mm: thp: set the accessed flag for old pages on access fault
[pandora-kernel.git] / drivers / macintosh / therm_pm72.c
1 /*
2  * Device driver for the thermostats & fan controller of  the
3  * Apple G5 "PowerMac7,2" desktop machines.
4  *
5  * (c) Copyright IBM Corp. 2003-2004
6  *
7  * Maintained by: Benjamin Herrenschmidt
8  *                <benh@kernel.crashing.org>
9  * 
10  *
11  * The algorithm used is the PID control algorithm, used the same
12  * way the published Darwin code does, using the same values that
13  * are present in the Darwin 7.0 snapshot property lists.
14  *
15  * As far as the CPUs control loops are concerned, I use the
16  * calibration & PID constants provided by the EEPROM,
17  * I do _not_ embed any value from the property lists, as the ones
18  * provided by Darwin 7.0 seem to always have an older version that
19  * what I've seen on the actual computers.
20  * It would be interesting to verify that though. Darwin has a
21  * version code of 1.0.0d11 for all control loops it seems, while
22  * so far, the machines EEPROMs contain a dataset versioned 1.0.0f
23  *
24  * Darwin doesn't provide source to all parts, some missing
25  * bits like the AppleFCU driver or the actual scale of some
26  * of the values returned by sensors had to be "guessed" some
27  * way... or based on what Open Firmware does.
28  *
29  * I didn't yet figure out how to get the slots power consumption
30  * out of the FCU, so that part has not been implemented yet and
31  * the slots fan is set to a fixed 50% PWM, hoping this value is
32  * safe enough ...
33  *
34  * Note: I have observed strange oscillations of the CPU control
35  * loop on a dual G5 here. When idle, the CPU exhaust fan tend to
36  * oscillates slowly (over several minutes) between the minimum
37  * of 300RPMs and approx. 1000 RPMs. I don't know what is causing
38  * this, it could be some incorrect constant or an error in the
39  * way I ported the algorithm, or it could be just normal. I
40  * don't have full understanding on the way Apple tweaked the PID
41  * algorithm for the CPU control, it is definitely not a standard
42  * implementation...
43  *
44  * TODO:  - Check MPU structure version/signature
45  *        - Add things like /sbin/overtemp for non-critical
46  *          overtemp conditions so userland can take some policy
47  *          decisions, like slowing down CPUs
48  *        - Deal with fan and i2c failures in a better way
49  *        - Maybe do a generic PID based on params used for
50  *          U3 and Drives ? Definitely need to factor code a bit
51  *          better... also make sensor detection more robust using
52  *          the device-tree to probe for them
53  *        - Figure out how to get the slots consumption and set the
54  *          slots fan accordingly
55  *
56  * History:
57  *
58  *  Nov. 13, 2003 : 0.5
59  *      - First release
60  *
61  *  Nov. 14, 2003 : 0.6
62  *      - Read fan speed from FCU, low level fan routines now deal
63  *        with errors & check fan status, though higher level don't
64  *        do much.
65  *      - Move a bunch of definitions to .h file
66  *
67  *  Nov. 18, 2003 : 0.7
68  *      - Fix build on ppc64 kernel
69  *      - Move back statics definitions to .c file
70  *      - Avoid calling schedule_timeout with a negative number
71  *
72  *  Dec. 18, 2003 : 0.8
73  *      - Fix typo when reading back fan speed on 2 CPU machines
74  *
75  *  Mar. 11, 2004 : 0.9
76  *      - Rework code accessing the ADC chips, make it more robust and
77  *        closer to the chip spec. Also make sure it is configured properly,
78  *        I've seen yet unexplained cases where on startup, I would have stale
79  *        values in the configuration register
80  *      - Switch back to use of target fan speed for PID, thus lowering
81  *        pressure on i2c
82  *
83  *  Oct. 20, 2004 : 1.1
84  *      - Add device-tree lookup for fan IDs, should detect liquid cooling
85  *        pumps when present
86  *      - Enable driver for PowerMac7,3 machines
87  *      - Split the U3/Backside cooling on U3 & U3H versions as Darwin does
88  *      - Add new CPU cooling algorithm for machines with liquid cooling
89  *      - Workaround for some PowerMac7,3 with empty "fan" node in the devtree
90  *      - Fix a signed/unsigned compare issue in some PID loops
91  *
92  *  Mar. 10, 2005 : 1.2
93  *      - Add basic support for Xserve G5
94  *      - Retrieve pumps min/max from EEPROM image in device-tree (broken)
95  *      - Use min/max macros here or there
96  *      - Latest darwin updated U3H min fan speed to 20% PWM
97  *
98  *  July. 06, 2006 : 1.3
99  *      - Fix setting of RPM fans on Xserve G5 (they were going too fast)
100  *      - Add missing slots fan control loop for Xserve G5
101  *      - Lower fixed slots fan speed from 50% to 40% on desktop G5s. We
102  *        still can't properly implement the control loop for these, so let's
103  *        reduce the noise a little bit, it appears that 40% still gives us
104  *        a pretty good air flow
105  *      - Add code to "tickle" the FCU regulary so it doesn't think that
106  *        we are gone while in fact, the machine just didn't need any fan
107  *        speed change lately
108  *
109  */
110
111 #include <linux/types.h>
112 #include <linux/module.h>
113 #include <linux/errno.h>
114 #include <linux/kernel.h>
115 #include <linux/delay.h>
116 #include <linux/sched.h>
117 #include <linux/init.h>
118 #include <linux/spinlock.h>
119 #include <linux/wait.h>
120 #include <linux/reboot.h>
121 #include <linux/kmod.h>
122 #include <linux/i2c.h>
123 #include <linux/kthread.h>
124 #include <linux/mutex.h>
125 #include <linux/of_device.h>
126 #include <linux/of_platform.h>
127 #include <asm/prom.h>
128 #include <asm/machdep.h>
129 #include <asm/io.h>
130 #include <asm/system.h>
131 #include <asm/sections.h>
132 #include <asm/macio.h>
133
134 #include "therm_pm72.h"
135
136 #define VERSION "1.3"
137
138 #undef DEBUG
139
140 #ifdef DEBUG
141 #define DBG(args...)    printk(args)
142 #else
143 #define DBG(args...)    do { } while(0)
144 #endif
145
146
147 /*
148  * Driver statics
149  */
150
151 static struct platform_device *         of_dev;
152 static struct i2c_adapter *             u3_0;
153 static struct i2c_adapter *             u3_1;
154 static struct i2c_adapter *             k2;
155 static struct i2c_client *              fcu;
156 static struct cpu_pid_state             processor_state[2];
157 static struct basckside_pid_params      backside_params;
158 static struct backside_pid_state        backside_state;
159 static struct drives_pid_state          drives_state;
160 static struct dimm_pid_state            dimms_state;
161 static struct slots_pid_state           slots_state;
162 static int                              state;
163 static int                              cpu_count;
164 static int                              cpu_pid_type;
165 static struct task_struct               *ctrl_task;
166 static struct completion                ctrl_complete;
167 static int                              critical_state;
168 static int                              rackmac;
169 static s32                              dimm_output_clamp;
170 static int                              fcu_rpm_shift;
171 static int                              fcu_tickle_ticks;
172 static DEFINE_MUTEX(driver_lock);
173
174 /*
175  * We have 3 types of CPU PID control. One is "split" old style control
176  * for intake & exhaust fans, the other is "combined" control for both
177  * CPUs that also deals with the pumps when present. To be "compatible"
178  * with OS X at this point, we only use "COMBINED" on the machines that
179  * are identified as having the pumps (though that identification is at
180  * least dodgy). Ultimately, we could probably switch completely to this
181  * algorithm provided we hack it to deal with the UP case
182  */
183 #define CPU_PID_TYPE_SPLIT      0
184 #define CPU_PID_TYPE_COMBINED   1
185 #define CPU_PID_TYPE_RACKMAC    2
186
187 /*
188  * This table describes all fans in the FCU. The "id" and "type" values
189  * are defaults valid for all earlier machines. Newer machines will
190  * eventually override the table content based on the device-tree
191  */
192 struct fcu_fan_table
193 {
194         char*   loc;    /* location code */
195         int     type;   /* 0 = rpm, 1 = pwm, 2 = pump */
196         int     id;     /* id or -1 */
197 };
198
199 #define FCU_FAN_RPM             0
200 #define FCU_FAN_PWM             1
201
202 #define FCU_FAN_ABSENT_ID       -1
203
204 #define FCU_FAN_COUNT           ARRAY_SIZE(fcu_fans)
205
206 struct fcu_fan_table    fcu_fans[] = {
207         [BACKSIDE_FAN_PWM_INDEX] = {
208                 .loc    = "BACKSIDE,SYS CTRLR FAN",
209                 .type   = FCU_FAN_PWM,
210                 .id     = BACKSIDE_FAN_PWM_DEFAULT_ID,
211         },
212         [DRIVES_FAN_RPM_INDEX] = {
213                 .loc    = "DRIVE BAY",
214                 .type   = FCU_FAN_RPM,
215                 .id     = DRIVES_FAN_RPM_DEFAULT_ID,
216         },
217         [SLOTS_FAN_PWM_INDEX] = {
218                 .loc    = "SLOT,PCI FAN",
219                 .type   = FCU_FAN_PWM,
220                 .id     = SLOTS_FAN_PWM_DEFAULT_ID,
221         },
222         [CPUA_INTAKE_FAN_RPM_INDEX] = {
223                 .loc    = "CPU A INTAKE",
224                 .type   = FCU_FAN_RPM,
225                 .id     = CPUA_INTAKE_FAN_RPM_DEFAULT_ID,
226         },
227         [CPUA_EXHAUST_FAN_RPM_INDEX] = {
228                 .loc    = "CPU A EXHAUST",
229                 .type   = FCU_FAN_RPM,
230                 .id     = CPUA_EXHAUST_FAN_RPM_DEFAULT_ID,
231         },
232         [CPUB_INTAKE_FAN_RPM_INDEX] = {
233                 .loc    = "CPU B INTAKE",
234                 .type   = FCU_FAN_RPM,
235                 .id     = CPUB_INTAKE_FAN_RPM_DEFAULT_ID,
236         },
237         [CPUB_EXHAUST_FAN_RPM_INDEX] = {
238                 .loc    = "CPU B EXHAUST",
239                 .type   = FCU_FAN_RPM,
240                 .id     = CPUB_EXHAUST_FAN_RPM_DEFAULT_ID,
241         },
242         /* pumps aren't present by default, have to be looked up in the
243          * device-tree
244          */
245         [CPUA_PUMP_RPM_INDEX] = {
246                 .loc    = "CPU A PUMP",
247                 .type   = FCU_FAN_RPM,          
248                 .id     = FCU_FAN_ABSENT_ID,
249         },
250         [CPUB_PUMP_RPM_INDEX] = {
251                 .loc    = "CPU B PUMP",
252                 .type   = FCU_FAN_RPM,
253                 .id     = FCU_FAN_ABSENT_ID,
254         },
255         /* Xserve fans */
256         [CPU_A1_FAN_RPM_INDEX] = {
257                 .loc    = "CPU A 1",
258                 .type   = FCU_FAN_RPM,
259                 .id     = FCU_FAN_ABSENT_ID,
260         },
261         [CPU_A2_FAN_RPM_INDEX] = {
262                 .loc    = "CPU A 2",
263                 .type   = FCU_FAN_RPM,
264                 .id     = FCU_FAN_ABSENT_ID,
265         },
266         [CPU_A3_FAN_RPM_INDEX] = {
267                 .loc    = "CPU A 3",
268                 .type   = FCU_FAN_RPM,
269                 .id     = FCU_FAN_ABSENT_ID,
270         },
271         [CPU_B1_FAN_RPM_INDEX] = {
272                 .loc    = "CPU B 1",
273                 .type   = FCU_FAN_RPM,
274                 .id     = FCU_FAN_ABSENT_ID,
275         },
276         [CPU_B2_FAN_RPM_INDEX] = {
277                 .loc    = "CPU B 2",
278                 .type   = FCU_FAN_RPM,
279                 .id     = FCU_FAN_ABSENT_ID,
280         },
281         [CPU_B3_FAN_RPM_INDEX] = {
282                 .loc    = "CPU B 3",
283                 .type   = FCU_FAN_RPM,
284                 .id     = FCU_FAN_ABSENT_ID,
285         },
286 };
287
288 static struct i2c_driver therm_pm72_driver;
289
290 /*
291  * Utility function to create an i2c_client structure and
292  * attach it to one of u3 adapters
293  */
294 static struct i2c_client *attach_i2c_chip(int id, const char *name)
295 {
296         struct i2c_client *clt;
297         struct i2c_adapter *adap;
298         struct i2c_board_info info;
299
300         if (id & 0x200)
301                 adap = k2;
302         else if (id & 0x100)
303                 adap = u3_1;
304         else
305                 adap = u3_0;
306         if (adap == NULL)
307                 return NULL;
308
309         memset(&info, 0, sizeof(struct i2c_board_info));
310         info.addr = (id >> 1) & 0x7f;
311         strlcpy(info.type, "therm_pm72", I2C_NAME_SIZE);
312         clt = i2c_new_device(adap, &info);
313         if (!clt) {
314                 printk(KERN_ERR "therm_pm72: Failed to attach to i2c ID 0x%x\n", id);
315                 return NULL;
316         }
317
318         /*
319          * Let i2c-core delete that device on driver removal.
