pandora: reserve CMA area for c64_tools
[pandora-kernel.git] / drivers / macintosh / smu.c
1 /*
2  * PowerMac G5 SMU driver
3  *
4  * Copyright 2004 J. Mayer <l_indien@magic.fr>
5  * Copyright 2005 Benjamin Herrenschmidt, IBM Corp.
6  *
7  * Released under the term of the GNU GPL v2.
8  */
9
10 /*
11  * TODO:
12  *  - maybe add timeout to commands ?
13  *  - blocking version of time functions
14  *  - polling version of i2c commands (including timer that works with
15  *    interrupts off)
16  *  - maybe avoid some data copies with i2c by directly using the smu cmd
17  *    buffer and a lower level internal interface
18  *  - understand SMU -> CPU events and implement reception of them via
19  *    the userland interface
20  */
21
22 #include <linux/types.h>
23 #include <linux/kernel.h>
24 #include <linux/device.h>
25 #include <linux/dmapool.h>
26 #include <linux/bootmem.h>
27 #include <linux/vmalloc.h>
28 #include <linux/highmem.h>
29 #include <linux/jiffies.h>
30 #include <linux/interrupt.h>
31 #include <linux/rtc.h>
32 #include <linux/completion.h>
33 #include <linux/miscdevice.h>
34 #include <linux/delay.h>
35 #include <linux/sysdev.h>
36 #include <linux/poll.h>
37 #include <linux/mutex.h>
38 #include <linux/of_device.h>
39 #include <linux/of_platform.h>
40 #include <linux/slab.h>
41
42 #include <asm/byteorder.h>
43 #include <asm/io.h>
44 #include <asm/prom.h>
45 #include <asm/machdep.h>
46 #include <asm/pmac_feature.h>
47 #include <asm/smu.h>
48 #include <asm/sections.h>
49 #include <asm/abs_addr.h>
50 #include <asm/uaccess.h>
51
52 #define VERSION "0.7"
53 #define AUTHOR  "(c) 2005 Benjamin Herrenschmidt, IBM Corp."
54
55 #undef DEBUG_SMU
56
57 #ifdef DEBUG_SMU
58 #define DPRINTK(fmt, args...) do { printk(KERN_DEBUG fmt , ##args); } while (0)
59 #else
60 #define DPRINTK(fmt, args...) do { } while (0)
61 #endif
62
63 /*
64  * This is the command buffer passed to the SMU hardware
65  */
66 #define SMU_MAX_DATA    254
67
68 struct smu_cmd_buf {
69         u8 cmd;
70         u8 length;
71         u8 data[SMU_MAX_DATA];
72 };
73
74 struct smu_device {
75         spinlock_t              lock;
76         struct device_node      *of_node;
77         struct platform_device  *of_dev;
78         int                     doorbell;       /* doorbell gpio */
79         u32 __iomem             *db_buf;        /* doorbell buffer */
80         struct device_node      *db_node;
81         unsigned int            db_irq;
82         int                     msg;
83         struct device_node      *msg_node;
84         unsigned int            msg_irq;
85         struct smu_cmd_buf      *cmd_buf;       /* command buffer virtual */
86         u32                     cmd_buf_abs;    /* command buffer absolute */
87         struct list_head        cmd_list;
88         struct smu_cmd          *cmd_cur;       /* pending command */
89         int                     broken_nap;
90         struct list_head        cmd_i2c_list;
91         struct smu_i2c_cmd      *cmd_i2c_cur;   /* pending i2c command */
92         struct timer_list       i2c_timer;
93 };
94
95 /*
96  * I don't think there will ever be more than one SMU, so
97  * for now, just hard code that
98  */
99 static DEFINE_MUTEX(smu_mutex);
100 static struct smu_device        *smu;
101 static DEFINE_MUTEX(smu_part_access);
102 static int smu_irq_inited;
103
104 static void smu_i2c_retry(unsigned long data);
105
106 /*
107  * SMU driver low level stuff
108  */
109
110 static void smu_start_cmd(void)
111 {
112         unsigned long faddr, fend;
113         struct smu_cmd *cmd;
114
115         if (list_empty(&smu->cmd_list))
116                 return;
117
118         /* Fetch first command in queue */
119         cmd = list_entry(smu->cmd_list.next, struct smu_cmd, link);
120         smu->cmd_cur = cmd;
121         list_del(&cmd->link);
122
123         DPRINTK("SMU: starting cmd %x, %d bytes data\n", cmd->cmd,
124                 cmd->data_len);
125         DPRINTK("SMU: data buffer: %02x %02x %02x %02x %02x %02x %02x %02x\n",
126                 ((u8 *)cmd->data_buf)[0], ((u8 *)cmd->data_buf)[1],
127                 ((u8 *)cmd->data_buf)[2], ((u8 *)cmd->data_buf)[3],
128                 ((u8 *)cmd->data_buf)[4], ((u8 *)cmd->data_buf)[5],
129                 ((u8 *)cmd->data_buf)[6], ((u8 *)cmd->data_buf)[7]);
130
131         /* Fill the SMU command buffer */
132         smu->cmd_buf->cmd = cmd->cmd;
133         smu->cmd_buf->length = cmd->data_len;
134         memcpy(smu->cmd_buf->data, cmd->data_buf, cmd->data_len);
135
136         /* Flush command and data to RAM */
137         faddr = (unsigned long)smu->cmd_buf;
138         fend = faddr + smu->cmd_buf->length + 2;
139         flush_inval_dcache_range(faddr, fend);
140
141
142         /* We also disable NAP mode for the duration of the command
143          * on U3 based machines.
144          * This is slightly racy as it can be written back to 1 by a sysctl
145          * but that never happens in practice. There seem to be an issue with
146          * U3 based machines such as the iMac G5 where napping for the
147          * whole duration of the command prevents the SMU from fetching it
148          * from memory. This might be related to the strange i2c based
149          * mechanism the SMU uses to access memory.
