dm thin metadata: introduce THIN_MAX_CONCURRENT_LOCKS
[pandora-kernel.git] / drivers / md / dm-thin-metadata.c
1 /*
2  * Copyright (C) 2011 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "persistent-data/dm-btree.h"
9 #include "persistent-data/dm-space-map.h"
10 #include "persistent-data/dm-space-map-disk.h"
11 #include "persistent-data/dm-transaction-manager.h"
12
13 #include <linux/list.h>
14 #include <linux/device-mapper.h>
15 #include <linux/workqueue.h>
16
17 /*--------------------------------------------------------------------------
18  * As far as the metadata goes, there is:
19  *
20  * - A superblock in block zero, taking up fewer than 512 bytes for
21  *   atomic writes.
22  *
23  * - A space map managing the metadata blocks.
24  *
25  * - A space map managing the data blocks.
26  *
27  * - A btree mapping our internal thin dev ids onto struct disk_device_details.
28  *
29  * - A hierarchical btree, with 2 levels which effectively maps (thin
30  *   dev id, virtual block) -> block_time.  Block time is a 64-bit
31  *   field holding the time in the low 24 bits, and block in the top 48
32  *   bits.
33  *
34  * BTrees consist solely of btree_nodes, that fill a block.  Some are
35  * internal nodes, as such their values are a __le64 pointing to other
36  * nodes.  Leaf nodes can store data of any reasonable size (ie. much
37  * smaller than the block size).  The nodes consist of the header,
38  * followed by an array of keys, followed by an array of values.  We have
39  * to binary search on the keys so they're all held together to help the
40  * cpu cache.
41  *
42  * Space maps have 2 btrees:
43  *
44  * - One maps a uint64_t onto a struct index_entry.  Which points to a
45  *   bitmap block, and has some details about how many free entries there
46  *   are etc.
47  *
48  * - The bitmap blocks have a header (for the checksum).  Then the rest
49  *   of the block is pairs of bits.  With the meaning being:
50  *
51  *   0 - ref count is 0
52  *   1 - ref count is 1
53  *   2 - ref count is 2
54  *   3 - ref count is higher than 2
55  *
56  * - If the count is higher than 2 then the ref count is entered in a
57  *   second btree that directly maps the block_address to a uint32_t ref
58  *   count.
59  *
60  * The space map metadata variant doesn't have a bitmaps btree.  Instead
61  * it has one single blocks worth of index_entries.  This avoids
62  * recursive issues with the bitmap btree needing to allocate space in
63  * order to insert.  With a small data block size such as 64k the
64  * metadata support data devices that are hundreds of terrabytes.
65  *
66  * The space maps allocate space linearly from front to back.  Space that
67  * is freed in a transaction is never recycled within that transaction.
68  * To try and avoid fragmenting _free_ space the allocator always goes
69  * back and fills in gaps.
70  *
71  * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
72  * from the block manager.
73  *--------------------------------------------------------------------------*/
74
75 #define DM_MSG_PREFIX   "thin metadata"
76
77 #define THIN_SUPERBLOCK_MAGIC 27022010
78 #define THIN_SUPERBLOCK_LOCATION 0
79 #define THIN_VERSION 1
80 #define THIN_METADATA_CACHE_SIZE 64
81 #define SECTOR_TO_BLOCK_SHIFT 3
82
83 /*
84  *  3 for btree insert +
85  *  2 for btree lookup used within space map
86  */
87 #define THIN_MAX_CONCURRENT_LOCKS 5
88
89 /* This should be plenty */
90 #define SPACE_MAP_ROOT_SIZE 128
91
92 /*
93  * Little endian on-disk superblock and device details.
94  */
95 struct thin_disk_superblock {
96         __le32 csum;    /* Checksum of superblock except for this field. */
97         __le32 flags;
98         __le64 blocknr; /* This block number, dm_block_t. */
99
100         __u8 uuid[16];
101         __le64 magic;
102         __le32 version;
103         __le32 time;
104
105         __le64 trans_id;
106
107         /*
108          * Root held by userspace transactions.
109          */
110         __le64 held_root;
111
112         __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
113         __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
114
115         /*
116          * 2-level btree mapping (dev_id, (dev block, time)) -> data block
117          */
118         __le64 data_mapping_root;
119
120         /*
121          * Device detail root mapping dev_id -> device_details
122          */
123         __le64 device_details_root;
124
125         __le32 data_block_size;         /* In 512-byte sectors. */
126
127         __le32 metadata_block_size;     /* In 512-byte sectors. */
128         __le64 metadata_nr_blocks;
129
130         __le32 compat_flags;
131         __le32 compat_ro_flags;
132         __le32 incompat_flags;
133 } __packed;
134
135 struct disk_device_details {
136         __le64 mapped_blocks;
137         __le64 transaction_id;          /* When created. */
138         __le32 creation_time;
139         __le32 snapshotted_time;
140 } __packed;
141
142 struct dm_pool_metadata {
143         struct hlist_node hash;
144
145         struct block_device *bdev;
146         struct dm_block_manager *bm;
147         struct dm_space_map *metadata_sm;
148         struct dm_space_map *data_sm;
149         struct dm_transaction_manager *tm;
150         struct dm_transaction_manager *nb_tm;
151
152         /*
153          * Two-level btree.
154          * First level holds thin_dev_t.
155          * Second level holds mappings.
156          */
157         struct dm_btree_info info;
158
159         /*
160          * Non-blocking version of the above.
161          */
162         struct dm_btree_info nb_info;
163
164         /*
165          * Just the top level for deleting whole devices.