320          * This is safe because i2c-core holds the core_lock mutex for us.
321          */
322         list_add_tail(&clt->detected, &therm_pm72_driver.clients);
323         return clt;
324 }
325
326 /*
327  * Here are the i2c chip access wrappers
328  */
329
330 static void initialize_adc(struct cpu_pid_state *state)
331 {
332         int rc;
333         u8 buf[2];
334
335         /* Read ADC the configuration register and cache it. We
336          * also make sure Config2 contains proper values, I've seen
337          * cases where we got stale grabage in there, thus preventing
338          * proper reading of conv. values
339          */
340
341         /* Clear Config2 */
342         buf[0] = 5;
343         buf[1] = 0;
344         i2c_master_send(state->monitor, buf, 2);
345
346         /* Read & cache Config1 */
347         buf[0] = 1;
348         rc = i2c_master_send(state->monitor, buf, 1);
349         if (rc > 0) {
350                 rc = i2c_master_recv(state->monitor, buf, 1);
351                 if (rc > 0) {
352                         state->adc_config = buf[0];
353                         DBG("ADC config reg: %02x\n", state->adc_config);
354                         /* Disable shutdown mode */
355                         state->adc_config &= 0xfe;
356                         buf[0] = 1;
357                         buf[1] = state->adc_config;
358                         rc = i2c_master_send(state->monitor, buf, 2);
359                 }
360         }
361         if (rc <= 0)
362                 printk(KERN_ERR "therm_pm72: Error reading ADC config"
363                        " register !\n");
364 }
365
366 static int read_smon_adc(struct cpu_pid_state *state, int chan)
367 {
368         int rc, data, tries = 0;
369         u8 buf[2];
370
371         for (;;) {
372                 /* Set channel */
373                 buf[0] = 1;
374                 buf[1] = (state->adc_config & 0x1f) | (chan << 5);
375                 rc = i2c_master_send(state->monitor, buf, 2);
376                 if (rc <= 0)
377                         goto error;
378                 /* Wait for conversion */
379                 msleep(1);
380                 /* Switch to data register */
381                 buf[0] = 4;
382                 rc = i2c_master_send(state->monitor, buf, 1);
383                 if (rc <= 0)
384                         goto error;
385                 /* Read result */
386                 rc = i2c_master_recv(state->monitor, buf, 2);
387                 if (rc < 0)
388                         goto error;
389                 data = ((u16)buf[0]) << 8 | (u16)buf[1];
390                 return data >> 6;
391         error:
392                 DBG("Error reading ADC, retrying...\n");
393                 if (++tries > 10) {
394                         printk(KERN_ERR "therm_pm72: Error reading ADC !\n");
395                         return -1;
396                 }
397                 msleep(10);
398         }
399 }
400
401 static int read_lm87_reg(struct i2c_client * chip, int reg)
402 {
403         int rc, tries = 0;
404         u8 buf;
405
406         for (;;) {
407                 /* Set address */
408                 buf = (u8)reg;
409                 rc = i2c_master_send(chip, &buf, 1);
410                 if (rc <= 0)
411                         goto error;
412                 rc = i2c_master_recv(chip, &buf, 1);
413                 if (rc <= 0)
414                         goto error;
415                 return (int)buf;
416         error:
417                 DBG("Error reading LM87, retrying...\n");
418                 if (++tries > 10) {
419                         printk(KERN_ERR "therm_pm72: Error reading LM87 !\n");
420                         return -1;
421                 }
422                 msleep(10);
423         }
424 }
425
426 static int fan_read_reg(int reg, unsigned char *buf, int nb)
427 {
428         int tries, nr, nw;
429
430         buf[0] = reg;
431         tries = 0;
432         for (;;) {
433                 nw = i2c_master_send(fcu, buf, 1);
434                 if (nw > 0 || (nw < 0 && nw != -EIO) || tries >= 100)
435                         break;
436                 msleep(10);
437                 ++tries;
438         }
439         if (nw <= 0) {
440                 printk(KERN_ERR "Failure writing address to FCU: %d", nw);
441                 return -EIO;
442         }
443         tries = 0;
444         for (;;) {
445                 nr = i2c_master_recv(fcu, buf, nb);
446                 if (nr > 0 || (nr < 0 && nr != -ENODEV) || tries >= 100)
447                         break;
448                 msleep(10);
449                 ++tries;
450         }
451         if (nr <= 0)
452                 printk(KERN_ERR "Failure reading data from FCU: %d", nw);
453         return nr;
454 }
455
456 static int fan_write_reg(int reg, const unsigned char *ptr, int nb)
457 {
458         int tries, nw;
459         unsigned char buf[16];
460
461         buf[0] = reg;
462         memcpy(buf+1, ptr, nb);
463         ++nb;
464         tries = 0;
465         for (;;) {
466                 nw = i2c_master_send(fcu, buf, nb);
467                 if (nw > 0 || (nw < 0 && nw != -EIO) || tries >= 100)
468                         break;
469                 msleep(10);
470                 ++tries;
471         }
472         if (nw < 0)
473                 printk(KERN_ERR "Failure writing to FCU: %d", nw);
474         return nw;
475 }
476
477 static int start_fcu(void)
478 {
479         unsigned char buf = 0xff;
480         int rc;
481
482         rc = fan_write_reg(0xe, &buf, 1);
483         if (rc < 0)
484                 return -EIO;
485         rc = fan_write_reg(0x2e, &buf, 1);
486         if (rc < 0)
487                 return -EIO;
488         rc = fan_read_reg(0, &buf, 1);
489         if (rc < 0)
490                 return -EIO;
491         fcu_rpm_shift = (buf == 1) ? 2 : 3;
492         printk(KERN_DEBUG "FCU Initialized, RPM fan shift is %d\n",
493                fcu_rpm_shift);
494
495         return 0;
496 }
497
498 static int set_rpm_fan(int fan_index, int rpm)
499 {
500         unsigned char buf[2];
501         int rc, id, min, max;
502
503         if (fcu_fans[fan_index].type != FCU_FAN_RPM)
504                 return -EINVAL;
505         id = fcu_fans[fan_index].id; 
506         if (id == FCU_FAN_ABSENT_ID)
507                 return -EINVAL;
508
509         min = 2400 >> fcu_rpm_shift;
510         max = 56000 >> fcu_rpm_shift;
511
512         if (rpm < min)
513                 rpm = min;
514         else if (rpm > max)
515                 rpm = max;
516         buf[0] = rpm >> (8 - fcu_rpm_shift);
517         buf[1] = rpm << fcu_rpm_shift;
518         rc = fan_write_reg(0x10 + (id * 2), buf, 2);
519         if (rc < 0)
520                 return -EIO;
521         return 0;
522 }
523
524 static int get_rpm_fan(int fan_index, int programmed)
525 {
526         unsigned char failure;
527         unsigned char active;
528         unsigned char buf[2];
529         int rc, id, reg_base;
530
531         if (fcu_fans[fan_index].type != FCU_FAN_RPM)
532                 return -EINVAL;
533         id = fcu_fans[fan_index].id; 
534         if (id == FCU_FAN_ABSENT_ID)
535                 return -EINVAL;
536
537         rc = fan_read_reg(0xb, &failure, 1);
538         if (rc != 1)
539                 return -EIO;
540         if ((failure & (1 << id)) != 0)
541                 return -EFAULT;
542         rc = fan_read_reg(0xd, &active, 1);
543         if (rc != 1)
544                 return -EIO;
545         if ((active & (1 << id)) == 0)
546                 return -ENXIO;
547
548         /* Programmed value or real current speed */
549         reg_base = programmed ? 0x10 : 0x11;
550         rc = fan_read_reg(reg_base + (id * 2), buf, 2);
551         if (rc != 2)
552                 return -EIO;
553
554         return (buf[0] << (8 - fcu_rpm_shift)) | buf[1] >> fcu_rpm_shift;
555 }
556
557 static int set_pwm_fan(int fan_index, int pwm)
558 {
559         unsigned char buf[2];
560         int rc, id;
561
562         if (fcu_fans[fan_index].type != FCU_FAN_PWM)
563                 return -EINVAL;
564         id = fcu_fans[fan_index].id; 
565         if (id == FCU_FAN_ABSENT_ID)
566                 return -EINVAL;
567
568         if (pwm < 10)
569                 pwm = 10;
570         else if (pwm > 100)
571                 pwm = 100;
572         pwm = (pwm * 2559) / 1000;
573         buf[0] = pwm;
574         rc = fan_write_reg(0x30 + (id * 2), buf, 1);
