Merge commit 'origin/master' into next
[pandora-kernel.git] / drivers / macintosh / therm_pm72.c
1 /*
2  * Device driver for the thermostats & fan controller of  the
3  * Apple G5 "PowerMac7,2" desktop machines.
4  *
5  * (c) Copyright IBM Corp. 2003-2004
6  *
7  * Maintained by: Benjamin Herrenschmidt
8  *                <benh@kernel.crashing.org>
9  * 
10  *
11  * The algorithm used is the PID control algorithm, used the same
12  * way the published Darwin code does, using the same values that
13  * are present in the Darwin 7.0 snapshot property lists.
14  *
15  * As far as the CPUs control loops are concerned, I use the
16  * calibration & PID constants provided by the EEPROM,
17  * I do _not_ embed any value from the property lists, as the ones
18  * provided by Darwin 7.0 seem to always have an older version that
19  * what I've seen on the actual computers.
20  * It would be interesting to verify that though. Darwin has a
21  * version code of 1.0.0d11 for all control loops it seems, while
22  * so far, the machines EEPROMs contain a dataset versioned 1.0.0f
23  *
24  * Darwin doesn't provide source to all parts, some missing
25  * bits like the AppleFCU driver or the actual scale of some
26  * of the values returned by sensors had to be "guessed" some
27  * way... or based on what Open Firmware does.
28  *
29  * I didn't yet figure out how to get the slots power consumption
30  * out of the FCU, so that part has not been implemented yet and
31  * the slots fan is set to a fixed 50% PWM, hoping this value is
32  * safe enough ...
33  *
34  * Note: I have observed strange oscillations of the CPU control
35  * loop on a dual G5 here. When idle, the CPU exhaust fan tend to
36  * oscillates slowly (over several minutes) between the minimum
37  * of 300RPMs and approx. 1000 RPMs. I don't know what is causing
38  * this, it could be some incorrect constant or an error in the
39  * way I ported the algorithm, or it could be just normal. I
40  * don't have full understanding on the way Apple tweaked the PID
41  * algorithm for the CPU control, it is definitely not a standard
42  * implementation...
43  *
44  * TODO:  - Check MPU structure version/signature
45  *        - Add things like /sbin/overtemp for non-critical
46  *          overtemp conditions so userland can take some policy
47  *          decisions, like slewing down CPUs
48  *        - Deal with fan and i2c failures in a better way
49  *        - Maybe do a generic PID based on params used for
50  *          U3 and Drives ? Definitely need to factor code a bit
51  *          bettter... also make sensor detection more robust using
52  *          the device-tree to probe for them
53  *        - Figure out how to get the slots consumption and set the
54  *          slots fan accordingly
55  *
56  * History:
57  *
58  *  Nov. 13, 2003 : 0.5
59  *      - First release
60  *
61  *  Nov. 14, 2003 : 0.6
62  *      - Read fan speed from FCU, low level fan routines now deal
63  *        with errors & check fan status, though higher level don't
64  *        do much.
65  *      - Move a bunch of definitions to .h file
66  *
67  *  Nov. 18, 2003 : 0.7
68  *      - Fix build on ppc64 kernel
69  *      - Move back statics definitions to .c file
70  *      - Avoid calling schedule_timeout with a negative number
71  *
72  *  Dec. 18, 2003 : 0.8
73  *      - Fix typo when reading back fan speed on 2 CPU machines
74  *
75  *  Mar. 11, 2004 : 0.9
76  *      - Rework code accessing the ADC chips, make it more robust and
77  *        closer to the chip spec. Also make sure it is configured properly,
78  *        I've seen yet unexplained cases where on startup, I would have stale
79  *        values in the configuration register
80  *      - Switch back to use of target fan speed for PID, thus lowering
81  *        pressure on i2c
82  *
83  *  Oct. 20, 2004 : 1.1
84  *      - Add device-tree lookup for fan IDs, should detect liquid cooling
85  *        pumps when present
86  *      - Enable driver for PowerMac7,3 machines
87  *      - Split the U3/Backside cooling on U3 & U3H versions as Darwin does
88  *      - Add new CPU cooling algorithm for machines with liquid cooling
89  *      - Workaround for some PowerMac7,3 with empty "fan" node in the devtree
90  *      - Fix a signed/unsigned compare issue in some PID loops
91  *
92  *  Mar. 10, 2005 : 1.2
93  *      - Add basic support for Xserve G5
94  *      - Retreive pumps min/max from EEPROM image in device-tree (broken)
95  *      - Use min/max macros here or there
96  *      - Latest darwin updated U3H min fan speed to 20% PWM
97  *
98  *  July. 06, 2006 : 1.3
99  *      - Fix setting of RPM fans on Xserve G5 (they were going too fast)
100  *      - Add missing slots fan control loop for Xserve G5
101  *      - Lower fixed slots fan speed from 50% to 40% on desktop G5s. We
102  *        still can't properly implement the control loop for these, so let's
103  *        reduce the noise a little bit, it appears that 40% still gives us
104  *        a pretty good air flow
105  *      - Add code to "tickle" the FCU regulary so it doesn't think that
106  *        we are gone while in fact, the machine just didn't need any fan
107  *        speed change lately
108  *
109  */
110
111 #include <linux/types.h>
112 #include <linux/module.h>
113 #include <linux/errno.h>
114 #include <linux/kernel.h>
115 #include <linux/delay.h>
116 #include <linux/sched.h>
117 #include <linux/slab.h>
118 #include <linux/init.h>
119 #include <linux/spinlock.h>
120 #include <linux/wait.h>
121 #include <linux/reboot.h>
122 #include <linux/kmod.h>
123 #include <linux/i2c.h>
124 #include <linux/kthread.h>
125 #include <linux/mutex.h>
126 #include <linux/of_device.h>
127 #include <linux/of_platform.h>
128 #include <asm/prom.h>
129 #include <asm/machdep.h>
130 #include <asm/io.h>
131 #include <asm/system.h>
132 #include <asm/sections.h>
133 #include <asm/macio.h>
134
135 #include "therm_pm72.h"
136
137 #define VERSION "1.3"
138
139 #undef DEBUG
140
141 #ifdef DEBUG
142 #define DBG(args...)    printk(args)
143 #else
144 #define DBG(args...)    do { } while(0)
145 #endif
146
147
148 /*
149  * Driver statics
150  */
151
152 static struct of_device *               of_dev;
153 static struct i2c_adapter *             u3_0;
154 static struct i2c_adapter *             u3_1;
155 static struct i2c_adapter *             k2;
156 static struct i2c_client *              fcu;
157 static struct cpu_pid_state             cpu_state[2];
158 static struct basckside_pid_params      backside_params;
159 static struct backside_pid_state        backside_state;
160 static struct drives_pid_state          drives_state;
161 static struct dimm_pid_state            dimms_state;
162 static struct slots_pid_state           slots_state;
163 static int                              state;
164 static int                              cpu_count;
165 static int                              cpu_pid_type;
166 static struct task_struct               *ctrl_task;
167 static struct completion                ctrl_complete;
168 static int                              critical_state;
169 static int                              rackmac;
170 static s32                              dimm_output_clamp;
171 static int                              fcu_rpm_shift;
172 static int                              fcu_tickle_ticks;
173 static DEFINE_MUTEX(driver_lock);
174
175 /*
176  * We have 3 types of CPU PID control. One is "split" old style control
177  * for intake & exhaust fans, the other is "combined" control for both
178  * CPUs that also deals with the pumps when present. To be "compatible"
179  * with OS X at this point, we only use "COMBINED" on the machines that
180  * are identified as having the pumps (though that identification is at
181  * least dodgy). Ultimately, we could probably switch completely to this
182  * algorithm provided we hack it to deal with the UP case
183  */
184 #define CPU_PID_TYPE_SPLIT      0
185 #define CPU_PID_TYPE_COMBINED   1
186 #define CPU_PID_TYPE_RACKMAC    2
187
188 /*
189  * This table describes all fans in the FCU. The "id" and "type" values
190  * are defaults valid for all earlier machines. Newer machines will
191  * eventually override the table content based on the device-tree
192  */
193 struct fcu_fan_table
194 {
195         char*   loc;    /* location code */
196         int     type;   /* 0 = rpm, 1 = pwm, 2 = pump */
197         int     id;     /* id or -1 */
198 };
199
200 #define FCU_FAN_RPM             0
201 #define FCU_FAN_PWM             1
202
203 #define FCU_FAN_ABSENT_ID       -1
204
205 #define FCU_FAN_COUNT           ARRAY_SIZE(fcu_fans)
206
207 struct fcu_fan_table    fcu_fans[] = {
208         [BACKSIDE_FAN_PWM_INDEX] = {
209                 .loc    = "BACKSIDE,SYS CTRLR FAN",
210                 .type   = FCU_FAN_PWM,
211                 .id     = BACKSIDE_FAN_PWM_DEFAULT_ID,
212         },
213         [DRIVES_FAN_RPM_INDEX] = {
214                 .loc    = "DRIVE BAY",
215                 .type   = FCU_FAN_RPM,
216                 .id     = DRIVES_FAN_RPM_DEFAULT_ID,
217         },
218         [SLOTS_FAN_PWM_INDEX] = {
219                 .loc    = "SLOT,PCI FAN",
220                 .type   = FCU_FAN_PWM,
221                 .id     = SLOTS_FAN_PWM_DEFAULT_ID,
222         },
223         [CPUA_INTAKE_FAN_RPM_INDEX] = {
224                 .loc    = "CPU A INTAKE",
225                 .type   = FCU_FAN_RPM,
226                 .id     = CPUA_INTAKE_FAN_RPM_DEFAULT_ID,
227         },
228         [CPUA_EXHAUST_FAN_RPM_INDEX] = {
229                 .loc    = "CPU A EXHAUST",
230                 .type   = FCU_FAN_RPM,
231                 .id     = CPUA_EXHAUST_FAN_RPM_DEFAULT_ID,
232         },
233         [CPUB_INTAKE_FAN_RPM_INDEX] = {
234                 .loc    = "CPU B INTAKE",
235                 .type   = FCU_FAN_RPM,
236                 .id     = CPUB_INTAKE_FAN_RPM_DEFAULT_ID,
237         },
238         [CPUB_EXHAUST_FAN_RPM_INDEX] = {
239                 .loc    = "CPU B EXHAUST",
240                 .type   = FCU_FAN_RPM,
241                 .id     = CPUB_EXHAUST_FAN_RPM_DEFAULT_ID,
242         },
243         /* pumps aren't present by default, have to be looked up in the
244          * device-tree
245          */
246         [CPUA_PUMP_RPM_INDEX] = {
247                 .loc    = "CPU A PUMP",
248                 .type   = FCU_FAN_RPM,          
249                 .id     = FCU_FAN_ABSENT_ID,
250         },
251         [CPUB_PUMP_RPM_INDEX] = {
252                 .loc    = "CPU B PUMP",
253                 .type   = FCU_FAN_RPM,
254                 .id     = FCU_FAN_ABSENT_ID,
255         },
256         /* Xserve fans */
257         [CPU_A1_FAN_RPM_INDEX] = {
258                 .loc    = "CPU A 1",
259                 .type   = FCU_FAN_RPM,
260                 .id     = FCU_FAN_ABSENT_ID,
261         },
262         [CPU_A2_FAN_RPM_INDEX] = {
263                 .loc    = "CPU A 2",
264                 .type   = FCU_FAN_RPM,
265                 .id     = FCU_FAN_ABSENT_ID,
266         },
267         [CPU_A3_FAN_RPM_INDEX] = {
268                 .loc    = "CPU A 3",
269                 .type   = FCU_FAN_RPM,
270                 .id     = FCU_FAN_ABSENT_ID,
271         },
272         [CPU_B1_FAN_RPM_INDEX] = {
273                 .loc    = "CPU B 1",
274                 .type   = FCU_FAN_RPM,
275                 .id     = FCU_FAN_ABSENT_ID,
276         },
277         [CPU_B2_FAN_RPM_INDEX] = {
278                 .loc    = "CPU B 2",
279                 .type   = FCU_FAN_RPM,
280                 .id     = FCU_FAN_ABSENT_ID,
281         },
282         [CPU_B3_FAN_RPM_INDEX] = {
283                 .loc    = "CPU B 3",
284                 .type   = FCU_FAN_RPM,
285                 .id     = FCU_FAN_ABSENT_ID,
286         },
287 };
288
289 /*
290  * Utility function to create an i2c_client structure and
291  * attach it to one of u3 adapters
292  */
293 static struct i2c_client *attach_i2c_chip(int id, const char *name)
294 {
295         struct i2c_client *clt;
296         struct i2c_adapter *adap;
297         struct i2c_board_info info;
298
299         if (id & 0x200)
300                 adap = k2;
301         else if (id & 0x100)
302                 adap = u3_1;
303         else
304                 adap = u3_0;
305         if (adap == NULL)
306                 return NULL;
307
308         memset(&info, 0, sizeof(struct i2c_board_info));
309         info.addr = (id >> 1) & 0x7f;
310         strlcpy(info.type, "therm_pm72", I2C_NAME_SIZE);
311         clt = i2c_new_device(adap, &info);
312         if (!clt) {
313                 printk(KERN_ERR "therm_pm72: Failed to attach to i2c ID 0x%x\n", id);
314                 return NULL;
315         }
316
317         /*
318          * Let i2c-core delete that device on driver removal.
