Merge branch 'tty-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[pandora-kernel.git] / drivers / isdn / hardware / mISDN / hfcsusb.c
1 /* hfcsusb.c
2  * mISDN driver for Colognechip HFC-S USB chip
3  *
4  * Copyright 2001 by Peter Sprenger (sprenger@moving-bytes.de)
5  * Copyright 2008 by Martin Bachem (info@bachem-it.com)
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2, or (at your option)
10  * any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  *
21  *
22  * module params
23  *   debug=<n>, default=0, with n=0xHHHHGGGG
24  *      H - l1 driver flags described in hfcsusb.h
25  *      G - common mISDN debug flags described at mISDNhw.h
26  *
27  *   poll=<n>, default 128
28  *     n : burst size of PH_DATA_IND at transparent rx data
29  *
30  */
31
32 #include <linux/module.h>
33 #include <linux/delay.h>
34 #include <linux/usb.h>
35 #include <linux/mISDNhw.h>
36 #include <linux/slab.h>
37 #include "hfcsusb.h"
38
39 static const char *hfcsusb_rev = "Revision: 0.3.3 (socket), 2008-11-05";
40
41 static unsigned int debug;
42 static int poll = DEFAULT_TRANSP_BURST_SZ;
43
44 static LIST_HEAD(HFClist);
45 static DEFINE_RWLOCK(HFClock);
46
47
48 MODULE_AUTHOR("Martin Bachem");
49 MODULE_LICENSE("GPL");
50 module_param(debug, uint, S_IRUGO | S_IWUSR);
51 module_param(poll, int, 0);
52
53 static int hfcsusb_cnt;
54
55 /* some function prototypes */
56 static void hfcsusb_ph_command(struct hfcsusb *hw, u_char command);
57 static void release_hw(struct hfcsusb *hw);
58 static void reset_hfcsusb(struct hfcsusb *hw);
59 static void setPortMode(struct hfcsusb *hw);
60 static void hfcsusb_start_endpoint(struct hfcsusb *hw, int channel);
61 static void hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel);
62 static int  hfcsusb_setup_bch(struct bchannel *bch, int protocol);
63 static void deactivate_bchannel(struct bchannel *bch);
64 static void hfcsusb_ph_info(struct hfcsusb *hw);
65
66 /* start next background transfer for control channel */
67 static void
68 ctrl_start_transfer(struct hfcsusb *hw)
69 {
70         if (debug & DBG_HFC_CALL_TRACE)
71                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
72
73         if (hw->ctrl_cnt) {
74                 hw->ctrl_urb->pipe = hw->ctrl_out_pipe;
75                 hw->ctrl_urb->setup_packet = (u_char *)&hw->ctrl_write;
76                 hw->ctrl_urb->transfer_buffer = NULL;
77                 hw->ctrl_urb->transfer_buffer_length = 0;
78                 hw->ctrl_write.wIndex =
79                     cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].hfcs_reg);
80                 hw->ctrl_write.wValue =
81                     cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].reg_val);
82
83                 usb_submit_urb(hw->ctrl_urb, GFP_ATOMIC);
84         }
85 }
86
87 /*
88  * queue a control transfer request to write HFC-S USB
89  * chip register using CTRL resuest queue
90  */
91 static int write_reg(struct hfcsusb *hw, __u8 reg, __u8 val)
92 {
93         struct ctrl_buf *buf;
94
95         if (debug & DBG_HFC_CALL_TRACE)
96                 printk(KERN_DEBUG "%s: %s reg(0x%02x) val(0x%02x)\n",
97                         hw->name, __func__, reg, val);
98
99         spin_lock(&hw->ctrl_lock);
100         if (hw->ctrl_cnt >= HFC_CTRL_BUFSIZE) {
101                 spin_unlock(&hw->ctrl_lock);
102                 return 1;
103         }
104         buf = &hw->ctrl_buff[hw->ctrl_in_idx];
105         buf->hfcs_reg = reg;
106         buf->reg_val = val;
107         if (++hw->ctrl_in_idx >= HFC_CTRL_BUFSIZE)
108                 hw->ctrl_in_idx = 0;
109         if (++hw->ctrl_cnt == 1)
110                 ctrl_start_transfer(hw);
111         spin_unlock(&hw->ctrl_lock);
112
113         return 0;
114 }
115
116 /* control completion routine handling background control cmds */
117 static void
118 ctrl_complete(struct urb *urb)
119 {
120         struct hfcsusb *hw = (struct hfcsusb *) urb->context;
121
122         if (debug & DBG_HFC_CALL_TRACE)
123                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
124
125         urb->dev = hw->dev;
126         if (hw->ctrl_cnt) {
127                 hw->ctrl_cnt--; /* decrement actual count */
128                 if (++hw->ctrl_out_idx >= HFC_CTRL_BUFSIZE)
129                         hw->ctrl_out_idx = 0;   /* pointer wrap */
130
131                 ctrl_start_transfer(hw); /* start next transfer */
132         }
133 }
134
135 /* handle LED bits   */
136 static void
137 set_led_bit(struct hfcsusb *hw, signed short led_bits, int set_on)
138 {
139         if (set_on) {
140                 if (led_bits < 0)
141                         hw->led_state &= ~abs(led_bits);
142                 else
143                         hw->led_state |= led_bits;
144         } else {
145                 if (led_bits < 0)
146                         hw->led_state |= abs(led_bits);
147                 else
148                         hw->led_state &= ~led_bits;
149         }
150 }
151
152 /* handle LED requests  */
153 static void
154 handle_led(struct hfcsusb *hw, int event)
155 {
156         struct hfcsusb_vdata *driver_info = (struct hfcsusb_vdata *)
157                 hfcsusb_idtab[hw->vend_idx].driver_info;
158         __u8 tmpled;
159
160         if (driver_info->led_scheme == LED_OFF)
161                 return;
162         tmpled = hw->led_state;
163
164         switch (event) {
165         case LED_POWER_ON:
166                 set_led_bit(hw, driver_info->led_bits[0], 1);
167                 set_led_bit(hw, driver_info->led_bits[1], 0);
168                 set_led_bit(hw, driver_info->led_bits[2], 0);
169                 set_led_bit(hw, driver_info->led_bits[3], 0);
170                 break;
171         case LED_POWER_OFF:
172                 set_led_bit(hw, driver_info->led_bits[0], 0);
173                 set_led_bit(hw, driver_info->led_bits[1], 0);
174                 set_led_bit(hw, driver_info->led_bits[2], 0);
175                 set_led_bit(hw, driver_info->led_bits[3], 0);
176                 break;
177         case LED_S0_ON:
178                 set_led_bit(hw, driver_info->led_bits[1], 1);
179                 break;
180         case LED_S0_OFF:
181                 set_led_bit(hw, driver_info->led_bits[1], 0);
182                 break;
183         case LED_B1_ON:
184                 set_led_bit(hw, driver_info->led_bits[2], 1);
185                 break;
186         case LED_B1_OFF:
187                 set_led_bit(hw, driver_info->led_bits[2], 0);
188                 break;
189         case LED_B2_ON:
190                 set_led_bit(hw, driver_info->led_bits[3], 1);
191                 break;
192         case LED_B2_OFF:
193                 set_led_bit(hw, driver_info->led_bits[3], 0);
194                 break;
195         }
196
197         if (hw->led_state != tmpled) {
198                 if (debug & DBG_HFC_CALL_TRACE)
199                         printk(KERN_DEBUG "%s: %s reg(0x%02x) val(x%02x)\n",
200                             hw->name, __func__,
201                             HFCUSB_P_DATA, hw->led_state);
202
203                 write_reg(hw, HFCUSB_P_DATA, hw->led_state);
204         }
205 }
206
207 /*
208  * Layer2 -> Layer 1 Bchannel data
209  */
210 static int
211 hfcusb_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
212 {
213         struct bchannel         *bch = container_of(ch, struct bchannel, ch);
214         struct hfcsusb          *hw = bch->hw;
215         int                     ret = -EINVAL;
216         struct mISDNhead        *hh = mISDN_HEAD_P(skb);
217         u_long                  flags;
218
219         if (debug & DBG_HFC_CALL_TRACE)
220                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
221
222         switch (hh->prim) {
223         case PH_DATA_REQ:
224                 spin_lock_irqsave(&hw->lock, flags);
225                 ret = bchannel_senddata(bch, skb);
226                 spin_unlock_irqrestore(&hw->lock, flags);
227                 if (debug & DBG_HFC_CALL_TRACE)
228                         printk(KERN_DEBUG "%s: %s PH_DATA_REQ ret(%i)\n",
229                                 hw->name, __func__, ret);
230                 if (ret > 0) {
231                         /*
232                          * other l1 drivers don't send early confirms on
233                          * transp data, but hfcsusb does because tx_next
234                          * skb is needed in tx_iso_complete()
235                          */
236                         queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL);
237                         ret = 0;
238                 }
239                 return ret;
240         case PH_ACTIVATE_REQ:
241                 if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
242                         hfcsusb_start_endpoint(hw, bch->nr);
243                         ret = hfcsusb_setup_bch(bch, ch->protocol);
244                 } else
245                         ret = 0;
246                 if (!ret)
247                         _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
248                                 0, NULL, GFP_KERNEL);
249                 break;
250         case PH_DEACTIVATE_REQ:
251                 deactivate_bchannel(bch);
252                 _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY,
253                         0, NULL, GFP_KERNEL);
254                 ret = 0;
255                 break;
256         }
257         if (!ret)
258                 dev_kfree_skb(skb);
259         return ret;
260 }
261
262 /*
263  * send full D/B channel status information
264  * as MPH_INFORMATION_IND
265  */
266 static void
267 hfcsusb_ph_info(struct hfcsusb *hw)
268 {
269         struct ph_info *phi;
270         struct dchannel *dch = &hw->dch;
271         int i;
272
273         phi = kzalloc(sizeof(struct ph_info) +
274                 dch->dev.nrbchan * sizeof(struct ph_info_ch), GFP_ATOMIC);
275         phi->dch.ch.protocol = hw->protocol;
276         phi->dch.ch.Flags = dch->Flags;
277         phi->dch.state = dch->state;
278         phi->dch.num_bch = dch->dev.nrbchan;
279         for (i = 0; i < dch->dev.nrbchan; i++) {
280                 phi->bch[i].protocol = hw->bch[i].ch.protocol;
281                 phi->bch[i].Flags = hw->bch[i].Flags;
282         }
283         _queue_data(&dch->dev.D, MPH_INFORMATION_IND, MISDN_ID_ANY,
284                 sizeof(struct ph_info_dch) + dch->dev.nrbchan *
285                 sizeof(struct ph_info_ch), phi, GFP_ATOMIC);
286         kfree(phi);
287 }
288
289 /*
290  * Layer2 -> Layer 1 Dchannel data
291  */
292 static int
293 hfcusb_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
294 {
295         struct mISDNdevice      *dev = container_of(ch, struct mISDNdevice, D);
296         struct dchannel         *dch = container_of(dev, struct dchannel, dev);
