Merge branch 'next/cleanup' of git://git.linaro.org/people/arnd/arm-soc
[pandora-kernel.git] / drivers / md / dm-raid.c
1 /*
2  * Copyright (C) 2010-2011 Neil Brown
3  * Copyright (C) 2010-2011 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7
8 #include <linux/slab.h>
9
10 #include "md.h"
11 #include "raid1.h"
12 #include "raid5.h"
13 #include "bitmap.h"
14
15 #include <linux/device-mapper.h>
16
17 #define DM_MSG_PREFIX "raid"
18
19 /*
20  * The following flags are used by dm-raid.c to set up the array state.
21  * They must be cleared before md_run is called.
22  */
23 #define FirstUse 10             /* rdev flag */
24
25 struct raid_dev {
26         /*
27          * Two DM devices, one to hold metadata and one to hold the
28          * actual data/parity.  The reason for this is to not confuse
29          * ti->len and give more flexibility in altering size and
30          * characteristics.
31          *
32          * While it is possible for this device to be associated
33          * with a different physical device than the data_dev, it
34          * is intended for it to be the same.
35          *    |--------- Physical Device ---------|
36          *    |- meta_dev -|------ data_dev ------|
37          */
38         struct dm_dev *meta_dev;
39         struct dm_dev *data_dev;
40         struct md_rdev rdev;
41 };
42
43 /*
44  * Flags for rs->print_flags field.
45  */
46 #define DMPF_SYNC              0x1
47 #define DMPF_NOSYNC            0x2
48 #define DMPF_REBUILD           0x4
49 #define DMPF_DAEMON_SLEEP      0x8
50 #define DMPF_MIN_RECOVERY_RATE 0x10
51 #define DMPF_MAX_RECOVERY_RATE 0x20
52 #define DMPF_MAX_WRITE_BEHIND  0x40
53 #define DMPF_STRIPE_CACHE      0x80
54 #define DMPF_REGION_SIZE       0X100
55 struct raid_set {
56         struct dm_target *ti;
57
58         uint64_t print_flags;
59
60         struct mddev md;
61         struct raid_type *raid_type;
62         struct dm_target_callbacks callbacks;
63
64         struct raid_dev dev[0];
65 };
66
67 /* Supported raid types and properties. */
68 static struct raid_type {
69         const char *name;               /* RAID algorithm. */
70         const char *descr;              /* Descriptor text for logging. */
71         const unsigned parity_devs;     /* # of parity devices. */
72         const unsigned minimal_devs;    /* minimal # of devices in set. */
73         const unsigned level;           /* RAID level. */
74         const unsigned algorithm;       /* RAID algorithm. */
75 } raid_types[] = {
76         {"raid1",    "RAID1 (mirroring)",               0, 2, 1, 0 /* NONE */},
77         {"raid4",    "RAID4 (dedicated parity disk)",   1, 2, 5, ALGORITHM_PARITY_0},
78         {"raid5_la", "RAID5 (left asymmetric)",         1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC},
79         {"raid5_ra", "RAID5 (right asymmetric)",        1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC},
80         {"raid5_ls", "RAID5 (left symmetric)",          1, 2, 5, ALGORITHM_LEFT_SYMMETRIC},
81         {"raid5_rs", "RAID5 (right symmetric)",         1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC},
82         {"raid6_zr", "RAID6 (zero restart)",            2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART},
83         {"raid6_nr", "RAID6 (N restart)",               2, 4, 6, ALGORITHM_ROTATING_N_RESTART},
84         {"raid6_nc", "RAID6 (N continue)",              2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE}
85 };
86
87 static struct raid_type *get_raid_type(char *name)
88 {
89         int i;
90
91         for (i = 0; i < ARRAY_SIZE(raid_types); i++)
92                 if (!strcmp(raid_types[i].name, name))
93                         return &raid_types[i];
94
95         return NULL;
96 }
97
98 static struct raid_set *context_alloc(struct dm_target *ti, struct raid_type *raid_type, unsigned raid_devs)
99 {
100         unsigned i;
101         struct raid_set *rs;
102         sector_t sectors_per_dev;
103
104         if (raid_devs <= raid_type->parity_devs) {
105                 ti->error = "Insufficient number of devices";
106                 return ERR_PTR(-EINVAL);
107         }
108
109         sectors_per_dev = ti->len;
110         if ((raid_type->level > 1) &&
111             sector_div(sectors_per_dev, (raid_devs - raid_type->parity_devs))) {
112                 ti->error = "Target length not divisible by number of data devices";
113                 return ERR_PTR(-EINVAL);
114         }
115
116         rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL);
117         if (!rs) {
118                 ti->error = "Cannot allocate raid context";
119                 return ERR_PTR(-ENOMEM);
120         }
121
122         mddev_init(&rs->md);
123
124         rs->ti = ti;
125         rs->raid_type = raid_type;
126         rs->md.raid_disks = raid_devs;
127         rs->md.level = raid_type->level;
128         rs->md.new_level = rs->md.level;
129         rs->md.dev_sectors = sectors_per_dev;
130         rs->md.layout = raid_type->algorithm;
131         rs->md.new_layout = rs->md.layout;
132         rs->md.delta_disks = 0;
133         rs->md.recovery_cp = 0;
134
135         for (i = 0; i < raid_devs; i++)
136                 md_rdev_init(&rs->dev[i].rdev);
137
138         /*
139          * Remaining items to be initialized by further RAID params:
140          *  rs->md.persistent
141          *  rs->md.external
142          *  rs->md.chunk_sectors
143          *  rs->md.new_chunk_sectors
144          */
145
146         return rs;
147 }
148
149 static void context_free(struct raid_set *rs)
150 {
151         int i;
152
153         for (i = 0; i < rs->md.raid_disks; i++) {
154                 if (rs->dev[i].meta_dev)
155                         dm_put_device(rs->ti, rs->dev[i].meta_dev);
156                 if (rs->dev[i].rdev.sb_page)
157                         put_page(rs->dev[i].rdev.sb_page);
158                 rs->dev[i].rdev.sb_page = NULL;
159                 rs->dev[i].rdev.sb_loaded = 0;
160                 if (rs->dev[i].data_dev)
161                         dm_put_device(rs->ti, rs->dev[i].data_dev);
162         }
163
164         kfree(rs);
165 }
166
167 /*
168  * For every device we have two words
169  *  <meta_dev>: meta device name or '-' if missing
170  *  <data_dev>: data device name or '-' if missing
171  *
172  * The following are permitted:
173  *    - -
174  *    - <data_dev>
175  *    <meta_dev> <data_dev>
176  *
177  * The following is not allowed:
178  *    <meta_dev> -
179  *
180  * This code parses those words.  If there is a failure,
181  * the caller must use context_free to unwind the operations.
