Merge branch 'timers-cleanup-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[pandora-kernel.git] / drivers / isdn / hardware / mISDN / hfcpci.c
1 /*
2  *
3  * hfcpci.c     low level driver for CCD's hfc-pci based cards
4  *
5  * Author     Werner Cornelius (werner@isdn4linux.de)
6  *            based on existing driver for CCD hfc ISA cards
7  *            type approval valid for HFC-S PCI A based card
8  *
9  * Copyright 1999  by Werner Cornelius (werner@isdn-development.de)
10  * Copyright 2008  by Karsten Keil <kkeil@novell.com>
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2, or (at your option)
15  * any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  * Module options:
27  *
28  * debug:
29  *      NOTE: only one poll value must be given for all cards
30  *      See hfc_pci.h for debug flags.
31  *
32  * poll:
33  *      NOTE: only one poll value must be given for all cards
34  *      Give the number of samples for each fifo process.
35  *      By default 128 is used. Decrease to reduce delay, increase to
36  *      reduce cpu load. If unsure, don't mess with it!
37  *      A value of 128 will use controller's interrupt. Other values will
38  *      use kernel timer, because the controller will not allow lower values
39  *      than 128.
40  *      Also note that the value depends on the kernel timer frequency.
41  *      If kernel uses a frequency of 1000 Hz, steps of 8 samples are possible.
42  *      If the kernel uses 100 Hz, steps of 80 samples are possible.
43  *      If the kernel uses 300 Hz, steps of about 26 samples are possible.
44  *
45  */
46
47 #include <linux/interrupt.h>
48 #include <linux/module.h>
49 #include <linux/pci.h>
50 #include <linux/delay.h>
51 #include <linux/mISDNhw.h>
52 #include <linux/slab.h>
53
54 #include "hfc_pci.h"
55
56 static const char *hfcpci_revision = "2.0";
57
58 static int HFC_cnt;
59 static uint debug;
60 static uint poll, tics;
61 static struct timer_list hfc_tl;
62 static unsigned long hfc_jiffies;
63
64 MODULE_AUTHOR("Karsten Keil");
65 MODULE_LICENSE("GPL");
66 module_param(debug, uint, S_IRUGO | S_IWUSR);
67 module_param(poll, uint, S_IRUGO | S_IWUSR);
68
69 enum {
70         HFC_CCD_2BD0,
71         HFC_CCD_B000,
72         HFC_CCD_B006,
73         HFC_CCD_B007,
74         HFC_CCD_B008,
75         HFC_CCD_B009,
76         HFC_CCD_B00A,
77         HFC_CCD_B00B,
78         HFC_CCD_B00C,
79         HFC_CCD_B100,
80         HFC_CCD_B700,
81         HFC_CCD_B701,
82         HFC_ASUS_0675,
83         HFC_BERKOM_A1T,
84         HFC_BERKOM_TCONCEPT,
85         HFC_ANIGMA_MC145575,
86         HFC_ZOLTRIX_2BD0,
87         HFC_DIGI_DF_M_IOM2_E,
88         HFC_DIGI_DF_M_E,
89         HFC_DIGI_DF_M_IOM2_A,
90         HFC_DIGI_DF_M_A,
91         HFC_ABOCOM_2BD1,
92         HFC_SITECOM_DC105V2,
93 };
94
95 struct hfcPCI_hw {
96         unsigned char           cirm;
97         unsigned char           ctmt;
98         unsigned char           clkdel;
99         unsigned char           states;
100         unsigned char           conn;
101         unsigned char           mst_m;
102         unsigned char           int_m1;
103         unsigned char           int_m2;
104         unsigned char           sctrl;
105         unsigned char           sctrl_r;
106         unsigned char           sctrl_e;
107         unsigned char           trm;
108         unsigned char           fifo_en;
109         unsigned char           bswapped;
110         unsigned char           protocol;
111         int                     nt_timer;
112         unsigned char __iomem   *pci_io; /* start of PCI IO memory */
113         dma_addr_t              dmahandle;
114         void                    *fifos; /* FIFO memory */
115         int                     last_bfifo_cnt[2];
116             /* marker saving last b-fifo frame count */
117         struct timer_list       timer;
118 };
119
120 #define HFC_CFG_MASTER          1
121 #define HFC_CFG_SLAVE           2
122 #define HFC_CFG_PCM             3
123 #define HFC_CFG_2HFC            4
124 #define HFC_CFG_SLAVEHFC        5
125 #define HFC_CFG_NEG_F0          6
126 #define HFC_CFG_SW_DD_DU        7
127
128 #define FLG_HFC_TIMER_T1        16
129 #define FLG_HFC_TIMER_T3        17
130
131 #define NT_T1_COUNT     1120    /* number of 3.125ms interrupts (3.5s) */
132 #define NT_T3_COUNT     31      /* number of 3.125ms interrupts (97 ms) */
133 #define CLKDEL_TE       0x0e    /* CLKDEL in TE mode */
134 #define CLKDEL_NT       0x6c    /* CLKDEL in NT mode */
135
136
137 struct hfc_pci {
138         u_char                  subtype;
139         u_char                  chanlimit;
140         u_char                  initdone;
141         u_long                  cfg;
142         u_int                   irq;
143         u_int                   irqcnt;
144         struct pci_dev          *pdev;
145         struct hfcPCI_hw        hw;
146         spinlock_t              lock;   /* card lock */
147         struct dchannel         dch;
148         struct bchannel         bch[2];
149 };
150
151 /* Interface functions */
152 static void
153 enable_hwirq(struct hfc_pci *hc)
154 {
155         hc->hw.int_m2 |= HFCPCI_IRQ_ENABLE;
156         Write_hfc(hc, HFCPCI_INT_M2, hc->hw.int_m2);
157 }
158
159 static void
160 disable_hwirq(struct hfc_pci *hc)
161 {
162         hc->hw.int_m2 &= ~((u_char)HFCPCI_IRQ_ENABLE);
163         Write_hfc(hc, HFCPCI_INT_M2, hc->hw.int_m2);
164 }
165
166 /*
167  * free hardware resources used by driver
168  */
169 static void
170 release_io_hfcpci(struct hfc_pci *hc)
171 {
172         /* disable memory mapped ports + busmaster */
173         pci_write_config_word(hc->pdev, PCI_COMMAND, 0);
174         del_timer(&hc->hw.timer);
175         pci_free_consistent(hc->pdev, 0x8000, hc->hw.fifos, hc->hw.dmahandle);
176         iounmap(hc->hw.pci_io);
177 }
178
179 /*
180  * set mode (NT or TE)
181  */
182 static void
183 hfcpci_setmode(struct hfc_pci *hc)
184 {
185         if (hc->hw.protocol == ISDN_P_NT_S0) {
186                 hc->hw.clkdel = CLKDEL_NT;      /* ST-Bit delay for NT-Mode */
187                 hc->hw.sctrl |= SCTRL_MODE_NT;  /* NT-MODE */
188                 hc->hw.states = 1;              /* G1 */
189         } else {
190                 hc->hw.clkdel = CLKDEL_TE;      /* ST-Bit delay for TE-Mode */
191                 hc->hw.sctrl &= ~SCTRL_MODE_NT; /* TE-MODE */
192                 hc->hw.states = 2;              /* F2 */
193         }
194         Write_hfc(hc, HFCPCI_CLKDEL, hc->hw.clkdel);
195         Write_hfc(hc, HFCPCI_STATES, HFCPCI_LOAD_STATE | hc->hw.states);
196         udelay(10);
197         Write_hfc(hc, HFCPCI_STATES, hc->hw.states | 0x40); /* Deactivate */
198         Write_hfc(hc, HFCPCI_SCTRL, hc->hw.sctrl);
199 }
200
201 /*
202  * function called to reset the HFC PCI chip. A complete software reset of chip
203  * and fifos is done.
204  */
205 static void
206 reset_hfcpci(struct hfc_pci *hc)
207 {
208         u_char  val;
209         int     cnt = 0;
210
211         printk(KERN_DEBUG "reset_hfcpci: entered\n");
212         val = Read_hfc(hc, HFCPCI_CHIP_ID);
213         printk(KERN_INFO "HFC_PCI: resetting HFC ChipId(%x)\n", val);
214         /* enable memory mapped ports, disable busmaster */
215         pci_write_config_word(hc->pdev, PCI_COMMAND, PCI_ENA_MEMIO);
216         disable_hwirq(hc);
217         /* enable memory ports + busmaster */
218         pci_write_config_word(hc->pdev, PCI_COMMAND,
219             PCI_ENA_MEMIO + PCI_ENA_MASTER);
220         val = Read_hfc(hc, HFCPCI_STATUS);
221         printk(KERN_DEBUG "HFC-PCI status(%x) before reset\n", val);
222         hc->hw.cirm = HFCPCI_RESET;     /* Reset On */
223         Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
224         set_current_state(TASK_UNINTERRUPTIBLE);
225         mdelay(10);                     /* Timeout 10ms */
226         hc->hw.cirm = 0;                /* Reset Off */
227         Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
228         val = Read_hfc(hc, HFCPCI_STATUS);
229         printk(KERN_DEBUG "HFC-PCI status(%x) after reset\n", val);
230         while (cnt < 50000) { /* max 50000 us */
231                 udelay(5);
232                 cnt += 5;
233                 val = Read_hfc(hc, HFCPCI_STATUS);
234                 if (!(val & 2))
235                         break;
236         }
237         printk(KERN_DEBUG "HFC-PCI status(%x) after %dus\n", val, cnt);
238
239         hc->hw.fifo_en = 0x30;  /* only D fifos enabled */
240
241         hc->hw.bswapped = 0;    /* no exchange */
242         hc->hw.ctmt = HFCPCI_TIM3_125 | HFCPCI_AUTO_TIMER;
243         hc->hw.trm = HFCPCI_BTRANS_THRESMASK; /* no echo connect , threshold */
244         hc->hw.sctrl = 0x40;    /* set tx_lo mode, error in datasheet ! */
245         hc->hw.sctrl_r = 0;
246         hc->hw.sctrl_e = HFCPCI_AUTO_AWAKE;     /* S/T Auto awake */
247         hc->hw.mst_m = 0;
248         if (test_bit(HFC_CFG_MASTER, &hc->cfg))
249                 hc->hw.mst_m |= HFCPCI_MASTER;  /* HFC Master Mode */
250         if (test_bit(HFC_CFG_NEG_F0, &hc->cfg))
251                 hc->hw.mst_m |= HFCPCI_F0_NEGATIV;
252         Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
253         Write_hfc(hc, HFCPCI_TRM, hc->hw.trm);
254         Write_hfc(hc, HFCPCI_SCTRL_E, hc->hw.sctrl_e);
255         Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt);
256
257         hc->hw.int_m1 = HFCPCI_INTS_DTRANS | HFCPCI_INTS_DREC |
258             HFCPCI_INTS_L1STATE | HFCPCI_INTS_TIMER;
259         Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
260
261         /* Clear already pending ints */
262         val = Read_hfc(hc, HFCPCI_INT_S1);
263
264         /* set NT/TE mode */
265         hfcpci_setmode(hc);
266
267         Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
268         Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r);
269
270         /*
271          * Init GCI/IOM2 in master mode
272          * Slots 0 and 1 are set for B-chan 1 and 2
273          * D- and monitor/CI channel are not enabled
274          * STIO1 is used as output for data, B1+B2 from ST->IOM+HFC
275          * STIO2 is used as data input, B1+B2 from IOM->ST
276          * ST B-channel send disabled -> continuous 1s
277          * The IOM slots are always enabled
278          */
279         if (test_bit(HFC_CFG_PCM, &hc->cfg)) {
280                 /* set data flow directions: connect B1,B2: HFC to/from PCM */
281                 hc->hw.conn = 0x09;
282         } else {
283                 hc->hw.conn = 0x36;     /* set data flow directions */
284                 if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) {
285                         Write_hfc(hc, HFCPCI_B1_SSL, 0xC0);
286                         Write_hfc(hc, HFCPCI_B2_SSL, 0xC1);
287                         Write_hfc(hc, HFCPCI_B1_RSL, 0xC0);
288                         Write_hfc(hc, HFCPCI_B2_RSL, 0xC1);
289                 } else {
290                         Write_hfc(hc, HFCPCI_B1_SSL, 0x80);
291                         Write_hfc(hc, HFCPCI_B2_SSL, 0x81);
292                         Write_hfc(hc, HFCPCI_B1_RSL, 0x80);
293                         Write_hfc(hc, HFCPCI_B2_RSL, 0x81);
294                 }
295         }
296         Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
297         val = Read_hfc(hc, HFCPCI_INT_S2);
298 }
299
300 /*
301  * Timer function called when kernel timer expires
302  */
303 static void
304 hfcpci_Timer(struct hfc_pci *hc)
305 {
306         hc->hw.timer.expires = jiffies + 75;
307         /* WD RESET */
308 /*
309  *      WriteReg(hc, HFCD_DATA, HFCD_CTMT, hc->hw.ctmt | 0x80);
310  *      add_timer(&hc->hw.timer);
311  */
312 }
313
314
315 /*
316  * select a b-channel entry matching and active
317  */
318 static struct bchannel *
319 Sel_BCS(struct hfc_pci *hc, int channel)
320 {
321         if (test_bit(FLG_ACTIVE, &hc->bch[0].Flags) &&
322                 (hc->bch[0].nr & channel))
323                 return &hc->bch[0];
324         else if (test_bit(FLG_ACTIVE, &hc->bch[1].Flags) &&
325                 (hc->bch[1].nr & channel))
326                 return &hc->bch[1];
327         else
328                 return NULL;
329 }
330
331 /*
332  * clear the desired B-channel rx fifo
333  */
334 static void
335 hfcpci_clear_fifo_rx(struct hfc_pci *hc, int fifo)
336 {
337         u_char          fifo_state;
338         struct bzfifo   *bzr;
339
340         if (fifo) {
341                 bzr = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b2;
342                 fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B2RX;
343         } else {
344                 bzr = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b1;
345                 fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B1RX;
346         }
347         if (fifo_state)
