Merge branch 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[pandora-kernel.git] / drivers / isdn / hardware / mISDN / hfcmulti.c
1 /*
2  * hfcmulti.c  low level driver for hfc-4s/hfc-8s/hfc-e1 based cards
3  *
4  * Author       Andreas Eversberg (jolly@eversberg.eu)
5  * ported to mqueue mechanism:
6  *              Peter Sprenger (sprengermoving-bytes.de)
7  *
8  * inspired by existing hfc-pci driver:
9  * Copyright 1999  by Werner Cornelius (werner@isdn-development.de)
10  * Copyright 2008  by Karsten Keil (kkeil@suse.de)
11  * Copyright 2008  by Andreas Eversberg (jolly@eversberg.eu)
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2, or (at your option)
16  * any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26  *
27  *
28  * Thanks to Cologne Chip AG for this great controller!
29  */
30
31 /*
32  * module parameters:
33  * type:
34  *      By default (0), the card is automatically detected.
35  *      Or use the following combinations:
36  *      Bit 0-7   = 0x00001 = HFC-E1 (1 port)
37  * or   Bit 0-7   = 0x00004 = HFC-4S (4 ports)
38  * or   Bit 0-7   = 0x00008 = HFC-8S (8 ports)
39  *      Bit 8     = 0x00100 = uLaw (instead of aLaw)
40  *      Bit 9     = 0x00200 = Disable DTMF detect on all B-channels via hardware
41  *      Bit 10    = spare
42  *      Bit 11    = 0x00800 = Force PCM bus into slave mode. (otherwhise auto)
43  * or   Bit 12    = 0x01000 = Force PCM bus into master mode. (otherwhise auto)
44  *      Bit 13    = spare
45  *      Bit 14    = 0x04000 = Use external ram (128K)
46  *      Bit 15    = 0x08000 = Use external ram (512K)
47  *      Bit 16    = 0x10000 = Use 64 timeslots instead of 32
48  * or   Bit 17    = 0x20000 = Use 128 timeslots instead of anything else
49  *      Bit 18    = spare
50  *      Bit 19    = 0x80000 = Send the Watchdog a Signal (Dual E1 with Watchdog)
51  * (all other bits are reserved and shall be 0)
52  *      example: 0x20204 one HFC-4S with dtmf detection and 128 timeslots on PCM
53  *               bus (PCM master)
54  *
55  * port: (optional or required for all ports on all installed cards)
56  *      HFC-4S/HFC-8S only bits:
57  *      Bit 0     = 0x001 = Use master clock for this S/T interface
58  *                          (ony once per chip).
59  *      Bit 1     = 0x002 = transmitter line setup (non capacitive mode)
60  *                          Don't use this unless you know what you are doing!
61  *      Bit 2     = 0x004 = Disable E-channel. (No E-channel processing)
62  *      example: 0x0001,0x0000,0x0000,0x0000 one HFC-4S with master clock
63  *               received from port 1
64  *
65  *      HFC-E1 only bits:
66  *      Bit 0     = 0x0001 = interface: 0=copper, 1=optical
67  *      Bit 1     = 0x0002 = reserved (later for 32 B-channels transparent mode)
68  *      Bit 2     = 0x0004 = Report LOS
69  *      Bit 3     = 0x0008 = Report AIS
70  *      Bit 4     = 0x0010 = Report SLIP
71  *      Bit 5     = 0x0020 = Report RDI
72  *      Bit 8     = 0x0100 = Turn off CRC-4 Multiframe Mode, use double frame
73  *                           mode instead.
74  *      Bit 9     = 0x0200 = Force get clock from interface, even in NT mode.
75  * or   Bit 10    = 0x0400 = Force put clock to interface, even in TE mode.
76  *      Bit 11    = 0x0800 = Use direct RX clock for PCM sync rather than PLL.
77  *                           (E1 only)
78  *      Bit 12-13 = 0xX000 = elastic jitter buffer (1-3), Set both bits to 0
79  *                           for default.
80  * (all other bits are reserved and shall be 0)
81  *
82  * debug:
83  *      NOTE: only one debug value must be given for all cards
84  *      enable debugging (see hfc_multi.h for debug options)
85  *
86  * poll:
87  *      NOTE: only one poll value must be given for all cards
88  *      Give the number of samples for each fifo process.
89  *      By default 128 is used. Decrease to reduce delay, increase to
90  *      reduce cpu load. If unsure, don't mess with it!
91  *      Valid is 8, 16, 32, 64, 128, 256.
92  *
93  * pcm:
94  *      NOTE: only one pcm value must be given for every card.
95  *      The PCM bus id tells the mISDNdsp module about the connected PCM bus.
96  *      By default (0), the PCM bus id is 100 for the card that is PCM master.
97  *      If multiple cards are PCM master (because they are not interconnected),
98  *      each card with PCM master will have increasing PCM id.
99  *      All PCM busses with the same ID are expected to be connected and have
100  *      common time slots slots.
101  *      Only one chip of the PCM bus must be master, the others slave.
102  *      -1 means no support of PCM bus not even.
103  *      Omit this value, if all cards are interconnected or none is connected.
104  *      If unsure, don't give this parameter.
105  *
106  * dslot:
107  *      NOTE: only one dslot value must be given for every card.
108  *      Also this value must be given for non-E1 cards. If omitted, the E1
109  *      card has D-channel on time slot 16, which is default.
110  *      If 1..15 or 17..31, an alternate time slot is used for D-channel.
111  *      In this case, the application must be able to handle this.
112  *      If -1 is given, the D-channel is disabled and all 31 slots can be used
113  *      for B-channel. (only for specific applications)
114  *      If you don't know how to use it, you don't need it!
115  *
116  * iomode:
117  *      NOTE: only one mode value must be given for every card.
118  *      -> See hfc_multi.h for HFC_IO_MODE_* values
119  *      By default, the IO mode is pci memory IO (MEMIO).
120  *      Some cards require specific IO mode, so it cannot be changed.
121  *      It may be useful to set IO mode to register io (REGIO) to solve
122  *      PCI bridge problems.
123  *      If unsure, don't give this parameter.
124  *
125  * clockdelay_nt:
126  *      NOTE: only one clockdelay_nt value must be given once for all cards.
127  *      Give the value of the clock control register (A_ST_CLK_DLY)
128  *      of the S/T interfaces in NT mode.
129  *      This register is needed for the TBR3 certification, so don't change it.
130  *
131  * clockdelay_te:
132  *      NOTE: only one clockdelay_te value must be given once
133  *      Give the value of the clock control register (A_ST_CLK_DLY)
134  *      of the S/T interfaces in TE mode.
135  *      This register is needed for the TBR3 certification, so don't change it.
136  *
137  * clock:
138  *      NOTE: only one clock value must be given once
139  *      Selects interface with clock source for mISDN and applications.
140  *      Set to card number starting with 1. Set to -1 to disable.
141  *      By default, the first card is used as clock source.
142  *
143  * hwid:
144  *      NOTE: only one hwid value must be given once
145  *      Enable special embedded devices with XHFC controllers.
146  */
147
148 /*
149  * debug register access (never use this, it will flood your system log)
150  * #define HFC_REGISTER_DEBUG
151  */
152
153 #define HFC_MULTI_VERSION       "2.03"
154
155 #include <linux/interrupt.h>
156 #include <linux/module.h>
157 #include <linux/slab.h>
158 #include <linux/pci.h>
159 #include <linux/delay.h>
160 #include <linux/mISDNhw.h>
161 #include <linux/mISDNdsp.h>
162
163 /*
164 #define IRQCOUNT_DEBUG
165 #define IRQ_DEBUG
166 */
167
168 #include "hfc_multi.h"
169 #ifdef ECHOPREP
170 #include "gaintab.h"
171 #endif
172
173 #define MAX_CARDS       8
174 #define MAX_PORTS       (8 * MAX_CARDS)
175
176 static LIST_HEAD(HFClist);
177 static spinlock_t HFClock; /* global hfc list lock */
178
179 static void ph_state_change(struct dchannel *);
180
181 static struct hfc_multi *syncmaster;
182 static int plxsd_master; /* if we have a master card (yet) */
183 static spinlock_t plx_lock; /* may not acquire other lock inside */
184
185 #define TYP_E1          1
186 #define TYP_4S          4
187 #define TYP_8S          8
188
189 static int poll_timer = 6;      /* default = 128 samples = 16ms */
190 /* number of POLL_TIMER interrupts for G2 timeout (ca 1s) */
191 static int nt_t1_count[] = { 3840, 1920, 960, 480, 240, 120, 60, 30  };
192 #define CLKDEL_TE       0x0f    /* CLKDEL in TE mode */
193 #define CLKDEL_NT       0x6c    /* CLKDEL in NT mode
194                                    (0x60 MUST be included!) */
195
196 #define DIP_4S  0x1             /* DIP Switches for Beronet 1S/2S/4S cards */
197 #define DIP_8S  0x2             /* DIP Switches for Beronet 8S+ cards */
198 #define DIP_E1  0x3             /* DIP Switches for Beronet E1 cards */
199
200 /*
201  * module stuff
202  */
203
204 static uint     type[MAX_CARDS];
205 static int      pcm[MAX_CARDS];
206 static int      dslot[MAX_CARDS];
207 static uint     iomode[MAX_CARDS];
208 static uint     port[MAX_PORTS];
209 static uint     debug;
210 static uint     poll;
211 static int      clock;
212 static uint     timer;
213 static uint     clockdelay_te = CLKDEL_TE;
214 static uint     clockdelay_nt = CLKDEL_NT;
215 #define HWID_NONE       0
216 #define HWID_MINIP4     1
217 #define HWID_MINIP8     2
218 #define HWID_MINIP16    3
219 static uint     hwid = HWID_NONE;
220
221 static int      HFC_cnt, Port_cnt, PCM_cnt = 99;
222
223 MODULE_AUTHOR("Andreas Eversberg");
224 MODULE_LICENSE("GPL");
225 MODULE_VERSION(HFC_MULTI_VERSION);
226 module_param(debug, uint, S_IRUGO | S_IWUSR);
227 module_param(poll, uint, S_IRUGO | S_IWUSR);
228 module_param(clock, int, S_IRUGO | S_IWUSR);
229 module_param(timer, uint, S_IRUGO | S_IWUSR);
230 module_param(clockdelay_te, uint, S_IRUGO | S_IWUSR);
231 module_param(clockdelay_nt, uint, S_IRUGO | S_IWUSR);
232 module_param_array(type, uint, NULL, S_IRUGO | S_IWUSR);
233 module_param_array(pcm, int, NULL, S_IRUGO | S_IWUSR);
234 module_param_array(dslot, int, NULL, S_IRUGO | S_IWUSR);
235 module_param_array(iomode, uint, NULL, S_IRUGO | S_IWUSR);
236 module_param_array(port, uint, NULL, S_IRUGO | S_IWUSR);
237 module_param(hwid, uint, S_IRUGO | S_IWUSR); /* The hardware ID */
238
239 #ifdef HFC_REGISTER_DEBUG
240 #define HFC_outb(hc, reg, val) \
241         (hc->HFC_outb(hc, reg, val, __func__, __LINE__))
242 #define HFC_outb_nodebug(hc, reg, val) \
243         (hc->HFC_outb_nodebug(hc, reg, val, __func__, __LINE__))
244 #define HFC_inb(hc, reg) \
245         (hc->HFC_inb(hc, reg, __func__, __LINE__))
246 #define HFC_inb_nodebug(hc, reg) \
247         (hc->HFC_inb_nodebug(hc, reg, __func__, __LINE__))