297         struct mISDNhead        *hh = mISDN_HEAD_P(skb);
298         struct hfcsusb          *hw = dch->hw;
299         int                     ret = -EINVAL;
300         u_long                  flags;
301
302         switch (hh->prim) {
303         case PH_DATA_REQ:
304                 if (debug & DBG_HFC_CALL_TRACE)
305                         printk(KERN_DEBUG "%s: %s: PH_DATA_REQ\n",
306                                 hw->name, __func__);
307
308                 spin_lock_irqsave(&hw->lock, flags);
309                 ret = dchannel_senddata(dch, skb);
310                 spin_unlock_irqrestore(&hw->lock, flags);
311                 if (ret > 0) {
312                         ret = 0;
313                         queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL);
314                 }
315                 break;
316
317         case PH_ACTIVATE_REQ:
318                 if (debug & DBG_HFC_CALL_TRACE)
319                         printk(KERN_DEBUG "%s: %s: PH_ACTIVATE_REQ %s\n",
320                                 hw->name, __func__,
321                                 (hw->protocol == ISDN_P_NT_S0) ? "NT" : "TE");
322
323                 if (hw->protocol == ISDN_P_NT_S0) {
324                         ret = 0;
325                         if (test_bit(FLG_ACTIVE, &dch->Flags)) {
326                                 _queue_data(&dch->dev.D,
327                                         PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
328                                         NULL, GFP_ATOMIC);
329                         } else {
330                                 hfcsusb_ph_command(hw,
331                                         HFC_L1_ACTIVATE_NT);
332                                 test_and_set_bit(FLG_L2_ACTIVATED,
333                                         &dch->Flags);
334                         }
335                 } else {
336                         hfcsusb_ph_command(hw, HFC_L1_ACTIVATE_TE);
337                         ret = l1_event(dch->l1, hh->prim);
338                 }
339                 break;
340
341         case PH_DEACTIVATE_REQ:
342                 if (debug & DBG_HFC_CALL_TRACE)
343                         printk(KERN_DEBUG "%s: %s: PH_DEACTIVATE_REQ\n",
344                                 hw->name, __func__);
345                 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
346
347                 if (hw->protocol == ISDN_P_NT_S0) {
348                         hfcsusb_ph_command(hw, HFC_L1_DEACTIVATE_NT);
349                         spin_lock_irqsave(&hw->lock, flags);
350                         skb_queue_purge(&dch->squeue);
351                         if (dch->tx_skb) {
352                                 dev_kfree_skb(dch->tx_skb);
353                                 dch->tx_skb = NULL;
354                         }
355                         dch->tx_idx = 0;
356                         if (dch->rx_skb) {
357                                 dev_kfree_skb(dch->rx_skb);
358                                 dch->rx_skb = NULL;
359                         }
360                         test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
361                         spin_unlock_irqrestore(&hw->lock, flags);
362 #ifdef FIXME
363                         if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
364                                 dchannel_sched_event(&hc->dch, D_CLEARBUSY);
365 #endif
366                         ret = 0;
367                 } else
368                         ret = l1_event(dch->l1, hh->prim);
369                 break;
370         case MPH_INFORMATION_REQ:
371                 hfcsusb_ph_info(hw);
372                 ret = 0;
373                 break;
374         }
375
376         return ret;
377 }
378
379 /*
380  * Layer 1 callback function
381  */
382 static int
383 hfc_l1callback(struct dchannel *dch, u_int cmd)
384 {
385         struct hfcsusb *hw = dch->hw;
386
387         if (debug & DBG_HFC_CALL_TRACE)
388                 printk(KERN_DEBUG "%s: %s cmd 0x%x\n",
389                         hw->name, __func__, cmd);
390
391         switch (cmd) {
392         case INFO3_P8:
393         case INFO3_P10:
394         case HW_RESET_REQ:
395         case HW_POWERUP_REQ:
396                 break;
397
398         case HW_DEACT_REQ:
399                 skb_queue_purge(&dch->squeue);
400                 if (dch->tx_skb) {
401                         dev_kfree_skb(dch->tx_skb);
402                         dch->tx_skb = NULL;
403                 }
404                 dch->tx_idx = 0;
405                 if (dch->rx_skb) {
406                         dev_kfree_skb(dch->rx_skb);
407                         dch->rx_skb = NULL;
408                 }
409                 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
410                 break;
411         case PH_ACTIVATE_IND:
412                 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
413                 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
414                         GFP_ATOMIC);
415                 break;
416         case PH_DEACTIVATE_IND:
417                 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
418                 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
419                         GFP_ATOMIC);
420                 break;
421         default:
422                 if (dch->debug & DEBUG_HW)
423                         printk(KERN_DEBUG "%s: %s: unknown cmd %x\n",
424                         hw->name, __func__, cmd);
425                 return -1;
426         }
427         hfcsusb_ph_info(hw);
428         return 0;
429 }
430
431 static int
432 open_dchannel(struct hfcsusb *hw, struct mISDNchannel *ch,
433     struct channel_req *rq)
434 {
435         int err = 0;
436
437         if (debug & DEBUG_HW_OPEN)
438                 printk(KERN_DEBUG "%s: %s: dev(%d) open addr(%i) from %p\n",
439                     hw->name, __func__, hw->dch.dev.id, rq->adr.channel,
440                     __builtin_return_address(0));
441         if (rq->protocol == ISDN_P_NONE)
442                 return -EINVAL;
443
444         test_and_clear_bit(FLG_ACTIVE, &hw->dch.Flags);
445         test_and_clear_bit(FLG_ACTIVE, &hw->ech.Flags);
446         hfcsusb_start_endpoint(hw, HFC_CHAN_D);
447
448         /* E-Channel logging */
449         if (rq->adr.channel == 1) {
450                 if (hw->fifos[HFCUSB_PCM_RX].pipe) {
451                         hfcsusb_start_endpoint(hw, HFC_CHAN_E);
452                         set_bit(FLG_ACTIVE, &hw->ech.Flags);
453                         _queue_data(&hw->ech.dev.D, PH_ACTIVATE_IND,
454                                      MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
455                 } else
456                         return -EINVAL;
457         }
458
459         if (!hw->initdone) {
460                 hw->protocol = rq->protocol;
461                 if (rq->protocol == ISDN_P_TE_S0) {
462                         err = create_l1(&hw->dch, hfc_l1callback);
463                         if (err)
464                                 return err;
465                 }
466                 setPortMode(hw);
467                 ch->protocol = rq->protocol;
468                 hw->initdone = 1;
469         } else {
470                 if (rq->protocol != ch->protocol)
471                         return -EPROTONOSUPPORT;
472         }
473
474         if (((ch->protocol == ISDN_P_NT_S0) && (hw->dch.state == 3)) ||
475             ((ch->protocol == ISDN_P_TE_S0) && (hw->dch.state == 7)))
476                 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
477                     0, NULL, GFP_KERNEL);
478         rq->ch = ch;
479         if (!try_module_get(THIS_MODULE))
480                 printk(KERN_WARNING "%s: %s: cannot get module\n",
481                     hw->name, __func__);
482         return 0;
483 }
484
485 static int
486 open_bchannel(struct hfcsusb *hw, struct channel_req *rq)
487 {
488         struct bchannel         *bch;
489
490         if (rq->adr.channel > 2)
491                 return -EINVAL;
492         if (rq->protocol == ISDN_P_NONE)
493                 return -EINVAL;
494
495         if (debug & DBG_HFC_CALL_TRACE)
496                 printk(KERN_DEBUG "%s: %s B%i\n",
497                         hw->name, __func__, rq->adr.channel);
498
499         bch = &hw->bch[rq->adr.channel - 1];
500         if (test_and_set_bit(FLG_OPEN, &bch->Flags))
501                 return -EBUSY; /* b-channel can be only open once */
502         test_and_clear_bit(FLG_FILLEMPTY, &bch->Flags);
503         bch->ch.protocol = rq->protocol;
504         rq->ch = &bch->ch;
505
506         /* start USB endpoint for bchannel */
507         if (rq->adr.channel  == 1)
508                 hfcsusb_start_endpoint(hw, HFC_CHAN_B1);
509         else
510                 hfcsusb_start_endpoint(hw, HFC_CHAN_B2);
511
512         if (!try_module_get(THIS_MODULE))
513                 printk(KERN_WARNING "%s: %s:cannot get module\n",
514                     hw->name, __func__);
515         return 0;
516 }
517
518 static int
519 channel_ctrl(struct hfcsusb *hw, struct mISDN_ctrl_req *cq)
520 {
521         int ret = 0;
522
523         if (debug & DBG_HFC_CALL_TRACE)
524                 printk(KERN_DEBUG "%s: %s op(0x%x) channel(0x%x)\n",
525                     hw->name, __func__, (cq->op), (cq->channel));
526
527         switch (cq->op) {
528         case MISDN_CTRL_GETOP:
529                 cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
530                          MISDN_CTRL_DISCONNECT;
531                 break;
532         default:
533                 printk(KERN_WARNING "%s: %s: unknown Op %x\n",
534                         hw->name, __func__, cq->op);
535                 ret = -EINVAL;
536                 break;
537         }
538         return ret;
539 }
540
541 /*
542  * device control function
543  */
544 static int
545 hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
546 {
547         struct mISDNdevice      *dev = container_of(ch, struct mISDNdevice, D);
548         struct dchannel         *dch = container_of(dev, struct dchannel, dev);
549         struct hfcsusb          *hw = dch->hw;
550         struct channel_req      *rq;
551         int                     err = 0;
552
553         if (dch->debug & DEBUG_HW)
554                 printk(KERN_DEBUG "%s: %s: cmd:%x %p\n",
555                     hw->name, __func__, cmd, arg);
556         switch (cmd) {
557         case OPEN_CHANNEL:
558                 rq = arg;
559                 if ((rq->protocol == ISDN_P_TE_S0) ||
560                     (rq->protocol == ISDN_P_NT_S0))
561                         err = open_dchannel(hw, ch, rq);
562                 else
563                         err = open_bchannel(hw, rq);
564                 if (!err)
565                         hw->open++;