319          * This is safe because i2c-core holds the core_lock mutex for us.
320          */
321         list_add_tail(&clt->detected, &clt->driver->clients);
322         return clt;
323 }
324
325 /*
326  * Here are the i2c chip access wrappers
327  */
328
329 static void initialize_adc(struct cpu_pid_state *state)
330 {
331         int rc;
332         u8 buf[2];
333
334         /* Read ADC the configuration register and cache it. We
335          * also make sure Config2 contains proper values, I've seen
336          * cases where we got stale grabage in there, thus preventing
337          * proper reading of conv. values
338          */
339
340         /* Clear Config2 */
341         buf[0] = 5;
342         buf[1] = 0;
343         i2c_master_send(state->monitor, buf, 2);
344
345         /* Read & cache Config1 */
346         buf[0] = 1;
347         rc = i2c_master_send(state->monitor, buf, 1);
348         if (rc > 0) {
349                 rc = i2c_master_recv(state->monitor, buf, 1);
350                 if (rc > 0) {
351                         state->adc_config = buf[0];
352                         DBG("ADC config reg: %02x\n", state->adc_config);
353                         /* Disable shutdown mode */
354                         state->adc_config &= 0xfe;
355                         buf[0] = 1;
356                         buf[1] = state->adc_config;
357                         rc = i2c_master_send(state->monitor, buf, 2);
358                 }
359         }
360         if (rc <= 0)
361                 printk(KERN_ERR "therm_pm72: Error reading ADC config"
362                        " register !\n");
363 }
364
365 static int read_smon_adc(struct cpu_pid_state *state, int chan)
366 {
367         int rc, data, tries = 0;
368         u8 buf[2];
369
370         for (;;) {
371                 /* Set channel */
372                 buf[0] = 1;
373                 buf[1] = (state->adc_config & 0x1f) | (chan << 5);
374                 rc = i2c_master_send(state->monitor, buf, 2);
375                 if (rc <= 0)
376                         goto error;
377                 /* Wait for convertion */
378                 msleep(1);
379                 /* Switch to data register */
380                 buf[0] = 4;
381                 rc = i2c_master_send(state->monitor, buf, 1);
382                 if (rc <= 0)
383                         goto error;
384                 /* Read result */
385                 rc = i2c_master_recv(state->monitor, buf, 2);
386                 if (rc < 0)
387                         goto error;
388                 data = ((u16)buf[0]) << 8 | (u16)buf[1];
389                 return data >> 6;
390         error:
391                 DBG("Error reading ADC, retrying...\n");
392                 if (++tries > 10) {
393                         printk(KERN_ERR "therm_pm72: Error reading ADC !\n");
394                         return -1;
395                 }
396                 msleep(10);
397         }
398 }
399
400 static int read_lm87_reg(struct i2c_client * chip, int reg)
401 {
402         int rc, tries = 0;
403         u8 buf;
404
405         for (;;) {
406                 /* Set address */
407                 buf = (u8)reg;
408                 rc = i2c_master_send(chip, &buf, 1);
409                 if (rc <= 0)
410                         goto error;
411                 rc = i2c_master_recv(chip, &buf, 1);
412                 if (rc <= 0)
413                         goto error;
414                 return (int)buf;
415         error:
416                 DBG("Error reading LM87, retrying...\n");
417                 if (++tries > 10) {
418                         printk(KERN_ERR "therm_pm72: Error reading LM87 !\n");
419                         return -1;
420                 }
421                 msleep(10);
422         }
423 }
424
425 static int fan_read_reg(int reg, unsigned char *buf, int nb)
426 {
427         int tries, nr, nw;
428
429         buf[0] = reg;
430         tries = 0;
431         for (;;) {
432                 nw = i2c_master_send(fcu, buf, 1);
433                 if (nw > 0 || (nw < 0 && nw != -EIO) || tries >= 100)
434                         break;
435                 msleep(10);
436                 ++tries;
437         }
438         if (nw <= 0) {
439                 printk(KERN_ERR "Failure writing address to FCU: %d", nw);
440                 return -EIO;
441         }
442         tries = 0;
443         for (;;) {
444                 nr = i2c_master_recv(fcu, buf, nb);
445                 if (nr > 0 || (nr < 0 && nr != ENODEV) || tries >= 100)
446                         break;
447                 msleep(10);
448                 ++tries;
449         }
450         if (nr <= 0)
451                 printk(KERN_ERR "Failure reading data from FCU: %d", nw);
452         return nr;
453 }
454
455 static int fan_write_reg(int reg, const unsigned char *ptr, int nb)
456 {
457         int tries, nw;
458         unsigned char buf[16];
459
460         buf[0] = reg;
461         memcpy(buf+1, ptr, nb);
462         ++nb;
463         tries = 0;
464         for (;;) {
465                 nw = i2c_master_send(fcu, buf, nb);
466                 if (nw > 0 || (nw < 0 && nw != EIO) || tries >= 100)
467                         break;
468                 msleep(10);
469                 ++tries;
470         }
471         if (nw < 0)
472                 printk(KERN_ERR "Failure writing to FCU: %d", nw);
473         return nw;
474 }
475
476 static int start_fcu(void)
477 {
478         unsigned char buf = 0xff;
479         int rc;
480
481         rc = fan_write_reg(0xe, &buf, 1);
482         if (rc < 0)
483                 return -EIO;
484         rc = fan_write_reg(0x2e, &buf, 1);
485         if (rc < 0)
486                 return -EIO;
487         rc = fan_read_reg(0, &buf, 1);
488         if (rc < 0)
489                 return -EIO;
490         fcu_rpm_shift = (buf == 1) ? 2 : 3;
491         printk(KERN_DEBUG "FCU Initialized, RPM fan shift is %d\n",
492                fcu_rpm_shift);
493
494         return 0;
495 }
496
497 static int set_rpm_fan(int fan_index, int rpm)
498 {
499         unsigned char buf[2];
500         int rc, id, min, max;
501
502         if (fcu_fans[fan_index].type != FCU_FAN_RPM)
503                 return -EINVAL;
504         id = fcu_fans[fan_index].id; 
505         if (id == FCU_FAN_ABSENT_ID)
506                 return -EINVAL;
507
508         min = 2400 >> fcu_rpm_shift;
509         max = 56000 >> fcu_rpm_shift;
510
511         if (rpm < min)
512                 rpm = min;
513         else if (rpm > max)
514                 rpm = max;
515         buf[0] = rpm >> (8 - fcu_rpm_shift);
516         buf[1] = rpm << fcu_rpm_shift;
517         rc = fan_write_reg(0x10 + (id * 2), buf, 2);
518         if (rc < 0)
519                 return -EIO;
520         return 0;
521 }
522
523 static int get_rpm_fan(int fan_index, int programmed)
524 {
525         unsigned char failure;
526         unsigned char active;
527         unsigned char buf[2];
528         int rc, id, reg_base;
529
530         if (fcu_fans[fan_index].type != FCU_FAN_RPM)
531                 return -EINVAL;
532         id = fcu_fans[fan_index].id; 
533         if (id == FCU_FAN_ABSENT_ID)
534                 return -EINVAL;
535
536         rc = fan_read_reg(0xb, &failure, 1);
537         if (rc != 1)
538                 return -EIO;
539         if ((failure & (1 << id)) != 0)
540                 return -EFAULT;
541         rc = fan_read_reg(0xd, &active, 1);
542         if (rc != 1)
543                 return -EIO;
544         if ((active & (1 << id)) == 0)
545                 return -ENXIO;
546
547         /* Programmed value or real current speed */
548         reg_base = programmed ? 0x10 : 0x11;
549         rc = fan_read_reg(reg_base + (id * 2), buf, 2);
550         if (rc != 2)
551                 return -EIO;
552
553         return (buf[0] << (8 - fcu_rpm_shift)) | buf[1] >> fcu_rpm_shift;
554 }
555
556 static int set_pwm_fan(int fan_index, int pwm)
557 {
558         unsigned char buf[2];
559         int rc, id;
560
561         if (fcu_fans[fan_index].type != FCU_FAN_PWM)
562                 return -EINVAL;
563         id = fcu_fans[fan_index].id; 
564         if (id == FCU_FAN_ABSENT_ID)
565                 return -EINVAL;
566
567         if (pwm < 10)
568                 pwm = 10;
569         else if (pwm > 100)
570                 pwm = 100;
571         pwm = (pwm * 2559) / 1000;
572         buf[0] = pwm;