166          */
167         struct dm_btree_info tl_info;
168
169         /*
170          * Just the bottom level for creating new devices.
171          */
172         struct dm_btree_info bl_info;
173
174         /*
175          * Describes the device details btree.
176          */
177         struct dm_btree_info details_info;
178
179         struct rw_semaphore root_lock;
180         uint32_t time;
181         int need_commit;
182         dm_block_t root;
183         dm_block_t details_root;
184         struct list_head thin_devices;
185         uint64_t trans_id;
186         unsigned long flags;
187         sector_t data_block_size;
188 };
189
190 struct dm_thin_device {
191         struct list_head list;
192         struct dm_pool_metadata *pmd;
193         dm_thin_id id;
194
195         int open_count;
196         int changed;
197         uint64_t mapped_blocks;
198         uint64_t transaction_id;
199         uint32_t creation_time;
200         uint32_t snapshotted_time;
201 };
202
203 /*----------------------------------------------------------------
204  * superblock validator
205  *--------------------------------------------------------------*/
206
207 #define SUPERBLOCK_CSUM_XOR 160774
208
209 static void sb_prepare_for_write(struct dm_block_validator *v,
210                                  struct dm_block *b,
211                                  size_t block_size)
212 {
213         struct thin_disk_superblock *disk_super = dm_block_data(b);
214
215         disk_super->blocknr = cpu_to_le64(dm_block_location(b));
216         disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
217                                                       block_size - sizeof(__le32),
218                                                       SUPERBLOCK_CSUM_XOR));
219 }
220
221 static int sb_check(struct dm_block_validator *v,
222                     struct dm_block *b,
223                     size_t block_size)
224 {
225         struct thin_disk_superblock *disk_super = dm_block_data(b);
226         __le32 csum_le;
227
228         if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
229                 DMERR("sb_check failed: blocknr %llu: "
230                       "wanted %llu", le64_to_cpu(disk_super->blocknr),
231                       (unsigned long long)dm_block_location(b));
232                 return -ENOTBLK;
233         }
234
235         if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
236                 DMERR("sb_check failed: magic %llu: "
237                       "wanted %llu", le64_to_cpu(disk_super->magic),
238                       (unsigned long long)THIN_SUPERBLOCK_MAGIC);
239                 return -EILSEQ;
240         }
241
242         csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
243                                              block_size - sizeof(__le32),
244                                              SUPERBLOCK_CSUM_XOR));
245         if (csum_le != disk_super->csum) {
246                 DMERR("sb_check failed: csum %u: wanted %u",
247                       le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
248                 return -EILSEQ;
249         }
250
251         return 0;
252 }
253
254 static struct dm_block_validator sb_validator = {
255         .name = "superblock",
256         .prepare_for_write = sb_prepare_for_write,
257         .check = sb_check
258 };
259
260 /*----------------------------------------------------------------
261  * Methods for the btree value types
262  *--------------------------------------------------------------*/
263
264 static uint64_t pack_block_time(dm_block_t b, uint32_t t)
265 {
266         return (b << 24) | t;
267 }
268
269 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
270 {
271         *b = v >> 24;
272         *t = v & ((1 << 24) - 1);
273 }
274
275 static void data_block_inc(void *context, void *value_le)
276 {
277         struct dm_space_map *sm = context;
278         __le64 v_le;
279         uint64_t b;
280         uint32_t t;
281
282         memcpy(&v_le, value_le, sizeof(v_le));
283         unpack_block_time(le64_to_cpu(v_le), &b, &t);
284         dm_sm_inc_block(sm, b);
285 }
286
287 static void data_block_dec(void *context, void *value_le)
288 {
289         struct dm_space_map *sm = context;
290         __le64 v_le;
291         uint64_t b;
292         uint32_t t;
293
294         memcpy(&v_le, value_le, sizeof(v_le));
295         unpack_block_time(le64_to_cpu(v_le), &b, &t);
296         dm_sm_dec_block(sm, b);
297 }
298
299 static int data_block_equal(void *context, void *value1_le, void *value2_le)
300 {
301         __le64 v1_le, v2_le;
302         uint64_t b1, b2;
303         uint32_t t;
304
305         memcpy(&v1_le, value1_le, sizeof(v1_le));
306         memcpy(&v2_le, value2_le, sizeof(v2_le));
307         unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
308         unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
309
310         return b1 == b2;
311 }
312
313 static void subtree_inc(void *context, void *value)
314 {
315         struct dm_btree_info *info = context;
316         __le64 root_le;
317         uint64_t root;
318
319         memcpy(&root_le, value, sizeof(root_le));
320         root = le64_to_cpu(root_le);
321         dm_tm_inc(info->tm, root);
322 }
323
324 static void subtree_dec(void *context, void *value)
325 {
326         struct dm_btree_info *info = context;
327         __le64 root_le;
328         uint64_t root;
329
330         memcpy(&root_le, value, sizeof(root_le));
331         root = le64_to_cpu(root_le);
332         if (dm_btree_del(info, root))
333                 DMERR("btree delete failed\n");
334 }
335
336 static int subtree_equal(void *context, void *value1_le, void *value2_le)
337 {
338         __le64 v1_le, v2_le;
339         memcpy(&v1_le, value1_le, sizeof(v1_le));
340         memcpy(&v2_le, value2_le, sizeof(v2_le));
341
342         return v1_le == v2_le;
343 }
344
345 /*----------------------------------------------------------------*/
346
347 static int superblock_all_zeroes(struct dm_block_manager *bm, int *result)
348 {
349         int r;
350         unsigned i;
351         struct dm_block *b;
352         __le64 *data_le, zero = cpu_to_le64(0);
353         unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
354
355         /*
356          * We can't use a validator here - it may be all zeroes.