566                 break;
567         case CLOSE_CHANNEL:
568                 hw->open--;
569                 if (debug & DEBUG_HW_OPEN)
570                         printk(KERN_DEBUG
571                                 "%s: %s: dev(%d) close from %p (open %d)\n",
572                                 hw->name, __func__, hw->dch.dev.id,
573                                 __builtin_return_address(0), hw->open);
574                 if (!hw->open) {
575                         hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
576                         if (hw->fifos[HFCUSB_PCM_RX].pipe)
577                                 hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
578                         handle_led(hw, LED_POWER_ON);
579                 }
580                 module_put(THIS_MODULE);
581                 break;
582         case CONTROL_CHANNEL:
583                 err = channel_ctrl(hw, arg);
584                 break;
585         default:
586                 if (dch->debug & DEBUG_HW)
587                         printk(KERN_DEBUG "%s: %s: unknown command %x\n",
588                                 hw->name, __func__, cmd);
589                 return -EINVAL;
590         }
591         return err;
592 }
593
594 /*
595  * S0 TE state change event handler
596  */
597 static void
598 ph_state_te(struct dchannel *dch)
599 {
600         struct hfcsusb *hw = dch->hw;
601
602         if (debug & DEBUG_HW) {
603                 if (dch->state <= HFC_MAX_TE_LAYER1_STATE)
604                         printk(KERN_DEBUG "%s: %s: %s\n", hw->name, __func__,
605                             HFC_TE_LAYER1_STATES[dch->state]);
606                 else
607                         printk(KERN_DEBUG "%s: %s: TE F%d\n",
608                             hw->name, __func__, dch->state);
609         }
610
611         switch (dch->state) {
612         case 0:
613                 l1_event(dch->l1, HW_RESET_IND);
614                 break;
615         case 3:
616                 l1_event(dch->l1, HW_DEACT_IND);
617                 break;
618         case 5:
619         case 8:
620                 l1_event(dch->l1, ANYSIGNAL);
621                 break;
622         case 6:
623                 l1_event(dch->l1, INFO2);
624                 break;
625         case 7:
626                 l1_event(dch->l1, INFO4_P8);
627                 break;
628         }
629         if (dch->state == 7)
630                 handle_led(hw, LED_S0_ON);
631         else
632                 handle_led(hw, LED_S0_OFF);
633 }
634
635 /*
636  * S0 NT state change event handler
637  */
638 static void
639 ph_state_nt(struct dchannel *dch)
640 {
641         struct hfcsusb *hw = dch->hw;
642
643         if (debug & DEBUG_HW) {
644                 if (dch->state <= HFC_MAX_NT_LAYER1_STATE)
645                         printk(KERN_DEBUG "%s: %s: %s\n",
646                             hw->name, __func__,
647                             HFC_NT_LAYER1_STATES[dch->state]);
648
649                 else
650                         printk(KERN_INFO DRIVER_NAME "%s: %s: NT G%d\n",
651                             hw->name, __func__, dch->state);
652         }
653
654         switch (dch->state) {
655         case (1):
656                 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
657                 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
658                 hw->nt_timer = 0;
659                 hw->timers &= ~NT_ACTIVATION_TIMER;
660                 handle_led(hw, LED_S0_OFF);
661                 break;
662
663         case (2):
664                 if (hw->nt_timer < 0) {
665                         hw->nt_timer = 0;
666                         hw->timers &= ~NT_ACTIVATION_TIMER;
667                         hfcsusb_ph_command(dch->hw, HFC_L1_DEACTIVATE_NT);
668                 } else {
669                         hw->timers |= NT_ACTIVATION_TIMER;
670                         hw->nt_timer = NT_T1_COUNT;
671                         /* allow G2 -> G3 transition */
672                         write_reg(hw, HFCUSB_STATES, 2 | HFCUSB_NT_G2_G3);
673                 }
674                 break;
675         case (3):
676                 hw->nt_timer = 0;
677                 hw->timers &= ~NT_ACTIVATION_TIMER;
678                 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
679                 _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
680                         MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
681                 handle_led(hw, LED_S0_ON);
682                 break;
683         case (4):
684                 hw->nt_timer = 0;
685                 hw->timers &= ~NT_ACTIVATION_TIMER;
686                 break;
687         default:
688                 break;
689         }
690         hfcsusb_ph_info(hw);
691 }
692
693 static void
694 ph_state(struct dchannel *dch)
695 {
696         struct hfcsusb *hw = dch->hw;
697
698         if (hw->protocol == ISDN_P_NT_S0)
699                 ph_state_nt(dch);
700         else if (hw->protocol == ISDN_P_TE_S0)
701                 ph_state_te(dch);
702 }
703
704 /*
705  * disable/enable BChannel for desired protocoll
706  */
707 static int
708 hfcsusb_setup_bch(struct bchannel *bch, int protocol)
709 {
710         struct hfcsusb *hw = bch->hw;
711         __u8 conhdlc, sctrl, sctrl_r;
712
713         if (debug & DEBUG_HW)
714                 printk(KERN_DEBUG "%s: %s: protocol %x-->%x B%d\n",
715                     hw->name, __func__, bch->state, protocol,
716                     bch->nr);
717
718         /* setup val for CON_HDLC */
719         conhdlc = 0;
720         if (protocol > ISDN_P_NONE)
721                 conhdlc = 8;    /* enable FIFO */
722
723         switch (protocol) {
724         case (-1):      /* used for init */
725                 bch->state = -1;
726                 /* fall through */
727         case (ISDN_P_NONE):
728                 if (bch->state == ISDN_P_NONE)
729                         return 0; /* already in idle state */
730                 bch->state = ISDN_P_NONE;
731                 clear_bit(FLG_HDLC, &bch->Flags);
732                 clear_bit(FLG_TRANSPARENT, &bch->Flags);
733                 break;
734         case (ISDN_P_B_RAW):
735                 conhdlc |= 2;
736                 bch->state = protocol;
737                 set_bit(FLG_TRANSPARENT, &bch->Flags);
738                 break;
739         case (ISDN_P_B_HDLC):
740                 bch->state = protocol;
741                 set_bit(FLG_HDLC, &bch->Flags);
742                 break;
743         default:
744                 if (debug & DEBUG_HW)
745                         printk(KERN_DEBUG "%s: %s: prot not known %x\n",
746                                 hw->name, __func__, protocol);
747                 return -ENOPROTOOPT;
748         }
749
750         if (protocol >= ISDN_P_NONE) {
751                 write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 0 : 2);
752                 write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
753                 write_reg(hw, HFCUSB_INC_RES_F, 2);
754                 write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 1 : 3);
755                 write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
756                 write_reg(hw, HFCUSB_INC_RES_F, 2);
757
758                 sctrl = 0x40 + ((hw->protocol == ISDN_P_TE_S0) ? 0x00 : 0x04);
759                 sctrl_r = 0x0;
760                 if (test_bit(FLG_ACTIVE, &hw->bch[0].Flags)) {
761                         sctrl |= 1;
762                         sctrl_r |= 1;
763                 }
764                 if (test_bit(FLG_ACTIVE, &hw->bch[1].Flags)) {
765                         sctrl |= 2;
766                         sctrl_r |= 2;
767                 }
768                 write_reg(hw, HFCUSB_SCTRL, sctrl);
769                 write_reg(hw, HFCUSB_SCTRL_R, sctrl_r);
770
771                 if (protocol > ISDN_P_NONE)
772                         handle_led(hw, (bch->nr == 1) ? LED_B1_ON : LED_B2_ON);
773                 else
774                         handle_led(hw, (bch->nr == 1) ? LED_B1_OFF :
775                                 LED_B2_OFF);
776         }
777         hfcsusb_ph_info(hw);
778         return 0;
779 }
780
781 static void
782 hfcsusb_ph_command(struct hfcsusb *hw, u_char command)
783 {
784         if (debug & DEBUG_HW)
785                 printk(KERN_DEBUG "%s: %s: %x\n",
786                    hw->name, __func__, command);
787
788         switch (command) {
789         case HFC_L1_ACTIVATE_TE:
790                 /* force sending sending INFO1 */
791                 write_reg(hw, HFCUSB_STATES, 0x14);
792                 /* start l1 activation */
793                 write_reg(hw, HFCUSB_STATES, 0x04);
794                 break;
795
796         case HFC_L1_FORCE_DEACTIVATE_TE:
797                 write_reg(hw, HFCUSB_STATES, 0x10);
798                 write_reg(hw, HFCUSB_STATES, 0x03);
799                 break;
800
801         case HFC_L1_ACTIVATE_NT:
802                 if (hw->dch.state == 3)
803                         _queue_data(&hw->dch.dev.D, PH_ACTIVATE_IND,
804                                 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
805                 else
806                         write_reg(hw, HFCUSB_STATES, HFCUSB_ACTIVATE |
807                                 HFCUSB_DO_ACTION | HFCUSB_NT_G2_G3);
808                 break;
809
810         case HFC_L1_DEACTIVATE_NT:
811                 write_reg(hw, HFCUSB_STATES,
812                         HFCUSB_DO_ACTION);
813                 break;
814         }
815 }
816
817 /*
818  * Layer 1 B-channel hardware access
819  */
820 static int
821 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
822 {
823         int     ret = 0;
824
825         switch (cq->op) {
826         case MISDN_CTRL_GETOP:
827                 cq->op = MISDN_CTRL_FILL_EMPTY;
828                 break;
829         case MISDN_CTRL_FILL_EMPTY: /* fill fifo, if empty */
830                 test_and_set_bit(FLG_FILLEMPTY, &bch->Flags);
831                 if (debug & DEBUG_HW_OPEN)
832                         printk(KERN_DEBUG "%s: FILL_EMPTY request (nr=%d "
833                                 "off=%d)\n", __func__, bch->nr, !!cq->p1);
834                 break;
835         default:
836                 printk(KERN_WARNING "%s: unknown Op %x\n", __func__, cq->op);
837                 ret = -EINVAL;
838                 break;
839         }
840         return ret;
841 }
842
843 /* collect data from incoming interrupt or isochron USB data */
844 static void
845 hfcsusb_rx_frame(struct usb_fifo *fifo, __u8 *data, unsigned int len,
846         int finish)
847 {
848         struct hfcsusb  *hw = fifo->hw;
849         struct sk_buff  *rx_skb = NULL;
850         int             maxlen = 0;
851         int             fifon = fifo->fifonum;
852         int             i;