182  */
183 static int dev_parms(struct raid_set *rs, char **argv)
184 {
185         int i;
186         int rebuild = 0;
187         int metadata_available = 0;
188         int ret = 0;
189
190         for (i = 0; i < rs->md.raid_disks; i++, argv += 2) {
191                 rs->dev[i].rdev.raid_disk = i;
192
193                 rs->dev[i].meta_dev = NULL;
194                 rs->dev[i].data_dev = NULL;
195
196                 /*
197                  * There are no offsets, since there is a separate device
198                  * for data and metadata.
199                  */
200                 rs->dev[i].rdev.data_offset = 0;
201                 rs->dev[i].rdev.mddev = &rs->md;
202
203                 if (strcmp(argv[0], "-")) {
204                         ret = dm_get_device(rs->ti, argv[0],
205                                             dm_table_get_mode(rs->ti->table),
206                                             &rs->dev[i].meta_dev);
207                         rs->ti->error = "RAID metadata device lookup failure";
208                         if (ret)
209                                 return ret;
210
211                         rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
212                         if (!rs->dev[i].rdev.sb_page)
213                                 return -ENOMEM;
214                 }
215
216                 if (!strcmp(argv[1], "-")) {
217                         if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
218                             (!rs->dev[i].rdev.recovery_offset)) {
219                                 rs->ti->error = "Drive designated for rebuild not specified";
220                                 return -EINVAL;
221                         }
222
223                         rs->ti->error = "No data device supplied with metadata device";
224                         if (rs->dev[i].meta_dev)
225                                 return -EINVAL;
226
227                         continue;
228                 }
229
230                 ret = dm_get_device(rs->ti, argv[1],
231                                     dm_table_get_mode(rs->ti->table),
232                                     &rs->dev[i].data_dev);
233                 if (ret) {
234                         rs->ti->error = "RAID device lookup failure";
235                         return ret;
236                 }
237
238                 if (rs->dev[i].meta_dev) {
239                         metadata_available = 1;
240                         rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
241                 }
242                 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
243                 list_add(&rs->dev[i].rdev.same_set, &rs->md.disks);
244                 if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
245                         rebuild++;
246         }
247
248         if (metadata_available) {
249                 rs->md.external = 0;
250                 rs->md.persistent = 1;
251                 rs->md.major_version = 2;
252         } else if (rebuild && !rs->md.recovery_cp) {
253                 /*
254                  * Without metadata, we will not be able to tell if the array
255                  * is in-sync or not - we must assume it is not.  Therefore,
256                  * it is impossible to rebuild a drive.
257                  *
258                  * Even if there is metadata, the on-disk information may
259                  * indicate that the array is not in-sync and it will then
260                  * fail at that time.
261                  *
262                  * User could specify 'nosync' option if desperate.
263                  */
264                 DMERR("Unable to rebuild drive while array is not in-sync");
265                 rs->ti->error = "RAID device lookup failure";
266                 return -EINVAL;
267         }
268
269         return 0;
270 }
271
272 /*
273  * validate_region_size
274  * @rs
275  * @region_size:  region size in sectors.  If 0, pick a size (4MiB default).
276  *
277  * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
278  * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
279  *
280  * Returns: 0 on success, -EINVAL on failure.
281  */
282 static int validate_region_size(struct raid_set *rs, unsigned long region_size)
283 {
284         unsigned long min_region_size = rs->ti->len / (1 << 21);
285
286         if (!region_size) {
287                 /*
288                  * Choose a reasonable default.  All figures in sectors.
289                  */
290                 if (min_region_size > (1 << 13)) {
291                         DMINFO("Choosing default region size of %lu sectors",
292                                region_size);
293                         region_size = min_region_size;
294                 } else {
295                         DMINFO("Choosing default region size of 4MiB");
296                         region_size = 1 << 13; /* sectors */
297                 }
298         } else {
299                 /*
300                  * Validate user-supplied value.