248 #define HFC_inw(hc, reg) \
249         (hc->HFC_inw(hc, reg, __func__, __LINE__))
250 #define HFC_inw_nodebug(hc, reg) \
251         (hc->HFC_inw_nodebug(hc, reg, __func__, __LINE__))
252 #define HFC_wait(hc) \
253         (hc->HFC_wait(hc, __func__, __LINE__))
254 #define HFC_wait_nodebug(hc) \
255         (hc->HFC_wait_nodebug(hc, __func__, __LINE__))
256 #else
257 #define HFC_outb(hc, reg, val)          (hc->HFC_outb(hc, reg, val))
258 #define HFC_outb_nodebug(hc, reg, val)  (hc->HFC_outb_nodebug(hc, reg, val))
259 #define HFC_inb(hc, reg)                (hc->HFC_inb(hc, reg))
260 #define HFC_inb_nodebug(hc, reg)        (hc->HFC_inb_nodebug(hc, reg))
261 #define HFC_inw(hc, reg)                (hc->HFC_inw(hc, reg))
262 #define HFC_inw_nodebug(hc, reg)        (hc->HFC_inw_nodebug(hc, reg))
263 #define HFC_wait(hc)                    (hc->HFC_wait(hc))
264 #define HFC_wait_nodebug(hc)            (hc->HFC_wait_nodebug(hc))
265 #endif
266
267 #ifdef CONFIG_MISDN_HFCMULTI_8xx
268 #include "hfc_multi_8xx.h"
269 #endif
270
271 /* HFC_IO_MODE_PCIMEM */
272 static void
273 #ifdef HFC_REGISTER_DEBUG
274 HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val,
275                 const char *function, int line)
276 #else
277 HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val)
278 #endif
279 {
280         writeb(val, hc->pci_membase + reg);
281 }
282 static u_char
283 #ifdef HFC_REGISTER_DEBUG
284 HFC_inb_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line)
285 #else
286 HFC_inb_pcimem(struct hfc_multi *hc, u_char reg)
287 #endif
288 {
289         return readb(hc->pci_membase + reg);
290 }
291 static u_short
292 #ifdef HFC_REGISTER_DEBUG
293 HFC_inw_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line)
294 #else
295 HFC_inw_pcimem(struct hfc_multi *hc, u_char reg)
296 #endif
297 {
298         return readw(hc->pci_membase + reg);
299 }
300 static void
301 #ifdef HFC_REGISTER_DEBUG
302 HFC_wait_pcimem(struct hfc_multi *hc, const char *function, int line)
303 #else
304 HFC_wait_pcimem(struct hfc_multi *hc)
305 #endif
306 {
307         while (readb(hc->pci_membase + R_STATUS) & V_BUSY)
308                 cpu_relax();
309 }
310
311 /* HFC_IO_MODE_REGIO */
312 static void
313 #ifdef HFC_REGISTER_DEBUG
314 HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val,
315         const char *function, int line)
316 #else
317 HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val)
318 #endif
319 {
320         outb(reg, hc->pci_iobase + 4);
321         outb(val, hc->pci_iobase);
322 }
323 static u_char
324 #ifdef HFC_REGISTER_DEBUG
325 HFC_inb_regio(struct hfc_multi *hc, u_char reg, const char *function, int line)
326 #else
327 HFC_inb_regio(struct hfc_multi *hc, u_char reg)
328 #endif
329 {
330         outb(reg, hc->pci_iobase + 4);
331         return inb(hc->pci_iobase);
332 }
333 static u_short
334 #ifdef HFC_REGISTER_DEBUG
335 HFC_inw_regio(struct hfc_multi *hc, u_char reg, const char *function, int line)
336 #else
337 HFC_inw_regio(struct hfc_multi *hc, u_char reg)
338 #endif
339 {
340         outb(reg, hc->pci_iobase + 4);
341         return inw(hc->pci_iobase);
342 }
343 static void
344 #ifdef HFC_REGISTER_DEBUG
345 HFC_wait_regio(struct hfc_multi *hc, const char *function, int line)
346 #else
347 HFC_wait_regio(struct hfc_multi *hc)
348 #endif
349 {
350         outb(R_STATUS, hc->pci_iobase + 4);
351         while (inb(hc->pci_iobase) & V_BUSY)
352                 cpu_relax();
353 }
354
355 #ifdef HFC_REGISTER_DEBUG
356 static void
357 HFC_outb_debug(struct hfc_multi *hc, u_char reg, u_char val,
358                 const char *function, int line)
359 {
360         char regname[256] = "", bits[9] = "xxxxxxxx";
361         int i;
362
363         i = -1;
364         while (hfc_register_names[++i].name) {
365                 if (hfc_register_names[i].reg == reg)
366                         strcat(regname, hfc_register_names[i].name);
367         }
368         if (regname[0] == '\0')
369                 strcpy(regname, "register");
370
371         bits[7] = '0' + (!!(val & 1));
372         bits[6] = '0' + (!!(val & 2));
373         bits[5] = '0' + (!!(val & 4));
374         bits[4] = '0' + (!!(val & 8));
375         bits[3] = '0' + (!!(val & 16));
376         bits[2] = '0' + (!!(val & 32));
377         bits[1] = '0' + (!!(val & 64));
378         bits[0] = '0' + (!!(val & 128));
379         printk(KERN_DEBUG
380             "HFC_outb(chip %d, %02x=%s, 0x%02x=%s); in %s() line %d\n",
381             hc->id, reg, regname, val, bits, function, line);
382         HFC_outb_nodebug(hc, reg, val);
383 }
384 static u_char
385 HFC_inb_debug(struct hfc_multi *hc, u_char reg, const char *function, int line)
386 {
387         char regname[256] = "", bits[9] = "xxxxxxxx";
388         u_char val = HFC_inb_nodebug(hc, reg);
389         int i;
390
391         i = 0;
392         while (hfc_register_names[i++].name)
393                 ;
394         while (hfc_register_names[++i].name) {
395                 if (hfc_register_names[i].reg == reg)
396                         strcat(regname, hfc_register_names[i].name);
397         }
398         if (regname[0] == '\0')
399                 strcpy(regname, "register");
400
401         bits[7] = '0' + (!!(val & 1));
402         bits[6] = '0' + (!!(val & 2));
403         bits[5] = '0' + (!!(val & 4));
404         bits[4] = '0' + (!!(val & 8));
405         bits[3] = '0' + (!!(val & 16));
406         bits[2] = '0' + (!!(val & 32));
407         bits[1] = '0' + (!!(val & 64));
408         bits[0] = '0' + (!!(val & 128));
409         printk(KERN_DEBUG
410             "HFC_inb(chip %d, %02x=%s) = 0x%02x=%s; in %s() line %d\n",
411             hc->id, reg, regname, val, bits, function, line);
412         return val;
413 }
414 static u_short
415 HFC_inw_debug(struct hfc_multi *hc, u_char reg, const char *function, int line)
416 {
417         char regname[256] = "";
418         u_short val = HFC_inw_nodebug(hc, reg);
419         int i;
420
421         i = 0;
422         while (hfc_register_names[i++].name)
423                 ;
424         while (hfc_register_names[++i].name) {
425                 if (hfc_register_names[i].reg == reg)
426                         strcat(regname, hfc_register_names[i].name);
427         }
428         if (regname[0] == '\0')
429                 strcpy(regname, "register");
430
431         printk(KERN_DEBUG
432             "HFC_inw(chip %d, %02x=%s) = 0x%04x; in %s() line %d\n",
433             hc->id, reg, regname, val, function, line);
434         return val;
435 }
436 static void
437 HFC_wait_debug(struct hfc_multi *hc, const char *function, int line)
438 {
439         printk(KERN_DEBUG "HFC_wait(chip %d); in %s() line %d\n",
440             hc->id, function, line);
441         HFC_wait_nodebug(hc);
442 }
443 #endif
444
445 /* write fifo data (REGIO) */
446 static void
447 write_fifo_regio(struct hfc_multi *hc, u_char *data, int len)
448 {
449         outb(A_FIFO_DATA0, (hc->pci_iobase)+4);
450         while (len>>2) {
451                 outl(cpu_to_le32(*(u32 *)data), hc->pci_iobase);
452                 data += 4;
453                 len -= 4;
454         }
455         while (len>>1) {
456                 outw(cpu_to_le16(*(u16 *)data), hc->pci_iobase);
457                 data += 2;
458                 len -= 2;
459         }
460         while (len) {
461                 outb(*data, hc->pci_iobase);
462                 data++;
463                 len--;
464         }
465 }
466 /* write fifo data (PCIMEM) */
467 static void
468 write_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len)
469 {
470         while (len>>2) {
471                 writel(cpu_to_le32(*(u32 *)data),
472                         hc->pci_membase + A_FIFO_DATA0);
473                 data += 4;
474                 len -= 4;
475         }
476         while (len>>1) {
477                 writew(cpu_to_le16(*(u16 *)data),
478                         hc->pci_membase + A_FIFO_DATA0);
479                 data += 2;
480                 len -= 2;
481         }
482         while (len) {
483                 writeb(*data, hc->pci_membase + A_FIFO_DATA0);
484                 data++;
485                 len--;
486         }
487 }
488
489 /* read fifo data (REGIO) */
490 static void
491 read_fifo_regio(struct hfc_multi *hc, u_char *data, int len)
492 {
493         outb(A_FIFO_DATA0, (hc->pci_iobase)+4);
494         while (len>>2) {
495                 *(u32 *)data = le32_to_cpu(inl(hc->pci_iobase));
496                 data += 4;
497                 len -= 4;
498         }
499         while (len>>1) {
500                 *(u16 *)data = le16_to_cpu(inw(hc->pci_iobase));
501                 data += 2;
502                 len -= 2;
503         }
504         while (len) {
505                 *data = inb(hc->pci_iobase);
506                 data++;
507                 len--;
508         }
509 }
510
511 /* read fifo data (PCIMEM) */
512 static void
513 read_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len)
514 {
515         while (len>>2) {
516                 *(u32 *)data =
517                         le32_to_cpu(readl(hc->pci_membase + A_FIFO_DATA0));
518                 data += 4;
519                 len -= 4;
520         }
521         while (len>>1) {
522                 *(u16 *)data =
523                         le16_to_cpu(readw(hc->pci_membase + A_FIFO_DATA0));
524                 data += 2;
525                 len -= 2;
526         }
527         while (len) {
528                 *data = readb(hc->pci_membase + A_FIFO_DATA0);
529                 data++;
530                 len--;
531         }
532 }
533
534 static void
535 enable_hwirq(struct hfc_multi *hc)
536 {
537         hc->hw.r_irq_ctrl |= V_GLOB_IRQ_EN;
538         HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl);
539 }
540
541 static void
542 disable_hwirq(struct hfc_multi *hc)
543 {
544         hc->hw.r_irq_ctrl &= ~((u_char)V_GLOB_IRQ_EN);
545         HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl);
546 }
547
548 #define NUM_EC 2
549 #define MAX_TDM_CHAN 32
550
551
552 inline void
553 enablepcibridge(struct hfc_multi *c)
554 {
555         HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); /* was _io before */
556 }
557
558 inline void
559 disablepcibridge(struct hfc_multi *c)
560 {
561         HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x2); /* was _io before */
562 }
563
564 inline unsigned char