853         int             hdlc = 0;
854
855         if (debug & DBG_HFC_CALL_TRACE)
856                 printk(KERN_DEBUG "%s: %s: fifo(%i) len(%i) "
857                     "dch(%p) bch(%p) ech(%p)\n",
858                     hw->name, __func__, fifon, len,
859                     fifo->dch, fifo->bch, fifo->ech);
860
861         if (!len)
862                 return;
863
864         if ((!!fifo->dch + !!fifo->bch + !!fifo->ech) != 1) {
865                 printk(KERN_DEBUG "%s: %s: undefined channel\n",
866                        hw->name, __func__);
867                 return;
868         }
869
870         spin_lock(&hw->lock);
871         if (fifo->dch) {
872                 rx_skb = fifo->dch->rx_skb;
873                 maxlen = fifo->dch->maxlen;
874                 hdlc = 1;
875         }
876         if (fifo->bch) {
877                 rx_skb = fifo->bch->rx_skb;
878                 maxlen = fifo->bch->maxlen;
879                 hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
880         }
881         if (fifo->ech) {
882                 rx_skb = fifo->ech->rx_skb;
883                 maxlen = fifo->ech->maxlen;
884                 hdlc = 1;
885         }
886
887         if (!rx_skb) {
888                 rx_skb = mI_alloc_skb(maxlen, GFP_ATOMIC);
889                 if (rx_skb) {
890                         if (fifo->dch)
891                                 fifo->dch->rx_skb = rx_skb;
892                         if (fifo->bch)
893                                 fifo->bch->rx_skb = rx_skb;
894                         if (fifo->ech)
895                                 fifo->ech->rx_skb = rx_skb;
896                         skb_trim(rx_skb, 0);
897                 } else {
898                         printk(KERN_DEBUG "%s: %s: No mem for rx_skb\n",
899                             hw->name, __func__);
900                         spin_unlock(&hw->lock);
901                         return;
902                 }
903         }
904
905         if (fifo->dch || fifo->ech) {
906                 /* D/E-Channel SKB range check */
907                 if ((rx_skb->len + len) >= MAX_DFRAME_LEN_L1) {
908                         printk(KERN_DEBUG "%s: %s: sbk mem exceeded "
909                             "for fifo(%d) HFCUSB_D_RX\n",
910                             hw->name, __func__, fifon);
911                         skb_trim(rx_skb, 0);
912                         spin_unlock(&hw->lock);
913                         return;
914                 }
915         } else if (fifo->bch) {
916                 /* B-Channel SKB range check */
917                 if ((rx_skb->len + len) >= (MAX_BCH_SIZE + 3)) {
918                         printk(KERN_DEBUG "%s: %s: sbk mem exceeded "
919                             "for fifo(%d) HFCUSB_B_RX\n",
920                             hw->name, __func__, fifon);
921                         skb_trim(rx_skb, 0);
922                         spin_unlock(&hw->lock);
923                         return;
924                 }
925         }
926
927         memcpy(skb_put(rx_skb, len), data, len);
928
929         if (hdlc) {
930                 /* we have a complete hdlc packet */
931                 if (finish) {
932                         if ((rx_skb->len > 3) &&
933                            (!(rx_skb->data[rx_skb->len - 1]))) {
934                                 if (debug & DBG_HFC_FIFO_VERBOSE) {
935                                         printk(KERN_DEBUG "%s: %s: fifon(%i)"
936                                             " new RX len(%i): ",
937                                             hw->name, __func__, fifon,
938                                             rx_skb->len);
939                                         i = 0;
940                                         while (i < rx_skb->len)
941                                                 printk("%02x ",
942                                                     rx_skb->data[i++]);
943                                         printk("\n");
944                                 }
945
946                                 /* remove CRC & status */
947                                 skb_trim(rx_skb, rx_skb->len - 3);
948
949                                 if (fifo->dch)
950                                         recv_Dchannel(fifo->dch);
951                                 if (fifo->bch)
952                                         recv_Bchannel(fifo->bch, MISDN_ID_ANY);
953                                 if (fifo->ech)
954                                         recv_Echannel(fifo->ech,
955                                                      &hw->dch);
956                         } else {
957                                 if (debug & DBG_HFC_FIFO_VERBOSE) {
958                                         printk(KERN_DEBUG
959                                             "%s: CRC or minlen ERROR fifon(%i) "
960                                             "RX len(%i): ",
961                                             hw->name, fifon, rx_skb->len);
962                                         i = 0;
963                                         while (i < rx_skb->len)
964                                                 printk("%02x ",
965                                                     rx_skb->data[i++]);
966                                         printk("\n");
967                                 }
968                                 skb_trim(rx_skb, 0);
969                         }
970                 }
971         } else {
972                 /* deliver transparent data to layer2 */
973                 if (rx_skb->len >= poll)
974                         recv_Bchannel(fifo->bch, MISDN_ID_ANY);
975         }
976         spin_unlock(&hw->lock);
977 }
978
979 static void
980 fill_isoc_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,
981               void *buf, int num_packets, int packet_size, int interval,
982               usb_complete_t complete, void *context)
983 {
984         int k;
985
986         usb_fill_bulk_urb(urb, dev, pipe, buf, packet_size * num_packets,
987             complete, context);
988
989         urb->number_of_packets = num_packets;
990         urb->transfer_flags = URB_ISO_ASAP;
991         urb->actual_length = 0;
992         urb->interval = interval;
993
994         for (k = 0; k < num_packets; k++) {
995                 urb->iso_frame_desc[k].offset = packet_size * k;
996                 urb->iso_frame_desc[k].length = packet_size;
997                 urb->iso_frame_desc[k].actual_length = 0;
998         }
999 }
1000
1001 /* receive completion routine for all ISO tx fifos   */
1002 static void
1003 rx_iso_complete(struct urb *urb)
1004 {
1005         struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
1006         struct usb_fifo *fifo = context_iso_urb->owner_fifo;
1007         struct hfcsusb *hw = fifo->hw;
1008         int k, len, errcode, offset, num_isoc_packets, fifon, maxlen,
1009             status, iso_status, i;
1010         __u8 *buf;
1011         static __u8 eof[8];
1012         __u8 s0_state;
1013
1014         fifon = fifo->fifonum;
1015         status = urb->status;
1016
1017         spin_lock(&hw->lock);
1018         if (fifo->stop_gracefull) {
1019                 fifo->stop_gracefull = 0;
1020                 fifo->active = 0;
1021                 spin_unlock(&hw->lock);
1022                 return;
1023         }
1024         spin_unlock(&hw->lock);
1025
1026         /*
1027          * ISO transfer only partially completed,
1028          * look at individual frame status for details
1029          */
1030         if (status == -EXDEV) {
1031                 if (debug & DEBUG_HW)
1032                         printk(KERN_DEBUG "%s: %s: with -EXDEV "
1033                             "urb->status %d, fifonum %d\n",
1034                             hw->name, __func__,  status, fifon);
1035
1036                 /* clear status, so go on with ISO transfers */
1037                 status = 0;
1038         }
1039
1040         s0_state = 0;
1041         if (fifo->active && !status) {
1042                 num_isoc_packets = iso_packets[fifon];
1043                 maxlen = fifo->usb_packet_maxlen;
1044
1045                 for (k = 0; k < num_isoc_packets; ++k) {
1046                         len = urb->iso_frame_desc[k].actual_length;
1047                         offset = urb->iso_frame_desc[k].offset;
1048                         buf = context_iso_urb->buffer + offset;
1049                         iso_status = urb->iso_frame_desc[k].status;
1050
1051                         if (iso_status && (debug & DBG_HFC_FIFO_VERBOSE)) {
1052                                 printk(KERN_DEBUG "%s: %s: "
1053                                     "ISO packet %i, status: %i\n",
1054                                     hw->name, __func__, k, iso_status);
1055                         }
1056
1057                         /* USB data log for every D ISO in */
1058                         if ((fifon == HFCUSB_D_RX) &&
1059                             (debug & DBG_HFC_USB_VERBOSE)) {
1060                                 printk(KERN_DEBUG
1061                                     "%s: %s: %d (%d/%d) len(%d) ",
1062                                     hw->name, __func__, urb->start_frame,
1063                                     k, num_isoc_packets-1,
1064                                     len);
1065                                 for (i = 0; i < len; i++)
1066                                         printk("%x ", buf[i]);
1067                                 printk("\n");
1068                         }
1069
1070                         if (!iso_status) {
1071                                 if (fifo->last_urblen != maxlen) {
1072                                         /*
1073                                          * save fifo fill-level threshold bits
1074                                          * to use them later in TX ISO URB
1075                                          * completions
1076                                          */
1077                                         hw->threshold_mask = buf[1];
1078
1079                                         if (fifon == HFCUSB_D_RX)
1080                                                 s0_state = (buf[0] >> 4);
1081
1082                                         eof[fifon] = buf[0] & 1;
1083                                         if (len > 2)
1084                                                 hfcsusb_rx_frame(fifo, buf + 2,
1085                                                         len - 2, (len < maxlen)
1086                                                         ? eof[fifon] : 0);
1087                                 } else
1088                                         hfcsusb_rx_frame(fifo, buf, len,
1089                                                 (len < maxlen) ?