357          */
358         r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
359         if (r)
360                 return r;
361
362         data_le = dm_block_data(b);
363         *result = 1;
364         for (i = 0; i < block_size; i++) {
365                 if (data_le[i] != zero) {
366                         *result = 0;
367                         break;
368                 }
369         }
370
371         return dm_bm_unlock(b);
372 }
373
374 static int init_pmd(struct dm_pool_metadata *pmd,
375                     struct dm_block_manager *bm,
376                     dm_block_t nr_blocks, int create)
377 {
378         int r;
379         struct dm_space_map *sm, *data_sm;
380         struct dm_transaction_manager *tm;
381         struct dm_block *sblock;
382
383         if (create) {
384                 r = dm_tm_create_with_sm(bm, THIN_SUPERBLOCK_LOCATION,
385                                          &sb_validator, &tm, &sm, &sblock);
386                 if (r < 0) {
387                         DMERR("tm_create_with_sm failed");
388                         return r;
389                 }
390
391                 data_sm = dm_sm_disk_create(tm, nr_blocks);
392                 if (IS_ERR(data_sm)) {
393                         DMERR("sm_disk_create failed");
394                         dm_tm_unlock(tm, sblock);
395                         r = PTR_ERR(data_sm);
396                         goto bad;
397                 }
398         } else {
399                 struct thin_disk_superblock *disk_super = NULL;
400                 size_t space_map_root_offset =
401                         offsetof(struct thin_disk_superblock, metadata_space_map_root);
402
403                 r = dm_tm_open_with_sm(bm, THIN_SUPERBLOCK_LOCATION,
404                                        &sb_validator, space_map_root_offset,
405                                        SPACE_MAP_ROOT_SIZE, &tm, &sm, &sblock);
406                 if (r < 0) {
407                         DMERR("tm_open_with_sm failed");
408                         return r;
409                 }
410
411                 disk_super = dm_block_data(sblock);
412                 data_sm = dm_sm_disk_open(tm, disk_super->data_space_map_root,
413                                           sizeof(disk_super->data_space_map_root));
414                 if (IS_ERR(data_sm)) {
415                         DMERR("sm_disk_open failed");
416                         r = PTR_ERR(data_sm);
417                         goto bad;
418                 }
419         }
420
421
422         r = dm_tm_unlock(tm, sblock);
423         if (r < 0) {
424                 DMERR("couldn't unlock superblock");
425                 goto bad_data_sm;
426         }
427
428         pmd->bm = bm;
429         pmd->metadata_sm = sm;
430         pmd->data_sm = data_sm;
431         pmd->tm = tm;
432         pmd->nb_tm = dm_tm_create_non_blocking_clone(tm);
433         if (!pmd->nb_tm) {
434                 DMERR("could not create clone tm");
435                 r = -ENOMEM;
436                 goto bad_data_sm;
437         }
438
439         pmd->info.tm = tm;
440         pmd->info.levels = 2;
441         pmd->info.value_type.context = pmd->data_sm;
442         pmd->info.value_type.size = sizeof(__le64);
443         pmd->info.value_type.inc = data_block_inc;
444         pmd->info.value_type.dec = data_block_dec;
445         pmd->info.value_type.equal = data_block_equal;
446
447         memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
448         pmd->nb_info.tm = pmd->nb_tm;
449
450         pmd->tl_info.tm = tm;
451         pmd->tl_info.levels = 1;
452         pmd->tl_info.value_type.context = &pmd->info;
453         pmd->tl_info.value_type.size = sizeof(__le64);
454         pmd->tl_info.value_type.inc = subtree_inc;
455         pmd->tl_info.value_type.dec = subtree_dec;
456         pmd->tl_info.value_type.equal = subtree_equal;
457
458         pmd->bl_info.tm = tm;
459         pmd->bl_info.levels = 1;
460         pmd->bl_info.value_type.context = pmd->data_sm;
461         pmd->bl_info.value_type.size = sizeof(__le64);
462         pmd->bl_info.value_type.inc = data_block_inc;
463         pmd->bl_info.value_type.dec = data_block_dec;
464         pmd->bl_info.value_type.equal = data_block_equal;
465
466         pmd->details_info.tm = tm;
467         pmd->details_info.levels = 1;
468         pmd->details_info.value_type.context = NULL;
469         pmd->details_info.value_type.size = sizeof(struct disk_device_details);
470         pmd->details_info.value_type.inc = NULL;
471         pmd->details_info.value_type.dec = NULL;
472         pmd->details_info.value_type.equal = NULL;
473
474         pmd->root = 0;
475
476         init_rwsem(&pmd->root_lock);
477         pmd->time = 0;
478         pmd->need_commit = 0;
479         pmd->details_root = 0;
480         pmd->trans_id = 0;
481         pmd->flags = 0;
482         INIT_LIST_HEAD(&pmd->thin_devices);
483
484         return 0;
485
486 bad_data_sm:
487         dm_sm_destroy(data_sm);
488 bad:
489         dm_tm_destroy(tm);
490         dm_sm_destroy(sm);
491
492         return r;
493 }
494
495 static int __begin_transaction(struct dm_pool_metadata *pmd)
496 {
497         int r;
498         u32 features;
499         struct thin_disk_superblock *disk_super;
500         struct dm_block *sblock;
501
502         /*
503          * __maybe_commit_transaction() resets these
504          */
505         WARN_ON(pmd->need_commit);
506
507         /*
508          * We re-read the superblock every time.  Shouldn't need to do this
509          * really.