348                 hc->hw.fifo_en ^= fifo_state;
349         Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
350         hc->hw.last_bfifo_cnt[fifo] = 0;
351         bzr->f1 = MAX_B_FRAMES;
352         bzr->f2 = bzr->f1;      /* init F pointers to remain constant */
353         bzr->za[MAX_B_FRAMES].z1 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 1);
354         bzr->za[MAX_B_FRAMES].z2 = cpu_to_le16(
355             le16_to_cpu(bzr->za[MAX_B_FRAMES].z1));
356         if (fifo_state)
357                 hc->hw.fifo_en |= fifo_state;
358         Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
359 }
360
361 /*
362  * clear the desired B-channel tx fifo
363  */
364 static void hfcpci_clear_fifo_tx(struct hfc_pci *hc, int fifo)
365 {
366         u_char          fifo_state;
367         struct bzfifo   *bzt;
368
369         if (fifo) {
370                 bzt = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2;
371                 fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B2TX;
372         } else {
373                 bzt = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1;
374                 fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B1TX;
375         }
376         if (fifo_state)
377                 hc->hw.fifo_en ^= fifo_state;
378         Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
379         if (hc->bch[fifo].debug & DEBUG_HW_BCHANNEL)
380                 printk(KERN_DEBUG "hfcpci_clear_fifo_tx%d f1(%x) f2(%x) "
381                     "z1(%x) z2(%x) state(%x)\n",
382                     fifo, bzt->f1, bzt->f2,
383                     le16_to_cpu(bzt->za[MAX_B_FRAMES].z1),
384                     le16_to_cpu(bzt->za[MAX_B_FRAMES].z2),
385                     fifo_state);
386         bzt->f2 = MAX_B_FRAMES;
387         bzt->f1 = bzt->f2;      /* init F pointers to remain constant */
388         bzt->za[MAX_B_FRAMES].z1 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 1);
389         bzt->za[MAX_B_FRAMES].z2 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 2);
390         if (fifo_state)
391                 hc->hw.fifo_en |= fifo_state;
392         Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
393         if (hc->bch[fifo].debug & DEBUG_HW_BCHANNEL)
394                 printk(KERN_DEBUG
395                     "hfcpci_clear_fifo_tx%d f1(%x) f2(%x) z1(%x) z2(%x)\n",
396                     fifo, bzt->f1, bzt->f2,
397                     le16_to_cpu(bzt->za[MAX_B_FRAMES].z1),
398                     le16_to_cpu(bzt->za[MAX_B_FRAMES].z2));
399 }
400
401 /*
402  * read a complete B-frame out of the buffer
403  */
404 static void
405 hfcpci_empty_bfifo(struct bchannel *bch, struct bzfifo *bz,
406     u_char *bdata, int count)
407 {
408         u_char          *ptr, *ptr1, new_f2;
409         int             maxlen, new_z2;
410         struct zt       *zp;
411
412         if ((bch->debug & DEBUG_HW_BCHANNEL) && !(bch->debug & DEBUG_HW_BFIFO))
413                 printk(KERN_DEBUG "hfcpci_empty_fifo\n");
414         zp = &bz->za[bz->f2];   /* point to Z-Regs */
415         new_z2 = le16_to_cpu(zp->z2) + count;   /* new position in fifo */
416         if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
417                 new_z2 -= B_FIFO_SIZE;  /* buffer wrap */
418         new_f2 = (bz->f2 + 1) & MAX_B_FRAMES;
419         if ((count > MAX_DATA_SIZE + 3) || (count < 4) ||
420             (*(bdata + (le16_to_cpu(zp->z1) - B_SUB_VAL)))) {
421                 if (bch->debug & DEBUG_HW)
422                         printk(KERN_DEBUG "hfcpci_empty_fifo: incoming packet "
423                             "invalid length %d or crc\n", count);
424 #ifdef ERROR_STATISTIC
425                 bch->err_inv++;
426 #endif
427                 bz->za[new_f2].z2 = cpu_to_le16(new_z2);
428                 bz->f2 = new_f2;        /* next buffer */
429         } else {
430                 bch->rx_skb = mI_alloc_skb(count - 3, GFP_ATOMIC);
431                 if (!bch->rx_skb) {
432                         printk(KERN_WARNING "HFCPCI: receive out of memory\n");
433                         return;
434                 }
435                 count -= 3;
436                 ptr = skb_put(bch->rx_skb, count);
437
438                 if (le16_to_cpu(zp->z2) + count <= B_FIFO_SIZE + B_SUB_VAL)
439                         maxlen = count;         /* complete transfer */
440                 else
441                         maxlen = B_FIFO_SIZE + B_SUB_VAL -
442                             le16_to_cpu(zp->z2);        /* maximum */
443
444                 ptr1 = bdata + (le16_to_cpu(zp->z2) - B_SUB_VAL);
445                     /* start of data */
446                 memcpy(ptr, ptr1, maxlen);      /* copy data */
447                 count -= maxlen;
448
449                 if (count) {    /* rest remaining */
450                         ptr += maxlen;
451                         ptr1 = bdata;   /* start of buffer */
452                         memcpy(ptr, ptr1, count);       /* rest */
453                 }
454                 bz->za[new_f2].z2 = cpu_to_le16(new_z2);
455                 bz->f2 = new_f2;        /* next buffer */
456                 recv_Bchannel(bch, MISDN_ID_ANY);
457         }
458 }
459
460 /*
461  * D-channel receive procedure
462  */
463 static int
464 receive_dmsg(struct hfc_pci *hc)
465 {
466         struct dchannel *dch = &hc->dch;
467         int             maxlen;
468         int             rcnt, total;
469         int             count = 5;
470         u_char          *ptr, *ptr1;
471         struct dfifo    *df;
472         struct zt       *zp;
473
474         df = &((union fifo_area *)(hc->hw.fifos))->d_chan.d_rx;
475         while (((df->f1 & D_FREG_MASK) != (df->f2 & D_FREG_MASK)) && count--) {
476                 zp = &df->za[df->f2 & D_FREG_MASK];
477                 rcnt = le16_to_cpu(zp->z1) - le16_to_cpu(zp->z2);
478                 if (rcnt < 0)
479                         rcnt += D_FIFO_SIZE;
480                 rcnt++;
481                 if (dch->debug & DEBUG_HW_DCHANNEL)
482                         printk(KERN_DEBUG
483                             "hfcpci recd f1(%d) f2(%d) z1(%x) z2(%x) cnt(%d)\n",
484                                 df->f1, df->f2,
485                                 le16_to_cpu(zp->z1),
486                                 le16_to_cpu(zp->z2),
487                                 rcnt);
488
489                 if ((rcnt > MAX_DFRAME_LEN + 3) || (rcnt < 4) ||
490                     (df->data[le16_to_cpu(zp->z1)])) {
491                         if (dch->debug & DEBUG_HW)
492                                 printk(KERN_DEBUG
493                                     "empty_fifo hfcpci paket inv. len "
494                                     "%d or crc %d\n",
495                                     rcnt,
496                                     df->data[le16_to_cpu(zp->z1)]);
497 #ifdef ERROR_STATISTIC
498                         cs->err_rx++;
499 #endif
500                         df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) |
501                             (MAX_D_FRAMES + 1); /* next buffer */
502                         df->za[df->f2 & D_FREG_MASK].z2 =
503                             cpu_to_le16((le16_to_cpu(zp->z2) + rcnt) &
504                             (D_FIFO_SIZE - 1));
505                 } else {
506                         dch->rx_skb = mI_alloc_skb(rcnt - 3, GFP_ATOMIC);
507                         if (!dch->rx_skb) {
508                                 printk(KERN_WARNING
509                                     "HFC-PCI: D receive out of memory\n");
510                                 break;
511                         }
512                         total = rcnt;
513                         rcnt -= 3;
514                         ptr = skb_put(dch->rx_skb, rcnt);
515
516                         if (le16_to_cpu(zp->z2) + rcnt <= D_FIFO_SIZE)
517                                 maxlen = rcnt;  /* complete transfer */
518                         else
519                                 maxlen = D_FIFO_SIZE - le16_to_cpu(zp->z2);
520                                     /* maximum */
521
522                         ptr1 = df->data + le16_to_cpu(zp->z2);
523                             /* start of data */
524                         memcpy(ptr, ptr1, maxlen);      /* copy data */
525                         rcnt -= maxlen;
526
527                         if (rcnt) {     /* rest remaining */
528                                 ptr += maxlen;
529                                 ptr1 = df->data;        /* start of buffer */
530                                 memcpy(ptr, ptr1, rcnt);        /* rest */
531                         }
532                         df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) |
533                             (MAX_D_FRAMES + 1); /* next buffer */
534                         df->za[df->f2 & D_FREG_MASK].z2 = cpu_to_le16((
535                             le16_to_cpu(zp->z2) + total) & (D_FIFO_SIZE - 1));
536                         recv_Dchannel(dch);
537                 }
538         }
539         return 1;
540 }
541
542 /*
543  * check for transparent receive data and read max one 'poll' size if avail
544  */
545 static void
546 hfcpci_empty_fifo_trans(struct bchannel *bch, struct bzfifo *rxbz,
547         struct bzfifo *txbz, u_char *bdata)
548 {
549          __le16 *z1r, *z2r, *z1t, *z2t;
550         int     new_z2, fcnt_rx, fcnt_tx, maxlen;
551         u_char  *ptr, *ptr1;
552
553         z1r = &rxbz->za[MAX_B_FRAMES].z1;       /* pointer to z reg */
554         z2r = z1r + 1;
555         z1t = &txbz->za[MAX_B_FRAMES].z1;
556         z2t = z1t + 1;
557
558         fcnt_rx = le16_to_cpu(*z1r) - le16_to_cpu(*z2r);
559         if (!fcnt_rx)
560                 return; /* no data avail */
561
562         if (fcnt_rx <= 0)
563                 fcnt_rx += B_FIFO_SIZE; /* bytes actually buffered */
564         new_z2 = le16_to_cpu(*z2r) + fcnt_rx;   /* new position in fifo */
565         if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
566                 new_z2 -= B_FIFO_SIZE;  /* buffer wrap */
567
568         if (fcnt_rx > MAX_DATA_SIZE) {  /* flush, if oversized */
569                 *z2r = cpu_to_le16(new_z2);             /* new position */
570                 return;
571         }
572
573         fcnt_tx = le16_to_cpu(*z2t) - le16_to_cpu(*z1t);
574         if (fcnt_tx <= 0)
575                 fcnt_tx += B_FIFO_SIZE;
576                     /* fcnt_tx contains available bytes in tx-fifo */
577         fcnt_tx = B_FIFO_SIZE - fcnt_tx;
578                     /* remaining bytes to send (bytes in tx-fifo) */
579
580         bch->rx_skb = mI_alloc_skb(fcnt_rx, GFP_ATOMIC);
581         if (bch->rx_skb) {
582                 ptr = skb_put(bch->rx_skb, fcnt_rx);
583                 if (le16_to_cpu(*z2r) + fcnt_rx <= B_FIFO_SIZE + B_SUB_VAL)
584                         maxlen = fcnt_rx;       /* complete transfer */
585                 else
586                         maxlen = B_FIFO_SIZE + B_SUB_VAL - le16_to_cpu(*z2r);
587                             /* maximum */
588
589                 ptr1 = bdata + (le16_to_cpu(*z2r) - B_SUB_VAL);
590                     /* start of data */
591                 memcpy(ptr, ptr1, maxlen);      /* copy data */
592                 fcnt_rx -= maxlen;
593
594                 if (fcnt_rx) {  /* rest remaining */
595                         ptr += maxlen;
596                         ptr1 = bdata;   /* start of buffer */
597                         memcpy(ptr, ptr1, fcnt_rx);     /* rest */
598                 }
599                 recv_Bchannel(bch, fcnt_tx); /* bch, id */
600         } else
601                 printk(KERN_WARNING "HFCPCI: receive out of memory\n");
602
603         *z2r = cpu_to_le16(new_z2);             /* new position */
604 }
605
606 /*
607  * B-channel main receive routine
608  */
609 static void
610 main_rec_hfcpci(struct bchannel *bch)
611 {
612         struct hfc_pci  *hc = bch->hw;
613         int             rcnt, real_fifo;
614         int             receive = 0, count = 5;
615         struct bzfifo   *txbz, *rxbz;
616         u_char          *bdata;
617         struct zt       *zp;
618
619         if ((bch->nr & 2) && (!hc->hw.bswapped)) {
620                 rxbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b2;
621                 txbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2;
622                 bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.rxdat_b2;
623                 real_fifo = 1;
624         } else {
625                 rxbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b1;
626                 txbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1;
627                 bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.rxdat_b1;
628                 real_fifo = 0;
629         }