575         if (rc < 0)
576                 return rc;
577         return 0;
578 }
579
580 static int get_pwm_fan(int fan_index)
581 {
582         unsigned char failure;
583         unsigned char active;
584         unsigned char buf[2];
585         int rc, id;
586
587         if (fcu_fans[fan_index].type != FCU_FAN_PWM)
588                 return -EINVAL;
589         id = fcu_fans[fan_index].id; 
590         if (id == FCU_FAN_ABSENT_ID)
591                 return -EINVAL;
592
593         rc = fan_read_reg(0x2b, &failure, 1);
594         if (rc != 1)
595                 return -EIO;
596         if ((failure & (1 << id)) != 0)
597                 return -EFAULT;
598         rc = fan_read_reg(0x2d, &active, 1);
599         if (rc != 1)
600                 return -EIO;
601         if ((active & (1 << id)) == 0)
602                 return -ENXIO;
603
604         /* Programmed value or real current speed */
605         rc = fan_read_reg(0x30 + (id * 2), buf, 1);
606         if (rc != 1)
607                 return -EIO;
608
609         return (buf[0] * 1000) / 2559;
610 }
611
612 static void tickle_fcu(void)
613 {
614         int pwm;
615
616         pwm = get_pwm_fan(SLOTS_FAN_PWM_INDEX);
617
618         DBG("FCU Tickle, slots fan is: %d\n", pwm);
619         if (pwm < 0)
620                 pwm = 100;
621
622         if (!rackmac) {
623                 pwm = SLOTS_FAN_DEFAULT_PWM;
624         } else if (pwm < SLOTS_PID_OUTPUT_MIN)
625                 pwm = SLOTS_PID_OUTPUT_MIN;
626
627         /* That is hopefully enough to make the FCU happy */
628         set_pwm_fan(SLOTS_FAN_PWM_INDEX, pwm);
629 }
630
631
632 /*
633  * Utility routine to read the CPU calibration EEPROM data
634  * from the device-tree
635  */
636 static int read_eeprom(int cpu, struct mpu_data *out)
637 {
638         struct device_node *np;
639         char nodename[64];
640         const u8 *data;
641         int len;
642
643         /* prom.c routine for finding a node by path is a bit brain dead
644          * and requires exact @xxx unit numbers. This is a bit ugly but
645          * will work for these machines
646          */
647         sprintf(nodename, "/u3@0,f8000000/i2c@f8001000/cpuid@a%d", cpu ? 2 : 0);
648         np = of_find_node_by_path(nodename);
649         if (np == NULL) {
650                 printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid node from device-tree\n");
651                 return -ENODEV;
652         }
653         data = of_get_property(np, "cpuid", &len);
654         if (data == NULL) {
655                 printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid property from device-tree\n");
656                 of_node_put(np);
657                 return -ENODEV;
658         }
659         memcpy(out, data, sizeof(struct mpu_data));
660         of_node_put(np);
661         
662         return 0;
663 }
664
665 static void fetch_cpu_pumps_minmax(void)
666 {
667         struct cpu_pid_state *state0 = &processor_state[0];
668         struct cpu_pid_state *state1 = &processor_state[1];
669         u16 pump_min = 0, pump_max = 0xffff;
670         u16 tmp[4];
671
672         /* Try to fetch pumps min/max infos from eeprom */
673
674         memcpy(&tmp, &state0->mpu.processor_part_num, 8);
675         if (tmp[0] != 0xffff && tmp[1] != 0xffff) {
676                 pump_min = max(pump_min, tmp[0]);
677                 pump_max = min(pump_max, tmp[1]);
678         }
679         if (tmp[2] != 0xffff && tmp[3] != 0xffff) {
680                 pump_min = max(pump_min, tmp[2]);
681                 pump_max = min(pump_max, tmp[3]);
682         }
683
684         /* Double check the values, this _IS_ needed as the EEPROM on
685          * some dual 2.5Ghz G5s seem, at least, to have both min & max
686          * same to the same value ... (grrrr)
687          */
688         if (pump_min == pump_max || pump_min == 0 || pump_max == 0xffff) {
689                 pump_min = CPU_PUMP_OUTPUT_MIN;
690                 pump_max = CPU_PUMP_OUTPUT_MAX;
691         }
692
693         state0->pump_min = state1->pump_min = pump_min;
694         state0->pump_max = state1->pump_max = pump_max;
695 }
696
697 /* 
698  * Now, unfortunately, sysfs doesn't give us a nice void * we could
699  * pass around to the attribute functions, so we don't really have
700  * choice but implement a bunch of them...
701  *
702  * That sucks a bit, we take the lock because FIX32TOPRINT evaluates
703  * the input twice... I accept patches :)
704  */
705 #define BUILD_SHOW_FUNC_FIX(name, data)                         \
706 static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf)        \
707 {                                                               \
708         ssize_t r;                                              \
709         mutex_lock(&driver_lock);                                       \
710         r = sprintf(buf, "%d.%03d", FIX32TOPRINT(data));        \
711         mutex_unlock(&driver_lock);                                     \
712         return r;                                               \
713 }
714 #define BUILD_SHOW_FUNC_INT(name, data)                         \
715 static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf)        \
716 {                                                               \
717         return sprintf(buf, "%d", data);                        \
718 }
719
720 BUILD_SHOW_FUNC_FIX(cpu0_temperature, processor_state[0].last_temp)
721 BUILD_SHOW_FUNC_FIX(cpu0_voltage, processor_state[0].voltage)
722 BUILD_SHOW_FUNC_FIX(cpu0_current, processor_state[0].current_a)
723 BUILD_SHOW_FUNC_INT(cpu0_exhaust_fan_rpm, processor_state[0].rpm)
724 BUILD_SHOW_FUNC_INT(cpu0_intake_fan_rpm, processor_state[0].intake_rpm)
725
726 BUILD_SHOW_FUNC_FIX(cpu1_temperature, processor_state[1].last_temp)
727 BUILD_SHOW_FUNC_FIX(cpu1_voltage, processor_state[1].voltage)
728 BUILD_SHOW_FUNC_FIX(cpu1_current, processor_state[1].current_a)
729 BUILD_SHOW_FUNC_INT(cpu1_exhaust_fan_rpm, processor_state[1].rpm)
730 BUILD_SHOW_FUNC_INT(cpu1_intake_fan_rpm, processor_state[1].intake_rpm)
731
732 BUILD_SHOW_FUNC_FIX(backside_temperature, backside_state.last_temp)
733 BUILD_SHOW_FUNC_INT(backside_fan_pwm, backside_state.pwm)
734
735 BUILD_SHOW_FUNC_FIX(drives_temperature, drives_state.last_temp)
736 BUILD_SHOW_FUNC_INT(drives_fan_rpm, drives_state.rpm)
737
738 BUILD_SHOW_FUNC_FIX(slots_temperature, slots_state.last_temp)
739 BUILD_SHOW_FUNC_INT(slots_fan_pwm, slots_state.pwm)
740
741 BUILD_SHOW_FUNC_FIX(dimms_temperature, dimms_state.last_temp)
742
743 static DEVICE_ATTR(cpu0_temperature,S_IRUGO,show_cpu0_temperature,NULL);
744 static DEVICE_ATTR(cpu0_voltage,S_IRUGO,show_cpu0_voltage,NULL);
745 static DEVICE_ATTR(cpu0_current,S_IRUGO,show_cpu0_current,NULL);
746 static DEVICE_ATTR(cpu0_exhaust_fan_rpm,S_IRUGO,show_cpu0_exhaust_fan_rpm,NULL);
747 static DEVICE_ATTR(cpu0_intake_fan_rpm,S_IRUGO,show_cpu0_intake_fan_rpm,NULL);
748
749 static DEVICE_ATTR(cpu1_temperature,S_IRUGO,show_cpu1_temperature,NULL);
750 static DEVICE_ATTR(cpu1_voltage,S_IRUGO,show_cpu1_voltage,NULL);
751 static DEVICE_ATTR(cpu1_current,S_IRUGO,show_cpu1_current,NULL);
752 static DEVICE_ATTR(cpu1_exhaust_fan_rpm,S_IRUGO,show_cpu1_exhaust_fan_rpm,NULL);
753 static DEVICE_ATTR(cpu1_intake_fan_rpm,S_IRUGO,show_cpu1_intake_fan_rpm,NULL);
754
755 static DEVICE_ATTR(backside_temperature,S_IRUGO,show_backside_temperature,NULL);
756 static DEVICE_ATTR(backside_fan_pwm,S_IRUGO,show_backside_fan_pwm,NULL);
757
758 static DEVICE_ATTR(drives_temperature,S_IRUGO,show_drives_temperature,NULL);
759 static DEVICE_ATTR(drives_fan_rpm,S_IRUGO,show_drives_fan_rpm,NULL);
760
761 static DEVICE_ATTR(slots_temperature,S_IRUGO,show_slots_temperature,NULL);
762 static DEVICE_ATTR(slots_fan_pwm,S_IRUGO,show_slots_fan_pwm,NULL);
763
764 static DEVICE_ATTR(dimms_temperature,S_IRUGO,show_dimms_temperature,NULL);
765
766 /*
767  * CPUs fans control loop
768  */
769
770 static int do_read_one_cpu_values(struct cpu_pid_state *state, s32 *temp, s32 *power)
771 {
772         s32 ltemp, volts, amps;
773         int index, rc = 0;
774
775         /* Default (in case of error) */
776         *temp = state->cur_temp;
777         *power = state->cur_power;
778
779         if (cpu_pid_type == CPU_PID_TYPE_RACKMAC)
780                 index = (state->index == 0) ?
781                         CPU_A1_FAN_RPM_INDEX : CPU_B1_FAN_RPM_INDEX;
782         else
783                 index = (state->index == 0) ?