565 readpcibridge(struct hfc_multi *hc, unsigned char address)
566 {
567         unsigned short cipv;
568         unsigned char data;
569
570         if (!hc->pci_iobase)
571                 return 0;
572
573         /* slow down a PCI read access by 1 PCI clock cycle */
574         HFC_outb(hc, R_CTRL, 0x4); /*was _io before*/
575
576         if (address == 0)
577                 cipv = 0x4000;
578         else
579                 cipv = 0x5800;
580
581         /* select local bridge port address by writing to CIP port */
582         /* data = HFC_inb(c, cipv); * was _io before */
583         outw(cipv, hc->pci_iobase + 4);
584         data = inb(hc->pci_iobase);
585
586         /* restore R_CTRL for normal PCI read cycle speed */
587         HFC_outb(hc, R_CTRL, 0x0); /* was _io before */
588
589         return data;
590 }
591
592 inline void
593 writepcibridge(struct hfc_multi *hc, unsigned char address, unsigned char data)
594 {
595         unsigned short cipv;
596         unsigned int datav;
597
598         if (!hc->pci_iobase)
599                 return;
600
601         if (address == 0)
602                 cipv = 0x4000;
603         else
604                 cipv = 0x5800;
605
606         /* select local bridge port address by writing to CIP port */
607         outw(cipv, hc->pci_iobase + 4);
608         /* define a 32 bit dword with 4 identical bytes for write sequence */
609         datav = data | ((__u32) data << 8) | ((__u32) data << 16) |
610             ((__u32) data << 24);
611
612         /*
613          * write this 32 bit dword to the bridge data port
614          * this will initiate a write sequence of up to 4 writes to the same
615          * address on the local bus interface the number of write accesses
616          * is undefined but >=1 and depends on the next PCI transaction
617          * during write sequence on the local bus
618          */
619         outl(datav, hc->pci_iobase);
620 }
621
622 inline void
623 cpld_set_reg(struct hfc_multi *hc, unsigned char reg)
624 {
625         /* Do data pin read low byte */
626         HFC_outb(hc, R_GPIO_OUT1, reg);
627 }
628
629 inline void
630 cpld_write_reg(struct hfc_multi *hc, unsigned char reg, unsigned char val)
631 {
632         cpld_set_reg(hc, reg);
633
634         enablepcibridge(hc);
635         writepcibridge(hc, 1, val);
636         disablepcibridge(hc);
637
638         return;
639 }
640
641 inline unsigned char
642 cpld_read_reg(struct hfc_multi *hc, unsigned char reg)
643 {
644         unsigned char bytein;
645
646         cpld_set_reg(hc, reg);
647
648         /* Do data pin read low byte */
649         HFC_outb(hc, R_GPIO_OUT1, reg);
650
651         enablepcibridge(hc);
652         bytein = readpcibridge(hc, 1);
653         disablepcibridge(hc);
654
655         return bytein;
656 }
657
658 inline void
659 vpm_write_address(struct hfc_multi *hc, unsigned short addr)
660 {
661         cpld_write_reg(hc, 0, 0xff & addr);
662         cpld_write_reg(hc, 1, 0x01 & (addr >> 8));
663 }
664
665 inline unsigned short
666 vpm_read_address(struct hfc_multi *c)
667 {
668         unsigned short addr;
669         unsigned short highbit;
670
671         addr = cpld_read_reg(c, 0);
672         highbit = cpld_read_reg(c, 1);
673
674         addr = addr | (highbit << 8);
675
676         return addr & 0x1ff;
677 }
678
679 inline unsigned char
680 vpm_in(struct hfc_multi *c, int which, unsigned short addr)
681 {
682         unsigned char res;
683
684         vpm_write_address(c, addr);
685
686         if (!which)
687                 cpld_set_reg(c, 2);
688         else
689                 cpld_set_reg(c, 3);
690
691         enablepcibridge(c);
692         res = readpcibridge(c, 1);
693         disablepcibridge(c);
694
695         cpld_set_reg(c, 0);
696
697         return res;
698 }
699
700 inline void
701 vpm_out(struct hfc_multi *c, int which, unsigned short addr,
702     unsigned char data)
703 {
704         vpm_write_address(c, addr);
705
706         enablepcibridge(c);
707
708         if (!which)
709                 cpld_set_reg(c, 2);
710         else
711                 cpld_set_reg(c, 3);
712
713         writepcibridge(c, 1, data);
714
715         cpld_set_reg(c, 0);
716
717         disablepcibridge(c);
718
719         {
720         unsigned char regin;
721         regin = vpm_in(c, which, addr);
722         if (regin != data)
723                 printk(KERN_DEBUG "Wrote 0x%x to register 0x%x but got back "
724                         "0x%x\n", data, addr, regin);
725         }
726
727 }
728
729
730 static void
731 vpm_init(struct hfc_multi *wc)
732 {
733         unsigned char reg;
734         unsigned int mask;
735         unsigned int i, x, y;
736         unsigned int ver;
737
738         for (x = 0; x < NUM_EC; x++) {
739                 /* Setup GPIO's */
740                 if (!x) {
741                         ver = vpm_in(wc, x, 0x1a0);
742                         printk(KERN_DEBUG "VPM: Chip %d: ver %02x\n", x, ver);
743                 }
744
745                 for (y = 0; y < 4; y++) {
746                         vpm_out(wc, x, 0x1a8 + y, 0x00); /* GPIO out */
747                         vpm_out(wc, x, 0x1ac + y, 0x00); /* GPIO dir */
748                         vpm_out(wc, x, 0x1b0 + y, 0x00); /* GPIO sel */
749                 }
750
751                 /* Setup TDM path - sets fsync and tdm_clk as inputs */
752                 reg = vpm_in(wc, x, 0x1a3); /* misc_con */
753                 vpm_out(wc, x, 0x1a3, reg & ~2);
754
755                 /* Setup Echo length (256 taps) */
756                 vpm_out(wc, x, 0x022, 1);
757                 vpm_out(wc, x, 0x023, 0xff);
758
759                 /* Setup timeslots */
760                 vpm_out(wc, x, 0x02f, 0x00);
761                 mask = 0x02020202 << (x * 4);
762
763                 /* Setup the tdm channel masks for all chips */
764                 for (i = 0; i < 4; i++)
765                         vpm_out(wc, x, 0x33 - i, (mask >> (i << 3)) & 0xff);
766
767                 /* Setup convergence rate */
768                 printk(KERN_DEBUG "VPM: A-law mode\n");
769                 reg = 0x00 | 0x10 | 0x01;
770                 vpm_out(wc, x, 0x20, reg);
771                 printk(KERN_DEBUG "VPM reg 0x20 is %x\n", reg);
772                 /*vpm_out(wc, x, 0x20, (0x00 | 0x08 | 0x20 | 0x10)); */
773
774                 vpm_out(wc, x, 0x24, 0x02);
775                 reg = vpm_in(wc, x, 0x24);
776                 printk(KERN_DEBUG "NLP Thresh is set to %d (0x%x)\n", reg, reg);
777
778                 /* Initialize echo cans */
779                 for (i = 0; i < MAX_TDM_CHAN; i++) {
780                         if (mask & (0x00000001 << i))
781                                 vpm_out(wc, x, i, 0x00);
782                 }
783
784                 /*
785                  * ARM arch at least disallows a udelay of
786                  * more than 2ms... it gives a fake "__bad_udelay"
787                  * reference at link-time.
788                  * long delays in kernel code are pretty sucky anyway
789                  * for now work around it using 5 x 2ms instead of 1 x 10ms
790                  */
791
792                 udelay(2000);
793                 udelay(2000);
794                 udelay(2000);
795                 udelay(2000);
796                 udelay(2000);
797
798                 /* Put in bypass mode */
799                 for (i = 0; i < MAX_TDM_CHAN; i++) {
800                         if (mask & (0x00000001 << i))
801                                 vpm_out(wc, x, i, 0x01);
802                 }
803
804                 /* Enable bypass */
805                 for (i = 0; i < MAX_TDM_CHAN; i++) {
806                         if (mask & (0x00000001 << i))
807                                 vpm_out(wc, x, 0x78 + i, 0x01);
808                 }
809
810         }
811 }
812
813 #ifdef UNUSED
814 static void
815 vpm_check(struct hfc_multi *hctmp)
816 {
817         unsigned char gpi2;
818
819         gpi2 = HFC_inb(hctmp, R_GPI_IN2);
820
821         if ((gpi2 & 0x3) != 0x3)
822                 printk(KERN_DEBUG "Got interrupt 0x%x from VPM!\n", gpi2);
823 }
824 #endif /* UNUSED */
825
826
827 /*
828  * Interface to enable/disable the HW Echocan
829  *
830  * these functions are called within a spin_lock_irqsave on
831  * the channel instance lock, so we are not disturbed by irqs
832  *
833  * we can later easily change the interface to make  other
834  * things configurable, for now we configure the taps
835  *
836  */
837
838 static void
839 vpm_echocan_on(struct hfc_multi *hc, int ch, int taps)
840 {
841         unsigned int timeslot;
842         unsigned int unit;
843         struct bchannel *bch = hc->chan[ch].bch;
844 #ifdef TXADJ
845         int txadj = -4;
846         struct sk_buff *skb;
847 #endif
848         if (hc->chan[ch].protocol != ISDN_P_B_RAW)
849                 return;
850
851         if (!bch)
852                 return;
853
854 #ifdef TXADJ
855         skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX,
856                 sizeof(int), &txadj, GFP_ATOMIC);
857         if (skb)
858                 recv_Bchannel_skb(bch, skb);
859 #endif
860
861         timeslot = ((ch/4)*8) + ((ch%4)*4) + 1;
862         unit = ch % 4;
863
864         printk(KERN_NOTICE "vpm_echocan_on called taps [%d] on timeslot %d\n",
865             taps, timeslot);
866
867         vpm_out(hc, unit, timeslot, 0x7e);
868 }
869
870 static void
871 vpm_echocan_off(struct hfc_multi *hc, int ch)
872 {
873         unsigned int timeslot;
874         unsigned int unit;
875         struct bchannel *bch = hc->chan[ch].bch;
876 #ifdef TXADJ
877         int txadj = 0;
878         struct sk_buff *skb;
879 #endif
880
881         if (hc->chan[ch].protocol != ISDN_P_B_RAW)
882                 return;
883
884         if (!bch)
885                 return;
886
887 #ifdef TXADJ
888         skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX,
889                 sizeof(int), &txadj, GFP_ATOMIC);
890         if (skb)
891                 recv_Bchannel_skb(bch, skb);
892 #endif
893
894         timeslot = ((ch/4)*8) + ((ch%4)*4) + 1;
895         unit = ch % 4;
896
897         printk(KERN_NOTICE "vpm_echocan_off called on timeslot %d\n",
898             timeslot);
899         /* FILLME */
900         vpm_out(hc, unit, timeslot, 0x01);
901 }
902
903
904 /*
905  * Speech Design resync feature
906  * NOTE: This is called sometimes outside interrupt handler.