630 Begin:
631         count--;
632         if (rxbz->f1 != rxbz->f2) {
633                 if (bch->debug & DEBUG_HW_BCHANNEL)
634                         printk(KERN_DEBUG "hfcpci rec ch(%x) f1(%d) f2(%d)\n",
635                             bch->nr, rxbz->f1, rxbz->f2);
636                 zp = &rxbz->za[rxbz->f2];
637
638                 rcnt = le16_to_cpu(zp->z1) - le16_to_cpu(zp->z2);
639                 if (rcnt < 0)
640                         rcnt += B_FIFO_SIZE;
641                 rcnt++;
642                 if (bch->debug & DEBUG_HW_BCHANNEL)
643                         printk(KERN_DEBUG
644                             "hfcpci rec ch(%x) z1(%x) z2(%x) cnt(%d)\n",
645                             bch->nr, le16_to_cpu(zp->z1),
646                             le16_to_cpu(zp->z2), rcnt);
647                 hfcpci_empty_bfifo(bch, rxbz, bdata, rcnt);
648                 rcnt = rxbz->f1 - rxbz->f2;
649                 if (rcnt < 0)
650                         rcnt += MAX_B_FRAMES + 1;
651                 if (hc->hw.last_bfifo_cnt[real_fifo] > rcnt + 1) {
652                         rcnt = 0;
653                         hfcpci_clear_fifo_rx(hc, real_fifo);
654                 }
655                 hc->hw.last_bfifo_cnt[real_fifo] = rcnt;
656                 if (rcnt > 1)
657                         receive = 1;
658                 else
659                         receive = 0;
660         } else if (test_bit(FLG_TRANSPARENT, &bch->Flags)) {
661                 hfcpci_empty_fifo_trans(bch, rxbz, txbz, bdata);
662                 return;
663         } else
664                 receive = 0;
665         if (count && receive)
666                 goto Begin;
667
668 }
669
670 /*
671  * D-channel send routine
672  */
673 static void
674 hfcpci_fill_dfifo(struct hfc_pci *hc)
675 {
676         struct dchannel *dch = &hc->dch;
677         int             fcnt;
678         int             count, new_z1, maxlen;
679         struct dfifo    *df;
680         u_char          *src, *dst, new_f1;
681
682         if ((dch->debug & DEBUG_HW_DCHANNEL) && !(dch->debug & DEBUG_HW_DFIFO))
683                 printk(KERN_DEBUG "%s\n", __func__);
684
685         if (!dch->tx_skb)
686                 return;
687         count = dch->tx_skb->len - dch->tx_idx;
688         if (count <= 0)
689                 return;
690         df = &((union fifo_area *) (hc->hw.fifos))->d_chan.d_tx;
691
692         if (dch->debug & DEBUG_HW_DFIFO)
693                 printk(KERN_DEBUG "%s:f1(%d) f2(%d) z1(f1)(%x)\n", __func__,
694                     df->f1, df->f2,
695                     le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1));
696         fcnt = df->f1 - df->f2; /* frame count actually buffered */
697         if (fcnt < 0)
698                 fcnt += (MAX_D_FRAMES + 1);     /* if wrap around */
699         if (fcnt > (MAX_D_FRAMES - 1)) {
700                 if (dch->debug & DEBUG_HW_DCHANNEL)
701                         printk(KERN_DEBUG
702                             "hfcpci_fill_Dfifo more as 14 frames\n");
703 #ifdef ERROR_STATISTIC
704                 cs->err_tx++;
705 #endif
706                 return;
707         }
708         /* now determine free bytes in FIFO buffer */
709         maxlen = le16_to_cpu(df->za[df->f2 & D_FREG_MASK].z2) -
710             le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1) - 1;
711         if (maxlen <= 0)
712                 maxlen += D_FIFO_SIZE;  /* count now contains available bytes */
713
714         if (dch->debug & DEBUG_HW_DCHANNEL)
715                 printk(KERN_DEBUG "hfcpci_fill_Dfifo count(%d/%d)\n",
716                         count, maxlen);
717         if (count > maxlen) {
718                 if (dch->debug & DEBUG_HW_DCHANNEL)
719                         printk(KERN_DEBUG "hfcpci_fill_Dfifo no fifo mem\n");
720                 return;
721         }
722         new_z1 = (le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1) + count) &
723             (D_FIFO_SIZE - 1);
724         new_f1 = ((df->f1 + 1) & D_FREG_MASK) | (D_FREG_MASK + 1);
725         src = dch->tx_skb->data + dch->tx_idx;  /* source pointer */
726         dst = df->data + le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1);
727         maxlen = D_FIFO_SIZE - le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1);
728             /* end fifo */
729         if (maxlen > count)
730                 maxlen = count; /* limit size */
731         memcpy(dst, src, maxlen);       /* first copy */
732
733         count -= maxlen;        /* remaining bytes */
734         if (count) {
735                 dst = df->data; /* start of buffer */
736                 src += maxlen;  /* new position */
737                 memcpy(dst, src, count);
738         }
739         df->za[new_f1 & D_FREG_MASK].z1 = cpu_to_le16(new_z1);
740             /* for next buffer */
741         df->za[df->f1 & D_FREG_MASK].z1 = cpu_to_le16(new_z1);
742             /* new pos actual buffer */
743         df->f1 = new_f1;        /* next frame */
744         dch->tx_idx = dch->tx_skb->len;
745 }
746
747 /*
748  * B-channel send routine
749  */
750 static void
751 hfcpci_fill_fifo(struct bchannel *bch)
752 {
753         struct hfc_pci  *hc = bch->hw;
754         int             maxlen, fcnt;
755         int             count, new_z1;
756         struct bzfifo   *bz;
757         u_char          *bdata;
758         u_char          new_f1, *src, *dst;
759         __le16 *z1t, *z2t;
760
761         if ((bch->debug & DEBUG_HW_BCHANNEL) && !(bch->debug & DEBUG_HW_BFIFO))
762                 printk(KERN_DEBUG "%s\n", __func__);
763         if ((!bch->tx_skb) || bch->tx_skb->len <= 0)
764                 return;
765         count = bch->tx_skb->len - bch->tx_idx;
766         if ((bch->nr & 2) && (!hc->hw.bswapped)) {
767                 bz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2;
768                 bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.txdat_b2;
769         } else {
770                 bz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1;
771                 bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.txdat_b1;
772         }
773
774         if (test_bit(FLG_TRANSPARENT, &bch->Flags)) {
775                 z1t = &bz->za[MAX_B_FRAMES].z1;
776                 z2t = z1t + 1;
777                 if (bch->debug & DEBUG_HW_BCHANNEL)
778                         printk(KERN_DEBUG "hfcpci_fill_fifo_trans ch(%x) "
779                             "cnt(%d) z1(%x) z2(%x)\n", bch->nr, count,
780                             le16_to_cpu(*z1t), le16_to_cpu(*z2t));
781                 fcnt = le16_to_cpu(*z2t) - le16_to_cpu(*z1t);
782                 if (fcnt <= 0)
783                         fcnt += B_FIFO_SIZE;
784                             /* fcnt contains available bytes in fifo */
785                 fcnt = B_FIFO_SIZE - fcnt;
786                     /* remaining bytes to send (bytes in fifo) */
787
788                 /* "fill fifo if empty" feature */
789                 if (test_bit(FLG_FILLEMPTY, &bch->Flags) && !fcnt) {
790                         /* printk(KERN_DEBUG "%s: buffer empty, so we have "
791                                 "underrun\n", __func__); */
792                         /* fill buffer, to prevent future underrun */
793                         count = HFCPCI_FILLEMPTY;
794                         new_z1 = le16_to_cpu(*z1t) + count;
795                            /* new buffer Position */
796                         if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
797                                 new_z1 -= B_FIFO_SIZE;  /* buffer wrap */
798                         dst = bdata + (le16_to_cpu(*z1t) - B_SUB_VAL);
799                         maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(*z1t);
800                             /* end of fifo */
801                         if (bch->debug & DEBUG_HW_BFIFO)
802                                 printk(KERN_DEBUG "hfcpci_FFt fillempty "
803                                     "fcnt(%d) maxl(%d) nz1(%x) dst(%p)\n",
804                                     fcnt, maxlen, new_z1, dst);
805                         fcnt += count;
806                         if (maxlen > count)
807                                 maxlen = count;         /* limit size */
808                         memset(dst, 0x2a, maxlen);      /* first copy */
809                         count -= maxlen;                /* remaining bytes */
810                         if (count) {
811                                 dst = bdata;            /* start of buffer */
812                                 memset(dst, 0x2a, count);
813                         }
814                         *z1t = cpu_to_le16(new_z1);     /* now send data */
815                 }
816
817 next_t_frame:
818                 count = bch->tx_skb->len - bch->tx_idx;
819                 /* maximum fill shall be poll*2 */
820                 if (count > (poll << 1) - fcnt)
821                         count = (poll << 1) - fcnt;
822                 if (count <= 0)
823                         return;
824                 /* data is suitable for fifo */
825                 new_z1 = le16_to_cpu(*z1t) + count;
826                     /* new buffer Position */
827                 if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
828                         new_z1 -= B_FIFO_SIZE;  /* buffer wrap */
829                 src = bch->tx_skb->data + bch->tx_idx;
830                     /* source pointer */
831                 dst = bdata + (le16_to_cpu(*z1t) - B_SUB_VAL);
832                 maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(*z1t);
833                     /* end of fifo */
834                 if (bch->debug & DEBUG_HW_BFIFO)
835                         printk(KERN_DEBUG "hfcpci_FFt fcnt(%d) "
836                             "maxl(%d) nz1(%x) dst(%p)\n",
837                             fcnt, maxlen, new_z1, dst);
838                 fcnt += count;
839                 bch->tx_idx += count;
840                 if (maxlen > count)
841                         maxlen = count;         /* limit size */
842                 memcpy(dst, src, maxlen);       /* first copy */
843                 count -= maxlen;        /* remaining bytes */
844                 if (count) {
845                         dst = bdata;    /* start of buffer */
846                         src += maxlen;  /* new position */
847                         memcpy(dst, src, count);
848                 }
849                 *z1t = cpu_to_le16(new_z1);     /* now send data */
850                 if (bch->tx_idx < bch->tx_skb->len)
851                         return;
852                 /* send confirm, on trans, free on hdlc. */
853                 if (test_bit(FLG_TRANSPARENT, &bch->Flags))
854                         confirm_Bsend(bch);
855                 dev_kfree_skb(bch->tx_skb);
856                 if (get_next_bframe(bch))
857                         goto next_t_frame;
858                 return;
859         }
860         if (bch->debug & DEBUG_HW_BCHANNEL)
861                 printk(KERN_DEBUG
862                     "%s: ch(%x) f1(%d) f2(%d) z1(f1)(%x)\n",
863                     __func__, bch->nr, bz->f1, bz->f2,
864                     bz->za[bz->f1].z1);
865         fcnt = bz->f1 - bz->f2; /* frame count actually buffered */
866         if (fcnt < 0)
867                 fcnt += (MAX_B_FRAMES + 1);     /* if wrap around */
868         if (fcnt > (MAX_B_FRAMES - 1)) {
869                 if (bch->debug & DEBUG_HW_BCHANNEL)
870                         printk(KERN_DEBUG
871                             "hfcpci_fill_Bfifo more as 14 frames\n");
872                 return;
873         }
874         /* now determine free bytes in FIFO buffer */
875         maxlen = le16_to_cpu(bz->za[bz->f2].z2) -
876             le16_to_cpu(bz->za[bz->f1].z1) - 1;
877         if (maxlen <= 0)
878                 maxlen += B_FIFO_SIZE;  /* count now contains available bytes */
879
880         if (bch->debug & DEBUG_HW_BCHANNEL)
881                 printk(KERN_DEBUG "hfcpci_fill_fifo ch(%x) count(%d/%d)\n",
882                         bch->nr, count, maxlen);
883
884         if (maxlen < count) {
885                 if (bch->debug & DEBUG_HW_BCHANNEL)
886                         printk(KERN_DEBUG "hfcpci_fill_fifo no fifo mem\n");
887                 return;
888         }
889         new_z1 = le16_to_cpu(bz->za[bz->f1].z1) + count;
890             /* new buffer Position */
891         if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
892                 new_z1 -= B_FIFO_SIZE;  /* buffer wrap */
893
894         new_f1 = ((bz->f1 + 1) & MAX_B_FRAMES);
895         src = bch->tx_skb->data + bch->tx_idx;  /* source pointer */
896         dst = bdata + (le16_to_cpu(bz->za[bz->f1].z1) - B_SUB_VAL);
897         maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(bz->za[bz->f1].z1);