301                  */
302                 if (region_size > rs->ti->len) {
303                         rs->ti->error = "Supplied region size is too large";
304                         return -EINVAL;
305                 }
306
307                 if (region_size < min_region_size) {
308                         DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
309                               region_size, min_region_size);
310                         rs->ti->error = "Supplied region size is too small";
311                         return -EINVAL;
312                 }
313
314                 if (!is_power_of_2(region_size)) {
315                         rs->ti->error = "Region size is not a power of 2";
316                         return -EINVAL;
317                 }
318
319                 if (region_size < rs->md.chunk_sectors) {
320                         rs->ti->error = "Region size is smaller than the chunk size";
321                         return -EINVAL;
322                 }
323         }
324
325         /*
326          * Convert sectors to bytes.
327          */
328         rs->md.bitmap_info.chunksize = (region_size << 9);
329
330         return 0;
331 }
332
333 /*
334  * Possible arguments are...
335  *      <chunk_size> [optional_args]
336  *
337  * Argument definitions
338  *    <chunk_size>                      The number of sectors per disk that
339  *                                      will form the "stripe"
340  *    [[no]sync]                        Force or prevent recovery of the
341  *                                      entire array
342  *    [rebuild <idx>]                   Rebuild the drive indicated by the index
343  *    [daemon_sleep <ms>]               Time between bitmap daemon work to
344  *                                      clear bits
345  *    [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization
346  *    [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization
347  *    [write_mostly <idx>]              Indicate a write mostly drive via index
348  *    [max_write_behind <sectors>]      See '-write-behind=' (man mdadm)
349  *    [stripe_cache <sectors>]          Stripe cache size for higher RAIDs
350  *    [region_size <sectors>]           Defines granularity of bitmap
351  */
352 static int parse_raid_params(struct raid_set *rs, char **argv,
353                              unsigned num_raid_params)
354 {
355         unsigned i, rebuild_cnt = 0;
356         unsigned long value, region_size = 0;
357         char *key;
358
359         /*
360          * First, parse the in-order required arguments
361          * "chunk_size" is the only argument of this type.
362          */
363         if ((strict_strtoul(argv[0], 10, &value) < 0)) {
364                 rs->ti->error = "Bad chunk size";
365                 return -EINVAL;
366         } else if (rs->raid_type->level == 1) {
367                 if (value)
368                         DMERR("Ignoring chunk size parameter for RAID 1");
369                 value = 0;
370         } else if (!is_power_of_2(value)) {
371                 rs->ti->error = "Chunk size must be a power of 2";
372                 return -EINVAL;
373         } else if (value < 8) {
374                 rs->ti->error = "Chunk size value is too small";
375                 return -EINVAL;
376         }
377
378         rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
379         argv++;
380         num_raid_params--;
381
382         /*
383          * We set each individual device as In_sync with a completed
384          * 'recovery_offset'.  If there has been a device failure or
385          * replacement then one of the following cases applies:
386          *
387          *   1) User specifies 'rebuild'.
388          *      - Device is reset when param is read.
389          *   2) A new device is supplied.
390          *      - No matching superblock found, resets device.
391          *   3) Device failure was transient and returns on reload.
392          *      - Failure noticed, resets device for bitmap replay.
393          *   4) Device hadn't completed recovery after previous failure.
394          *      - Superblock is read and overrides recovery_offset.
395          *
396          * What is found in the superblocks of the devices is always
397          * authoritative, unless 'rebuild' or '[no]sync' was specified.
398          */
399         for (i = 0; i < rs->md.raid_disks; i++) {
400                 set_bit(In_sync, &rs->dev[i].rdev.flags);
401                 rs->dev[i].rdev.recovery_offset = MaxSector;
402         }
403
404         /*
405          * Second, parse the unordered optional arguments
406          */
407         for (i = 0; i < num_raid_params; i++) {
408                 if (!strcasecmp(argv[i], "nosync")) {
409                         rs->md.recovery_cp = MaxSector;
410                         rs->print_flags |= DMPF_NOSYNC;
411                         continue;
412                 }
413                 if (!strcasecmp(argv[i], "sync")) {
414                         rs->md.recovery_cp = 0;
415                         rs->print_flags |= DMPF_SYNC;
416                         continue;
417                 }
418
419                 /* The rest of the optional arguments come in key/value pairs */
420                 if ((i + 1) >= num_raid_params) {
421                         rs->ti->error = "Wrong number of raid parameters given";
422                         return -EINVAL;
423                 }
424
425                 key = argv[i++];
426                 if (strict_strtoul(argv[i], 10, &value) < 0) {
427                         rs->ti->error = "Bad numerical argument given in raid params";
428                         return -EINVAL;
429                 }
430
431                 if (!strcasecmp(key, "rebuild")) {
432                         rebuild_cnt++;
433                         if (((rs->raid_type->level != 1) &&
434                              (rebuild_cnt > rs->raid_type->parity_devs)) ||
435                             ((rs->raid_type->level == 1) &&
436                              (rebuild_cnt > (rs->md.raid_disks - 1)))) {
437                                 rs->ti->error = "Too many rebuild devices specified for given RAID type";
438                                 return -EINVAL;
439                         }
440                         if (value > rs->md.raid_disks) {
441                                 rs->ti->error = "Invalid rebuild index given";
442                                 return -EINVAL;
443                         }