1090                                                 eof[fifon] : 0);
1091                                 fifo->last_urblen = len;
1092                         }
1093                 }
1094
1095                 /* signal S0 layer1 state change */
1096                 if ((s0_state) && (hw->initdone) &&
1097                     (s0_state != hw->dch.state)) {
1098                         hw->dch.state = s0_state;
1099                         schedule_event(&hw->dch, FLG_PHCHANGE);
1100                 }
1101
1102                 fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1103                               context_iso_urb->buffer, num_isoc_packets,
1104                               fifo->usb_packet_maxlen, fifo->intervall,
1105                               (usb_complete_t)rx_iso_complete, urb->context);
1106                 errcode = usb_submit_urb(urb, GFP_ATOMIC);
1107                 if (errcode < 0) {
1108                         if (debug & DEBUG_HW)
1109                                 printk(KERN_DEBUG "%s: %s: error submitting "
1110                                     "ISO URB: %d\n",
1111                                     hw->name, __func__, errcode);
1112                 }
1113         } else {
1114                 if (status && (debug & DBG_HFC_URB_INFO))
1115                         printk(KERN_DEBUG "%s: %s: rx_iso_complete : "
1116                             "urb->status %d, fifonum %d\n",
1117                             hw->name, __func__, status, fifon);
1118         }
1119 }
1120
1121 /* receive completion routine for all interrupt rx fifos */
1122 static void
1123 rx_int_complete(struct urb *urb)
1124 {
1125         int len, status, i;
1126         __u8 *buf, maxlen, fifon;
1127         struct usb_fifo *fifo = (struct usb_fifo *) urb->context;
1128         struct hfcsusb *hw = fifo->hw;
1129         static __u8 eof[8];
1130
1131         spin_lock(&hw->lock);
1132         if (fifo->stop_gracefull) {
1133                 fifo->stop_gracefull = 0;
1134                 fifo->active = 0;
1135                 spin_unlock(&hw->lock);
1136                 return;
1137         }
1138         spin_unlock(&hw->lock);
1139
1140         fifon = fifo->fifonum;
1141         if ((!fifo->active) || (urb->status)) {
1142                 if (debug & DBG_HFC_URB_ERROR)
1143                         printk(KERN_DEBUG
1144                             "%s: %s: RX-Fifo %i is going down (%i)\n",
1145                             hw->name, __func__, fifon, urb->status);
1146
1147                 fifo->urb->interval = 0; /* cancel automatic rescheduling */
1148                 return;
1149         }
1150         len = urb->actual_length;
1151         buf = fifo->buffer;
1152         maxlen = fifo->usb_packet_maxlen;
1153
1154         /* USB data log for every D INT in */
1155         if ((fifon == HFCUSB_D_RX) && (debug & DBG_HFC_USB_VERBOSE)) {
1156                 printk(KERN_DEBUG "%s: %s: D RX INT len(%d) ",
1157                     hw->name, __func__, len);
1158                 for (i = 0; i < len; i++)
1159                         printk("%02x ", buf[i]);
1160                 printk("\n");
1161         }
1162
1163         if (fifo->last_urblen != fifo->usb_packet_maxlen) {
1164                 /* the threshold mask is in the 2nd status byte */
1165                 hw->threshold_mask = buf[1];
1166
1167                 /* signal S0 layer1 state change */
1168                 if (hw->initdone && ((buf[0] >> 4) != hw->dch.state)) {
1169                         hw->dch.state = (buf[0] >> 4);
1170                         schedule_event(&hw->dch, FLG_PHCHANGE);
1171                 }
1172
1173                 eof[fifon] = buf[0] & 1;
1174                 /* if we have more than the 2 status bytes -> collect data */
1175                 if (len > 2)
1176                         hfcsusb_rx_frame(fifo, buf + 2,
1177                            urb->actual_length - 2,
1178                            (len < maxlen) ? eof[fifon] : 0);
1179         } else {
1180                 hfcsusb_rx_frame(fifo, buf, urb->actual_length,
1181                                  (len < maxlen) ? eof[fifon] : 0);
1182         }
1183         fifo->last_urblen = urb->actual_length;
1184
1185         status = usb_submit_urb(urb, GFP_ATOMIC);
1186         if (status) {
1187                 if (debug & DEBUG_HW)
1188                         printk(KERN_DEBUG "%s: %s: error resubmitting USB\n",
1189                             hw->name, __func__);
1190         }
1191 }
1192
1193 /* transmit completion routine for all ISO tx fifos */
1194 static void
1195 tx_iso_complete(struct urb *urb)
1196 {
1197         struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
1198         struct usb_fifo *fifo = context_iso_urb->owner_fifo;
1199         struct hfcsusb *hw = fifo->hw;
1200         struct sk_buff *tx_skb;
1201         int k, tx_offset, num_isoc_packets, sink, remain, current_len,
1202             errcode, hdlc, i;
1203         int *tx_idx;
1204         int frame_complete, fifon, status;
1205         __u8 threshbit;
1206
1207         spin_lock(&hw->lock);
1208         if (fifo->stop_gracefull) {
1209                 fifo->stop_gracefull = 0;
1210                 fifo->active = 0;
1211                 spin_unlock(&hw->lock);
1212                 return;
1213         }
1214
1215         if (fifo->dch) {
1216                 tx_skb = fifo->dch->tx_skb;
1217                 tx_idx = &fifo->dch->tx_idx;
1218                 hdlc = 1;
1219         } else if (fifo->bch) {
1220                 tx_skb = fifo->bch->tx_skb;
1221                 tx_idx = &fifo->bch->tx_idx;
1222                 hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
1223         } else {
1224                 printk(KERN_DEBUG "%s: %s: neither BCH nor DCH\n",
1225                     hw->name, __func__);
1226                 spin_unlock(&hw->lock);
1227                 return;
1228         }
1229
1230         fifon = fifo->fifonum;
1231         status = urb->status;
1232
1233         tx_offset = 0;
1234
1235         /*
1236          * ISO transfer only partially completed,
1237          * look at individual frame status for details
1238          */
1239         if (status == -EXDEV) {
1240                 if (debug & DBG_HFC_URB_ERROR)
1241                         printk(KERN_DEBUG "%s: %s: "
1242                             "-EXDEV (%i) fifon (%d)\n",
1243                             hw->name, __func__, status, fifon);
1244
1245                 /* clear status, so go on with ISO transfers */
1246                 status = 0;
1247         }
1248
1249         if (fifo->active && !status) {
1250                 /* is FifoFull-threshold set for our channel? */
1251                 threshbit = (hw->threshold_mask & (1 << fifon));
1252                 num_isoc_packets = iso_packets[fifon];
1253
1254                 /* predict dataflow to avoid fifo overflow */
1255                 if (fifon >= HFCUSB_D_TX)
1256                         sink = (threshbit) ? SINK_DMIN : SINK_DMAX;
1257                 else
1258                         sink = (threshbit) ? SINK_MIN : SINK_MAX;
1259                 fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1260                               context_iso_urb->buffer, num_isoc_packets,
1261                               fifo->usb_packet_maxlen, fifo->intervall,
1262                               (usb_complete_t)tx_iso_complete, urb->context);
1263                 memset(context_iso_urb->buffer, 0,
1264                        sizeof(context_iso_urb->buffer));
1265                 frame_complete = 0;
1266
1267                 for (k = 0; k < num_isoc_packets; ++k) {
1268                         /* analyze tx success of previous ISO packets */
1269                         if (debug & DBG_HFC_URB_ERROR) {
1270                                 errcode = urb->iso_frame_desc[k].status;
1271                                 if (errcode) {
1272                                         printk(KERN_DEBUG "%s: %s: "
1273                                             "ISO packet %i, status: %i\n",
1274                                              hw->name, __func__, k, errcode);
1275                                 }
1276                         }
1277
1278                         /* Generate next ISO Packets */
1279                         if (tx_skb)
1280                                 remain = tx_skb->len - *tx_idx;
1281                         else
1282                                 remain = 0;
1283
1284                         if (remain > 0) {
1285                                 fifo->bit_line -= sink;
1286                                 current_len = (0 - fifo->bit_line) / 8;
1287                                 if (current_len > 14)
1288                                         current_len = 14;
1289                                 if (current_len < 0)
1290                                         current_len = 0;
1291                                 if (remain < current_len)
1292                                         current_len = remain;
1293
1294                                 /* how much bit do we put on the line? */
1295                                 fifo->bit_line += current_len * 8;
1296
1297                                 context_iso_urb->buffer[tx_offset] = 0;
1298                                 if (current_len == remain) {
1299                                         if (hdlc) {
1300                                                 /* signal frame completion */
1301                                                 context_iso_urb->
1302                                                     buffer[tx_offset] = 1;
1303                                                 /* add 2 byte flags and 16bit
1304                                                  * CRC at end of ISDN frame */
1305                                                 fifo->bit_line += 32;
1306                                         }
1307                                         frame_complete = 1;
1308                                 }
1309
1310                                 /* copy tx data to iso-urb buffer */
1311                                 memcpy(context_iso_urb->buffer + tx_offset + 1,
1312                                        (tx_skb->data + *tx_idx), current_len);
1313                                 *tx_idx += current_len;
1314
1315                                 urb->iso_frame_desc[k].offset = tx_offset;
1316                                 urb->iso_frame_desc[k].length = current_len + 1;
1317
1318                                 /* USB data log for every D ISO out */
1319                                 if ((fifon == HFCUSB_D_RX) &&
1320                                     (debug & DBG_HFC_USB_VERBOSE)) {
1321                                         printk(KERN_DEBUG
1322                                             "%s: %s (%d/%d) offs(%d) len(%d) ",
1323                                             hw->name, __func__,
1324                                             k, num_isoc_packets-1,
1325                                             urb->iso_frame_desc[k].offset,
1326                                             urb->iso_frame_desc[k].length);
1327
1328                                         for (i = urb->iso_frame_desc[k].offset;
1329                                              i < (urb->iso_frame_desc[k].offset
1330                                              + urb->iso_frame_desc[k].length);
1331                                              i++)
1332                                                 printk("%x ",
1333                                                     context_iso_urb->buffer[i]);
1334
1335                                         printk(" skb->len(%i) tx-idx(%d)\n",
1336                                             tx_skb->len, *tx_idx);
1337                                 }
1338
1339                                 tx_offset += (current_len + 1);
1340                         } else {
