendisk;
5158         struct md_rdev *rdev;
5159
5160         mutex_lock(&mddev->open_mutex);
5161         if (atomic_read(&mddev->openers) > is_open ||
5162             mddev->sysfs_active) {
5163                 printk("md: %s still in use.\n",mdname(mddev));
5164                 mutex_unlock(&mddev->open_mutex);
5165                 return -EBUSY;
5166         }
5167
5168         if (mddev->pers) {
5169                 if (mddev->ro)
5170                         set_disk_ro(disk, 0);
5171
5172                 __md_stop_writes(mddev);
5173                 md_stop(mddev);
5174                 mddev->queue->merge_bvec_fn = NULL;
5175                 mddev->queue->backing_dev_info.congested_fn = NULL;
5176
5177                 /* tell userspace to handle 'inactive' */
5178                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5179
5180                 rdev_for_each(rdev, mddev)
5181                         if (rdev->raid_disk >= 0)
5182                                 sysfs_unlink_rdev(mddev, rdev);
5183
5184                 set_capacity(disk, 0);
5185                 mutex_unlock(&mddev->open_mutex);
5186                 mddev->changed = 1;
5187                 revalidate_disk(disk);
5188
5189                 if (mddev->ro)
5190                         mddev->ro = 0;
5191         } else
5192                 mutex_unlock(&mddev->open_mutex);
5193         /*
5194          * Free resources if final stop
5195          */
5196         if (mode == 0) {
5197                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5198
5199                 bitmap_destroy(mddev);
5200                 if (mddev->bitmap_info.file) {
5201                         restore_bitmap_write_access(mddev->bitmap_info.file);
5202                         fput(mddev->bitmap_info.file);
5203                         mddev->bitmap_info.file = NULL;
5204                 }
5205                 mddev->bitmap_info.offset = 0;
5206
5207                 export_array(mddev);
5208
5209                 md_clean(mddev);
5210                 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5211                 if (mddev->hold_active == UNTIL_STOP)
5212                         mddev->hold_active = 0;
5213         }
5214         blk_integrity_unregister(disk);
5215         md_new_event(mddev);
5216         sysfs_notify_dirent_safe(mddev->sysfs_state);
5217         return 0;
5218 }
5219
5220 #ifndef MODULE
5221 static void autorun_array(struct mddev *mddev)
5222 {
5223         struct md_rdev *rdev;
5224         int err;
5225
5226         if (list_empty(&mddev->disks))
5227                 return;
5228
5229         printk(KERN_INFO "md: running: ");
5230
5231         rdev_for_each(rdev, mddev) {
5232                 char b[BDEVNAME_SIZE];
5233                 printk("<%s>", bdevname(rdev->bdev,b));
5234         }
5235         printk("\n");
5236
5237         err = do_md_run(mddev);
5238         if (err) {
5239                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5240                 do_md_stop(mddev, 0, 0);
5241         }
5242 }
5243
5244 /*
5245  * lets try to run arrays based on all disks that have arrived
5246  * until now. (those are in pending_raid_disks)
5247  *
5248  * the method: pick the first pending disk, collect all disks with
5249  * the same UUID, remove all from the pending list and put them into
5250  * the 'same_array' list. Then order this list based on superblock
5251  * update time (freshest comes first), kick out 'old' disks and
5252  * compare superblocks. If everything's fine then run it.
5253  *
5254  * If "unit" is allocated, then bump its reference count
5255  */
5256 static void autorun_devices(int part)
5257 {
5258         struct md_rdev *rdev0, *rdev, *tmp;
5259         struct mddev *mddev;
5260         char b[BDEVNAME_SIZE];
5261
5262         printk(KERN_INFO "md: autorun ...\n");
5263         while (!list_empty(&pending_raid_disks)) {
5264                 int unit;
5265                 dev_t dev;
5266                 LIST_HEAD(candidates);
5267                 rdev0 = list_entry(pending_raid_disks.next,
5268                                          struct md_rdev, same_set);
5269
5270                 printk(KERN_INFO "md: considering %s ...\n",
5271                         bdevname(rdev0->bdev,b));
5272                 INIT_LIST_HEAD(&candidates);
5273                 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5274                         if (super_90_load(rdev, rdev0, 0) >= 0) {
5275                                 printk(KERN_INFO "md:  adding %s ...\n",
5276                                         bdevname(rdev->bdev,b));
5277                                 list_move(&rdev->same_set, &candidates);
5278                         }
5279                 /*
5280                  * now we have a set of devices, with all of them having
5281                  * mostly sane superblocks. It's time to allocate the
5282                  * mddev.
5283                  */
5284                 if (part) {
5285                         dev = MKDEV(mdp_major,
5286                                     rdev0->preferred_minor << MdpMinorShift);
5287                         unit = MINOR(dev) >> MdpMinorShift;
5288                 } else {
5289                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5290                         unit = MINOR(dev);
5291                 }
5292                 if (rdev0->preferred_minor != unit) {
5293                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5294                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5295                         break;
5296                 }
5297
5298                 md_probe(dev, NULL, NULL);
5299                 mddev = mddev_find(dev);
5300                 if (!mddev || !mddev->gendisk) {
5301                         if (mddev)
5302                                 mddev_put(mddev);
5303                         printk(KERN_ERR
5304                                 "md: cannot allocate memory for md drive.\n");
5305                         break;
5306                 }
5307                 if (mddev_lock(mddev)) 
5308                         printk(KERN_WARNING "md: %s locked, cannot run\n",
5309                                mdname(mddev));
5310                 else if (mddev->raid_disks || mddev->major_version
5311                          || !list_empty(&mddev->disks)) {
5312                         printk(KERN_WARNING 
5313                                 "md: %s already running, cannot run %s\n",
5314                                 mdname(mddev), bdevname(rdev0->bdev,b));
5315                         mddev_unlock(mddev);
5316                 } else {
5317                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
5318                         mddev->persistent = 1;
5319                         rdev_for_each_list(rdev, tmp, &candidates) {
5320                                 list_del_init(&rdev->same_set);
5321                                 if (bind_rdev_to_array(rdev, mddev))
5322                                         export_rdev(rdev);
5323                         }
5324                         autorun_array(mddev);
5325                         mddev_unlock(mddev);
5326                 }
5327                 /* on success, candidates will be empty, on error
5328                  * it won't...
5329                  */
5330                 rdev_for_each_list(rdev, tmp, &candidates) {
5331                         list_del_init(&rdev->same_set);
5332                         export_rdev(rdev);
5333                 }
5334                 mddev_put(mddev);
5335         }
5336         printk(KERN_INFO "md: ... autorun DONE.\n");
5337 }
5338 #endif /* !MODULE */
5339
5340 static int get_version(void __user * arg)
5341 {
5342         mdu_version_t ver;
5343
5344         ver.major = MD_MAJOR_VERSION;
5345         ver.minor = MD_MINOR_VERSION;
5346         ver.patchlevel = MD_PATCHLEVEL_VERSION;
5347
5348         if (copy_to_user(arg, &ver, sizeof(ver)))
5349                 return -EFAULT;
5350
5351         return 0;
5352 }
5353
5354 static int get_array_info(struct mddev * mddev, void __user * arg)
5355 {
5356         mdu_array_info_t info;
5357         int nr,working,insync,failed,spare;
5358         struct md_rdev *rdev;
5359
5360         nr=working=insync=failed=spare=0;
5361         rdev_for_each(rdev, mddev) {
5362                 nr++;
5363                 if (test_bit(Faulty, &rdev->flags))
5364                         failed++;
5365                 else {
5366                         working++;
5367                         if (test_bit(In_sync, &rdev->flags))
5368                                 insync++;       
5369                         else
5370                                 spare++;
5371                 }
5372         }
5373
5374         info.major_version = mddev->major_version;
5375         info.minor_version = mddev->minor_version;
5376         info.patch_version = MD_PATCHLEVEL_VERSION;
5377         info.ctime         = mddev->ctime;
5378         info.level         = mddev->level;
5379         info.size          = mddev->dev_sectors / 2;
5380         if (info.size != mddev->dev_sectors / 2) /* overflow */
5381                 info.size = -1;
5382         info.nr_disks      = nr;
5383         info.raid_disks    = mddev->raid_disks;
5384         info.md_minor      = mddev->md_minor;
5385         info.not_persistent= !mddev->persistent;
5386
5387         info.utime         = mddev->utime;
5388         info.state         = 0;
5389         if (mddev->in_sync)
5390                 info.state = (1<<MD_SB_CLEAN);
5391         if (mddev->bitmap && mddev->bitmap_info.offset)
5392                 info.state = (1<<MD_SB_BITMAP_PRESENT);
5393         info.active_disks  = insync;
5394         info.working_disks = working;
5395         info.failed_disks  = failed;
5396         info.spare_disks   = spare;
5397
5398         info.layout        = mddev->layout;
5399         info.chunk_size    = mddev->chunk_sectors << 9;
5400
5401         if (copy_to_user(arg, &info, sizeof(info)))
5402                 return -EFAULT;
5403
5404         return 0;
5405 }
5406
5407 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5408 {
5409         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5410         char *ptr, *buf = NULL;
5411         int err = -ENOMEM;
5412
5413         if (md_allow_write(mddev))
5414                 file = kmalloc(sizeof(*file), GFP_NOIO);
5415         else
5416                 file = kmalloc(sizeof(*file), GFP_KERNEL);
5417
5418         if (!file)
5419                 goto out;
5420
5421         /* bitmap disabled, zero the first byte and copy out */
5422         if (!mddev->bitmap || !mddev->bitmap->file) {
5423                 file->pathname[0] = '\0';
5424                 goto copy_out;
5425         }
5426
5427         buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5428         if (!buf)
5429                 goto out;
5430
5431         ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5432         if (IS_ERR(ptr))
5433                 goto out;
5434
5435         strcpy(file->pathname, ptr);
5436
5437 copy_out:
5438         err = 0;
5439         if (copy_to_user(arg, file, sizeof(*file)))
5440                 err = -EFAULT;
5441 out:
5442         kfree(buf);
5443         kfree(file);
5444         return err;
5445 }
5446
5447 static int get_disk_info(struct mddev * mddev, void __user * arg)
5448 {
5449         mdu_disk_info_t info;
5450         struct md_rdev *rdev;
5451
5452         if (copy_from_user(&info, arg, sizeof(info)))
5453                 return -EFAULT;
5454
5455         rdev = find_rdev_nr(mddev, info.number);
5456         if (rdev) {
5457                 info.major = MAJOR(rdev->bdev->bd_dev);
5458                 info.minor = MINOR(rdev->bdev->bd_dev);
5459                 info.raid_disk = rdev->raid_disk;
5460                 info.state = 0;
5461                 if (test_bit(Faulty, &rdev->flags))
5462                         info.state |= (1<<MD_DISK_FAULTY);
5463                 else if (test_bit(In_sync, &rdev->flags)) {
5464                         info.state |= (1<<MD_DISK_ACTIVE);
5465                         info.state |= (1<<MD_DISK_SYNC);
5466                 }
5467                 if (test_bit(WriteMostly, &rdev->flags))
5468                         info.state |= (1<<MD_DISK_WRITEMOSTLY);
5469         } else {
5470                 info.major = info.minor = 0;
5471                 info.raid_disk = -1;
5472                 info.state = (1<<MD_DISK_REMOVED);
5473         }
5474
5475         if (copy_to_user(arg, &info, sizeof(info)))
5476                 return -EFAULT;
5477
5478         return 0;
5479 }
5480
5481 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5482 {
5483         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5484         struct md_rdev *rdev;
5485         dev_t dev = MKDEV(info->major,info->minor);
5486
5487         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5488                 return -EOVERFLOW;
5489
5490         if (!mddev->raid_disks) {
5491                 int err;
5492                 /* expecting a device which has a superblock */
5493                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5494                 if (IS_ERR(rdev)) {
5495                         printk(KERN_WARNING 
5496                                 "md: md_import_device returned %ld\n",
5497                                 PTR_ERR(rdev));
5498                         return PTR_ERR(rdev);
5499                 }
5500                 if (!list_empty(&mddev->disks)) {
5501                         struct md_rdev *rdev0
5502                                 = list_entry(mddev->disks.next,
5503                                              struct md_rdev, same_set);
5504                         err = super_types[mddev->major_version]
5505                                 .load_super(rdev, rdev0, mddev->minor_version);
5506                         if (err < 0) {
5507                                 printk(KERN_WARNING 
5508                                         "md: %s has different UUID to %s\n",
5509                                         bdevname(rdev->bdev,b), 
5510                                         bdevname(rdev0->bdev,b2));
5511                                 export_rdev(rdev);
5512                                 return -EINVAL;
5513                         }
5514                 }
5515                 err = bind_rdev_to_array(rdev, mddev);
5516                 if (err)
5517                         export_rdev(rdev);
5518                 return err;
5519         }
5520
5521         /*
5522          * add_new_disk can be used once the array is assembled
5523          * to add "hot spares".  They must already have a superblock
5524          * written
5525          */
5526         if (mddev->pers) {
5527                 int err;
5528                 if (!mddev->pers->hot_add_disk) {
5529                         printk(KERN_WARNING 
5530                                 "%s: personality does not support diskops!\n",
5531                                mdname(mddev));
5532                         return -EINVAL;
5533                 }
5534                 if (mddev->persistent)
5535                         rdev = md_import_device(dev, mddev->major_version,
5536                                                 mddev->minor_version);
5537                 else
5538                         rdev = md_import_device(dev, -1, -1);
5539                 if (IS_ERR(rdev)) {
5540                         printk(KERN_WARNING 
5541                                 "md: md_import_device returned %ld\n",
5542                                 PTR_ERR(rdev));
5543                         return PTR_ERR(rdev);
5544                 }
5545                 /* set saved_raid_disk if appropriate */
5546                 if (!mddev->persistent) {
5547                         if (info->state & (1<<MD_DISK_SYNC)  &&
5548                             info->raid_disk < mddev->raid_disks) {
5549                                 rdev->raid_disk = info->raid_disk;
5550                                 set_bit(In_sync, &rdev->flags);
5551                         } else
5552                                 rdev->raid_disk = -1;
5553                 } else
5554                         super_types[mddev->major_version].
