Merge branches 'sh/wdt', 'sh/pci-express-async' and 'common/serial-rework' into sh...
[pandora-kernel.git] / drivers / lguest / page_tables.c
1 /*P:700
2  * The pagetable code, on the other hand, still shows the scars of
3  * previous encounters.  It's functional, and as neat as it can be in the
4  * circumstances, but be wary, for these things are subtle and break easily.
5  * The Guest provides a virtual to physical mapping, but we can neither trust
6  * it nor use it: we verify and convert it here then point the CPU to the
7  * converted Guest pages when running the Guest.
8 :*/
9
10 /* Copyright (C) Rusty Russell IBM Corporation 2006.
11  * GPL v2 and any later version */
12 #include <linux/mm.h>
13 #include <linux/gfp.h>
14 #include <linux/types.h>
15 #include <linux/spinlock.h>
16 #include <linux/random.h>
17 #include <linux/percpu.h>
18 #include <asm/tlbflush.h>
19 #include <asm/uaccess.h>
20 #include <asm/bootparam.h>
21 #include "lg.h"
22
23 /*M:008
24  * We hold reference to pages, which prevents them from being swapped.
25  * It'd be nice to have a callback in the "struct mm_struct" when Linux wants
26  * to swap out.  If we had this, and a shrinker callback to trim PTE pages, we
27  * could probably consider launching Guests as non-root.
28 :*/
29
30 /*H:300
31  * The Page Table Code
32  *
33  * We use two-level page tables for the Guest, or three-level with PAE.  If
34  * you're not entirely comfortable with virtual addresses, physical addresses
35  * and page tables then I recommend you review arch/x86/lguest/boot.c's "Page
36  * Table Handling" (with diagrams!).
37  *
38  * The Guest keeps page tables, but we maintain the actual ones here: these are
39  * called "shadow" page tables.  Which is a very Guest-centric name: these are
40  * the real page tables the CPU uses, although we keep them up to date to
41  * reflect the Guest's.  (See what I mean about weird naming?  Since when do
42  * shadows reflect anything?)
43  *
44  * Anyway, this is the most complicated part of the Host code.  There are seven
45  * parts to this:
46  *  (i) Looking up a page table entry when the Guest faults,
47  *  (ii) Making sure the Guest stack is mapped,
48  *  (iii) Setting up a page table entry when the Guest tells us one has changed,
49  *  (iv) Switching page tables,
50  *  (v) Flushing (throwing away) page tables,
51  *  (vi) Mapping the Switcher when the Guest is about to run,
52  *  (vii) Setting up the page tables initially.
53 :*/
54
55 /*
56  * The Switcher uses the complete top PTE page.  That's 1024 PTE entries (4MB)
57  * or 512 PTE entries with PAE (2MB).
58  */
59 #define SWITCHER_PGD_INDEX (PTRS_PER_PGD - 1)
60
61 /*
62  * For PAE we need the PMD index as well. We use the last 2MB, so we
63  * will need the last pmd entry of the last pmd page.
64  */
65 #ifdef CONFIG_X86_PAE
66 #define SWITCHER_PMD_INDEX      (PTRS_PER_PMD - 1)
67 #define RESERVE_MEM             2U
68 #define CHECK_GPGD_MASK         _PAGE_PRESENT
69 #else
70 #define RESERVE_MEM             4U
71 #define CHECK_GPGD_MASK         _PAGE_TABLE
72 #endif
73
74 /*
75  * We actually need a separate PTE page for each CPU.  Remember that after the
76  * Switcher code itself comes two pages for each CPU, and we don't want this
77  * CPU's guest to see the pages of any other CPU.
78  */
79 static DEFINE_PER_CPU(pte_t *, switcher_pte_pages);
80 #define switcher_pte_page(cpu) per_cpu(switcher_pte_pages, cpu)
81
82 /*H:320
83  * The page table code is curly enough to need helper functions to keep it
84  * clear and clean.  The kernel itself provides many of them; one advantage
85  * of insisting that the Guest and Host use the same CONFIG_PAE setting.
86  *
87  * There are two functions which return pointers to the shadow (aka "real")
88  * page tables.
89  *
90  * spgd_addr() takes the virtual address and returns a pointer to the top-level
91  * page directory entry (PGD) for that address.  Since we keep track of several
92  * page tables, the "i" argument tells us which one we're interested in (it's
93  * usually the current one).
94  */
95 static pgd_t *spgd_addr(struct lg_cpu *cpu, u32 i, unsigned long vaddr)
96 {
97         unsigned int index = pgd_index(vaddr);
98
99 #ifndef CONFIG_X86_PAE
100         /* We kill any Guest trying to touch the Switcher addresses. */
101         if (index >= SWITCHER_PGD_INDEX) {
102                 kill_guest(cpu, "attempt to access switcher pages");
103                 index = 0;
104         }
105 #endif
106         /* Return a pointer index'th pgd entry for the i'th page table. */
107         return &cpu->lg->pgdirs[i].pgdir[index];
108 }
109
110 #ifdef CONFIG_X86_PAE
111 /*
112  * This routine then takes the PGD entry given above, which contains the
113  * address of the PMD page.  It then returns a pointer to the PMD entry for the
114  * given address.
115  */
116 static pmd_t *spmd_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr)
117 {
118         unsigned int index = pmd_index(vaddr);
119         pmd_t *page;
120
121         /* We kill any Guest trying to touch the Switcher addresses. */
122         if (pgd_index(vaddr) == SWITCHER_PGD_INDEX &&
123                                         index >= SWITCHER_PMD_INDEX) {
124                 kill_guest(cpu, "attempt to access switcher pages");
125                 index = 0;
126         }
127
128         /* You should never call this if the PGD entry wasn't valid */
129         BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
130         page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
131
132         return &page[index];
133 }
134 #endif
135
136 /*
137  * This routine then takes the page directory entry returned above, which
138  * contains the address of the page table entry (PTE) page.  It then returns a
139  * pointer to the PTE entry for the given address.
140  */
141 static pte_t *spte_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr)
142 {
143 #ifdef CONFIG_X86_PAE
144         pmd_t *pmd = spmd_addr(cpu, spgd, vaddr);
145         pte_t *page = __va(pmd_pfn(*pmd) << PAGE_SHIFT);
146
147         /* You should never call this if the PMD entry wasn't valid */
148         BUG_ON(!(pmd_flags(*pmd) & _PAGE_PRESENT));
149 #else
150         pte_t *page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
151         /* You should never call this if the PGD entry wasn't valid */
152         BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
153 #endif
154
155         return &page[pte_index(vaddr)];
156 }
157
158 /*
159  * These functions are just like the above two, except they access the Guest
160  * page tables.  Hence they return a Guest address.