510          */
511         r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
512                             &sb_validator, &sblock);
513         if (r)
514                 return r;
515
516         disk_super = dm_block_data(sblock);
517         pmd->time = le32_to_cpu(disk_super->time);
518         pmd->root = le64_to_cpu(disk_super->data_mapping_root);
519         pmd->details_root = le64_to_cpu(disk_super->device_details_root);
520         pmd->trans_id = le64_to_cpu(disk_super->trans_id);
521         pmd->flags = le32_to_cpu(disk_super->flags);
522         pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
523
524         features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
525         if (features) {
526                 DMERR("could not access metadata due to "
527                       "unsupported optional features (%lx).",
528                       (unsigned long)features);
529                 r = -EINVAL;
530                 goto out;
531         }
532
533         /*
534          * Check for read-only metadata to skip the following RDWR checks.
535          */
536         if (get_disk_ro(pmd->bdev->bd_disk))
537                 goto out;
538
539         features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
540         if (features) {
541                 DMERR("could not access metadata RDWR due to "
542                       "unsupported optional features (%lx).",
543                       (unsigned long)features);
544                 r = -EINVAL;
545         }
546
547 out:
548         dm_bm_unlock(sblock);
549         return r;
550 }
551
552 static int __write_changed_details(struct dm_pool_metadata *pmd)
553 {
554         int r;
555         struct dm_thin_device *td, *tmp;
556         struct disk_device_details details;
557         uint64_t key;
558
559         list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
560                 if (!td->changed)
561                         continue;
562
563                 key = td->id;
564
565                 details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
566                 details.transaction_id = cpu_to_le64(td->transaction_id);
567                 details.creation_time = cpu_to_le32(td->creation_time);
568                 details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
569                 __dm_bless_for_disk(&details);
570
571                 r = dm_btree_insert(&pmd->details_info, pmd->details_root,
572                                     &key, &details, &pmd->details_root);
573                 if (r)
574                         return r;
575
576                 if (td->open_count)
577                         td->changed = 0;
578                 else {
579                         list_del(&td->list);
580                         kfree(td);
581                 }
582
583                 pmd->need_commit = 1;
584         }
585
586         return 0;
587 }
588
589 static int __commit_transaction(struct dm_pool_metadata *pmd)
590 {
591         /*
592          * FIXME: Associated pool should be made read-only on failure.
593          */
594         int r;
595         size_t metadata_len, data_len;
596         struct thin_disk_superblock *disk_super;
597         struct dm_block *sblock;
598
599         /*
600          * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
601          */
602         BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
603
604         r = __write_changed_details(pmd);
605         if (r < 0)
606                 return r;
607
608         if (!pmd->need_commit)
609                 return r;
610
611         r = dm_sm_commit(pmd->data_sm);
612         if (r < 0)
613                 return r;
614
615         r = dm_tm_pre_commit(pmd->tm);
616         if (r < 0)
617                 return r;
618
619         r = dm_sm_root_size(pmd->metadata_sm, &metadata_len);
620         if (r < 0)
621                 return r;
622
623         r = dm_sm_root_size(pmd->data_sm, &data_len);
624         if (r < 0)
625                 return r;
626
627         r = dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
628                              &sb_validator, &sblock);
629         if (r)
630                 return r;
631
632         disk_super = dm_block_data(sblock);
633         disk_super->time = cpu_to_le32(pmd->time);
634         disk_super->data_mapping_root = cpu_to_le64(pmd->root);
635         disk_super->device_details_root = cpu_to_le64(pmd->details_root);
636         disk_super->trans_id = cpu_to_le64(pmd->trans_id);
637         disk_super->flags = cpu_to_le32(pmd->flags);
638
639         r = dm_sm_copy_root(pmd->metadata_sm, &disk_super->metadata_space_map_root,
640                             metadata_len);
641         if (r < 0)
642                 goto out_locked;
643
644         r = dm_sm_copy_root(pmd->data_sm, &disk_super->data_space_map_root,
645                             data_len);
646         if (r < 0)
647                 goto out_locked;
648
649         r = dm_tm_commit(pmd->tm, sblock);
650         if (!r)
651                 pmd->need_commit = 0;
652
653         return r;
654
655 out_locked:
656         dm_bm_unlock(sblock);
657         return r;
658 }
659
660 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
661                                                sector_t data_block_size)
662 {
663         int r;
664         struct thin_disk_superblock *disk_super;
665         struct dm_pool_metadata *pmd;
666         sector_t bdev_size = i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
667         struct dm_block_manager *bm;
668         int create;
669         struct dm_block *sblock;
670
671         pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
672         if (!pmd) {
673                 DMERR("could not allocate metadata struct");
674                 return ERR_PTR(-ENOMEM);
675         }
676
677         bm = dm_block_manager_create(bdev, THIN_METADATA_BLOCK_SIZE,
678                                      THIN_METADATA_CACHE_SIZE,
679                                      THIN_MAX_CONCURRENT_LOCKS);
680         if (!bm) {
681                 DMERR("could not create block manager");
682                 kfree(pmd);
683                 return ERR_PTR(-ENOMEM);
684         }
685
686         r = superblock_all_zeroes(bm, &create);
687         if (r) {
688                 dm_block_manager_destroy(bm);
689                 kfree(pmd);
690                 return ERR_PTR(r);
691         }
692
693
694         r = init_pmd(pmd, bm, 0, create);
695         if (r) {
696                 dm_block_manager_destroy(bm);
697                 kfree(pmd);
698                 return ERR_PTR(r);
699         }
700         pmd->bdev = bdev;
701
702         if (!create) {
703                 r = __begin_transaction(pmd);
704                 if (r < 0)
705                         goto bad;
706                 return pmd;
707         }
708
709         /*
710          * Create.