907  * We must lock irqsave, so no other interrupt (other card) will occur!
908  * Also multiple interrupts may nest, so must lock each access (lists, card)!
909  */
910 static inline void
911 hfcmulti_resync(struct hfc_multi *locked, struct hfc_multi *newmaster, int rm)
912 {
913         struct hfc_multi *hc, *next, *pcmmaster = NULL;
914         void __iomem *plx_acc_32;
915         u_int pv;
916         u_long flags;
917
918         spin_lock_irqsave(&HFClock, flags);
919         spin_lock(&plx_lock); /* must be locked inside other locks */
920
921         if (debug & DEBUG_HFCMULTI_PLXSD)
922                 printk(KERN_DEBUG "%s: RESYNC(syncmaster=0x%p)\n",
923                         __func__, syncmaster);
924
925         /* select new master */
926         if (newmaster) {
927                 if (debug & DEBUG_HFCMULTI_PLXSD)
928                         printk(KERN_DEBUG "using provided controller\n");
929         } else {
930                 list_for_each_entry_safe(hc, next, &HFClist, list) {
931                         if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
932                                 if (hc->syncronized) {
933                                         newmaster = hc;
934                                         break;
935                                 }
936                         }
937                 }
938         }
939
940         /* Disable sync of all cards */
941         list_for_each_entry_safe(hc, next, &HFClist, list) {
942                 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
943                         plx_acc_32 = hc->plx_membase + PLX_GPIOC;
944                         pv = readl(plx_acc_32);
945                         pv &= ~PLX_SYNC_O_EN;
946                         writel(pv, plx_acc_32);
947                         if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) {
948                                 pcmmaster = hc;
949                                 if (hc->ctype == HFC_TYPE_E1) {
950                                         if (debug & DEBUG_HFCMULTI_PLXSD)
951                                                 printk(KERN_DEBUG
952                                                         "Schedule SYNC_I\n");
953                                         hc->e1_resync |= 1; /* get SYNC_I */
954                                 }
955                         }
956                 }
957         }
958
959         if (newmaster) {
960                 hc = newmaster;
961                 if (debug & DEBUG_HFCMULTI_PLXSD)
962                         printk(KERN_DEBUG "id=%d (0x%p) = syncronized with "
963                                 "interface.\n", hc->id, hc);
964                 /* Enable new sync master */
965                 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
966                 pv = readl(plx_acc_32);
967                 pv |= PLX_SYNC_O_EN;
968                 writel(pv, plx_acc_32);
969                 /* switch to jatt PLL, if not disabled by RX_SYNC */
970                 if (hc->ctype == HFC_TYPE_E1
971                                 && !test_bit(HFC_CHIP_RX_SYNC, &hc->chip)) {
972                         if (debug & DEBUG_HFCMULTI_PLXSD)
973                                 printk(KERN_DEBUG "Schedule jatt PLL\n");
974                         hc->e1_resync |= 2; /* switch to jatt */
975                 }
976         } else {
977                 if (pcmmaster) {
978                         hc = pcmmaster;
979                         if (debug & DEBUG_HFCMULTI_PLXSD)
980                                 printk(KERN_DEBUG
981                                         "id=%d (0x%p) = PCM master syncronized "
982                                         "with QUARTZ\n", hc->id, hc);
983                         if (hc->ctype == HFC_TYPE_E1) {
984                                 /* Use the crystal clock for the PCM
985                                    master card */
986                                 if (debug & DEBUG_HFCMULTI_PLXSD)
987                                         printk(KERN_DEBUG
988                                             "Schedule QUARTZ for HFC-E1\n");
989                                 hc->e1_resync |= 4; /* switch quartz */
990                         } else {
991                                 if (debug & DEBUG_HFCMULTI_PLXSD)
992                                         printk(KERN_DEBUG
993                                             "QUARTZ is automatically "
994                                             "enabled by HFC-%dS\n", hc->ctype);
995                         }
996                         plx_acc_32 = hc->plx_membase + PLX_GPIOC;
997                         pv = readl(plx_acc_32);
998                         pv |= PLX_SYNC_O_EN;
999                         writel(pv, plx_acc_32);
1000                 } else
1001                         if (!rm)
1002                                 printk(KERN_ERR "%s no pcm master, this MUST "
1003                                         "not happen!\n", __func__);
1004         }
1005         syncmaster = newmaster;
1006
1007         spin_unlock(&plx_lock);
1008         spin_unlock_irqrestore(&HFClock, flags);
1009 }
1010
1011 /* This must be called AND hc must be locked irqsave!!! */
1012 inline void
1013 plxsd_checksync(struct hfc_multi *hc, int rm)
1014 {
1015         if (hc->syncronized) {
1016                 if (syncmaster == NULL) {
1017                         if (debug & DEBUG_HFCMULTI_PLXSD)
1018                                 printk(KERN_DEBUG "%s: GOT sync on card %d"
1019                                         " (id=%d)\n", __func__, hc->id + 1,
1020                                         hc->id);
1021                         hfcmulti_resync(hc, hc, rm);
1022                 }
1023         } else {
1024                 if (syncmaster == hc) {
1025                         if (debug & DEBUG_HFCMULTI_PLXSD)
1026                                 printk(KERN_DEBUG "%s: LOST sync on card %d"
1027                                         " (id=%d)\n", __func__, hc->id + 1,
1028                                         hc->id);
1029                         hfcmulti_resync(hc, NULL, rm);
1030                 }
1031         }
1032 }
1033
1034
1035 /*
1036  * free hardware resources used by driver
1037  */
1038 static void
1039 release_io_hfcmulti(struct hfc_multi *hc)
1040 {
1041         void __iomem *plx_acc_32;
1042         u_int   pv;
1043         u_long  plx_flags;
1044
1045         if (debug & DEBUG_HFCMULTI_INIT)
1046                 printk(KERN_DEBUG "%s: entered\n", __func__);
1047
1048         /* soft reset also masks all interrupts */
1049         hc->hw.r_cirm |= V_SRES;
1050         HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1051         udelay(1000);
1052         hc->hw.r_cirm &= ~V_SRES;
1053         HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1054         udelay(1000); /* instead of 'wait' that may cause locking */
1055
1056         /* release Speech Design card, if PLX was initialized */
1057         if (test_bit(HFC_CHIP_PLXSD, &hc->chip) && hc->plx_membase) {
1058                 if (debug & DEBUG_HFCMULTI_PLXSD)
1059                         printk(KERN_DEBUG "%s: release PLXSD card %d\n",
1060                             __func__, hc->id + 1);
1061                 spin_lock_irqsave(&plx_lock, plx_flags);
1062                 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1063                 writel(PLX_GPIOC_INIT, plx_acc_32);
1064                 pv = readl(plx_acc_32);
1065                 /* Termination off */
1066                 pv &= ~PLX_TERM_ON;
1067                 /* Disconnect the PCM */
1068                 pv |= PLX_SLAVE_EN_N;
1069                 pv &= ~PLX_MASTER_EN;
1070                 pv &= ~PLX_SYNC_O_EN;
1071                 /* Put the DSP in Reset */
1072                 pv &= ~PLX_DSP_RES_N;
1073                 writel(pv, plx_acc_32);
1074                 if (debug & DEBUG_HFCMULTI_INIT)
1075                         printk(KERN_DEBUG "%s: PCM off: PLX_GPIO=%x\n",
1076                                 __func__, pv);
1077                 spin_unlock_irqrestore(&plx_lock, plx_flags);
1078         }
1079
1080         /* disable memory mapped ports / io ports */
1081         test_and_clear_bit(HFC_CHIP_PLXSD, &hc->chip); /* prevent resync */
1082         if (hc->pci_dev)
1083                 pci_write_config_word(hc->pci_dev, PCI_COMMAND, 0);
1084         if (hc->pci_membase)
1085                 iounmap(hc->pci_membase);
1086         if (hc->plx_membase)
1087                 iounmap(hc->plx_membase);
1088         if (hc->pci_iobase)
1089                 release_region(hc->pci_iobase, 8);
1090         if (hc->xhfc_membase)
1091                 iounmap((void *)hc->xhfc_membase);
1092
1093         if (hc->pci_dev) {
1094                 pci_disable_device(hc->pci_dev);
1095                 pci_set_drvdata(hc->pci_dev, NULL);
1096         }
1097         if (debug & DEBUG_HFCMULTI_INIT)
1098                 printk(KERN_DEBUG "%s: done\n", __func__);
1099 }
1100
1101 /*
1102  * function called to reset the HFC chip. A complete software reset of chip
1103  * and fifos is done. All configuration of the chip is done.
1104  */
1105
1106 static int
1107 init_chip(struct hfc_multi *hc)
1108 {
1109         u_long                  flags, val, val2 = 0, rev;
1110         int                     i, err = 0;
1111         u_char                  r_conf_en, rval;
1112         void __iomem            *plx_acc_32;
1113         u_int                   pv;
1114         u_long                  plx_flags, hfc_flags;
1115         int                     plx_count;
1116         struct hfc_multi        *pos, *next, *plx_last_hc;
1117
1118         spin_lock_irqsave(&hc->lock, flags);
1119         /* reset all registers */
1120         memset(&hc->hw, 0, sizeof(struct hfcm_hw));
1121
1122         /* revision check */
1123         if (debug & DEBUG_HFCMULTI_INIT)
1124                 printk(KERN_DEBUG "%s: entered\n", __func__);
1125         val = HFC_inb(hc, R_CHIP_ID);
1126         if ((val >> 4) != 0x8 && (val >> 4) != 0xc && (val >> 4) != 0xe &&
1127             (val >> 1) != 0x31) {
1128                 printk(KERN_INFO "HFC_multi: unknown CHIP_ID:%x\n", (u_int)val);
1129                 err = -EIO;
1130                 goto out;
1131         }
1132         rev = HFC_inb(hc, R_CHIP_RV);
1133         printk(KERN_INFO
1134             "HFC_multi: detected HFC with chip ID=0x%lx revision=%ld%s\n",
1135             val, rev, (rev == 0 && (hc->ctype != HFC_TYPE_XHFC)) ?