898             /* end fifo */
899         if (maxlen > count)
900                 maxlen = count; /* limit size */
901         memcpy(dst, src, maxlen);       /* first copy */
902
903         count -= maxlen;        /* remaining bytes */
904         if (count) {
905                 dst = bdata;    /* start of buffer */
906                 src += maxlen;  /* new position */
907                 memcpy(dst, src, count);
908         }
909         bz->za[new_f1].z1 = cpu_to_le16(new_z1);        /* for next buffer */
910         bz->f1 = new_f1;        /* next frame */
911         dev_kfree_skb(bch->tx_skb);
912         get_next_bframe(bch);
913 }
914
915
916
917 /*
918  * handle L1 state changes TE
919  */
920
921 static void
922 ph_state_te(struct dchannel *dch)
923 {
924         if (dch->debug)
925                 printk(KERN_DEBUG "%s: TE newstate %x\n",
926                         __func__, dch->state);
927         switch (dch->state) {
928         case 0:
929                 l1_event(dch->l1, HW_RESET_IND);
930                 break;
931         case 3:
932                 l1_event(dch->l1, HW_DEACT_IND);
933                 break;
934         case 5:
935         case 8:
936                 l1_event(dch->l1, ANYSIGNAL);
937                 break;
938         case 6:
939                 l1_event(dch->l1, INFO2);
940                 break;
941         case 7:
942                 l1_event(dch->l1, INFO4_P8);
943                 break;
944         }
945 }
946
947 /*
948  * handle L1 state changes NT
949  */
950
951 static void
952 handle_nt_timer3(struct dchannel *dch) {
953         struct hfc_pci  *hc = dch->hw;
954
955         test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
956         hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
957         Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
958         hc->hw.nt_timer = 0;
959         test_and_set_bit(FLG_ACTIVE, &dch->Flags);
960         if (test_bit(HFC_CFG_MASTER, &hc->cfg))
961                 hc->hw.mst_m |= HFCPCI_MASTER;
962         Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
963         _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
964             MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
965 }
966
967 static void
968 ph_state_nt(struct dchannel *dch)
969 {
970         struct hfc_pci  *hc = dch->hw;
971
972         if (dch->debug)
973                 printk(KERN_DEBUG "%s: NT newstate %x\n",
974                         __func__, dch->state);
975         switch (dch->state) {
976         case 2:
977                 if (hc->hw.nt_timer < 0) {
978                         hc->hw.nt_timer = 0;
979                         test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
980                         test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
981                         hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
982                         Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
983                         /* Clear already pending ints */
984                         (void) Read_hfc(hc, HFCPCI_INT_S1);
985                         Write_hfc(hc, HFCPCI_STATES, 4 | HFCPCI_LOAD_STATE);
986                         udelay(10);
987                         Write_hfc(hc, HFCPCI_STATES, 4);
988                         dch->state = 4;
989                 } else if (hc->hw.nt_timer == 0) {
990                         hc->hw.int_m1 |= HFCPCI_INTS_TIMER;
991                         Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
992                         hc->hw.nt_timer = NT_T1_COUNT;
993                         hc->hw.ctmt &= ~HFCPCI_AUTO_TIMER;
994                         hc->hw.ctmt |= HFCPCI_TIM3_125;
995                         Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt |
996                                 HFCPCI_CLTIMER);
997                         test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
998                         test_and_set_bit(FLG_HFC_TIMER_T1, &dch->Flags);
999                         /* allow G2 -> G3 transition */
1000                         Write_hfc(hc, HFCPCI_STATES, 2 | HFCPCI_NT_G2_G3);
1001                 } else {
1002                         Write_hfc(hc, HFCPCI_STATES, 2 | HFCPCI_NT_G2_G3);
1003                 }
1004                 break;
1005         case 1:
1006                 hc->hw.nt_timer = 0;
1007                 test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
1008                 test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
1009                 hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
1010                 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1011                 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
1012                 hc->hw.mst_m &= ~HFCPCI_MASTER;
1013                 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1014                 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
1015                 _queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
1016                     MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
1017                 break;
1018         case 4:
1019                 hc->hw.nt_timer = 0;
1020                 test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
1021                 test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
1022                 hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
1023                 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1024                 break;
1025         case 3:
1026                 if (!test_and_set_bit(FLG_HFC_TIMER_T3, &dch->Flags)) {
1027                         if (!test_and_clear_bit(FLG_L2_ACTIVATED,
1028                             &dch->Flags)) {
1029                                 handle_nt_timer3(dch);
1030                                 break;
1031                         }
1032                         test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
1033                         hc->hw.int_m1 |= HFCPCI_INTS_TIMER;
1034                         Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1035                         hc->hw.nt_timer = NT_T3_COUNT;
1036                         hc->hw.ctmt &= ~HFCPCI_AUTO_TIMER;
1037                         hc->hw.ctmt |= HFCPCI_TIM3_125;
1038                         Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt |
1039                                 HFCPCI_CLTIMER);
1040                 }
1041                 break;
1042         }
1043 }
1044
1045 static void
1046 ph_state(struct dchannel *dch)
1047 {
1048         struct hfc_pci  *hc = dch->hw;
1049
1050         if (hc->hw.protocol == ISDN_P_NT_S0) {
1051                 if (test_bit(FLG_HFC_TIMER_T3, &dch->Flags) &&
1052                     hc->hw.nt_timer < 0)
1053                         handle_nt_timer3(dch);
1054                 else
1055                         ph_state_nt(dch);
1056         } else
1057                 ph_state_te(dch);
1058 }
1059
1060 /*
1061  * Layer 1 callback function
1062  */
1063 static int
1064 hfc_l1callback(struct dchannel *dch, u_int cmd)
1065 {
1066         struct hfc_pci          *hc = dch->hw;
1067
1068         switch (cmd) {
1069         case INFO3_P8:
1070         case INFO3_P10:
1071                 if (test_bit(HFC_CFG_MASTER, &hc->cfg))
1072                         hc->hw.mst_m |= HFCPCI_MASTER;
1073                 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1074                 break;
1075         case HW_RESET_REQ:
1076                 Write_hfc(hc, HFCPCI_STATES, HFCPCI_LOAD_STATE | 3);
1077                 /* HFC ST 3 */
1078                 udelay(6);
1079                 Write_hfc(hc, HFCPCI_STATES, 3);        /* HFC ST 2 */
1080                 if (test_bit(HFC_CFG_MASTER, &hc->cfg))
1081                         hc->hw.mst_m |= HFCPCI_MASTER;
1082                 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1083                 Write_hfc(hc, HFCPCI_STATES, HFCPCI_ACTIVATE |
1084                    HFCPCI_DO_ACTION);
1085                 l1_event(dch->l1, HW_POWERUP_IND);
1086                 break;
1087         case HW_DEACT_REQ:
1088                 hc->hw.mst_m &= ~HFCPCI_MASTER;
1089                 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1090                 skb_queue_purge(&dch->squeue);
1091                 if (dch->tx_skb) {
1092                         dev_kfree_skb(dch->tx_skb);
1093                         dch->tx_skb = NULL;
1094                 }
1095                 dch->tx_idx = 0;
1096                 if (dch->rx_skb) {
1097                         dev_kfree_skb(dch->rx_skb);
1098                         dch->rx_skb = NULL;
1099                 }
1100                 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
1101                 if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
1102                         del_timer(&dch->timer);
1103                 break;
1104         case HW_POWERUP_REQ:
1105                 Write_hfc(hc, HFCPCI_STATES, HFCPCI_DO_ACTION);
1106                 break;
1107         case PH_ACTIVATE_IND:
1108                 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
1109                 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
1110                         GFP_ATOMIC);
1111                 break;
1112         case PH_DEACTIVATE_IND:
1113                 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
1114                 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
1115                         GFP_ATOMIC);
1116                 break;
1117         default:
1118                 if (dch->debug & DEBUG_HW)
1119                         printk(KERN_DEBUG "%s: unknown command %x\n",
1120                             __func__, cmd);
1121                 return -1;
1122         }
1123         return 0;
1124 }
1125
1126 /*
1127  * Interrupt handler
1128  */
1129 static inline void
1130 tx_birq(struct bchannel *bch)
1131 {
1132         if (bch->tx_skb && bch->tx_idx < bch->tx_skb->len)
1133                 hfcpci_fill_fifo(bch);
1134         else {
1135                 if (bch->tx_skb)
1136                         dev_kfree_skb(bch->tx_skb);
1137                 if (get_next_bframe(bch))
1138                         hfcpci_fill_fifo(bch);
1139         }
1140 }
1141
1142 static inline void
1143 tx_dirq(struct dchannel *dch)
1144 {
1145         if (dch->tx_skb && dch->tx_idx < dch->tx_skb->len)
1146                 hfcpci_fill_dfifo(dch->hw);
1147         else {
1148                 if (dch->tx_skb)
1149                         dev_kfree_skb(dch->tx_skb);
1150                 if (get_next_dframe(dch))
1151                         hfcpci_fill_dfifo(dch->hw);
1152         }
1153 }
1154
1155 static irqreturn_t
1156 hfcpci_int(int intno, void *dev_id)
1157 {
1158         struct hfc_pci  *hc = dev_id;
1159         u_char          exval;
1160         struct bchannel *bch;
1161         u_char          val, stat;
1162
1163         spin_lock(&hc->lock);
1164         if (!(hc->hw.int_m2 & 0x08)) {
1165                 spin_unlock(&hc->lock);
1166                 return IRQ_NONE; /* not initialised */
1167         }
1168         stat = Read_hfc(hc, HFCPCI_STATUS);
1169         if (HFCPCI_ANYINT & stat) {
1170                 val = Read_hfc(hc, HFCPCI_INT_S1);
1171                 if (hc->dch.debug & DEBUG_HW_DCHANNEL)
1172                         printk(KERN_DEBUG
1173                             "HFC-PCI: stat(%02x) s1(%02x)\n", stat, val);
1174         } else {
1175                 /* shared */
1176                 spin_unlock(&hc->lock);
1177                 return IRQ_NONE;
1178         }
1179         hc->irqcnt++;
1180
1181         if (hc->dch.debug & DEBUG_HW_DCHANNEL)
1182                 printk(KERN_DEBUG "HFC-PCI irq %x\n", val);
1183         val &= hc->hw.int_m1;
1184         if (val & 0x40) {       /* state machine irq */
1185                 exval = Read_hfc(hc, HFCPCI_STATES) & 0xf;
1186                 if (hc->dch.debug & DEBUG_HW_DCHANNEL)
1187                         printk(KERN_DEBUG "ph_state chg %d->%d\n",
1188                                 hc->dch.state, exval);
1189                 hc->dch.state = exval;
1190                 schedule_event(&hc->dch, FLG_PHCHANGE);
1191                 val &= ~0x40;
1192         }
1193         if (val & 0x80) {       /* timer irq */
1194                 if (hc->hw.protocol == ISDN_P_NT_S0) {
1195                         if ((--hc->hw.nt_timer) < 0)
1196                                 schedule_event(&hc->dch, FLG_PHCHANGE);
1197                 }
1198                 val &= ~0x80;
1199                 Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt | HFCPCI_CLTIMER);
1200         }
1201         if (val & 0x08) {       /* B1 rx */