784                         CPUA_EXHAUST_FAN_RPM_INDEX : CPUB_EXHAUST_FAN_RPM_INDEX;
785
786         /* Read current fan status */
787         rc = get_rpm_fan(index, !RPM_PID_USE_ACTUAL_SPEED);
788         if (rc < 0) {
789                 /* XXX What do we do now ? Nothing for now, keep old value, but
790                  * return error upstream
791                  */
792                 DBG("  cpu %d, fan reading error !\n", state->index);
793         } else {
794                 state->rpm = rc;
795                 DBG("  cpu %d, exhaust RPM: %d\n", state->index, state->rpm);
796         }
797
798         /* Get some sensor readings and scale it */
799         ltemp = read_smon_adc(state, 1);
800         if (ltemp == -1) {
801                 /* XXX What do we do now ? */
802                 state->overtemp++;
803                 if (rc == 0)
804                         rc = -EIO;
805                 DBG("  cpu %d, temp reading error !\n", state->index);
806         } else {
807                 /* Fixup temperature according to diode calibration
808                  */
809                 DBG("  cpu %d, temp raw: %04x, m_diode: %04x, b_diode: %04x\n",
810                     state->index,
811                     ltemp, state->mpu.mdiode, state->mpu.bdiode);
812                 *temp = ((s32)ltemp * (s32)state->mpu.mdiode + ((s32)state->mpu.bdiode << 12)) >> 2;
813                 state->last_temp = *temp;
814                 DBG("  temp: %d.%03d\n", FIX32TOPRINT((*temp)));
815         }
816
817         /*
818          * Read voltage & current and calculate power
819          */
820         volts = read_smon_adc(state, 3);
821         amps = read_smon_adc(state, 4);
822
823         /* Scale voltage and current raw sensor values according to fixed scales
824          * obtained in Darwin and calculate power from I and V
825          */
826         volts *= ADC_CPU_VOLTAGE_SCALE;
827         amps *= ADC_CPU_CURRENT_SCALE;
828         *power = (((u64)volts) * ((u64)amps)) >> 16;
829         state->voltage = volts;
830         state->current_a = amps;
831         state->last_power = *power;
832
833         DBG("  cpu %d, current: %d.%03d, voltage: %d.%03d, power: %d.%03d W\n",
834             state->index, FIX32TOPRINT(state->current_a),
835             FIX32TOPRINT(state->voltage), FIX32TOPRINT(*power));
836
837         return 0;
838 }
839
840 static void do_cpu_pid(struct cpu_pid_state *state, s32 temp, s32 power)
841 {
842         s32 power_target, integral, derivative, proportional, adj_in_target, sval;
843         s64 integ_p, deriv_p, prop_p, sum; 
844         int i;
845
846         /* Calculate power target value (could be done once for all)
847          * and convert to a 16.16 fp number
848          */
849         power_target = ((u32)(state->mpu.pmaxh - state->mpu.padjmax)) << 16;
850         DBG("  power target: %d.%03d, error: %d.%03d\n",
851             FIX32TOPRINT(power_target), FIX32TOPRINT(power_target - power));
852
853         /* Store temperature and power in history array */
854         state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
855         state->temp_history[state->cur_temp] = temp;
856         state->cur_power = (state->cur_power + 1) % state->count_power;
857         state->power_history[state->cur_power] = power;
858         state->error_history[state->cur_power] = power_target - power;
859         
860         /* If first loop, fill the history table */
861         if (state->first) {
862                 for (i = 0; i < (state->count_power - 1); i++) {
863                         state->cur_power = (state->cur_power + 1) % state->count_power;
864                         state->power_history[state->cur_power] = power;
865                         state->error_history[state->cur_power] = power_target - power;
866                 }
867                 for (i = 0; i < (CPU_TEMP_HISTORY_SIZE - 1); i++) {
868                         state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
869                         state->temp_history[state->cur_temp] = temp;                    
870                 }
871                 state->first = 0;
872         }
873
874         /* Calculate the integral term normally based on the "power" values */
875         sum = 0;
876         integral = 0;
877         for (i = 0; i < state->count_power; i++)
878                 integral += state->error_history[i];
879         integral *= CPU_PID_INTERVAL;
880         DBG("  integral: %08x\n", integral);
881
882         /* Calculate the adjusted input (sense value).
883          *   G_r is 12.20
884          *   integ is 16.16
885          *   so the result is 28.36
886          *
887          * input target is mpu.ttarget, input max is mpu.tmax
888          */
889         integ_p = ((s64)state->mpu.pid_gr) * (s64)integral;
890         DBG("   integ_p: %d\n", (int)(integ_p >> 36));
891         sval = (state->mpu.tmax << 16) - ((integ_p >> 20) & 0xffffffff);
892         adj_in_target = (state->mpu.ttarget << 16);
893         if (adj_in_target > sval)
894                 adj_in_target = sval;
895         DBG("   adj_in_target: %d.%03d, ttarget: %d\n", FIX32TOPRINT(adj_in_target),
896             state->mpu.ttarget);
897
898         /* Calculate the derivative term */
899         derivative = state->temp_history[state->cur_temp] -
900                 state->temp_history[(state->cur_temp + CPU_TEMP_HISTORY_SIZE - 1)
901                                     % CPU_TEMP_HISTORY_SIZE];
902         derivative /= CPU_PID_INTERVAL;
903         deriv_p = ((s64)state->mpu.pid_gd) * (s64)derivative;
904         DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
905         sum += deriv_p;
906
907         /* Calculate the proportional term */
908         proportional = temp - adj_in_target;
909         prop_p = ((s64)state->mpu.pid_gp) * (s64)proportional;
910         DBG("   prop_p: %d\n", (int)(prop_p >> 36));
911         sum += prop_p;
912
913         /* Scale sum */
914         sum >>= 36;
915
916         DBG("   sum: %d\n", (int)sum);
917         state->rpm += (s32)sum;
918 }
919
920 static void do_monitor_cpu_combined(void)
921 {
922         struct cpu_pid_state *state0 = &processor_state[0];
923         struct cpu_pid_state *state1 = &processor_state[1];
924         s32 temp0, power0, temp1, power1;
925         s32 temp_combi, power_combi;
926         int rc, intake, pump;
927
928         rc = do_read_one_cpu_values(state0, &temp0, &power0);
929         if (rc < 0) {
930                 /* XXX What do we do now ? */
931         }
932         state1->overtemp = 0;
933         rc = do_read_one_cpu_values(state1, &temp1, &power1);
934         if (rc < 0) {
935                 /* XXX What do we do now ? */
936         }
937         if (state1->overtemp)
938                 state0->overtemp++;
939
940         temp_combi = max(temp0, temp1);
941         power_combi = max(power0, power1);
942
943         /* Check tmax, increment overtemp if we are there. At tmax+8, we go
944          * full blown immediately and try to trigger a shutdown
945          */
946         if (temp_combi >= ((state0->mpu.tmax + 8) << 16)) {
947                 printk(KERN_WARNING "Warning ! Temperature way above maximum (%d) !\n",
948                        temp_combi >> 16);
949                 state0->overtemp += CPU_MAX_OVERTEMP / 4;
950         } else if (temp_combi > (state0->mpu.tmax << 16)) {
951                 state0->overtemp++;
952                 printk(KERN_WARNING "Temperature %d above max %d. overtemp %d\n",
953                        temp_combi >> 16, state0->mpu.tmax, state0->overtemp);
954         } else {
955                 if (state0->overtemp)
956                         printk(KERN_WARNING "Temperature back down to %d\n",
957                                temp_combi >> 16);
958                 state0->overtemp = 0;
959         }
960         if (state0->overtemp >= CPU_MAX_OVERTEMP)
961                 critical_state = 1;
962         if (state0->overtemp > 0) {
963                 state0->rpm = state0->mpu.rmaxn_exhaust_fan;
964                 state0->intake_rpm = intake = state0->mpu.rmaxn_intake_fan;
965                 pump = state0->pump_max;
966                 goto do_set_fans;
967         }
968
969         /* Do the PID */
970         do_cpu_pid(state0, temp_combi, power_combi);
971
972         /* Range check */
973         state0->rpm = max(state0->rpm, (int)state0->mpu.rminn_exhaust_fan);
974         state0->rpm = min(state0->rpm, (int)state0->mpu.rmaxn_exhaust_fan);
975
976         /* Calculate intake fan speed */
977         intake = (state0->rpm * CPU_INTAKE_SCALE) >> 16;
978         intake = max(intake, (int)state0->mpu.rminn_intake_fan);
979         intake = min(intake, (int)state0->mpu.rmaxn_intake_fan);
980         state0->intake_rpm = intake;
981
982         /* Calculate pump speed */
983         pump = (state0->rpm * state0->pump_max) /
984                 state0->mpu.rmaxn_exhaust_fan;
985         pump = min(pump, state0->pump_max);
986         pump = max(pump, state0->pump_min);
987         
988  do_set_fans:
989         /* We copy values from state 0 to state 1 for /sysfs */
990         state1->rpm = state0->rpm;
991         state1->intake_rpm = state0->intake_rpm;
992
993         DBG("** CPU %d RPM: %d Ex, %d, Pump: %d, In, overtemp: %d\n",
994             state1->index, (int)state1->rpm, intake, pump, state1->overtemp);
995
996         /* We should check for errors, shouldn't we ? But then, what
997          * do we do once the error occurs ? For FCU notified fan
998          * failures (-EFAULT) we probably want to notify userland
999          * some way...
1000          */
1001         set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
1002         set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state0->rpm);
1003         set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
1004         set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state0->rpm);
1005
1006         if (fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
1007                 set_rpm_fan(CPUA_PUMP_RPM_INDEX, pump);
1008         if (fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
1009                 set_rpm_fan(CPUB_PUMP_RPM_INDEX, pump);
1010 }
1011
1012 static void do_monitor_cpu_split(struct cpu_pid_state *state)
1013 {
1014         s32 temp, power;
1015         int rc, intake;
1016
1017         /* Read current fan status */
1018         rc = do_read_one_cpu_values(state, &temp, &power);
1019         if (rc < 0) {
1020                 /* XXX What do we do now ? */
1021         }
1022
1023         /* Check tmax, increment overtemp if we are there. At tmax+8, we go
1024          * full blown immediately and try to trigger a shutdown
1025          */
1026         if (temp >= ((state->mpu.tmax + 8) << 16)) {
1027                 printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
1028                        " (%d) !\n",
1029                        state->index, temp >> 16);
1030                 state->overtemp += CPU_MAX_OVERTEMP / 4;
1031         } else if (temp > (state->mpu.tmax << 16)) {
1032                 state->overtemp++;
1033                 printk(KERN_WARNING "CPU %d temperature %d above max %d. overtemp %d\n",
1034                        state->index, temp >> 16, state->mpu.tmax, state->overtemp);
1035         } else {
1036                 if (state->overtemp)
1037                         printk(KERN_WARNING "CPU %d temperature back down to %d\n",
1038                                state->index, temp >> 16);
1039                 state->overtemp = 0;
1040         }
1041         if (state->overtemp >= CPU_MAX_OVERTEMP)
1042                 critical_state = 1;
1043         if (state->overtemp > 0) {
1044                 state->rpm = state->mpu.rmaxn_exhaust_fan;
1045                 state->intake_rpm = intake = state->mpu.rmaxn_intake_fan;
1046                 goto do_set_fans;
1047         }
1048
1049         /* Do the PID */
1050         do_cpu_pid(state, temp, power);
1051
1052         /* Range check */
1053         state->rpm = max(state->rpm, (int)state->mpu.rminn_exhaust_fan);
1054         state->rpm = min(state->rpm, (int)state->mpu.rmaxn_exhaust_fan);
1055
1056         /* Calculate intake fan */
1057         intake = (state->rpm * CPU_INTAKE_SCALE) >> 16;
1058         intake = max(intake, (int)state->mpu.rminn_intake_fan);
1059         intake = min(intake, (int)state->mpu.rmaxn_intake_fan);
1060         state->intake_rpm = intake;
1061
1062  do_set_fans:
1063         DBG("** CPU %d RPM: %d Ex, %d In, overtemp: %d\n",
1064             state->index, (int)state->rpm, intake, state->overtemp);
1065
1066         /* We should check for errors, shouldn't we ? But then, what
1067          * do we do once the error occurs ? For FCU notified fan
1068          * failures (-EFAULT) we probably want to notify userland
1069          * some way...