1136                 " (old FIFO handling)" : "");
1137         if (hc->ctype != HFC_TYPE_XHFC && rev == 0) {
1138                 test_and_set_bit(HFC_CHIP_REVISION0, &hc->chip);
1139                 printk(KERN_WARNING
1140                     "HFC_multi: NOTE: Your chip is revision 0, "
1141                     "ask Cologne Chip for update. Newer chips "
1142                     "have a better FIFO handling. Old chips "
1143                     "still work but may have slightly lower "
1144                     "HDLC transmit performance.\n");
1145         }
1146         if (rev > 1) {
1147                 printk(KERN_WARNING "HFC_multi: WARNING: This driver doesn't "
1148                     "consider chip revision = %ld. The chip / "
1149                     "bridge may not work.\n", rev);
1150         }
1151
1152         /* set s-ram size */
1153         hc->Flen = 0x10;
1154         hc->Zmin = 0x80;
1155         hc->Zlen = 384;
1156         hc->DTMFbase = 0x1000;
1157         if (test_bit(HFC_CHIP_EXRAM_128, &hc->chip)) {
1158                 if (debug & DEBUG_HFCMULTI_INIT)
1159                         printk(KERN_DEBUG "%s: changing to 128K extenal RAM\n",
1160                             __func__);
1161                 hc->hw.r_ctrl |= V_EXT_RAM;
1162                 hc->hw.r_ram_sz = 1;
1163                 hc->Flen = 0x20;
1164                 hc->Zmin = 0xc0;
1165                 hc->Zlen = 1856;
1166                 hc->DTMFbase = 0x2000;
1167         }
1168         if (test_bit(HFC_CHIP_EXRAM_512, &hc->chip)) {
1169                 if (debug & DEBUG_HFCMULTI_INIT)
1170                         printk(KERN_DEBUG "%s: changing to 512K extenal RAM\n",
1171                             __func__);
1172                 hc->hw.r_ctrl |= V_EXT_RAM;
1173                 hc->hw.r_ram_sz = 2;
1174                 hc->Flen = 0x20;
1175                 hc->Zmin = 0xc0;
1176                 hc->Zlen = 8000;
1177                 hc->DTMFbase = 0x2000;
1178         }
1179         if (hc->ctype == HFC_TYPE_XHFC) {
1180                 hc->Flen = 0x8;
1181                 hc->Zmin = 0x0;
1182                 hc->Zlen = 64;
1183                 hc->DTMFbase = 0x0;
1184         }
1185         hc->max_trans = poll << 1;
1186         if (hc->max_trans > hc->Zlen)
1187                 hc->max_trans = hc->Zlen;
1188
1189         /* Speech Design PLX bridge */
1190         if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1191                 if (debug & DEBUG_HFCMULTI_PLXSD)
1192                         printk(KERN_DEBUG "%s: initializing PLXSD card %d\n",
1193                             __func__, hc->id + 1);
1194                 spin_lock_irqsave(&plx_lock, plx_flags);
1195                 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1196                 writel(PLX_GPIOC_INIT, plx_acc_32);
1197                 pv = readl(plx_acc_32);
1198                 /* The first and the last cards are terminating the PCM bus */
1199                 pv |= PLX_TERM_ON; /* hc is currently the last */
1200                 /* Disconnect the PCM */
1201                 pv |= PLX_SLAVE_EN_N;
1202                 pv &= ~PLX_MASTER_EN;
1203                 pv &= ~PLX_SYNC_O_EN;
1204                 /* Put the DSP in Reset */
1205                 pv &= ~PLX_DSP_RES_N;
1206                 writel(pv, plx_acc_32);
1207                 spin_unlock_irqrestore(&plx_lock, plx_flags);
1208                 if (debug & DEBUG_HFCMULTI_INIT)
1209                         printk(KERN_DEBUG "%s: slave/term: PLX_GPIO=%x\n",
1210                                 __func__, pv);
1211                 /*
1212                  * If we are the 3rd PLXSD card or higher, we must turn
1213                  * termination of last PLXSD card off.
1214                  */
1215                 spin_lock_irqsave(&HFClock, hfc_flags);
1216                 plx_count = 0;
1217                 plx_last_hc = NULL;
1218                 list_for_each_entry_safe(pos, next, &HFClist, list) {
1219                         if (test_bit(HFC_CHIP_PLXSD, &pos->chip)) {
1220                                 plx_count++;
1221                                 if (pos != hc)
1222                                         plx_last_hc = pos;
1223                         }
1224                 }
1225                 if (plx_count >= 3) {
1226                         if (debug & DEBUG_HFCMULTI_PLXSD)
1227                                 printk(KERN_DEBUG "%s: card %d is between, so "
1228                                         "we disable termination\n",
1229                                     __func__, plx_last_hc->id + 1);
1230                         spin_lock_irqsave(&plx_lock, plx_flags);
1231                         plx_acc_32 = plx_last_hc->plx_membase + PLX_GPIOC;
1232                         pv = readl(plx_acc_32);
1233                         pv &= ~PLX_TERM_ON;
1234                         writel(pv, plx_acc_32);
1235                         spin_unlock_irqrestore(&plx_lock, plx_flags);
1236                         if (debug & DEBUG_HFCMULTI_INIT)
1237                                 printk(KERN_DEBUG
1238                                     "%s: term off: PLX_GPIO=%x\n",
1239                                     __func__, pv);
1240                 }
1241                 spin_unlock_irqrestore(&HFClock, hfc_flags);
1242                 hc->hw.r_pcm_md0 = V_F0_LEN; /* shift clock for DSP */
1243         }
1244
1245         if (test_bit(HFC_CHIP_EMBSD, &hc->chip))
1246                 hc->hw.r_pcm_md0 = V_F0_LEN; /* shift clock for DSP */
1247
1248         /* we only want the real Z2 read-pointer for revision > 0 */
1249         if (!test_bit(HFC_CHIP_REVISION0, &hc->chip))
1250                 hc->hw.r_ram_sz |= V_FZ_MD;
1251
1252         /* select pcm mode */
1253         if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
1254                 if (debug & DEBUG_HFCMULTI_INIT)
1255                         printk(KERN_DEBUG "%s: setting PCM into slave mode\n",
1256                             __func__);
1257         } else
1258         if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip) && !plxsd_master) {
1259                 if (debug & DEBUG_HFCMULTI_INIT)
1260                         printk(KERN_DEBUG "%s: setting PCM into master mode\n",
1261                             __func__);
1262                 hc->hw.r_pcm_md0 |= V_PCM_MD;
1263         } else {
1264                 if (debug & DEBUG_HFCMULTI_INIT)
1265                         printk(KERN_DEBUG "%s: performing PCM auto detect\n",
1266                             __func__);
1267         }
1268
1269         /* soft reset */
1270         HFC_outb(hc, R_CTRL, hc->hw.r_ctrl);
1271         if (hc->ctype == HFC_TYPE_XHFC)
1272                 HFC_outb(hc, 0x0C /* R_FIFO_THRES */,
1273                                 0x11 /* 16 Bytes TX/RX */);
1274         else
1275                 HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz);
1276         HFC_outb(hc, R_FIFO_MD, 0);
1277         if (hc->ctype == HFC_TYPE_XHFC)
1278                 hc->hw.r_cirm = V_SRES | V_HFCRES | V_PCMRES | V_STRES;
1279         else
1280                 hc->hw.r_cirm = V_SRES | V_HFCRES | V_PCMRES | V_STRES
1281                         | V_RLD_EPR;
1282         HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1283         udelay(100);
1284         hc->hw.r_cirm = 0;
1285         HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1286         udelay(100);
1287         if (hc->ctype != HFC_TYPE_XHFC)
1288                 HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz);
1289
1290         /* Speech Design PLX bridge pcm and sync mode */
1291         if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1292                 spin_lock_irqsave(&plx_lock, plx_flags);
1293                 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1294                 pv = readl(plx_acc_32);
1295                 /* Connect PCM */
1296                 if (hc->hw.r_pcm_md0 & V_PCM_MD) {
1297                         pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N;
1298                         pv |= PLX_SYNC_O_EN;
1299                         if (debug & DEBUG_HFCMULTI_INIT)
1300                                 printk(KERN_DEBUG "%s: master: PLX_GPIO=%x\n",
1301                                         __func__, pv);
1302                 } else {
1303                         pv &= ~(PLX_MASTER_EN | PLX_SLAVE_EN_N);
1304                         pv &= ~PLX_SYNC_O_EN;
1305                         if (debug & DEBUG_HFCMULTI_INIT)
1306                                 printk(KERN_DEBUG "%s: slave: PLX_GPIO=%x\n",
1307                                         __func__, pv);
1308                 }
1309                 writel(pv, plx_acc_32);
1310                 spin_unlock_irqrestore(&plx_lock, plx_flags);
1311         }
1312
1313         /* PCM setup */
1314         HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x90);
1315         if (hc->slots == 32)
1316                 HFC_outb(hc, R_PCM_MD1, 0x00);
1317         if (hc->slots == 64)
1318                 HFC_outb(hc, R_PCM_MD1, 0x10);
1319         if (hc->slots == 128)
1320                 HFC_outb(hc, R_PCM_MD1, 0x20);
1321         HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0xa0);
1322         if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
1323                 HFC_outb(hc, R_PCM_MD2, V_SYNC_SRC); /* sync via SYNC_I / O */
1324         else if (test_bit(HFC_CHIP_EMBSD, &hc->chip))
1325                 HFC_outb(hc, R_PCM_MD2, 0x10); /* V_C2O_EN */
1326         else
1327                 HFC_outb(hc, R_PCM_MD2, 0x00); /* sync from interface */
1328         HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00);
1329         for (i = 0; i < 256; i++) {
1330                 HFC_outb_nodebug(hc, R_SLOT, i);
1331                 HFC_outb_nodebug(hc, A_SL_CFG, 0);
1332                 if (hc->ctype != HFC_TYPE_XHFC)
1333                         HFC_outb_nodebug(hc, A_CONF, 0);
1334                 hc->slot_owner[i] = -1;
1335         }
1336
1337         /* set clock speed */
1338         if (test_bit(HFC_CHIP_CLOCK2, &hc->chip)) {
1339                 if (debug & DEBUG_HFCMULTI_INIT)
1340                         printk(KERN_DEBUG
1341                             "%s: setting double clock\n", __func__);
1342                 HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK);
1343         }
1344
1345         if (test_bit(HFC_CHIP_EMBSD, &hc->chip))
1346                 HFC_outb(hc, 0x02 /* R_CLK_CFG */, 0x40 /* V_CLKO_OFF */);
1347
1348         /* B410P GPIO */
1349         if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
1350                 printk(KERN_NOTICE "Setting GPIOs\n");
1351                 HFC_outb(hc, R_GPIO_SEL, 0x30);
1352                 HFC_outb(hc, R_GPIO_EN1, 0x3);
1353                 udelay(1000);
1354                 printk(KERN_NOTICE "calling vpm_init\n");
1355                 vpm_init(hc);