5555                                 validate_super(mddev, rdev);
5556                 if ((info->state & (1<<MD_DISK_SYNC)) &&
5557                     (!test_bit(In_sync, &rdev->flags) ||
5558                      rdev->raid_disk != info->raid_disk)) {
5559                         /* This was a hot-add request, but events doesn't
5560                          * match, so reject it.
5561                          */
5562                         export_rdev(rdev);
5563                         return -EINVAL;
5564                 }
5565
5566                 if (test_bit(In_sync, &rdev->flags))
5567                         rdev->saved_raid_disk = rdev->raid_disk;
5568                 else
5569                         rdev->saved_raid_disk = -1;
5570
5571                 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5572                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5573                         set_bit(WriteMostly, &rdev->flags);
5574                 else
5575                         clear_bit(WriteMostly, &rdev->flags);
5576
5577                 rdev->raid_disk = -1;
5578                 err = bind_rdev_to_array(rdev, mddev);
5579                 if (!err && !mddev->pers->hot_remove_disk) {
5580                         /* If there is hot_add_disk but no hot_remove_disk
5581                          * then added disks for geometry changes,
5582                          * and should be added immediately.
5583                          */
5584                         super_types[mddev->major_version].
5585                                 validate_super(mddev, rdev);
5586                         err = mddev->pers->hot_add_disk(mddev, rdev);
5587                         if (err)
5588                                 unbind_rdev_from_array(rdev);
5589                 }
5590                 if (err)
5591                         export_rdev(rdev);
5592                 else
5593                         sysfs_notify_dirent_safe(rdev->sysfs_state);
5594
5595                 md_update_sb(mddev, 1);
5596                 if (mddev->degraded)
5597                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5598                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5599                 if (!err)
5600                         md_new_event(mddev);
5601                 md_wakeup_thread(mddev->thread);
5602                 return err;
5603         }
5604
5605         /* otherwise, add_new_disk is only allowed
5606          * for major_version==0 superblocks
5607          */
5608         if (mddev->major_version != 0) {
5609                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5610                        mdname(mddev));
5611                 return -EINVAL;
5612         }
5613
5614         if (!(info->state & (1<<MD_DISK_FAULTY))) {
5615                 int err;
5616                 rdev = md_import_device(dev, -1, 0);
5617                 if (IS_ERR(rdev)) {
5618                         printk(KERN_WARNING 
5619                                 "md: error, md_import_device() returned %ld\n",
5620                                 PTR_ERR(rdev));
5621                         return PTR_ERR(rdev);
5622                 }
5623                 rdev->desc_nr = info->number;
5624                 if (info->raid_disk < mddev->raid_disks)
5625                         rdev->raid_disk = info->raid_disk;
5626                 else
5627                         rdev->raid_disk = -1;
5628
5629                 if (rdev->raid_disk < mddev->raid_disks)
5630                         if (info->state & (1<<MD_DISK_SYNC))
5631                                 set_bit(In_sync, &rdev->flags);
5632
5633                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5634                         set_bit(WriteMostly, &rdev->flags);
5635
5636                 if (!mddev->persistent) {
5637                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
5638                         rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5639                 } else
5640                         rdev->sb_start = calc_dev_sboffset(rdev);
5641                 rdev->sectors = rdev->sb_start;
5642
5643                 err = bind_rdev_to_array(rdev, mddev);
5644                 if (err) {
5645                         export_rdev(rdev);
5646                         return err;
5647                 }
5648         }
5649
5650         return 0;
5651 }
5652
5653 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5654 {
5655         char b[BDEVNAME_SIZE];
5656         struct md_rdev *rdev;
5657
5658         rdev = find_rdev(mddev, dev);
5659         if (!rdev)
5660                 return -ENXIO;
5661
5662         if (rdev->raid_disk >= 0)
5663                 goto busy;
5664
5665         kick_rdev_from_array(rdev);
5666         md_update_sb(mddev, 1);
5667         md_new_event(mddev);
5668
5669         return 0;
5670 busy:
5671         printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5672                 bdevname(rdev->bdev,b), mdname(mddev));
5673         return -EBUSY;
5674 }
5675
5676 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5677 {
5678         char b[BDEVNAME_SIZE];
5679         int err;
5680         struct md_rdev *rdev;
5681
5682         if (!mddev->pers)
5683                 return -ENODEV;
5684
5685         if (mddev->major_version != 0) {
5686                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5687                         " version-0 superblocks.\n",
5688                         mdname(mddev));
5689                 return -EINVAL;
5690         }
5691         if (!mddev->pers->hot_add_disk) {
5692                 printk(KERN_WARNING 
5693                         "%s: personality does not support diskops!\n",
5694                         mdname(mddev));
5695                 return -EINVAL;
5696         }
5697
5698         rdev = md_import_device(dev, -1, 0);
5699         if (IS_ERR(rdev)) {
5700                 printk(KERN_WARNING 
5701                         "md: error, md_import_device() returned %ld\n",
5702                         PTR_ERR(rdev));
5703                 return -EINVAL;
5704         }
5705
5706         if (mddev->persistent)
5707                 rdev->sb_start = calc_dev_sboffset(rdev);
5708         else
5709                 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5710
5711         rdev->sectors = rdev->sb_start;
5712
5713         if (test_bit(Faulty, &rdev->flags)) {
5714                 printk(KERN_WARNING 
5715                         "md: can not hot-add faulty %s disk to %s!\n",
5716                         bdevname(rdev->bdev,b), mdname(mddev));
5717                 err = -EINVAL;
5718                 goto abort_export;
5719         }
5720         clear_bit(In_sync, &rdev->flags);
5721         rdev->desc_nr = -1;
5722         rdev->saved_raid_disk = -1;
5723         err = bind_rdev_to_array(rdev, mddev);
5724         if (err)
5725                 goto abort_export;
5726
5727         /*
5728          * The rest should better be atomic, we can have disk failures
5729          * noticed in interrupt contexts ...
5730          */
5731
5732         rdev->raid_disk = -1;
5733
5734         md_update_sb(mddev, 1);
5735
5736         /*
5737          * Kick recovery, maybe this spare has to be added to the
5738          * array immediately.
5739          */
5740         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5741         md_wakeup_thread(mddev->thread);
5742         md_new_event(mddev);
5743         return 0;
5744
5745 abort_export:
5746         export_rdev(rdev);
5747         return err;
5748 }
5749
5750 static int set_bitmap_file(struct mddev *mddev, int fd)
5751 {
5752         int err;
5753
5754         if (mddev->pers) {
5755                 if (!mddev->pers->quiesce)
5756                         return -EBUSY;
5757                 if (mddev->recovery || mddev->sync_thread)
5758                         return -EBUSY;
5759                 /* we should be able to change the bitmap.. */
5760         }
5761
5762
5763         if (fd >= 0) {
5764                 if (mddev->bitmap)
5765                         return -EEXIST; /* cannot add when bitmap is present */
5766                 mddev->bitmap_info.file = fget(fd);
5767
5768                 if (mddev->bitmap_info.file == NULL) {
5769                         printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5770                                mdname(mddev));
5771                         return -EBADF;
5772                 }
5773
5774                 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5775                 if (err) {
5776                         printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5777                                mdname(mddev));
5778                         fput(mddev->bitmap_info.file);
5779                         mddev->bitmap_info.file = NULL;
5780                         return err;
5781                 }
5782                 mddev->bitmap_info.offset = 0; /* file overrides offset */
5783         } else if (mddev->bitmap == NULL)
5784                 return -ENOENT; /* cannot remove what isn't there */
5785         err = 0;
5786         if (mddev->pers) {
5787                 mddev->pers->quiesce(mddev, 1);
5788                 if (fd >= 0) {
5789                         err = bitmap_create(mddev);
5790                         if (!err)
5791                                 err = bitmap_load(mddev);
5792                 }
5793                 if (fd < 0 || err) {
5794                         bitmap_destroy(mddev);
5795                         fd = -1; /* make sure to put the file */
5796                 }
5797                 mddev->pers->quiesce(mddev, 0);
5798         }
5799         if (fd < 0) {
5800                 if (mddev->bitmap_info.file) {
5801                         restore_bitmap_write_access(mddev->bitmap_info.file);
5802                         fput(mddev->bitmap_info.file);
5803                 }
5804                 mddev->bitmap_info.file = NULL;
5805         }
5806
5807         return err;
5808 }
5809
5810 /*
5811  * set_array_info is used two different ways
5812  * The original usage is when creating a new array.
5813  * In this usage, raid_disks is > 0 and it together with
5814  *  level, size, not_persistent,layout,chunksize determine the
5815  *  shape of the array.
5816  *  This will always create an array with a type-0.90.0 superblock.
5817  * The newer usage is when assembling an array.
5818  *  In this case raid_disks will be 0, and the major_version field is
5819  *  use to determine which style super-blocks are to be found on the devices.
5820  *  The minor and patch _version numbers are also kept incase the
5821  *  super_block handler wishes to interpret them.
5822  */
5823 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
5824 {
5825
5826         if (info->raid_disks == 0) {
5827                 /* just setting version number for superblock loading */
5828                 if (info->major_version < 0 ||
5829                     info->major_version >= ARRAY_SIZE(super_types) ||
5830                     super_types[info->major_version].name == NULL) {
5831                         /* maybe try to auto-load a module? */
5832                         printk(KERN_INFO 
5833                                 "md: superblock version %d not known\n",
5834                                 info->major_version);
5835                         return -EINVAL;
5836                 }
5837                 mddev->major_version = info->major_version;
5838                 mddev->minor_version = info->minor_version;
5839                 mddev->patch_version = info->patch_version;
5840                 mddev->persistent = !info->not_persistent;
5841                 /* ensure mddev_put doesn't delete this now that there
5842                  * is some minimal configuration.
5843                  */
5844                 mddev->ctime         = get_seconds();
5845                 return 0;
5846         }
5847         mddev->major_version = MD_MAJOR_VERSION;
5848         mddev->minor_version = MD_MINOR_VERSION;
5849         mddev->patch_version = MD_PATCHLEVEL_VERSION;
5850         mddev->ctime         = get_seconds();
5851
5852         mddev->level         = info->level;
5853         mddev->clevel[0]     = 0;
5854         mddev->dev_sectors   = 2 * (sector_t)info->size;
5855         mddev->raid_disks    = info->raid_disks;
5856         /* don't set md_minor, it is determined by which /dev/md* was
5857          * openned
5858          */
5859         if (info->state & (1<<MD_SB_CLEAN))
5860                 mddev->recovery_cp = MaxSector;
5861         else
5862                 mddev->recovery_cp = 0;
5863         mddev->persistent    = ! info->not_persistent;
5864         mddev->external      = 0;
5865
5866         mddev->layout        = info->layout;
5867         mddev->chunk_sectors = info->chunk_size >> 9;
5868
5869         mddev->max_disks     = MD_SB_DISKS;
5870
5871         if (mddev->persistent)
5872                 mddev->flags         = 0;
5873         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5874
5875         mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5876         mddev->bitmap_info.offset = 0;
5877
5878         mddev->reshape_position = MaxSector;
5879
5880         /*
5881          * Generate a 128 bit UUID
5882          */
5883         get_random_bytes(mddev->uuid, 16);
5884
5885         mddev->new_level = mddev->level;
5886         mddev->new_chunk_sectors = mddev->chunk_sectors;
5887         mddev->new_layout = mddev->layout;
5888         mddev->delta_disks = 0;
5889
5890         return 0;
5891 }
5892
5893 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
5894 {
5895         WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5896
5897         if (mddev->external_size)
5898                 return;
5899
5900         mddev->array_sectors = array_sectors;
5901 }
5902 EXPORT_SYMBOL(md_set_array_sectors);
5903
5904 static int update_size(struct mddev *mddev, sector_t num_sectors)
5905 {
5906         struct md_rdev *rdev;
5907         int rv;
5908         int fit = (num_sectors == 0);
5909
5910         if (mddev->pers->resize == NULL)
5911                 return -EINVAL;
5912         /* The "num_sectors" is the number of sectors of each device that
5913          * is used.  This can only make sense for arrays with redundancy.
5914          * linear and raid0 always use whatever space is available. We can only
5915          * consider changing this number if no resync or reconstruction is
5916          * happening, and if the new size is acceptable. It must fit before the
5917          * sb_start or, if that is <data_offset, it must fit before the size
5918          * of each device.  If num_sectors is zero, we find the largest size
5919          * that fits.