1202                 bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
1203                 if (bch)
1204                         main_rec_hfcpci(bch);
1205                 else if (hc->dch.debug)
1206                         printk(KERN_DEBUG "hfcpci spurious 0x08 IRQ\n");
1207         }
1208         if (val & 0x10) {       /* B2 rx */
1209                 bch = Sel_BCS(hc, 2);
1210                 if (bch)
1211                         main_rec_hfcpci(bch);
1212                 else if (hc->dch.debug)
1213                         printk(KERN_DEBUG "hfcpci spurious 0x10 IRQ\n");
1214         }
1215         if (val & 0x01) {       /* B1 tx */
1216                 bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
1217                 if (bch)
1218                         tx_birq(bch);
1219                 else if (hc->dch.debug)
1220                         printk(KERN_DEBUG "hfcpci spurious 0x01 IRQ\n");
1221         }
1222         if (val & 0x02) {       /* B2 tx */
1223                 bch = Sel_BCS(hc, 2);
1224                 if (bch)
1225                         tx_birq(bch);
1226                 else if (hc->dch.debug)
1227                         printk(KERN_DEBUG "hfcpci spurious 0x02 IRQ\n");
1228         }
1229         if (val & 0x20)         /* D rx */
1230                 receive_dmsg(hc);
1231         if (val & 0x04) {       /* D tx */
1232                 if (test_and_clear_bit(FLG_BUSY_TIMER, &hc->dch.Flags))
1233                         del_timer(&hc->dch.timer);
1234                 tx_dirq(&hc->dch);
1235         }
1236         spin_unlock(&hc->lock);
1237         return IRQ_HANDLED;
1238 }
1239
1240 /*
1241  * timer callback for D-chan busy resolution. Currently no function
1242  */
1243 static void
1244 hfcpci_dbusy_timer(struct hfc_pci *hc)
1245 {
1246 }
1247
1248 /*
1249  * activate/deactivate hardware for selected channels and mode
1250  */
1251 static int
1252 mode_hfcpci(struct bchannel *bch, int bc, int protocol)
1253 {
1254         struct hfc_pci  *hc = bch->hw;
1255         int             fifo2;
1256         u_char          rx_slot = 0, tx_slot = 0, pcm_mode;
1257
1258         if (bch->debug & DEBUG_HW_BCHANNEL)
1259                 printk(KERN_DEBUG
1260                     "HFCPCI bchannel protocol %x-->%x ch %x-->%x\n",
1261                     bch->state, protocol, bch->nr, bc);
1262
1263         fifo2 = bc;
1264         pcm_mode = (bc>>24) & 0xff;
1265         if (pcm_mode) { /* PCM SLOT USE */
1266                 if (!test_bit(HFC_CFG_PCM, &hc->cfg))
1267                         printk(KERN_WARNING
1268                             "%s: pcm channel id without HFC_CFG_PCM\n",
1269                             __func__);
1270                 rx_slot = (bc>>8) & 0xff;
1271                 tx_slot = (bc>>16) & 0xff;
1272                 bc = bc & 0xff;
1273         } else if (test_bit(HFC_CFG_PCM, &hc->cfg) && (protocol > ISDN_P_NONE))
1274                 printk(KERN_WARNING "%s: no pcm channel id but HFC_CFG_PCM\n",
1275                     __func__);
1276         if (hc->chanlimit > 1) {
1277                 hc->hw.bswapped = 0;    /* B1 and B2 normal mode */
1278                 hc->hw.sctrl_e &= ~0x80;
1279         } else {
1280                 if (bc & 2) {
1281                         if (protocol != ISDN_P_NONE) {
1282                                 hc->hw.bswapped = 1; /* B1 and B2 exchanged */
1283                                 hc->hw.sctrl_e |= 0x80;
1284                         } else {
1285                                 hc->hw.bswapped = 0; /* B1 and B2 normal mode */
1286                                 hc->hw.sctrl_e &= ~0x80;
1287                         }
1288                         fifo2 = 1;
1289                 } else {
1290                         hc->hw.bswapped = 0;    /* B1 and B2 normal mode */
1291                         hc->hw.sctrl_e &= ~0x80;
1292                 }
1293         }
1294         switch (protocol) {
1295         case (-1): /* used for init */
1296                 bch->state = -1;
1297                 bch->nr = bc;
1298         case (ISDN_P_NONE):
1299                 if (bch->state == ISDN_P_NONE)
1300                         return 0;
1301                 if (bc & 2) {
1302                         hc->hw.sctrl &= ~SCTRL_B2_ENA;
1303                         hc->hw.sctrl_r &= ~SCTRL_B2_ENA;
1304                 } else {
1305                         hc->hw.sctrl &= ~SCTRL_B1_ENA;
1306                         hc->hw.sctrl_r &= ~SCTRL_B1_ENA;
1307                 }
1308                 if (fifo2 & 2) {
1309                         hc->hw.fifo_en &= ~HFCPCI_FIFOEN_B2;
1310                         hc->hw.int_m1 &= ~(HFCPCI_INTS_B2TRANS +
1311                                 HFCPCI_INTS_B2REC);
1312                 } else {
1313                         hc->hw.fifo_en &= ~HFCPCI_FIFOEN_B1;
1314                         hc->hw.int_m1 &= ~(HFCPCI_INTS_B1TRANS +
1315                                 HFCPCI_INTS_B1REC);
1316                 }
1317 #ifdef REVERSE_BITORDER
1318                 if (bch->nr & 2)
1319                         hc->hw.cirm &= 0x7f;
1320                 else
1321                         hc->hw.cirm &= 0xbf;
1322 #endif
1323                 bch->state = ISDN_P_NONE;
1324                 bch->nr = bc;
1325                 test_and_clear_bit(FLG_HDLC, &bch->Flags);
1326                 test_and_clear_bit(FLG_TRANSPARENT, &bch->Flags);
1327                 break;
1328         case (ISDN_P_B_RAW):
1329                 bch->state = protocol;
1330                 bch->nr = bc;
1331                 hfcpci_clear_fifo_rx(hc, (fifo2 & 2) ? 1 : 0);
1332                 hfcpci_clear_fifo_tx(hc, (fifo2 & 2) ? 1 : 0);
1333                 if (bc & 2) {
1334                         hc->hw.sctrl |= SCTRL_B2_ENA;
1335                         hc->hw.sctrl_r |= SCTRL_B2_ENA;
1336 #ifdef REVERSE_BITORDER
1337                         hc->hw.cirm |= 0x80;
1338 #endif
1339                 } else {
1340                         hc->hw.sctrl |= SCTRL_B1_ENA;
1341                         hc->hw.sctrl_r |= SCTRL_B1_ENA;
1342 #ifdef REVERSE_BITORDER
1343                         hc->hw.cirm |= 0x40;
1344 #endif
1345                 }
1346                 if (fifo2 & 2) {
1347                         hc->hw.fifo_en |= HFCPCI_FIFOEN_B2;
1348                         if (!tics)
1349                                 hc->hw.int_m1 |= (HFCPCI_INTS_B2TRANS +
1350                                     HFCPCI_INTS_B2REC);
1351                         hc->hw.ctmt |= 2;
1352                         hc->hw.conn &= ~0x18;
1353                 } else {
1354                         hc->hw.fifo_en |= HFCPCI_FIFOEN_B1;
1355                         if (!tics)
1356                                 hc->hw.int_m1 |= (HFCPCI_INTS_B1TRANS +
1357                                     HFCPCI_INTS_B1REC);
1358                         hc->hw.ctmt |= 1;
1359                         hc->hw.conn &= ~0x03;
1360                 }
1361                 test_and_set_bit(FLG_TRANSPARENT, &bch->Flags);
1362                 break;
1363         case (ISDN_P_B_HDLC):
1364                 bch->state = protocol;
1365                 bch->nr = bc;
1366                 hfcpci_clear_fifo_rx(hc, (fifo2 & 2) ? 1 : 0);
1367                 hfcpci_clear_fifo_tx(hc, (fifo2 & 2) ? 1 : 0);
1368                 if (bc & 2) {
1369                         hc->hw.sctrl |= SCTRL_B2_ENA;
1370                         hc->hw.sctrl_r |= SCTRL_B2_ENA;
1371                 } else {
1372                         hc->hw.sctrl |= SCTRL_B1_ENA;
1373                         hc->hw.sctrl_r |= SCTRL_B1_ENA;
1374                 }
1375                 if (fifo2 & 2) {
1376                         hc->hw.last_bfifo_cnt[1] = 0;
1377                         hc->hw.fifo_en |= HFCPCI_FIFOEN_B2;
1378                         hc->hw.int_m1 |= (HFCPCI_INTS_B2TRANS +
1379                             HFCPCI_INTS_B2REC);
1380                         hc->hw.ctmt &= ~2;
1381                         hc->hw.conn &= ~0x18;
1382                 } else {
1383                         hc->hw.last_bfifo_cnt[0] = 0;
1384                         hc->hw.fifo_en |= HFCPCI_FIFOEN_B1;
1385                         hc->hw.int_m1 |= (HFCPCI_INTS_B1TRANS +
1386                             HFCPCI_INTS_B1REC);
1387                         hc->hw.ctmt &= ~1;
1388                         hc->hw.conn &= ~0x03;
1389                 }
1390                 test_and_set_bit(FLG_HDLC, &bch->Flags);
1391                 break;
1392         default:
1393                 printk(KERN_DEBUG "prot not known %x\n", protocol);
1394                 return -ENOPROTOOPT;
1395         }
1396         if (test_bit(HFC_CFG_PCM, &hc->cfg)) {
1397                 if ((protocol == ISDN_P_NONE) ||
1398                         (protocol == -1)) {     /* init case */
1399                         rx_slot = 0;
1400                         tx_slot = 0;
1401                 } else {
1402                         if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) {
1403                                 rx_slot |= 0xC0;
1404                                 tx_slot |= 0xC0;
1405                         } else {
1406                                 rx_slot |= 0x80;
1407                                 tx_slot |= 0x80;
1408                         }
1409                 }
1410                 if (bc & 2) {
1411                         hc->hw.conn &= 0xc7;
1412                         hc->hw.conn |= 0x08;
1413                         printk(KERN_DEBUG "%s: Write_hfc: B2_SSL 0x%x\n",
1414                                 __func__, tx_slot);
1415                         printk(KERN_DEBUG "%s: Write_hfc: B2_RSL 0x%x\n",
1416                                 __func__, rx_slot);
1417                         Write_hfc(hc, HFCPCI_B2_SSL, tx_slot);
1418                         Write_hfc(hc, HFCPCI_B2_RSL, rx_slot);
1419                 } else {
1420                         hc->hw.conn &= 0xf8;
1421                         hc->hw.conn |= 0x01;
1422                         printk(KERN_DEBUG "%s: Write_hfc: B1_SSL 0x%x\n",
1423                                 __func__, tx_slot);
1424                         printk(KERN_DEBUG "%s: Write_hfc: B1_RSL 0x%x\n",
1425                                 __func__, rx_slot);
1426                         Write_hfc(hc, HFCPCI_B1_SSL, tx_slot);
1427                         Write_hfc(hc, HFCPCI_B1_RSL, rx_slot);
1428                 }
1429         }
1430         Write_hfc(hc, HFCPCI_SCTRL_E, hc->hw.sctrl_e);
1431         Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1432         Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
1433         Write_hfc(hc, HFCPCI_SCTRL, hc->hw.sctrl);
1434         Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r);
1435         Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt);
1436         Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1437 #ifdef REVERSE_BITORDER
1438         Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
1439 #endif
1440         return 0;
1441 }
1442
1443 static int
1444 set_hfcpci_rxtest(struct bchannel *bch, int protocol, int chan)
1445 {
1446         struct hfc_pci  *hc = bch->hw;
1447
1448         if (bch->debug & DEBUG_HW_BCHANNEL)
1449                 printk(KERN_DEBUG
1450                     "HFCPCI bchannel test rx protocol %x-->%x ch %x-->%x\n",
1451                     bch->state, protocol, bch->nr, chan);
1452         if (bch->nr != chan) {
1453                 printk(KERN_DEBUG
1454                     "HFCPCI rxtest wrong channel parameter %x/%x\n",
1455                     bch->nr, chan);
1456                 return -EINVAL;
1457         }
1458         switch (protocol) {
1459         case (ISDN_P_B_RAW):
1460                 bch->state = protocol;
1461                 hfcpci_clear_fifo_rx(hc, (chan & 2) ? 1 : 0);
1462                 if (chan & 2) {
1463                         hc->hw.sctrl_r |= SCTRL_B2_ENA;
1464                         hc->hw.fifo_en |= HFCPCI_FIFOEN_B2RX;
1465                         if (!tics)
1466                                 hc->hw.int_m1 |= HFCPCI_INTS_B2REC;
1467                         hc->hw.ctmt |= 2;
1468                         hc->hw.conn &= ~0x18;
1469 #ifdef REVERSE_BITORDER
1470                         hc->hw.cirm |= 0x80;
1471 #endif
1472                 } else {
1473                         hc->hw.sctrl_r |= SCTRL_B1_ENA;
1474                         hc->hw.fifo_en |= HFCPCI_FIFOEN_B1RX;
1475                         if (!tics)
1476                                 hc->hw.int_m1 |= HFCPCI_INTS_B1REC;
1477                         hc->hw.ctmt |= 1;
1478                         hc->hw.conn &= ~0x03;
1479 #ifdef REVERSE_BITORDER
1480                         hc->hw.cirm |= 0x40;
1481 #endif
1482                 }
1483                 break;
1484         case (ISDN_P_B_HDLC):