1070          */
1071         if (state->index == 0) {
1072                 set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
1073                 set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state->rpm);
1074         } else {
1075                 set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
1076                 set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state->rpm);
1077         }
1078 }
1079
1080 static void do_monitor_cpu_rack(struct cpu_pid_state *state)
1081 {
1082         s32 temp, power, fan_min;
1083         int rc;
1084
1085         /* Read current fan status */
1086         rc = do_read_one_cpu_values(state, &temp, &power);
1087         if (rc < 0) {
1088                 /* XXX What do we do now ? */
1089         }
1090
1091         /* Check tmax, increment overtemp if we are there. At tmax+8, we go
1092          * full blown immediately and try to trigger a shutdown
1093          */
1094         if (temp >= ((state->mpu.tmax + 8) << 16)) {
1095                 printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
1096                        " (%d) !\n",
1097                        state->index, temp >> 16);
1098                 state->overtemp = CPU_MAX_OVERTEMP / 4;
1099         } else if (temp > (state->mpu.tmax << 16)) {
1100                 state->overtemp++;
1101                 printk(KERN_WARNING "CPU %d temperature %d above max %d. overtemp %d\n",
1102                        state->index, temp >> 16, state->mpu.tmax, state->overtemp);
1103         } else {
1104                 if (state->overtemp)
1105                         printk(KERN_WARNING "CPU %d temperature back down to %d\n",
1106                                state->index, temp >> 16);
1107                 state->overtemp = 0;
1108         }
1109         if (state->overtemp >= CPU_MAX_OVERTEMP)
1110                 critical_state = 1;
1111         if (state->overtemp > 0) {
1112                 state->rpm = state->intake_rpm = state->mpu.rmaxn_intake_fan;
1113                 goto do_set_fans;
1114         }
1115
1116         /* Do the PID */
1117         do_cpu_pid(state, temp, power);
1118
1119         /* Check clamp from dimms */
1120         fan_min = dimm_output_clamp;
1121         fan_min = max(fan_min, (int)state->mpu.rminn_intake_fan);
1122
1123         DBG(" CPU min mpu = %d, min dimm = %d\n",
1124             state->mpu.rminn_intake_fan, dimm_output_clamp);
1125
1126         state->rpm = max(state->rpm, (int)fan_min);
1127         state->rpm = min(state->rpm, (int)state->mpu.rmaxn_intake_fan);
1128         state->intake_rpm = state->rpm;
1129
1130  do_set_fans:
1131         DBG("** CPU %d RPM: %d overtemp: %d\n",
1132             state->index, (int)state->rpm, state->overtemp);
1133
1134         /* We should check for errors, shouldn't we ? But then, what
1135          * do we do once the error occurs ? For FCU notified fan
1136          * failures (-EFAULT) we probably want to notify userland
1137          * some way...
1138          */
1139         if (state->index == 0) {
1140                 set_rpm_fan(CPU_A1_FAN_RPM_INDEX, state->rpm);
1141                 set_rpm_fan(CPU_A2_FAN_RPM_INDEX, state->rpm);
1142                 set_rpm_fan(CPU_A3_FAN_RPM_INDEX, state->rpm);
1143         } else {
1144                 set_rpm_fan(CPU_B1_FAN_RPM_INDEX, state->rpm);
1145                 set_rpm_fan(CPU_B2_FAN_RPM_INDEX, state->rpm);
1146                 set_rpm_fan(CPU_B3_FAN_RPM_INDEX, state->rpm);
1147         }
1148 }
1149
1150 /*
1151  * Initialize the state structure for one CPU control loop
1152  */
1153 static int init_processor_state(struct cpu_pid_state *state, int index)
1154 {
1155         int err;
1156
1157         state->index = index;
1158         state->first = 1;
1159         state->rpm = (cpu_pid_type == CPU_PID_TYPE_RACKMAC) ? 4000 : 1000;
1160         state->overtemp = 0;
1161         state->adc_config = 0x00;
1162
1163
1164         if (index == 0)
1165                 state->monitor = attach_i2c_chip(SUPPLY_MONITOR_ID, "CPU0_monitor");
1166         else if (index == 1)
1167                 state->monitor = attach_i2c_chip(SUPPLY_MONITORB_ID, "CPU1_monitor");
1168         if (state->monitor == NULL)
1169                 goto fail;
1170
1171         if (read_eeprom(index, &state->mpu))
1172                 goto fail;
1173
1174         state->count_power = state->mpu.tguardband;
1175         if (state->count_power > CPU_POWER_HISTORY_SIZE) {
1176                 printk(KERN_WARNING "Warning ! too many power history slots\n");
1177                 state->count_power = CPU_POWER_HISTORY_SIZE;
1178         }
1179         DBG("CPU %d Using %d power history entries\n", index, state->count_power);
1180
1181         if (index == 0) {
1182                 err = device_create_file(&of_dev->dev, &dev_attr_cpu0_temperature);
1183                 err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_voltage);
1184                 err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_current);
1185                 err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
1186                 err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
1187         } else {
1188                 err = device_create_file(&of_dev->dev, &dev_attr_cpu1_temperature);
1189                 err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_voltage);
1190                 err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_current);
1191                 err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
1192                 err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
1193         }
1194         if (err)
1195                 printk(KERN_WARNING "Failed to create some of the attribute"
1196                         "files for CPU %d\n", index);
1197
1198         return 0;
1199  fail:
1200         state->monitor = NULL;
1201         
1202         return -ENODEV;
1203 }
1204
1205 /*
1206  * Dispose of the state data for one CPU control loop
1207  */
1208 static void dispose_processor_state(struct cpu_pid_state *state)
1209 {
1210         if (state->monitor == NULL)
1211                 return;
1212
1213         if (state->index == 0) {
1214                 device_remove_file(&of_dev->dev, &dev_attr_cpu0_temperature);
1215                 device_remove_file(&of_dev->dev, &dev_attr_cpu0_voltage);
1216                 device_remove_file(&of_dev->dev, &dev_attr_cpu0_current);
1217                 device_remove_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
1218                 device_remove_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
1219         } else {
1220                 device_remove_file(&of_dev->dev, &dev_attr_cpu1_temperature);
1221                 device_remove_file(&of_dev->dev, &dev_attr_cpu1_voltage);
1222                 device_remove_file(&of_dev->dev, &dev_attr_cpu1_current);
1223                 device_remove_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
1224                 device_remove_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
1225         }
1226
1227         state->monitor = NULL;
1228 }
1229
1230 /*
1231  * Motherboard backside & U3 heatsink fan control loop
1232  */
1233 static void do_monitor_backside(struct backside_pid_state *state)
1234 {
1235         s32 temp, integral, derivative, fan_min;
1236         s64 integ_p, deriv_p, prop_p, sum; 
1237         int i, rc;
1238
1239         if (--state->ticks != 0)
1240                 return;
1241         state->ticks = backside_params.interval;
1242
1243         DBG("backside:\n");
1244
1245         /* Check fan status */
1246         rc = get_pwm_fan(BACKSIDE_FAN_PWM_INDEX);
1247         if (rc < 0) {
1248                 printk(KERN_WARNING "Error %d reading backside fan !\n", rc);
1249                 /* XXX What do we do now ? */
1250         } else
1251                 state->pwm = rc;
1252         DBG("  current pwm: %d\n", state->pwm);
1253
1254         /* Get some sensor readings */
1255         temp = i2c_smbus_read_byte_data(state->monitor, MAX6690_EXT_TEMP) << 16;
1256         state->last_temp = temp;
1257         DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1258             FIX32TOPRINT(backside_params.input_target));
1259
1260         /* Store temperature and error in history array */
1261         state->cur_sample = (state->cur_sample + 1) % BACKSIDE_PID_HISTORY_SIZE;
1262         state->sample_history[state->cur_sample] = temp;
1263         state->error_history[state->cur_sample] = temp - backside_params.input_target;
1264         
1265         /* If first loop, fill the history table */
1266         if (state->first) {
1267                 for (i = 0; i < (BACKSIDE_PID_HISTORY_SIZE - 1); i++) {
1268                         state->cur_sample = (state->cur_sample + 1) %
1269                                 BACKSIDE_PID_HISTORY_SIZE;
1270                         state->sample_history[state->cur_sample] = temp;
1271                         state->error_history[state->cur_sample] =
1272                                 temp - backside_params.input_target;
1273                 }
1274                 state->first = 0;
1275         }
1276
1277         /* Calculate the integral term */
1278         sum = 0;
1279         integral = 0;
1280         for (i = 0; i < BACKSIDE_PID_HISTORY_SIZE; i++)
1281                 integral += state->error_history[i];
1282         integral *= backside_params.interval;
1283         DBG("  integral: %08x\n", integral);
1284         integ_p = ((s64)backside_params.G_r) * (s64)integral;
1285         DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1286         sum += integ_p;
1287
1288         /* Calculate the derivative term */
1289         derivative = state->error_history[state->cur_sample] -
1290                 state->error_history[(state->cur_sample + BACKSIDE_PID_HISTORY_SIZE - 1)
1291                                     % BACKSIDE_PID_HISTORY_SIZE];
1292         derivative /= backside_params.interval;
1293         deriv_p = ((s64)backside_params.G_d) * (s64)derivative;
1294         DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1295         sum += deriv_p;
1296
1297         /* Calculate the proportional term */
1298         prop_p = ((s64)backside_params.G_p) * (s64)(state->error_history[state->cur_sample]);
1299         DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1300         sum += prop_p;
1301
1302         /* Scale sum */
1303         sum >>= 36;
1304
1305         DBG("   sum: %d\n", (int)sum);
1306         if (backside_params.additive)
1307                 state->pwm += (s32)sum;
1308         else
1309                 state->pwm = sum;
1310
1311         /* Check for clamp */
1312         fan_min = (dimm_output_clamp * 100) / 14000;
1313         fan_min = max(fan_min, backside_params.output_min);
1314
1315         state->pwm = max(state->pwm, fan_min);
1316         state->pwm = min(state->pwm, backside_params.output_max);
1317
1318         DBG("** BACKSIDE PWM: %d\n", (int)state->pwm);
1319         set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, state->pwm);
1320 }
1321
1322 /*
1323  * Initialize the state structure for the backside fan control loop
1324  */
1325 static int init_backside_state(struct backside_pid_state *state)
1326 {
1327         struct device_node *u3;
1328         int u3h = 1; /* conservative by default */
1329         int err;
1330
1331         /*
1332          * There are different PID params for machines with U3 and machines
1333          * with U3H, pick the right ones now
1334          */
1335         u3 = of_find_node_by_path("/u3@0,f8000000");
1336         if (u3 != NULL) {
1337                 const u32 *vers = of_get_property(u3, "device-rev", NULL);
1338                 if (vers)
1339                         if (((*vers) & 0x3f) < 0x34)
1340                                 u3h = 0;
1341                 of_node_put(u3);
1342         }
1343
1344         if (rackmac) {