444                         clear_bit(In_sync, &rs->dev[value].rdev.flags);
445                         rs->dev[value].rdev.recovery_offset = 0;
446                         rs->print_flags |= DMPF_REBUILD;
447                 } else if (!strcasecmp(key, "write_mostly")) {
448                         if (rs->raid_type->level != 1) {
449                                 rs->ti->error = "write_mostly option is only valid for RAID1";
450                                 return -EINVAL;
451                         }
452                         if (value >= rs->md.raid_disks) {
453                                 rs->ti->error = "Invalid write_mostly drive index given";
454                                 return -EINVAL;
455                         }
456                         set_bit(WriteMostly, &rs->dev[value].rdev.flags);
457                 } else if (!strcasecmp(key, "max_write_behind")) {
458                         if (rs->raid_type->level != 1) {
459                                 rs->ti->error = "max_write_behind option is only valid for RAID1";
460                                 return -EINVAL;
461                         }
462                         rs->print_flags |= DMPF_MAX_WRITE_BEHIND;
463
464                         /*
465                          * In device-mapper, we specify things in sectors, but
466                          * MD records this value in kB
467                          */
468                         value /= 2;
469                         if (value > COUNTER_MAX) {
470                                 rs->ti->error = "Max write-behind limit out of range";
471                                 return -EINVAL;
472                         }
473                         rs->md.bitmap_info.max_write_behind = value;
474                 } else if (!strcasecmp(key, "daemon_sleep")) {
475                         rs->print_flags |= DMPF_DAEMON_SLEEP;
476                         if (!value || (value > MAX_SCHEDULE_TIMEOUT)) {
477                                 rs->ti->error = "daemon sleep period out of range";
478                                 return -EINVAL;
479                         }
480                         rs->md.bitmap_info.daemon_sleep = value;
481                 } else if (!strcasecmp(key, "stripe_cache")) {
482                         rs->print_flags |= DMPF_STRIPE_CACHE;
483
484                         /*
485                          * In device-mapper, we specify things in sectors, but
486                          * MD records this value in kB
487                          */
488                         value /= 2;
489
490                         if (rs->raid_type->level < 5) {
491                                 rs->ti->error = "Inappropriate argument: stripe_cache";
492                                 return -EINVAL;
493                         }
494                         if (raid5_set_cache_size(&rs->md, (int)value)) {
495                                 rs->ti->error = "Bad stripe_cache size";
496                                 return -EINVAL;
497                         }
498                 } else if (!strcasecmp(key, "min_recovery_rate")) {
499                         rs->print_flags |= DMPF_MIN_RECOVERY_RATE;
500                         if (value > INT_MAX) {
501                                 rs->ti->error = "min_recovery_rate out of range";
502                                 return -EINVAL;
503                         }
504                         rs->md.sync_speed_min = (int)value;
505                 } else if (!strcasecmp(key, "max_recovery_rate")) {
506                         rs->print_flags |= DMPF_MAX_RECOVERY_RATE;
507                         if (value > INT_MAX) {
508                                 rs->ti->error = "max_recovery_rate out of range";
509                                 return -EINVAL;
510                         }
511                         rs->md.sync_speed_max = (int)value;
512                 } else if (!strcasecmp(key, "region_size")) {
513                         rs->print_flags |= DMPF_REGION_SIZE;
514                         region_size = value;
515                 } else {
516                         DMERR("Unable to parse RAID parameter: %s", key);
517                         rs->ti->error = "Unable to parse RAID parameters";
518                         return -EINVAL;
519                 }
520         }
521
522         if (validate_region_size(rs, region_size))
523                 return -EINVAL;
524
525         if (rs->md.chunk_sectors)
526                 rs->ti->split_io = rs->md.chunk_sectors;
527         else
528                 rs->ti->split_io = region_size;
529
530         if (rs->md.chunk_sectors)
531                 rs->ti->split_io = rs->md.chunk_sectors;
532         else
533                 rs->ti->split_io = region_size;
534
535         /* Assume there are no metadata devices until the drives are parsed */
536         rs->md.persistent = 0;
537         rs->md.external = 1;
538
539         return 0;
540 }
541
542 static void do_table_event(struct work_struct *ws)
543 {
544         struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
545
546         dm_table_event(rs->ti->table);
547 }
548
549 static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
550 {
551         struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
552
553         if (rs->raid_type->level == 1)
554                 return md_raid1_congested(&rs->md, bits);
555
556         return md_raid5_congested(&rs->md, bits);
557 }
558
559 /*
560  * This structure is never routinely used by userspace, unlike md superblocks.
561  * Devices with this superblock should only ever be accessed via device-mapper.
562  */
563 #define DM_RAID_MAGIC 0x64526D44
564 struct dm_raid_superblock {
565         __le32 magic;           /* "DmRd" */
566         __le32 features;        /* Used to indicate possible future changes */
567
568         __le32 num_devices;     /* Number of devices in this array. (Max 64) */
569         __le32 array_position;  /* The position of this drive in the array */
570
571         __le64 events;          /* Incremented by md when superblock updated */
572         __le64 failed_devices;  /* Bit field of devices to indicate failures */
573
574         /*
575          * This offset tracks the progress of the repair or replacement of
576          * an individual drive.
577          */
578         __le64 disk_recovery_offset;
579
580         /*
581          * This offset tracks the progress of the initial array
582          * synchronisation/parity calculation.