1341                                 urb->iso_frame_desc[k].offset = tx_offset++;
1342                                 urb->iso_frame_desc[k].length = 1;
1343                                 /* we lower data margin every msec */
1344                                 fifo->bit_line -= sink;
1345                                 if (fifo->bit_line < BITLINE_INF)
1346                                         fifo->bit_line = BITLINE_INF;
1347                         }
1348
1349                         if (frame_complete) {
1350                                 frame_complete = 0;
1351
1352                                 if (debug & DBG_HFC_FIFO_VERBOSE) {
1353                                         printk(KERN_DEBUG  "%s: %s: "
1354                                             "fifon(%i) new TX len(%i): ",
1355                                             hw->name, __func__,
1356                                             fifon, tx_skb->len);
1357                                         i = 0;
1358                                         while (i < tx_skb->len)
1359                                                 printk("%02x ",
1360                                                     tx_skb->data[i++]);
1361                                         printk("\n");
1362                                 }
1363
1364                                 dev_kfree_skb(tx_skb);
1365                                 tx_skb = NULL;
1366                                 if (fifo->dch && get_next_dframe(fifo->dch))
1367                                         tx_skb = fifo->dch->tx_skb;
1368                                 else if (fifo->bch &&
1369                                     get_next_bframe(fifo->bch)) {
1370                                         if (test_bit(FLG_TRANSPARENT,
1371                                             &fifo->bch->Flags))
1372                                                 confirm_Bsend(fifo->bch);
1373                                         tx_skb = fifo->bch->tx_skb;
1374                                 }
1375                         }
1376                 }
1377                 errcode = usb_submit_urb(urb, GFP_ATOMIC);
1378                 if (errcode < 0) {
1379                         if (debug & DEBUG_HW)
1380                                 printk(KERN_DEBUG
1381                                     "%s: %s: error submitting ISO URB: %d \n",
1382                                     hw->name, __func__, errcode);
1383                 }
1384
1385                 /*
1386                  * abuse DChannel tx iso completion to trigger NT mode state
1387                  * changes tx_iso_complete is assumed to be called every
1388                  * fifo->intervall (ms)
1389                  */
1390                 if ((fifon == HFCUSB_D_TX) && (hw->protocol == ISDN_P_NT_S0)
1391                     && (hw->timers & NT_ACTIVATION_TIMER)) {
1392                         if ((--hw->nt_timer) < 0)
1393                                 schedule_event(&hw->dch, FLG_PHCHANGE);
1394                 }
1395
1396         } else {
1397                 if (status && (debug & DBG_HFC_URB_ERROR))
1398                         printk(KERN_DEBUG  "%s: %s: urb->status %s (%i)"
1399                             "fifonum=%d\n",
1400                             hw->name, __func__,
1401                             symbolic(urb_errlist, status), status, fifon);
1402         }
1403         spin_unlock(&hw->lock);
1404 }
1405
1406 /*
1407  * allocs urbs and start isoc transfer with two pending urbs to avoid
1408  * gaps in the transfer chain
1409  */
1410 static int
1411 start_isoc_chain(struct usb_fifo *fifo, int num_packets_per_urb,
1412                  usb_complete_t complete, int packet_size)
1413 {
1414         struct hfcsusb *hw = fifo->hw;
1415         int i, k, errcode;
1416
1417         if (debug)
1418                 printk(KERN_DEBUG "%s: %s: fifo %i\n",
1419                     hw->name, __func__, fifo->fifonum);
1420
1421         /* allocate Memory for Iso out Urbs */
1422         for (i = 0; i < 2; i++) {
1423                 if (!(fifo->iso[i].urb)) {
1424                         fifo->iso[i].urb =
1425                             usb_alloc_urb(num_packets_per_urb, GFP_KERNEL);
1426                         if (!(fifo->iso[i].urb)) {
1427                                 printk(KERN_DEBUG
1428                                     "%s: %s: alloc urb for fifo %i failed",
1429                                     hw->name, __func__, fifo->fifonum);
1430                         }
1431                         fifo->iso[i].owner_fifo = (struct usb_fifo *) fifo;
1432                         fifo->iso[i].indx = i;
1433
1434                         /* Init the first iso */
1435                         if (ISO_BUFFER_SIZE >=
1436                             (fifo->usb_packet_maxlen *
1437                              num_packets_per_urb)) {
1438                                 fill_isoc_urb(fifo->iso[i].urb,
1439                                     fifo->hw->dev, fifo->pipe,
1440                                     fifo->iso[i].buffer,
1441                                     num_packets_per_urb,
1442                                     fifo->usb_packet_maxlen,
1443                                     fifo->intervall, complete,
1444                                     &fifo->iso[i]);
1445                                 memset(fifo->iso[i].buffer, 0,
1446                                        sizeof(fifo->iso[i].buffer));
1447
1448                                 for (k = 0; k < num_packets_per_urb; k++) {
1449                                         fifo->iso[i].urb->
1450                                             iso_frame_desc[k].offset =
1451                                             k * packet_size;
1452                                         fifo->iso[i].urb->
1453                                             iso_frame_desc[k].length =
1454                                             packet_size;
1455                                 }
1456                         } else {
1457                                 printk(KERN_DEBUG
1458                                     "%s: %s: ISO Buffer size to small!\n",
1459                                     hw->name, __func__);
1460                         }
1461                 }
1462                 fifo->bit_line = BITLINE_INF;
1463
1464                 errcode = usb_submit_urb(fifo->iso[i].urb, GFP_KERNEL);
1465                 fifo->active = (errcode >= 0) ? 1 : 0;
1466                 fifo->stop_gracefull = 0;
1467                 if (errcode < 0) {
1468                         printk(KERN_DEBUG "%s: %s: %s URB nr:%d\n",
1469                             hw->name, __func__,
1470                             symbolic(urb_errlist, errcode), i);
1471                 }
1472         }
1473         return fifo->active;
1474 }
1475
1476 static void
1477 stop_iso_gracefull(struct usb_fifo *fifo)
1478 {
1479         struct hfcsusb *hw = fifo->hw;
1480         int i, timeout;
1481         u_long flags;
1482
1483         for (i = 0; i < 2; i++) {
1484                 spin_lock_irqsave(&hw->lock, flags);
1485                 if (debug)
1486                         printk(KERN_DEBUG "%s: %s for fifo %i.%i\n",
1487                                hw->name, __func__, fifo->fifonum, i);
1488                 fifo->stop_gracefull = 1;
1489                 spin_unlock_irqrestore(&hw->lock, flags);
1490         }
1491
1492         for (i = 0; i < 2; i++) {
1493                 timeout = 3;
1494                 while (fifo->stop_gracefull && timeout--)
1495                         schedule_timeout_interruptible((HZ/1000)*16);
1496                 if (debug && fifo->stop_gracefull)
1497                         printk(KERN_DEBUG "%s: ERROR %s for fifo %i.%i\n",
1498                                 hw->name, __func__, fifo->fifonum, i);
1499         }
1500 }
1501
1502 static void
1503 stop_int_gracefull(struct usb_fifo *fifo)
1504 {
1505         struct hfcsusb *hw = fifo->hw;
1506         int timeout;
1507         u_long flags;
1508
1509         spin_lock_irqsave(&hw->lock, flags);
1510         if (debug)
1511                 printk(KERN_DEBUG "%s: %s for fifo %i\n",
1512                        hw->name, __func__, fifo->fifonum);
1513         fifo->stop_gracefull = 1;
1514         spin_unlock_irqrestore(&hw->lock, flags);
1515
1516         timeout = 3;
1517         while (fifo->stop_gracefull && timeout--)
1518                 schedule_timeout_interruptible((HZ/1000)*3);
1519         if (debug && fifo->stop_gracefull)
1520                 printk(KERN_DEBUG "%s: ERROR %s for fifo %i\n",
1521                        hw->name, __func__, fifo->fifonum);
1522 }
1523
1524 /* start the interrupt transfer for the given fifo */
1525 static void
1526 start_int_fifo(struct usb_fifo *fifo)
1527 {
1528         struct hfcsusb *hw = fifo->hw;
1529         int errcode;
1530
1531         if (debug)
1532                 printk(KERN_DEBUG "%s: %s: INT IN fifo:%d\n",
1533                     hw->name, __func__, fifo->fifonum);
1534
1535         if (!fifo->urb) {
1536                 fifo->urb = usb_alloc_urb(0, GFP_KERNEL);
1537                 if (!fifo->urb)
1538                         return;
1539         }
1540         usb_fill_int_urb(fifo->urb, fifo->hw->dev, fifo->pipe,
1541             fifo->buffer, fifo->usb_packet_maxlen,
1542             (usb_complete_t)rx_int_complete, fifo, fifo->intervall);
1543         fifo->active = 1;
1544         fifo->stop_gracefull = 0;
1545         errcode = usb_submit_urb(fifo->urb, GFP_KERNEL);
1546         if (errcode) {
1547                 printk(KERN_DEBUG "%s: %s: submit URB: status:%i\n",
1548                     hw->name, __func__, errcode);
1549                 fifo->active = 0;
1550         }
1551 }
1552
1553 static void
1554 setPortMode(struct hfcsusb *hw)
1555 {
1556         if (debug & DEBUG_HW)
1557                 printk(KERN_DEBUG "%s: %s %s\n", hw->name, __func__,
1558                    (hw->protocol == ISDN_P_TE_S0) ? "TE" : "NT");
1559
1560         if (hw->protocol == ISDN_P_TE_S0) {
1561                 write_reg(hw, HFCUSB_SCTRL, 0x40);
1562                 write_reg(hw, HFCUSB_SCTRL_E, 0x00);
1563                 write_reg(hw, HFCUSB_CLKDEL, CLKDEL_TE);
1564                 write_reg(hw, HFCUSB_STATES, 3 | 0x10);
1565                 write_reg(hw, HFCUSB_STATES, 3);
1566         } else {
1567                 write_reg(hw, HFCUSB_SCTRL, 0x44);
1568                 write_reg(hw, HFCUSB_SCTRL_E, 0x09);
1569                 write_reg(hw, HFCUSB_CLKDEL, CLKDEL_NT);
1570                 write_reg(hw, HFCUSB_STATES, 1 | 0x10);
1571                 write_reg(hw, HFCUSB_STATES, 1);
1572         }
1573 }
1574
1575 static void
1576 reset_hfcsusb(struct hfcsusb *hw)
1577 {
1578         struct usb_fifo *fifo;
1579         int i;
1580
1581         if (debug & DEBUG_HW)
1582                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1583
1584         /* do Chip reset */
1585         write_reg(hw, HFCUSB_CIRM, 8);
1586
1587         /* aux = output, reset off */
1588         write_reg(hw, HFCUSB_CIRM, 0x10);
1589
1590         /* set USB_SIZE to match the wMaxPacketSize for INT or BULK transfers */
1591         write_reg(hw, HFCUSB_USB_SIZE, (hw->packet_size / 8) |
1592             ((hw->packet_size / 8) << 4));
1593
1594         /* set USB_SIZE_I to match the the wMaxPacketSize for ISO transfers */
1595         write_reg(hw, HFCUSB_USB_SIZE_I, hw->iso_packet_size);
1596
1597         /* enable PCM/GCI master mode */
1598         write_reg(hw, HFCUSB_MST_MODE1, 0);     /* set default values */
1599         write_reg(hw, HFCUSB_MST_MODE0, 1);     /* enable master mode */
1600
1601         /* init the fifos */
1602         write_reg(hw, HFCUSB_F_THRES,
1603             (HFCUSB_TX_THRESHOLD / 8) | ((HFCUSB_RX_THRESHOLD / 8) << 4));
1604
1605         fifo = hw->fifos;
1606         for (i = 0; i < HFCUSB_NUM_FIFOS; i++) {
1607                 write_reg(hw, HFCUSB_FIFO, i);  /* select the desired fifo */