161  */
162 static unsigned long gpgd_addr(struct lg_cpu *cpu, unsigned long vaddr)
163 {
164         unsigned int index = vaddr >> (PGDIR_SHIFT);
165         return cpu->lg->pgdirs[cpu->cpu_pgd].gpgdir + index * sizeof(pgd_t);
166 }
167
168 #ifdef CONFIG_X86_PAE
169 /* Follow the PGD to the PMD. */
170 static unsigned long gpmd_addr(pgd_t gpgd, unsigned long vaddr)
171 {
172         unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
173         BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
174         return gpage + pmd_index(vaddr) * sizeof(pmd_t);
175 }
176
177 /* Follow the PMD to the PTE. */
178 static unsigned long gpte_addr(struct lg_cpu *cpu,
179                                pmd_t gpmd, unsigned long vaddr)
180 {
181         unsigned long gpage = pmd_pfn(gpmd) << PAGE_SHIFT;
182
183         BUG_ON(!(pmd_flags(gpmd) & _PAGE_PRESENT));
184         return gpage + pte_index(vaddr) * sizeof(pte_t);
185 }
186 #else
187 /* Follow the PGD to the PTE (no mid-level for !PAE). */
188 static unsigned long gpte_addr(struct lg_cpu *cpu,
189                                 pgd_t gpgd, unsigned long vaddr)
190 {
191         unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
192
193         BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
194         return gpage + pte_index(vaddr) * sizeof(pte_t);
195 }
196 #endif
197 /*:*/
198
199 /*M:014
200  * get_pfn is slow: we could probably try to grab batches of pages here as
201  * an optimization (ie. pre-faulting).
202 :*/
203
204 /*H:350
205  * This routine takes a page number given by the Guest and converts it to
206  * an actual, physical page number.  It can fail for several reasons: the
207  * virtual address might not be mapped by the Launcher, the write flag is set
208  * and the page is read-only, or the write flag was set and the page was
209  * shared so had to be copied, but we ran out of memory.
210  *
211  * This holds a reference to the page, so release_pte() is careful to put that
212  * back.
213  */
214 static unsigned long get_pfn(unsigned long virtpfn, int write)
215 {
216         struct page *page;
217
218         /* gup me one page at this address please! */
219         if (get_user_pages_fast(virtpfn << PAGE_SHIFT, 1, write, &page) == 1)
220                 return page_to_pfn(page);
221
222         /* This value indicates failure. */
223         return -1UL;
224 }
225
226 /*H:340
227  * Converting a Guest page table entry to a shadow (ie. real) page table
228  * entry can be a little tricky.  The flags are (almost) the same, but the
229  * Guest PTE contains a virtual page number: the CPU needs the real page
230  * number.
231  */
232 static pte_t gpte_to_spte(struct lg_cpu *cpu, pte_t gpte, int write)
233 {
234         unsigned long pfn, base, flags;
235
236         /*
237          * The Guest sets the global flag, because it thinks that it is using
238          * PGE.  We only told it to use PGE so it would tell us whether it was
239          * flushing a kernel mapping or a userspace mapping.  We don't actually
240          * use the global bit, so throw it away.
241          */
242         flags = (pte_flags(gpte) & ~_PAGE_GLOBAL);
243
244         /* The Guest's pages are offset inside the Launcher. */
245         base = (unsigned long)cpu->lg->mem_base / PAGE_SIZE;
246
247         /*
248          * We need a temporary "unsigned long" variable to hold the answer from
249          * get_pfn(), because it returns 0xFFFFFFFF on failure, which wouldn't
250          * fit in spte.pfn.  get_pfn() finds the real physical number of the
251          * page, given the virtual number.
252          */
253         pfn = get_pfn(base + pte_pfn(gpte), write);
254         if (pfn == -1UL) {
255                 kill_guest(cpu, "failed to get page %lu", pte_pfn(gpte));
256                 /*
257                  * When we destroy the Guest, we'll go through the shadow page
258                  * tables and release_pte() them.  Make sure we don't think
259                  * this one is valid!
260                  */
261                 flags = 0;
262         }
263         /* Now we assemble our shadow PTE from the page number and flags. */
264         return pfn_pte(pfn, __pgprot(flags));
265 }
266
267 /*H:460 And to complete the chain, release_pte() looks like this: */
268 static void release_pte(pte_t pte)
269 {
270         /*
271          * Remember that get_user_pages_fast() took a reference to the page, in
272          * get_pfn()?  We have to put it back now.
273          */
274         if (pte_flags(pte) & _PAGE_PRESENT)
275                 put_page(pte_page(pte));
276 }
277 /*:*/
278
279 static void check_gpte(struct lg_cpu *cpu, pte_t gpte)
280 {
281         if ((pte_flags(gpte) & _PAGE_PSE) ||
282             pte_pfn(gpte) >= cpu->lg->pfn_limit)
283                 kill_guest(cpu, "bad page table entry");
284 }
285
286 static void check_gpgd(struct lg_cpu *cpu, pgd_t gpgd)
287 {
288         if ((pgd_flags(gpgd) & ~CHECK_GPGD_MASK) ||
289            (pgd_pfn(gpgd) >= cpu->lg->pfn_limit))
290                 kill_guest(cpu, "bad page directory entry");
291 }
292
293 #ifdef CONFIG_X86_PAE
294 static void check_gpmd(struct lg_cpu *cpu, pmd_t gpmd)
295 {
296         if ((pmd_flags(gpmd) & ~_PAGE_TABLE) ||
297            (pmd_pfn(gpmd) >= cpu->lg->pfn_limit))
298                 kill_guest(cpu, "bad page middle directory entry");
299 }
300 #endif
301
302 /*H:330
303  * (i) Looking up a page table entry when the Guest faults.
304  *
305  * We saw this call in run_guest(): when we see a page fault in the Guest, we
306  * come here.  That's because we only set up the shadow page tables lazily as
307  * they're needed, so we get page faults all the time and quietly fix them up
308  * and return to the Guest without it knowing.
309  *
310  * If we fixed up the fault (ie. we mapped the address), this routine returns
311  * true.  Otherwise, it was a real fault and we need to tell the Guest.