583          */
584         __le64 array_resync_offset;
585
586         /*
587          * RAID characteristics
588          */
589         __le32 level;
590         __le32 layout;
591         __le32 stripe_sectors;
592
593         __u8 pad[452];          /* Round struct to 512 bytes. */
594                                 /* Always set to 0 when writing. */
595 } __packed;
596
597 static int read_disk_sb(struct md_rdev *rdev, int size)
598 {
599         BUG_ON(!rdev->sb_page);
600
601         if (rdev->sb_loaded)
602                 return 0;
603
604         if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, 1)) {
605                 DMERR("Failed to read device superblock");
606                 return -EINVAL;
607         }
608
609         rdev->sb_loaded = 1;
610
611         return 0;
612 }
613
614 static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
615 {
616         struct md_rdev *r, *t;
617         uint64_t failed_devices;
618         struct dm_raid_superblock *sb;
619
620         sb = page_address(rdev->sb_page);
621         failed_devices = le64_to_cpu(sb->failed_devices);
622
623         rdev_for_each(r, t, mddev)
624                 if ((r->raid_disk >= 0) && test_bit(Faulty, &r->flags))
625                         failed_devices |= (1ULL << r->raid_disk);
626
627         memset(sb, 0, sizeof(*sb));
628
629         sb->magic = cpu_to_le32(DM_RAID_MAGIC);
630         sb->features = cpu_to_le32(0);  /* No features yet */
631
632         sb->num_devices = cpu_to_le32(mddev->raid_disks);
633         sb->array_position = cpu_to_le32(rdev->raid_disk);
634
635         sb->events = cpu_to_le64(mddev->events);
636         sb->failed_devices = cpu_to_le64(failed_devices);
637
638         sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
639         sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
640
641         sb->level = cpu_to_le32(mddev->level);
642         sb->layout = cpu_to_le32(mddev->layout);
643         sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
644 }
645
646 /*
647  * super_load
648  *
649  * This function creates a superblock if one is not found on the device
650  * and will decide which superblock to use if there's a choice.
651  *
652  * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
653  */
654 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
655 {
656         int ret;
657         struct dm_raid_superblock *sb;
658         struct dm_raid_superblock *refsb;
659         uint64_t events_sb, events_refsb;
660
661         rdev->sb_start = 0;
662         rdev->sb_size = sizeof(*sb);
663
664         ret = read_disk_sb(rdev, rdev->sb_size);
665         if (ret)
666                 return ret;
667
668         sb = page_address(rdev->sb_page);
669         if (sb->magic != cpu_to_le32(DM_RAID_MAGIC)) {
670                 super_sync(rdev->mddev, rdev);
671
672                 set_bit(FirstUse, &rdev->flags);
673
674                 /* Force writing of superblocks to disk */
675                 set_bit(MD_CHANGE_DEVS, &rdev->mddev->flags);
676
677                 /* Any superblock is better than none, choose that if given */
678                 return refdev ? 0 : 1;
679         }
680
681         if (!refdev)
682                 return 1;
683
684         events_sb = le64_to_cpu(sb->events);
685
686         refsb = page_address(refdev->sb_page);
687         events_refsb = le64_to_cpu(refsb->events);
688
689         return (events_sb > events_refsb) ? 1 : 0;
690 }
691
692 static int super_init_validation(struct mddev *mddev, struct md_rdev *rdev)
693 {
694         int role;
695         struct raid_set *rs = container_of(mddev, struct raid_set, md);
696         uint64_t events_sb;
697         uint64_t failed_devices;
698         struct dm_raid_superblock *sb;
699         uint32_t new_devs = 0;
700         uint32_t rebuilds = 0;
701         struct md_rdev *r, *t;
702         struct dm_raid_superblock *sb2;
703
704         sb = page_address(rdev->sb_page);
705         events_sb = le64_to_cpu(sb->events);
706         failed_devices = le64_to_cpu(sb->failed_devices);
707
708         /*
709          * Initialise to 1 if this is a new superblock.
710          */
711         mddev->events = events_sb ? : 1;
712
713         /*
714          * Reshaping is not currently allowed
715          */
716         if ((le32_to_cpu(sb->level) != mddev->level) ||
717             (le32_to_cpu(sb->layout) != mddev->layout) ||
718             (le32_to_cpu(sb->stripe_sectors) != mddev->chunk_sectors)) {
719                 DMERR("Reshaping arrays not yet supported.");
720                 return -EINVAL;
721         }
722
723         /* We can only change the number of devices in RAID1 right now */
724         if ((rs->raid_type->level != 1) &&
725             (le32_to_cpu(sb->num_devices) != mddev->raid_disks)) {
726                 DMERR("Reshaping arrays not yet supported.");
727                 return -EINVAL;
728         }
729
730         if (!(rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC)))
731                 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
732
733         /*
734          * During load, we set FirstUse if a new superblock was written.
735          * There are two reasons we might not have a superblock:
736          * 1) The array is brand new - in which case, all of the
737          *    devices must have their In_sync bit set.  Also,
738          *    recovery_cp must be 0, unless forced.
739          * 2) This is a new device being added to an old array
740          *    and the new device needs to be rebuilt - in which
741          *    case the In_sync bit will /not/ be set and
742          *    recovery_cp must be MaxSector.