1608                 fifo[i].max_size =
1609                     (i <= HFCUSB_B2_RX) ? MAX_BCH_SIZE : MAX_DFRAME_LEN;
1610                 fifo[i].last_urblen = 0;
1611
1612                 /* set 2 bit for D- & E-channel */
1613                 write_reg(hw, HFCUSB_HDLC_PAR, ((i <= HFCUSB_B2_RX) ? 0 : 2));
1614
1615                 /* enable all fifos */
1616                 if (i == HFCUSB_D_TX)
1617                         write_reg(hw, HFCUSB_CON_HDLC,
1618                             (hw->protocol == ISDN_P_NT_S0) ? 0x08 : 0x09);
1619                 else
1620                         write_reg(hw, HFCUSB_CON_HDLC, 0x08);
1621                 write_reg(hw, HFCUSB_INC_RES_F, 2); /* reset the fifo */
1622         }
1623
1624         write_reg(hw, HFCUSB_SCTRL_R, 0); /* disable both B receivers */
1625         handle_led(hw, LED_POWER_ON);
1626 }
1627
1628 /* start USB data pipes dependand on device's endpoint configuration */
1629 static void
1630 hfcsusb_start_endpoint(struct hfcsusb *hw, int channel)
1631 {
1632         /* quick check if endpoint already running */
1633         if ((channel == HFC_CHAN_D) && (hw->fifos[HFCUSB_D_RX].active))
1634                 return;
1635         if ((channel == HFC_CHAN_B1) && (hw->fifos[HFCUSB_B1_RX].active))
1636                 return;
1637         if ((channel == HFC_CHAN_B2) && (hw->fifos[HFCUSB_B2_RX].active))
1638                 return;
1639         if ((channel == HFC_CHAN_E) && (hw->fifos[HFCUSB_PCM_RX].active))
1640                 return;
1641
1642         /* start rx endpoints using USB INT IN method */
1643         if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1644                 start_int_fifo(hw->fifos + channel*2 + 1);
1645
1646         /* start rx endpoints using USB ISO IN method */
1647         if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO) {
1648                 switch (channel) {
1649                 case HFC_CHAN_D:
1650                         start_isoc_chain(hw->fifos + HFCUSB_D_RX,
1651                                 ISOC_PACKETS_D,
1652                                 (usb_complete_t)rx_iso_complete,
1653                                 16);
1654                         break;
1655                 case HFC_CHAN_E:
1656                         start_isoc_chain(hw->fifos + HFCUSB_PCM_RX,
1657                                 ISOC_PACKETS_D,
1658                                 (usb_complete_t)rx_iso_complete,
1659                                 16);
1660                         break;
1661                 case HFC_CHAN_B1:
1662                         start_isoc_chain(hw->fifos + HFCUSB_B1_RX,
1663                                 ISOC_PACKETS_B,
1664                                 (usb_complete_t)rx_iso_complete,
1665                                 16);
1666                         break;
1667                 case HFC_CHAN_B2:
1668                         start_isoc_chain(hw->fifos + HFCUSB_B2_RX,
1669                                 ISOC_PACKETS_B,
1670                                 (usb_complete_t)rx_iso_complete,
1671                                 16);
1672                         break;
1673                 }
1674         }
1675
1676         /* start tx endpoints using USB ISO OUT method */
1677         switch (channel) {
1678         case HFC_CHAN_D:
1679                 start_isoc_chain(hw->fifos + HFCUSB_D_TX,
1680                         ISOC_PACKETS_B,
1681                         (usb_complete_t)tx_iso_complete, 1);
1682                 break;
1683         case HFC_CHAN_B1:
1684                 start_isoc_chain(hw->fifos + HFCUSB_B1_TX,
1685                         ISOC_PACKETS_D,
1686                         (usb_complete_t)tx_iso_complete, 1);
1687                 break;
1688         case HFC_CHAN_B2:
1689                 start_isoc_chain(hw->fifos + HFCUSB_B2_TX,
1690                         ISOC_PACKETS_B,
1691                         (usb_complete_t)tx_iso_complete, 1);
1692                 break;
1693         }
1694 }
1695
1696 /* stop USB data pipes dependand on device's endpoint configuration */
1697 static void
1698 hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel)
1699 {
1700         /* quick check if endpoint currently running */
1701         if ((channel == HFC_CHAN_D) && (!hw->fifos[HFCUSB_D_RX].active))
1702                 return;
1703         if ((channel == HFC_CHAN_B1) && (!hw->fifos[HFCUSB_B1_RX].active))
1704                 return;
1705         if ((channel == HFC_CHAN_B2) && (!hw->fifos[HFCUSB_B2_RX].active))
1706                 return;
1707         if ((channel == HFC_CHAN_E) && (!hw->fifos[HFCUSB_PCM_RX].active))
1708                 return;
1709
1710         /* rx endpoints using USB INT IN method */
1711         if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1712                 stop_int_gracefull(hw->fifos + channel*2 + 1);
1713
1714         /* rx endpoints using USB ISO IN method */
1715         if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO)
1716                 stop_iso_gracefull(hw->fifos + channel*2 + 1);
1717
1718         /* tx endpoints using USB ISO OUT method */
1719         if (channel != HFC_CHAN_E)
1720                 stop_iso_gracefull(hw->fifos + channel*2);
1721 }
1722
1723
1724 /* Hardware Initialization */
1725 static int
1726 setup_hfcsusb(struct hfcsusb *hw)
1727 {
1728         u_char b;
1729
1730         if (debug & DBG_HFC_CALL_TRACE)
1731                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1732
1733         /* check the chip id */
1734         if (read_reg_atomic(hw, HFCUSB_CHIP_ID, &b) != 1) {
1735                 printk(KERN_DEBUG "%s: %s: cannot read chip id\n",
1736                     hw->name, __func__);
1737                 return 1;
1738         }
1739         if (b != HFCUSB_CHIPID) {
1740                 printk(KERN_DEBUG "%s: %s: Invalid chip id 0x%02x\n",
1741                     hw->name, __func__, b);
1742                 return 1;
1743         }
1744
1745         /* first set the needed config, interface and alternate */
1746         (void) usb_set_interface(hw->dev, hw->if_used, hw->alt_used);
1747
1748         hw->led_state = 0;
1749
1750         /* init the background machinery for control requests */
1751         hw->ctrl_read.bRequestType = 0xc0;
1752         hw->ctrl_read.bRequest = 1;
1753         hw->ctrl_read.wLength = cpu_to_le16(1);
1754         hw->ctrl_write.bRequestType = 0x40;
1755         hw->ctrl_write.bRequest = 0;
1756         hw->ctrl_write.wLength = 0;
1757         usb_fill_control_urb(hw->ctrl_urb, hw->dev, hw->ctrl_out_pipe,
1758             (u_char *)&hw->ctrl_write, NULL, 0,
1759             (usb_complete_t)ctrl_complete, hw);
1760
1761         reset_hfcsusb(hw);
1762         return 0;
1763 }
1764
1765 static void
1766 release_hw(struct hfcsusb *hw)
1767 {
1768         if (debug & DBG_HFC_CALL_TRACE)
1769                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1770
1771         /*
1772          * stop all endpoints gracefully
1773          * TODO: mISDN_core should generate CLOSE_CHANNEL
1774          *       signals after calling mISDN_unregister_device()
1775          */
1776         hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
1777         hfcsusb_stop_endpoint(hw, HFC_CHAN_B1);
1778         hfcsusb_stop_endpoint(hw, HFC_CHAN_B2);
1779         if (hw->fifos[HFCUSB_PCM_RX].pipe)
1780                 hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
1781         if (hw->protocol == ISDN_P_TE_S0)
1782                 l1_event(hw->dch.l1, CLOSE_CHANNEL);
1783
1784         mISDN_unregister_device(&hw->dch.dev);
1785         mISDN_freebchannel(&hw->bch[1]);
1786         mISDN_freebchannel(&hw->bch[0]);
1787         mISDN_freedchannel(&hw->dch);
1788
1789         if (hw->ctrl_urb) {
1790                 usb_kill_urb(hw->ctrl_urb);
1791                 usb_free_urb(hw->ctrl_urb);
1792                 hw->ctrl_urb = NULL;
1793         }
1794
1795         if (hw->intf)
1796                 usb_set_intfdata(hw->intf, NULL);
1797         list_del(&hw->list);
1798         kfree(hw);
1799         hw = NULL;
1800 }
1801
1802 static void
1803 deactivate_bchannel(struct bchannel *bch)
1804 {
1805         struct hfcsusb *hw = bch->hw;
1806         u_long flags;
1807
1808         if (bch->debug & DEBUG_HW)
1809                 printk(KERN_DEBUG "%s: %s: bch->nr(%i)\n",
1810                     hw->name, __func__, bch->nr);
1811
1812         spin_lock_irqsave(&hw->lock, flags);
1813         mISDN_clear_bchannel(bch);
1814         spin_unlock_irqrestore(&hw->lock, flags);
1815         hfcsusb_setup_bch(bch, ISDN_P_NONE);
1816         hfcsusb_stop_endpoint(hw, bch->nr);
1817 }
1818
1819 /*
1820  * Layer 1 B-channel hardware access
1821  */
1822 static int
1823 hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1824 {
1825         struct bchannel *bch = container_of(ch, struct bchannel, ch);
1826         int             ret = -EINVAL;
1827
1828         if (bch->debug & DEBUG_HW)
1829                 printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
1830
1831         switch (cmd) {
1832         case HW_TESTRX_RAW:
1833         case HW_TESTRX_HDLC:
1834         case HW_TESTRX_OFF:
1835                 ret = -EINVAL;
1836                 break;
1837
1838         case CLOSE_CHANNEL:
1839                 test_and_clear_bit(FLG_OPEN, &bch->Flags);
1840                 if (test_bit(FLG_ACTIVE, &bch->Flags))
1841                         deactivate_bchannel(bch);
1842                 ch->protocol = ISDN_P_NONE;
1843                 ch->peer = NULL;
1844                 module_put(THIS_MODULE);
1845                 ret = 0;
1846                 break;
1847         case CONTROL_CHANNEL:
1848                 ret = channel_bctrl(bch, arg);
1849                 break;
1850         default:
1851                 printk(KERN_WARNING "%s: unknown prim(%x)\n",
1852                         __func__, cmd);
1853         }
1854         return ret;
1855 }
1856
1857 static int
1858 setup_instance(struct hfcsusb *hw, struct device *parent)
1859 {
1860         u_long  flags;
1861         int     err, i;
1862
1863         if (debug & DBG_HFC_CALL_TRACE)
1864                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1865
1866         spin_lock_init(&hw->ctrl_lock);
1867         spin_lock_init(&hw->lock);
1868
1869         mISDN_initdchannel(&hw->dch, MAX_DFRAME_LEN_L1, ph_state);
1870         hw->dch.debug = debug & 0xFFFF;
1871         hw->dch.hw = hw;
1872         hw->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
1873         hw->dch.dev.D.send = hfcusb_l2l1D;
1874         hw->dch.dev.D.ctrl = hfc_dctrl;
1875
1876         /* enable E-Channel logging */
1877         if (hw->fifos[HFCUSB_PCM_RX].pipe)
1878                 mISDN_initdchannel(&hw->ech, MAX_DFRAME_LEN_L1, NULL);
1879
1880         hw->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
1881             (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
1882         hw->dch.dev.nrbchan = 2;
1883         for (i = 0; i < 2; i++) {
1884                 hw->bch[i].nr = i + 1;
1885                 set_channelmap(i + 1, hw->dch.dev.channelmap);
1886                 hw->bch[i].debug = debug;
1887                 mISDN_initbchannel(&hw->bch[i], MAX_DATA_MEM);
1888                 hw->bch[i].hw = hw;
1889                 hw->bch[i].ch.send = hfcusb_l2l1B;
1890                 hw->bch[i].ch.ctrl = hfc_bctrl;
1891                 hw->bch[i].ch.nr = i + 1;
1892                 list_add(&hw->bch[i].ch.list, &hw->dch.dev.bchannels);
1893         }
1894
1895         hw->fifos[HFCUSB_B1_TX].bch = &hw->bch[0];
1896         hw->fifos[HFCUSB_B1_RX].bch = &hw->bch[0];
1897         hw->fifos[HFCUSB_B2_TX].bch = &hw->bch[1];
1898         hw->fifos[HFCUSB_B2_RX].bch = &hw->bch[1];
1899         hw->fifos[HFCUSB_D_TX].dch = &hw->dch;
1900         hw->fifos[HFCUSB_D_RX].dch = &hw->dch;
1901         hw->fifos[HFCUSB_PCM_RX].ech = &hw->ech;
1902         hw->fifos[HFCUSB_PCM_TX].ech = &hw->ech;