1356         }
1357
1358         /* check if R_F0_CNT counts (8 kHz frame count) */
1359         val = HFC_inb(hc, R_F0_CNTL);
1360         val += HFC_inb(hc, R_F0_CNTH) << 8;
1361         if (debug & DEBUG_HFCMULTI_INIT)
1362                 printk(KERN_DEBUG
1363                     "HFC_multi F0_CNT %ld after reset\n", val);
1364         spin_unlock_irqrestore(&hc->lock, flags);
1365         set_current_state(TASK_UNINTERRUPTIBLE);
1366         schedule_timeout((HZ/100)?:1); /* Timeout minimum 10ms */
1367         spin_lock_irqsave(&hc->lock, flags);
1368         val2 = HFC_inb(hc, R_F0_CNTL);
1369         val2 += HFC_inb(hc, R_F0_CNTH) << 8;
1370         if (debug & DEBUG_HFCMULTI_INIT)
1371                 printk(KERN_DEBUG
1372                         "HFC_multi F0_CNT %ld after 10 ms (1st try)\n",
1373                     val2);
1374         if (val2 >= val+8) { /* 1 ms */
1375                 /* it counts, so we keep the pcm mode */
1376                 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip))
1377                         printk(KERN_INFO "controller is PCM bus MASTER\n");
1378                 else
1379                 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip))
1380                         printk(KERN_INFO "controller is PCM bus SLAVE\n");
1381                 else {
1382                         test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
1383                         printk(KERN_INFO "controller is PCM bus SLAVE "
1384                                 "(auto detected)\n");
1385                 }
1386         } else {
1387                 /* does not count */
1388                 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) {
1389 controller_fail:
1390                         printk(KERN_ERR "HFC_multi ERROR, getting no 125us "
1391                             "pulse. Seems that controller fails.\n");
1392                         err = -EIO;
1393                         goto out;
1394                 }
1395                 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
1396                         printk(KERN_INFO "controller is PCM bus SLAVE "
1397                                 "(ignoring missing PCM clock)\n");
1398                 } else {
1399                         /* only one pcm master */
1400                         if (test_bit(HFC_CHIP_PLXSD, &hc->chip)
1401                                 && plxsd_master) {
1402                                 printk(KERN_ERR "HFC_multi ERROR, no clock "
1403                                     "on another Speech Design card found. "
1404                                     "Please be sure to connect PCM cable.\n");
1405                                 err = -EIO;
1406                                 goto out;
1407                         }
1408                         /* retry with master clock */
1409                         if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1410                                 spin_lock_irqsave(&plx_lock, plx_flags);
1411                                 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1412                                 pv = readl(plx_acc_32);
1413                                 pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N;
1414                                 pv |= PLX_SYNC_O_EN;
1415                                 writel(pv, plx_acc_32);
1416                                 spin_unlock_irqrestore(&plx_lock, plx_flags);
1417                                 if (debug & DEBUG_HFCMULTI_INIT)
1418                                         printk(KERN_DEBUG "%s: master: "
1419                                             "PLX_GPIO=%x\n", __func__, pv);
1420                         }
1421                         hc->hw.r_pcm_md0 |= V_PCM_MD;
1422                         HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00);
1423                         spin_unlock_irqrestore(&hc->lock, flags);
1424                         set_current_state(TASK_UNINTERRUPTIBLE);
1425                         schedule_timeout((HZ/100)?:1); /* Timeout min. 10ms */
1426                         spin_lock_irqsave(&hc->lock, flags);
1427                         val2 = HFC_inb(hc, R_F0_CNTL);
1428                         val2 += HFC_inb(hc, R_F0_CNTH) << 8;
1429                         if (debug & DEBUG_HFCMULTI_INIT)
1430                                 printk(KERN_DEBUG "HFC_multi F0_CNT %ld after "
1431                                         "10 ms (2nd try)\n", val2);
1432                         if (val2 >= val+8) { /* 1 ms */
1433                                 test_and_set_bit(HFC_CHIP_PCM_MASTER,
1434                                         &hc->chip);
1435                                 printk(KERN_INFO "controller is PCM bus MASTER "
1436                                         "(auto detected)\n");
1437                         } else
1438                                 goto controller_fail;
1439                 }
1440         }
1441
1442         /* Release the DSP Reset */
1443         if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1444                 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip))
1445                         plxsd_master = 1;
1446                 spin_lock_irqsave(&plx_lock, plx_flags);
1447                 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1448                 pv = readl(plx_acc_32);
1449                 pv |=  PLX_DSP_RES_N;
1450                 writel(pv, plx_acc_32);
1451                 spin_unlock_irqrestore(&plx_lock, plx_flags);
1452                 if (debug & DEBUG_HFCMULTI_INIT)
1453                         printk(KERN_DEBUG "%s: reset off: PLX_GPIO=%x\n",
1454                                 __func__, pv);
1455         }
1456
1457         /* pcm id */
1458         if (hc->pcm)
1459                 printk(KERN_INFO "controller has given PCM BUS ID %d\n",
1460                         hc->pcm);
1461         else {
1462                 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)
1463                  || test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1464                         PCM_cnt++; /* SD has proprietary bridging */
1465                 }
1466                 hc->pcm = PCM_cnt;
1467                 printk(KERN_INFO "controller has PCM BUS ID %d "
1468                         "(auto selected)\n", hc->pcm);
1469         }
1470
1471         /* set up timer */
1472         HFC_outb(hc, R_TI_WD, poll_timer);
1473         hc->hw.r_irqmsk_misc |= V_TI_IRQMSK;
1474
1475         /* set E1 state machine IRQ */
1476         if (hc->ctype == HFC_TYPE_E1)
1477                 hc->hw.r_irqmsk_misc |= V_STA_IRQMSK;
1478
1479         /* set DTMF detection */
1480         if (test_bit(HFC_CHIP_DTMF, &hc->chip)) {
1481                 if (debug & DEBUG_HFCMULTI_INIT)
1482                         printk(KERN_DEBUG "%s: enabling DTMF detection "
1483                             "for all B-channel\n", __func__);
1484                 hc->hw.r_dtmf = V_DTMF_EN | V_DTMF_STOP;
1485                 if (test_bit(HFC_CHIP_ULAW, &hc->chip))
1486                         hc->hw.r_dtmf |= V_ULAW_SEL;
1487                 HFC_outb(hc, R_DTMF_N, 102 - 1);
1488                 hc->hw.r_irqmsk_misc |= V_DTMF_IRQMSK;
1489         }
1490
1491         /* conference engine */
1492         if (test_bit(HFC_CHIP_ULAW, &hc->chip))
1493                 r_conf_en = V_CONF_EN | V_ULAW;
1494         else
1495                 r_conf_en = V_CONF_EN;
1496         if (hc->ctype != HFC_TYPE_XHFC)
1497                 HFC_outb(hc, R_CONF_EN, r_conf_en);
1498
1499         /* setting leds */
1500         switch (hc->leds) {
1501         case 1: /* HFC-E1 OEM */
1502                 if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip))
1503                         HFC_outb(hc, R_GPIO_SEL, 0x32);
1504                 else
1505                         HFC_outb(hc, R_GPIO_SEL, 0x30);
1506
1507                 HFC_outb(hc, R_GPIO_EN1, 0x0f);
1508                 HFC_outb(hc, R_GPIO_OUT1, 0x00);
1509
1510                 HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3);
1511                 break;
1512
1513         case 2: /* HFC-4S OEM */
1514         case 3:
1515                 HFC_outb(hc, R_GPIO_SEL, 0xf0);
1516                 HFC_outb(hc, R_GPIO_EN1, 0xff);
1517                 HFC_outb(hc, R_GPIO_OUT1, 0x00);
1518                 break;
1519         }
1520
1521         if (test_bit(HFC_CHIP_EMBSD, &hc->chip)) {
1522                 hc->hw.r_st_sync = 0x10; /* V_AUTO_SYNCI */
1523                 HFC_outb(hc, R_ST_SYNC, hc->hw.r_st_sync);
1524         }
1525
1526         /* set master clock */
1527         if (hc->masterclk >= 0) {
1528                 if (debug & DEBUG_HFCMULTI_INIT)
1529                         printk(KERN_DEBUG "%s: setting ST master clock "
1530                             "to port %d (0..%d)\n",
1531                             __func__, hc->masterclk, hc->ports-1);
1532                 hc->hw.r_st_sync |= (hc->masterclk | V_AUTO_SYNC);
1533                 HFC_outb(hc, R_ST_SYNC, hc->hw.r_st_sync);
1534         }
1535
1536
1537
1538         /* setting misc irq */
1539         HFC_outb(hc, R_IRQMSK_MISC, hc->hw.r_irqmsk_misc);
1540         if (debug & DEBUG_HFCMULTI_INIT)
1541                 printk(KERN_DEBUG "r_irqmsk_misc.2: 0x%x\n",
1542                     hc->hw.r_irqmsk_misc);
1543
1544         /* RAM access test */
1545         HFC_outb(hc, R_RAM_ADDR0, 0);
1546         HFC_outb(hc, R_RAM_ADDR1, 0);
1547         HFC_outb(hc, R_RAM_ADDR2, 0);
1548         for (i = 0; i < 256; i++) {
1549                 HFC_outb_nodebug(hc, R_RAM_ADDR0, i);
1550                 HFC_outb_nodebug(hc, R_RAM_DATA, ((i*3)&0xff));
1551         }
1552         for (i = 0; i < 256; i++) {
1553                 HFC_outb_nodebug(hc, R_RAM_ADDR0, i);
1554                 HFC_inb_nodebug(hc, R_RAM_DATA);
1555                 rval = HFC_inb_nodebug(hc, R_INT_DATA);
1556                 if (rval != ((i * 3) & 0xff)) {
1557                         printk(KERN_DEBUG
1558                             "addr:%x val:%x should:%x\n", i, rval,
1559                             (i * 3) & 0xff);
1560                         err++;
1561                 }
1562         }
1563         if (err) {
1564                 printk(KERN_DEBUG "aborting - %d RAM access errors\n", err);
1565                 err = -EIO;
1566                 goto out;
1567         }
1568
1569         if (debug & DEBUG_HFCMULTI_INIT)
1570                 printk(KERN_DEBUG "%s: done\n", __func__);
1571 out:
1572         spin_unlock_irqrestore(&hc->lock, flags);
1573         return err;
1574 }
1575
1576
1577 /*
1578  * control the watchdog
1579  */
1580 static void
1581 hfcmulti_watchdog(struct hfc_multi *hc)
1582 {
1583         hc->wdcount++;
1584
1585         if (hc->wdcount > 10) {
1586                 hc->wdcount = 0;
1587                 hc->wdbyte = hc->wdbyte == V_GPIO_OUT2 ?