150          */
151         if (smu->broken_nap)
152                 powersave_nap = 0;
153
154         /* This isn't exactly a DMA mapping here, I suspect
155          * the SMU is actually communicating with us via i2c to the
156          * northbridge or the CPU to access RAM.
157          */
158         writel(smu->cmd_buf_abs, smu->db_buf);
159
160         /* Ring the SMU doorbell */
161         pmac_do_feature_call(PMAC_FTR_WRITE_GPIO, NULL, smu->doorbell, 4);
162 }
163
164
165 static irqreturn_t smu_db_intr(int irq, void *arg)
166 {
167         unsigned long flags;
168         struct smu_cmd *cmd;
169         void (*done)(struct smu_cmd *cmd, void *misc) = NULL;
170         void *misc = NULL;
171         u8 gpio;
172         int rc = 0;
173
174         /* SMU completed the command, well, we hope, let's make sure
175          * of it
176          */
177         spin_lock_irqsave(&smu->lock, flags);
178
179         gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
180         if ((gpio & 7) != 7) {
181                 spin_unlock_irqrestore(&smu->lock, flags);
182                 return IRQ_HANDLED;
183         }
184
185         cmd = smu->cmd_cur;
186         smu->cmd_cur = NULL;
187         if (cmd == NULL)
188                 goto bail;
189
190         if (rc == 0) {
191                 unsigned long faddr;
192                 int reply_len;
193                 u8 ack;
194
195                 /* CPU might have brought back the cache line, so we need
196                  * to flush again before peeking at the SMU response. We
197                  * flush the entire buffer for now as we haven't read the
198                  * reply length (it's only 2 cache lines anyway)
199                  */
200                 faddr = (unsigned long)smu->cmd_buf;
201                 flush_inval_dcache_range(faddr, faddr + 256);
202
203                 /* Now check ack */
204                 ack = (~cmd->cmd) & 0xff;
205                 if (ack != smu->cmd_buf->cmd) {
206                         DPRINTK("SMU: incorrect ack, want %x got %x\n",
207                                 ack, smu->cmd_buf->cmd);
208                         rc = -EIO;
209                 }
210                 reply_len = rc == 0 ? smu->cmd_buf->length : 0;
211                 DPRINTK("SMU: reply len: %d\n", reply_len);
212                 if (reply_len > cmd->reply_len) {
213                         printk(KERN_WARNING "SMU: reply buffer too small,"
214                                "got %d bytes for a %d bytes buffer\n",
215                                reply_len, cmd->reply_len);
216                         reply_len = cmd->reply_len;
217                 }
218                 cmd->reply_len = reply_len;
219                 if (cmd->reply_buf && reply_len)
220                         memcpy(cmd->reply_buf, smu->cmd_buf->data, reply_len);
221         }
222
223         /* Now complete the command. Write status last in order as we lost
224          * ownership of the command structure as soon as it's no longer -1
225          */
226         done = cmd->done;
227         misc = cmd->misc;
228         mb();
229         cmd->status = rc;
230
231         /* Re-enable NAP mode */
232         if (smu->broken_nap)
233                 powersave_nap = 1;
234  bail:
235         /* Start next command if any */
236         smu_start_cmd();
237         spin_unlock_irqrestore(&smu->lock, flags);
238
239         /* Call command completion handler if any */
240         if (done)
241                 done(cmd, misc);
242
243         /* It's an edge interrupt, nothing to do */
244         return IRQ_HANDLED;
245 }
246
247
248 static irqreturn_t smu_msg_intr(int irq, void *arg)
249 {
250         /* I don't quite know what to do with this one, we seem to never
251          * receive it, so I suspect we have to arm it someway in the SMU
252          * to start getting events that way.
253          */
254
255         printk(KERN_INFO "SMU: message interrupt !\n");
256
257         /* It's an edge interrupt, nothing to do */
258         return IRQ_HANDLED;
259 }
260
261
262 /*
263  * Queued command management.
264  *
265  */
266
267 int smu_queue_cmd(struct smu_cmd *cmd)
268 {
269         unsigned long flags;
270
271         if (smu == NULL)
272                 return -ENODEV;
273         if (cmd->data_len > SMU_MAX_DATA ||
274             cmd->reply_len > SMU_MAX_DATA)
275                 return -EINVAL;
276
277         cmd->status = 1;
278         spin_lock_irqsave(&smu->lock, flags);
279         list_add_tail(&cmd->link, &smu->cmd_list);
280         if (smu->cmd_cur == NULL)
281                 smu_start_cmd();
282         spin_unlock_irqrestore(&smu->lock, flags);
283
284         /* Workaround for early calls when irq isn't available */
285         if (!smu_irq_inited || smu->db_irq == NO_IRQ)
286                 smu_spinwait_cmd(cmd);
287
288         return 0;
289 }
290 EXPORT_SYMBOL(smu_queue_cmd);
291
292
293 int smu_queue_simple(struct smu_simple_cmd *scmd, u8 command,
294                      unsigned int data_len,
295                      void (*done)(struct smu_cmd *cmd, void *misc),
296                      void *misc, ...)