711          */
712         r = dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
713                              &sb_validator, &sblock);
714         if (r)
715                 goto bad;
716
717         if (bdev_size > THIN_METADATA_MAX_SECTORS)
718                 bdev_size = THIN_METADATA_MAX_SECTORS;
719
720         disk_super = dm_block_data(sblock);
721         disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
722         disk_super->version = cpu_to_le32(THIN_VERSION);
723         disk_super->time = 0;
724         disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE >> SECTOR_SHIFT);
725         disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
726         disk_super->data_block_size = cpu_to_le32(data_block_size);
727
728         r = dm_bm_unlock(sblock);
729         if (r < 0)
730                 goto bad;
731
732         r = dm_btree_empty(&pmd->info, &pmd->root);
733         if (r < 0)
734                 goto bad;
735
736         r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
737         if (r < 0) {
738                 DMERR("couldn't create devices root");
739                 goto bad;
740         }
741
742         pmd->flags = 0;
743         pmd->need_commit = 1;
744         r = dm_pool_commit_metadata(pmd);
745         if (r < 0) {
746                 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
747                       __func__, r);
748                 goto bad;
749         }
750
751         return pmd;
752
753 bad:
754         if (dm_pool_metadata_close(pmd) < 0)
755                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
756         return ERR_PTR(r);
757 }
758
759 int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
760 {
761         int r;
762         unsigned open_devices = 0;
763         struct dm_thin_device *td, *tmp;
764
765         down_read(&pmd->root_lock);
766         list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
767                 if (td->open_count)
768                         open_devices++;
769                 else {
770                         list_del(&td->list);
771                         kfree(td);
772                 }
773         }
774         up_read(&pmd->root_lock);
775
776         if (open_devices) {
777                 DMERR("attempt to close pmd when %u device(s) are still open",
778                        open_devices);
779                 return -EBUSY;
780         }
781
782         r = __commit_transaction(pmd);
783         if (r < 0)
784                 DMWARN("%s: __commit_transaction() failed, error = %d",
785                        __func__, r);
786
787         dm_tm_destroy(pmd->tm);
788         dm_tm_destroy(pmd->nb_tm);
789         dm_block_manager_destroy(pmd->bm);
790         dm_sm_destroy(pmd->metadata_sm);
791         dm_sm_destroy(pmd->data_sm);
792         kfree(pmd);
793
794         return 0;
795 }
796
797 /*
798  * __open_device: Returns @td corresponding to device with id @dev,
799  * creating it if @create is set and incrementing @td->open_count.
800  * On failure, @td is undefined.
801  */
802 static int __open_device(struct dm_pool_metadata *pmd,
803                          dm_thin_id dev, int create,
804                          struct dm_thin_device **td)
805 {
806         int r, changed = 0;
807         struct dm_thin_device *td2;
808         uint64_t key = dev;
809         struct disk_device_details details_le;
810
811         /*
812          * If the device is already open, return it.
813          */
814         list_for_each_entry(td2, &pmd->thin_devices, list)
815                 if (td2->id == dev) {
816                         /*
817                          * May not create an already-open device.
818                          */
819                         if (create)
820                                 return -EEXIST;
821
822                         td2->open_count++;
823                         *td = td2;
824                         return 0;
825                 }
826
827         /*
828          * Check the device exists.
829          */
830         r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
831                             &key, &details_le);
832         if (r) {
833                 if (r != -ENODATA || !create)
834                         return r;
835
836                 /*
837                  * Create new device.
838                  */
839                 changed = 1;
840                 details_le.mapped_blocks = 0;
841                 details_le.transaction_id = cpu_to_le64(pmd->trans_id);
842                 details_le.creation_time = cpu_to_le32(pmd->time);
843                 details_le.snapshotted_time = cpu_to_le32(pmd->time);
844         }
845
846         *td = kmalloc(sizeof(**td), GFP_NOIO);
847         if (!*td)
848                 return -ENOMEM;
849
850         (*td)->pmd = pmd;
851         (*td)->id = dev;
852         (*td)->open_count = 1;
853         (*td)->changed = changed;
854         (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
855         (*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
856         (*td)->creation_time = le32_to_cpu(details_le.creation_time);
857         (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
858
859         list_add(&(*td)->list, &pmd->thin_devices);
860
861         return 0;
862 }
863
864 static void __close_device(struct dm_thin_device *td)
865 {
866         --td->open_count;
867 }
868
869 static int __create_thin(struct dm_pool_metadata *pmd,
870                          dm_thin_id dev)
871 {
872         int r;
873         dm_block_t dev_root;
874         uint64_t key = dev;
875         struct disk_device_details details_le;
876         struct dm_thin_device *td;
877         __le64 value;
878
879         r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
880                             &key, &details_le);
881         if (!r)
882                 return -EEXIST;
883
884         /*
885          * Create an empty btree for the mappings.
886          */
887         r = dm_btree_empty(&pmd->bl_info, &dev_root);
888         if (r)
889                 return r;
890
891         /*
892          * Insert it into the main mapping tree.