1345                 backside_params.G_d = BACKSIDE_PID_RACK_G_d;
1346                 backside_params.input_target = BACKSIDE_PID_RACK_INPUT_TARGET;
1347                 backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
1348                 backside_params.interval = BACKSIDE_PID_RACK_INTERVAL;
1349                 backside_params.G_p = BACKSIDE_PID_RACK_G_p;
1350                 backside_params.G_r = BACKSIDE_PID_G_r;
1351                 backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1352                 backside_params.additive = 0;
1353         } else if (u3h) {
1354                 backside_params.G_d = BACKSIDE_PID_U3H_G_d;
1355                 backside_params.input_target = BACKSIDE_PID_U3H_INPUT_TARGET;
1356                 backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
1357                 backside_params.interval = BACKSIDE_PID_INTERVAL;
1358                 backside_params.G_p = BACKSIDE_PID_G_p;
1359                 backside_params.G_r = BACKSIDE_PID_G_r;
1360                 backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1361                 backside_params.additive = 1;
1362         } else {
1363                 backside_params.G_d = BACKSIDE_PID_U3_G_d;
1364                 backside_params.input_target = BACKSIDE_PID_U3_INPUT_TARGET;
1365                 backside_params.output_min = BACKSIDE_PID_U3_OUTPUT_MIN;
1366                 backside_params.interval = BACKSIDE_PID_INTERVAL;
1367                 backside_params.G_p = BACKSIDE_PID_G_p;
1368                 backside_params.G_r = BACKSIDE_PID_G_r;
1369                 backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1370                 backside_params.additive = 1;
1371         }
1372
1373         state->ticks = 1;
1374         state->first = 1;
1375         state->pwm = 50;
1376
1377         state->monitor = attach_i2c_chip(BACKSIDE_MAX_ID, "backside_temp");
1378         if (state->monitor == NULL)
1379                 return -ENODEV;
1380
1381         err = device_create_file(&of_dev->dev, &dev_attr_backside_temperature);
1382         err |= device_create_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
1383         if (err)
1384                 printk(KERN_WARNING "Failed to create attribute file(s)"
1385                         " for backside fan\n");
1386
1387         return 0;
1388 }
1389
1390 /*
1391  * Dispose of the state data for the backside control loop
1392  */
1393 static void dispose_backside_state(struct backside_pid_state *state)
1394 {
1395         if (state->monitor == NULL)
1396                 return;
1397
1398         device_remove_file(&of_dev->dev, &dev_attr_backside_temperature);
1399         device_remove_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
1400
1401         state->monitor = NULL;
1402 }
1403  
1404 /*
1405  * Drives bay fan control loop
1406  */
1407 static void do_monitor_drives(struct drives_pid_state *state)
1408 {
1409         s32 temp, integral, derivative;
1410         s64 integ_p, deriv_p, prop_p, sum; 
1411         int i, rc;
1412
1413         if (--state->ticks != 0)
1414                 return;
1415         state->ticks = DRIVES_PID_INTERVAL;
1416
1417         DBG("drives:\n");
1418
1419         /* Check fan status */
1420         rc = get_rpm_fan(DRIVES_FAN_RPM_INDEX, !RPM_PID_USE_ACTUAL_SPEED);
1421         if (rc < 0) {
1422                 printk(KERN_WARNING "Error %d reading drives fan !\n", rc);
1423                 /* XXX What do we do now ? */
1424         } else
1425                 state->rpm = rc;
1426         DBG("  current rpm: %d\n", state->rpm);
1427
1428         /* Get some sensor readings */
1429         temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor,
1430                                                     DS1775_TEMP)) << 8;
1431         state->last_temp = temp;
1432         DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1433             FIX32TOPRINT(DRIVES_PID_INPUT_TARGET));
1434
1435         /* Store temperature and error in history array */
1436         state->cur_sample = (state->cur_sample + 1) % DRIVES_PID_HISTORY_SIZE;
1437         state->sample_history[state->cur_sample] = temp;
1438         state->error_history[state->cur_sample] = temp - DRIVES_PID_INPUT_TARGET;
1439         
1440         /* If first loop, fill the history table */
1441         if (state->first) {
1442                 for (i = 0; i < (DRIVES_PID_HISTORY_SIZE - 1); i++) {
1443                         state->cur_sample = (state->cur_sample + 1) %
1444                                 DRIVES_PID_HISTORY_SIZE;
1445                         state->sample_history[state->cur_sample] = temp;
1446                         state->error_history[state->cur_sample] =
1447                                 temp - DRIVES_PID_INPUT_TARGET;
1448                 }
1449                 state->first = 0;
1450         }
1451
1452         /* Calculate the integral term */
1453         sum = 0;
1454         integral = 0;
1455         for (i = 0; i < DRIVES_PID_HISTORY_SIZE; i++)
1456                 integral += state->error_history[i];
1457         integral *= DRIVES_PID_INTERVAL;
1458         DBG("  integral: %08x\n", integral);
1459         integ_p = ((s64)DRIVES_PID_G_r) * (s64)integral;
1460         DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1461         sum += integ_p;
1462
1463         /* Calculate the derivative term */
1464         derivative = state->error_history[state->cur_sample] -
1465                 state->error_history[(state->cur_sample + DRIVES_PID_HISTORY_SIZE - 1)
1466                                     % DRIVES_PID_HISTORY_SIZE];
1467         derivative /= DRIVES_PID_INTERVAL;
1468         deriv_p = ((s64)DRIVES_PID_G_d) * (s64)derivative;
1469         DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1470         sum += deriv_p;
1471
1472         /* Calculate the proportional term */
1473         prop_p = ((s64)DRIVES_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1474         DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1475         sum += prop_p;
1476
1477         /* Scale sum */
1478         sum >>= 36;
1479
1480         DBG("   sum: %d\n", (int)sum);
1481         state->rpm += (s32)sum;
1482
1483         state->rpm = max(state->rpm, DRIVES_PID_OUTPUT_MIN);
1484         state->rpm = min(state->rpm, DRIVES_PID_OUTPUT_MAX);
1485
1486         DBG("** DRIVES RPM: %d\n", (int)state->rpm);
1487         set_rpm_fan(DRIVES_FAN_RPM_INDEX, state->rpm);
1488 }
1489
1490 /*
1491  * Initialize the state structure for the drives bay fan control loop
1492  */
1493 static int init_drives_state(struct drives_pid_state *state)
1494 {
1495         int err;
1496
1497         state->ticks = 1;
1498         state->first = 1;
1499         state->rpm = 1000;
1500
1501         state->monitor = attach_i2c_chip(DRIVES_DALLAS_ID, "drives_temp");
1502         if (state->monitor == NULL)
1503                 return -ENODEV;
1504
1505         err = device_create_file(&of_dev->dev, &dev_attr_drives_temperature);
1506         err |= device_create_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
1507         if (err)
1508                 printk(KERN_WARNING "Failed to create attribute file(s)"
1509                         " for drives bay fan\n");
1510
1511         return 0;
1512 }
1513
1514 /*
1515  * Dispose of the state data for the drives control loop
1516  */
1517 static void dispose_drives_state(struct drives_pid_state *state)
1518 {
1519         if (state->monitor == NULL)
1520                 return;
1521
1522         device_remove_file(&of_dev->dev, &dev_attr_drives_temperature);
1523         device_remove_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
1524
1525         state->monitor = NULL;
1526 }
1527
1528 /*
1529  * DIMMs temp control loop
1530  */
1531 static void do_monitor_dimms(struct dimm_pid_state *state)
1532 {
1533         s32 temp, integral, derivative, fan_min;
1534         s64 integ_p, deriv_p, prop_p, sum;
1535         int i;
1536
1537         if (--state->ticks != 0)
1538                 return;
1539         state->ticks = DIMM_PID_INTERVAL;
1540
1541         DBG("DIMM:\n");
1542
1543         DBG("  current value: %d\n", state->output);
1544
1545         temp = read_lm87_reg(state->monitor, LM87_INT_TEMP);
1546         if (temp < 0)
1547                 return;
1548         temp <<= 16;
1549         state->last_temp = temp;
1550         DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1551             FIX32TOPRINT(DIMM_PID_INPUT_TARGET));
1552
1553         /* Store temperature and error in history array */
1554         state->cur_sample = (state->cur_sample + 1) % DIMM_PID_HISTORY_SIZE;
1555         state->sample_history[state->cur_sample] = temp;
1556         state->error_history[state->cur_sample] = temp - DIMM_PID_INPUT_TARGET;
1557
1558         /* If first loop, fill the history table */
1559         if (state->first) {
1560                 for (i = 0; i < (DIMM_PID_HISTORY_SIZE - 1); i++) {
1561                         state->cur_sample = (state->cur_sample + 1) %
1562                                 DIMM_PID_HISTORY_SIZE;
1563                         state->sample_history[state->cur_sample] = temp;
1564                         state->error_history[state->cur_sample] =
1565                                 temp - DIMM_PID_INPUT_TARGET;
1566                 }
1567                 state->first = 0;
1568         }
1569
1570         /* Calculate the integral term */
1571         sum = 0;
1572         integral = 0;
1573         for (i = 0; i < DIMM_PID_HISTORY_SIZE; i++)
1574                 integral += state->error_history[i];
1575         integral *= DIMM_PID_INTERVAL;
1576         DBG("  integral: %08x\n", integral);
1577         integ_p = ((s64)DIMM_PID_G_r) * (s64)integral;
1578         DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1579         sum += integ_p;
1580
1581         /* Calculate the derivative term */
1582         derivative = state->error_history[state->cur_sample] -
1583                 state->error_history[(state->cur_sample + DIMM_PID_HISTORY_SIZE - 1)
1584                                     % DIMM_PID_HISTORY_SIZE];
1585         derivative /= DIMM_PID_INTERVAL;
1586         deriv_p = ((s64)DIMM_PID_G_d) * (s64)derivative;
1587         DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1588         sum += deriv_p;
1589
1590         /* Calculate the proportional term */
1591         prop_p = ((s64)DIMM_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1592         DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1593         sum += prop_p;
1594
1595         /* Scale sum */
1596         sum >>= 36;
1597
1598         DBG("   sum: %d\n", (int)sum);
1599         state->output = (s32)sum;
1600         state->output = max(state->output, DIMM_PID_OUTPUT_MIN);
1601         state->output = min(state->output, DIMM_PID_OUTPUT_MAX);
1602         dimm_output_clamp = state->output;
1603
1604         DBG("** DIMM clamp value: %d\n", (int)state->output);
1605
1606         /* Backside PID is only every 5 seconds, force backside fan clamping now */
1607         fan_min = (dimm_output_clamp * 100) / 14000;
1608         fan_min = max(fan_min, backside_params.output_min);
1609         if (backside_state.pwm < fan_min) {
1610                 backside_state.pwm = fan_min;
1611                 DBG(" -> applying clamp to backside fan now: %d  !\n", fan_min);
1612                 set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, fan_min);
1613         }
1614 }
1615
1616 /*
1617  * Initialize the state structure for the DIMM temp control loop
1618  */
1619 static int init_dimms_state(struct dimm_pid_state *state)
1620 {
1621         state->ticks = 1;
1622         state->first = 1;
1623         state->output = 4000;
1624
1625         state->monitor = attach_i2c_chip(XSERVE_DIMMS_LM87, "dimms_temp");
1626         if (state->monitor == NULL)
1627                 return -ENODEV;
1628
1629         if (device_create_file(&of_dev->dev, &dev_attr_dimms_temperature))