297 {
298         struct smu_cmd *cmd = &scmd->cmd;
299         va_list list;
300         int i;
301
302         if (data_len > sizeof(scmd->buffer))
303                 return -EINVAL;
304
305         memset(scmd, 0, sizeof(*scmd));
306         cmd->cmd = command;
307         cmd->data_len = data_len;
308         cmd->data_buf = scmd->buffer;
309         cmd->reply_len = sizeof(scmd->buffer);
310         cmd->reply_buf = scmd->buffer;
311         cmd->done = done;
312         cmd->misc = misc;
313
314         va_start(list, misc);
315         for (i = 0; i < data_len; ++i)
316                 scmd->buffer[i] = (u8)va_arg(list, int);
317         va_end(list);
318
319         return smu_queue_cmd(cmd);
320 }
321 EXPORT_SYMBOL(smu_queue_simple);
322
323
324 void smu_poll(void)
325 {
326         u8 gpio;
327
328         if (smu == NULL)
329                 return;
330
331         gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
332         if ((gpio & 7) == 7)
333                 smu_db_intr(smu->db_irq, smu);
334 }
335 EXPORT_SYMBOL(smu_poll);
336
337
338 void smu_done_complete(struct smu_cmd *cmd, void *misc)
339 {
340         struct completion *comp = misc;
341
342         complete(comp);
343 }
344 EXPORT_SYMBOL(smu_done_complete);
345
346
347 void smu_spinwait_cmd(struct smu_cmd *cmd)
348 {
349         while(cmd->status == 1)
350                 smu_poll();
351 }
352 EXPORT_SYMBOL(smu_spinwait_cmd);
353
354
355 /* RTC low level commands */
356 static inline int bcd2hex (int n)
357 {
358         return (((n & 0xf0) >> 4) * 10) + (n & 0xf);
359 }
360
361
362 static inline int hex2bcd (int n)
363 {
364         return ((n / 10) << 4) + (n % 10);
365 }
366
367
368 static inline void smu_fill_set_rtc_cmd(struct smu_cmd_buf *cmd_buf,
369                                         struct rtc_time *time)
370 {
371         cmd_buf->cmd = 0x8e;
372         cmd_buf->length = 8;
373         cmd_buf->data[0] = 0x80;
374         cmd_buf->data[1] = hex2bcd(time->tm_sec);
375         cmd_buf->data[2] = hex2bcd(time->tm_min);
376         cmd_buf->data[3] = hex2bcd(time->tm_hour);
377         cmd_buf->data[4] = time->tm_wday;
378         cmd_buf->data[5] = hex2bcd(time->tm_mday);
379         cmd_buf->data[6] = hex2bcd(time->tm_mon) + 1;
380         cmd_buf->data[7] = hex2bcd(time->tm_year - 100);
381 }
382
383
384 int smu_get_rtc_time(struct rtc_time *time, int spinwait)
385 {
386         struct smu_simple_cmd cmd;
387         int rc;
388
389         if (smu == NULL)
390                 return -ENODEV;
391
392         memset(time, 0, sizeof(struct rtc_time));
393         rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 1, NULL, NULL,
394                               SMU_CMD_RTC_GET_DATETIME);
395         if (rc)
396                 return rc;
397         smu_spinwait_simple(&cmd);
398
399         time->tm_sec = bcd2hex(cmd.buffer[0]);
400         time->tm_min = bcd2hex(cmd.buffer[1]);
401         time->tm_hour = bcd2hex(cmd.buffer[2]);
402         time->tm_wday = bcd2hex(cmd.buffer[3]);
403         time->tm_mday = bcd2hex(cmd.buffer[4]);
404         time->tm_mon = bcd2hex(cmd.buffer[5]) - 1;
405         time->tm_year = bcd2hex(cmd.buffer[6]) + 100;
406
407         return 0;
408 }
409
410
411 int smu_set_rtc_time(struct rtc_time *time, int spinwait)
412 {
413         struct smu_simple_cmd cmd;
414         int rc;
415
416         if (smu == NULL)
417                 return -ENODEV;
418
419         rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 8, NULL, NULL,
420                               SMU_CMD_RTC_SET_DATETIME,
421                               hex2bcd(time->tm_sec),
422                               hex2bcd(time->tm_min),
423                               hex2bcd(time->tm_hour),
424                               time->tm_wday,
425                               hex2bcd(time->tm_mday),
426                               hex2bcd(time->tm_mon) + 1,
427                               hex2bcd(time->tm_year - 100));
428         if (rc)
429                 return rc;
430         smu_spinwait_simple(&cmd);
431
432         return 0;
433 }
434
435
436 void smu_shutdown(void)
437 {
438         struct smu_simple_cmd cmd;
439
440         if (smu == NULL)
441                 return;
442
443         if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 9, NULL, NULL,
444                              'S', 'H', 'U', 'T', 'D', 'O', 'W', 'N', 0))
445                 return;
446         smu_spinwait_simple(&cmd);
447         for (;;)
448                 ;
449 }
450
451
452 void smu_restart(void)
453 {
454         struct smu_simple_cmd cmd;
455
456         if (smu == NULL)
457                 return;
458
459         if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 8, NULL, NULL,
460                              'R', 'E', 'S', 'T', 'A', 'R', 'T', 0))
461                 return;
462         smu_spinwait_simple(&cmd);
463         for (;;)
464                 ;
465 }
466
467
468 int smu_present(void)
469 {
470         return smu != NULL;
471 }
472 EXPORT_SYMBOL(smu_present);
473
474
475 int __init smu_init (void)
476 {
477         struct device_node *np;
478         const u32 *data;
479         int ret = 0;
480
481         np = of_find_node_by_type(NULL, "smu");
482         if (np == NULL)
483                 return -ENODEV;
484
485         printk(KERN_INFO "SMU: Driver %s %s\n", VERSION, AUTHOR);
486
487         if (smu_cmdbuf_abs == 0) {
488                 printk(KERN_ERR "SMU: Command buffer not allocated !\n");
489                 ret = -EINVAL;
490                 goto fail_np;
491         }
492
493         smu = alloc_bootmem(sizeof(struct smu_device));
494
495         spin_lock_init(&smu->lock);
496         INIT_LIST_HEAD(&smu->cmd_list);
497         INIT_LIST_HEAD(&smu->cmd_i2c_list);
498         smu->of_node = np;
499         smu->db_irq = NO_IRQ;
500         smu->msg_irq = NO_IRQ;
501
502         /* smu_cmdbuf_abs is in the low 2G of RAM, can be converted to a
503          * 32 bits value safely
504          */
505         smu->cmd_buf_abs = (u32)smu_cmdbuf_abs;
506         smu->cmd_buf = (struct smu_cmd_buf *)abs_to_virt(smu_cmdbuf_abs);
507
508         smu->db_node = of_find_node_by_name(NULL, "smu-doorbell");
509         if (smu->db_node == NULL) {
510                 printk(KERN_ERR "SMU: Can't find doorbell GPIO !\n");
511                 ret = -ENXIO;
512                 goto fail_bootmem;
513         }
514         data = of_get_property(smu->db_node, "reg", NULL);
515         if (data == NULL) {
516                 printk(KERN_ERR "SMU: Can't find doorbell GPIO address !\n");
517                 ret = -ENXIO;
518                 goto fail_db_node;
519         }
520
521         /* Current setup has one doorbell GPIO that does both doorbell
522          * and ack. GPIOs are at 0x50, best would be to find that out
523          * in the device-tree though.