893          */
894         value = cpu_to_le64(dev_root);
895         __dm_bless_for_disk(&value);
896         r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
897         if (r) {
898                 dm_btree_del(&pmd->bl_info, dev_root);
899                 return r;
900         }
901
902         r = __open_device(pmd, dev, 1, &td);
903         if (r) {
904                 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
905                 dm_btree_del(&pmd->bl_info, dev_root);
906                 return r;
907         }
908         __close_device(td);
909
910         return r;
911 }
912
913 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
914 {
915         int r;
916
917         down_write(&pmd->root_lock);
918         r = __create_thin(pmd, dev);
919         up_write(&pmd->root_lock);
920
921         return r;
922 }
923
924 static int __set_snapshot_details(struct dm_pool_metadata *pmd,
925                                   struct dm_thin_device *snap,
926                                   dm_thin_id origin, uint32_t time)
927 {
928         int r;
929         struct dm_thin_device *td;
930
931         r = __open_device(pmd, origin, 0, &td);
932         if (r)
933                 return r;
934
935         td->changed = 1;
936         td->snapshotted_time = time;
937
938         snap->mapped_blocks = td->mapped_blocks;
939         snap->snapshotted_time = time;
940         __close_device(td);
941
942         return 0;
943 }
944
945 static int __create_snap(struct dm_pool_metadata *pmd,
946                          dm_thin_id dev, dm_thin_id origin)
947 {
948         int r;
949         dm_block_t origin_root;
950         uint64_t key = origin, dev_key = dev;
951         struct dm_thin_device *td;
952         struct disk_device_details details_le;
953         __le64 value;
954
955         /* check this device is unused */
956         r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
957                             &dev_key, &details_le);
958         if (!r)
959                 return -EEXIST;
960
961         /* find the mapping tree for the origin */
962         r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
963         if (r)
964                 return r;
965         origin_root = le64_to_cpu(value);
966
967         /* clone the origin, an inc will do */
968         dm_tm_inc(pmd->tm, origin_root);
969
970         /* insert into the main mapping tree */
971         value = cpu_to_le64(origin_root);
972         __dm_bless_for_disk(&value);
973         key = dev;
974         r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
975         if (r) {
976                 dm_tm_dec(pmd->tm, origin_root);
977                 return r;
978         }
979
980         pmd->time++;
981
982         r = __open_device(pmd, dev, 1, &td);
983         if (r)
984                 goto bad;
985
986         r = __set_snapshot_details(pmd, td, origin, pmd->time);
987         __close_device(td);
988
989         if (r)
990                 goto bad;
991
992         return 0;
993
994 bad:
995         dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
996         dm_btree_remove(&pmd->details_info, pmd->details_root,
997                         &key, &pmd->details_root);
998         return r;
999 }
1000
1001 int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1002                                  dm_thin_id dev,
1003                                  dm_thin_id origin)
1004 {
1005         int r;
1006
1007         down_write(&pmd->root_lock);
1008         r = __create_snap(pmd, dev, origin);
1009         up_write(&pmd->root_lock);
1010
1011         return r;
1012 }
1013
1014 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1015 {
1016         int r;
1017         uint64_t key = dev;
1018         struct dm_thin_device *td;
1019
1020         /* TODO: failure should mark the transaction invalid */
1021         r = __open_device(pmd, dev, 0, &td);
1022         if (r)
1023                 return r;
1024
1025         if (td->open_count > 1) {
1026                 __close_device(td);
1027                 return -EBUSY;
1028         }
1029
1030         list_del(&td->list);
1031         kfree(td);
1032         r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1033                             &key, &pmd->details_root);
1034         if (r)
1035                 return r;
1036
1037         r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1038         if (r)
1039                 return r;
1040
1041         pmd->need_commit = 1;
1042
1043         return 0;
1044 }
1045
1046 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1047                                dm_thin_id dev)
1048 {
1049         int r;
1050
1051         down_write(&pmd->root_lock);
1052         r = __delete_device(pmd, dev);
1053         up_write(&pmd->root_lock);
1054
1055         return r;
1056 }
1057
1058 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1059                                         uint64_t current_id,
1060                                         uint64_t new_id)
1061 {
1062         down_write(&pmd->root_lock);
1063         if (pmd->trans_id != current_id) {
1064                 up_write(&pmd->root_lock);
1065                 DMERR("mismatched transaction id");
1066                 return -EINVAL;
1067         }
1068
1069         pmd->trans_id = new_id;
1070         pmd->need_commit = 1;
1071         up_write(&pmd->root_lock);
1072
1073         return 0;
1074 }
1075
1076 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1077                                         uint64_t *result)
1078 {
1079         down_read(&pmd->root_lock);
1080         *result = pmd->trans_id;
1081         up_read(&pmd->root_lock);
1082
1083         return 0;
1084 }
1085
1086 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1087 {
1088         int r, inc;
1089         struct thin_disk_superblock *disk_super;
1090         struct dm_block *copy, *sblock;
1091         dm_block_t held_root;
1092
1093         /*
1094          * Copy the superblock.
1095          */
1096         dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1097         r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1098                                &sb_validator, &copy, &inc);
1099         if (r)
1100                 return r;
1101
1102         BUG_ON(!inc);
1103
1104         held_root = dm_block_location(copy);
1105         disk_super = dm_block_data(copy);
1106
1107         if (le64_to_cpu(disk_super->held_root)) {
1108                 DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1109
1110                 dm_tm_dec(pmd->tm, held_root);
1111                 dm_tm_unlock(pmd->tm, copy);
1112                 pmd->need_commit = 1;
1113
1114                 return -EBUSY;
1115         }
1116
1117         /*
1118          * Wipe the spacemap since we're not publishing this.