1630                 printk(KERN_WARNING "Failed to create attribute file"
1631                         " for DIMM temperature\n");
1632
1633         return 0;
1634 }
1635
1636 /*
1637  * Dispose of the state data for the DIMM control loop
1638  */
1639 static void dispose_dimms_state(struct dimm_pid_state *state)
1640 {
1641         if (state->monitor == NULL)
1642                 return;
1643
1644         device_remove_file(&of_dev->dev, &dev_attr_dimms_temperature);
1645
1646         state->monitor = NULL;
1647 }
1648
1649 /*
1650  * Slots fan control loop
1651  */
1652 static void do_monitor_slots(struct slots_pid_state *state)
1653 {
1654         s32 temp, integral, derivative;
1655         s64 integ_p, deriv_p, prop_p, sum;
1656         int i, rc;
1657
1658         if (--state->ticks != 0)
1659                 return;
1660         state->ticks = SLOTS_PID_INTERVAL;
1661
1662         DBG("slots:\n");
1663
1664         /* Check fan status */
1665         rc = get_pwm_fan(SLOTS_FAN_PWM_INDEX);
1666         if (rc < 0) {
1667                 printk(KERN_WARNING "Error %d reading slots fan !\n", rc);
1668                 /* XXX What do we do now ? */
1669         } else
1670                 state->pwm = rc;
1671         DBG("  current pwm: %d\n", state->pwm);
1672
1673         /* Get some sensor readings */
1674         temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor,
1675                                                     DS1775_TEMP)) << 8;
1676         state->last_temp = temp;
1677         DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1678             FIX32TOPRINT(SLOTS_PID_INPUT_TARGET));
1679
1680         /* Store temperature and error in history array */
1681         state->cur_sample = (state->cur_sample + 1) % SLOTS_PID_HISTORY_SIZE;
1682         state->sample_history[state->cur_sample] = temp;
1683         state->error_history[state->cur_sample] = temp - SLOTS_PID_INPUT_TARGET;
1684
1685         /* If first loop, fill the history table */
1686         if (state->first) {
1687                 for (i = 0; i < (SLOTS_PID_HISTORY_SIZE - 1); i++) {
1688                         state->cur_sample = (state->cur_sample + 1) %
1689                                 SLOTS_PID_HISTORY_SIZE;
1690                         state->sample_history[state->cur_sample] = temp;
1691                         state->error_history[state->cur_sample] =
1692                                 temp - SLOTS_PID_INPUT_TARGET;
1693                 }
1694                 state->first = 0;
1695         }
1696
1697         /* Calculate the integral term */
1698         sum = 0;
1699         integral = 0;
1700         for (i = 0; i < SLOTS_PID_HISTORY_SIZE; i++)
1701                 integral += state->error_history[i];
1702         integral *= SLOTS_PID_INTERVAL;
1703         DBG("  integral: %08x\n", integral);
1704         integ_p = ((s64)SLOTS_PID_G_r) * (s64)integral;
1705         DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1706         sum += integ_p;
1707
1708         /* Calculate the derivative term */
1709         derivative = state->error_history[state->cur_sample] -
1710                 state->error_history[(state->cur_sample + SLOTS_PID_HISTORY_SIZE - 1)
1711                                     % SLOTS_PID_HISTORY_SIZE];
1712         derivative /= SLOTS_PID_INTERVAL;
1713         deriv_p = ((s64)SLOTS_PID_G_d) * (s64)derivative;
1714         DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1715         sum += deriv_p;
1716
1717         /* Calculate the proportional term */
1718         prop_p = ((s64)SLOTS_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1719         DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1720         sum += prop_p;
1721
1722         /* Scale sum */
1723         sum >>= 36;
1724
1725         DBG("   sum: %d\n", (int)sum);
1726         state->pwm = (s32)sum;
1727
1728         state->pwm = max(state->pwm, SLOTS_PID_OUTPUT_MIN);
1729         state->pwm = min(state->pwm, SLOTS_PID_OUTPUT_MAX);
1730
1731         DBG("** DRIVES PWM: %d\n", (int)state->pwm);
1732         set_pwm_fan(SLOTS_FAN_PWM_INDEX, state->pwm);
1733 }
1734
1735 /*
1736  * Initialize the state structure for the slots bay fan control loop
1737  */
1738 static int init_slots_state(struct slots_pid_state *state)
1739 {
1740         int err;
1741
1742         state->ticks = 1;
1743         state->first = 1;
1744         state->pwm = 50;
1745
1746         state->monitor = attach_i2c_chip(XSERVE_SLOTS_LM75, "slots_temp");
1747         if (state->monitor == NULL)
1748                 return -ENODEV;
1749
1750         err = device_create_file(&of_dev->dev, &dev_attr_slots_temperature);
1751         err |= device_create_file(&of_dev->dev, &dev_attr_slots_fan_pwm);
1752         if (err)
1753                 printk(KERN_WARNING "Failed to create attribute file(s)"
1754                         " for slots bay fan\n");
1755
1756         return 0;
1757 }
1758
1759 /*
1760  * Dispose of the state data for the slots control loop
1761  */
1762 static void dispose_slots_state(struct slots_pid_state *state)
1763 {
1764         if (state->monitor == NULL)
1765                 return;
1766
1767         device_remove_file(&of_dev->dev, &dev_attr_slots_temperature);
1768         device_remove_file(&of_dev->dev, &dev_attr_slots_fan_pwm);
1769
1770         state->monitor = NULL;
1771 }
1772
1773
1774 static int call_critical_overtemp(void)
1775 {
1776         char *argv[] = { critical_overtemp_path, NULL };
1777         static char *envp[] = { "HOME=/",
1778                                 "TERM=linux",
1779                                 "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
1780                                 NULL };
1781
1782         return call_usermodehelper(critical_overtemp_path,
1783                                    argv, envp, UMH_WAIT_EXEC);
1784 }
1785
1786
1787 /*
1788  * Here's the kernel thread that calls the various control loops
1789  */
1790 static int main_control_loop(void *x)
1791 {
1792         DBG("main_control_loop started\n");
1793
1794         mutex_lock(&driver_lock);
1795
1796         if (start_fcu() < 0) {
1797                 printk(KERN_ERR "kfand: failed to start FCU\n");
1798                 mutex_unlock(&driver_lock);
1799                 goto out;
1800         }
1801
1802         /* Set the PCI fan once for now on non-RackMac */
1803         if (!rackmac)
1804                 set_pwm_fan(SLOTS_FAN_PWM_INDEX, SLOTS_FAN_DEFAULT_PWM);
1805
1806         /* Initialize ADCs */
1807         initialize_adc(&processor_state[0]);
1808         if (processor_state[1].monitor != NULL)
1809                 initialize_adc(&processor_state[1]);
1810
1811         fcu_tickle_ticks = FCU_TICKLE_TICKS;
1812
1813         mutex_unlock(&driver_lock);
1814
1815         while (state == state_attached) {
1816                 unsigned long elapsed, start;
1817
1818                 start = jiffies;
1819
1820                 mutex_lock(&driver_lock);
1821
1822                 /* Tickle the FCU just in case */
1823                 if (--fcu_tickle_ticks < 0) {
1824                         fcu_tickle_ticks = FCU_TICKLE_TICKS;
1825                         tickle_fcu();
1826                 }
1827
1828                 /* First, we always calculate the new DIMMs state on an Xserve */
1829                 if (rackmac)
1830                         do_monitor_dimms(&dimms_state);
1831
1832                 /* Then, the CPUs */
1833                 if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
1834                         do_monitor_cpu_combined();
1835                 else if (cpu_pid_type == CPU_PID_TYPE_RACKMAC) {
1836                         do_monitor_cpu_rack(&processor_state[0]);
1837                         if (processor_state[1].monitor != NULL)
1838                                 do_monitor_cpu_rack(&processor_state[1]);
1839                         // better deal with UP
1840                 } else {
1841                         do_monitor_cpu_split(&processor_state[0]);
1842                         if (processor_state[1].monitor != NULL)
1843                                 do_monitor_cpu_split(&processor_state[1]);
1844                         // better deal with UP
1845                 }
1846                 /* Then, the rest */
1847                 do_monitor_backside(&backside_state);
1848                 if (rackmac)
1849                         do_monitor_slots(&slots_state);
1850                 else
1851                         do_monitor_drives(&drives_state);
1852                 mutex_unlock(&driver_lock);
1853
1854                 if (critical_state == 1) {
1855                         printk(KERN_WARNING "Temperature control detected a critical condition\n");
1856                         printk(KERN_WARNING "Attempting to shut down...\n");
1857                         if (call_critical_overtemp()) {
1858                                 printk(KERN_WARNING "Can't call %s, power off now!\n",
1859                                        critical_overtemp_path);
1860                                 machine_power_off();
1861                         }
1862                 }
1863                 if (critical_state > 0)
1864                         critical_state++;
1865                 if (critical_state > MAX_CRITICAL_STATE) {
1866                         printk(KERN_WARNING "Shutdown timed out, power off now !\n");
1867                         machine_power_off();
1868                 }
1869
1870                 // FIXME: Deal with signals
1871                 elapsed = jiffies - start;
1872                 if (elapsed < HZ)
1873                         schedule_timeout_interruptible(HZ - elapsed);
1874         }
1875
1876  out:
1877         DBG("main_control_loop ended\n");
1878
1879         ctrl_task = 0;
1880         complete_and_exit(&ctrl_complete, 0);
1881 }
1882
1883 /*
1884  * Dispose the control loops when tearing down
1885  */
1886 static void dispose_control_loops(void)
1887 {
1888         dispose_processor_state(&processor_state[0]);
1889         dispose_processor_state(&processor_state[1]);
1890         dispose_backside_state(&backside_state);
1891         dispose_drives_state(&drives_state);
1892         dispose_slots_state(&slots_state);
1893         dispose_dimms_state(&dimms_state);
1894 }
1895
1896 /*
1897  * Create the control loops. U3-0 i2c bus is up, so we can now
1898  * get to the various sensors
1899  */
1900 static int create_control_loops(void)
1901 {
1902         struct device_node *np;
1903
1904         /* Count CPUs from the device-tree, we don't care how many are
1905          * actually used by Linux
1906          */
1907         cpu_count = 0;
1908         for (np = NULL; NULL != (np = of_find_node_by_type(np, "cpu"));)
1909                 cpu_count++;
1910
1911         DBG("counted %d CPUs in the device-tree\n", cpu_count);
1912
1913         /* Decide the type of PID algorithm to use based on the presence of
1914          * the pumps, though that may not be the best way, that is good enough
1915          * for now
1916          */
1917         if (rackmac)
1918                 cpu_pid_type = CPU_PID_TYPE_RACKMAC;
1919         else if (of_machine_is_compatible("PowerMac7,3")
1920             && (cpu_count > 1)
1921             && fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID
1922             && fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID) {
1923                 printk(KERN_INFO "Liquid cooling pumps detected, using new algorithm !\n");
1924                 cpu_pid_type = CPU_PID_TYPE_COMBINED;
1925         } else
1926                 cpu_pid_type = CPU_PID_TYPE_SPLIT;
1927
1928         /* Create control loops for everything. If any fail, everything
1929          * fails
1930          */
1931         if (init_processor_state(&processor_state[0], 0))
1932                 goto fail;
1933         if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