524          */
525         smu->doorbell = *data;
526         if (smu->doorbell < 0x50)
527                 smu->doorbell += 0x50;
528
529         /* Now look for the smu-interrupt GPIO */
530         do {
531                 smu->msg_node = of_find_node_by_name(NULL, "smu-interrupt");
532                 if (smu->msg_node == NULL)
533                         break;
534                 data = of_get_property(smu->msg_node, "reg", NULL);
535                 if (data == NULL) {
536                         of_node_put(smu->msg_node);
537                         smu->msg_node = NULL;
538                         break;
539                 }
540                 smu->msg = *data;
541                 if (smu->msg < 0x50)
542                         smu->msg += 0x50;
543         } while(0);
544
545         /* Doorbell buffer is currently hard-coded, I didn't find a proper
546          * device-tree entry giving the address. Best would probably to use
547          * an offset for K2 base though, but let's do it that way for now.
548          */
549         smu->db_buf = ioremap(0x8000860c, 0x1000);
550         if (smu->db_buf == NULL) {
551                 printk(KERN_ERR "SMU: Can't map doorbell buffer pointer !\n");
552                 ret = -ENXIO;
553                 goto fail_msg_node;
554         }
555
556         /* U3 has an issue with NAP mode when issuing SMU commands */
557         smu->broken_nap = pmac_get_uninorth_variant() < 4;
558         if (smu->broken_nap)
559                 printk(KERN_INFO "SMU: using NAP mode workaround\n");
560
561         sys_ctrler = SYS_CTRLER_SMU;
562         return 0;
563
564 fail_msg_node:
565         if (smu->msg_node)
566                 of_node_put(smu->msg_node);
567 fail_db_node:
568         of_node_put(smu->db_node);
569 fail_bootmem:
570         free_bootmem((unsigned long)smu, sizeof(struct smu_device));
571         smu = NULL;
572 fail_np:
573         of_node_put(np);
574         return ret;
575 }
576
577
578 static int smu_late_init(void)
579 {
580         if (!smu)
581                 return 0;
582
583         init_timer(&smu->i2c_timer);
584         smu->i2c_timer.function = smu_i2c_retry;
585         smu->i2c_timer.data = (unsigned long)smu;
586
587         if (smu->db_node) {
588                 smu->db_irq = irq_of_parse_and_map(smu->db_node, 0);
589                 if (smu->db_irq == NO_IRQ)
590                         printk(KERN_ERR "smu: failed to map irq for node %s\n",
591                                smu->db_node->full_name);
592         }
593         if (smu->msg_node) {
594                 smu->msg_irq = irq_of_parse_and_map(smu->msg_node, 0);
595                 if (smu->msg_irq == NO_IRQ)
596                         printk(KERN_ERR "smu: failed to map irq for node %s\n",
597                                smu->msg_node->full_name);
598         }
599
600         /*
601          * Try to request the interrupts
602          */
603
604         if (smu->db_irq != NO_IRQ) {
605                 if (request_irq(smu->db_irq, smu_db_intr,
606                                 IRQF_SHARED, "SMU doorbell", smu) < 0) {
607                         printk(KERN_WARNING "SMU: can't "
608                                "request interrupt %d\n",
609                                smu->db_irq);
610                         smu->db_irq = NO_IRQ;
611                 }
612         }
613
614         if (smu->msg_irq != NO_IRQ) {
615                 if (request_irq(smu->msg_irq, smu_msg_intr,
616                                 IRQF_SHARED, "SMU message", smu) < 0) {
617                         printk(KERN_WARNING "SMU: can't "
618                                "request interrupt %d\n",
619                                smu->msg_irq);
620                         smu->msg_irq = NO_IRQ;
621                 }
622         }
623
624         smu_irq_inited = 1;
625         return 0;
626 }
627 /* This has to be before arch_initcall as the low i2c stuff relies on the
628  * above having been done before we reach arch_initcalls
629  */
630 core_initcall(smu_late_init);
631
632 /*
633  * sysfs visibility
634  */
635
636 static void smu_expose_childs(struct work_struct *unused)
637 {
638         struct device_node *np;
639
640         for (np = NULL; (np = of_get_next_child(smu->of_node, np)) != NULL;)
641                 if (of_device_is_compatible(np, "smu-sensors"))
642                         of_platform_device_create(np, "smu-sensors",
643                                                   &smu->of_dev->dev);
644 }
645
646 static DECLARE_WORK(smu_expose_childs_work, smu_expose_childs);
647
648 static int smu_platform_probe(struct platform_device* dev)
649 {
650         if (!smu)
651                 return -ENODEV;
652         smu->of_dev = dev;
653
654         /*
655          * Ok, we are matched, now expose all i2c busses. We have to defer
656          * that unfortunately or it would deadlock inside the device model
657          */
658         schedule_work(&smu_expose_childs_work);
659
660         return 0;
661 }
662
663 static const struct of_device_id smu_platform_match[] =
664 {
665         {
666                 .type           = "smu",
667         },
668         {},
669 };
670
671 static struct platform_driver smu_of_platform_driver =
672 {
673         .driver = {
674                 .name = "smu",
675                 .owner = THIS_MODULE,
676                 .of_match_table = smu_platform_match,
677         },
678         .probe          = smu_platform_probe,
679 };
680
681 static int __init smu_init_sysfs(void)
682 {
683         /*
684          * Due to sysfs bogosity, a sysdev is not a real device, so
685          * we should in fact create both if we want sysdev semantics
686          * for power management.