1485                 bch->state = protocol;
1486                 hfcpci_clear_fifo_rx(hc, (chan & 2) ? 1 : 0);
1487                 if (chan & 2) {
1488                         hc->hw.sctrl_r |= SCTRL_B2_ENA;
1489                         hc->hw.last_bfifo_cnt[1] = 0;
1490                         hc->hw.fifo_en |= HFCPCI_FIFOEN_B2RX;
1491                         hc->hw.int_m1 |= HFCPCI_INTS_B2REC;
1492                         hc->hw.ctmt &= ~2;
1493                         hc->hw.conn &= ~0x18;
1494                 } else {
1495                         hc->hw.sctrl_r |= SCTRL_B1_ENA;
1496                         hc->hw.last_bfifo_cnt[0] = 0;
1497                         hc->hw.fifo_en |= HFCPCI_FIFOEN_B1RX;
1498                         hc->hw.int_m1 |= HFCPCI_INTS_B1REC;
1499                         hc->hw.ctmt &= ~1;
1500                         hc->hw.conn &= ~0x03;
1501                 }
1502                 break;
1503         default:
1504                 printk(KERN_DEBUG "prot not known %x\n", protocol);
1505                 return -ENOPROTOOPT;
1506         }
1507         Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1508         Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
1509         Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r);
1510         Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt);
1511         Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1512 #ifdef REVERSE_BITORDER
1513         Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
1514 #endif
1515         return 0;
1516 }
1517
1518 static void
1519 deactivate_bchannel(struct bchannel *bch)
1520 {
1521         struct hfc_pci  *hc = bch->hw;
1522         u_long          flags;
1523
1524         spin_lock_irqsave(&hc->lock, flags);
1525         mISDN_clear_bchannel(bch);
1526         mode_hfcpci(bch, bch->nr, ISDN_P_NONE);
1527         spin_unlock_irqrestore(&hc->lock, flags);
1528 }
1529
1530 /*
1531  * Layer 1 B-channel hardware access
1532  */
1533 static int
1534 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
1535 {
1536         int     ret = 0;
1537
1538         switch (cq->op) {
1539         case MISDN_CTRL_GETOP:
1540                 cq->op = MISDN_CTRL_FILL_EMPTY;
1541                 break;
1542         case MISDN_CTRL_FILL_EMPTY: /* fill fifo, if empty */
1543                 test_and_set_bit(FLG_FILLEMPTY, &bch->Flags);
1544                 if (debug & DEBUG_HW_OPEN)
1545                         printk(KERN_DEBUG "%s: FILL_EMPTY request (nr=%d "
1546                                 "off=%d)\n", __func__, bch->nr, !!cq->p1);
1547                 break;
1548         default:
1549                 printk(KERN_WARNING "%s: unknown Op %x\n", __func__, cq->op);
1550                 ret = -EINVAL;
1551                 break;
1552         }
1553         return ret;
1554 }
1555 static int
1556 hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1557 {
1558         struct bchannel *bch = container_of(ch, struct bchannel, ch);
1559         struct hfc_pci  *hc = bch->hw;
1560         int             ret = -EINVAL;
1561         u_long          flags;
1562
1563         if (bch->debug & DEBUG_HW)
1564                 printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
1565         switch (cmd) {
1566         case HW_TESTRX_RAW:
1567                 spin_lock_irqsave(&hc->lock, flags);
1568                 ret = set_hfcpci_rxtest(bch, ISDN_P_B_RAW, (int)(long)arg);
1569                 spin_unlock_irqrestore(&hc->lock, flags);
1570                 break;
1571         case HW_TESTRX_HDLC:
1572                 spin_lock_irqsave(&hc->lock, flags);
1573                 ret = set_hfcpci_rxtest(bch, ISDN_P_B_HDLC, (int)(long)arg);
1574                 spin_unlock_irqrestore(&hc->lock, flags);
1575                 break;
1576         case HW_TESTRX_OFF:
1577                 spin_lock_irqsave(&hc->lock, flags);
1578                 mode_hfcpci(bch, bch->nr, ISDN_P_NONE);
1579                 spin_unlock_irqrestore(&hc->lock, flags);
1580                 ret = 0;
1581                 break;
1582         case CLOSE_CHANNEL:
1583                 test_and_clear_bit(FLG_OPEN, &bch->Flags);
1584                 if (test_bit(FLG_ACTIVE, &bch->Flags))
1585                         deactivate_bchannel(bch);
1586                 ch->protocol = ISDN_P_NONE;
1587                 ch->peer = NULL;
1588                 module_put(THIS_MODULE);
1589                 ret = 0;
1590                 break;
1591         case CONTROL_CHANNEL:
1592                 ret = channel_bctrl(bch, arg);
1593                 break;
1594         default:
1595                 printk(KERN_WARNING "%s: unknown prim(%x)\n",
1596                         __func__, cmd);
1597         }
1598         return ret;
1599 }
1600
1601 /*
1602  * Layer2 -> Layer 1 Dchannel data
1603  */
1604 static int
1605 hfcpci_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
1606 {
1607         struct mISDNdevice      *dev = container_of(ch, struct mISDNdevice, D);
1608         struct dchannel         *dch = container_of(dev, struct dchannel, dev);
1609         struct hfc_pci          *hc = dch->hw;
1610         int                     ret = -EINVAL;
1611         struct mISDNhead        *hh = mISDN_HEAD_P(skb);
1612         unsigned int            id;
1613         u_long                  flags;
1614
1615         switch (hh->prim) {
1616         case PH_DATA_REQ:
1617                 spin_lock_irqsave(&hc->lock, flags);
1618                 ret = dchannel_senddata(dch, skb);
1619                 if (ret > 0) { /* direct TX */
1620                         id = hh->id; /* skb can be freed */
1621                         hfcpci_fill_dfifo(dch->hw);
1622                         ret = 0;
1623                         spin_unlock_irqrestore(&hc->lock, flags);
1624                         queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
1625                 } else
1626                         spin_unlock_irqrestore(&hc->lock, flags);
1627                 return ret;
1628         case PH_ACTIVATE_REQ:
1629                 spin_lock_irqsave(&hc->lock, flags);
1630                 if (hc->hw.protocol == ISDN_P_NT_S0) {
1631                         ret = 0;
1632                         if (test_bit(HFC_CFG_MASTER, &hc->cfg))
1633                                 hc->hw.mst_m |= HFCPCI_MASTER;
1634                         Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1635                         if (test_bit(FLG_ACTIVE, &dch->Flags)) {
1636                                 spin_unlock_irqrestore(&hc->lock, flags);
1637                                 _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
1638                                     MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
1639                                 break;
1640                         }
1641                         test_and_set_bit(FLG_L2_ACTIVATED, &dch->Flags);
1642                         Write_hfc(hc, HFCPCI_STATES, HFCPCI_ACTIVATE |
1643                             HFCPCI_DO_ACTION | 1);
1644                 } else
1645                         ret = l1_event(dch->l1, hh->prim);
1646                 spin_unlock_irqrestore(&hc->lock, flags);
1647                 break;
1648         case PH_DEACTIVATE_REQ:
1649                 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
1650                 spin_lock_irqsave(&hc->lock, flags);
1651                 if (hc->hw.protocol == ISDN_P_NT_S0) {
1652                         /* prepare deactivation */
1653                         Write_hfc(hc, HFCPCI_STATES, 0x40);
1654                         skb_queue_purge(&dch->squeue);
1655                         if (dch->tx_skb) {
1656                                 dev_kfree_skb(dch->tx_skb);
1657                                 dch->tx_skb = NULL;
1658                         }
1659                         dch->tx_idx = 0;
1660                         if (dch->rx_skb) {
1661                                 dev_kfree_skb(dch->rx_skb);
1662                                 dch->rx_skb = NULL;
1663                         }
1664                         test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
1665                         if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
1666                                 del_timer(&dch->timer);
1667 #ifdef FIXME
1668                         if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
1669                                 dchannel_sched_event(&hc->dch, D_CLEARBUSY);
1670 #endif
1671                         hc->hw.mst_m &= ~HFCPCI_MASTER;
1672                         Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1673                         ret = 0;
1674                 } else {
1675                         ret = l1_event(dch->l1, hh->prim);
1676                 }
1677                 spin_unlock_irqrestore(&hc->lock, flags);
1678                 break;
1679         }
1680         if (!ret)
1681                 dev_kfree_skb(skb);
1682         return ret;
1683 }
1684
1685 /*
1686  * Layer2 -> Layer 1 Bchannel data
1687  */
1688 static int
1689 hfcpci_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
1690 {
1691         struct bchannel         *bch = container_of(ch, struct bchannel, ch);
1692         struct hfc_pci          *hc = bch->hw;
1693         int                     ret = -EINVAL;
1694         struct mISDNhead        *hh = mISDN_HEAD_P(skb);
1695         unsigned int            id;
1696         u_long                  flags;
1697
1698         switch (hh->prim) {
1699         case PH_DATA_REQ:
1700                 spin_lock_irqsave(&hc->lock, flags);
1701                 ret = bchannel_senddata(bch, skb);
1702                 if (ret > 0) { /* direct TX */
1703                         id = hh->id; /* skb can be freed */
1704                         hfcpci_fill_fifo(bch);
1705                         ret = 0;
1706                         spin_unlock_irqrestore(&hc->lock, flags);
1707                         if (!test_bit(FLG_TRANSPARENT, &bch->Flags))
1708                                 queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
1709                 } else
1710                         spin_unlock_irqrestore(&hc->lock, flags);
1711                 return ret;
1712         case PH_ACTIVATE_REQ:
1713                 spin_lock_irqsave(&hc->lock, flags);
1714                 if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags))
1715                         ret = mode_hfcpci(bch, bch->nr, ch->protocol);
1716                 else
1717                         ret = 0;
1718                 spin_unlock_irqrestore(&hc->lock, flags);
1719                 if (!ret)
1720                         _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
1721                                 NULL, GFP_KERNEL);
1722                 break;
1723         case PH_DEACTIVATE_REQ:
1724                 deactivate_bchannel(bch);
1725                 _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0,
1726                         NULL, GFP_KERNEL);
1727                 ret = 0;
1728                 break;
1729         }
1730         if (!ret)
1731                 dev_kfree_skb(skb);
1732         return ret;
1733 }
1734
1735 /*
1736  * called for card init message
1737  */
1738
1739 static void
1740 inithfcpci(struct hfc_pci *hc)
1741 {
1742         printk(KERN_DEBUG "inithfcpci: entered\n");
1743         hc->dch.timer.function = (void *) hfcpci_dbusy_timer;
1744         hc->dch.timer.data = (long) &hc->dch;
1745         init_timer(&hc->dch.timer);
1746         hc->chanlimit = 2;
1747         mode_hfcpci(&hc->bch[0], 1, -1);
1748         mode_hfcpci(&hc->bch[1], 2, -1);
1749 }
1750
1751
1752 static int
1753 init_card(struct hfc_pci *hc)
1754 {
1755         int     cnt = 3;
1756         u_long  flags;
1757
1758         printk(KERN_DEBUG "init_card: entered\n");
1759
1760
1761         spin_lock_irqsave(&hc->lock, flags);
1762         disable_hwirq(hc);
1763         spin_unlock_irqrestore(&hc->lock, flags);
1764         if (request_irq(hc->irq, hfcpci_int, IRQF_SHARED, "HFC PCI", hc)) {
1765                 printk(KERN_WARNING
1766                     "mISDN: couldn't get interrupt %d\n", hc->irq);
1767                 return -EIO;
1768         }
1769         spin_lock_irqsave(&hc->lock, flags);
1770         reset_hfcpci(hc);
1771         while (cnt) {
1772                 inithfcpci(hc);
1773                 /*
1774                  * Finally enable IRQ output
1775                  * this is only allowed, if an IRQ routine is already
1776                  * established for this HFC, so don't do that earlier
1777                  */
1778                 enable_hwirq(hc);
1779                 spin_unlock_irqrestore(&hc->lock, flags);
1780                 /* Timeout 80ms */
1781                 current->state = TASK_UNINTERRUPTIBLE;