1934                 fetch_cpu_pumps_minmax();
1935
1936         if (cpu_count > 1 && init_processor_state(&processor_state[1], 1))
1937                 goto fail;
1938         if (init_backside_state(&backside_state))
1939                 goto fail;
1940         if (rackmac && init_dimms_state(&dimms_state))
1941                 goto fail;
1942         if (rackmac && init_slots_state(&slots_state))
1943                 goto fail;
1944         if (!rackmac && init_drives_state(&drives_state))
1945                 goto fail;
1946
1947         DBG("all control loops up !\n");
1948
1949         return 0;
1950         
1951  fail:
1952         DBG("failure creating control loops, disposing\n");
1953
1954         dispose_control_loops();
1955
1956         return -ENODEV;
1957 }
1958
1959 /*
1960  * Start the control loops after everything is up, that is create
1961  * the thread that will make them run
1962  */
1963 static void start_control_loops(void)
1964 {
1965         init_completion(&ctrl_complete);
1966
1967         ctrl_task = kthread_run(main_control_loop, NULL, "kfand");
1968 }
1969
1970 /*
1971  * Stop the control loops when tearing down
1972  */
1973 static void stop_control_loops(void)
1974 {
1975         if (ctrl_task)
1976                 wait_for_completion(&ctrl_complete);
1977 }
1978
1979 /*
1980  * Attach to the i2c FCU after detecting U3-1 bus
1981  */
1982 static int attach_fcu(void)
1983 {
1984         fcu = attach_i2c_chip(FAN_CTRLER_ID, "fcu");
1985         if (fcu == NULL)
1986                 return -ENODEV;
1987
1988         DBG("FCU attached\n");
1989
1990         return 0;
1991 }
1992
1993 /*
1994  * Detach from the i2c FCU when tearing down
1995  */
1996 static void detach_fcu(void)
1997 {
1998         fcu = NULL;
1999 }
2000
2001 /*
2002  * Attach to the i2c controller. We probe the various chips based
2003  * on the device-tree nodes and build everything for the driver to
2004  * run, we then kick the driver monitoring thread
2005  */
2006 static int therm_pm72_attach(struct i2c_adapter *adapter)
2007 {
2008         mutex_lock(&driver_lock);
2009
2010         /* Check state */
2011         if (state == state_detached)
2012                 state = state_attaching;
2013         if (state != state_attaching) {
2014                 mutex_unlock(&driver_lock);
2015                 return 0;
2016         }
2017
2018         /* Check if we are looking for one of these */
2019         if (u3_0 == NULL && !strcmp(adapter->name, "u3 0")) {
2020                 u3_0 = adapter;
2021                 DBG("found U3-0\n");
2022                 if (k2 || !rackmac)
2023                         if (create_control_loops())
2024                                 u3_0 = NULL;
2025         } else if (u3_1 == NULL && !strcmp(adapter->name, "u3 1")) {
2026                 u3_1 = adapter;
2027                 DBG("found U3-1, attaching FCU\n");
2028                 if (attach_fcu())
2029                         u3_1 = NULL;
2030         } else if (k2 == NULL && !strcmp(adapter->name, "mac-io 0")) {
2031                 k2 = adapter;
2032                 DBG("Found K2\n");
2033                 if (u3_0 && rackmac)
2034                         if (create_control_loops())
2035                                 k2 = NULL;
2036         }
2037         /* We got all we need, start control loops */
2038         if (u3_0 != NULL && u3_1 != NULL && (k2 || !rackmac)) {
2039                 DBG("everything up, starting control loops\n");
2040                 state = state_attached;
2041                 start_control_loops();
2042         }
2043         mutex_unlock(&driver_lock);
2044
2045         return 0;
2046 }
2047
2048 static int therm_pm72_probe(struct i2c_client *client,
2049                             const struct i2c_device_id *id)
2050 {
2051         /* Always succeed, the real work was done in therm_pm72_attach() */
2052         return 0;
2053 }
2054
2055 /*
2056  * Called when any of the devices which participates into thermal management
2057  * is going away.
2058  */
2059 static int therm_pm72_remove(struct i2c_client *client)
2060 {
2061         struct i2c_adapter *adapter = client->adapter;
2062
2063         mutex_lock(&driver_lock);
2064
2065         if (state != state_detached)
2066                 state = state_detaching;
2067
2068         /* Stop control loops if any */
2069         DBG("stopping control loops\n");
2070         mutex_unlock(&driver_lock);
2071         stop_control_loops();
2072         mutex_lock(&driver_lock);
2073
2074         if (u3_0 != NULL && !strcmp(adapter->name, "u3 0")) {
2075                 DBG("lost U3-0, disposing control loops\n");
2076                 dispose_control_loops();
2077                 u3_0 = NULL;
2078         }
2079         
2080         if (u3_1 != NULL && !strcmp(adapter->name, "u3 1")) {
2081                 DBG("lost U3-1, detaching FCU\n");
2082                 detach_fcu();
2083                 u3_1 = NULL;
2084         }
2085         if (u3_0 == NULL && u3_1 == NULL)
2086                 state = state_detached;
2087
2088         mutex_unlock(&driver_lock);
2089
2090         return 0;
2091 }
2092
2093 /*
2094  * i2c_driver structure to attach to the host i2c controller
2095  */
2096
2097 static const struct i2c_device_id therm_pm72_id[] = {
2098         /*
2099          * Fake device name, thermal management is done by several
2100          * chips but we don't need to differentiate between them at
2101          * this point.
2102          */
2103         { "therm_pm72", 0 },
2104         { }
2105 };
2106
2107 static struct i2c_driver therm_pm72_driver = {
2108         .driver = {
2109                 .name   = "therm_pm72",
2110         },
2111         .attach_adapter = therm_pm72_attach,
2112         .probe          = therm_pm72_probe,
2113         .remove         = therm_pm72_remove,
2114         .id_table       = therm_pm72_id,
2115 };
2116
2117 static int fan_check_loc_match(const char *loc, int fan)
2118 {
2119         char    tmp[64];
2120         char    *c, *e;
2121
2122         strlcpy(tmp, fcu_fans[fan].loc, 64);
2123
2124         c = tmp;
2125         for (;;) {
2126                 e = strchr(c, ',');
2127                 if (e)
2128                         *e = 0;
2129                 if (strcmp(loc, c) == 0)
2130                         return 1;
2131                 if (e == NULL)
2132                         break;
2133                 c = e + 1;
2134         }
2135         return 0;
2136 }
2137
2138 static void fcu_lookup_fans(struct device_node *fcu_node)
2139 {
2140         struct device_node *np = NULL;
2141         int i;
2142
2143         /* The table is filled by default with values that are suitable
2144          * for the old machines without device-tree informations. We scan
2145          * the device-tree and override those values with whatever is
2146          * there
2147          */
2148
2149         DBG("Looking up FCU controls in device-tree...\n");
2150
2151         while ((np = of_get_next_child(fcu_node, np)) != NULL) {
2152                 int type = -1;
2153                 const char *loc;
2154                 const u32 *reg;
2155
2156                 DBG(" control: %s, type: %s\n", np->name, np->type);
2157
2158                 /* Detect control type */
2159                 if (!strcmp(np->type, "fan-rpm-control") ||
2160                     !strcmp(np->type, "fan-rpm"))
2161                         type = FCU_FAN_RPM;
2162                 if (!strcmp(np->type, "fan-pwm-control") ||
2163                     !strcmp(np->type, "fan-pwm"))
2164                         type = FCU_FAN_PWM;
2165                 /* Only care about fans for now */
2166                 if (type == -1)
2167                         continue;
2168
2169                 /* Lookup for a matching location */
2170                 loc = of_get_property(np, "location", NULL);
2171                 reg = of_get_property(np, "reg", NULL);
2172                 if (loc == NULL || reg == NULL)
2173                         continue;
2174                 DBG(" matching location: %s, reg: 0x%08x\n", loc, *reg);
2175
2176                 for (i = 0; i < FCU_FAN_COUNT; i++) {
2177                         int fan_id;
2178
2179                         if (!fan_check_loc_match(loc, i))
2180                                 continue;
2181                         DBG(" location match, index: %d\n", i);
2182                         fcu_fans[i].id = FCU_FAN_ABSENT_ID;
2183                         if (type != fcu_fans[i].type) {
2184                                 printk(KERN_WARNING "therm_pm72: Fan type mismatch "
2185                                        "in device-tree for %s\n", np->full_name);
2186                                 break;
2187                         }
2188                         if (type == FCU_FAN_RPM)
2189                                 fan_id = ((*reg) - 0x10) / 2;
2190                         else
2191                                 fan_id = ((*reg) - 0x30) / 2;
2192                         if (fan_id > 7) {
2193                                 printk(KERN_WARNING "therm_pm72: Can't parse "
2194                                        "fan ID in device-tree for %s\n", np->full_name);
2195                                 break;
2196                         }
2197                         DBG(" fan id -> %d, type -> %d\n", fan_id, type);
2198                         fcu_fans[i].id = fan_id;
2199                 }
2200         }
2201
2202         /* Now dump the array */
2203         printk(KERN_INFO "Detected fan controls:\n");
2204         for (i = 0; i < FCU_FAN_COUNT; i++) {
2205                 if (fcu_fans[i].id == FCU_FAN_ABSENT_ID)
2206                         continue;
2207                 printk(KERN_INFO "  %d: %s fan, id %d, location: %s\n", i,
2208                        fcu_fans[i].type == FCU_FAN_RPM ? "RPM" : "PWM",
2209                        fcu_fans[i].id, fcu_fans[i].loc);
2210         }
2211 }
2212
2213 static int fcu_of_probe(struct platform_device* dev)
2214 {
2215         state = state_detached;
2216         of_dev = dev;
2217
2218         dev_info(&dev->dev, "PowerMac G5 Thermal control driver %s\n", VERSION);
2219
2220         /* Lookup the fans in the device tree */
2221         fcu_lookup_fans(dev->dev.of_node);
2222
2223         /* Add the driver */
2224         return i2c_add_driver(&therm_pm72_driver);
2225 }
2226
2227 static int fcu_of_remove(struct platform_device* dev)
2228 {
2229         i2c_del_driver(&therm_pm72_driver);
2230
2231         return 0;
2232 }
2233
2234 static const struct of_device_id fcu_match[] = 
2235 {
2236         {
2237         .type           = "fcu",
2238         },
2239         {},
2240 };
2241 MODULE_DEVICE_TABLE(of, fcu_match);
2242
2243 static struct platform_driver fcu_of_platform_driver = 
2244 {
2245         .driver = {
2246                 .name = "temperature",
2247                 .owner = THIS_MODULE,
2248                 .of_match_table = fcu_match,
2249         },
2250         .probe          = fcu_of_probe,
2251         .remove         = fcu_of_remove
2252 };
2253
2254 /*
2255  * Check machine type, attach to i2c controller
2256  */
2257 static int __init therm_pm72_init(void)
2258 {
2259         rackmac = of_machine_is_compatible("RackMac3,1");
2260
2261         if (!of_machine_is_compatible("PowerMac7,2") &&
2262             !of_machine_is_compatible("PowerMac7,3") &&
2263             !rackmac)
2264                 return -ENODEV;
2265
2266         return platform_driver_register(&fcu_of_platform_driver);
2267 }
2268
2269 static void __exit therm_pm72_exit(void)
2270 {
2271         platform_driver_unregister(&fcu_of_platform_driver);
2272 }
2273
2274 module_init(therm_pm72_init);
2275 module_exit(therm_pm72_exit);
2276
2277 MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
2278 MODULE_DESCRIPTION("Driver for Apple's PowerMac G5 thermal control");
2279 MODULE_LICENSE("GPL");
2280