687          * For now, we don't power manage machines with an SMU chip,
688          * I'm a bit too far from figuring out how that works with those
689          * new chipsets, but that will come back and bite us
690          */
691         platform_driver_register(&smu_of_platform_driver);
692         return 0;
693 }
694
695 device_initcall(smu_init_sysfs);
696
697 struct platform_device *smu_get_ofdev(void)
698 {
699         if (!smu)
700                 return NULL;
701         return smu->of_dev;
702 }
703
704 EXPORT_SYMBOL_GPL(smu_get_ofdev);
705
706 /*
707  * i2c interface
708  */
709
710 static void smu_i2c_complete_command(struct smu_i2c_cmd *cmd, int fail)
711 {
712         void (*done)(struct smu_i2c_cmd *cmd, void *misc) = cmd->done;
713         void *misc = cmd->misc;
714         unsigned long flags;
715
716         /* Check for read case */
717         if (!fail && cmd->read) {
718                 if (cmd->pdata[0] < 1)
719                         fail = 1;
720                 else
721                         memcpy(cmd->info.data, &cmd->pdata[1],
722                                cmd->info.datalen);
723         }
724
725         DPRINTK("SMU: completing, success: %d\n", !fail);
726
727         /* Update status and mark no pending i2c command with lock
728          * held so nobody comes in while we dequeue an eventual
729          * pending next i2c command
730          */
731         spin_lock_irqsave(&smu->lock, flags);
732         smu->cmd_i2c_cur = NULL;
733         wmb();
734         cmd->status = fail ? -EIO : 0;
735
736         /* Is there another i2c command waiting ? */
737         if (!list_empty(&smu->cmd_i2c_list)) {
738                 struct smu_i2c_cmd *newcmd;
739
740                 /* Fetch it, new current, remove from list */
741                 newcmd = list_entry(smu->cmd_i2c_list.next,
742                                     struct smu_i2c_cmd, link);
743                 smu->cmd_i2c_cur = newcmd;
744                 list_del(&cmd->link);
745
746                 /* Queue with low level smu */
747                 list_add_tail(&cmd->scmd.link, &smu->cmd_list);
748                 if (smu->cmd_cur == NULL)
749                         smu_start_cmd();
750         }
751         spin_unlock_irqrestore(&smu->lock, flags);
752
753         /* Call command completion handler if any */
754         if (done)
755                 done(cmd, misc);
756
757 }
758
759
760 static void smu_i2c_retry(unsigned long data)
761 {
762         struct smu_i2c_cmd      *cmd = smu->cmd_i2c_cur;
763
764         DPRINTK("SMU: i2c failure, requeuing...\n");
765
766         /* requeue command simply by resetting reply_len */
767         cmd->pdata[0] = 0xff;
768         cmd->scmd.reply_len = sizeof(cmd->pdata);
769         smu_queue_cmd(&cmd->scmd);
770 }
771
772
773 static void smu_i2c_low_completion(struct smu_cmd *scmd, void *misc)
774 {
775         struct smu_i2c_cmd      *cmd = misc;
776         int                     fail = 0;
777
778         DPRINTK("SMU: i2c compl. stage=%d status=%x pdata[0]=%x rlen: %x\n",
779                 cmd->stage, scmd->status, cmd->pdata[0], scmd->reply_len);
780
781         /* Check for possible status */
782         if (scmd->status < 0)
783                 fail = 1;
784         else if (cmd->read) {
785                 if (cmd->stage == 0)
786                         fail = cmd->pdata[0] != 0;
787                 else
788                         fail = cmd->pdata[0] >= 0x80;
789         } else {
790                 fail = cmd->pdata[0] != 0;
791         }
792
793         /* Handle failures by requeuing command, after 5ms interval
794          */
795         if (fail && --cmd->retries > 0) {
796                 DPRINTK("SMU: i2c failure, starting timer...\n");
797                 BUG_ON(cmd != smu->cmd_i2c_cur);
798                 if (!smu_irq_inited) {
799                         mdelay(5);
800                         smu_i2c_retry(0);
801                         return;
802                 }
803                 mod_timer(&smu->i2c_timer, jiffies + msecs_to_jiffies(5));
804                 return;
805         }
806
807         /* If failure or stage 1, command is complete */
808         if (fail || cmd->stage != 0) {
809                 smu_i2c_complete_command(cmd, fail);
810                 return;
811         }
812
813         DPRINTK("SMU: going to stage 1\n");
814
815         /* Ok, initial command complete, now poll status */
816         scmd->reply_buf = cmd->pdata;
817         scmd->reply_len = sizeof(cmd->pdata);
818         scmd->data_buf = cmd->pdata;
819         scmd->data_len = 1;
820         cmd->pdata[0] = 0;
821         cmd->stage = 1;
822         cmd->retries = 20;
823         smu_queue_cmd(scmd);
824 }
825
826
827 int smu_queue_i2c(struct smu_i2c_cmd *cmd)
828 {
829         unsigned long flags;
830
831         if (smu == NULL)
832                 return -ENODEV;
833
834         /* Fill most fields of scmd */
835         cmd->scmd.cmd = SMU_CMD_I2C_COMMAND;
836         cmd->scmd.done = smu_i2c_low_completion;
837         cmd->scmd.misc = cmd;
838         cmd->scmd.reply_buf = cmd->pdata;
839         cmd->scmd.reply_len = sizeof(cmd->pdata);
840         cmd->scmd.data_buf = (u8 *)(char *)&cmd->info;
841         cmd->scmd.status = 1;
842         cmd->stage = 0;
843         cmd->pdata[0] = 0xff;
844         cmd->retries = 20;
845         cmd->status = 1;
846
847         /* Check transfer type, sanitize some "info" fields
848          * based on transfer type and do more checking
849          */
850         cmd->info.caddr = cmd->info.devaddr;
851         cmd->read = cmd->info.devaddr & 0x01;
852         switch(cmd->info.type) {
853         case SMU_I2C_TRANSFER_SIMPLE:
854                 memset(&cmd->info.sublen, 0, 4);