573         rc = fan_write_reg(0x30 + (id * 2), buf, 1);
574         if (rc < 0)
575                 return rc;
576         return 0;
577 }
578
579 static int get_pwm_fan(int fan_index)
580 {
581         unsigned char failure;
582         unsigned char active;
583         unsigned char buf[2];
584         int rc, id;
585
586         if (fcu_fans[fan_index].type != FCU_FAN_PWM)
587                 return -EINVAL;
588         id = fcu_fans[fan_index].id; 
589         if (id == FCU_FAN_ABSENT_ID)
590                 return -EINVAL;
591
592         rc = fan_read_reg(0x2b, &failure, 1);
593         if (rc != 1)
594                 return -EIO;
595         if ((failure & (1 << id)) != 0)
596                 return -EFAULT;
597         rc = fan_read_reg(0x2d, &active, 1);
598         if (rc != 1)
599                 return -EIO;
600         if ((active & (1 << id)) == 0)
601                 return -ENXIO;
602
603         /* Programmed value or real current speed */
604         rc = fan_read_reg(0x30 + (id * 2), buf, 1);
605         if (rc != 1)
606                 return -EIO;
607
608         return (buf[0] * 1000) / 2559;
609 }
610
611 static void tickle_fcu(void)
612 {
613         int pwm;
614
615         pwm = get_pwm_fan(SLOTS_FAN_PWM_INDEX);
616
617         DBG("FCU Tickle, slots fan is: %d\n", pwm);
618         if (pwm < 0)
619                 pwm = 100;
620
621         if (!rackmac) {
622                 pwm = SLOTS_FAN_DEFAULT_PWM;
623         } else if (pwm < SLOTS_PID_OUTPUT_MIN)
624                 pwm = SLOTS_PID_OUTPUT_MIN;
625
626         /* That is hopefully enough to make the FCU happy */
627         set_pwm_fan(SLOTS_FAN_PWM_INDEX, pwm);
628 }
629
630
631 /*
632  * Utility routine to read the CPU calibration EEPROM data
633  * from the device-tree
634  */
635 static int read_eeprom(int cpu, struct mpu_data *out)
636 {
637         struct device_node *np;
638         char nodename[64];
639         const u8 *data;
640         int len;
641
642         /* prom.c routine for finding a node by path is a bit brain dead
643          * and requires exact @xxx unit numbers. This is a bit ugly but
644          * will work for these machines
645          */
646         sprintf(nodename, "/u3@0,f8000000/i2c@f8001000/cpuid@a%d", cpu ? 2 : 0);
647         np = of_find_node_by_path(nodename);
648         if (np == NULL) {
649                 printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid node from device-tree\n");
650                 return -ENODEV;
651         }
652         data = of_get_property(np, "cpuid", &len);
653         if (data == NULL) {
654                 printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid property from device-tree\n");
655                 of_node_put(np);
656                 return -ENODEV;
657         }
658         memcpy(out, data, sizeof(struct mpu_data));
659         of_node_put(np);
660         
661         return 0;
662 }
663
664 static void fetch_cpu_pumps_minmax(void)
665 {
666         struct cpu_pid_state *state0 = &cpu_state[0];
667         struct cpu_pid_state *state1 = &cpu_state[1];
668         u16 pump_min = 0, pump_max = 0xffff;
669         u16 tmp[4];
670
671         /* Try to fetch pumps min/max infos from eeprom */
672
673         memcpy(&tmp, &state0->mpu.processor_part_num, 8);
674         if (tmp[0] != 0xffff && tmp[1] != 0xffff) {
675                 pump_min = max(pump_min, tmp[0]);
676                 pump_max = min(pump_max, tmp[1]);
677         }
678         if (tmp[2] != 0xffff && tmp[3] != 0xffff) {
679                 pump_min = max(pump_min, tmp[2]);
680                 pump_max = min(pump_max, tmp[3]);
681         }
682
683         /* Double check the values, this _IS_ needed as the EEPROM on
684          * some dual 2.5Ghz G5s seem, at least, to have both min & max
685          * same to the same value ... (grrrr)
686          */
687         if (pump_min == pump_max || pump_min == 0 || pump_max == 0xffff) {
688                 pump_min = CPU_PUMP_OUTPUT_MIN;
689                 pump_max = CPU_PUMP_OUTPUT_MAX;
690         }
691
692         state0->pump_min = state1->pump_min = pump_min;
693         state0->pump_max = state1->pump_max = pump_max;
694 }
695
696 /* 
697  * Now, unfortunately, sysfs doesn't give us a nice void * we could
698  * pass around to the attribute functions, so we don't really have
699  * choice but implement a bunch of them...
700  *
701  * That sucks a bit, we take the lock because FIX32TOPRINT evaluates
702  * the input twice... I accept patches :)
703  */
704 #define BUILD_SHOW_FUNC_FIX(name, data)                         \
705 static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf)        \
706 {                                                               \
707         ssize_t r;                                              \
708         mutex_lock(&driver_lock);                                       \
709         r = sprintf(buf, "%d.%03d", FIX32TOPRINT(data));        \
710         mutex_unlock(&driver_lock);                                     \
711         return r;                                               \
712 }
713 #define BUILD_SHOW_FUNC_INT(name, data)                         \
714 static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf)        \
715 {                                                               \
716         return sprintf(buf, "%d", data);                        \
717 }
718
719 BUILD_SHOW_FUNC_FIX(cpu0_temperature, cpu_state[0].last_temp)
720 BUILD_SHOW_FUNC_FIX(cpu0_voltage, cpu_state[0].voltage)
721 BUILD_SHOW_FUNC_FIX(cpu0_current, cpu_state[0].current_a)
722 BUILD_SHOW_FUNC_INT(cpu0_exhaust_fan_rpm, cpu_state[0].rpm)
723 BUILD_SHOW_FUNC_INT(cpu0_intake_fan_rpm, cpu_state[0].intake_rpm)
724
725 BUILD_SHOW_FUNC_FIX(cpu1_temperature, cpu_state[1].last_temp)
726 BUILD_SHOW_FUNC_FIX(cpu1_voltage, cpu_state[1].voltage)
727 BUILD_SHOW_FUNC_FIX(cpu1_current, cpu_state[1].current_a)
728 BUILD_SHOW_FUNC_INT(cpu1_exhaust_fan_rpm, cpu_state[1].rpm)
729 BUILD_SHOW_FUNC_INT(cpu1_intake_fan_rpm, cpu_state[1].intake_rpm)
730
731 BUILD_SHOW_FUNC_FIX(backside_temperature, backside_state.last_temp)
732 BUILD_SHOW_FUNC_INT(backside_fan_pwm, backside_state.pwm)
733
734 BUILD_SHOW_FUNC_FIX(drives_temperature, drives_state.last_temp)
735 BUILD_SHOW_FUNC_INT(drives_fan_rpm, drives_state.rpm)
736
737 BUILD_SHOW_FUNC_FIX(slots_temperature, slots_state.last_temp)
738 BUILD_SHOW_FUNC_INT(slots_fan_pwm, slots_state.pwm)
739
740 BUILD_SHOW_FUNC_FIX(dimms_temperature, dimms_state.last_temp)
741
742 static DEVICE_ATTR(cpu0_temperature,S_IRUGO,show_cpu0_temperature,NULL);
743 static DEVICE_ATTR(cpu0_voltage,S_IRUGO,show_cpu0_voltage,NULL);
744 static DEVICE_ATTR(cpu0_current,S_IRUGO,show_cpu0_current,NULL);
745 static DEVICE_ATTR(cpu0_exhaust_fan_rpm,S_IRUGO,show_cpu0_exhaust_fan_rpm,NULL);
746 static DEVICE_ATTR(cpu0_intake_fan_rpm,S_IRUGO,show_cpu0_intake_fan_rpm,NULL);
747
748 static DEVICE_ATTR(cpu1_temperature,S_IRUGO,show_cpu1_temperature,NULL);
749 static DEVICE_ATTR(cpu1_voltage,S_IRUGO,show_cpu1_voltage,NULL);
750 static DEVICE_ATTR(cpu1_current,S_IRUGO,show_cpu1_current,NULL);
751 static DEVICE_ATTR(cpu1_exhaust_fan_rpm,S_IRUGO,show_cpu1_exhaust_fan_rpm,NULL);
752 static DEVICE_ATTR(cpu1_intake_fan_rpm,S_IRUGO,show_cpu1_intake_fan_rpm,NULL);
753
754 static DEVICE_ATTR(backside_temperature,S_IRUGO,show_backside_temperature,NULL);
755 static DEVICE_ATTR(backside_fan_pwm,S_IRUGO,show_backside_fan_pwm,NULL);
756
757 static DEVICE_ATTR(drives_temperature,S_IRUGO,show_drives_temperature,NULL);
758 static DEVICE_ATTR(drives_fan_rpm,S_IRUGO,show_drives_fan_rpm,NULL);
759
760 static DEVICE_ATTR(slots_temperature,S_IRUGO,show_slots_temperature,NULL);
761 static DEVICE_ATTR(slots_fan_pwm,S_IRUGO,show_slots_fan_pwm,NULL);
762
763 static DEVICE_ATTR(dimms_temperature,S_IRUGO,show_dimms_temperature,NULL);
764
765 /*
766  * CPUs fans control loop
767  */
768
769 static int do_read_one_cpu_values(struct cpu_pid_state *state, s32 *temp, s32 *power)
770 {
771         s32 ltemp, volts, amps;
772         int index, rc = 0;
773
774         /* Default (in case of error) */
775         *temp = state->cur_temp;
776         *power = state->cur_power;
777
778         if (cpu_pid_type == CPU_PID_TYPE_RACKMAC)
779                 index = (state->index == 0) ?
780                         CPU_A1_FAN_RPM_INDEX : CPU_B1_FAN_RPM_INDEX;
781         else
782                 index = (state->index == 0) ?