1588                     V_GPIO_OUT3 : V_GPIO_OUT2;
1589
1590         /* printk("Sending Watchdog Kill %x\n",hc->wdbyte); */
1591                 HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3);
1592                 HFC_outb(hc, R_GPIO_OUT0, hc->wdbyte);
1593         }
1594 }
1595
1596
1597
1598 /*
1599  * output leds
1600  */
1601 static void
1602 hfcmulti_leds(struct hfc_multi *hc)
1603 {
1604         unsigned long lled;
1605         unsigned long leddw;
1606         int i, state, active, leds;
1607         struct dchannel *dch;
1608         int led[4];
1609
1610         hc->ledcount += poll;
1611         if (hc->ledcount > 4096) {
1612                 hc->ledcount -= 4096;
1613                 hc->ledstate = 0xAFFEAFFE;
1614         }
1615
1616         switch (hc->leds) {
1617         case 1: /* HFC-E1 OEM */
1618                 /* 2 red blinking: NT mode deactivate
1619                  * 2 red steady:   TE mode deactivate
1620                  * left green:     L1 active
1621                  * left red:       frame sync, but no L1
1622                  * right green:    L2 active
1623                  */
1624                 if (hc->chan[hc->dslot].sync != 2) { /* no frame sync */
1625                         if (hc->chan[hc->dslot].dch->dev.D.protocol
1626                                 != ISDN_P_NT_E1) {
1627                                 led[0] = 1;
1628                                 led[1] = 1;
1629                         } else if (hc->ledcount>>11) {
1630                                 led[0] = 1;
1631                                 led[1] = 1;
1632                         } else {
1633                                 led[0] = 0;
1634                                 led[1] = 0;
1635                         }
1636                         led[2] = 0;
1637                         led[3] = 0;
1638                 } else { /* with frame sync */
1639                         /* TODO make it work */
1640                         led[0] = 0;
1641                         led[1] = 0;
1642                         led[2] = 0;
1643                         led[3] = 1;
1644                 }
1645                 leds = (led[0] | (led[1]<<2) | (led[2]<<1) | (led[3]<<3))^0xF;
1646                         /* leds are inverted */
1647                 if (leds != (int)hc->ledstate) {
1648                         HFC_outb_nodebug(hc, R_GPIO_OUT1, leds);
1649                         hc->ledstate = leds;
1650                 }
1651                 break;
1652
1653         case 2: /* HFC-4S OEM */
1654                 /* red blinking = PH_DEACTIVATE NT Mode
1655                  * red steady   = PH_DEACTIVATE TE Mode
1656                  * green steady = PH_ACTIVATE
1657                  */
1658                 for (i = 0; i < 4; i++) {
1659                         state = 0;
1660                         active = -1;
1661                         dch = hc->chan[(i << 2) | 2].dch;
1662                         if (dch) {
1663                                 state = dch->state;
1664                                 if (dch->dev.D.protocol == ISDN_P_NT_S0)
1665                                         active = 3;
1666                                 else
1667                                         active = 7;
1668                         }
1669                         if (state) {
1670                                 if (state == active) {
1671                                         led[i] = 1; /* led green */
1672                                 } else
1673                                         if (dch->dev.D.protocol == ISDN_P_TE_S0)
1674                                                 /* TE mode: led red */
1675                                                 led[i] = 2;
1676                                         else
1677                                                 if (hc->ledcount>>11)
1678                                                         /* led red */
1679                                                         led[i] = 2;
1680                                                 else
1681                                                         /* led off */
1682                                                         led[i] = 0;
1683                         } else
1684                                 led[i] = 0; /* led off */
1685                 }
1686                 if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
1687                         leds = 0;
1688                         for (i = 0; i < 4; i++) {
1689                                 if (led[i] == 1) {
1690                                         /*green*/
1691                                         leds |= (0x2 << (i * 2));
1692                                 } else if (led[i] == 2) {
1693                                         /*red*/
1694                                         leds |= (0x1 << (i * 2));
1695                                 }
1696                         }
1697                         if (leds != (int)hc->ledstate) {
1698                                 vpm_out(hc, 0, 0x1a8 + 3, leds);
1699                                 hc->ledstate = leds;
1700                         }
1701                 } else {
1702                         leds = ((led[3] > 0) << 0) | ((led[1] > 0) << 1) |
1703                             ((led[0] > 0) << 2) | ((led[2] > 0) << 3) |
1704                             ((led[3] & 1) << 4) | ((led[1] & 1) << 5) |
1705                             ((led[0] & 1) << 6) | ((led[2] & 1) << 7);
1706                         if (leds != (int)hc->ledstate) {
1707                                 HFC_outb_nodebug(hc, R_GPIO_EN1, leds & 0x0F);
1708                                 HFC_outb_nodebug(hc, R_GPIO_OUT1, leds >> 4);
1709                                 hc->ledstate = leds;
1710                         }
1711                 }
1712                 break;
1713
1714         case 3: /* HFC 1S/2S Beronet */
1715                 /* red blinking = PH_DEACTIVATE NT Mode
1716                  * red steady   = PH_DEACTIVATE TE Mode
1717                  * green steady = PH_ACTIVATE
1718                  */
1719                 for (i = 0; i < 2; i++) {
1720                         state = 0;
1721                         active = -1;
1722                         dch = hc->chan[(i << 2) | 2].dch;
1723                         if (dch) {
1724                                 state = dch->state;
1725                                 if (dch->dev.D.protocol == ISDN_P_NT_S0)
1726                                         active = 3;
1727                                 else
1728                                         active = 7;
1729                         }
1730                         if (state) {
1731                                 if (state == active) {
1732                                         led[i] = 1; /* led green */
1733                                 } else
1734                                         if (dch->dev.D.protocol == ISDN_P_TE_S0)
1735                                                 /* TE mode: led red */
1736                                                 led[i] = 2;
1737                                         else
1738                                                 if (hc->ledcount >> 11)
1739                                                         /* led red */
1740                                                         led[i] = 2;
1741                                                 else
1742                                                         /* led off */
1743                                                         led[i] = 0;
1744                         } else
1745                                 led[i] = 0; /* led off */
1746                 }
1747
1748
1749                 leds = (led[0] > 0) | ((led[1] > 0)<<1) | ((led[0]&1)<<2)
1750                         | ((led[1]&1)<<3);
1751                 if (leds != (int)hc->ledstate) {
1752                         HFC_outb_nodebug(hc, R_GPIO_EN1,
1753                             ((led[0] > 0) << 2) | ((led[1] > 0) << 3));
1754                         HFC_outb_nodebug(hc, R_GPIO_OUT1,
1755                             ((led[0] & 1) << 2) | ((led[1] & 1) << 3));
1756                         hc->ledstate = leds;
1757                 }
1758                 break;
1759         case 8: /* HFC 8S+ Beronet */
1760                 lled = 0;
1761
1762                 for (i = 0; i < 8; i++) {
1763                         state = 0;
1764                         active = -1;
1765                         dch = hc->chan[(i << 2) | 2].dch;
1766                         if (dch) {
1767                                 state = dch->state;
1768                                 if (dch->dev.D.protocol == ISDN_P_NT_S0)
1769                                         active = 3;
1770                                 else
1771                                         active = 7;
1772                         }
1773                         if (state) {
1774                                 if (state == active) {
1775                                         lled |= 0 << i;
1776                                 } else
1777                                         if (hc->ledcount >> 11)
1778                                                 lled |= 0 << i;
1779                                         else
1780                                                 lled |= 1 << i;
1781                         } else
1782                                 lled |= 1 << i;
1783                 }
1784                 leddw = lled << 24 | lled << 16 | lled << 8 | lled;
1785                 if (leddw != hc->ledstate) {
1786                         /* HFC_outb(hc, R_BRG_PCM_CFG, 1);
1787                         HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); */
1788                         /* was _io before */
1789                         HFC_outb_nodebug(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK);
1790                         outw(0x4000, hc->pci_iobase + 4);
1791                         outl(leddw, hc->pci_iobase);
1792                         HFC_outb_nodebug(hc, R_BRG_PCM_CFG, V_PCM_CLK);
1793                         hc->ledstate = leddw;
1794                 }
1795                 break;
1796         }
1797 }
1798 /*
1799  * read dtmf coefficients
1800  */
1801
1802 static void
1803 hfcmulti_dtmf(struct hfc_multi *hc)
1804 {
1805         s32             *coeff;
1806         u_int           mantissa;
1807         int             co, ch;
1808         struct bchannel *bch = NULL;
1809         u8              exponent;
1810         int             dtmf = 0;
1811         int             addr;
1812         u16             w_float;
1813         struct sk_buff  *skb;
1814         struct mISDNhead *hh;
1815
1816         if (debug & DEBUG_HFCMULTI_DTMF)
1817                 printk(KERN_DEBUG "%s: dtmf detection irq\n", __func__);
1818         for (ch = 0; ch <= 31; ch++) {
1819                 /* only process enabled B-channels */
1820                 bch = hc->chan[ch].bch;
1821                 if (!bch)
1822                         continue;
1823                 if (!hc->created[hc->chan[ch].port])
1824                         continue;
1825                 if (!test_bit(FLG_TRANSPARENT, &bch->Flags))
1826                         continue;
1827                 if (debug & DEBUG_HFCMULTI_DTMF)
1828                         printk(KERN_DEBUG "%s: dtmf channel %d:",
1829                                 __func__, ch);
1830                 coeff = &(hc->chan[ch].coeff[hc->chan[ch].coeff_count * 16]);
1831                 dtmf = 1;
1832                 for (co = 0; co < 8; co++) {
1833                         /* read W(n-1) coefficient */
1834                         addr = hc->DTMFbase + ((co<<7) | (ch<<2));
1835                         HFC_outb_nodebug(hc, R_RAM_ADDR0, addr);
1836                         HFC_outb_nodebug(hc, R_RAM_ADDR1, addr>>8);
1837                         HFC_outb_nodebug(hc, R_RAM_ADDR2, (addr>>16)
1838                                 | V_ADDR_INC);
1839                         w_float = HFC_inb_nodebug(hc, R_RAM_DATA);
1840                         w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8);
1841                         if (debug & DEBUG_HFCMULTI_DTMF)
1842                                 printk(" %04x", w_float);
1843
1844                         /* decode float (see chip doc) */
1845                         mantissa = w_float & 0x0fff;
1846                         if (w_float & 0x8000)
1847                                 mantissa |= 0xfffff000;
1848                         exponent = (w_float>>12) & 0x7;
1849                         if (exponent) {
1850                                 mantissa ^= 0x1000;
1851                                 mantissa <<= (exponent-1);
1852                         }
1853
1854                         /* store coefficient */
1855                         coeff[co<<1] = mantissa;
1856
1857                         /* read W(n) coefficient */
1858                         w_float = HFC_inb_nodebug(hc, R_RAM_DATA);
1859                         w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8);
1860                         if (debug & DEBUG_HFCMULTI_DTMF)
1861                                 printk(" %04x", w_float);
1862
1863                         /* decode float (see chip doc) */
1864                         mantissa = w_float & 0x0fff;
1865                         if (w_float & 0x8000)
1866                                 mantissa |= 0xfffff000;
1867                         exponent = (w_float>>12) & 0x7;
1868                         if (exponent) {
1869                                 mantissa ^= 0x1000;
1870                                 mantissa <<= (exponent-1);
1871                         }
1872
1873                         /* store coefficient */
1874                         coeff[(co<<1)|1] = mantissa;
1875                 }
1876                 if (debug & DEBUG_HFCMULTI_DTMF)
1877                         printk(" DTMF ready %08x %08x %08x %08x "
1878                             "%08x %08x %08x %08x\n",
1879                             coeff[0], coeff[1], coeff[2], coeff[3],
1880                             coeff[4], coeff[5], coeff[6], coeff[7]);
1881                 hc->chan[ch].coeff_count++;
1882                 if (hc->chan[ch].coeff_count == 8) {
1883                         hc->chan[ch].coeff_count = 0;
1884                         skb = mI_alloc_skb(512, GFP_ATOMIC);
1885                         if (!skb) {
1886                                 printk(KERN_DEBUG "%s: No memory for skb\n",
1887                                     __func__);
1888                                 continue;
1889                         }
1890                         hh = mISDN_HEAD_P(skb);
1891                         hh->prim = PH_CONTROL_IND;
1892                         hh->id = DTMF_HFC_COEF;
1893                         memcpy(skb_put(skb, 512), hc->chan[ch].coeff, 512);
1894                         recv_Bchannel_skb(bch, skb);
1895                 }
1896         }
1897
1898         /* restart DTMF processing */
1899         hc->dtmf = dtmf;
1900         if (dtmf)
1901                 HFC_outb_nodebug(hc, R_DTMF, hc->hw.r_dtmf | V_RST_DTMF);
1902 }
1903
1904
1905 /*
1906  * fill fifo as much as possible
1907  */
1908
1909 static void
1910 hfcmulti_tx(struct hfc_multi *hc, int ch)
1911 {
1912         int i, ii, temp, len = 0;
1913         int Zspace, z1, z2; /* must be int for calculation */
1914         int Fspace, f1, f2;
1915         u_char *d;
1916         int *txpending, slot_tx;
1917         struct  bchannel *bch;
1918         struct  dchannel *dch;
1919         struct  sk_buff **sp = NULL;
1920         int *idxp;
1921
1922         bch = hc->chan[ch].bch;
1923         dch = hc->chan[ch].dch;
1924         if ((!dch) && (!bch))
1925                 return;
1926
1927         txpending = &hc->chan[ch].txpending;
1928         slot_tx = hc->chan[ch].slot_tx;
1929         if (dch) {
1930                 if (!test_bit(FLG_ACTIVE, &dch->Flags))
1931                         return;
1932                 sp = &dch->tx_skb;
1933                 idxp = &dch->tx_idx;
1934         } else {
1935                 if (!test_bit(FLG_ACTIVE, &bch->Flags))
1936                         return;
1937                 sp = &bch->tx_skb;
1938                 idxp = &bch->tx_idx;
1939         }
1940         if (*sp)
1941                 len = (*sp)->len;
1942
1943         if ((!len) && *txpending != 1)
1944                 return; /* no data */
1945
1946         if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
1947             (hc->chan[ch].protocol == ISDN_P_B_RAW) &&
1948             (hc->chan[ch].slot_rx < 0) &&
1949             (hc->chan[ch].slot_tx < 0))
1950                 HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch << 1));
1951         else
1952                 HFC_outb_nodebug(hc, R_FIFO, ch << 1);
1953         HFC_wait_nodebug(hc);
1954
1955         if (*txpending == 2) {
1956                 /* reset fifo */
1957                 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
1958                 HFC_wait_nodebug(hc);
1959                 HFC_outb(hc, A_SUBCH_CFG, 0);
1960                 *txpending = 1;
1961         }
1962 next_frame:
1963         if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
1964                 f1 = HFC_inb_nodebug(hc, A_F1);
1965                 f2 = HFC_inb_nodebug(hc, A_F2);
1966                 while (f2 != (temp = HFC_inb_nodebug(hc, A_F2))) {
1967                         if (debug & DEBUG_HFCMULTI_FIFO)
1968                                 printk(KERN_DEBUG
1969                                     "%s(card %d): reread f2 because %d!=%d\n",
1970                                     __func__, hc->id + 1, temp, f2);
1971                         f2 = temp; /* repeat until F2 is equal */
1972                 }
1973                 Fspace = f2 - f1 - 1;
1974                 if (Fspace < 0)
1975                         Fspace += hc->Flen;
1976                 /*
1977                  * Old FIFO handling doesn't give us the current Z2 read
1978                  * pointer, so we cannot send the next frame before the fifo
1979                  * is empty. It makes no difference except for a slightly
1980                  * lower performance.