855                 break;
856         case SMU_I2C_TRANSFER_COMBINED:
857                 cmd->info.devaddr &= 0xfe;
858         case SMU_I2C_TRANSFER_STDSUB:
859                 if (cmd->info.sublen > 3)
860                         return -EINVAL;
861                 break;
862         default:
863                 return -EINVAL;
864         }
865
866         /* Finish setting up command based on transfer direction
867          */
868         if (cmd->read) {
869                 if (cmd->info.datalen > SMU_I2C_READ_MAX)
870                         return -EINVAL;
871                 memset(cmd->info.data, 0xff, cmd->info.datalen);
872                 cmd->scmd.data_len = 9;
873         } else {
874                 if (cmd->info.datalen > SMU_I2C_WRITE_MAX)
875                         return -EINVAL;
876                 cmd->scmd.data_len = 9 + cmd->info.datalen;
877         }
878
879         DPRINTK("SMU: i2c enqueuing command\n");
880         DPRINTK("SMU:   %s, len=%d bus=%x addr=%x sub0=%x type=%x\n",
881                 cmd->read ? "read" : "write", cmd->info.datalen,
882                 cmd->info.bus, cmd->info.caddr,
883                 cmd->info.subaddr[0], cmd->info.type);
884
885
886         /* Enqueue command in i2c list, and if empty, enqueue also in
887          * main command list
888          */
889         spin_lock_irqsave(&smu->lock, flags);
890         if (smu->cmd_i2c_cur == NULL) {
891                 smu->cmd_i2c_cur = cmd;
892                 list_add_tail(&cmd->scmd.link, &smu->cmd_list);
893                 if (smu->cmd_cur == NULL)
894                         smu_start_cmd();
895         } else
896                 list_add_tail(&cmd->link, &smu->cmd_i2c_list);
897         spin_unlock_irqrestore(&smu->lock, flags);
898
899         return 0;
900 }
901
902 /*
903  * Handling of "partitions"
904  */
905
906 static int smu_read_datablock(u8 *dest, unsigned int addr, unsigned int len)
907 {
908         DECLARE_COMPLETION_ONSTACK(comp);
909         unsigned int chunk;
910         struct smu_cmd cmd;
911         int rc;
912         u8 params[8];
913
914         /* We currently use a chunk size of 0xe. We could check the
915          * SMU firmware version and use bigger sizes though
916          */
917         chunk = 0xe;
918
919         while (len) {
920                 unsigned int clen = min(len, chunk);
921
922                 cmd.cmd = SMU_CMD_MISC_ee_COMMAND;
923                 cmd.data_len = 7;
924                 cmd.data_buf = params;
925                 cmd.reply_len = chunk;
926                 cmd.reply_buf = dest;
927                 cmd.done = smu_done_complete;
928                 cmd.misc = &comp;
929                 params[0] = SMU_CMD_MISC_ee_GET_DATABLOCK_REC;
930                 params[1] = 0x4;
931                 *((u32 *)&params[2]) = addr;
932                 params[6] = clen;
933
934                 rc = smu_queue_cmd(&cmd);
935                 if (rc)
936                         return rc;
937                 wait_for_completion(&comp);
938                 if (cmd.status != 0)
939                         return rc;
940                 if (cmd.reply_len != clen) {
941                         printk(KERN_DEBUG "SMU: short read in "
942                                "smu_read_datablock, got: %d, want: %d\n",
943                                cmd.reply_len, clen);
944                         return -EIO;
945                 }
946                 len -= clen;
947                 addr += clen;
948                 dest += clen;
949         }
950         return 0;
951 }
952
953 static struct smu_sdbp_header *smu_create_sdb_partition(int id)
954 {
955         DECLARE_COMPLETION_ONSTACK(comp);
956         struct smu_simple_cmd cmd;
957         unsigned int addr, len, tlen;
958         struct smu_sdbp_header *hdr;
959         struct property *prop;
960
961         /* First query the partition info */
962         DPRINTK("SMU: Query partition infos ... (irq=%d)\n", smu->db_irq);
963         smu_queue_simple(&cmd, SMU_CMD_PARTITION_COMMAND, 2,
964                          smu_done_complete, &comp,
965                          SMU_CMD_PARTITION_LATEST, id);
966         wait_for_completion(&comp);
967         DPRINTK("SMU: done, status: %d, reply_len: %d\n",
968                 cmd.cmd.status, cmd.cmd.reply_len);
969
970         /* Partition doesn't exist (or other error) */
971         if (cmd.cmd.status != 0 || cmd.cmd.reply_len != 6)
972                 return NULL;
973
974         /* Fetch address and length from reply */
975         addr = *((u16 *)cmd.buffer);
976         len = cmd.buffer[3] << 2;
977         /* Calucluate total length to allocate, including the 17 bytes
978          * for "sdb-partition-XX" that we append at the end of the buffer
979          */
980         tlen = sizeof(struct property) + len + 18;
981
982         prop = kzalloc(tlen, GFP_KERNEL);
983         if (prop == NULL)
984                 return NULL;
985         hdr = (struct smu_sdbp_header *)(prop + 1);
986         prop->name = ((char *)prop) + tlen - 18;
987         sprintf(prop->name, "sdb-partition-%02x", id);
988         prop->length = len;
989         prop->value = hdr;
990         prop->next = NULL;
991
992         /* Read the datablock */
993         if (smu_read_datablock((u8 *)hdr, addr, len)) {
994                 printk(KERN_DEBUG "SMU: datablock read failed while reading "
995                        "partition %02x !\n", id);
996                 goto failure;
997         }
998
999         /* Got it, check a few things and create the property */
1000         if (hdr->id != id) {
1001                 printk(KERN_DEBUG "SMU: Reading partition %02x and got "
1002                        "%02x !\n", id, hdr->id);
1003                 goto failure;
1004         }