1119          */
1120         memset(&disk_super->data_space_map_root, 0,
1121                sizeof(disk_super->data_space_map_root));
1122         memset(&disk_super->metadata_space_map_root, 0,
1123                sizeof(disk_super->metadata_space_map_root));
1124
1125         /*
1126          * Increment the data structures that need to be preserved.
1127          */
1128         dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1129         dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1130         dm_tm_unlock(pmd->tm, copy);
1131
1132         /*
1133          * Write the held root into the superblock.
1134          */
1135         r = dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1136                              &sb_validator, &sblock);
1137         if (r) {
1138                 dm_tm_dec(pmd->tm, held_root);
1139                 pmd->need_commit = 1;
1140                 return r;
1141         }
1142
1143         disk_super = dm_block_data(sblock);
1144         disk_super->held_root = cpu_to_le64(held_root);
1145         dm_bm_unlock(sblock);
1146
1147         pmd->need_commit = 1;
1148
1149         return 0;
1150 }
1151
1152 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1153 {
1154         int r;
1155
1156         down_write(&pmd->root_lock);
1157         r = __reserve_metadata_snap(pmd);
1158         up_write(&pmd->root_lock);
1159
1160         return r;
1161 }
1162
1163 static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1164 {
1165         int r;
1166         struct thin_disk_superblock *disk_super;
1167         struct dm_block *sblock, *copy;
1168         dm_block_t held_root;
1169
1170         r = dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1171                              &sb_validator, &sblock);
1172         if (r)
1173                 return r;
1174
1175         disk_super = dm_block_data(sblock);
1176         held_root = le64_to_cpu(disk_super->held_root);
1177         disk_super->held_root = cpu_to_le64(0);
1178         pmd->need_commit = 1;
1179
1180         dm_bm_unlock(sblock);
1181
1182         if (!held_root) {
1183                 DMWARN("No pool metadata snapshot found: nothing to release.");
1184                 return -EINVAL;
1185         }
1186
1187         r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
1188         if (r)
1189                 return r;
1190
1191         disk_super = dm_block_data(copy);
1192         dm_sm_dec_block(pmd->metadata_sm, le64_to_cpu(disk_super->data_mapping_root));
1193         dm_sm_dec_block(pmd->metadata_sm, le64_to_cpu(disk_super->device_details_root));
1194         dm_sm_dec_block(pmd->metadata_sm, held_root);
1195
1196         return dm_tm_unlock(pmd->tm, copy);
1197 }
1198
1199 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1200 {
1201         int r;
1202
1203         down_write(&pmd->root_lock);
1204         r = __release_metadata_snap(pmd);
1205         up_write(&pmd->root_lock);
1206
1207         return r;
1208 }
1209
1210 static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1211                                dm_block_t *result)
1212 {
1213         int r;
1214         struct thin_disk_superblock *disk_super;
1215         struct dm_block *sblock;
1216
1217         r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1218                             &sb_validator, &sblock);
1219         if (r)
1220                 return r;
1221
1222         disk_super = dm_block_data(sblock);
1223         *result = le64_to_cpu(disk_super->held_root);
1224
1225         return dm_bm_unlock(sblock);
1226 }
1227
1228 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1229                               dm_block_t *result)
1230 {
1231         int r;
1232
1233         down_read(&pmd->root_lock);
1234         r = __get_metadata_snap(pmd, result);
1235         up_read(&pmd->root_lock);
1236
1237         return r;
1238 }
1239
1240 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1241                              struct dm_thin_device **td)
1242 {
1243         int r;
1244
1245         down_write(&pmd->root_lock);
1246         r = __open_device(pmd, dev, 0, td);
1247         up_write(&pmd->root_lock);
1248
1249         return r;
1250 }
1251
1252 int dm_pool_close_thin_device(struct dm_thin_device *td)
1253 {
1254         down_write(&td->pmd->root_lock);
1255         __close_device(td);
1256         up_write(&td->pmd->root_lock);
1257
1258         return 0;
1259 }
1260
1261 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1262 {
1263         return td->id;
1264 }
1265
1266 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1267 {
1268         return td->snapshotted_time > time;
1269 }
1270
1271 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1272                        int can_block, struct dm_thin_lookup_result *result)
1273 {
1274         int r;
1275         uint64_t block_time = 0;
1276         __le64 value;
1277         struct dm_pool_metadata *pmd = td->pmd;
1278         dm_block_t keys[2] = { td->id, block };
1279
1280         if (can_block) {
1281                 down_read(&pmd->root_lock);
1282                 r = dm_btree_lookup(&pmd->info, pmd->root, keys, &value);
1283                 if (!r)
1284                         block_time = le64_to_cpu(value);
1285                 up_read(&pmd->root_lock);
1286
1287         } else if (down_read_trylock(&pmd->root_lock)) {
1288                 r = dm_btree_lookup(&pmd->nb_info, pmd->root, keys, &value);
1289                 if (!r)
1290                         block_time = le64_to_cpu(value);
1291                 up_read(&pmd->root_lock);
1292
1293         } else
1294                 return -EWOULDBLOCK;
1295
1296         if (!r) {
1297                 dm_block_t exception_block;
1298                 uint32_t exception_time;
1299                 unpack_block_time(block_time, &exception_block,
1300                                   &exception_time);
1301                 result->block = exception_block;
1302                 result->shared = __snapshotted_since(td, exception_time);
1303         }
1304
1305         return r;
1306 }
1307