312  */
313 bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
314 {
315         pgd_t gpgd;
316         pgd_t *spgd;
317         unsigned long gpte_ptr;
318         pte_t gpte;
319         pte_t *spte;
320
321         /* Mid level for PAE. */
322 #ifdef CONFIG_X86_PAE
323         pmd_t *spmd;
324         pmd_t gpmd;
325 #endif
326
327         /* First step: get the top-level Guest page table entry. */
328         gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
329         /* Toplevel not present?  We can't map it in. */
330         if (!(pgd_flags(gpgd) & _PAGE_PRESENT))
331                 return false;
332
333         /* Now look at the matching shadow entry. */
334         spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr);
335         if (!(pgd_flags(*spgd) & _PAGE_PRESENT)) {
336                 /* No shadow entry: allocate a new shadow PTE page. */
337                 unsigned long ptepage = get_zeroed_page(GFP_KERNEL);
338                 /*
339                  * This is not really the Guest's fault, but killing it is
340                  * simple for this corner case.
341                  */
342                 if (!ptepage) {
343                         kill_guest(cpu, "out of memory allocating pte page");
344                         return false;
345                 }
346                 /* We check that the Guest pgd is OK. */
347                 check_gpgd(cpu, gpgd);
348                 /*
349                  * And we copy the flags to the shadow PGD entry.  The page
350                  * number in the shadow PGD is the page we just allocated.
351                  */
352                 set_pgd(spgd, __pgd(__pa(ptepage) | pgd_flags(gpgd)));
353         }
354
355 #ifdef CONFIG_X86_PAE
356         gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t);
357         /* Middle level not present?  We can't map it in. */
358         if (!(pmd_flags(gpmd) & _PAGE_PRESENT))
359                 return false;
360
361         /* Now look at the matching shadow entry. */
362         spmd = spmd_addr(cpu, *spgd, vaddr);
363
364         if (!(pmd_flags(*spmd) & _PAGE_PRESENT)) {
365                 /* No shadow entry: allocate a new shadow PTE page. */
366                 unsigned long ptepage = get_zeroed_page(GFP_KERNEL);
367
368                 /*
369                  * This is not really the Guest's fault, but killing it is
370                  * simple for this corner case.
371                  */
372                 if (!ptepage) {
373                         kill_guest(cpu, "out of memory allocating pte page");
374                         return false;
375                 }
376
377                 /* We check that the Guest pmd is OK. */
378                 check_gpmd(cpu, gpmd);
379
380                 /*
381                  * And we copy the flags to the shadow PMD entry.  The page
382                  * number in the shadow PMD is the page we just allocated.
383                  */
384                 set_pmd(spmd, __pmd(__pa(ptepage) | pmd_flags(gpmd)));
385         }
386
387         /*
388          * OK, now we look at the lower level in the Guest page table: keep its
389          * address, because we might update it later.
390          */
391         gpte_ptr = gpte_addr(cpu, gpmd, vaddr);
392 #else
393         /*
394          * OK, now we look at the lower level in the Guest page table: keep its
395          * address, because we might update it later.
396          */
397         gpte_ptr = gpte_addr(cpu, gpgd, vaddr);
398 #endif
399
400         /* Read the actual PTE value. */
401         gpte = lgread(cpu, gpte_ptr, pte_t);
402
403         /* If this page isn't in the Guest page tables, we can't page it in. */
404         if (!(pte_flags(gpte) & _PAGE_PRESENT))
405                 return false;
406
407         /*
408          * Check they're not trying to write to a page the Guest wants
409          * read-only (bit 2 of errcode == write).
410          */
411         if ((errcode & 2) && !(pte_flags(gpte) & _PAGE_RW))
412                 return false;
413
414         /* User access to a kernel-only page? (bit 3 == user access) */
415         if ((errcode & 4) && !(pte_flags(gpte) & _PAGE_USER))
416                 return false;
417
418         /*
419          * Check that the Guest PTE flags are OK, and the page number is below
420          * the pfn_limit (ie. not mapping the Launcher binary).
421          */
422         check_gpte(cpu, gpte);
423
424         /* Add the _PAGE_ACCESSED and (for a write) _PAGE_DIRTY flag */
425         gpte = pte_mkyoung(gpte);
426         if (errcode & 2)
427                 gpte = pte_mkdirty(gpte);
428
429         /* Get the pointer to the shadow PTE entry we're going to set. */
430         spte = spte_addr(cpu, *spgd, vaddr);
431
432         /*
433          * If there was a valid shadow PTE entry here before, we release it.
434          * This can happen with a write to a previously read-only entry.
435          */
436         release_pte(*spte);
437
438         /*
439          * If this is a write, we insist that the Guest page is writable (the
440          * final arg to gpte_to_spte()).
441          */
442         if (pte_dirty(gpte))
443                 *spte = gpte_to_spte(cpu, gpte, 1);
444         else
445                 /*
446                  * If this is a read, don't set the "writable" bit in the page
447                  * table entry, even if the Guest says it's writable.  That way
448                  * we will come back here when a write does actually occur, so
449                  * we can update the Guest's _PAGE_DIRTY flag.
450                  */
451                 set_pte(spte, gpte_to_spte(cpu, pte_wrprotect(gpte), 0));
452
453         /*
454          * Finally, we write the Guest PTE entry back: we've set the
455          * _PAGE_ACCESSED and maybe the _PAGE_DIRTY flags.
456          */
457         lgwrite(cpu, gpte_ptr, pte_t, gpte);
458
459         /*
460          * The fault is fixed, the page table is populated, the mapping
461          * manipulated, the result returned and the code complete.  A small
462          * delay and a trace of alliteration are the only indications the Guest
463          * has that a page fault occurred at all.
464          */
465         return true;
466 }
467
468 /*H:360
469  * (ii) Making sure the Guest stack is mapped.
470  *
471  * Remember that direct traps into the Guest need a mapped Guest kernel stack.
472  * pin_stack_pages() calls us here: we could simply call demand_page(), but as
473  * we've seen that logic is quite long, and usually the stack pages are already
474  * mapped, so it's overkill.
475  *
476  * This is a quick version which answers the question: is this virtual address
477  * mapped by the shadow page tables, and is it writable?