783                         CPUA_EXHAUST_FAN_RPM_INDEX : CPUB_EXHAUST_FAN_RPM_INDEX;
784
785         /* Read current fan status */
786         rc = get_rpm_fan(index, !RPM_PID_USE_ACTUAL_SPEED);
787         if (rc < 0) {
788                 /* XXX What do we do now ? Nothing for now, keep old value, but
789                  * return error upstream
790                  */
791                 DBG("  cpu %d, fan reading error !\n", state->index);
792         } else {
793                 state->rpm = rc;
794                 DBG("  cpu %d, exhaust RPM: %d\n", state->index, state->rpm);
795         }
796
797         /* Get some sensor readings and scale it */
798         ltemp = read_smon_adc(state, 1);
799         if (ltemp == -1) {
800                 /* XXX What do we do now ? */
801                 state->overtemp++;
802                 if (rc == 0)
803                         rc = -EIO;
804                 DBG("  cpu %d, temp reading error !\n", state->index);
805         } else {
806                 /* Fixup temperature according to diode calibration
807                  */
808                 DBG("  cpu %d, temp raw: %04x, m_diode: %04x, b_diode: %04x\n",
809                     state->index,
810                     ltemp, state->mpu.mdiode, state->mpu.bdiode);
811                 *temp = ((s32)ltemp * (s32)state->mpu.mdiode + ((s32)state->mpu.bdiode << 12)) >> 2;
812                 state->last_temp = *temp;
813                 DBG("  temp: %d.%03d\n", FIX32TOPRINT((*temp)));
814         }
815
816         /*
817          * Read voltage & current and calculate power
818          */
819         volts = read_smon_adc(state, 3);
820         amps = read_smon_adc(state, 4);
821
822         /* Scale voltage and current raw sensor values according to fixed scales
823          * obtained in Darwin and calculate power from I and V
824          */
825         volts *= ADC_CPU_VOLTAGE_SCALE;
826         amps *= ADC_CPU_CURRENT_SCALE;
827         *power = (((u64)volts) * ((u64)amps)) >> 16;
828         state->voltage = volts;
829         state->current_a = amps;
830         state->last_power = *power;
831
832         DBG("  cpu %d, current: %d.%03d, voltage: %d.%03d, power: %d.%03d W\n",
833             state->index, FIX32TOPRINT(state->current_a),
834             FIX32TOPRINT(state->voltage), FIX32TOPRINT(*power));
835
836         return 0;
837 }
838
839 static void do_cpu_pid(struct cpu_pid_state *state, s32 temp, s32 power)
840 {
841         s32 power_target, integral, derivative, proportional, adj_in_target, sval;
842         s64 integ_p, deriv_p, prop_p, sum; 
843         int i;
844
845         /* Calculate power target value (could be done once for all)
846          * and convert to a 16.16 fp number
847          */
848         power_target = ((u32)(state->mpu.pmaxh - state->mpu.padjmax)) << 16;
849         DBG("  power target: %d.%03d, error: %d.%03d\n",
850             FIX32TOPRINT(power_target), FIX32TOPRINT(power_target - power));
851
852         /* Store temperature and power in history array */
853         state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
854         state->temp_history[state->cur_temp] = temp;
855         state->cur_power = (state->cur_power + 1) % state->count_power;
856         state->power_history[state->cur_power] = power;
857         state->error_history[state->cur_power] = power_target - power;
858         
859         /* If first loop, fill the history table */
860         if (state->first) {
861                 for (i = 0; i < (state->count_power - 1); i++) {
862                         state->cur_power = (state->cur_power + 1) % state->count_power;
863                         state->power_history[state->cur_power] = power;
864                         state->error_history[state->cur_power] = power_target - power;
865                 }
866                 for (i = 0; i < (CPU_TEMP_HISTORY_SIZE - 1); i++) {
867                         state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
868                         state->temp_history[state->cur_temp] = temp;                    
869                 }
870                 state->first = 0;
871         }
872
873         /* Calculate the integral term normally based on the "power" values */
874         sum = 0;
875         integral = 0;
876         for (i = 0; i < state->count_power; i++)
877                 integral += state->error_history[i];
878         integral *= CPU_PID_INTERVAL;
879         DBG("  integral: %08x\n", integral);
880
881         /* Calculate the adjusted input (sense value).
882          *   G_r is 12.20
883          *   integ is 16.16
884          *   so the result is 28.36
885          *
886          * input target is mpu.ttarget, input max is mpu.tmax
887          */
888         integ_p = ((s64)state->mpu.pid_gr) * (s64)integral;
889         DBG("   integ_p: %d\n", (int)(integ_p >> 36));
890         sval = (state->mpu.tmax << 16) - ((integ_p >> 20) & 0xffffffff);
891         adj_in_target = (state->mpu.ttarget << 16);
892         if (adj_in_target > sval)
893                 adj_in_target = sval;
894         DBG("   adj_in_target: %d.%03d, ttarget: %d\n", FIX32TOPRINT(adj_in_target),
895             state->mpu.ttarget);
896
897         /* Calculate the derivative term */
898         derivative = state->temp_history[state->cur_temp] -
899                 state->temp_history[(state->cur_temp + CPU_TEMP_HISTORY_SIZE - 1)
900                                     % CPU_TEMP_HISTORY_SIZE];
901         derivative /= CPU_PID_INTERVAL;
902         deriv_p = ((s64)state->mpu.pid_gd) * (s64)derivative;
903         DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
904         sum += deriv_p;
905
906         /* Calculate the proportional term */
907         proportional = temp - adj_in_target;
908         prop_p = ((s64)state->mpu.pid_gp) * (s64)proportional;
909         DBG("   prop_p: %d\n", (int)(prop_p >> 36));
910         sum += prop_p;
911
912         /* Scale sum */
913         sum >>= 36;
914
915         DBG("   sum: %d\n", (int)sum);
916         state->rpm += (s32)sum;
917 }
918
919 static void do_monitor_cpu_combined(void)
920 {
921         struct cpu_pid_state *state0 = &cpu_state[0];
922         struct cpu_pid_state *state1 = &cpu_state[1];
923         s32 temp0, power0, temp1, power1;
924         s32 temp_combi, power_combi;
925         int rc, intake, pump;
926
927         rc = do_read_one_cpu_values(state0, &temp0, &power0);
928         if (rc < 0) {
929                 /* XXX What do we do now ? */
930         }
931         state1->overtemp = 0;
932         rc = do_read_one_cpu_values(state1, &temp1, &power1);
933         if (rc < 0) {
934                 /* XXX What do we do now ? */
935         }
936         if (state1->overtemp)
937                 state0->overtemp++;
938
939         temp_combi = max(temp0, temp1);
940         power_combi = max(power0, power1);
941
942         /* Check tmax, increment overtemp if we are there. At tmax+8, we go
943          * full blown immediately and try to trigger a shutdown
944          */
945         if (temp_combi >= ((state0->mpu.tmax + 8) << 16)) {
946                 printk(KERN_WARNING "Warning ! Temperature way above maximum (%d) !\n",
947                        temp_combi >> 16);
948                 state0->overtemp += CPU_MAX_OVERTEMP / 4;
949         } else if (temp_combi > (state0->mpu.tmax << 16))
950                 state0->overtemp++;
951         else
952                 state0->overtemp = 0;
953         if (state0->overtemp >= CPU_MAX_OVERTEMP)
954                 critical_state = 1;
955         if (state0->overtemp > 0) {
956                 state0->rpm = state0->mpu.rmaxn_exhaust_fan;
957                 state0->intake_rpm = intake = state0->mpu.rmaxn_intake_fan;
958                 pump = state0->pump_max;
959                 goto do_set_fans;
960         }
961
962         /* Do the PID */
963         do_cpu_pid(state0, temp_combi, power_combi);
964
965         /* Range check */
966         state0->rpm = max(state0->rpm, (int)state0->mpu.rminn_exhaust_fan);
967         state0->rpm = min(state0->rpm, (int)state0->mpu.rmaxn_exhaust_fan);
968
969         /* Calculate intake fan speed */
970         intake = (state0->rpm * CPU_INTAKE_SCALE) >> 16;
971         intake = max(intake, (int)state0->mpu.rminn_intake_fan);
972         intake = min(intake, (int)state0->mpu.rmaxn_intake_fan);
973         state0->intake_rpm = intake;
974
975         /* Calculate pump speed */
976         pump = (state0->rpm * state0->pump_max) /
977                 state0->mpu.rmaxn_exhaust_fan;
978         pump = min(pump, state0->pump_max);
979         pump = max(pump, state0->pump_min);
980         
981  do_set_fans:
982         /* We copy values from state 0 to state 1 for /sysfs */
983         state1->rpm = state0->rpm;
984         state1->intake_rpm = state0->intake_rpm;
985
986         DBG("** CPU %d RPM: %d Ex, %d, Pump: %d, In, overtemp: %d\n",
987             state1->index, (int)state1->rpm, intake, pump, state1->overtemp);
988
989         /* We should check for errors, shouldn't we ? But then, what
990          * do we do once the error occurs ? For FCU notified fan
991          * failures (-EFAULT) we probably want to notify userland
992          * some way...
993          */
994         set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
995         set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state0->rpm);
996         set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
997         set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state0->rpm);
998
999         if (fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
1000                 set_rpm_fan(CPUA_PUMP_RPM_INDEX, pump);
1001         if (fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
1002                 set_rpm_fan(CPUB_PUMP_RPM_INDEX, pump);
1003 }
1004
1005 static void do_monitor_cpu_split(struct cpu_pid_state *state)
1006 {
1007         s32 temp, power;
1008         int rc, intake;
1009
1010         /* Read current fan status */
1011         rc = do_read_one_cpu_values(state, &temp, &power);
1012         if (rc < 0) {
1013                 /* XXX What do we do now ? */
1014         }
1015
1016         /* Check tmax, increment overtemp if we are there. At tmax+8, we go
1017          * full blown immediately and try to trigger a shutdown
1018          */
1019         if (temp >= ((state->mpu.tmax + 8) << 16)) {
1020                 printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
1021                        " (%d) !\n",
1022                        state->index, temp >> 16);
1023                 state->overtemp += CPU_MAX_OVERTEMP / 4;
1024         } else if (temp > (state->mpu.tmax << 16))
1025                 state->overtemp++;
1026         else
1027                 state->overtemp = 0;
1028         if (state->overtemp >= CPU_MAX_OVERTEMP)
1029                 critical_state = 1;
1030         if (state->overtemp > 0) {
1031                 state->rpm = state->mpu.rmaxn_exhaust_fan;
1032                 state->intake_rpm = intake = state->mpu.rmaxn_intake_fan;
1033                 goto do_set_fans;
1034         }
1035
1036         /* Do the PID */
1037         do_cpu_pid(state, temp, power);
1038
1039         /* Range check */
1040         state->rpm = max(state->rpm, (int)state->mpu.rminn_exhaust_fan);
1041         state->rpm = min(state->rpm, (int)state->mpu.rmaxn_exhaust_fan);
1042
1043         /* Calculate intake fan */
1044         intake = (state->rpm * CPU_INTAKE_SCALE) >> 16;
1045         intake = max(intake, (int)state->mpu.rminn_intake_fan);
1046         intake = min(intake, (int)state->mpu.rmaxn_intake_fan);
1047         state->intake_rpm = intake;
1048
1049  do_set_fans:
1050         DBG("** CPU %d RPM: %d Ex, %d In, overtemp: %d\n",
1051             state->index, (int)state->rpm, intake, state->overtemp);
1052
1053         /* We should check for errors, shouldn't we ? But then, what
1054          * do we do once the error occurs ? For FCU notified fan
1055          * failures (-EFAULT) we probably want to notify userland
1056          * some way...