1005         if (prom_add_property(smu->of_node, prop)) {
1006                 printk(KERN_DEBUG "SMU: Failed creating sdb-partition-%02x "
1007                        "property !\n", id);
1008                 goto failure;
1009         }
1010
1011         return hdr;
1012  failure:
1013         kfree(prop);
1014         return NULL;
1015 }
1016
1017 /* Note: Only allowed to return error code in pointers (using ERR_PTR)
1018  * when interruptible is 1
1019  */
1020 const struct smu_sdbp_header *__smu_get_sdb_partition(int id,
1021                 unsigned int *size, int interruptible)
1022 {
1023         char pname[32];
1024         const struct smu_sdbp_header *part;
1025
1026         if (!smu)
1027                 return NULL;
1028
1029         sprintf(pname, "sdb-partition-%02x", id);
1030
1031         DPRINTK("smu_get_sdb_partition(%02x)\n", id);
1032
1033         if (interruptible) {
1034                 int rc;
1035                 rc = mutex_lock_interruptible(&smu_part_access);
1036                 if (rc)
1037                         return ERR_PTR(rc);
1038         } else
1039                 mutex_lock(&smu_part_access);
1040
1041         part = of_get_property(smu->of_node, pname, size);
1042         if (part == NULL) {
1043                 DPRINTK("trying to extract from SMU ...\n");
1044                 part = smu_create_sdb_partition(id);
1045                 if (part != NULL && size)
1046                         *size = part->len << 2;
1047         }
1048         mutex_unlock(&smu_part_access);
1049         return part;
1050 }
1051
1052 const struct smu_sdbp_header *smu_get_sdb_partition(int id, unsigned int *size)
1053 {
1054         return __smu_get_sdb_partition(id, size, 0);
1055 }
1056 EXPORT_SYMBOL(smu_get_sdb_partition);
1057
1058
1059 /*
1060  * Userland driver interface
1061  */
1062
1063
1064 static LIST_HEAD(smu_clist);
1065 static DEFINE_SPINLOCK(smu_clist_lock);
1066
1067 enum smu_file_mode {
1068         smu_file_commands,
1069         smu_file_events,
1070         smu_file_closing
1071 };
1072
1073 struct smu_private
1074 {
1075         struct list_head        list;
1076         enum smu_file_mode      mode;
1077         int                     busy;
1078         struct smu_cmd          cmd;
1079         spinlock_t              lock;
1080         wait_queue_head_t       wait;
1081         u8                      buffer[SMU_MAX_DATA];
1082 };
1083
1084
1085 static int smu_open(struct inode *inode, struct file *file)
1086 {
1087         struct smu_private *pp;
1088         unsigned long flags;
1089
1090         pp = kzalloc(sizeof(struct smu_private), GFP_KERNEL);
1091         if (pp == 0)
1092                 return -ENOMEM;
1093         spin_lock_init(&pp->lock);
1094         pp->mode = smu_file_commands;
1095         init_waitqueue_head(&pp->wait);
1096
1097         mutex_lock(&smu_mutex);
1098         spin_lock_irqsave(&smu_clist_lock, flags);
1099         list_add(&pp->list, &smu_clist);
1100         spin_unlock_irqrestore(&smu_clist_lock, flags);
1101         file->private_data = pp;
1102         mutex_unlock(&smu_mutex);
1103
1104         return 0;
1105 }
1106
1107
1108 static void smu_user_cmd_done(struct smu_cmd *cmd, void *misc)
1109 {
1110         struct smu_private *pp = misc;
1111
1112         wake_up_all(&pp->wait);
1113 }
1114
1115
1116 static ssize_t smu_write(struct file *file, const char __user *buf,
1117                          size_t count, loff_t *ppos)
1118 {
1119         struct smu_private *pp = file->private_data;
1120         unsigned long flags;
1121         struct smu_user_cmd_hdr hdr;
1122         int rc = 0;
1123
1124         if (pp->busy)
1125                 return -EBUSY;
1126         else if (copy_from_user(&hdr, buf, sizeof(hdr)))
1127                 return -EFAULT;
1128         else if (hdr.cmdtype == SMU_CMDTYPE_WANTS_EVENTS) {
1129                 pp->mode = smu_file_events;
1130                 return 0;
1131         } else if (hdr.cmdtype == SMU_CMDTYPE_GET_PARTITION) {
1132                 const struct smu_sdbp_header *part;
1133                 part = __smu_get_sdb_partition(hdr.cmd, NULL, 1);
1134                 if (part == NULL)
1135                         return -EINVAL;
1136                 else if (IS_ERR(part))
1137                         return PTR_ERR(part);
1138                 return 0;
1139         } else if (hdr.cmdtype != SMU_CMDTYPE_SMU)
1140                 return -EINVAL;
1141         else if (pp->mode != smu_file_commands)
1142                 return -EBADFD;
1143         else if (hdr.data_len > SMU_MAX_DATA)
1144                 return -EINVAL;
1145
1146         spin_lock_irqsave(&pp->lock, flags);
1147         if (pp->busy) {
1148                 spin_unlock_irqrestore(&pp->lock, flags);
1149                 return -EBUSY;
1150         }
1151         pp->busy = 1;
1152         pp->cmd.status = 1;
1153         spin_unlock_irqrestore(&pp->lock, flags);
1154
1155         if (copy_from_user(pp->buffer, buf + sizeof(hdr), hdr.data_len)) {
1156                 pp->busy = 0;
1157                 return -EFAULT;
1158         }
1159
1160         pp->cmd.cmd = hdr.cmd;
1161         pp->cmd.data_len = hdr.data_len;
1162         pp->cmd.reply_len = SMU_MAX_DATA;
1163         pp->cmd.data_buf = pp->buffer;
1164         pp->cmd.reply_buf = pp->buffer;
1165         pp->cmd.done = smu_user_cmd_done;
1166         pp->cmd.misc = pp;
1167         rc = smu_queue_cmd(&pp->cmd);
1168         if (rc < 0)
1169                 return rc;
1170         return count;
1171 }
1172
1173
1174 static ssize_t smu_read_command(struct file *file, struct smu_private *pp,
1175                                 char __user *buf, size_t count)
1176 {
1177         DECLARE_WAITQUEUE(wait, current);
1178         struct smu_user_reply_hdr hdr;