478  */
479 static bool page_writable(struct lg_cpu *cpu, unsigned long vaddr)
480 {
481         pgd_t *spgd;
482         unsigned long flags;
483
484 #ifdef CONFIG_X86_PAE
485         pmd_t *spmd;
486 #endif
487         /* Look at the current top level entry: is it present? */
488         spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr);
489         if (!(pgd_flags(*spgd) & _PAGE_PRESENT))
490                 return false;
491
492 #ifdef CONFIG_X86_PAE
493         spmd = spmd_addr(cpu, *spgd, vaddr);
494         if (!(pmd_flags(*spmd) & _PAGE_PRESENT))
495                 return false;
496 #endif
497
498         /*
499          * Check the flags on the pte entry itself: it must be present and
500          * writable.
501          */
502         flags = pte_flags(*(spte_addr(cpu, *spgd, vaddr)));
503
504         return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW);
505 }
506
507 /*
508  * So, when pin_stack_pages() asks us to pin a page, we check if it's already
509  * in the page tables, and if not, we call demand_page() with error code 2
510  * (meaning "write").
511  */
512 void pin_page(struct lg_cpu *cpu, unsigned long vaddr)
513 {
514         if (!page_writable(cpu, vaddr) && !demand_page(cpu, vaddr, 2))
515                 kill_guest(cpu, "bad stack page %#lx", vaddr);
516 }
517 /*:*/
518
519 #ifdef CONFIG_X86_PAE
520 static void release_pmd(pmd_t *spmd)
521 {
522         /* If the entry's not present, there's nothing to release. */
523         if (pmd_flags(*spmd) & _PAGE_PRESENT) {
524                 unsigned int i;
525                 pte_t *ptepage = __va(pmd_pfn(*spmd) << PAGE_SHIFT);
526                 /* For each entry in the page, we might need to release it. */
527                 for (i = 0; i < PTRS_PER_PTE; i++)
528                         release_pte(ptepage[i]);
529                 /* Now we can free the page of PTEs */
530                 free_page((long)ptepage);
531                 /* And zero out the PMD entry so we never release it twice. */
532                 set_pmd(spmd, __pmd(0));
533         }
534 }
535
536 static void release_pgd(pgd_t *spgd)
537 {
538         /* If the entry's not present, there's nothing to release. */
539         if (pgd_flags(*spgd) & _PAGE_PRESENT) {
540                 unsigned int i;
541                 pmd_t *pmdpage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
542
543                 for (i = 0; i < PTRS_PER_PMD; i++)
544                         release_pmd(&pmdpage[i]);
545
546                 /* Now we can free the page of PMDs */
547                 free_page((long)pmdpage);
548                 /* And zero out the PGD entry so we never release it twice. */
549                 set_pgd(spgd, __pgd(0));
550         }
551 }
552
553 #else /* !CONFIG_X86_PAE */
554 /*H:450
555  * If we chase down the release_pgd() code, the non-PAE version looks like
556  * this.  The PAE version is almost identical, but instead of calling
557  * release_pte it calls release_pmd(), which looks much like this.
558  */
559 static void release_pgd(pgd_t *spgd)
560 {
561         /* If the entry's not present, there's nothing to release. */
562         if (pgd_flags(*spgd) & _PAGE_PRESENT) {
563                 unsigned int i;
564                 /*
565                  * Converting the pfn to find the actual PTE page is easy: turn
566                  * the page number into a physical address, then convert to a
567                  * virtual address (easy for kernel pages like this one).
568                  */
569                 pte_t *ptepage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
570                 /* For each entry in the page, we might need to release it. */
571                 for (i = 0; i < PTRS_PER_PTE; i++)
572                         release_pte(ptepage[i]);
573                 /* Now we can free the page of PTEs */
574                 free_page((long)ptepage);
575                 /* And zero out the PGD entry so we never release it twice. */
576                 *spgd = __pgd(0);
577         }
578 }
579 #endif
580
581 /*H:445
582  * We saw flush_user_mappings() twice: once from the flush_user_mappings()
583  * hypercall and once in new_pgdir() when we re-used a top-level pgdir page.
584  * It simply releases every PTE page from 0 up to the Guest's kernel address.
585  */
586 static void flush_user_mappings(struct lguest *lg, int idx)
587 {
588         unsigned int i;
589         /* Release every pgd entry up to the kernel's address. */
590         for (i = 0; i < pgd_index(lg->kernel_address); i++)
591                 release_pgd(lg->pgdirs[idx].pgdir + i);
592 }
593
594 /*H:440
595  * (v) Flushing (throwing away) page tables,
596  *
597  * The Guest has a hypercall to throw away the page tables: it's used when a
598  * large number of mappings have been changed.
599  */
600 void guest_pagetable_flush_user(struct lg_cpu *cpu)
601 {
602         /* Drop the userspace part of the current page table. */
603         flush_user_mappings(cpu->lg, cpu->cpu_pgd);
604 }
605 /*:*/
606
607 /* We walk down the guest page tables to get a guest-physical address */
608 unsigned long guest_pa(struct lg_cpu *cpu, unsigned long vaddr)
609 {
610         pgd_t gpgd;
611         pte_t gpte;
612 #ifdef CONFIG_X86_PAE
613         pmd_t gpmd;
614 #endif
615         /* First step: get the top-level Guest page table entry. */
616         gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
617         /* Toplevel not present?  We can't map it in. */
618         if (!(pgd_flags(gpgd) & _PAGE_PRESENT)) {
619                 kill_guest(cpu, "Bad address %#lx", vaddr);
620                 return -1UL;
621         }
622
623 #ifdef CONFIG_X86_PAE
624         gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t);
625         if (!(pmd_flags(gpmd) & _PAGE_PRESENT))
626                 kill_guest(cpu, "Bad address %#lx", vaddr);
627         gpte = lgread(cpu, gpte_addr(cpu, gpmd, vaddr), pte_t);
628 #else
629         gpte = lgread(cpu, gpte_addr(cpu, gpgd, vaddr), pte_t);
630 #endif
631         if (!(pte_flags(gpte) & _PAGE_PRESENT))
632                 kill_guest(cpu, "Bad address %#lx", vaddr);
633
634         return pte_pfn(gpte) * PAGE_SIZE | (vaddr & ~PAGE_MASK);
635 }
636
637 /*
638  * We keep several page tables.  This is a simple routine to find the page
639  * table (if any) corresponding to this top-level address the Guest has given
640  * us.