5920          */
5921         if (mddev->sync_thread)
5922                 return -EBUSY;
5923         if (mddev->bitmap)
5924                 /* Sorry, cannot grow a bitmap yet, just remove it,
5925                  * grow, and re-add.
5926                  */
5927                 return -EBUSY;
5928         rdev_for_each(rdev, mddev) {
5929                 sector_t avail = rdev->sectors;
5930
5931                 if (fit && (num_sectors == 0 || num_sectors > avail))
5932                         num_sectors = avail;
5933                 if (avail < num_sectors)
5934                         return -ENOSPC;
5935         }
5936         rv = mddev->pers->resize(mddev, num_sectors);
5937         if (!rv)
5938                 revalidate_disk(mddev->gendisk);
5939         return rv;
5940 }
5941
5942 static int update_raid_disks(struct mddev *mddev, int raid_disks)
5943 {
5944         int rv;
5945         /* change the number of raid disks */
5946         if (mddev->pers->check_reshape == NULL)
5947                 return -EINVAL;
5948         if (raid_disks <= 0 ||
5949             (mddev->max_disks && raid_disks >= mddev->max_disks))
5950                 return -EINVAL;
5951         if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5952                 return -EBUSY;
5953         mddev->delta_disks = raid_disks - mddev->raid_disks;
5954
5955         rv = mddev->pers->check_reshape(mddev);
5956         if (rv < 0)
5957                 mddev->delta_disks = 0;
5958         return rv;
5959 }
5960
5961
5962 /*
5963  * update_array_info is used to change the configuration of an
5964  * on-line array.
5965  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5966  * fields in the info are checked against the array.
5967  * Any differences that cannot be handled will cause an error.
5968  * Normally, only one change can be managed at a time.
5969  */
5970 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
5971 {
5972         int rv = 0;
5973         int cnt = 0;
5974         int state = 0;
5975
5976         /* calculate expected state,ignoring low bits */
5977         if (mddev->bitmap && mddev->bitmap_info.offset)
5978                 state |= (1 << MD_SB_BITMAP_PRESENT);
5979
5980         if (mddev->major_version != info->major_version ||
5981             mddev->minor_version != info->minor_version ||
5982 /*          mddev->patch_version != info->patch_version || */
5983             mddev->ctime         != info->ctime         ||
5984             mddev->level         != info->level         ||
5985 /*          mddev->layout        != info->layout        || */
5986             !mddev->persistent   != info->not_persistent||
5987             mddev->chunk_sectors != info->chunk_size >> 9 ||
5988             /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5989             ((state^info->state) & 0xfffffe00)
5990                 )
5991                 return -EINVAL;
5992         /* Check there is only one change */
5993         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5994                 cnt++;
5995         if (mddev->raid_disks != info->raid_disks)
5996                 cnt++;
5997         if (mddev->layout != info->layout)
5998                 cnt++;
5999         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6000                 cnt++;
6001         if (cnt == 0)
6002                 return 0;
6003         if (cnt > 1)
6004                 return -EINVAL;
6005
6006         if (mddev->layout != info->layout) {
6007                 /* Change layout
6008                  * we don't need to do anything at the md level, the
6009                  * personality will take care of it all.
6010                  */
6011                 if (mddev->pers->check_reshape == NULL)
6012                         return -EINVAL;
6013                 else {
6014                         mddev->new_layout = info->layout;
6015                         rv = mddev->pers->check_reshape(mddev);
6016                         if (rv)
6017                                 mddev->new_layout = mddev->layout;
6018                         return rv;
6019                 }
6020         }
6021         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6022                 rv = update_size(mddev, (sector_t)info->size * 2);
6023
6024         if (mddev->raid_disks    != info->raid_disks)
6025                 rv = update_raid_disks(mddev, info->raid_disks);
6026
6027         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6028                 if (mddev->pers->quiesce == NULL)
6029                         return -EINVAL;
6030                 if (mddev->recovery || mddev->sync_thread)
6031                         return -EBUSY;
6032                 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6033                         /* add the bitmap */
6034                         if (mddev->bitmap)
6035                                 return -EEXIST;
6036                         if (mddev->bitmap_info.default_offset == 0)
6037                                 return -EINVAL;
6038                         mddev->bitmap_info.offset =
6039                                 mddev->bitmap_info.default_offset;
6040                         mddev->pers->quiesce(mddev, 1);
6041                         rv = bitmap_create(mddev);
6042                         if (!rv)
6043                                 rv = bitmap_load(mddev);
6044                         if (rv)
6045                                 bitmap_destroy(mddev);
6046                         mddev->pers->quiesce(mddev, 0);
6047                 } else {
6048                         /* remove the bitmap */
6049                         if (!mddev->bitmap)
6050                                 return -ENOENT;
6051                         if (mddev->bitmap->file)
6052                                 return -EINVAL;
6053                         mddev->pers->quiesce(mddev, 1);
6054                         bitmap_destroy(mddev);
6055                         mddev->pers->quiesce(mddev, 0);
6056                         mddev->bitmap_info.offset = 0;
6057                 }
6058         }
6059         md_update_sb(mddev, 1);
6060         return rv;
6061 }
6062
6063 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6064 {
6065         struct md_rdev *rdev;
6066
6067         if (mddev->pers == NULL)
6068                 return -ENODEV;
6069
6070         rdev = find_rdev(mddev, dev);
6071         if (!rdev)
6072                 return -ENODEV;
6073
6074         md_error(mddev, rdev);
6075         if (!test_bit(Faulty, &rdev->flags))
6076                 return -EBUSY;
6077         return 0;
6078 }
6079
6080 /*
6081  * We have a problem here : there is no easy way to give a CHS
6082  * virtual geometry. We currently pretend that we have a 2 heads
6083  * 4 sectors (with a BIG number of cylinders...). This drives
6084  * dosfs just mad... ;-)
6085  */
6086 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6087 {
6088         struct mddev *mddev = bdev->bd_disk->private_data;
6089
6090         geo->heads = 2;
6091         geo->sectors = 4;
6092         geo->cylinders = mddev->array_sectors / 8;
6093         return 0;
6094 }
6095
6096 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6097                         unsigned int cmd, unsigned long arg)
6098 {
6099         int err = 0;
6100         void __user *argp = (void __user *)arg;
6101         struct mddev *mddev = NULL;
6102         int ro;
6103
6104         switch (cmd) {
6105         case RAID_VERSION:
6106         case GET_ARRAY_INFO:
6107         case GET_DISK_INFO:
6108                 break;
6109         default:
6110                 if (!capable(CAP_SYS_ADMIN))
6111                         return -EACCES;
6112         }
6113
6114         /*
6115          * Commands dealing with the RAID driver but not any
6116          * particular array:
6117          */
6118         switch (cmd)
6119         {
6120                 case RAID_VERSION:
6121                         err = get_version(argp);
6122                         goto done;
6123
6124                 case PRINT_RAID_DEBUG:
6125                         err = 0;
6126                         md_print_devices();
6127                         goto done;
6128
6129 #ifndef MODULE
6130                 case RAID_AUTORUN:
6131                         err = 0;
6132                         autostart_arrays(arg);
6133                         goto done;
6134 #endif
6135                 default:;
6136         }
6137
6138         /*
6139          * Commands creating/starting a new array:
6140          */
6141
6142         mddev = bdev->bd_disk->private_data;
6143
6144         if (!mddev) {
6145                 BUG();
6146                 goto abort;
6147         }
6148
6149         err = mddev_lock(mddev);
6150         if (err) {
6151                 printk(KERN_INFO 
6152                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
6153                         err, cmd);
6154                 goto abort;
6155         }
6156
6157         switch (cmd)
6158         {
6159                 case SET_ARRAY_INFO:
6160                         {
6161                                 mdu_array_info_t info;
6162                                 if (!arg)
6163                                         memset(&info, 0, sizeof(info));
6164                                 else if (copy_from_user(&info, argp, sizeof(info))) {
6165                                         err = -EFAULT;
6166                                         goto abort_unlock;
6167                                 }
6168                                 if (mddev->pers) {
6169                                         err = update_array_info(mddev, &info);
6170                                         if (err) {
6171                                                 printk(KERN_WARNING "md: couldn't update"
6172                                                        " array info. %d\n", err);
6173                                                 goto abort_unlock;
6174                                         }
6175                                         goto done_unlock;
6176                                 }
6177                                 if (!list_empty(&mddev->disks)) {
6178                                         printk(KERN_WARNING
6179                                                "md: array %s already has disks!\n",
6180                                                mdname(mddev));
6181                                         err = -EBUSY;
6182                                         goto abort_unlock;
6183                                 }
6184                                 if (mddev->raid_disks) {
6185                                         printk(KERN_WARNING
6186                                                "md: array %s already initialised!\n",
6187                                                mdname(mddev));
6188                                         err = -EBUSY;
6189                                         goto abort_unlock;
6190                                 }
6191                                 err = set_array_info(mddev, &info);
6192                                 if (err) {
6193                                         printk(KERN_WARNING "md: couldn't set"
6194                                                " array info. %d\n", err);
6195                                         goto abort_unlock;
6196                                 }
6197                         }
6198                         goto done_unlock;
6199
6200                 default:;
6201         }
6202
6203         /*
6204          * Commands querying/configuring an existing array:
6205          */
6206         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6207          * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6208         if ((!mddev->raid_disks && !mddev->external)
6209             && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6210             && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6211             && cmd != GET_BITMAP_FILE) {
6212                 err = -ENODEV;
6213                 goto abort_unlock;
6214         }
6215
6216         /*
6217          * Commands even a read-only array can execute:
6218          */
6219         switch (cmd)
6220         {
6221                 case GET_ARRAY_INFO:
6222                         err = get_array_info(mddev, argp);
6223                         goto done_unlock;
6224
6225                 case GET_BITMAP_FILE:
6226                         err = get_bitmap_file(mddev, argp);
6227                         goto done_unlock;
6228
6229                 case GET_DISK_INFO:
6230                         err = get_disk_info(mddev, argp);
6231                         goto done_unlock;
6232
6233                 case RESTART_ARRAY_RW:
6234                         err = restart_array(mddev);
6235                         goto done_unlock;
6236
6237                 case STOP_ARRAY:
6238                         err = do_md_stop(mddev, 0, 1);
6239                         goto done_unlock;
6240
6241                 case STOP_ARRAY_RO:
6242                         err = md_set_readonly(mddev, 1);
6243                         goto done_unlock;
6244
6245                 case BLKROSET:
6246                         if (get_user(ro, (int __user *)(arg))) {
6247                                 err = -EFAULT;
6248                                 goto done_unlock;
6249                         }
6250                         err = -EINVAL;
6251
6252                         /* if the bdev is going readonly the value of mddev->ro
6253                          * does not matter, no writes are coming
6254                          */
6255                         if (ro)
6256                                 goto done_unlock;
6257
6258                         /* are we are already prepared for writes? */
6259                         if (mddev->ro != 1)
6260                                 goto done_unlock;
6261
6262                         /* transitioning to readauto need only happen for
6263                          * arrays that call md_write_start
6264                          */
6265                         if (mddev->pers) {
6266                                 err = restart_array(mddev);
6267                                 if (err == 0) {
6268                                         mddev->ro = 2;
6269                                         set_disk_ro(mddev->gendisk, 0);
6270                                 }
6271                         }
6272                         goto done_unlock;
6273         }
6274
6275         /*
6276          * The remaining ioctls are changing the state of the
6277          * superblock, so we do not allow them on read-only arrays.
6278          * However non-MD ioctls (e.g. get-size) will still come through
6279          * here and hit the 'default' below, so only disallow
6280          * 'md' ioctls, and switch to rw mode if started auto-readonly.
6281          */
6282         if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6283                 if (mddev->ro == 2) {
6284                         mddev->ro = 0;
6285                         sysfs_notify_dirent_safe(mddev->sysfs_state);
6286                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6287                         md_wakeup_thread(mddev->thread);
6288                 } else {
6289                         err = -EROFS;
6290                         goto abort_unlock;
6291                 }
6292         }
6293
6294         switch (cmd)
6295         {
6296                 case ADD_NEW_DISK:
6297                 {
6298                         mdu_disk_info_t info;
6299                         if (copy_from_user(&info, argp, sizeof(info)))
6300                                 err = -EFAULT;
6301                         else
6302                                 err = add_new_disk(mddev, &info);
6303                         goto done_unlock;
6304                 }
6305
6306                 case HOT_REMOVE_DISK:
6307                         err = hot_remove_disk(mddev, new_decode_dev(arg));
6308                         goto done_unlock;
6309
6310                 case HOT_ADD_DISK:
6311                         err = hot_add_disk(mddev, new_decode_dev(arg));
6312                         goto done_unlock;
6313
6314                 case SET_DISK_FAULTY:
6315                         err = set_disk_faulty(mddev, new_decode_dev(arg));
6316                         goto done_unlock;
6317
6318                 case RUN_ARRAY:
6319                         err = do_md_run(mddev);
6320                         goto done_unlock;
6321
6322                 case SET_BITMAP_FILE:
6323                         err = set_bitmap_file(mddev, (int)arg);
6324                         goto done_unlock;
6325
6326                 default:
6327                         err = -EINVAL;
6328                         goto abort_unlock;
6329         }
6330
6331 done_unlock:
6332 abort_unlock:
6333         if (mddev->hold_active == UNTIL_IOCTL &&
6334             err != -EINVAL)
6335                 mddev->hold_active = 0;
6336         mddev_unlock(mddev);
6337
6338         return err;
6339 done:
6340         if (err)
6341                 MD_BUG();
6342 abort:
6343         return err;
6344 }
6345 #ifdef CONFIG_COMPAT
6346 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6347                     unsigned int cmd, unsigned long arg)
6348 {
6349         switch (cmd) {
6350         case HOT_REMOVE_DISK:
6351         case HOT_ADD_DISK:
6352         case SET_DISK_FAULTY:
6353         case SET_BITMAP_FILE:
6354                 /* These take in integer arg, do not convert */
6355                 break;
6356         default:
6357                 arg = (unsigned long)compat_ptr(arg);
6358                 break;
6359         }
6360
6361         return md_ioctl(bdev, mode, cmd, arg);
6362 }
6363 #endif /* CONFIG_COMPAT */
6364
6365 static int md_open(struct block_device *bdev, fmode_t mode)
6366 {
6367         /*
6368          * Succeed if we can lock the mddev, which confirms that
6369          * it isn't being stopped right now.