1057          */
1058         if (state->index == 0) {
1059                 set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
1060                 set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state->rpm);
1061         } else {
1062                 set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
1063                 set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state->rpm);
1064         }
1065 }
1066
1067 static void do_monitor_cpu_rack(struct cpu_pid_state *state)
1068 {
1069         s32 temp, power, fan_min;
1070         int rc;
1071
1072         /* Read current fan status */
1073         rc = do_read_one_cpu_values(state, &temp, &power);
1074         if (rc < 0) {
1075                 /* XXX What do we do now ? */
1076         }
1077
1078         /* Check tmax, increment overtemp if we are there. At tmax+8, we go
1079          * full blown immediately and try to trigger a shutdown
1080          */
1081         if (temp >= ((state->mpu.tmax + 8) << 16)) {
1082                 printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
1083                        " (%d) !\n",
1084                        state->index, temp >> 16);
1085                 state->overtemp = CPU_MAX_OVERTEMP / 4;
1086         } else if (temp > (state->mpu.tmax << 16))
1087                 state->overtemp++;
1088         else
1089                 state->overtemp = 0;
1090         if (state->overtemp >= CPU_MAX_OVERTEMP)
1091                 critical_state = 1;
1092         if (state->overtemp > 0) {
1093                 state->rpm = state->intake_rpm = state->mpu.rmaxn_intake_fan;
1094                 goto do_set_fans;
1095         }
1096
1097         /* Do the PID */
1098         do_cpu_pid(state, temp, power);
1099
1100         /* Check clamp from dimms */
1101         fan_min = dimm_output_clamp;
1102         fan_min = max(fan_min, (int)state->mpu.rminn_intake_fan);
1103
1104         DBG(" CPU min mpu = %d, min dimm = %d\n",
1105             state->mpu.rminn_intake_fan, dimm_output_clamp);
1106
1107         state->rpm = max(state->rpm, (int)fan_min);
1108         state->rpm = min(state->rpm, (int)state->mpu.rmaxn_intake_fan);
1109         state->intake_rpm = state->rpm;
1110
1111  do_set_fans:
1112         DBG("** CPU %d RPM: %d overtemp: %d\n",
1113             state->index, (int)state->rpm, state->overtemp);
1114
1115         /* We should check for errors, shouldn't we ? But then, what
1116          * do we do once the error occurs ? For FCU notified fan
1117          * failures (-EFAULT) we probably want to notify userland
1118          * some way...
1119          */
1120         if (state->index == 0) {
1121                 set_rpm_fan(CPU_A1_FAN_RPM_INDEX, state->rpm);
1122                 set_rpm_fan(CPU_A2_FAN_RPM_INDEX, state->rpm);
1123                 set_rpm_fan(CPU_A3_FAN_RPM_INDEX, state->rpm);
1124         } else {
1125                 set_rpm_fan(CPU_B1_FAN_RPM_INDEX, state->rpm);
1126                 set_rpm_fan(CPU_B2_FAN_RPM_INDEX, state->rpm);
1127                 set_rpm_fan(CPU_B3_FAN_RPM_INDEX, state->rpm);
1128         }
1129 }
1130
1131 /*
1132  * Initialize the state structure for one CPU control loop
1133  */
1134 static int init_cpu_state(struct cpu_pid_state *state, int index)
1135 {
1136         int err;
1137
1138         state->index = index;
1139         state->first = 1;
1140         state->rpm = (cpu_pid_type == CPU_PID_TYPE_RACKMAC) ? 4000 : 1000;
1141         state->overtemp = 0;
1142         state->adc_config = 0x00;
1143
1144
1145         if (index == 0)
1146                 state->monitor = attach_i2c_chip(SUPPLY_MONITOR_ID, "CPU0_monitor");
1147         else if (index == 1)
1148                 state->monitor = attach_i2c_chip(SUPPLY_MONITORB_ID, "CPU1_monitor");
1149         if (state->monitor == NULL)
1150                 goto fail;
1151
1152         if (read_eeprom(index, &state->mpu))
1153                 goto fail;
1154
1155         state->count_power = state->mpu.tguardband;
1156         if (state->count_power > CPU_POWER_HISTORY_SIZE) {
1157                 printk(KERN_WARNING "Warning ! too many power history slots\n");
1158                 state->count_power = CPU_POWER_HISTORY_SIZE;
1159         }
1160         DBG("CPU %d Using %d power history entries\n", index, state->count_power);
1161
1162         if (index == 0) {
1163                 err = device_create_file(&of_dev->dev, &dev_attr_cpu0_temperature);
1164                 err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_voltage);
1165                 err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_current);
1166                 err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
1167                 err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
1168         } else {
1169                 err = device_create_file(&of_dev->dev, &dev_attr_cpu1_temperature);
1170                 err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_voltage);
1171                 err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_current);
1172                 err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
1173                 err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
1174         }
1175         if (err)
1176                 printk(KERN_WARNING "Failed to create some of the atribute"
1177                         "files for CPU %d\n", index);
1178
1179         return 0;
1180  fail:
1181         state->monitor = NULL;
1182         
1183         return -ENODEV;
1184 }
1185
1186 /*
1187  * Dispose of the state data for one CPU control loop
1188  */
1189 static void dispose_cpu_state(struct cpu_pid_state *state)
1190 {
1191         if (state->monitor == NULL)
1192                 return;
1193
1194         if (state->index == 0) {
1195                 device_remove_file(&of_dev->dev, &dev_attr_cpu0_temperature);
1196                 device_remove_file(&of_dev->dev, &dev_attr_cpu0_voltage);
1197                 device_remove_file(&of_dev->dev, &dev_attr_cpu0_current);
1198                 device_remove_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
1199                 device_remove_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
1200         } else {
1201                 device_remove_file(&of_dev->dev, &dev_attr_cpu1_temperature);
1202                 device_remove_file(&of_dev->dev, &dev_attr_cpu1_voltage);
1203                 device_remove_file(&of_dev->dev, &dev_attr_cpu1_current);
1204                 device_remove_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
1205                 device_remove_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
1206         }
1207
1208         state->monitor = NULL;
1209 }
1210
1211 /*
1212  * Motherboard backside & U3 heatsink fan control loop
1213  */
1214 static void do_monitor_backside(struct backside_pid_state *state)
1215 {
1216         s32 temp, integral, derivative, fan_min;
1217         s64 integ_p, deriv_p, prop_p, sum; 
1218         int i, rc;
1219
1220         if (--state->ticks != 0)
1221                 return;
1222         state->ticks = backside_params.interval;
1223
1224         DBG("backside:\n");
1225
1226         /* Check fan status */
1227         rc = get_pwm_fan(BACKSIDE_FAN_PWM_INDEX);
1228         if (rc < 0) {
1229                 printk(KERN_WARNING "Error %d reading backside fan !\n", rc);
1230                 /* XXX What do we do now ? */
1231         } else
1232                 state->pwm = rc;
1233         DBG("  current pwm: %d\n", state->pwm);
1234
1235         /* Get some sensor readings */
1236         temp = i2c_smbus_read_byte_data(state->monitor, MAX6690_EXT_TEMP) << 16;
1237         state->last_temp = temp;
1238         DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1239             FIX32TOPRINT(backside_params.input_target));
1240
1241         /* Store temperature and error in history array */
1242         state->cur_sample = (state->cur_sample + 1) % BACKSIDE_PID_HISTORY_SIZE;
1243         state->sample_history[state->cur_sample] = temp;
1244         state->error_history[state->cur_sample] = temp - backside_params.input_target;
1245         
1246         /* If first loop, fill the history table */
1247         if (state->first) {
1248                 for (i = 0; i < (BACKSIDE_PID_HISTORY_SIZE - 1); i++) {
1249                         state->cur_sample = (state->cur_sample + 1) %
1250                                 BACKSIDE_PID_HISTORY_SIZE;
1251                         state->sample_history[state->cur_sample] = temp;
1252                         state->error_history[state->cur_sample] =
1253                                 temp - backside_params.input_target;
1254                 }
1255                 state->first = 0;
1256         }
1257
1258         /* Calculate the integral term */
1259         sum = 0;
1260         integral = 0;
1261         for (i = 0; i < BACKSIDE_PID_HISTORY_SIZE; i++)
1262                 integral += state->error_history[i];
1263         integral *= backside_params.interval;
1264         DBG("  integral: %08x\n", integral);
1265         integ_p = ((s64)backside_params.G_r) * (s64)integral;
1266         DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1267         sum += integ_p;
1268
1269         /* Calculate the derivative term */
1270         derivative = state->error_history[state->cur_sample] -
1271                 state->error_history[(state->cur_sample + BACKSIDE_PID_HISTORY_SIZE - 1)
1272                                     % BACKSIDE_PID_HISTORY_SIZE];
1273         derivative /= backside_params.interval;
1274         deriv_p = ((s64)backside_params.G_d) * (s64)derivative;
1275         DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1276         sum += deriv_p;
1277
1278         /* Calculate the proportional term */
1279         prop_p = ((s64)backside_params.G_p) * (s64)(state->error_history[state->cur_sample]);
1280         DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1281         sum += prop_p;
1282
1283         /* Scale sum */
1284         sum >>= 36;
1285
1286         DBG("   sum: %d\n", (int)sum);
1287         if (backside_params.additive)
1288                 state->pwm += (s32)sum;
1289         else
1290                 state->pwm = sum;
1291
1292         /* Check for clamp */
1293         fan_min = (dimm_output_clamp * 100) / 14000;
1294         fan_min = max(fan_min, backside_params.output_min);
1295
1296         state->pwm = max(state->pwm, fan_min);
1297         state->pwm = min(state->pwm, backside_params.output_max);
1298
1299         DBG("** BACKSIDE PWM: %d\n", (int)state->pwm);
1300         set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, state->pwm);
1301 }
1302
1303 /*
1304  * Initialize the state structure for the backside fan control loop
1305  */
1306 static int init_backside_state(struct backside_pid_state *state)
1307 {
1308         struct device_node *u3;
1309         int u3h = 1; /* conservative by default */
1310         int err;
1311
1312         /*
1313          * There are different PID params for machines with U3 and machines
1314          * with U3H, pick the right ones now
1315          */
1316         u3 = of_find_node_by_path("/u3@0,f8000000");
1317         if (u3 != NULL) {
1318                 const u32 *vers = of_get_property(u3, "device-rev", NULL);
1319                 if (vers)
1320                         if (((*vers) & 0x3f) < 0x34)
1321                                 u3h = 0;
1322                 of_node_put(u3);
1323         }
1324
1325         if (rackmac) {
1326                 backside_params.G_d = BACKSIDE_PID_RACK_G_d;
1327                 backside_params.input_target = BACKSIDE_PID_RACK_INPUT_TARGET;
1328                 backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
1329                 backside_params.interval = BACKSIDE_PID_RACK_INTERVAL;
1330                 backside_params.G_p = BACKSIDE_PID_RACK_G_p;
1331                 backside_params.G_r = BACKSIDE_PID_G_r;
1332                 backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1333                 backside_params.additive = 0;
1334         } else if (u3h) {
1335                 backside_params.G_d = BACKSIDE_PID_U3H_G_d;
1336                 backside_params.input_target = BACKSIDE_PID_U3H_INPUT_TARGET;
1337                 backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
1338                 backside_params.interval = BACKSIDE_PID_INTERVAL;
1339                 backside_params.G_p = BACKSIDE_PID_G_p;
1340                 backside_params.G_r = BACKSIDE_PID_G_r;
1341                 backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1342                 backside_params.additive = 1;
1343         } else {
1344                 backside_params.G_d = BACKSIDE_PID_U3_G_d;
1345                 backside_params.input_target = BACKSIDE_PID_U3_INPUT_TARGET;
1346                 backside_params.output_min = BACKSIDE_PID_U3_OUTPUT_MIN;
1347                 backside_params.interval = BACKSIDE_PID_INTERVAL;
1348                 backside_params.G_p = BACKSIDE_PID_G_p;
1349                 backside_params.G_r = BACKSIDE_PID_G_r;