1782                 schedule_timeout((80*HZ)/1000);
1783                 printk(KERN_INFO "HFC PCI: IRQ %d count %d\n",
1784                         hc->irq, hc->irqcnt);
1785                 /* now switch timer interrupt off */
1786                 spin_lock_irqsave(&hc->lock, flags);
1787                 hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
1788                 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1789                 /* reinit mode reg */
1790                 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1791                 if (!hc->irqcnt) {
1792                         printk(KERN_WARNING
1793                             "HFC PCI: IRQ(%d) getting no interrupts "
1794                             "during init %d\n", hc->irq, 4 - cnt);
1795                         if (cnt == 1)
1796                                 break;
1797                         else {
1798                                 reset_hfcpci(hc);
1799                                 cnt--;
1800                         }
1801                 } else {
1802                         spin_unlock_irqrestore(&hc->lock, flags);
1803                         hc->initdone = 1;
1804                         return 0;
1805                 }
1806         }
1807         disable_hwirq(hc);
1808         spin_unlock_irqrestore(&hc->lock, flags);
1809         free_irq(hc->irq, hc);
1810         return -EIO;
1811 }
1812
1813 static int
1814 channel_ctrl(struct hfc_pci *hc, struct mISDN_ctrl_req *cq)
1815 {
1816         int     ret = 0;
1817         u_char  slot;
1818
1819         switch (cq->op) {
1820         case MISDN_CTRL_GETOP:
1821                 cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
1822                     MISDN_CTRL_DISCONNECT;
1823                 break;
1824         case MISDN_CTRL_LOOP:
1825                 /* channel 0 disabled loop */
1826                 if (cq->channel < 0 || cq->channel > 2) {
1827                         ret = -EINVAL;
1828                         break;
1829                 }
1830                 if (cq->channel & 1) {
1831                         if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1832                                 slot = 0xC0;
1833                         else
1834                                 slot = 0x80;
1835                         printk(KERN_DEBUG "%s: Write_hfc: B1_SSL/RSL 0x%x\n",
1836                             __func__, slot);
1837                         Write_hfc(hc, HFCPCI_B1_SSL, slot);
1838                         Write_hfc(hc, HFCPCI_B1_RSL, slot);
1839                         hc->hw.conn = (hc->hw.conn & ~7) | 6;
1840                         Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1841                 }
1842                 if (cq->channel & 2) {
1843                         if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1844                                 slot = 0xC1;
1845                         else
1846                                 slot = 0x81;
1847                         printk(KERN_DEBUG "%s: Write_hfc: B2_SSL/RSL 0x%x\n",
1848                             __func__, slot);
1849                         Write_hfc(hc, HFCPCI_B2_SSL, slot);
1850                         Write_hfc(hc, HFCPCI_B2_RSL, slot);
1851                         hc->hw.conn = (hc->hw.conn & ~0x38) | 0x30;
1852                         Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1853                 }
1854                 if (cq->channel & 3)
1855                         hc->hw.trm |= 0x80;     /* enable IOM-loop */
1856                 else {
1857                         hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x09;
1858                         Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1859                         hc->hw.trm &= 0x7f;     /* disable IOM-loop */
1860                 }
1861                 Write_hfc(hc, HFCPCI_TRM, hc->hw.trm);
1862                 break;
1863         case MISDN_CTRL_CONNECT:
1864                 if (cq->channel == cq->p1) {
1865                         ret = -EINVAL;
1866                         break;
1867                 }
1868                 if (cq->channel < 1 || cq->channel > 2 ||
1869                     cq->p1 < 1 || cq->p1 > 2) {
1870                         ret = -EINVAL;
1871                         break;
1872                 }
1873                 if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1874                         slot = 0xC0;
1875                 else
1876                         slot = 0x80;
1877                 printk(KERN_DEBUG "%s: Write_hfc: B1_SSL/RSL 0x%x\n",
1878                     __func__, slot);
1879                 Write_hfc(hc, HFCPCI_B1_SSL, slot);
1880                 Write_hfc(hc, HFCPCI_B2_RSL, slot);
1881                 if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1882                         slot = 0xC1;
1883                 else
1884                         slot = 0x81;
1885                 printk(KERN_DEBUG "%s: Write_hfc: B2_SSL/RSL 0x%x\n",
1886                     __func__, slot);
1887                 Write_hfc(hc, HFCPCI_B2_SSL, slot);
1888                 Write_hfc(hc, HFCPCI_B1_RSL, slot);
1889                 hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x36;
1890                 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1891                 hc->hw.trm |= 0x80;
1892                 Write_hfc(hc, HFCPCI_TRM, hc->hw.trm);
1893                 break;
1894         case MISDN_CTRL_DISCONNECT:
1895                 hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x09;
1896                 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1897                 hc->hw.trm &= 0x7f;     /* disable IOM-loop */
1898                 break;
1899         default:
1900                 printk(KERN_WARNING "%s: unknown Op %x\n",
1901                     __func__, cq->op);
1902                 ret = -EINVAL;
1903                 break;
1904         }
1905         return ret;
1906 }
1907
1908 static int
1909 open_dchannel(struct hfc_pci *hc, struct mISDNchannel *ch,
1910     struct channel_req *rq)
1911 {
1912         int err = 0;
1913
1914         if (debug & DEBUG_HW_OPEN)
1915                 printk(KERN_DEBUG "%s: dev(%d) open from %p\n", __func__,
1916                     hc->dch.dev.id, __builtin_return_address(0));
1917         if (rq->protocol == ISDN_P_NONE)
1918                 return -EINVAL;
1919         if (rq->adr.channel == 1) {
1920                 /* TODO: E-Channel */
1921                 return -EINVAL;
1922         }
1923         if (!hc->initdone) {
1924                 if (rq->protocol == ISDN_P_TE_S0) {
1925                         err = create_l1(&hc->dch, hfc_l1callback);
1926                         if (err)
1927                                 return err;
1928                 }
1929                 hc->hw.protocol = rq->protocol;
1930                 ch->protocol = rq->protocol;
1931                 err = init_card(hc);
1932                 if (err)
1933                         return err;
1934         } else {
1935                 if (rq->protocol != ch->protocol) {
1936                         if (hc->hw.protocol == ISDN_P_TE_S0)
1937                                 l1_event(hc->dch.l1, CLOSE_CHANNEL);
1938                         if (rq->protocol == ISDN_P_TE_S0) {
1939                                 err = create_l1(&hc->dch, hfc_l1callback);
1940                                 if (err)
1941                                         return err;
1942                         }
1943                         hc->hw.protocol = rq->protocol;
1944                         ch->protocol = rq->protocol;
1945                         hfcpci_setmode(hc);
1946                 }
1947         }
1948
1949         if (((ch->protocol == ISDN_P_NT_S0) && (hc->dch.state == 3)) ||
1950             ((ch->protocol == ISDN_P_TE_S0) && (hc->dch.state == 7))) {
1951                 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
1952                     0, NULL, GFP_KERNEL);
1953         }
1954         rq->ch = ch;
1955         if (!try_module_get(THIS_MODULE))
1956                 printk(KERN_WARNING "%s:cannot get module\n", __func__);
1957         return 0;
1958 }
1959
1960 static int
1961 open_bchannel(struct hfc_pci *hc, struct channel_req *rq)
1962 {
1963         struct bchannel         *bch;
1964
1965         if (rq->adr.channel > 2)
1966                 return -EINVAL;
1967         if (rq->protocol == ISDN_P_NONE)
1968                 return -EINVAL;
1969         bch = &hc->bch[rq->adr.channel - 1];
1970         if (test_and_set_bit(FLG_OPEN, &bch->Flags))
1971                 return -EBUSY; /* b-channel can be only open once */
1972         test_and_clear_bit(FLG_FILLEMPTY, &bch->Flags);
1973         bch->ch.protocol = rq->protocol;
1974         rq->ch = &bch->ch; /* TODO: E-channel */
1975         if (!try_module_get(THIS_MODULE))
1976                 printk(KERN_WARNING "%s:cannot get module\n", __func__);
1977         return 0;
1978 }
1979
1980 /*
1981  * device control function
1982  */
1983 static int
1984 hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1985 {
1986         struct mISDNdevice      *dev = container_of(ch, struct mISDNdevice, D);
1987         struct dchannel         *dch = container_of(dev, struct dchannel, dev);
1988         struct hfc_pci          *hc = dch->hw;
1989         struct channel_req      *rq;
1990         int                     err = 0;
1991
1992         if (dch->debug & DEBUG_HW)
1993                 printk(KERN_DEBUG "%s: cmd:%x %p\n",
1994                     __func__, cmd, arg);
1995         switch (cmd) {
1996         case OPEN_CHANNEL:
1997                 rq = arg;
1998                 if ((rq->protocol == ISDN_P_TE_S0) ||
1999                     (rq->protocol == ISDN_P_NT_S0))
2000                         err = open_dchannel(hc, ch, rq);
2001                 else
2002                         err = open_bchannel(hc, rq);
2003                 break;
2004         case CLOSE_CHANNEL:
2005                 if (debug & DEBUG_HW_OPEN)
2006                         printk(KERN_DEBUG "%s: dev(%d) close from %p\n",
2007                             __func__, hc->dch.dev.id,
2008                             __builtin_return_address(0));
2009                 module_put(THIS_MODULE);
2010                 break;
2011         case CONTROL_CHANNEL:
2012                 err = channel_ctrl(hc, arg);
2013                 break;
2014         default:
2015                 if (dch->debug & DEBUG_HW)
2016                         printk(KERN_DEBUG "%s: unknown command %x\n",
2017                             __func__, cmd);
2018                 return -EINVAL;
2019         }
2020         return err;
2021 }
2022
2023 static int
2024 setup_hw(struct hfc_pci *hc)
2025 {
2026         void    *buffer;
2027
2028         printk(KERN_INFO "mISDN: HFC-PCI driver %s\n", hfcpci_revision);
2029         hc->hw.cirm = 0;
2030         hc->dch.state = 0;
2031         pci_set_master(hc->pdev);
2032         if (!hc->irq) {
2033                 printk(KERN_WARNING "HFC-PCI: No IRQ for PCI card found\n");
2034                 return 1;
2035         }
2036         hc->hw.pci_io =
2037                 (char __iomem *)(unsigned long)hc->pdev->resource[1].start;
2038
2039         if (!hc->hw.pci_io) {
2040                 printk(KERN_WARNING "HFC-PCI: No IO-Mem for PCI card found\n");
2041                 return 1;
2042         }
2043         /* Allocate memory for FIFOS */
2044         /* the memory needs to be on a 32k boundary within the first 4G */
2045         pci_set_dma_mask(hc->pdev, 0xFFFF8000);
2046         buffer = pci_alloc_consistent(hc->pdev, 0x8000, &hc->hw.dmahandle);
2047         /* We silently assume the address is okay if nonzero */
2048         if (!buffer) {
2049                 printk(KERN_WARNING
2050                     "HFC-PCI: Error allocating memory for FIFO!\n");
2051                 return 1;
2052         }
2053         hc->hw.fifos = buffer;
2054         pci_write_config_dword(hc->pdev, 0x80, hc->hw.dmahandle);
2055         hc->hw.pci_io = ioremap((ulong) hc->hw.pci_io, 256);
2056         printk(KERN_INFO
2057                 "HFC-PCI: defined at mem %#lx fifo %#lx(%#lx) IRQ %d HZ %d\n",
2058                 (u_long) hc->hw.pci_io, (u_long) hc->hw.fifos,
2059                 (u_long) hc->hw.dmahandle, hc->irq, HZ);
2060         /* enable memory mapped ports, disable busmaster */
2061         pci_write_config_word(hc->pdev, PCI_COMMAND, PCI_ENA_MEMIO);
2062         hc->hw.int_m2 = 0;
2063         disable_hwirq(hc);
2064         hc->hw.int_m1 = 0;
2065         Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
2066         /* At this point the needed PCI config is done */
2067         /* fifos are still not enabled */