6370          */
6371         struct mddev *mddev = mddev_find(bdev->bd_dev);
6372         int err;
6373
6374         if (mddev->gendisk != bdev->bd_disk) {
6375                 /* we are racing with mddev_put which is discarding this
6376                  * bd_disk.
6377                  */
6378                 mddev_put(mddev);
6379                 /* Wait until bdev->bd_disk is definitely gone */
6380                 flush_workqueue(md_misc_wq);
6381                 /* Then retry the open from the top */
6382                 return -ERESTARTSYS;
6383         }
6384         BUG_ON(mddev != bdev->bd_disk->private_data);
6385
6386         if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6387                 goto out;
6388
6389         err = 0;
6390         atomic_inc(&mddev->openers);
6391         mutex_unlock(&mddev->open_mutex);
6392
6393         check_disk_change(bdev);
6394  out:
6395         return err;
6396 }
6397
6398 static int md_release(struct gendisk *disk, fmode_t mode)
6399 {
6400         struct mddev *mddev = disk->private_data;
6401
6402         BUG_ON(!mddev);
6403         atomic_dec(&mddev->openers);
6404         mddev_put(mddev);
6405
6406         return 0;
6407 }
6408
6409 static int md_media_changed(struct gendisk *disk)
6410 {
6411         struct mddev *mddev = disk->private_data;
6412
6413         return mddev->changed;
6414 }
6415
6416 static int md_revalidate(struct gendisk *disk)
6417 {
6418         struct mddev *mddev = disk->private_data;
6419
6420         mddev->changed = 0;
6421         return 0;
6422 }
6423 static const struct block_device_operations md_fops =
6424 {
6425         .owner          = THIS_MODULE,
6426         .open           = md_open,
6427         .release        = md_release,
6428         .ioctl          = md_ioctl,
6429 #ifdef CONFIG_COMPAT
6430         .compat_ioctl   = md_compat_ioctl,
6431 #endif
6432         .getgeo         = md_getgeo,
6433         .media_changed  = md_media_changed,
6434         .revalidate_disk= md_revalidate,
6435 };
6436
6437 static int md_thread(void * arg)
6438 {
6439         struct md_thread *thread = arg;
6440
6441         /*
6442          * md_thread is a 'system-thread', it's priority should be very
6443          * high. We avoid resource deadlocks individually in each
6444          * raid personality. (RAID5 does preallocation) We also use RR and
6445          * the very same RT priority as kswapd, thus we will never get
6446          * into a priority inversion deadlock.
6447          *
6448          * we definitely have to have equal or higher priority than
6449          * bdflush, otherwise bdflush will deadlock if there are too
6450          * many dirty RAID5 blocks.
6451          */
6452
6453         allow_signal(SIGKILL);
6454         while (!kthread_should_stop()) {
6455
6456                 /* We need to wait INTERRUPTIBLE so that
6457                  * we don't add to the load-average.
6458                  * That means we need to be sure no signals are
6459                  * pending
6460                  */
6461                 if (signal_pending(current))
6462                         flush_signals(current);
6463
6464                 wait_event_interruptible_timeout
6465                         (thread->wqueue,
6466                          test_bit(THREAD_WAKEUP, &thread->flags)
6467                          || kthread_should_stop(),
6468                          thread->timeout);
6469
6470                 clear_bit(THREAD_WAKEUP, &thread->flags);
6471                 if (!kthread_should_stop())
6472                         thread->run(thread->mddev);
6473         }
6474
6475         return 0;
6476 }
6477
6478 void md_wakeup_thread(struct md_thread *thread)
6479 {
6480         if (thread) {
6481                 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6482                 set_bit(THREAD_WAKEUP, &thread->flags);
6483                 wake_up(&thread->wqueue);
6484         }
6485 }
6486
6487 struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev,
6488                                  const char *name)
6489 {
6490         struct md_thread *thread;
6491
6492         thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6493         if (!thread)
6494                 return NULL;
6495
6496         init_waitqueue_head(&thread->wqueue);
6497
6498         thread->run = run;
6499         thread->mddev = mddev;
6500         thread->timeout = MAX_SCHEDULE_TIMEOUT;
6501         thread->tsk = kthread_run(md_thread, thread,
6502                                   "%s_%s",
6503                                   mdname(thread->mddev),
6504                                   name ?: mddev->pers->name);
6505         if (IS_ERR(thread->tsk)) {
6506                 kfree(thread);
6507                 return NULL;
6508         }
6509         return thread;
6510 }
6511
6512 void md_unregister_thread(struct md_thread **threadp)
6513 {
6514         struct md_thread *thread = *threadp;
6515         if (!thread)
6516                 return;
6517         pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6518         /* Locking ensures that mddev_unlock does not wake_up a
6519          * non-existent thread
6520          */
6521         spin_lock(&pers_lock);
6522         *threadp = NULL;
6523         spin_unlock(&pers_lock);
6524
6525         kthread_stop(thread->tsk);
6526         kfree(thread);
6527 }
6528
6529 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6530 {
6531         if (!mddev) {
6532                 MD_BUG();
6533                 return;
6534         }
6535
6536         if (!rdev || test_bit(Faulty, &rdev->flags))
6537                 return;
6538
6539         if (!mddev->pers || !mddev->pers->error_handler)
6540                 return;
6541         mddev->pers->error_handler(mddev,rdev);
6542         if (mddev->degraded)
6543                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6544         sysfs_notify_dirent_safe(rdev->sysfs_state);
6545         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6546         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6547         md_wakeup_thread(mddev->thread);
6548         if (mddev->event_work.func)
6549                 queue_work(md_misc_wq, &mddev->event_work);
6550         md_new_event_inintr(mddev);
6551 }
6552
6553 /* seq_file implementation /proc/mdstat */
6554
6555 static void status_unused(struct seq_file *seq)
6556 {
6557         int i = 0;
6558         struct md_rdev *rdev;
6559
6560         seq_printf(seq, "unused devices: ");
6561
6562         list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6563                 char b[BDEVNAME_SIZE];
6564                 i++;
6565                 seq_printf(seq, "%s ",
6566                               bdevname(rdev->bdev,b));
6567         }
6568         if (!i)
6569                 seq_printf(seq, "<none>");
6570
6571         seq_printf(seq, "\n");
6572 }
6573
6574
6575 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6576 {
6577         sector_t max_sectors, resync, res;
6578         unsigned long dt, db;
6579         sector_t rt;
6580         int scale;
6581         unsigned int per_milli;
6582
6583         resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6584
6585         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6586                 max_sectors = mddev->resync_max_sectors;
6587         else
6588                 max_sectors = mddev->dev_sectors;
6589
6590         /*
6591          * Should not happen.
6592          */
6593         if (!max_sectors) {
6594                 MD_BUG();
6595                 return;
6596         }
6597         /* Pick 'scale' such that (resync>>scale)*1000 will fit
6598          * in a sector_t, and (max_sectors>>scale) will fit in a
6599          * u32, as those are the requirements for sector_div.
6600          * Thus 'scale' must be at least 10
6601          */
6602         scale = 10;
6603         if (sizeof(sector_t) > sizeof(unsigned long)) {
6604                 while ( max_sectors/2 > (1ULL<<(scale+32)))
6605                         scale++;
6606         }
6607         res = (resync>>scale)*1000;
6608         sector_div(res, (u32)((max_sectors>>scale)+1));
6609
6610         per_milli = res;
6611         {
6612                 int i, x = per_milli/50, y = 20-x;
6613                 seq_printf(seq, "[");
6614                 for (i = 0; i < x; i++)
6615                         seq_printf(seq, "=");
6616                 seq_printf(seq, ">");
6617                 for (i = 0; i < y; i++)
6618                         seq_printf(seq, ".");
6619                 seq_printf(seq, "] ");
6620         }
6621         seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6622                    (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6623                     "reshape" :
6624                     (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6625                      "check" :
6626                      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6627                       "resync" : "recovery"))),
6628                    per_milli/10, per_milli % 10,
6629                    (unsigned long long) resync/2,
6630                    (unsigned long long) max_sectors/2);
6631
6632         /*
6633          * dt: time from mark until now
6634          * db: blocks written from mark until now
6635          * rt: remaining time
6636          *
6637          * rt is a sector_t, so could be 32bit or 64bit.
6638          * So we divide before multiply in case it is 32bit and close
6639          * to the limit.
6640          * We scale the divisor (db) by 32 to avoid losing precision
6641          * near the end of resync when the number of remaining sectors
6642          * is close to 'db'.
6643          * We then divide rt by 32 after multiplying by db to compensate.
6644          * The '+1' avoids division by zero if db is very small.