1179         unsigned long flags;
1180         int size, rc = 0;
1181
1182         if (!pp->busy)
1183                 return 0;
1184         if (count < sizeof(struct smu_user_reply_hdr))
1185                 return -EOVERFLOW;
1186         spin_lock_irqsave(&pp->lock, flags);
1187         if (pp->cmd.status == 1) {
1188                 if (file->f_flags & O_NONBLOCK) {
1189                         spin_unlock_irqrestore(&pp->lock, flags);
1190                         return -EAGAIN;
1191                 }
1192                 add_wait_queue(&pp->wait, &wait);
1193                 for (;;) {
1194                         set_current_state(TASK_INTERRUPTIBLE);
1195                         rc = 0;
1196                         if (pp->cmd.status != 1)
1197                                 break;
1198                         rc = -ERESTARTSYS;
1199                         if (signal_pending(current))
1200                                 break;
1201                         spin_unlock_irqrestore(&pp->lock, flags);
1202                         schedule();
1203                         spin_lock_irqsave(&pp->lock, flags);
1204                 }
1205                 set_current_state(TASK_RUNNING);
1206                 remove_wait_queue(&pp->wait, &wait);
1207         }
1208         spin_unlock_irqrestore(&pp->lock, flags);
1209         if (rc)
1210                 return rc;
1211         if (pp->cmd.status != 0)
1212                 pp->cmd.reply_len = 0;
1213         size = sizeof(hdr) + pp->cmd.reply_len;
1214         if (count < size)
1215                 size = count;
1216         rc = size;
1217         hdr.status = pp->cmd.status;
1218         hdr.reply_len = pp->cmd.reply_len;
1219         if (copy_to_user(buf, &hdr, sizeof(hdr)))
1220                 return -EFAULT;
1221         size -= sizeof(hdr);
1222         if (size && copy_to_user(buf + sizeof(hdr), pp->buffer, size))
1223                 return -EFAULT;
1224         pp->busy = 0;
1225
1226         return rc;
1227 }
1228
1229
1230 static ssize_t smu_read_events(struct file *file, struct smu_private *pp,
1231                                char __user *buf, size_t count)
1232 {
1233         /* Not implemented */
1234         msleep_interruptible(1000);
1235         return 0;
1236 }
1237
1238
1239 static ssize_t smu_read(struct file *file, char __user *buf,
1240                         size_t count, loff_t *ppos)
1241 {
1242         struct smu_private *pp = file->private_data;
1243
1244         if (pp->mode == smu_file_commands)
1245                 return smu_read_command(file, pp, buf, count);
1246         if (pp->mode == smu_file_events)
1247                 return smu_read_events(file, pp, buf, count);
1248
1249         return -EBADFD;
1250 }
1251
1252 static unsigned int smu_fpoll(struct file *file, poll_table *wait)
1253 {
1254         struct smu_private *pp = file->private_data;
1255         unsigned int mask = 0;
1256         unsigned long flags;
1257
1258         if (pp == 0)
1259                 return 0;
1260
1261         if (pp->mode == smu_file_commands) {
1262                 poll_wait(file, &pp->wait, wait);
1263
1264                 spin_lock_irqsave(&pp->lock, flags);
1265                 if (pp->busy && pp->cmd.status != 1)
1266                         mask |= POLLIN;
1267                 spin_unlock_irqrestore(&pp->lock, flags);
1268         } if (pp->mode == smu_file_events) {
1269                 /* Not yet implemented */
1270         }
1271         return mask;
1272 }
1273
1274 static int smu_release(struct inode *inode, struct file *file)
1275 {
1276         struct smu_private *pp = file->private_data;
1277         unsigned long flags;
1278         unsigned int busy;
1279
1280         if (pp == 0)
1281                 return 0;
1282
1283         file->private_data = NULL;
1284
1285         /* Mark file as closing to avoid races with new request */
1286         spin_lock_irqsave(&pp->lock, flags);
1287         pp->mode = smu_file_closing;
1288         busy = pp->busy;
1289
1290         /* Wait for any pending request to complete */
1291         if (busy && pp->cmd.status == 1) {
1292                 DECLARE_WAITQUEUE(wait, current);
1293
1294                 add_wait_queue(&pp->wait, &wait);
1295                 for (;;) {
1296                         set_current_state(TASK_UNINTERRUPTIBLE);
1297                         if (pp->cmd.status != 1)
1298                                 break;
1299                         spin_unlock_irqrestore(&pp->lock, flags);
1300                         schedule();
1301                         spin_lock_irqsave(&pp->lock, flags);
1302                 }
1303                 set_current_state(TASK_RUNNING);
1304                 remove_wait_queue(&pp->wait, &wait);
1305         }
1306         spin_unlock_irqrestore(&pp->lock, flags);
1307
1308         spin_lock_irqsave(&smu_clist_lock, flags);
1309         list_del(&pp->list);
1310         spin_unlock_irqrestore(&smu_clist_lock, flags);
1311         kfree(pp);
1312
1313         return 0;
1314 }
1315
1316
1317 static const struct file_operations smu_device_fops = {
1318         .llseek         = no_llseek,
1319         .read           = smu_read,
1320         .write          = smu_write,
1321         .poll           = smu_fpoll,
1322         .open           = smu_open,
1323         .release        = smu_release,
1324 };
1325
1326 static struct miscdevice pmu_device = {
1327         MISC_DYNAMIC_MINOR, "smu", &smu_device_fops
1328 };
1329
1330 static int smu_device_init(void)
1331 {
1332         if (!smu)
1333                 return -ENODEV;
1334         if (misc_register(&pmu_device) < 0)
1335                 printk(KERN_ERR "via-pmu: cannot register misc device.\n");
1336         return 0;
1337 }
1338 device_initcall(smu_device_init);