641  */
642 static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable)
643 {
644         unsigned int i;
645         for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
646                 if (lg->pgdirs[i].pgdir && lg->pgdirs[i].gpgdir == pgtable)
647                         break;
648         return i;
649 }
650
651 /*H:435
652  * And this is us, creating the new page directory.  If we really do
653  * allocate a new one (and so the kernel parts are not there), we set
654  * blank_pgdir.
655  */
656 static unsigned int new_pgdir(struct lg_cpu *cpu,
657                               unsigned long gpgdir,
658                               int *blank_pgdir)
659 {
660         unsigned int next;
661 #ifdef CONFIG_X86_PAE
662         pmd_t *pmd_table;
663 #endif
664
665         /*
666          * We pick one entry at random to throw out.  Choosing the Least
667          * Recently Used might be better, but this is easy.
668          */
669         next = random32() % ARRAY_SIZE(cpu->lg->pgdirs);
670         /* If it's never been allocated at all before, try now. */
671         if (!cpu->lg->pgdirs[next].pgdir) {
672                 cpu->lg->pgdirs[next].pgdir =
673                                         (pgd_t *)get_zeroed_page(GFP_KERNEL);
674                 /* If the allocation fails, just keep using the one we have */
675                 if (!cpu->lg->pgdirs[next].pgdir)
676                         next = cpu->cpu_pgd;
677                 else {
678 #ifdef CONFIG_X86_PAE
679                         /*
680                          * In PAE mode, allocate a pmd page and populate the
681                          * last pgd entry.
682                          */
683                         pmd_table = (pmd_t *)get_zeroed_page(GFP_KERNEL);
684                         if (!pmd_table) {
685                                 free_page((long)cpu->lg->pgdirs[next].pgdir);
686                                 set_pgd(cpu->lg->pgdirs[next].pgdir, __pgd(0));
687                                 next = cpu->cpu_pgd;
688                         } else {
689                                 set_pgd(cpu->lg->pgdirs[next].pgdir +
690                                         SWITCHER_PGD_INDEX,
691                                         __pgd(__pa(pmd_table) | _PAGE_PRESENT));
692                                 /*
693                                  * This is a blank page, so there are no kernel
694                                  * mappings: caller must map the stack!
695                                  */
696                                 *blank_pgdir = 1;
697                         }
698 #else
699                         *blank_pgdir = 1;
700 #endif
701                 }
702         }
703         /* Record which Guest toplevel this shadows. */
704         cpu->lg->pgdirs[next].gpgdir = gpgdir;
705         /* Release all the non-kernel mappings. */
706         flush_user_mappings(cpu->lg, next);
707
708         return next;
709 }
710
711 /*H:430
712  * (iv) Switching page tables
713  *
714  * Now we've seen all the page table setting and manipulation, let's see
715  * what happens when the Guest changes page tables (ie. changes the top-level
716  * pgdir).  This occurs on almost every context switch.
717  */
718 void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable)
719 {
720         int newpgdir, repin = 0;
721
722         /* Look to see if we have this one already. */
723         newpgdir = find_pgdir(cpu->lg, pgtable);
724         /*
725          * If not, we allocate or mug an existing one: if it's a fresh one,
726          * repin gets set to 1.
727          */
728         if (newpgdir == ARRAY_SIZE(cpu->lg->pgdirs))
729                 newpgdir = new_pgdir(cpu, pgtable, &repin);
730         /* Change the current pgd index to the new one. */
731         cpu->cpu_pgd = newpgdir;
732         /* If it was completely blank, we map in the Guest kernel stack */
733         if (repin)
734                 pin_stack_pages(cpu);
735 }
736
737 /*H:470
738  * Finally, a routine which throws away everything: all PGD entries in all
739  * the shadow page tables, including the Guest's kernel mappings.  This is used
740  * when we destroy the Guest.
741  */
742 static void release_all_pagetables(struct lguest *lg)
743 {
744         unsigned int i, j;
745
746         /* Every shadow pagetable this Guest has */
747         for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
748                 if (lg->pgdirs[i].pgdir) {
749 #ifdef CONFIG_X86_PAE
750                         pgd_t *spgd;
751                         pmd_t *pmdpage;
752                         unsigned int k;
753
754                         /* Get the last pmd page. */
755                         spgd = lg->pgdirs[i].pgdir + SWITCHER_PGD_INDEX;
756                         pmdpage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
757
758                         /*
759                          * And release the pmd entries of that pmd page,
760                          * except for the switcher pmd.
761                          */
762                         for (k = 0; k < SWITCHER_PMD_INDEX; k++)
763                                 release_pmd(&pmdpage[k]);
764 #endif
765                         /* Every PGD entry except the Switcher at the top */
766                         for (j = 0; j < SWITCHER_PGD_INDEX; j++)
767                                 release_pgd(lg->pgdirs[i].pgdir + j);
768                 }
769 }
770
771 /*
772  * We also throw away everything when a Guest tells us it's changed a kernel
773  * mapping.  Since kernel mappings are in every page table, it's easiest to
774  * throw them all away.  This traps the Guest in amber for a while as
775  * everything faults back in, but it's rare.
776  */
777 void guest_pagetable_clear_all(struct lg_cpu *cpu)
778 {
779         release_all_pagetables(cpu->lg);
780         /* We need the Guest kernel stack mapped again. */
781         pin_stack_pages(cpu);
782 }
783 /*:*/
784
785 /*M:009
786  * Since we throw away all mappings when a kernel mapping changes, our
787  * performance sucks for guests using highmem.  In fact, a guest with
788  * PAGE_OFFSET 0xc0000000 (the default) and more than about 700MB of RAM is
789  * usually slower than a Guest with less memory.
790  *
791  * This, of course, cannot be fixed.  It would take some kind of... well, I
792  * don't know, but the term "puissant code-fu" comes to mind.
793 :*/
794
795 /*H:420
796  * This is the routine which actually sets the page table entry for then
797  * "idx"'th shadow page table.
798  *
799  * Normally, we can just throw out the old entry and replace it with 0: if they
800  * use it demand_page() will put the new entry in.  We need to do this anyway:
801  * The Guest expects _PAGE_ACCESSED to be set on its PTE the first time a page
802  * is read from, and _PAGE_DIRTY when it's written to.
803  *
804  * But Avi Kivity pointed out that most Operating Systems (Linux included) set
805  * these bits on PTEs immediately anyway.  This is done to save the CPU from
806  * having to update them, but it helps us the same way: if they set
807  * _PAGE_ACCESSED then we can put a read-only PTE entry in immediately, and if
808  * they set _PAGE_DIRTY then we can put a writable PTE entry in immediately.