6645          */
6646         dt = ((jiffies - mddev->resync_mark) / HZ);
6647         if (!dt) dt++;
6648         db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6649                 - mddev->resync_mark_cnt;
6650
6651         rt = max_sectors - resync;    /* number of remaining sectors */
6652         sector_div(rt, db/32+1);
6653         rt *= dt;
6654         rt >>= 5;
6655
6656         seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6657                    ((unsigned long)rt % 60)/6);
6658
6659         seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6660 }
6661
6662 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6663 {
6664         struct list_head *tmp;
6665         loff_t l = *pos;
6666         struct mddev *mddev;
6667
6668         if (l >= 0x10000)
6669                 return NULL;
6670         if (!l--)
6671                 /* header */
6672                 return (void*)1;
6673
6674         spin_lock(&all_mddevs_lock);
6675         list_for_each(tmp,&all_mddevs)
6676                 if (!l--) {
6677                         mddev = list_entry(tmp, struct mddev, all_mddevs);
6678                         mddev_get(mddev);
6679                         spin_unlock(&all_mddevs_lock);
6680                         return mddev;
6681                 }
6682         spin_unlock(&all_mddevs_lock);
6683         if (!l--)
6684                 return (void*)2;/* tail */
6685         return NULL;
6686 }
6687
6688 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6689 {
6690         struct list_head *tmp;
6691         struct mddev *next_mddev, *mddev = v;
6692         
6693         ++*pos;
6694         if (v == (void*)2)
6695                 return NULL;
6696
6697         spin_lock(&all_mddevs_lock);
6698         if (v == (void*)1)
6699                 tmp = all_mddevs.next;
6700         else
6701                 tmp = mddev->all_mddevs.next;
6702         if (tmp != &all_mddevs)
6703                 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6704         else {
6705                 next_mddev = (void*)2;
6706                 *pos = 0x10000;
6707         }               
6708         spin_unlock(&all_mddevs_lock);
6709
6710         if (v != (void*)1)
6711                 mddev_put(mddev);
6712         return next_mddev;
6713
6714 }
6715
6716 static void md_seq_stop(struct seq_file *seq, void *v)
6717 {
6718         struct mddev *mddev = v;
6719
6720         if (mddev && v != (void*)1 && v != (void*)2)
6721                 mddev_put(mddev);
6722 }
6723
6724 static int md_seq_show(struct seq_file *seq, void *v)
6725 {
6726         struct mddev *mddev = v;
6727         sector_t sectors;
6728         struct md_rdev *rdev;
6729
6730         if (v == (void*)1) {
6731                 struct md_personality *pers;
6732                 seq_printf(seq, "Personalities : ");
6733                 spin_lock(&pers_lock);
6734                 list_for_each_entry(pers, &pers_list, list)
6735                         seq_printf(seq, "[%s] ", pers->name);
6736
6737                 spin_unlock(&pers_lock);
6738                 seq_printf(seq, "\n");
6739                 seq->poll_event = atomic_read(&md_event_count);
6740                 return 0;
6741         }
6742         if (v == (void*)2) {
6743                 status_unused(seq);
6744                 return 0;
6745         }
6746
6747         if (mddev_lock(mddev) < 0)
6748                 return -EINTR;
6749
6750         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6751                 seq_printf(seq, "%s : %sactive", mdname(mddev),
6752                                                 mddev->pers ? "" : "in");
6753                 if (mddev->pers) {
6754                         if (mddev->ro==1)
6755                                 seq_printf(seq, " (read-only)");
6756                         if (mddev->ro==2)
6757                                 seq_printf(seq, " (auto-read-only)");
6758                         seq_printf(seq, " %s", mddev->pers->name);
6759                 }
6760
6761                 sectors = 0;
6762                 rdev_for_each(rdev, mddev) {
6763                         char b[BDEVNAME_SIZE];
6764                         seq_printf(seq, " %s[%d]",
6765                                 bdevname(rdev->bdev,b), rdev->desc_nr);
6766                         if (test_bit(WriteMostly, &rdev->flags))
6767                                 seq_printf(seq, "(W)");
6768                         if (test_bit(Faulty, &rdev->flags)) {
6769                                 seq_printf(seq, "(F)");
6770                                 continue;
6771                         }
6772                         if (rdev->raid_disk < 0)
6773                                 seq_printf(seq, "(S)"); /* spare */
6774                         if (test_bit(Replacement, &rdev->flags))
6775                                 seq_printf(seq, "(R)");
6776                         sectors += rdev->sectors;
6777                 }
6778
6779                 if (!list_empty(&mddev->disks)) {
6780                         if (mddev->pers)
6781                                 seq_printf(seq, "\n      %llu blocks",
6782                                            (unsigned long long)
6783                                            mddev->array_sectors / 2);
6784                         else
6785                                 seq_printf(seq, "\n      %llu blocks",
6786                                            (unsigned long long)sectors / 2);
6787                 }
6788                 if (mddev->persistent) {
6789                         if (mddev->major_version != 0 ||
6790                             mddev->minor_version != 90) {
6791                                 seq_printf(seq," super %d.%d",
6792                                            mddev->major_version,
6793                                            mddev->minor_version);
6794                         }
6795                 } else if (mddev->external)
6796                         seq_printf(seq, " super external:%s",
6797                                    mddev->metadata_type);
6798                 else
6799                         seq_printf(seq, " super non-persistent");
6800
6801                 if (mddev->pers) {
6802                         mddev->pers->status(seq, mddev);
6803                         seq_printf(seq, "\n      ");
6804                         if (mddev->pers->sync_request) {
6805                                 if (mddev->curr_resync > 2) {
6806                                         status_resync(seq, mddev);
6807                                         seq_printf(seq, "\n      ");
6808                                 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6809                                         seq_printf(seq, "\tresync=DELAYED\n      ");
6810                                 else if (mddev->recovery_cp < MaxSector)
6811                                         seq_printf(seq, "\tresync=PENDING\n      ");
6812                         }
6813                 } else
6814                         seq_printf(seq, "\n       ");
6815
6816                 bitmap_status(seq, mddev->bitmap);
6817
6818                 seq_printf(seq, "\n");
6819         }
6820         mddev_unlock(mddev);
6821         
6822         return 0;
6823 }
6824
6825 static const struct seq_operations md_seq_ops = {
6826         .start  = md_seq_start,
6827         .next   = md_seq_next,
6828         .stop   = md_seq_stop,
6829         .show   = md_seq_show,
6830 };
6831
6832 static int md_seq_open(struct inode *inode, struct file *file)
6833 {
6834         struct seq_file *seq;
6835         int error;
6836
6837         error = seq_open(file, &md_seq_ops);
6838         if (error)
6839                 return error;
6840
6841         seq = file->private_data;
6842         seq->poll_event = atomic_read(&md_event_count);
6843         return error;
6844 }
6845
6846 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6847 {
6848         struct seq_file *seq = filp->private_data;
6849         int mask;
6850
6851         poll_wait(filp, &md_event_waiters, wait);
6852
6853         /* always allow read */
6854         mask = POLLIN | POLLRDNORM;
6855
6856         if (seq->poll_event != atomic_read(&md_event_count))
6857                 mask |= POLLERR | POLLPRI;
6858         return mask;
6859 }
6860
6861 static const struct file_operations md_seq_fops = {
6862         .owner          = THIS_MODULE,
6863         .open           = md_seq_open,
6864         .read           = seq_read,
6865         .llseek         = seq_lseek,
6866         .release        = seq_release_private,
6867         .poll           = mdstat_poll,
6868 };
6869
6870 int register_md_personality(struct md_personality *p)
6871 {
6872         spin_lock(&pers_lock);
6873         list_add_tail(&p->list, &pers_list);
6874         printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6875         spin_unlock(&pers_lock);
6876         return 0;
6877 }
6878
6879 int unregister_md_personality(struct md_personality *p)
6880 {
6881         printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6882         spin_lock(&pers_lock);
6883         list_del_init(&p->list);
6884         spin_unlock(&pers_lock);
6885         return 0;
6886 }
6887
6888 static int is_mddev_idle(struct mddev *mddev, int init)
6889 {
6890         struct md_rdev * rdev;
6891         int idle;
6892         int curr_events;
6893
6894         idle = 1;
6895         rcu_read_lock();
6896         rdev_for_each_rcu(rdev, mddev) {
6897                 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6898                 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6899                               (int)part_stat_read(&disk->part0, sectors[1]) -
6900                               atomic_read(&disk->sync_io);
6901                 /* sync IO will cause sync_io to increase before the disk_stats
6902                  * as sync_io is counted when a request starts, and
6903                  * disk_stats is counted when it completes.
6904                  * So resync activity will cause curr_events to be smaller than
6905                  * when there was no such activity.
6906                  * non-sync IO will cause disk_stat to increase without
6907                  * increasing sync_io so curr_events will (eventually)
6908                  * be larger than it was before.  Once it becomes
6909                  * substantially larger, the test below will cause
6910                  * the array to appear non-idle, and resync will slow
6911                  * down.
6912                  * If there is a lot of outstanding resync activity when
6913                  * we set last_event to curr_events, then all that activity
6914                  * completing might cause the array to appear non-idle
6915                  * and resync will be slowed down even though there might
6916                  * not have been non-resync activity.  This will only
6917                  * happen once though.  'last_events' will soon reflect
6918                  * the state where there is little or no outstanding
6919                  * resync requests, and further resync activity will
6920                  * always make curr_events less than last_events.
6921                  *
6922                  */
6923                 if (init || curr_events - rdev->last_events > 64) {
6924                         rdev->last_events = curr_events;
6925                         idle = 0;
6926                 }
6927         }
6928         rcu_read_unlock();
6929         return idle;
6930 }
6931
6932 void md_done_sync(struct mddev *mddev, int blocks, int ok)
6933 {
6934         /* another "blocks" (512byte) blocks have been synced */
6935         atomic_sub(blocks, &mddev->recovery_active);
6936         wake_up(&mddev->recovery_wait);
6937         if (!ok) {
6938                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6939                 md_wakeup_thread(mddev->thread);
6940                 // stop recovery, signal do_sync ....
6941         }
6942 }
6943
6944
6945 /* md_write_start(mddev, bi)
6946  * If we need to update some array metadata (e.g. 'active' flag
6947  * in superblock) before writing, schedule a superblock update
6948  * and wait for it to complete.
6949  */
6950 void md_write_start(struct mddev *mddev, struct bio *bi)
6951 {
6952         int did_change = 0;
6953         if (bio_data_dir(bi) != WRITE)
6954                 return;
6955
6956         BUG_ON(mddev->ro == 1);
6957         if (mddev->ro == 2) {
6958                 /* need to switch to read/write */
6959                 mddev->ro = 0;
6960                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6961                 md_wakeup_thread(mddev->thread);
6962                 md_wakeup_thread(mddev->sync_thread);
6963                 did_change = 1;
6964         }
6965         atomic_inc(&mddev->writes_pending);
6966         if (mddev->safemode == 1)
6967                 mddev->safemode = 0;
6968         if (mddev->in_sync) {
6969                 spin_lock_irq(&mddev->write_lock);
6970                 if (mddev->in_sync) {
6971                         mddev->in_sync = 0;
6972                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6973                         set_bit(MD_CHANGE_PENDING, &mddev->flags);
6974                         md_wakeup_thread(mddev->thread);
6975                         did_change = 1;
6976                 }
6977                 spin_unlock_irq(&mddev->write_lock);
6978         }
6979         if (did_change)
6980                 sysfs_notify_dirent_safe(mddev->sysfs_state);
6981         wait_event(mddev->sb_wait,
6982                    !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6983 }
6984
6985 void md_write_end(struct mddev *mddev)
6986 {
6987         if (atomic_dec_and_test(&mddev->writes_pending)) {
6988                 if (mddev->safemode == 2)
6989                         md_wakeup_thread(mddev->thread);
6990                 else if (mddev->safemode_delay)
6991                         mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6992         }
6993 }
6994
6995 /* md_allow_write(mddev)
6996  * Calling this ensures that the array is marked 'active' so that writes
6997  * may proceed without blocking.  It is important to call this before
6998  * attempting a GFP_KERNEL allocation while holding the mddev lock.
6999  * Must be called with mddev_lock held.
7000  *
7001  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7002  * is dropped, so return -EAGAIN after notifying userspace.
7003  */
7004 int md_allow_write(struct mddev *mddev)
7005 {
7006         if (!mddev->pers)
7007                 return 0;
7008         if (mddev->ro)
7009                 return 0;
7010         if (!mddev->pers->sync_request)
7011                 return 0;
7012
7013         spin_lock_irq(&mddev->write_lock);
7014         if (mddev->in_sync) {
7015                 mddev->in_sync = 0;
7016                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7017                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7018                 if (mddev->safemode_delay &&
7019                     mddev->safemode == 0)
7020                         mddev->safemode = 1;
7021                 spin_unlock_irq(&mddev->write_lock);
7022                 md_update_sb(mddev, 0);
7023                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7024         } else
7025                 spin_unlock_irq(&mddev->write_lock);
7026
7027         if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7028                 return -EAGAIN;
7029         else
7030                 return 0;
7031 }
7032 EXPORT_SYMBOL_GPL(md_allow_write);
7033
7034 #define SYNC_MARKS      10
7035 #define SYNC_MARK_STEP  (3*HZ)
7036 void md_do_sync(struct mddev *mddev)
7037 {
7038         struct mddev *mddev2;
7039         unsigned int currspeed = 0,
7040                  window;
7041         sector_t max_sectors,j, io_sectors;
7042         unsigned long mark[SYNC_MARKS];
7043         sector_t mark_cnt[SYNC_MARKS];
7044         int last_mark,m;
7045         struct list_head *tmp;
7046         sector_t last_check;
7047         int skipped = 0;
7048         struct md_rdev *rdev;
7049         char *desc;
7050
7051         /* just incase thread restarts... */
7052         if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7053                 return;
7054         if (mddev->ro) /* never try to sync a read-only array */
7055                 return;
7056
7057         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7058                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7059                         desc = "data-check";
7060                 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7061                         desc = "requested-resync";
7062                 else
7063                         desc = "resync";
7064         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7065                 desc = "reshape";
7066         else
7067                 desc = "recovery";
7068
7069         /* we overload curr_resync somewhat here.
7070          * 0 == not engaged in resync at all
7071          * 2 == checking that there is no conflict with another sync
7072          * 1 == like 2, but have yielded to allow conflicting resync to
7073          *              commense
7074          * other == active in resync - this many blocks
7075          *
7076          * Before starting a resync we must have set curr_resync to
7077          * 2, and then checked that every "conflicting" array has curr_resync
7078          * less than ours.  When we find one that is the same or higher
7079          * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7080          * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7081          * This will mean we have to start checking from the beginning again.