1903
1904         err = setup_hfcsusb(hw);
1905         if (err)
1906                 goto out;
1907
1908         snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s.%d", DRIVER_NAME,
1909             hfcsusb_cnt + 1);
1910         printk(KERN_INFO "%s: registered as '%s'\n",
1911             DRIVER_NAME, hw->name);
1912
1913         err = mISDN_register_device(&hw->dch.dev, parent, hw->name);
1914         if (err)
1915                 goto out;
1916
1917         hfcsusb_cnt++;
1918         write_lock_irqsave(&HFClock, flags);
1919         list_add_tail(&hw->list, &HFClist);
1920         write_unlock_irqrestore(&HFClock, flags);
1921         return 0;
1922
1923 out:
1924         mISDN_freebchannel(&hw->bch[1]);
1925         mISDN_freebchannel(&hw->bch[0]);
1926         mISDN_freedchannel(&hw->dch);
1927         kfree(hw);
1928         return err;
1929 }
1930
1931 static int
1932 hfcsusb_probe(struct usb_interface *intf, const struct usb_device_id *id)
1933 {
1934         struct hfcsusb                  *hw;
1935         struct usb_device               *dev = interface_to_usbdev(intf);
1936         struct usb_host_interface       *iface = intf->cur_altsetting;
1937         struct usb_host_interface       *iface_used = NULL;
1938         struct usb_host_endpoint        *ep;
1939         struct hfcsusb_vdata            *driver_info;
1940         int ifnum = iface->desc.bInterfaceNumber, i, idx, alt_idx,
1941             probe_alt_setting, vend_idx, cfg_used, *vcf, attr, cfg_found,
1942             ep_addr, cmptbl[16], small_match, iso_packet_size, packet_size,
1943             alt_used = 0;
1944
1945         vend_idx = 0xffff;
1946         for (i = 0; hfcsusb_idtab[i].idVendor; i++) {
1947                 if ((le16_to_cpu(dev->descriptor.idVendor)
1948                        == hfcsusb_idtab[i].idVendor) &&
1949                     (le16_to_cpu(dev->descriptor.idProduct)
1950                        == hfcsusb_idtab[i].idProduct)) {
1951                         vend_idx = i;
1952                         continue;
1953                 }
1954         }
1955
1956         printk(KERN_DEBUG
1957             "%s: interface(%d) actalt(%d) minor(%d) vend_idx(%d)\n",
1958             __func__, ifnum, iface->desc.bAlternateSetting,
1959             intf->minor, vend_idx);
1960
1961         if (vend_idx == 0xffff) {
1962                 printk(KERN_WARNING
1963                     "%s: no valid vendor found in USB descriptor\n",
1964                     __func__);
1965                 return -EIO;
1966         }
1967         /* if vendor and product ID is OK, start probing alternate settings */
1968         alt_idx = 0;
1969         small_match = -1;
1970
1971         /* default settings */
1972         iso_packet_size = 16;
1973         packet_size = 64;
1974
1975         while (alt_idx < intf->num_altsetting) {
1976                 iface = intf->altsetting + alt_idx;
1977                 probe_alt_setting = iface->desc.bAlternateSetting;
1978                 cfg_used = 0;
1979
1980                 while (validconf[cfg_used][0]) {
1981                         cfg_found = 1;
1982                         vcf = validconf[cfg_used];
1983                         ep = iface->endpoint;
1984                         memcpy(cmptbl, vcf, 16 * sizeof(int));
1985
1986                         /* check for all endpoints in this alternate setting */
1987                         for (i = 0; i < iface->desc.bNumEndpoints; i++) {
1988                                 ep_addr = ep->desc.bEndpointAddress;
1989
1990                                 /* get endpoint base */
1991                                 idx = ((ep_addr & 0x7f) - 1) * 2;
1992                                 if (ep_addr & 0x80)
1993                                         idx++;
1994                                 attr = ep->desc.bmAttributes;
1995
1996                                 if (cmptbl[idx] != EP_NOP) {
1997                                         if (cmptbl[idx] == EP_NUL)
1998                                                 cfg_found = 0;
1999                                         if (attr == USB_ENDPOINT_XFER_INT
2000                                                 && cmptbl[idx] == EP_INT)
2001                                                 cmptbl[idx] = EP_NUL;
2002                                         if (attr == USB_ENDPOINT_XFER_BULK
2003                                                 && cmptbl[idx] == EP_BLK)
2004                                                 cmptbl[idx] = EP_NUL;
2005                                         if (attr == USB_ENDPOINT_XFER_ISOC
2006                                                 && cmptbl[idx] == EP_ISO)
2007                                                 cmptbl[idx] = EP_NUL;
2008
2009                                         if (attr == USB_ENDPOINT_XFER_INT &&
2010                                                 ep->desc.bInterval < vcf[17]) {
2011                                                 cfg_found = 0;
2012                                         }
2013                                 }
2014                                 ep++;
2015                         }
2016
2017                         for (i = 0; i < 16; i++)
2018                                 if (cmptbl[i] != EP_NOP && cmptbl[i] != EP_NUL)
2019                                         cfg_found = 0;
2020
2021                         if (cfg_found) {
2022                                 if (small_match < cfg_used) {
2023                                         small_match = cfg_used;
2024                                         alt_used = probe_alt_setting;
2025                                         iface_used = iface;
2026                                 }
2027                         }
2028                         cfg_used++;
2029                 }
2030                 alt_idx++;
2031         }       /* (alt_idx < intf->num_altsetting) */
2032
2033         /* not found a valid USB Ta Endpoint config */
2034         if (small_match == -1)
2035                 return -EIO;
2036
2037         iface = iface_used;
2038         hw = kzalloc(sizeof(struct hfcsusb), GFP_KERNEL);
2039         if (!hw)
2040                 return -ENOMEM; /* got no mem */
2041         snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s", DRIVER_NAME);
2042
2043         ep = iface->endpoint;
2044         vcf = validconf[small_match];
2045
2046         for (i = 0; i < iface->desc.bNumEndpoints; i++) {
2047                 struct usb_fifo *f;
2048
2049                 ep_addr = ep->desc.bEndpointAddress;
2050                 /* get endpoint base */
2051                 idx = ((ep_addr & 0x7f) - 1) * 2;
2052                 if (ep_addr & 0x80)
2053                         idx++;
2054                 f = &hw->fifos[idx & 7];
2055
2056                 /* init Endpoints */
2057                 if (vcf[idx] == EP_NOP || vcf[idx] == EP_NUL) {
2058                         ep++;
2059                         continue;
2060                 }
2061                 switch (ep->desc.bmAttributes) {
2062                 case USB_ENDPOINT_XFER_INT:
2063                         f->pipe = usb_rcvintpipe(dev,
2064                                 ep->desc.bEndpointAddress);
2065                         f->usb_transfer_mode = USB_INT;
2066                         packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2067                         break;
2068                 case USB_ENDPOINT_XFER_BULK:
2069                         if (ep_addr & 0x80)
2070                                 f->pipe = usb_rcvbulkpipe(dev,
2071                                         ep->desc.bEndpointAddress);
2072                         else
2073                                 f->pipe = usb_sndbulkpipe(dev,
2074                                         ep->desc.bEndpointAddress);
2075                         f->usb_transfer_mode = USB_BULK;
2076                         packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2077                         break;
2078                 case USB_ENDPOINT_XFER_ISOC:
2079                         if (ep_addr & 0x80)
2080                                 f->pipe = usb_rcvisocpipe(dev,
2081                                         ep->desc.bEndpointAddress);
2082                         else
2083                                 f->pipe = usb_sndisocpipe(dev,
2084                                         ep->desc.bEndpointAddress);
2085                         f->usb_transfer_mode = USB_ISOC;
2086                         iso_packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2087                         break;
2088                 default:
2089                         f->pipe = 0;
2090                 }
2091
2092                 if (f->pipe) {
2093                         f->fifonum = idx & 7;
2094                         f->hw = hw;
2095                         f->usb_packet_maxlen =
2096                             le16_to_cpu(ep->desc.wMaxPacketSize);
2097                         f->intervall = ep->desc.bInterval;
2098                 }
2099                 ep++;
2100         }
2101         hw->dev = dev; /* save device */
2102         hw->if_used = ifnum; /* save used interface */
2103         hw->alt_used = alt_used; /* and alternate config */
2104         hw->ctrl_paksize = dev->descriptor.bMaxPacketSize0; /* control size */
2105         hw->cfg_used = vcf[16]; /* store used config */
2106         hw->vend_idx = vend_idx; /* store found vendor */
2107         hw->packet_size = packet_size;
2108         hw->iso_packet_size = iso_packet_size;
2109
2110         /* create the control pipes needed for register access */
2111         hw->ctrl_in_pipe = usb_rcvctrlpipe(hw->dev, 0);
2112         hw->ctrl_out_pipe = usb_sndctrlpipe(hw->dev, 0);
2113         hw->ctrl_urb = usb_alloc_urb(0, GFP_KERNEL);
2114
2115         driver_info =
2116                 (struct hfcsusb_vdata *)hfcsusb_idtab[vend_idx].driver_info;
2117         printk(KERN_DEBUG "%s: %s: detected \"%s\" (%s, if=%d alt=%d)\n",
2118             hw->name, __func__, driver_info->vend_name,
2119             conf_str[small_match], ifnum, alt_used);
2120
2121         if (setup_instance(hw, dev->dev.parent))
2122                 return -EIO;
2123
2124         hw->intf = intf;
2125         usb_set_intfdata(hw->intf, hw);
2126         return 0;
2127 }
2128
2129 /* function called when an active device is removed */
2130 static void
2131 hfcsusb_disconnect(struct usb_interface *intf)
2132 {
2133         struct hfcsusb *hw = usb_get_intfdata(intf);
2134         struct hfcsusb *next;
2135         int cnt = 0;
2136
2137         printk(KERN_INFO "%s: device disconnected\n", hw->name);
2138
2139         handle_led(hw, LED_POWER_OFF);
2140         release_hw(hw);
2141
2142         list_for_each_entry_safe(hw, next, &HFClist, list)
2143                 cnt++;
2144         if (!cnt)
2145                 hfcsusb_cnt = 0;
2146
2147         usb_set_intfdata(intf, NULL);
2148 }
2149
2150 static struct usb_driver hfcsusb_drv = {
2151         .name = DRIVER_NAME,
2152         .id_table = hfcsusb_idtab,
2153         .probe = hfcsusb_probe,
2154         .disconnect = hfcsusb_disconnect,
2155 };
2156
2157 static int __init
2158 hfcsusb_init(void)
2159 {
2160         printk(KERN_INFO DRIVER_NAME " driver Rev. %s debug(0x%x) poll(%i)\n",
2161             hfcsusb_rev, debug, poll);
2162
2163         if (usb_register(&hfcsusb_drv)) {
2164                 printk(KERN_INFO DRIVER_NAME
2165                     ": Unable to register hfcsusb module at usb stack\n");
2166                 return -ENODEV;
2167         }
2168
2169         return 0;
2170 }
2171
2172 static void __exit
2173 hfcsusb_cleanup(void)
2174 {
2175         if (debug & DBG_HFC_CALL_TRACE)
2176                 printk(KERN_INFO DRIVER_NAME ": %s\n", __func__);
2177
2178         /* unregister Hardware */
2179         usb_deregister(&hfcsusb_drv);   /* release our driver */
2180 }
2181
2182 module_init(hfcsusb_init);
2183 module_exit(hfcsusb_cleanup);