743          */
744         rdev_for_each(r, t, mddev) {
745                 if (!test_bit(In_sync, &r->flags)) {
746                         if (!test_bit(FirstUse, &r->flags))
747                                 DMERR("Superblock area of "
748                                       "rebuild device %d should have been "
749                                       "cleared.", r->raid_disk);
750                         set_bit(FirstUse, &r->flags);
751                         rebuilds++;
752                 } else if (test_bit(FirstUse, &r->flags))
753                         new_devs++;
754         }
755
756         if (!rebuilds) {
757                 if (new_devs == mddev->raid_disks) {
758                         DMINFO("Superblocks created for new array");
759                         set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
760                 } else if (new_devs) {
761                         DMERR("New device injected "
762                               "into existing array without 'rebuild' "
763                               "parameter specified");
764                         return -EINVAL;
765                 }
766         } else if (new_devs) {
767                 DMERR("'rebuild' devices cannot be "
768                       "injected into an array with other first-time devices");
769                 return -EINVAL;
770         } else if (mddev->recovery_cp != MaxSector) {
771                 DMERR("'rebuild' specified while array is not in-sync");
772                 return -EINVAL;
773         }
774
775         /*
776          * Now we set the Faulty bit for those devices that are
777          * recorded in the superblock as failed.
778          */
779         rdev_for_each(r, t, mddev) {
780                 if (!r->sb_page)
781                         continue;
782                 sb2 = page_address(r->sb_page);
783                 sb2->failed_devices = 0;
784
785                 /*
786                  * Check for any device re-ordering.
787                  */
788                 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
789                         role = le32_to_cpu(sb2->array_position);
790                         if (role != r->raid_disk) {
791                                 if (rs->raid_type->level != 1) {
792                                         rs->ti->error = "Cannot change device "
793                                                 "positions in RAID array";
794                                         return -EINVAL;
795                                 }
796                                 DMINFO("RAID1 device #%d now at position #%d",
797                                        role, r->raid_disk);
798                         }
799
800                         /*
801                          * Partial recovery is performed on
802                          * returning failed devices.
803                          */
804                         if (failed_devices & (1 << role))
805                                 set_bit(Faulty, &r->flags);
806                 }
807         }
808
809         return 0;
810 }
811
812 static int super_validate(struct mddev *mddev, struct md_rdev *rdev)
813 {
814         struct dm_raid_superblock *sb = page_address(rdev->sb_page);
815
816         /*
817          * If mddev->events is not set, we know we have not yet initialized
818          * the array.
819          */
820         if (!mddev->events && super_init_validation(mddev, rdev))
821                 return -EINVAL;
822
823         mddev->bitmap_info.offset = 4096 >> 9; /* Enable bitmap creation */
824         rdev->mddev->bitmap_info.default_offset = 4096 >> 9;
825         if (!test_bit(FirstUse, &rdev->flags)) {
826                 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
827                 if (rdev->recovery_offset != MaxSector)
828                         clear_bit(In_sync, &rdev->flags);
829         }
830
831         /*
832          * If a device comes back, set it as not In_sync and no longer faulty.
833          */
834         if (test_bit(Faulty, &rdev->flags)) {
835                 clear_bit(Faulty, &rdev->flags);
836                 clear_bit(In_sync, &rdev->flags);
837                 rdev->saved_raid_disk = rdev->raid_disk;
838                 rdev->recovery_offset = 0;
839         }
840
841         clear_bit(FirstUse, &rdev->flags);
842
843         return 0;
844 }
845
846 /*
847  * Analyse superblocks and select the freshest.
848  */
849 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
850 {
851         int ret;
852         struct md_rdev *rdev, *freshest, *tmp;
853         struct mddev *mddev = &rs->md;
854
855         freshest = NULL;
856         rdev_for_each(rdev, tmp, mddev) {
857                 if (!rdev->meta_bdev)
858                         continue;
859
860                 ret = super_load(rdev, freshest);
861
862                 switch (ret) {
863                 case 1:
864                         freshest = rdev;
865                         break;
866                 case 0:
867                         break;
868                 default:
869                         ti->error = "Failed to load superblock";
870                         return ret;
871                 }
872         }
873
874         if (!freshest)
875                 return 0;
876
877         /*
878          * Validation of the freshest device provides the source of
879          * validation for the remaining devices.
880          */
881         ti->error = "Unable to assemble array: Invalid superblocks";
882         if (super_validate(mddev, freshest))
883                 return -EINVAL;
884
885         rdev_for_each(rdev, tmp, mddev)
886                 if ((rdev != freshest) && super_validate(mddev, rdev))
887                         return -EINVAL;
888
889         return 0;
890 }
891
892 /*
893  * Construct a RAID4/5/6 mapping:
894  * Args:
895  *      <raid_type> <#raid_params> <raid_params>                \
896  *      <#raid_devs> { <meta_dev1> <dev1> .. <meta_devN> <devN> }
897  *
898  * <raid_params> varies by <raid_type>.  See 'parse_raid_params' for
899  * details on possible <raid_params>.