7082          *
7083          */
7084
7085         do {
7086                 mddev->curr_resync = 2;
7087
7088         try_again:
7089                 if (kthread_should_stop())
7090                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7091
7092                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7093                         goto skip;
7094                 for_each_mddev(mddev2, tmp) {
7095                         if (mddev2 == mddev)
7096                                 continue;
7097                         if (!mddev->parallel_resync
7098                         &&  mddev2->curr_resync
7099                         &&  match_mddev_units(mddev, mddev2)) {
7100                                 DEFINE_WAIT(wq);
7101                                 if (mddev < mddev2 && mddev->curr_resync == 2) {
7102                                         /* arbitrarily yield */
7103                                         mddev->curr_resync = 1;
7104                                         wake_up(&resync_wait);
7105                                 }
7106                                 if (mddev > mddev2 && mddev->curr_resync == 1)
7107                                         /* no need to wait here, we can wait the next
7108                                          * time 'round when curr_resync == 2
7109                                          */
7110                                         continue;
7111                                 /* We need to wait 'interruptible' so as not to
7112                                  * contribute to the load average, and not to
7113                                  * be caught by 'softlockup'
7114                                  */
7115                                 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7116                                 if (!kthread_should_stop() &&
7117                                     mddev2->curr_resync >= mddev->curr_resync) {
7118                                         printk(KERN_INFO "md: delaying %s of %s"
7119                                                " until %s has finished (they"
7120                                                " share one or more physical units)\n",
7121                                                desc, mdname(mddev), mdname(mddev2));
7122                                         mddev_put(mddev2);
7123                                         if (signal_pending(current))
7124                                                 flush_signals(current);
7125                                         schedule();
7126                                         finish_wait(&resync_wait, &wq);
7127                                         goto try_again;
7128                                 }
7129                                 finish_wait(&resync_wait, &wq);
7130                         }
7131                 }
7132         } while (mddev->curr_resync < 2);
7133
7134         j = 0;
7135         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7136                 /* resync follows the size requested by the personality,
7137                  * which defaults to physical size, but can be virtual size
7138                  */
7139                 max_sectors = mddev->resync_max_sectors;
7140                 mddev->resync_mismatches = 0;
7141                 /* we don't use the checkpoint if there's a bitmap */
7142                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7143                         j = mddev->resync_min;
7144                 else if (!mddev->bitmap)
7145                         j = mddev->recovery_cp;
7146
7147         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7148                 max_sectors = mddev->dev_sectors;
7149         else {
7150                 /* recovery follows the physical size of devices */
7151                 max_sectors = mddev->dev_sectors;
7152                 j = MaxSector;
7153                 rcu_read_lock();
7154                 rdev_for_each_rcu(rdev, mddev)
7155                         if (rdev->raid_disk >= 0 &&
7156                             !test_bit(Faulty, &rdev->flags) &&
7157                             !test_bit(In_sync, &rdev->flags) &&
7158                             rdev->recovery_offset < j)
7159                                 j = rdev->recovery_offset;
7160                 rcu_read_unlock();
7161         }
7162
7163         printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7164         printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7165                 " %d KB/sec/disk.\n", speed_min(mddev));
7166         printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7167                "(but not more than %d KB/sec) for %s.\n",
7168                speed_max(mddev), desc);
7169
7170         is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7171
7172         io_sectors = 0;
7173         for (m = 0; m < SYNC_MARKS; m++) {
7174                 mark[m] = jiffies;
7175                 mark_cnt[m] = io_sectors;
7176         }
7177         last_mark = 0;
7178         mddev->resync_mark = mark[last_mark];
7179         mddev->resync_mark_cnt = mark_cnt[last_mark];
7180
7181         /*
7182          * Tune reconstruction:
7183          */
7184         window = 32*(PAGE_SIZE/512);
7185         printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7186                 window/2, (unsigned long long)max_sectors/2);
7187
7188         atomic_set(&mddev->recovery_active, 0);
7189         last_check = 0;
7190
7191         if (j>2) {
7192                 printk(KERN_INFO 
7193                        "md: resuming %s of %s from checkpoint.\n",
7194                        desc, mdname(mddev));
7195                 mddev->curr_resync = j;
7196         }
7197         mddev->curr_resync_completed = j;
7198
7199         while (j < max_sectors) {
7200                 sector_t sectors;
7201
7202                 skipped = 0;
7203
7204                 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7205                     ((mddev->curr_resync > mddev->curr_resync_completed &&
7206                       (mddev->curr_resync - mddev->curr_resync_completed)
7207                       > (max_sectors >> 4)) ||
7208                      (j - mddev->curr_resync_completed)*2
7209                      >= mddev->resync_max - mddev->curr_resync_completed
7210                             )) {
7211                         /* time to update curr_resync_completed */
7212                         wait_event(mddev->recovery_wait,
7213                                    atomic_read(&mddev->recovery_active) == 0);
7214                         mddev->curr_resync_completed = j;
7215                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7216                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7217                 }
7218
7219                 while (j >= mddev->resync_max && !kthread_should_stop()) {
7220                         /* As this condition is controlled by user-space,
7221                          * we can block indefinitely, so use '_interruptible'
7222                          * to avoid triggering warnings.
7223                          */
7224                         flush_signals(current); /* just in case */
7225                         wait_event_interruptible(mddev->recovery_wait,
7226                                                  mddev->resync_max > j
7227                                                  || kthread_should_stop());
7228                 }
7229
7230                 if (kthread_should_stop())
7231                         goto interrupted;
7232
7233                 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7234                                                   currspeed < speed_min(mddev));
7235                 if (sectors == 0) {
7236                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7237                         goto out;
7238                 }
7239
7240                 if (!skipped) { /* actual IO requested */
7241                         io_sectors += sectors;
7242                         atomic_add(sectors, &mddev->recovery_active);
7243                 }
7244
7245                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7246                         break;
7247
7248                 j += sectors;
7249                 if (j>1) mddev->curr_resync = j;
7250                 mddev->curr_mark_cnt = io_sectors;
7251                 if (last_check == 0)
7252                         /* this is the earliest that rebuild will be
7253                          * visible in /proc/mdstat
7254                          */
7255                         md_new_event(mddev);
7256
7257                 if (last_check + window > io_sectors || j == max_sectors)
7258                         continue;
7259
7260                 last_check = io_sectors;
7261         repeat:
7262                 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7263                         /* step marks */
7264                         int next = (last_mark+1) % SYNC_MARKS;
7265
7266                         mddev->resync_mark = mark[next];
7267                         mddev->resync_mark_cnt = mark_cnt[next];
7268                         mark[next] = jiffies;
7269                         mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7270                         last_mark = next;
7271                 }
7272
7273
7274                 if (kthread_should_stop())
7275                         goto interrupted;
7276
7277
7278                 /*
7279                  * this loop exits only if either when we are slower than
7280                  * the 'hard' speed limit, or the system was IO-idle for
7281                  * a jiffy.
7282                  * the system might be non-idle CPU-wise, but we only care
7283                  * about not overloading the IO subsystem. (things like an
7284                  * e2fsck being done on the RAID array should execute fast)
7285                  */
7286                 cond_resched();
7287
7288                 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7289                         /((jiffies-mddev->resync_mark)/HZ +1) +1;
7290
7291                 if (currspeed > speed_min(mddev)) {
7292                         if ((currspeed > speed_max(mddev)) ||
7293                                         !is_mddev_idle(mddev, 0)) {
7294                                 msleep(500);
7295                                 goto repeat;
7296                         }
7297                 }
7298         }
7299         printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7300         /*
7301          * this also signals 'finished resyncing' to md_stop
7302          */
7303  out:
7304         wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7305
7306         /* tell personality that we are finished */
7307         mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7308
7309         if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7310             mddev->curr_resync > 2) {
7311                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7312                         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7313                                 if (mddev->curr_resync >= mddev->recovery_cp) {
7314                                         printk(KERN_INFO
7315                                                "md: checkpointing %s of %s.\n",
7316                                                desc, mdname(mddev));
7317                                         mddev->recovery_cp =
7318                                                 mddev->curr_resync_completed;
7319                                 }
7320                         } else
7321                                 mddev->recovery_cp = MaxSector;
7322                 } else {
7323                         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7324                                 mddev->curr_resync = MaxSector;
7325                         rcu_read_lock();
7326                         rdev_for_each_rcu(rdev, mddev)
7327                                 if (rdev->raid_disk >= 0 &&
7328                                     mddev->delta_disks >= 0 &&
7329                                     !test_bit(Faulty, &rdev->flags) &&
7330                                     !test_bit(In_sync, &rdev->flags) &&
7331                                     rdev->recovery_offset < mddev->curr_resync)
7332                                         rdev->recovery_offset = mddev->curr_resync;
7333                         rcu_read_unlock();
7334                 }
7335         }
7336  skip:
7337         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7338
7339         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7340                 /* We completed so min/max setting can be forgotten if used. */
7341                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7342                         mddev->resync_min = 0;
7343                 mddev->resync_max = MaxSector;
7344         } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7345                 mddev->resync_min = mddev->curr_resync_completed;
7346         mddev->curr_resync = 0;
7347         wake_up(&resync_wait);
7348         set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7349         md_wakeup_thread(mddev->thread);
7350         return;
7351
7352  interrupted:
7353         /*
7354          * got a signal, exit.
7355          */
7356         printk(KERN_INFO
7357                "md: md_do_sync() got signal ... exiting\n");
7358         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7359         goto out;
7360
7361 }
7362 EXPORT_SYMBOL_GPL(md_do_sync);
7363
7364 static int remove_and_add_spares(struct mddev *mddev)
7365 {
7366         struct md_rdev *rdev;
7367         int spares = 0;
7368         int removed = 0;
7369
7370         mddev->curr_resync_completed = 0;
7371
7372         rdev_for_each(rdev, mddev)
7373                 if (rdev->raid_disk >= 0 &&
7374                     !test_bit(Blocked, &rdev->flags) &&
7375                     (test_bit(Faulty, &rdev->flags) ||
7376                      ! test_bit(In_sync, &rdev->flags)) &&
7377                     atomic_read(&rdev->nr_pending)==0) {
7378                         if (mddev->pers->hot_remove_disk(
7379                                     mddev, rdev) == 0) {
7380                                 sysfs_unlink_rdev(mddev, rdev);
7381                                 rdev->raid_disk = -1;
7382                                 removed++;
7383                         }
7384                 }
7385         if (removed)
7386                 sysfs_notify(&mddev->kobj, NULL,
7387                              "degraded");
7388
7389
7390         rdev_for_each(rdev, mddev) {
7391                 if (rdev->raid_disk >= 0 &&
7392                     !test_bit(In_sync, &rdev->flags) &&
7393                     !test_bit(Faulty, &rdev->flags))
7394                         spares++;
7395                 if (rdev->raid_disk < 0
7396                     && !test_bit(Faulty, &rdev->flags)) {
7397                         rdev->recovery_offset = 0;
7398                         if (mddev->pers->
7399                             hot_add_disk(mddev, rdev) == 0) {
7400                                 if (sysfs_link_rdev(mddev, rdev))
7401                                         /* failure here is OK */;
7402                                 spares++;
7403                                 md_new_event(mddev);
7404                                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7405                         }
7406                 }
7407         }
7408         return spares;
7409 }
7410
7411 static void reap_sync_thread(struct mddev *mddev)
7412 {
7413         struct md_rdev *rdev;
7414
7415         /* resync has finished, collect result */
7416         md_unregister_thread(&mddev->sync_thread);
7417         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7418             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7419                 /* success...*/
7420                 /* activate any spares */
7421                 if (mddev->pers->spare_active(mddev))
7422                         sysfs_notify(&mddev->kobj, NULL,
7423                                      "degraded");
7424         }
7425         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7426             mddev->pers->finish_reshape)
7427                 mddev->pers->finish_reshape(mddev);
7428
7429         /* If array is no-longer degraded, then any saved_raid_disk
7430          * information must be scrapped.  Also if any device is now
7431          * In_sync we must scrape the saved_raid_disk for that device
7432          * do the superblock for an incrementally recovered device
7433          * written out.
7434          */
7435         rdev_for_each(rdev, mddev)
7436                 if (!mddev->degraded ||
7437                     test_bit(In_sync, &rdev->flags))
7438                         rdev->saved_raid_disk = -1;
7439
7440         md_update_sb(mddev, 1);
7441         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7442         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7443         clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7444         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7445         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7446         /* flag recovery needed just to double check */
7447         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7448         sysfs_notify_dirent_safe(mddev->sysfs_action);
7449         md_new_event(mddev);
7450         if (mddev->event_work.func)
7451                 queue_work(md_misc_wq, &mddev->event_work);
7452 }
7453
7454 /*
7455  * This routine is regularly called by all per-raid-array threads to
7456  * deal with generic issues like resync and super-block update.
7457  * Raid personalities that don't have a thread (linear/raid0) do not
7458  * need this as they never do any recovery or update the superblock.
7459  *
7460  * It does not do any resync itself, but rather "forks" off other threads
7461  * to do that as needed.
7462  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7463  * "->recovery" and create a thread at ->sync_thread.
7464  * When the thread finishes it sets MD_RECOVERY_DONE
7465  * and wakeups up this thread which will reap the thread and finish up.
7466  * This thread also removes any faulty devices (with nr_pending == 0).
7467  *
7468  * The overall approach is:
7469  *  1/ if the superblock needs updating, update it.
7470  *  2/ If a recovery thread is running, don't do anything else.
7471  *  3/ If recovery has finished, clean up, possibly marking spares active.
7472  *  4/ If there are any faulty devices, remove them.
7473  *  5/ If array is degraded, try to add spares devices
7474  *  6/ If array has spares or is not in-sync, start a resync thread.
7475  */
7476 void md_check_recovery(struct mddev *mddev)
7477 {
7478         if (mddev->suspended)
7479                 return;
7480
7481         if (mddev->bitmap)
7482                 bitmap_daemon_work(mddev);
7483
7484         if (signal_pending(current)) {
7485                 if (mddev->pers->sync_request && !mddev->external) {
7486                         printk(KERN_INFO "md: %s in immediate safe mode\n",
7487                                mdname(mddev));
7488                         mddev->safemode = 2;
7489                 }
7490                 flush_signals(current);
7491         }
7492
7493         if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7494                 return;
7495         if ( ! (
7496                 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7497                 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7498                 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7499                 (mddev->external == 0 && mddev->safemode == 1) ||
7500                 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7501                  && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7502                 ))
7503                 return;
7504
7505         if (mddev_trylock(mddev)) {
7506                 int spares = 0;
7507
7508                 if (mddev->ro) {
7509                         /* Only thing we do on a ro array is remove
7510                          * failed devices.