1308 static int __insert(struct dm_thin_device *td, dm_block_t block,
1309                     dm_block_t data_block)
1310 {
1311         int r, inserted;
1312         __le64 value;
1313         struct dm_pool_metadata *pmd = td->pmd;
1314         dm_block_t keys[2] = { td->id, block };
1315
1316         pmd->need_commit = 1;
1317         value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1318         __dm_bless_for_disk(&value);
1319
1320         r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1321                                    &pmd->root, &inserted);
1322         if (r)
1323                 return r;
1324
1325         if (inserted) {
1326                 td->mapped_blocks++;
1327                 td->changed = 1;
1328         }
1329
1330         return 0;
1331 }
1332
1333 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1334                          dm_block_t data_block)
1335 {
1336         int r;
1337
1338         down_write(&td->pmd->root_lock);
1339         r = __insert(td, block, data_block);
1340         up_write(&td->pmd->root_lock);
1341
1342         return r;
1343 }
1344
1345 static int __remove(struct dm_thin_device *td, dm_block_t block)
1346 {
1347         int r;
1348         struct dm_pool_metadata *pmd = td->pmd;
1349         dm_block_t keys[2] = { td->id, block };
1350
1351         r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1352         if (r)
1353                 return r;
1354
1355         td->mapped_blocks--;
1356         td->changed = 1;
1357         pmd->need_commit = 1;
1358
1359         return 0;
1360 }
1361
1362 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
1363 {
1364         int r;
1365
1366         down_write(&td->pmd->root_lock);
1367         r = __remove(td, block);
1368         up_write(&td->pmd->root_lock);
1369
1370         return r;
1371 }
1372
1373 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1374 {
1375         int r;
1376
1377         down_write(&pmd->root_lock);
1378
1379         r = dm_sm_new_block(pmd->data_sm, result);
1380         pmd->need_commit = 1;
1381
1382         up_write(&pmd->root_lock);
1383
1384         return r;
1385 }
1386
1387 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1388 {
1389         int r;
1390
1391         down_write(&pmd->root_lock);
1392
1393         r = __commit_transaction(pmd);
1394         if (r <= 0)
1395                 goto out;
1396
1397         /*
1398          * Open the next transaction.
1399          */
1400         r = __begin_transaction(pmd);
1401 out:
1402         up_write(&pmd->root_lock);
1403         return r;
1404 }
1405
1406 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1407 {
1408         int r;
1409
1410         down_read(&pmd->root_lock);
1411         r = dm_sm_get_nr_free(pmd->data_sm, result);
1412         up_read(&pmd->root_lock);
1413
1414         return r;
1415 }
1416
1417 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1418                                           dm_block_t *result)
1419 {
1420         int r;
1421
1422         down_read(&pmd->root_lock);
1423         r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1424         up_read(&pmd->root_lock);
1425
1426         return r;
1427 }
1428
1429 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1430                                   dm_block_t *result)
1431 {
1432         int r;
1433
1434         down_read(&pmd->root_lock);
1435         r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1436         up_read(&pmd->root_lock);
1437
1438         return r;
1439 }
1440
1441 int dm_pool_get_data_block_size(struct dm_pool_metadata *pmd, sector_t *result)
1442 {
1443         down_read(&pmd->root_lock);
1444         *result = pmd->data_block_size;
1445         up_read(&pmd->root_lock);
1446
1447         return 0;
1448 }
1449
1450 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1451 {
1452         int r;
1453
1454         down_read(&pmd->root_lock);
1455         r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1456         up_read(&pmd->root_lock);
1457
1458         return r;
1459 }
1460
1461 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1462 {
1463         struct dm_pool_metadata *pmd = td->pmd;
1464
1465         down_read(&pmd->root_lock);
1466         *result = td->mapped_blocks;
1467         up_read(&pmd->root_lock);
1468
1469         return 0;
1470 }
1471
1472 static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1473 {
1474         int r;
1475         __le64 value_le;
1476         dm_block_t thin_root;
1477         struct dm_pool_metadata *pmd = td->pmd;
1478
1479         r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
1480         if (r)
1481                 return r;
1482
1483         thin_root = le64_to_cpu(value_le);
1484
1485         return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
1486 }
1487
1488 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
1489                                      dm_block_t *result)
1490 {
1491         int r;
1492         struct dm_pool_metadata *pmd = td->pmd;
1493
1494         down_read(&pmd->root_lock);
1495         r = __highest_block(td, result);
1496         up_read(&pmd->root_lock);
1497
1498         return r;
1499 }
1500
1501 static int __resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1502 {
1503         int r;
1504         dm_block_t old_count;
1505
1506         r = dm_sm_get_nr_blocks(pmd->data_sm, &old_count);
1507         if (r)
1508                 return r;
1509
1510         if (new_count == old_count)
1511                 return 0;
1512
1513         if (new_count < old_count) {
1514                 DMERR("cannot reduce size of data device");
1515                 return -EINVAL;
1516         }
1517
1518         r = dm_sm_extend(pmd->data_sm, new_count - old_count);
1519         if (!r)
1520                 pmd->need_commit = 1;
1521
1522         return r;
1523 }
1524
1525 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1526 {
1527         int r;
1528
1529         down_write(&pmd->root_lock);
1530         r = __resize_data_dev(pmd, new_count);
1531         up_write(&pmd->root_lock);
1532
1533         return r;
1534 }