900  */
901 static int raid_ctr(struct dm_target *ti, unsigned argc, char **argv)
902 {
903         int ret;
904         struct raid_type *rt;
905         unsigned long num_raid_params, num_raid_devs;
906         struct raid_set *rs = NULL;
907
908         /* Must have at least <raid_type> <#raid_params> */
909         if (argc < 2) {
910                 ti->error = "Too few arguments";
911                 return -EINVAL;
912         }
913
914         /* raid type */
915         rt = get_raid_type(argv[0]);
916         if (!rt) {
917                 ti->error = "Unrecognised raid_type";
918                 return -EINVAL;
919         }
920         argc--;
921         argv++;
922
923         /* number of RAID parameters */
924         if (strict_strtoul(argv[0], 10, &num_raid_params) < 0) {
925                 ti->error = "Cannot understand number of RAID parameters";
926                 return -EINVAL;
927         }
928         argc--;
929         argv++;
930
931         /* Skip over RAID params for now and find out # of devices */
932         if (num_raid_params + 1 > argc) {
933                 ti->error = "Arguments do not agree with counts given";
934                 return -EINVAL;
935         }
936
937         if ((strict_strtoul(argv[num_raid_params], 10, &num_raid_devs) < 0) ||
938             (num_raid_devs >= INT_MAX)) {
939                 ti->error = "Cannot understand number of raid devices";
940                 return -EINVAL;
941         }
942
943         rs = context_alloc(ti, rt, (unsigned)num_raid_devs);
944         if (IS_ERR(rs))
945                 return PTR_ERR(rs);
946
947         ret = parse_raid_params(rs, argv, (unsigned)num_raid_params);
948         if (ret)
949                 goto bad;
950
951         ret = -EINVAL;
952
953         argc -= num_raid_params + 1; /* +1: we already have num_raid_devs */
954         argv += num_raid_params + 1;
955
956         if (argc != (num_raid_devs * 2)) {
957                 ti->error = "Supplied RAID devices does not match the count given";
958                 goto bad;
959         }
960
961         ret = dev_parms(rs, argv);
962         if (ret)
963                 goto bad;
964
965         rs->md.sync_super = super_sync;
966         ret = analyse_superblocks(ti, rs);
967         if (ret)
968                 goto bad;
969
970         INIT_WORK(&rs->md.event_work, do_table_event);
971         ti->private = rs;
972
973         mutex_lock(&rs->md.reconfig_mutex);
974         ret = md_run(&rs->md);
975         rs->md.in_sync = 0; /* Assume already marked dirty */
976         mutex_unlock(&rs->md.reconfig_mutex);
977
978         if (ret) {
979                 ti->error = "Fail to run raid array";
980                 goto bad;
981         }
982
983         rs->callbacks.congested_fn = raid_is_congested;
984         dm_table_add_target_callbacks(ti->table, &rs->callbacks);
985
986         mddev_suspend(&rs->md);
987         return 0;
988
989 bad:
990         context_free(rs);
991
992         return ret;
993 }
994
995 static void raid_dtr(struct dm_target *ti)
996 {
997         struct raid_set *rs = ti->private;
998
999         list_del_init(&rs->callbacks.list);
1000         md_stop(&rs->md);
1001         context_free(rs);
1002 }
1003
1004 static int raid_map(struct dm_target *ti, struct bio *bio, union map_info *map_context)
1005 {
1006         struct raid_set *rs = ti->private;
1007         struct mddev *mddev = &rs->md;
1008
1009         mddev->pers->make_request(mddev, bio);
1010
1011         return DM_MAPIO_SUBMITTED;
1012 }
1013
1014 static int raid_status(struct dm_target *ti, status_type_t type,
1015                        char *result, unsigned maxlen)
1016 {
1017         struct raid_set *rs = ti->private;
1018         unsigned raid_param_cnt = 1; /* at least 1 for chunksize */
1019         unsigned sz = 0;
1020         int i;
1021         sector_t sync;
1022
1023         switch (type) {
1024         case STATUSTYPE_INFO:
1025                 DMEMIT("%s %d ", rs->raid_type->name, rs->md.raid_disks);
1026
1027                 for (i = 0; i < rs->md.raid_disks; i++) {
1028                         if (test_bit(Faulty, &rs->dev[i].rdev.flags))
1029                                 DMEMIT("D");
1030                         else if (test_bit(In_sync, &rs->dev[i].rdev.flags))
1031                                 DMEMIT("A");
1032                         else
1033                                 DMEMIT("a");
1034                 }
1035
1036                 if (test_bit(MD_RECOVERY_RUNNING, &rs->md.recovery))
1037                         sync = rs->md.curr_resync_completed;
1038                 else
1039                         sync = rs->md.recovery_cp;
1040
1041                 if (sync > rs->md.resync_max_sectors)
1042                         sync = rs->md.resync_max_sectors;
1043
1044                 DMEMIT(" %llu/%llu",
1045                        (unsigned long long) sync,
1046                        (unsigned long long) rs->md.resync_max_sectors);
1047
1048                 break;
1049         case STATUSTYPE_TABLE:
1050                 /* The string you would use to construct this array */
1051                 for (i = 0; i < rs->md.raid_disks; i++) {
1052                         if ((rs->print_flags & DMPF_REBUILD) &&
1053                             rs->dev[i].data_dev &&
1054                             !test_bit(In_sync, &rs->dev[i].rdev.flags))
1055                                 raid_param_cnt += 2; /* for rebuilds */
1056                         if (rs->dev[i].data_dev &&
1057                             test_bit(WriteMostly, &rs->dev[i].rdev.flags))
1058                                 raid_param_cnt += 2;
1059                 }
1060