809  */
810 static void do_set_pte(struct lg_cpu *cpu, int idx,
811                        unsigned long vaddr, pte_t gpte)
812 {
813         /* Look up the matching shadow page directory entry. */
814         pgd_t *spgd = spgd_addr(cpu, idx, vaddr);
815 #ifdef CONFIG_X86_PAE
816         pmd_t *spmd;
817 #endif
818
819         /* If the top level isn't present, there's no entry to update. */
820         if (pgd_flags(*spgd) & _PAGE_PRESENT) {
821 #ifdef CONFIG_X86_PAE
822                 spmd = spmd_addr(cpu, *spgd, vaddr);
823                 if (pmd_flags(*spmd) & _PAGE_PRESENT) {
824 #endif
825                         /* Otherwise, start by releasing the existing entry. */
826                         pte_t *spte = spte_addr(cpu, *spgd, vaddr);
827                         release_pte(*spte);
828
829                         /*
830                          * If they're setting this entry as dirty or accessed,
831                          * we might as well put that entry they've given us in
832                          * now.  This shaves 10% off a copy-on-write
833                          * micro-benchmark.
834                          */
835                         if (pte_flags(gpte) & (_PAGE_DIRTY | _PAGE_ACCESSED)) {
836                                 check_gpte(cpu, gpte);
837                                 set_pte(spte,
838                                         gpte_to_spte(cpu, gpte,
839                                                 pte_flags(gpte) & _PAGE_DIRTY));
840                         } else {
841                                 /*
842                                  * Otherwise kill it and we can demand_page()
843                                  * it in later.
844                                  */
845                                 set_pte(spte, __pte(0));
846                         }
847 #ifdef CONFIG_X86_PAE
848                 }
849 #endif
850         }
851 }
852
853 /*H:410
854  * Updating a PTE entry is a little trickier.
855  *
856  * We keep track of several different page tables (the Guest uses one for each
857  * process, so it makes sense to cache at least a few).  Each of these have
858  * identical kernel parts: ie. every mapping above PAGE_OFFSET is the same for
859  * all processes.  So when the page table above that address changes, we update
860  * all the page tables, not just the current one.  This is rare.
861  *
862  * The benefit is that when we have to track a new page table, we can keep all
863  * the kernel mappings.  This speeds up context switch immensely.
864  */
865 void guest_set_pte(struct lg_cpu *cpu,
866                    unsigned long gpgdir, unsigned long vaddr, pte_t gpte)
867 {
868         /*
869          * Kernel mappings must be changed on all top levels.  Slow, but doesn't
870          * happen often.
871          */
872         if (vaddr >= cpu->lg->kernel_address) {
873                 unsigned int i;
874                 for (i = 0; i < ARRAY_SIZE(cpu->lg->pgdirs); i++)
875                         if (cpu->lg->pgdirs[i].pgdir)
876                                 do_set_pte(cpu, i, vaddr, gpte);
877         } else {
878                 /* Is this page table one we have a shadow for? */
879                 int pgdir = find_pgdir(cpu->lg, gpgdir);
880                 if (pgdir != ARRAY_SIZE(cpu->lg->pgdirs))
881                         /* If so, do the update. */
882                         do_set_pte(cpu, pgdir, vaddr, gpte);
883         }
884 }
885
886 /*H:400
887  * (iii) Setting up a page table entry when the Guest tells us one has changed.
888  *
889  * Just like we did in interrupts_and_traps.c, it makes sense for us to deal
890  * with the other side of page tables while we're here: what happens when the
891  * Guest asks for a page table to be updated?
892  *
893  * We already saw that demand_page() will fill in the shadow page tables when
894  * needed, so we can simply remove shadow page table entries whenever the Guest
895  * tells us they've changed.  When the Guest tries to use the new entry it will
896  * fault and demand_page() will fix it up.
897  *
898  * So with that in mind here's our code to update a (top-level) PGD entry:
899  */
900 void guest_set_pgd(struct lguest *lg, unsigned long gpgdir, u32 idx)
901 {
902         int pgdir;
903
904         if (idx >= SWITCHER_PGD_INDEX)
905                 return;
906
907         /* If they're talking about a page table we have a shadow for... */
908         pgdir = find_pgdir(lg, gpgdir);
909         if (pgdir < ARRAY_SIZE(lg->pgdirs))
910                 /* ... throw it away. */
911                 release_pgd(lg->pgdirs[pgdir].pgdir + idx);
912 }
913
914 #ifdef CONFIG_X86_PAE
915 /* For setting a mid-level, we just throw everything away.  It's easy. */
916 void guest_set_pmd(struct lguest *lg, unsigned long pmdp, u32 idx)
917 {
918         guest_pagetable_clear_all(&lg->cpus[0]);
919 }
920 #endif
921
922 /*H:505
923  * To get through boot, we construct simple identity page mappings (which
924  * set virtual == physical) and linear mappings which will get the Guest far
925  * enough into the boot to create its own.  The linear mapping means we
926  * simplify the Guest boot, but it makes assumptions about their PAGE_OFFSET,
927  * as you'll see.
928  *
929  * We lay them out of the way, just below the initrd (which is why we need to
930  * know its size here).
931  */
932 static unsigned long setup_pagetables(struct lguest *lg,
933                                       unsigned long mem,
934                                       unsigned long initrd_size)
935 {
936         pgd_t __user *pgdir;
937         pte_t __user *linear;
938         unsigned long mem_base = (unsigned long)lg->mem_base;
939         unsigned int mapped_pages, i, linear_pages;
940 #ifdef CONFIG_X86_PAE
941         pmd_t __user *pmds;
942         unsigned int j;
943         pgd_t pgd;
944         pmd_t pmd;
945 #else
946         unsigned int phys_linear;
947 #endif
948
949         /*
950          * We have mapped_pages frames to map, so we need linear_pages page
951          * tables to map them.
952          */
953         mapped_pages = mem / PAGE_SIZE;
954         linear_pages = (mapped_pages + PTRS_PER_PTE - 1) / PTRS_PER_PTE;
955
956         /* We put the toplevel page directory page at the top of memory. */
957         pgdir = (pgd_t *)(mem + mem_base - initrd_size - PAGE_SIZE);
958
959         /* Now we use the next linear_pages pages as pte pages */
960         linear = (void *)pgdir - linear_pages * PAGE_SIZE;
961
962 #ifdef CONFIG_X86_PAE
963         /*
964          * And the single mid page goes below that.  We only use one, but
965          * that's enough to map 1G, which definitely gets us through boot.