1350                 backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1351                 backside_params.additive = 1;
1352         }
1353
1354         state->ticks = 1;
1355         state->first = 1;
1356         state->pwm = 50;
1357
1358         state->monitor = attach_i2c_chip(BACKSIDE_MAX_ID, "backside_temp");
1359         if (state->monitor == NULL)
1360                 return -ENODEV;
1361
1362         err = device_create_file(&of_dev->dev, &dev_attr_backside_temperature);
1363         err |= device_create_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
1364         if (err)
1365                 printk(KERN_WARNING "Failed to create attribute file(s)"
1366                         " for backside fan\n");
1367
1368         return 0;
1369 }
1370
1371 /*
1372  * Dispose of the state data for the backside control loop
1373  */
1374 static void dispose_backside_state(struct backside_pid_state *state)
1375 {
1376         if (state->monitor == NULL)
1377                 return;
1378
1379         device_remove_file(&of_dev->dev, &dev_attr_backside_temperature);
1380         device_remove_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
1381
1382         state->monitor = NULL;
1383 }
1384  
1385 /*
1386  * Drives bay fan control loop
1387  */
1388 static void do_monitor_drives(struct drives_pid_state *state)
1389 {
1390         s32 temp, integral, derivative;
1391         s64 integ_p, deriv_p, prop_p, sum; 
1392         int i, rc;
1393
1394         if (--state->ticks != 0)
1395                 return;
1396         state->ticks = DRIVES_PID_INTERVAL;
1397
1398         DBG("drives:\n");
1399
1400         /* Check fan status */
1401         rc = get_rpm_fan(DRIVES_FAN_RPM_INDEX, !RPM_PID_USE_ACTUAL_SPEED);
1402         if (rc < 0) {
1403                 printk(KERN_WARNING "Error %d reading drives fan !\n", rc);
1404                 /* XXX What do we do now ? */
1405         } else
1406                 state->rpm = rc;
1407         DBG("  current rpm: %d\n", state->rpm);
1408
1409         /* Get some sensor readings */
1410         temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor,
1411                                                     DS1775_TEMP)) << 8;
1412         state->last_temp = temp;
1413         DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1414             FIX32TOPRINT(DRIVES_PID_INPUT_TARGET));
1415
1416         /* Store temperature and error in history array */
1417         state->cur_sample = (state->cur_sample + 1) % DRIVES_PID_HISTORY_SIZE;
1418         state->sample_history[state->cur_sample] = temp;
1419         state->error_history[state->cur_sample] = temp - DRIVES_PID_INPUT_TARGET;
1420         
1421         /* If first loop, fill the history table */
1422         if (state->first) {
1423                 for (i = 0; i < (DRIVES_PID_HISTORY_SIZE - 1); i++) {
1424                         state->cur_sample = (state->cur_sample + 1) %
1425                                 DRIVES_PID_HISTORY_SIZE;
1426                         state->sample_history[state->cur_sample] = temp;
1427                         state->error_history[state->cur_sample] =
1428                                 temp - DRIVES_PID_INPUT_TARGET;
1429                 }
1430                 state->first = 0;
1431         }
1432
1433         /* Calculate the integral term */
1434         sum = 0;
1435         integral = 0;
1436         for (i = 0; i < DRIVES_PID_HISTORY_SIZE; i++)
1437                 integral += state->error_history[i];
1438         integral *= DRIVES_PID_INTERVAL;
1439         DBG("  integral: %08x\n", integral);
1440         integ_p = ((s64)DRIVES_PID_G_r) * (s64)integral;
1441         DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1442         sum += integ_p;
1443
1444         /* Calculate the derivative term */
1445         derivative = state->error_history[state->cur_sample] -
1446                 state->error_history[(state->cur_sample + DRIVES_PID_HISTORY_SIZE - 1)
1447                                     % DRIVES_PID_HISTORY_SIZE];
1448         derivative /= DRIVES_PID_INTERVAL;
1449         deriv_p = ((s64)DRIVES_PID_G_d) * (s64)derivative;
1450         DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1451         sum += deriv_p;
1452
1453         /* Calculate the proportional term */
1454         prop_p = ((s64)DRIVES_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1455         DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1456         sum += prop_p;
1457
1458         /* Scale sum */
1459         sum >>= 36;
1460
1461         DBG("   sum: %d\n", (int)sum);
1462         state->rpm += (s32)sum;
1463
1464         state->rpm = max(state->rpm, DRIVES_PID_OUTPUT_MIN);
1465         state->rpm = min(state->rpm, DRIVES_PID_OUTPUT_MAX);
1466
1467         DBG("** DRIVES RPM: %d\n", (int)state->rpm);
1468         set_rpm_fan(DRIVES_FAN_RPM_INDEX, state->rpm);
1469 }
1470
1471 /*
1472  * Initialize the state structure for the drives bay fan control loop
1473  */
1474 static int init_drives_state(struct drives_pid_state *state)
1475 {
1476         int err;
1477
1478         state->ticks = 1;
1479         state->first = 1;
1480         state->rpm = 1000;
1481
1482         state->monitor = attach_i2c_chip(DRIVES_DALLAS_ID, "drives_temp");
1483         if (state->monitor == NULL)
1484                 return -ENODEV;
1485
1486         err = device_create_file(&of_dev->dev, &dev_attr_drives_temperature);
1487         err |= device_create_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
1488         if (err)
1489                 printk(KERN_WARNING "Failed to create attribute file(s)"
1490                         " for drives bay fan\n");
1491
1492         return 0;
1493 }
1494
1495 /*
1496  * Dispose of the state data for the drives control loop
1497  */
1498 static void dispose_drives_state(struct drives_pid_state *state)
1499 {
1500         if (state->monitor == NULL)
1501                 return;
1502
1503         device_remove_file(&of_dev->dev, &dev_attr_drives_temperature);
1504         device_remove_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
1505
1506         state->monitor = NULL;
1507 }
1508
1509 /*
1510  * DIMMs temp control loop
1511  */
1512 static void do_monitor_dimms(struct dimm_pid_state *state)
1513 {
1514         s32 temp, integral, derivative, fan_min;
1515         s64 integ_p, deriv_p, prop_p, sum;
1516         int i;
1517
1518         if (--state->ticks != 0)
1519                 return;
1520         state->ticks = DIMM_PID_INTERVAL;
1521
1522         DBG("DIMM:\n");
1523
1524         DBG("  current value: %d\n", state->output);
1525
1526         temp = read_lm87_reg(state->monitor, LM87_INT_TEMP);
1527         if (temp < 0)
1528                 return;
1529         temp <<= 16;
1530         state->last_temp = temp;
1531         DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1532             FIX32TOPRINT(DIMM_PID_INPUT_TARGET));
1533
1534         /* Store temperature and error in history array */
1535         state->cur_sample = (state->cur_sample + 1) % DIMM_PID_HISTORY_SIZE;
1536         state->sample_history[state->cur_sample] = temp;
1537         state->error_history[state->cur_sample] = temp - DIMM_PID_INPUT_TARGET;
1538
1539         /* If first loop, fill the history table */
1540         if (state->first) {
1541                 for (i = 0; i < (DIMM_PID_HISTORY_SIZE - 1); i++) {
1542                         state->cur_sample = (state->cur_sample + 1) %
1543                                 DIMM_PID_HISTORY_SIZE;
1544                         state->sample_history[state->cur_sample] = temp;
1545                         state->error_history[state->cur_sample] =
1546                                 temp - DIMM_PID_INPUT_TARGET;
1547                 }
1548                 state->first = 0;
1549         }
1550
1551         /* Calculate the integral term */
1552         sum = 0;
1553         integral = 0;
1554         for (i = 0; i < DIMM_PID_HISTORY_SIZE; i++)
1555                 integral += state->error_history[i];
1556         integral *= DIMM_PID_INTERVAL;
1557         DBG("  integral: %08x\n", integral);
1558         integ_p = ((s64)DIMM_PID_G_r) * (s64)integral;
1559         DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1560         sum += integ_p;
1561
1562         /* Calculate the derivative term */
1563         derivative = state->error_history[state->cur_sample] -
1564                 state->error_history[(state->cur_sample + DIMM_PID_HISTORY_SIZE - 1)
1565                                     % DIMM_PID_HISTORY_SIZE];
1566         derivative /= DIMM_PID_INTERVAL;
1567         deriv_p = ((s64)DIMM_PID_G_d) * (s64)derivative;
1568         DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1569         sum += deriv_p;
1570
1571         /* Calculate the proportional term */
1572         prop_p = ((s64)DIMM_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1573         DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1574         sum += prop_p;
1575
1576         /* Scale sum */
1577         sum >>= 36;
1578
1579         DBG("   sum: %d\n", (int)sum);
1580         state->output = (s32)sum;
1581         state->output = max(state->output, DIMM_PID_OUTPUT_MIN);
1582         state->output = min(state->output, DIMM_PID_OUTPUT_MAX);
1583         dimm_output_clamp = state->output;
1584
1585         DBG("** DIMM clamp value: %d\n", (int)state->output);
1586
1587         /* Backside PID is only every 5 seconds, force backside fan clamping now */
1588         fan_min = (dimm_output_clamp * 100) / 14000;
1589         fan_min = max(fan_min, backside_params.output_min);
1590         if (backside_state.pwm < fan_min) {
1591                 backside_state.pwm = fan_min;
1592                 DBG(" -> applying clamp to backside fan now: %d  !\n", fan_min);
1593                 set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, fan_min);
1594         }
1595 }
1596
1597 /*
1598  * Initialize the state structure for the DIMM temp control loop
1599  */
1600 static int init_dimms_state(struct dimm_pid_state *state)
1601 {
1602         state->ticks = 1;
1603         state->first = 1;
1604         state->output = 4000;
1605
1606         state->monitor = attach_i2c_chip(XSERVE_DIMMS_LM87, "dimms_temp");
1607         if (state->monitor == NULL)
1608                 return -ENODEV;
1609
1610         if (device_create_file(&of_dev->dev, &dev_attr_dimms_temperature))
1611                 printk(KERN_WARNING "Failed to create attribute file"
1612                         " for DIMM temperature\n");
1613
1614         return 0;
1615 }
1616
1617 /*
1618  * Dispose of the state data for the DIMM control loop
1619  */
1620 static void dispose_dimms_state(struct dimm_pid_state *state)
1621 {
1622         if (state->monitor == NULL)
1623                 return;
1624
1625         device_remove_file(&of_dev->dev, &dev_attr_dimms_temperature);
1626
1627         state->monitor = NULL;
1628 }
1629
1630 /*
1631  * Slots fan control loop
1632  */
1633 static void do_monitor_slots(struct slots_pid_state *state)
1634 {
1635         s32 temp, integral, derivative;
1636         s64 integ_p, deriv_p, prop_p, sum;
1637         int i, rc;
1638
1639         if (--state->ticks != 0)
1640                 return;
1641         state->ticks = SLOTS_PID_INTERVAL;
1642
1643         DBG("slots:\n");
1644
1645         /* Check fan status */
1646         rc = get_pwm_fan(SLOTS_FAN_PWM_INDEX);
1647         if (rc < 0) {
1648                 printk(KERN_WARNING "Error %d reading slots fan !\n", rc);
1649                 /* XXX What do we do now ? */
1650         } else
1651                 state->pwm = rc;
1652         DBG("  current pwm: %d\n", state->pwm);
1653
1654         /* Get some sensor readings */
1655         temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor,
1656                                                     DS1775_TEMP)) << 8;
1657         state->last_temp = temp;
1658         DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1659             FIX32TOPRINT(SLOTS_PID_INPUT_TARGET));
1660
1661         /* Store temperature and error in history array */
1662         state->cur_sample = (state->cur_sample + 1) % SLOTS_PID_HISTORY_SIZE;
1663         state->sample_history[state->cur_sample] = temp;
1664         state->error_history[state->cur_sample] = temp - SLOTS_PID_INPUT_TARGET;
1665
1666         /* If first loop, fill the history table */
1667         if (state->first) {
1668                 for (i = 0; i < (SLOTS_PID_HISTORY_SIZE - 1); i++) {
1669                         state->cur_sample = (state->cur_sample + 1) %
1670                                 SLOTS_PID_HISTORY_SIZE;
1671                         state->sample_history[state->cur_sample] = temp;
1672                         state->error_history[state->cur_sample] =
1673                                 temp - SLOTS_PID_INPUT_TARGET;
1674                 }
1675                 state->first = 0;
1676         }
1677
1678         /* Calculate the integral term */
1679         sum = 0;
1680         integral = 0;
1681         for (i = 0; i < SLOTS_PID_HISTORY_SIZE; i++)
1682                 integral += state->error_history[i];