1061                 raid_param_cnt += (hweight64(rs->print_flags & ~DMPF_REBUILD) * 2);
1062                 if (rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC))
1063                         raid_param_cnt--;
1064
1065                 DMEMIT("%s %u %u", rs->raid_type->name,
1066                        raid_param_cnt, rs->md.chunk_sectors);
1067
1068                 if ((rs->print_flags & DMPF_SYNC) &&
1069                     (rs->md.recovery_cp == MaxSector))
1070                         DMEMIT(" sync");
1071                 if (rs->print_flags & DMPF_NOSYNC)
1072                         DMEMIT(" nosync");
1073
1074                 for (i = 0; i < rs->md.raid_disks; i++)
1075                         if ((rs->print_flags & DMPF_REBUILD) &&
1076                             rs->dev[i].data_dev &&
1077                             !test_bit(In_sync, &rs->dev[i].rdev.flags))
1078                                 DMEMIT(" rebuild %u", i);
1079
1080                 if (rs->print_flags & DMPF_DAEMON_SLEEP)
1081                         DMEMIT(" daemon_sleep %lu",
1082                                rs->md.bitmap_info.daemon_sleep);
1083
1084                 if (rs->print_flags & DMPF_MIN_RECOVERY_RATE)
1085                         DMEMIT(" min_recovery_rate %d", rs->md.sync_speed_min);
1086
1087                 if (rs->print_flags & DMPF_MAX_RECOVERY_RATE)
1088                         DMEMIT(" max_recovery_rate %d", rs->md.sync_speed_max);
1089
1090                 for (i = 0; i < rs->md.raid_disks; i++)
1091                         if (rs->dev[i].data_dev &&
1092                             test_bit(WriteMostly, &rs->dev[i].rdev.flags))
1093                                 DMEMIT(" write_mostly %u", i);
1094
1095                 if (rs->print_flags & DMPF_MAX_WRITE_BEHIND)
1096                         DMEMIT(" max_write_behind %lu",
1097                                rs->md.bitmap_info.max_write_behind);
1098
1099                 if (rs->print_flags & DMPF_STRIPE_CACHE) {
1100                         struct r5conf *conf = rs->md.private;
1101
1102                         /* convert from kiB to sectors */
1103                         DMEMIT(" stripe_cache %d",
1104                                conf ? conf->max_nr_stripes * 2 : 0);
1105                 }
1106
1107                 if (rs->print_flags & DMPF_REGION_SIZE)
1108                         DMEMIT(" region_size %lu",
1109                                rs->md.bitmap_info.chunksize >> 9);
1110
1111                 DMEMIT(" %d", rs->md.raid_disks);
1112                 for (i = 0; i < rs->md.raid_disks; i++) {
1113                         if (rs->dev[i].meta_dev)
1114                                 DMEMIT(" %s", rs->dev[i].meta_dev->name);
1115                         else
1116                                 DMEMIT(" -");
1117
1118                         if (rs->dev[i].data_dev)
1119                                 DMEMIT(" %s", rs->dev[i].data_dev->name);
1120                         else
1121                                 DMEMIT(" -");
1122                 }
1123         }
1124
1125         return 0;
1126 }
1127
1128 static int raid_iterate_devices(struct dm_target *ti, iterate_devices_callout_fn fn, void *data)
1129 {
1130         struct raid_set *rs = ti->private;
1131         unsigned i;
1132         int ret = 0;
1133
1134         for (i = 0; !ret && i < rs->md.raid_disks; i++)
1135                 if (rs->dev[i].data_dev)
1136                         ret = fn(ti,
1137                                  rs->dev[i].data_dev,
1138                                  0, /* No offset on data devs */
1139                                  rs->md.dev_sectors,
1140                                  data);
1141
1142         return ret;
1143 }
1144
1145 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
1146 {
1147         struct raid_set *rs = ti->private;
1148         unsigned chunk_size = rs->md.chunk_sectors << 9;
1149         struct r5conf *conf = rs->md.private;
1150
1151         blk_limits_io_min(limits, chunk_size);
1152         blk_limits_io_opt(limits, chunk_size * (conf->raid_disks - conf->max_degraded));
1153 }
1154
1155 static void raid_presuspend(struct dm_target *ti)
1156 {
1157         struct raid_set *rs = ti->private;
1158
1159         md_stop_writes(&rs->md);
1160 }
1161
1162 static void raid_postsuspend(struct dm_target *ti)
1163 {
1164         struct raid_set *rs = ti->private;
1165
1166         mddev_suspend(&rs->md);
1167 }
1168
1169 static void raid_resume(struct dm_target *ti)
1170 {
1171         struct raid_set *rs = ti->private;
1172
1173         bitmap_load(&rs->md);
1174         mddev_resume(&rs->md);
1175 }
1176
1177 static struct target_type raid_target = {
1178         .name = "raid",
1179         .version = {1, 1, 0},
1180         .module = THIS_MODULE,
1181         .ctr = raid_ctr,
1182         .dtr = raid_dtr,
1183         .map = raid_map,
1184         .status = raid_status,
1185         .iterate_devices = raid_iterate_devices,
1186         .io_hints = raid_io_hints,
1187         .presuspend = raid_presuspend,
1188         .postsuspend = raid_postsuspend,
1189         .resume = raid_resume,
1190 };
1191
1192 static int __init dm_raid_init(void)
1193 {
1194         return dm_register_target(&raid_target);
1195 }
1196
1197 static void __exit dm_raid_exit(void)
1198 {
1199         dm_unregister_target(&raid_target);
1200 }
1201
1202 module_init(dm_raid_init);
1203 module_exit(dm_raid_exit);
1204
1205 MODULE_DESCRIPTION(DM_NAME " raid4/5/6 target");
1206 MODULE_ALIAS("dm-raid4");
1207 MODULE_ALIAS("dm-raid5");
1208 MODULE_ALIAS("dm-raid6");
1209 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
1210 MODULE_LICENSE("GPL");