966          */
967         pmds = (void *)linear - PAGE_SIZE;
968 #endif
969         /*
970          * Linear mapping is easy: put every page's address into the
971          * mapping in order.
972          */
973         for (i = 0; i < mapped_pages; i++) {
974                 pte_t pte;
975                 pte = pfn_pte(i, __pgprot(_PAGE_PRESENT|_PAGE_RW|_PAGE_USER));
976                 if (copy_to_user(&linear[i], &pte, sizeof(pte)) != 0)
977                         return -EFAULT;
978         }
979
980 #ifdef CONFIG_X86_PAE
981         /*
982          * Make the Guest PMD entries point to the corresponding place in the
983          * linear mapping (up to one page worth of PMD).
984          */
985         for (i = j = 0; i < mapped_pages && j < PTRS_PER_PMD;
986              i += PTRS_PER_PTE, j++) {
987                 pmd = pfn_pmd(((unsigned long)&linear[i] - mem_base)/PAGE_SIZE,
988                               __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER));
989
990                 if (copy_to_user(&pmds[j], &pmd, sizeof(pmd)) != 0)
991                         return -EFAULT;
992         }
993
994         /* One PGD entry, pointing to that PMD page. */
995         pgd = __pgd(((unsigned long)pmds - mem_base) | _PAGE_PRESENT);
996         /* Copy it in as the first PGD entry (ie. addresses 0-1G). */
997         if (copy_to_user(&pgdir[0], &pgd, sizeof(pgd)) != 0)
998                 return -EFAULT;
999         /*
1000          * And the other PGD entry to make the linear mapping at PAGE_OFFSET
1001          */
1002         if (copy_to_user(&pgdir[KERNEL_PGD_BOUNDARY], &pgd, sizeof(pgd)))
1003                 return -EFAULT;
1004 #else
1005         /*
1006          * The top level points to the linear page table pages above.
1007          * We setup the identity and linear mappings here.
1008          */
1009         phys_linear = (unsigned long)linear - mem_base;
1010         for (i = 0; i < mapped_pages; i += PTRS_PER_PTE) {
1011                 pgd_t pgd;
1012                 /*
1013                  * Create a PGD entry which points to the right part of the
1014                  * linear PTE pages.
1015                  */
1016                 pgd = __pgd((phys_linear + i * sizeof(pte_t)) |
1017                             (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER));
1018
1019                 /*
1020                  * Copy it into the PGD page at 0 and PAGE_OFFSET.
1021                  */
1022                 if (copy_to_user(&pgdir[i / PTRS_PER_PTE], &pgd, sizeof(pgd))
1023                     || copy_to_user(&pgdir[pgd_index(PAGE_OFFSET)
1024                                            + i / PTRS_PER_PTE],
1025                                     &pgd, sizeof(pgd)))
1026                         return -EFAULT;
1027         }
1028 #endif
1029
1030         /*
1031          * We return the top level (guest-physical) address: we remember where
1032          * this is to write it into lguest_data when the Guest initializes.
1033          */
1034         return (unsigned long)pgdir - mem_base;
1035 }
1036
1037 /*H:500
1038  * (vii) Setting up the page tables initially.
1039  *
1040  * When a Guest is first created, the Launcher tells us where the toplevel of
1041  * its first page table is.  We set some things up here:
1042  */
1043 int init_guest_pagetable(struct lguest *lg)
1044 {
1045         u64 mem;
1046         u32 initrd_size;
1047         struct boot_params __user *boot = (struct boot_params *)lg->mem_base;
1048 #ifdef CONFIG_X86_PAE
1049         pgd_t *pgd;
1050         pmd_t *pmd_table;
1051 #endif
1052         /*
1053          * Get the Guest memory size and the ramdisk size from the boot header
1054          * located at lg->mem_base (Guest address 0).
1055          */
1056         if (copy_from_user(&mem, &boot->e820_map[0].size, sizeof(mem))
1057             || get_user(initrd_size, &boot->hdr.ramdisk_size))
1058                 return -EFAULT;
1059
1060         /*
1061          * We start on the first shadow page table, and give it a blank PGD
1062          * page.
1063          */
1064         lg->pgdirs[0].gpgdir = setup_pagetables(lg, mem, initrd_size);
1065         if (IS_ERR_VALUE(lg->pgdirs[0].gpgdir))
1066                 return lg->pgdirs[0].gpgdir;
1067         lg->pgdirs[0].pgdir = (pgd_t *)get_zeroed_page(GFP_KERNEL);
1068         if (!lg->pgdirs[0].pgdir)
1069                 return -ENOMEM;
1070
1071 #ifdef CONFIG_X86_PAE
1072         /* For PAE, we also create the initial mid-level. */
1073         pgd = lg->pgdirs[0].pgdir;
1074         pmd_table = (pmd_t *) get_zeroed_page(GFP_KERNEL);
1075         if (!pmd_table)
1076                 return -ENOMEM;
1077
1078         set_pgd(pgd + SWITCHER_PGD_INDEX,
1079                 __pgd(__pa(pmd_table) | _PAGE_PRESENT));
1080 #endif
1081
1082         /* This is the current page table. */
1083         lg->cpus[0].cpu_pgd = 0;
1084         return 0;
1085 }
1086
1087 /*H:508 When the Guest calls LHCALL_LGUEST_INIT we do more setup. */
1088 void page_table_guest_data_init(struct lg_cpu *cpu)
1089 {
1090         /* We get the kernel address: above this is all kernel memory. */
1091         if (get_user(cpu->lg->kernel_address,
1092                 &cpu->lg->lguest_data->kernel_address)
1093                 /*
1094                  * We tell the Guest that it can't use the top 2 or 4 MB
1095                  * of virtual addresses used by the Switcher.
1096                  */
1097                 || put_user(RESERVE_MEM * 1024 * 1024,
1098                         &cpu->lg->lguest_data->reserve_mem)
1099                 || put_user(cpu->lg->pgdirs[0].gpgdir,
1100                         &cpu->lg->lguest_data->pgdir))
1101                 kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data);
1102
1103         /*
1104          * In flush_user_mappings() we loop from 0 to
1105          * "pgd_index(lg->kernel_address)".  This assumes it won't hit the
1106          * Switcher mappings, so check that now.