1683         integral *= SLOTS_PID_INTERVAL;
1684         DBG("  integral: %08x\n", integral);
1685         integ_p = ((s64)SLOTS_PID_G_r) * (s64)integral;
1686         DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1687         sum += integ_p;
1688
1689         /* Calculate the derivative term */
1690         derivative = state->error_history[state->cur_sample] -
1691                 state->error_history[(state->cur_sample + SLOTS_PID_HISTORY_SIZE - 1)
1692                                     % SLOTS_PID_HISTORY_SIZE];
1693         derivative /= SLOTS_PID_INTERVAL;
1694         deriv_p = ((s64)SLOTS_PID_G_d) * (s64)derivative;
1695         DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1696         sum += deriv_p;
1697
1698         /* Calculate the proportional term */
1699         prop_p = ((s64)SLOTS_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1700         DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1701         sum += prop_p;
1702
1703         /* Scale sum */
1704         sum >>= 36;
1705
1706         DBG("   sum: %d\n", (int)sum);
1707         state->pwm = (s32)sum;
1708
1709         state->pwm = max(state->pwm, SLOTS_PID_OUTPUT_MIN);
1710         state->pwm = min(state->pwm, SLOTS_PID_OUTPUT_MAX);
1711
1712         DBG("** DRIVES PWM: %d\n", (int)state->pwm);
1713         set_pwm_fan(SLOTS_FAN_PWM_INDEX, state->pwm);
1714 }
1715
1716 /*
1717  * Initialize the state structure for the slots bay fan control loop
1718  */
1719 static int init_slots_state(struct slots_pid_state *state)
1720 {
1721         int err;
1722
1723         state->ticks = 1;
1724         state->first = 1;
1725         state->pwm = 50;
1726
1727         state->monitor = attach_i2c_chip(XSERVE_SLOTS_LM75, "slots_temp");
1728         if (state->monitor == NULL)
1729                 return -ENODEV;
1730
1731         err = device_create_file(&of_dev->dev, &dev_attr_slots_temperature);
1732         err |= device_create_file(&of_dev->dev, &dev_attr_slots_fan_pwm);
1733         if (err)
1734                 printk(KERN_WARNING "Failed to create attribute file(s)"
1735                         " for slots bay fan\n");
1736
1737         return 0;
1738 }
1739
1740 /*
1741  * Dispose of the state data for the slots control loop
1742  */
1743 static void dispose_slots_state(struct slots_pid_state *state)
1744 {
1745         if (state->monitor == NULL)
1746                 return;
1747
1748         device_remove_file(&of_dev->dev, &dev_attr_slots_temperature);
1749         device_remove_file(&of_dev->dev, &dev_attr_slots_fan_pwm);
1750
1751         state->monitor = NULL;
1752 }
1753
1754
1755 static int call_critical_overtemp(void)
1756 {
1757         char *argv[] = { critical_overtemp_path, NULL };
1758         static char *envp[] = { "HOME=/",
1759                                 "TERM=linux",
1760                                 "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
1761                                 NULL };
1762
1763         return call_usermodehelper(critical_overtemp_path,
1764                                    argv, envp, UMH_WAIT_EXEC);
1765 }
1766
1767
1768 /*
1769  * Here's the kernel thread that calls the various control loops
1770  */
1771 static int main_control_loop(void *x)
1772 {
1773         DBG("main_control_loop started\n");
1774
1775         mutex_lock(&driver_lock);
1776
1777         if (start_fcu() < 0) {
1778                 printk(KERN_ERR "kfand: failed to start FCU\n");
1779                 mutex_unlock(&driver_lock);
1780                 goto out;
1781         }
1782
1783         /* Set the PCI fan once for now on non-RackMac */
1784         if (!rackmac)
1785                 set_pwm_fan(SLOTS_FAN_PWM_INDEX, SLOTS_FAN_DEFAULT_PWM);
1786
1787         /* Initialize ADCs */
1788         initialize_adc(&cpu_state[0]);
1789         if (cpu_state[1].monitor != NULL)
1790                 initialize_adc(&cpu_state[1]);
1791
1792         fcu_tickle_ticks = FCU_TICKLE_TICKS;
1793
1794         mutex_unlock(&driver_lock);
1795
1796         while (state == state_attached) {
1797                 unsigned long elapsed, start;
1798
1799                 start = jiffies;
1800
1801                 mutex_lock(&driver_lock);
1802
1803                 /* Tickle the FCU just in case */
1804                 if (--fcu_tickle_ticks < 0) {
1805                         fcu_tickle_ticks = FCU_TICKLE_TICKS;
1806                         tickle_fcu();
1807                 }
1808
1809                 /* First, we always calculate the new DIMMs state on an Xserve */
1810                 if (rackmac)
1811                         do_monitor_dimms(&dimms_state);
1812
1813                 /* Then, the CPUs */
1814                 if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
1815                         do_monitor_cpu_combined();
1816                 else if (cpu_pid_type == CPU_PID_TYPE_RACKMAC) {
1817                         do_monitor_cpu_rack(&cpu_state[0]);
1818                         if (cpu_state[1].monitor != NULL)
1819                                 do_monitor_cpu_rack(&cpu_state[1]);
1820                         // better deal with UP
1821                 } else {
1822                         do_monitor_cpu_split(&cpu_state[0]);
1823                         if (cpu_state[1].monitor != NULL)
1824                                 do_monitor_cpu_split(&cpu_state[1]);
1825                         // better deal with UP
1826                 }
1827                 /* Then, the rest */
1828                 do_monitor_backside(&backside_state);
1829                 if (rackmac)
1830                         do_monitor_slots(&slots_state);
1831                 else
1832                         do_monitor_drives(&drives_state);
1833                 mutex_unlock(&driver_lock);
1834
1835                 if (critical_state == 1) {
1836                         printk(KERN_WARNING "Temperature control detected a critical condition\n");
1837                         printk(KERN_WARNING "Attempting to shut down...\n");
1838                         if (call_critical_overtemp()) {
1839                                 printk(KERN_WARNING "Can't call %s, power off now!\n",
1840                                        critical_overtemp_path);
1841                                 machine_power_off();
1842                         }
1843                 }
1844                 if (critical_state > 0)
1845                         critical_state++;
1846                 if (critical_state > MAX_CRITICAL_STATE) {
1847                         printk(KERN_WARNING "Shutdown timed out, power off now !\n");
1848                         machine_power_off();
1849                 }
1850
1851                 // FIXME: Deal with signals
1852                 elapsed = jiffies - start;
1853                 if (elapsed < HZ)
1854                         schedule_timeout_interruptible(HZ - elapsed);
1855         }
1856
1857  out:
1858         DBG("main_control_loop ended\n");
1859
1860         ctrl_task = 0;
1861         complete_and_exit(&ctrl_complete, 0);
1862 }
1863
1864 /*
1865  * Dispose the control loops when tearing down
1866  */
1867 static void dispose_control_loops(void)
1868 {
1869         dispose_cpu_state(&cpu_state[0]);
1870         dispose_cpu_state(&cpu_state[1]);
1871         dispose_backside_state(&backside_state);
1872         dispose_drives_state(&drives_state);
1873         dispose_slots_state(&slots_state);
1874         dispose_dimms_state(&dimms_state);
1875 }
1876
1877 /*
1878  * Create the control loops. U3-0 i2c bus is up, so we can now
1879  * get to the various sensors
1880  */
1881 static int create_control_loops(void)
1882 {
1883         struct device_node *np;
1884
1885         /* Count CPUs from the device-tree, we don't care how many are
1886          * actually used by Linux
1887          */
1888         cpu_count = 0;
1889         for (np = NULL; NULL != (np = of_find_node_by_type(np, "cpu"));)
1890                 cpu_count++;
1891
1892         DBG("counted %d CPUs in the device-tree\n", cpu_count);
1893
1894         /* Decide the type of PID algorithm to use based on the presence of
1895          * the pumps, though that may not be the best way, that is good enough
1896          * for now
1897          */
1898         if (rackmac)
1899                 cpu_pid_type = CPU_PID_TYPE_RACKMAC;
1900         else if (machine_is_compatible("PowerMac7,3")
1901             && (cpu_count > 1)
1902             && fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID
1903             && fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID) {
1904                 printk(KERN_INFO "Liquid cooling pumps detected, using new algorithm !\n");
1905                 cpu_pid_type = CPU_PID_TYPE_COMBINED;
1906         } else
1907                 cpu_pid_type = CPU_PID_TYPE_SPLIT;
1908
1909         /* Create control loops for everything. If any fail, everything
1910          * fails
1911          */
1912         if (init_cpu_state(&cpu_state[0], 0))
1913                 goto fail;
1914         if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
1915                 fetch_cpu_pumps_minmax();
1916
1917         if (cpu_count > 1 && init_cpu_state(&cpu_state[1], 1))
1918                 goto fail;
1919         if (init_backside_state(&backside_state))
1920                 goto fail;
1921         if (rackmac && init_dimms_state(&dimms_state))
1922                 goto fail;
1923         if (rackmac && init_slots_state(&slots_state))
1924                 goto fail;
1925         if (!rackmac && init_drives_state(&drives_state))
1926                 goto fail;
1927
1928         DBG("all control loops up !\n");
1929
1930         return 0;
1931         
1932  fail:
1933         DBG("failure creating control loops, disposing\n");
1934
1935         dispose_control_loops();
1936
1937         return -ENODEV;
1938 }
1939
1940 /*
1941  * Start the control loops after everything is up, that is create
1942  * the thread that will make them run
1943  */
1944 static void start_control_loops(void)
1945 {
1946         init_completion(&ctrl_complete);
1947
1948         ctrl_task = kthread_run(main_control_loop, NULL, "kfand");
1949 }
1950
1951 /*
1952  * Stop the control loops when tearing down
1953  */
1954 static void stop_control_loops(void)
1955 {
1956         if (ctrl_task)
1957                 wait_for_completion(&ctrl_complete);
1958 }
1959
1960 /*
1961  * Attach to the i2c FCU after detecting U3-1 bus
1962  */
1963 static int attach_fcu(void)
1964 {
1965         fcu = attach_i2c_chip(FAN_CTRLER_ID, "fcu");
1966         if (fcu == NULL)
1967                 return -ENODEV;
1968
1969         DBG("FCU attached\n");
1970
1971         return 0;
1972 }
1973
1974 /*
1975  * Detach from the i2c FCU when tearing down
1976  */
1977 static void detach_fcu(void)
1978 {
1979         fcu = NULL;
1980 }
1981
1982 /*
1983  * Attach to the i2c controller. We probe the various chips based
1984  * on the device-tree nodes and build everything for the driver to
1985  * run, we then kick the driver monitoring thread
1986  */
1987 static int therm_pm72_attach(struct i2c_adapter *adapter)
1988 {
1989         mutex_lock(&driver_lock);
1990
1991         /* Check state */
1992         if (state == state_detached)
1993                 state = state_attaching;
1994         if (state != state_attaching) {
1995                 mutex_unlock(&driver_lock);
1996                 return 0;
1997         }
1998
1999         /* Check if we are looking for one of these */
2000         if (u3_0 == NULL && !strcmp(adapter->name, "u3 0")) {
2001                 u3_0 = adapter;
2002                 DBG("found U3-0\n");
2003                 if (k2 || !rackmac)
2004                         if (create_control_loops())
2005                                 u3_0 = NULL;
2006         } else if (u3_1 == NULL && !strcmp(adapter->name, "u3 1")) {
2007                 u3_1 = adapter;
2008                 DBG("found U3-1, attaching FCU\n");
2009                 if (attach_fcu())
2010                         u3_1 = NULL;
2011         } else if (k2 == NULL && !strcmp(adapter->name, "mac-io 0")) {
2012                 k2 = adapter;
2013                 DBG("Found K2\n");
2014                 if (u3_0 && rackmac)
2015                         if (create_control_loops())
2016                                 k2 = NULL;
2017         }
2018         /* We got all we need, start control loops */
2019         if (u3_0 != NULL && u3_1 != NULL && (k2 || !rackmac)) {
2020                 DBG("everything up, starting control loops\n");
2021                 state = state_attached;
2022                 start_control_loops();
2023         }
2024         mutex_unlock(&driver_lock);
2025
2026         return 0;
2027 }
2028
2029 static int therm_pm72_probe(struct i2c_client *client,
2030                             const struct i2c_device_id *id)
2031 {
2032         /* Always succeed, the real work was done in therm_pm72_attach() */
2033         return 0;
2034 }
2035
2036 /*
2037  * Called when any of the devices which participates into thermal management
2038  * is going away.