2068         hc->hw.timer.function = (void *) hfcpci_Timer;
2069         hc->hw.timer.data = (long) hc;
2070         init_timer(&hc->hw.timer);
2071         /* default PCM master */
2072         test_and_set_bit(HFC_CFG_MASTER, &hc->cfg);
2073         return 0;
2074 }
2075
2076 static void
2077 release_card(struct hfc_pci *hc) {
2078         u_long  flags;
2079
2080         spin_lock_irqsave(&hc->lock, flags);
2081         hc->hw.int_m2 = 0; /* interrupt output off ! */
2082         disable_hwirq(hc);
2083         mode_hfcpci(&hc->bch[0], 1, ISDN_P_NONE);
2084         mode_hfcpci(&hc->bch[1], 2, ISDN_P_NONE);
2085         if (hc->dch.timer.function != NULL) {
2086                 del_timer(&hc->dch.timer);
2087                 hc->dch.timer.function = NULL;
2088         }
2089         spin_unlock_irqrestore(&hc->lock, flags);
2090         if (hc->hw.protocol == ISDN_P_TE_S0)
2091                 l1_event(hc->dch.l1, CLOSE_CHANNEL);
2092         if (hc->initdone)
2093                 free_irq(hc->irq, hc);
2094         release_io_hfcpci(hc); /* must release after free_irq! */
2095         mISDN_unregister_device(&hc->dch.dev);
2096         mISDN_freebchannel(&hc->bch[1]);
2097         mISDN_freebchannel(&hc->bch[0]);
2098         mISDN_freedchannel(&hc->dch);
2099         pci_set_drvdata(hc->pdev, NULL);
2100         kfree(hc);
2101 }
2102
2103 static int
2104 setup_card(struct hfc_pci *card)
2105 {
2106         int             err = -EINVAL;
2107         u_int           i;
2108         char            name[MISDN_MAX_IDLEN];
2109
2110         card->dch.debug = debug;
2111         spin_lock_init(&card->lock);
2112         mISDN_initdchannel(&card->dch, MAX_DFRAME_LEN_L1, ph_state);
2113         card->dch.hw = card;
2114         card->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
2115         card->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
2116             (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
2117         card->dch.dev.D.send = hfcpci_l2l1D;
2118         card->dch.dev.D.ctrl = hfc_dctrl;
2119         card->dch.dev.nrbchan = 2;
2120         for (i = 0; i < 2; i++) {
2121                 card->bch[i].nr = i + 1;
2122                 set_channelmap(i + 1, card->dch.dev.channelmap);
2123                 card->bch[i].debug = debug;
2124                 mISDN_initbchannel(&card->bch[i], MAX_DATA_MEM);
2125                 card->bch[i].hw = card;
2126                 card->bch[i].ch.send = hfcpci_l2l1B;
2127                 card->bch[i].ch.ctrl = hfc_bctrl;
2128                 card->bch[i].ch.nr = i + 1;
2129                 list_add(&card->bch[i].ch.list, &card->dch.dev.bchannels);
2130         }
2131         err = setup_hw(card);
2132         if (err)
2133                 goto error;
2134         snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-pci.%d", HFC_cnt + 1);
2135         err = mISDN_register_device(&card->dch.dev, &card->pdev->dev, name);
2136         if (err)
2137                 goto error;
2138         HFC_cnt++;
2139         printk(KERN_INFO "HFC %d cards installed\n", HFC_cnt);
2140         return 0;
2141 error:
2142         mISDN_freebchannel(&card->bch[1]);
2143         mISDN_freebchannel(&card->bch[0]);
2144         mISDN_freedchannel(&card->dch);
2145         kfree(card);
2146         return err;
2147 }
2148
2149 /* private data in the PCI devices list */
2150 struct _hfc_map {
2151         u_int   subtype;
2152         u_int   flag;
2153         char    *name;
2154 };
2155
2156 static const struct _hfc_map hfc_map[] =
2157 {
2158         {HFC_CCD_2BD0, 0, "CCD/Billion/Asuscom 2BD0"},
2159         {HFC_CCD_B000, 0, "Billion B000"},
2160         {HFC_CCD_B006, 0, "Billion B006"},
2161         {HFC_CCD_B007, 0, "Billion B007"},
2162         {HFC_CCD_B008, 0, "Billion B008"},
2163         {HFC_CCD_B009, 0, "Billion B009"},
2164         {HFC_CCD_B00A, 0, "Billion B00A"},
2165         {HFC_CCD_B00B, 0, "Billion B00B"},
2166         {HFC_CCD_B00C, 0, "Billion B00C"},
2167         {HFC_CCD_B100, 0, "Seyeon B100"},
2168         {HFC_CCD_B700, 0, "Primux II S0 B700"},
2169         {HFC_CCD_B701, 0, "Primux II S0 NT B701"},
2170         {HFC_ABOCOM_2BD1, 0, "Abocom/Magitek 2BD1"},
2171         {HFC_ASUS_0675, 0, "Asuscom/Askey 675"},
2172         {HFC_BERKOM_TCONCEPT, 0, "German telekom T-Concept"},
2173         {HFC_BERKOM_A1T, 0, "German telekom A1T"},
2174         {HFC_ANIGMA_MC145575, 0, "Motorola MC145575"},
2175         {HFC_ZOLTRIX_2BD0, 0, "Zoltrix 2BD0"},
2176         {HFC_DIGI_DF_M_IOM2_E, 0,
2177             "Digi International DataFire Micro V IOM2 (Europe)"},
2178         {HFC_DIGI_DF_M_E, 0,
2179             "Digi International DataFire Micro V (Europe)"},
2180         {HFC_DIGI_DF_M_IOM2_A, 0,
2181             "Digi International DataFire Micro V IOM2 (North America)"},
2182         {HFC_DIGI_DF_M_A, 0,
2183             "Digi International DataFire Micro V (North America)"},
2184         {HFC_SITECOM_DC105V2, 0, "Sitecom Connectivity DC-105 ISDN TA"},
2185         {},
2186 };
2187
2188 static struct pci_device_id hfc_ids[] =
2189 {
2190         { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_2BD0),
2191                 (unsigned long) &hfc_map[0] },
2192         { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B000),
2193                 (unsigned long) &hfc_map[1] },
2194         { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B006),
2195                 (unsigned long) &hfc_map[2] },
2196         { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B007),
2197                 (unsigned long) &hfc_map[3] },
2198         { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B008),
2199                 (unsigned long) &hfc_map[4] },
2200         { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B009),
2201                 (unsigned long) &hfc_map[5] },
2202         { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B00A),
2203                 (unsigned long) &hfc_map[6] },
2204         { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B00B),
2205                 (unsigned long) &hfc_map[7] },
2206         { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B00C),
2207                 (unsigned long) &hfc_map[8] },
2208         { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B100),
2209                 (unsigned long) &hfc_map[9] },
2210         { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B700),
2211                 (unsigned long) &hfc_map[10] },
2212         { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B701),
2213                 (unsigned long) &hfc_map[11] },
2214         { PCI_VDEVICE(ABOCOM, PCI_DEVICE_ID_ABOCOM_2BD1),
2215                 (unsigned long) &hfc_map[12] },
2216         { PCI_VDEVICE(ASUSTEK, PCI_DEVICE_ID_ASUSTEK_0675),
2217                 (unsigned long) &hfc_map[13] },
2218         { PCI_VDEVICE(BERKOM, PCI_DEVICE_ID_BERKOM_T_CONCEPT),
2219                 (unsigned long) &hfc_map[14] },
2220         { PCI_VDEVICE(BERKOM, PCI_DEVICE_ID_BERKOM_A1T),
2221                 (unsigned long) &hfc_map[15] },
2222         { PCI_VDEVICE(ANIGMA, PCI_DEVICE_ID_ANIGMA_MC145575),
2223                 (unsigned long) &hfc_map[16] },
2224         { PCI_VDEVICE(ZOLTRIX, PCI_DEVICE_ID_ZOLTRIX_2BD0),
2225                 (unsigned long) &hfc_map[17] },
2226         { PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_E),
2227                 (unsigned long) &hfc_map[18] },
2228         { PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_E),
2229                 (unsigned long) &hfc_map[19] },
2230         { PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_A),
2231                 (unsigned long) &hfc_map[20] },
2232         { PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_A),
2233                 (unsigned long) &hfc_map[21] },
2234         { PCI_VDEVICE(SITECOM, PCI_DEVICE_ID_SITECOM_DC105V2),
2235                 (unsigned long) &hfc_map[22] },
2236         {},
2237 };
2238
2239 static int __devinit
2240 hfc_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2241 {
2242         int             err = -ENOMEM;
2243         struct hfc_pci  *card;
2244         struct _hfc_map *m = (struct _hfc_map *)ent->driver_data;
2245
2246         card = kzalloc(sizeof(struct hfc_pci), GFP_ATOMIC);
2247         if (!card) {
2248                 printk(KERN_ERR "No kmem for HFC card\n");
2249                 return err;
2250         }
2251         card->pdev = pdev;
2252         card->subtype = m->subtype;
2253         err = pci_enable_device(pdev);
2254         if (err) {
2255                 kfree(card);
2256                 return err;
2257         }
2258
2259         printk(KERN_INFO "mISDN_hfcpci: found adapter %s at %s\n",
2260                m->name, pci_name(pdev));
2261
2262         card->irq = pdev->irq;
2263         pci_set_drvdata(pdev, card);
2264         err = setup_card(card);
2265         if (err)
2266                 pci_set_drvdata(pdev, NULL);
2267         return err;
2268 }
2269
2270 static void __devexit
2271 hfc_remove_pci(struct pci_dev *pdev)
2272 {
2273         struct hfc_pci  *card = pci_get_drvdata(pdev);
2274
2275         if (card)
2276                 release_card(card);
2277         else
2278                 if (debug)
2279                         printk(KERN_DEBUG "%s: drvdata already removed\n",
2280                             __func__);
2281 }
2282
2283
2284 static struct pci_driver hfc_driver = {
2285         .name = "hfcpci",
2286         .probe = hfc_probe,
2287         .remove = __devexit_p(hfc_remove_pci),
2288         .id_table = hfc_ids,
2289 };
2290
2291 static int
2292 _hfcpci_softirq(struct device *dev, void *arg)
2293 {
2294         struct hfc_pci  *hc = dev_get_drvdata(dev);
2295         struct bchannel *bch;
2296         if (hc == NULL)
2297                 return 0;
2298
2299         if (hc->hw.int_m2 & HFCPCI_IRQ_ENABLE) {
2300                 spin_lock(&hc->lock);
2301                 bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
2302                 if (bch && bch->state == ISDN_P_B_RAW) { /* B1 rx&tx */
2303                         main_rec_hfcpci(bch);
2304                         tx_birq(bch);
2305                 }
2306                 bch = Sel_BCS(hc, hc->hw.bswapped ? 1 : 2);
2307                 if (bch && bch->state == ISDN_P_B_RAW) { /* B2 rx&tx */
2308                         main_rec_hfcpci(bch);
2309                         tx_birq(bch);
2310                 }
2311                 spin_unlock(&hc->lock);
2312         }
2313         return 0;
2314 }
2315
2316 static void
2317 hfcpci_softirq(void *arg)
2318 {
2319         (void) driver_for_each_device(&hfc_driver.driver, NULL, arg,
2320                                         _hfcpci_softirq);
2321
2322         /* if next event would be in the past ... */
2323         if ((s32)(hfc_jiffies + tics - jiffies) <= 0)
2324                 hfc_jiffies = jiffies + 1;
2325         else
2326                 hfc_jiffies += tics;
2327         hfc_tl.expires = hfc_jiffies;
2328         add_timer(&hfc_tl);
2329 }
2330
2331 static int __init
2332 HFC_init(void)
2333 {
2334         int             err;
2335
2336         if (!poll)
2337                 poll = HFCPCI_BTRANS_THRESHOLD;
2338
2339         if (poll != HFCPCI_BTRANS_THRESHOLD) {
2340                 tics = (poll * HZ) / 8000;
2341                 if (tics < 1)
2342                         tics = 1;
2343                 poll = (tics * 8000) / HZ;
2344                 if (poll > 256 || poll < 8) {
2345                         printk(KERN_ERR "%s: Wrong poll value %d not in range "
2346                                 "of 8..256.\n", __func__, poll);
2347                         err = -EINVAL;
2348                         return err;
2349                 }
2350         }
2351         if (poll != HFCPCI_BTRANS_THRESHOLD) {
2352                 printk(KERN_INFO "%s: Using alternative poll value of %d\n",
2353                         __func__, poll);
2354                 hfc_tl.function = (void *)hfcpci_softirq;
2355                 hfc_tl.data = 0;
2356                 init_timer(&hfc_tl);
2357                 hfc_tl.expires = jiffies + tics;
2358                 hfc_jiffies = hfc_tl.expires;
2359                 add_timer(&hfc_tl);
2360         } else
2361                 tics = 0; /* indicate the use of controller's timer */
2362
2363         err = pci_register_driver(&hfc_driver);
2364         if (err) {
2365                 if (timer_pending(&hfc_tl))
2366                         del_timer(&hfc_tl);
2367         }
2368
2369         return err;
2370 }
2371
2372 static void __exit
2373 HFC_cleanup(void)
2374 {
2375         if (timer_pending(&hfc_tl))
2376                 del_timer(&hfc_tl);
2377
2378         pci_unregister_driver(&hfc_driver);
2379 }
2380
2381 module_init(HFC_init);
2382 module_exit(HFC_cleanup);
2383
2384 MODULE_DEVICE_TABLE(pci, hfc_ids);