1107          */
1108 #ifdef CONFIG_X86_PAE
1109         if (pgd_index(cpu->lg->kernel_address) == SWITCHER_PGD_INDEX &&
1110                 pmd_index(cpu->lg->kernel_address) == SWITCHER_PMD_INDEX)
1111 #else
1112         if (pgd_index(cpu->lg->kernel_address) >= SWITCHER_PGD_INDEX)
1113 #endif
1114                 kill_guest(cpu, "bad kernel address %#lx",
1115                                  cpu->lg->kernel_address);
1116 }
1117
1118 /* When a Guest dies, our cleanup is fairly simple. */
1119 void free_guest_pagetable(struct lguest *lg)
1120 {
1121         unsigned int i;
1122
1123         /* Throw away all page table pages. */
1124         release_all_pagetables(lg);
1125         /* Now free the top levels: free_page() can handle 0 just fine. */
1126         for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
1127                 free_page((long)lg->pgdirs[i].pgdir);
1128 }
1129
1130 /*H:480
1131  * (vi) Mapping the Switcher when the Guest is about to run.
1132  *
1133  * The Switcher and the two pages for this CPU need to be visible in the
1134  * Guest (and not the pages for other CPUs).  We have the appropriate PTE pages
1135  * for each CPU already set up, we just need to hook them in now we know which
1136  * Guest is about to run on this CPU.
1137  */
1138 void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages)
1139 {
1140         pte_t *switcher_pte_page = __this_cpu_read(switcher_pte_pages);
1141         pte_t regs_pte;
1142
1143 #ifdef CONFIG_X86_PAE
1144         pmd_t switcher_pmd;
1145         pmd_t *pmd_table;
1146
1147         switcher_pmd = pfn_pmd(__pa(switcher_pte_page) >> PAGE_SHIFT,
1148                                PAGE_KERNEL_EXEC);
1149
1150         /* Figure out where the pmd page is, by reading the PGD, and converting
1151          * it to a virtual address. */
1152         pmd_table = __va(pgd_pfn(cpu->lg->
1153                         pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX])
1154                                                                 << PAGE_SHIFT);
1155         /* Now write it into the shadow page table. */
1156         set_pmd(&pmd_table[SWITCHER_PMD_INDEX], switcher_pmd);
1157 #else
1158         pgd_t switcher_pgd;
1159
1160         /*
1161          * Make the last PGD entry for this Guest point to the Switcher's PTE
1162          * page for this CPU (with appropriate flags).
1163          */
1164         switcher_pgd = __pgd(__pa(switcher_pte_page) | __PAGE_KERNEL_EXEC);
1165
1166         cpu->lg->pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd;
1167
1168 #endif
1169         /*
1170          * We also change the Switcher PTE page.  When we're running the Guest,
1171          * we want the Guest's "regs" page to appear where the first Switcher
1172          * page for this CPU is.  This is an optimization: when the Switcher
1173          * saves the Guest registers, it saves them into the first page of this
1174          * CPU's "struct lguest_pages": if we make sure the Guest's register
1175          * page is already mapped there, we don't have to copy them out
1176          * again.
1177          */
1178         regs_pte = pfn_pte(__pa(cpu->regs_page) >> PAGE_SHIFT, PAGE_KERNEL);
1179         set_pte(&switcher_pte_page[pte_index((unsigned long)pages)], regs_pte);
1180 }
1181 /*:*/
1182
1183 static void free_switcher_pte_pages(void)
1184 {
1185         unsigned int i;
1186
1187         for_each_possible_cpu(i)
1188                 free_page((long)switcher_pte_page(i));
1189 }
1190
1191 /*H:520
1192  * Setting up the Switcher PTE page for given CPU is fairly easy, given
1193  * the CPU number and the "struct page"s for the Switcher code itself.
1194  *
1195  * Currently the Switcher is less than a page long, so "pages" is always 1.
1196  */
1197 static __init void populate_switcher_pte_page(unsigned int cpu,
1198                                               struct page *switcher_page[],
1199                                               unsigned int pages)
1200 {
1201         unsigned int i;
1202         pte_t *pte = switcher_pte_page(cpu);
1203
1204         /* The first entries are easy: they map the Switcher code. */
1205         for (i = 0; i < pages; i++) {
1206                 set_pte(&pte[i], mk_pte(switcher_page[i],
1207                                 __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED)));
1208         }
1209
1210         /* The only other thing we map is this CPU's pair of pages. */
1211         i = pages + cpu*2;
1212
1213         /* First page (Guest registers) is writable from the Guest */
1214         set_pte(&pte[i], pfn_pte(page_to_pfn(switcher_page[i]),
1215                          __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED|_PAGE_RW)));
1216
1217         /*
1218          * The second page contains the "struct lguest_ro_state", and is
1219          * read-only.
1220          */
1221         set_pte(&pte[i+1], pfn_pte(page_to_pfn(switcher_page[i+1]),
1222                            __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED)));
1223 }
1224
1225 /*
1226  * We've made it through the page table code.  Perhaps our tired brains are
1227  * still processing the details, or perhaps we're simply glad it's over.
1228  *
1229  * If nothing else, note that all this complexity in juggling shadow page tables
1230  * in sync with the Guest's page tables is for one reason: for most Guests this
1231  * page table dance determines how bad performance will be.  This is why Xen
1232  * uses exotic direct Guest pagetable manipulation, and why both Intel and AMD
1233  * have implemented shadow page table support directly into hardware.
1234  *
1235  * There is just one file remaining in the Host.
1236  */
1237
1238 /*H:510
1239  * At boot or module load time, init_pagetables() allocates and populates
1240  * the Switcher PTE page for each CPU.
1241  */
1242 __init int init_pagetables(struct page **switcher_page, unsigned int pages)
1243 {
1244         unsigned int i;
1245
1246         for_each_possible_cpu(i) {
1247                 switcher_pte_page(i) = (pte_t *)get_zeroed_page(GFP_KERNEL);
1248                 if (!switcher_pte_page(i)) {
1249                         free_switcher_pte_pages();
1250                         return -ENOMEM;
1251                 }
1252                 populate_switcher_pte_page(i, switcher_page, pages);
1253         }
1254         return 0;
1255 }
1256 /*:*/
1257
1258 /* Cleaning up simply involves freeing the PTE page for each CPU. */
1259 void free_pagetables(void)
1260 {
1261         free_switcher_pte_pages();
1262 }