7511                          */
7512                         struct md_rdev *rdev;
7513                         rdev_for_each(rdev, mddev)
7514                                 if (rdev->raid_disk >= 0 &&
7515                                     !test_bit(Blocked, &rdev->flags) &&
7516                                     test_bit(Faulty, &rdev->flags) &&
7517                                     atomic_read(&rdev->nr_pending)==0) {
7518                                         if (mddev->pers->hot_remove_disk(
7519                                                     mddev, rdev) == 0) {
7520                                                 sysfs_unlink_rdev(mddev, rdev);
7521                                                 rdev->raid_disk = -1;
7522                                         }
7523                                 }
7524                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7525                         goto unlock;
7526                 }
7527
7528                 if (!mddev->external) {
7529                         int did_change = 0;
7530                         spin_lock_irq(&mddev->write_lock);
7531                         if (mddev->safemode &&
7532                             !atomic_read(&mddev->writes_pending) &&
7533                             !mddev->in_sync &&
7534                             mddev->recovery_cp == MaxSector) {
7535                                 mddev->in_sync = 1;
7536                                 did_change = 1;
7537                                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7538                         }
7539                         if (mddev->safemode == 1)
7540                                 mddev->safemode = 0;
7541                         spin_unlock_irq(&mddev->write_lock);
7542                         if (did_change)
7543                                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7544                 }
7545
7546                 if (mddev->flags)
7547                         md_update_sb(mddev, 0);
7548
7549                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7550                     !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7551                         /* resync/recovery still happening */
7552                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7553                         goto unlock;
7554                 }
7555                 if (mddev->sync_thread) {
7556                         reap_sync_thread(mddev);
7557                         goto unlock;
7558                 }
7559                 /* Set RUNNING before clearing NEEDED to avoid
7560                  * any transients in the value of "sync_action".
7561                  */
7562                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7563                 /* Clear some bits that don't mean anything, but
7564                  * might be left set
7565                  */
7566                 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7567                 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7568
7569                 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7570                     test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7571                         goto unlock;
7572                 /* no recovery is running.
7573                  * remove any failed drives, then
7574                  * add spares if possible.
7575                  * Spare are also removed and re-added, to allow
7576                  * the personality to fail the re-add.
7577                  */
7578
7579                 if (mddev->reshape_position != MaxSector) {
7580                         if (mddev->pers->check_reshape == NULL ||
7581                             mddev->pers->check_reshape(mddev) != 0)
7582                                 /* Cannot proceed */
7583                                 goto unlock;
7584                         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7585                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7586                 } else if ((spares = remove_and_add_spares(mddev))) {
7587                         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7588                         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7589                         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7590                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7591                 } else if (mddev->recovery_cp < MaxSector) {
7592                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7593                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7594                 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7595                         /* nothing to be done ... */
7596                         goto unlock;
7597
7598                 if (mddev->pers->sync_request) {
7599                         if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7600                                 /* We are adding a device or devices to an array
7601                                  * which has the bitmap stored on all devices.
7602                                  * So make sure all bitmap pages get written
7603                                  */
7604                                 bitmap_write_all(mddev->bitmap);
7605                         }
7606                         mddev->sync_thread = md_register_thread(md_do_sync,
7607                                                                 mddev,
7608                                                                 "resync");
7609                         if (!mddev->sync_thread) {
7610                                 printk(KERN_ERR "%s: could not start resync"
7611                                         " thread...\n", 
7612                                         mdname(mddev));
7613                                 /* leave the spares where they are, it shouldn't hurt */
7614                                 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7615                                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7616                                 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7617                                 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7618                                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7619                         } else
7620                                 md_wakeup_thread(mddev->sync_thread);
7621                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7622                         md_new_event(mddev);
7623                 }
7624         unlock:
7625                 if (!mddev->sync_thread) {
7626                         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7627                         if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7628                                                &mddev->recovery))
7629                                 if (mddev->sysfs_action)
7630                                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7631                 }
7632                 mddev_unlock(mddev);
7633         }
7634 }
7635
7636 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7637 {
7638         sysfs_notify_dirent_safe(rdev->sysfs_state);
7639         wait_event_timeout(rdev->blocked_wait,
7640                            !test_bit(Blocked, &rdev->flags) &&
7641                            !test_bit(BlockedBadBlocks, &rdev->flags),
7642                            msecs_to_jiffies(5000));
7643         rdev_dec_pending(rdev, mddev);
7644 }
7645 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7646
7647
7648 /* Bad block management.
7649  * We can record which blocks on each device are 'bad' and so just
7650  * fail those blocks, or that stripe, rather than the whole device.
7651  * Entries in the bad-block table are 64bits wide.  This comprises:
7652  * Length of bad-range, in sectors: 0-511 for lengths 1-512
7653  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7654  *  A 'shift' can be set so that larger blocks are tracked and
7655  *  consequently larger devices can be covered.
7656  * 'Acknowledged' flag - 1 bit. - the most significant bit.
7657  *
7658  * Locking of the bad-block table uses a seqlock so md_is_badblock
7659  * might need to retry if it is very unlucky.
7660  * We will sometimes want to check for bad blocks in a bi_end_io function,
7661  * so we use the write_seqlock_irq variant.
7662  *
7663  * When looking for a bad block we specify a range and want to
7664  * know if any block in the range is bad.  So we binary-search
7665  * to the last range that starts at-or-before the given endpoint,
7666  * (or "before the sector after the target range")
7667  * then see if it ends after the given start.
7668  * We return
7669  *  0 if there are no known bad blocks in the range
7670  *  1 if there are known bad block which are all acknowledged
7671  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7672  * plus the start/length of the first bad section we overlap.
7673  */
7674 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7675                    sector_t *first_bad, int *bad_sectors)
7676 {
7677         int hi;
7678         int lo = 0;
7679         u64 *p = bb->page;
7680         int rv = 0;
7681         sector_t target = s + sectors;
7682         unsigned seq;
7683
7684         if (bb->shift > 0) {
7685                 /* round the start down, and the end up */
7686                 s >>= bb->shift;
7687                 target += (1<<bb->shift) - 1;
7688                 target >>= bb->shift;
7689                 sectors = target - s;
7690         }
7691         /* 'target' is now the first block after the bad range */
7692
7693 retry:
7694         seq = read_seqbegin(&bb->lock);
7695
7696         hi = bb->count;
7697
7698         /* Binary search between lo and hi for 'target'
7699          * i.e. for the last range that starts before 'target'
7700          */
7701         /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7702          * are known not to be the last range before target.
7703          * VARIANT: hi-lo is the number of possible
7704          * ranges, and decreases until it reaches 1
7705          */
7706         while (hi - lo > 1) {
7707                 int mid = (lo + hi) / 2;
7708                 sector_t a = BB_OFFSET(p[mid]);
7709                 if (a < target)
7710                         /* This could still be the one, earlier ranges
7711                          * could not. */
7712                         lo = mid;
7713                 else
7714                         /* This and later ranges are definitely out. */
7715                         hi = mid;
7716         }
7717         /* 'lo' might be the last that started before target, but 'hi' isn't */
7718         if (hi > lo) {
7719                 /* need to check all range that end after 's' to see if
7720                  * any are unacknowledged.
7721                  */
7722                 while (lo >= 0 &&
7723                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7724                         if (BB_OFFSET(p[lo]) < target) {
7725                                 /* starts before the end, and finishes after
7726                                  * the start, so they must overlap
7727                                  */
7728                                 if (rv != -1 && BB_ACK(p[lo]))
7729                                         rv = 1;
7730                                 else
7731                                         rv = -1;
7732                                 *first_bad = BB_OFFSET(p[lo]);
7733                                 *bad_sectors = BB_LEN(p[lo]);
7734                         }
7735                         lo--;
7736                 }
7737         }
7738
7739         if (read_seqretry(&bb->lock, seq))
7740                 goto retry;
7741
7742         return rv;
7743 }
7744 EXPORT_SYMBOL_GPL(md_is_badblock);
7745
7746 /*
7747  * Add a range of bad blocks to the table.
7748  * This might extend the table, or might contract it
7749  * if two adjacent ranges can be merged.
7750  * We binary-search to find the 'insertion' point, then
7751  * decide how best to handle it.
7752  */
7753 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
7754                             int acknowledged)
7755 {
7756         u64 *p;
7757         int lo, hi;
7758         int rv = 1;
7759
7760         if (bb->shift < 0)
7761                 /* badblocks are disabled */
7762                 return 0;
7763
7764         if (bb->shift) {
7765                 /* round the start down, and the end up */
7766                 sector_t next = s + sectors;
7767                 s >>= bb->shift;
7768                 next += (1<<bb->shift) - 1;
7769                 next >>= bb->shift;
7770                 sectors = next - s;
7771         }
7772
7773         write_seqlock_irq(&bb->lock);
7774
7775         p = bb->page;
7776         lo = 0;
7777         hi = bb->count;
7778         /* Find the last range that starts at-or-before 's' */
7779         while (hi - lo > 1) {
7780                 int mid = (lo + hi) / 2;
7781                 sector_t a = BB_OFFSET(p[mid]);
7782                 if (a <= s)
7783                         lo = mid;
7784                 else
7785                         hi = mid;
7786         }
7787         if (hi > lo && BB_OFFSET(p[lo]) > s)
7788                 hi = lo;
7789
7790         if (hi > lo) {
7791                 /* we found a range that might merge with the start
7792                  * of our new range
7793                  */
7794                 sector_t a = BB_OFFSET(p[lo]);
7795                 sector_t e = a + BB_LEN(p[lo]);
7796                 int ack = BB_ACK(p[lo]);
7797                 if (e >= s) {
7798                         /* Yes, we can merge with a previous range */
7799                         if (s == a && s + sectors >= e)
7800                                 /* new range covers old */
7801                                 ack = acknowledged;
7802                         else
7803                                 ack = ack && acknowledged;
7804
7805                         if (e < s + sectors)
7806                                 e = s + sectors;
7807                         if (e - a <= BB_MAX_LEN) {
7808                                 p[lo] = BB_MAKE(a, e-a, ack);
7809                                 s = e;
7810                         } else {
7811                                 /* does not all fit in one range,
7812                                  * make p[lo] maximal
7813                                  */
7814                                 if (BB_LEN(p[lo]) != BB_MAX_LEN)
7815                                         p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
7816                                 s = a + BB_MAX_LEN;
7817                         }
7818                         sectors = e - s;
7819                 }
7820         }
7821         if (sectors && hi < bb->count) {
7822                 /* 'hi' points to the first range that starts after 's'.
7823                  * Maybe we can merge with the start of that range */
7824                 sector_t a = BB_OFFSET(p[hi]);
7825                 sector_t e = a + BB_LEN(p[hi]);
7826                 int ack = BB_ACK(p[hi]);
7827                 if (a <= s + sectors) {
7828                         /* merging is possible */
7829                         if (e <= s + sectors) {
7830                                 /* full overlap */
7831                                 e = s + sectors;
7832                                 ack = acknowledged;
7833                         } else
7834                                 ack = ack && acknowledged;
7835
7836                         a = s;
7837                         if (e - a <= BB_MAX_LEN) {
7838                                 p[hi] = BB_MAKE(a, e-a, ack);
7839                                 s = e;
7840                         } else {
7841                                 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
7842                                 s = a + BB_MAX_LEN;
7843                         }
7844                         sectors = e - s;
7845                         lo = hi;
7846                         hi++;
7847                 }
7848         }
7849         if (sectors == 0 && hi < bb->count) {
7850                 /* we might be able to combine lo and hi */
7851                 /* Note: 's' is at the end of 'lo' */
7852                 sector_t a = BB_OFFSET(p[hi]);
7853                 int lolen = BB_LEN(p[lo]);
7854                 int hilen = BB_LEN(p[hi]);
7855                 int newlen = lolen + hilen - (s - a);
7856                 if (s >= a && newlen < BB_MAX_LEN) {
7857                         /* yes, we can combine them */
7858                         int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
7859                         p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
7860                         memmove(p + hi, p + hi + 1,
7861                                 (bb->count - hi - 1) * 8);
7862                         bb->count--;
7863                 }
7864         }
7865         while (sectors) {
7866                 /* didn't merge (it all).
7867                  * Need to add a range just before 'hi' */
7868                 if (bb->count >= MD_MAX_BADBLOCKS) {
7869                         /* No room for more */
7870                         rv = 0;
7871                         break;
7872                 } else {
7873                         int this_sectors = sectors;
7874                         memmove(p + hi + 1, p + hi,
7875                                 (bb->count - hi) * 8);
7876                         bb->count++;
7877
7878                         if (this_sectors > BB_MAX_LEN)
7879                                 this_sectors = BB_MAX_LEN;
7880                         p[hi] = BB_MAKE(s, this_sectors, acknowledged);
7881                         sectors -= this_sectors;
7882                         s += this_sectors;
7883                 }
7884         }
7885
7886         bb->changed = 1;
7887         if (!acknowledged)
7888                 bb->unacked_exist = 1;
7889         write_sequnlock_irq(&bb->lock);
7890
7891         return rv;
7892 }
7893
7894 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
7895                        int acknowledged)
7896 {
7897         int rv = md_set_badblocks(&rdev->badblocks,
7898                                   s + rdev->data_offset, sectors, acknowledged);
7899         if (rv) {
7900                 /* Make sure they get written out promptly */
7901                 sysfs_notify_dirent_safe(rdev->sysfs_state);
7902                 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
7903                 md_wakeup_thread(rdev->mddev->thread);
7904         }
7905         return rv;
7906 }
7907 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
7908
7909 /*
7910  * Remove a range of bad blocks from the table.