2039  */
2040 static int therm_pm72_remove(struct i2c_client *client)
2041 {
2042         struct i2c_adapter *adapter = client->adapter;
2043
2044         mutex_lock(&driver_lock);
2045
2046         if (state != state_detached)
2047                 state = state_detaching;
2048
2049         /* Stop control loops if any */
2050         DBG("stopping control loops\n");
2051         mutex_unlock(&driver_lock);
2052         stop_control_loops();
2053         mutex_lock(&driver_lock);
2054
2055         if (u3_0 != NULL && !strcmp(adapter->name, "u3 0")) {
2056                 DBG("lost U3-0, disposing control loops\n");
2057                 dispose_control_loops();
2058                 u3_0 = NULL;
2059         }
2060         
2061         if (u3_1 != NULL && !strcmp(adapter->name, "u3 1")) {
2062                 DBG("lost U3-1, detaching FCU\n");
2063                 detach_fcu();
2064                 u3_1 = NULL;
2065         }
2066         if (u3_0 == NULL && u3_1 == NULL)
2067                 state = state_detached;
2068
2069         mutex_unlock(&driver_lock);
2070
2071         return 0;
2072 }
2073
2074 /*
2075  * i2c_driver structure to attach to the host i2c controller
2076  */
2077
2078 static const struct i2c_device_id therm_pm72_id[] = {
2079         /*
2080          * Fake device name, thermal management is done by several
2081          * chips but we don't need to differentiate between them at
2082          * this point.
2083          */
2084         { "therm_pm72", 0 },
2085         { }
2086 };
2087
2088 static struct i2c_driver therm_pm72_driver = {
2089         .driver = {
2090                 .name   = "therm_pm72",
2091         },
2092         .attach_adapter = therm_pm72_attach,
2093         .probe          = therm_pm72_probe,
2094         .remove         = therm_pm72_remove,
2095         .id_table       = therm_pm72_id,
2096 };
2097
2098 static int fan_check_loc_match(const char *loc, int fan)
2099 {
2100         char    tmp[64];
2101         char    *c, *e;
2102
2103         strlcpy(tmp, fcu_fans[fan].loc, 64);
2104
2105         c = tmp;
2106         for (;;) {
2107                 e = strchr(c, ',');
2108                 if (e)
2109                         *e = 0;
2110                 if (strcmp(loc, c) == 0)
2111                         return 1;
2112                 if (e == NULL)
2113                         break;
2114                 c = e + 1;
2115         }
2116         return 0;
2117 }
2118
2119 static void fcu_lookup_fans(struct device_node *fcu_node)
2120 {
2121         struct device_node *np = NULL;
2122         int i;
2123
2124         /* The table is filled by default with values that are suitable
2125          * for the old machines without device-tree informations. We scan
2126          * the device-tree and override those values with whatever is
2127          * there
2128          */
2129
2130         DBG("Looking up FCU controls in device-tree...\n");
2131
2132         while ((np = of_get_next_child(fcu_node, np)) != NULL) {
2133                 int type = -1;
2134                 const char *loc;
2135                 const u32 *reg;
2136
2137                 DBG(" control: %s, type: %s\n", np->name, np->type);
2138
2139                 /* Detect control type */
2140                 if (!strcmp(np->type, "fan-rpm-control") ||
2141                     !strcmp(np->type, "fan-rpm"))
2142                         type = FCU_FAN_RPM;
2143                 if (!strcmp(np->type, "fan-pwm-control") ||
2144                     !strcmp(np->type, "fan-pwm"))
2145                         type = FCU_FAN_PWM;
2146                 /* Only care about fans for now */
2147                 if (type == -1)
2148                         continue;
2149
2150                 /* Lookup for a matching location */
2151                 loc = of_get_property(np, "location", NULL);
2152                 reg = of_get_property(np, "reg", NULL);
2153                 if (loc == NULL || reg == NULL)
2154                         continue;
2155                 DBG(" matching location: %s, reg: 0x%08x\n", loc, *reg);
2156
2157                 for (i = 0; i < FCU_FAN_COUNT; i++) {
2158                         int fan_id;
2159
2160                         if (!fan_check_loc_match(loc, i))
2161                                 continue;
2162                         DBG(" location match, index: %d\n", i);
2163                         fcu_fans[i].id = FCU_FAN_ABSENT_ID;
2164                         if (type != fcu_fans[i].type) {
2165                                 printk(KERN_WARNING "therm_pm72: Fan type mismatch "
2166                                        "in device-tree for %s\n", np->full_name);
2167                                 break;
2168                         }
2169                         if (type == FCU_FAN_RPM)
2170                                 fan_id = ((*reg) - 0x10) / 2;
2171                         else
2172                                 fan_id = ((*reg) - 0x30) / 2;
2173                         if (fan_id > 7) {
2174                                 printk(KERN_WARNING "therm_pm72: Can't parse "
2175                                        "fan ID in device-tree for %s\n", np->full_name);
2176                                 break;
2177                         }
2178                         DBG(" fan id -> %d, type -> %d\n", fan_id, type);
2179                         fcu_fans[i].id = fan_id;
2180                 }
2181         }
2182
2183         /* Now dump the array */
2184         printk(KERN_INFO "Detected fan controls:\n");
2185         for (i = 0; i < FCU_FAN_COUNT; i++) {
2186                 if (fcu_fans[i].id == FCU_FAN_ABSENT_ID)
2187                         continue;
2188                 printk(KERN_INFO "  %d: %s fan, id %d, location: %s\n", i,
2189                        fcu_fans[i].type == FCU_FAN_RPM ? "RPM" : "PWM",
2190                        fcu_fans[i].id, fcu_fans[i].loc);
2191         }
2192 }
2193
2194 static int fcu_of_probe(struct of_device* dev, const struct of_device_id *match)
2195 {
2196         state = state_detached;
2197
2198         /* Lookup the fans in the device tree */
2199         fcu_lookup_fans(dev->node);
2200
2201         /* Add the driver */
2202         return i2c_add_driver(&therm_pm72_driver);
2203 }
2204
2205 static int fcu_of_remove(struct of_device* dev)
2206 {
2207         i2c_del_driver(&therm_pm72_driver);
2208
2209         return 0;
2210 }
2211
2212 static struct of_device_id fcu_match[] = 
2213 {
2214         {
2215         .type           = "fcu",
2216         },
2217         {},
2218 };
2219
2220 static struct of_platform_driver fcu_of_platform_driver = 
2221 {
2222         .name           = "temperature",
2223         .match_table    = fcu_match,
2224         .probe          = fcu_of_probe,
2225         .remove         = fcu_of_remove
2226 };
2227
2228 /*
2229  * Check machine type, attach to i2c controller
2230  */
2231 static int __init therm_pm72_init(void)
2232 {
2233         struct device_node *np;
2234
2235         rackmac = machine_is_compatible("RackMac3,1");
2236
2237         if (!machine_is_compatible("PowerMac7,2") &&
2238             !machine_is_compatible("PowerMac7,3") &&
2239             !rackmac)
2240                 return -ENODEV;
2241
2242         printk(KERN_INFO "PowerMac G5 Thermal control driver %s\n", VERSION);
2243
2244         np = of_find_node_by_type(NULL, "fcu");
2245         if (np == NULL) {
2246                 /* Some machines have strangely broken device-tree */
2247                 np = of_find_node_by_path("/u3@0,f8000000/i2c@f8001000/fan@15e");
2248                 if (np == NULL) {
2249                             printk(KERN_ERR "Can't find FCU in device-tree !\n");
2250                             return -ENODEV;
2251                 }
2252         }
2253         of_dev = of_platform_device_create(np, "temperature", NULL);
2254         if (of_dev == NULL) {
2255                 printk(KERN_ERR "Can't register FCU platform device !\n");
2256                 return -ENODEV;
2257         }
2258
2259         of_register_platform_driver(&fcu_of_platform_driver);
2260         
2261         return 0;
2262 }
2263
2264 static void __exit therm_pm72_exit(void)
2265 {
2266         of_unregister_platform_driver(&fcu_of_platform_driver);
2267
2268         if (of_dev)
2269                 of_device_unregister(of_dev);
2270 }
2271
2272 module_init(therm_pm72_init);
2273 module_exit(therm_pm72_exit);
2274
2275 MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
2276 MODULE_DESCRIPTION("Driver for Apple's PowerMac G5 thermal control");
2277 MODULE_LICENSE("GPL");
2278