7911  * This may involve extending the table if we spilt a region,
7912  * but it must not fail.  So if the table becomes full, we just
7913  * drop the remove request.
7914  */
7915 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
7916 {
7917         u64 *p;
7918         int lo, hi;
7919         sector_t target = s + sectors;
7920         int rv = 0;
7921
7922         if (bb->shift > 0) {
7923                 /* When clearing we round the start up and the end down.
7924                  * This should not matter as the shift should align with
7925                  * the block size and no rounding should ever be needed.
7926                  * However it is better the think a block is bad when it
7927                  * isn't than to think a block is not bad when it is.
7928                  */
7929                 s += (1<<bb->shift) - 1;
7930                 s >>= bb->shift;
7931                 target >>= bb->shift;
7932                 sectors = target - s;
7933         }
7934
7935         write_seqlock_irq(&bb->lock);
7936
7937         p = bb->page;
7938         lo = 0;
7939         hi = bb->count;
7940         /* Find the last range that starts before 'target' */
7941         while (hi - lo > 1) {
7942                 int mid = (lo + hi) / 2;
7943                 sector_t a = BB_OFFSET(p[mid]);
7944                 if (a < target)
7945                         lo = mid;
7946                 else
7947                         hi = mid;
7948         }
7949         if (hi > lo) {
7950                 /* p[lo] is the last range that could overlap the
7951                  * current range.  Earlier ranges could also overlap,
7952                  * but only this one can overlap the end of the range.
7953                  */
7954                 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
7955                         /* Partial overlap, leave the tail of this range */
7956                         int ack = BB_ACK(p[lo]);
7957                         sector_t a = BB_OFFSET(p[lo]);
7958                         sector_t end = a + BB_LEN(p[lo]);
7959
7960                         if (a < s) {
7961                                 /* we need to split this range */
7962                                 if (bb->count >= MD_MAX_BADBLOCKS) {
7963                                         rv = 0;
7964                                         goto out;
7965                                 }
7966                                 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
7967                                 bb->count++;
7968                                 p[lo] = BB_MAKE(a, s-a, ack);
7969                                 lo++;
7970                         }
7971                         p[lo] = BB_MAKE(target, end - target, ack);
7972                         /* there is no longer an overlap */
7973                         hi = lo;
7974                         lo--;
7975                 }
7976                 while (lo >= 0 &&
7977                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7978                         /* This range does overlap */
7979                         if (BB_OFFSET(p[lo]) < s) {
7980                                 /* Keep the early parts of this range. */
7981                                 int ack = BB_ACK(p[lo]);
7982                                 sector_t start = BB_OFFSET(p[lo]);
7983                                 p[lo] = BB_MAKE(start, s - start, ack);
7984                                 /* now low doesn't overlap, so.. */
7985                                 break;
7986                         }
7987                         lo--;
7988                 }
7989                 /* 'lo' is strictly before, 'hi' is strictly after,
7990                  * anything between needs to be discarded
7991                  */
7992                 if (hi - lo > 1) {
7993                         memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
7994                         bb->count -= (hi - lo - 1);
7995                 }
7996         }
7997
7998         bb->changed = 1;
7999 out:
8000         write_sequnlock_irq(&bb->lock);
8001         return rv;
8002 }
8003
8004 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors)
8005 {
8006         return md_clear_badblocks(&rdev->badblocks,
8007                                   s + rdev->data_offset,
8008                                   sectors);
8009 }
8010 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8011
8012 /*
8013  * Acknowledge all bad blocks in a list.
8014  * This only succeeds if ->changed is clear.  It is used by
8015  * in-kernel metadata updates
8016  */
8017 void md_ack_all_badblocks(struct badblocks *bb)
8018 {
8019         if (bb->page == NULL || bb->changed)
8020                 /* no point even trying */
8021                 return;
8022         write_seqlock_irq(&bb->lock);
8023
8024         if (bb->changed == 0 && bb->unacked_exist) {
8025                 u64 *p = bb->page;
8026                 int i;
8027                 for (i = 0; i < bb->count ; i++) {
8028                         if (!BB_ACK(p[i])) {
8029                                 sector_t start = BB_OFFSET(p[i]);
8030                                 int len = BB_LEN(p[i]);
8031                                 p[i] = BB_MAKE(start, len, 1);
8032                         }
8033                 }
8034                 bb->unacked_exist = 0;
8035         }
8036         write_sequnlock_irq(&bb->lock);
8037 }
8038 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8039
8040 /* sysfs access to bad-blocks list.
8041  * We present two files.
8042  * 'bad-blocks' lists sector numbers and lengths of ranges that
8043  *    are recorded as bad.  The list is truncated to fit within
8044  *    the one-page limit of sysfs.
8045  *    Writing "sector length" to this file adds an acknowledged
8046  *    bad block list.
8047  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8048  *    been acknowledged.  Writing to this file adds bad blocks
8049  *    without acknowledging them.  This is largely for testing.
8050  */
8051
8052 static ssize_t
8053 badblocks_show(struct badblocks *bb, char *page, int unack)
8054 {
8055         size_t len;
8056         int i;
8057         u64 *p = bb->page;
8058         unsigned seq;
8059
8060         if (bb->shift < 0)
8061                 return 0;
8062
8063 retry:
8064         seq = read_seqbegin(&bb->lock);
8065
8066         len = 0;
8067         i = 0;
8068
8069         while (len < PAGE_SIZE && i < bb->count) {
8070                 sector_t s = BB_OFFSET(p[i]);
8071                 unsigned int length = BB_LEN(p[i]);
8072                 int ack = BB_ACK(p[i]);
8073                 i++;
8074
8075                 if (unack && ack)
8076                         continue;
8077
8078                 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8079                                 (unsigned long long)s << bb->shift,
8080                                 length << bb->shift);
8081         }
8082         if (unack && len == 0)
8083                 bb->unacked_exist = 0;
8084
8085         if (read_seqretry(&bb->lock, seq))
8086                 goto retry;
8087
8088         return len;
8089 }
8090
8091 #define DO_DEBUG 1
8092
8093 static ssize_t
8094 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8095 {
8096         unsigned long long sector;
8097         int length;
8098         char newline;
8099 #ifdef DO_DEBUG
8100         /* Allow clearing via sysfs *only* for testing/debugging.
8101          * Normally only a successful write may clear a badblock
8102          */
8103         int clear = 0;
8104         if (page[0] == '-') {
8105                 clear = 1;
8106                 page++;
8107         }
8108 #endif /* DO_DEBUG */
8109
8110         switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8111         case 3:
8112                 if (newline != '\n')
8113                         return -EINVAL;
8114         case 2:
8115                 if (length <= 0)
8116                         return -EINVAL;
8117                 break;
8118         default:
8119                 return -EINVAL;
8120         }
8121
8122 #ifdef DO_DEBUG
8123         if (clear) {
8124                 md_clear_badblocks(bb, sector, length);
8125                 return len;
8126         }
8127 #endif /* DO_DEBUG */
8128         if (md_set_badblocks(bb, sector, length, !unack))
8129                 return len;
8130         else
8131                 return -ENOSPC;
8132 }
8133
8134 static int md_notify_reboot(struct notifier_block *this,
8135                             unsigned long code, void *x)
8136 {
8137         struct list_head *tmp;
8138         struct mddev *mddev;
8139         int need_delay = 0;
8140
8141         for_each_mddev(mddev, tmp) {
8142                 if (mddev_trylock(mddev)) {
8143                         if (mddev->pers)
8144                                 __md_stop_writes(mddev);
8145                         mddev->safemode = 2;
8146                         mddev_unlock(mddev);
8147                 }
8148                 need_delay = 1;
8149         }
8150         /*
8151          * certain more exotic SCSI devices are known to be
8152          * volatile wrt too early system reboots. While the
8153          * right place to handle this issue is the given
8154          * driver, we do want to have a safe RAID driver ...
8155          */
8156         if (need_delay)
8157                 mdelay(1000*1);
8158
8159         return NOTIFY_DONE;
8160 }
8161
8162 static struct notifier_block md_notifier = {
8163         .notifier_call  = md_notify_reboot,
8164         .next           = NULL,
8165         .priority       = INT_MAX, /* before any real devices */
8166 };
8167
8168 static void md_geninit(void)
8169 {
8170         pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8171
8172         proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8173 }
8174
8175 static int __init md_init(void)
8176 {
8177         int ret = -ENOMEM;
8178
8179         md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8180         if (!md_wq)
8181                 goto err_wq;
8182
8183         md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8184         if (!md_misc_wq)
8185                 goto err_misc_wq;
8186
8187         if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8188                 goto err_md;
8189
8190         if ((ret = register_blkdev(0, "mdp")) < 0)
8191                 goto err_mdp;
8192         mdp_major = ret;
8193
8194         blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8195                             md_probe, NULL, NULL);
8196         blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8197                             md_probe, NULL, NULL);
8198
8199         register_reboot_notifier(&md_notifier);
8200         raid_table_header = register_sysctl_table(raid_root_table);
8201
8202         md_geninit();
8203         return 0;
8204
8205 err_mdp:
8206         unregister_blkdev(MD_MAJOR, "md");
8207 err_md:
8208         destroy_workqueue(md_misc_wq);
8209 err_misc_wq:
8210         destroy_workqueue(md_wq);
8211 err_wq:
8212         return ret;
8213 }
8214
8215 #ifndef MODULE
8216
8217 /*
8218  * Searches all registered partitions for autorun RAID arrays
8219  * at boot time.
8220  */
8221
8222 static LIST_HEAD(all_detected_devices);
8223 struct detected_devices_node {
8224         struct list_head list;
8225         dev_t dev;
8226 };
8227
8228 void md_autodetect_dev(dev_t dev)
8229 {
8230         struct detected_devices_node *node_detected_dev;
8231
8232         node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8233         if (node_detected_dev) {
8234                 node_detected_dev->dev = dev;
8235                 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8236         } else {
8237                 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8238                         ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8239         }
8240 }
8241
8242
8243 static void autostart_arrays(int part)
8244 {
8245         struct md_rdev *rdev;
8246         struct detected_devices_node *node_detected_dev;
8247         dev_t dev;
8248         int i_scanned, i_passed;
8249
8250         i_scanned = 0;
8251         i_passed = 0;
8252
8253         printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8254
8255         while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8256                 i_scanned++;
8257                 node_detected_dev = list_entry(all_detected_devices.next,
8258                                         struct detected_devices_node, list);
8259                 list_del(&node_detected_dev->list);
8260                 dev = node_detected_dev->dev;
8261                 kfree(node_detected_dev);
8262                 rdev = md_import_device(dev,0, 90);
8263                 if (IS_ERR(rdev))
8264                         continue;
8265
8266                 if (test_bit(Faulty, &rdev->flags)) {
8267                         MD_BUG();
8268                         continue;
8269                 }
8270                 set_bit(AutoDetected, &rdev->flags);
8271                 list_add(&rdev->same_set, &pending_raid_disks);
8272                 i_passed++;
8273         }
8274
8275         printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8276                                                 i_scanned, i_passed);
8277
8278         autorun_devices(part);
8279 }
8280
8281 #endif /* !MODULE */
8282
8283 static __exit void md_exit(void)
8284 {
8285         struct mddev *mddev;
8286         struct list_head *tmp;
8287
8288         blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8289         blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8290
8291         unregister_blkdev(MD_MAJOR,"md");
8292         unregister_blkdev(mdp_major, "mdp");
8293         unregister_reboot_notifier(&md_notifier);
8294         unregister_sysctl_table(raid_table_header);
8295         remove_proc_entry("mdstat", NULL);
8296         for_each_mddev(mddev, tmp) {
8297                 export_array(mddev);
8298                 mddev->hold_active = 0;
8299         }
8300         destroy_workqueue(md_misc_wq);
8301         destroy_workqueue(md_wq);
8302 }
8303
8304 subsys_initcall(md_init);
8305 module_exit(md_exit)
8306
8307 static int get_ro(char *buffer, struct kernel_param *kp)
8308 {
8309         return sprintf(buffer, "%d", start_readonly);
8310 }
8311 static int set_ro(const char *val, struct kernel_param *kp)
8312 {
8313         char *e;
8314         int num = simple_strtoul(val, &e, 10);
8315         if (*val && (*e == '\0' || *e == '\n')) {
8316                 start_readonly = num;
8317                 return 0;
8318         }
8319         return -EINVAL;
8320 }
8321
8322 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8323 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8324
8325 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8326
8327 EXPORT_SYMBOL(register_md_personality);
8328 EXPORT_SYMBOL(unregister_md_personality);
8329 EXPORT_SYMBOL(md_error);
8330 EXPORT_SYMBOL(md_done_sync);
8331 EXPORT_SYMBOL(md_write_start);
8332 EXPORT_SYMBOL(md_write_end);
8333 EXPORT_SYMBOL(md_register_thread);
8334 EXPORT_SYMBOL(md_unregister_thread);
8335 EXPORT_SYMBOL(md_wakeup_thread);
8336 EXPORT_SYMBOL(md_check_recovery);
8337 MODULE_LICENSE("GPL");
8338 MODULE_DESCRIPTION("MD RAID framework");
8339 MODULE_ALIAS("md");
8340 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);