1981                  */
1982                 if (test_bit(HFC_CHIP_REVISION0, &hc->chip)) {
1983                         if (f1 != f2)
1984                                 Fspace = 0;
1985                         else
1986                                 Fspace = 1;
1987                 }
1988                 /* one frame only for ST D-channels, to allow resending */
1989                 if (hc->ctype != HFC_TYPE_E1 && dch) {
1990                         if (f1 != f2)
1991                                 Fspace = 0;
1992                 }
1993                 /* F-counter full condition */
1994                 if (Fspace == 0)
1995                         return;
1996         }
1997         z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin;
1998         z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin;
1999         while (z2 != (temp = (HFC_inw_nodebug(hc, A_Z2) - hc->Zmin))) {
2000                 if (debug & DEBUG_HFCMULTI_FIFO)
2001                         printk(KERN_DEBUG "%s(card %d): reread z2 because "
2002                                 "%d!=%d\n", __func__, hc->id + 1, temp, z2);
2003                 z2 = temp; /* repeat unti Z2 is equal */
2004         }
2005         hc->chan[ch].Zfill = z1 - z2;
2006         if (hc->chan[ch].Zfill < 0)
2007                 hc->chan[ch].Zfill += hc->Zlen;
2008         Zspace = z2 - z1;
2009         if (Zspace <= 0)
2010                 Zspace += hc->Zlen;
2011         Zspace -= 4; /* keep not too full, so pointers will not overrun */
2012         /* fill transparent data only to maxinum transparent load (minus 4) */
2013         if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
2014                 Zspace = Zspace - hc->Zlen + hc->max_trans;
2015         if (Zspace <= 0) /* no space of 4 bytes */
2016                 return;
2017
2018         /* if no data */
2019         if (!len) {
2020                 if (z1 == z2) { /* empty */
2021                         /* if done with FIFO audio data during PCM connection */
2022                         if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) &&
2023                             *txpending && slot_tx >= 0) {
2024                                 if (debug & DEBUG_HFCMULTI_MODE)
2025                                         printk(KERN_DEBUG
2026                                             "%s: reconnecting PCM due to no "
2027                                             "more FIFO data: channel %d "
2028                                             "slot_tx %d\n",
2029                                             __func__, ch, slot_tx);
2030                                 /* connect slot */
2031                                 if (hc->ctype == HFC_TYPE_XHFC)
2032                                         HFC_outb(hc, A_CON_HDLC, 0xc0
2033                                             | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2034                                                 /* Enable FIFO, no interrupt */
2035                                 else
2036                                         HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 |
2037                                             V_HDLC_TRP | V_IFF);
2038                                 HFC_outb_nodebug(hc, R_FIFO, ch<<1 | 1);
2039                                 HFC_wait_nodebug(hc);
2040                                 if (hc->ctype == HFC_TYPE_XHFC)
2041                                         HFC_outb(hc, A_CON_HDLC, 0xc0
2042                                             | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2043                                                 /* Enable FIFO, no interrupt */
2044                                 else
2045                                         HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 |
2046                                             V_HDLC_TRP | V_IFF);
2047                                 HFC_outb_nodebug(hc, R_FIFO, ch<<1);
2048                                 HFC_wait_nodebug(hc);
2049                         }
2050                         *txpending = 0;
2051                 }
2052                 return; /* no data */
2053         }
2054
2055         /* "fill fifo if empty" feature */
2056         if (bch && test_bit(FLG_FILLEMPTY, &bch->Flags)
2057                 && !test_bit(FLG_HDLC, &bch->Flags) && z2 == z1) {
2058                 if (debug & DEBUG_HFCMULTI_FILL)
2059                         printk(KERN_DEBUG "%s: buffer empty, so we have "
2060                                 "underrun\n", __func__);
2061                 /* fill buffer, to prevent future underrun */
2062                 hc->write_fifo(hc, hc->silence_data, poll >> 1);
2063                 Zspace -= (poll >> 1);
2064         }
2065
2066         /* if audio data and connected slot */
2067         if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) && (!*txpending)
2068                 && slot_tx >= 0) {
2069                 if (debug & DEBUG_HFCMULTI_MODE)
2070                         printk(KERN_DEBUG "%s: disconnecting PCM due to "
2071                             "FIFO data: channel %d slot_tx %d\n",
2072                             __func__, ch, slot_tx);
2073                 /* disconnect slot */
2074                 if (hc->ctype == HFC_TYPE_XHFC)
2075                         HFC_outb(hc, A_CON_HDLC, 0x80
2076                             | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2077                                 /* Enable FIFO, no interrupt */
2078                 else
2079                         HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 |
2080                             V_HDLC_TRP | V_IFF);
2081                 HFC_outb_nodebug(hc, R_FIFO, ch<<1 | 1);
2082                 HFC_wait_nodebug(hc);
2083                 if (hc->ctype == HFC_TYPE_XHFC)
2084                         HFC_outb(hc, A_CON_HDLC, 0x80
2085                             | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2086                                 /* Enable FIFO, no interrupt */
2087                 else
2088                         HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 |
2089                             V_HDLC_TRP | V_IFF);
2090                 HFC_outb_nodebug(hc, R_FIFO, ch<<1);
2091                 HFC_wait_nodebug(hc);
2092         }
2093         *txpending = 1;
2094
2095         /* show activity */
2096         hc->activity[hc->chan[ch].port] = 1;
2097
2098         /* fill fifo to what we have left */
2099         ii = len;
2100         if (dch || test_bit(FLG_HDLC, &bch->Flags))
2101                 temp = 1;
2102         else
2103                 temp = 0;
2104         i = *idxp;
2105         d = (*sp)->data + i;
2106         if (ii - i > Zspace)
2107                 ii = Zspace + i;
2108         if (debug & DEBUG_HFCMULTI_FIFO)
2109                 printk(KERN_DEBUG "%s(card %d): fifo(%d) has %d bytes space "
2110                     "left (z1=%04x, z2=%04x) sending %d of %d bytes %s\n",
2111                         __func__, hc->id + 1, ch, Zspace, z1, z2, ii-i, len-i,
2112                         temp ? "HDLC" : "TRANS");
2113
2114         /* Have to prep the audio data */
2115         hc->write_fifo(hc, d, ii - i);
2116         hc->chan[ch].Zfill += ii - i;
2117         *idxp = ii;
2118
2119         /* if not all data has been written */
2120         if (ii != len) {
2121                 /* NOTE: fifo is started by the calling function */
2122                 return;
2123         }
2124
2125         /* if all data has been written, terminate frame */
2126         if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2127                 /* increment f-counter */
2128                 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F);
2129                 HFC_wait_nodebug(hc);
2130         }
2131
2132         /* send confirm, since get_net_bframe will not do it with trans */
2133         if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
2134                 confirm_Bsend(bch);
2135
2136         /* check for next frame */
2137         dev_kfree_skb(*sp);
2138         if (bch && get_next_bframe(bch)) { /* hdlc is confirmed here */
2139                 len = (*sp)->len;
2140                 goto next_frame;
2141         }
2142         if (dch && get_next_dframe(dch)) {
2143                 len = (*sp)->len;
2144                 goto next_frame;
2145         }
2146
2147         /*
2148          * now we have no more data, so in case of transparent,
2149          * we set the last byte in fifo to 'silence' in case we will get
2150          * no more data at all. this prevents sending an undefined value.
2151          */
2152         if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
2153                 HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
2154 }
2155
2156
2157 /* NOTE: only called if E1 card is in active state */
2158 static void
2159 hfcmulti_rx(struct hfc_multi *hc, int ch)
2160 {
2161         int temp;
2162         int Zsize, z1, z2 = 0; /* = 0, to make GCC happy */
2163         int f1 = 0, f2 = 0; /* = 0, to make GCC happy */
2164         int again = 0;
2165         struct  bchannel *bch;
2166         struct  dchannel *dch;
2167         struct sk_buff  *skb, **sp = NULL;
2168         int     maxlen;
2169
2170         bch = hc->chan[ch].bch;
2171         dch = hc->chan[ch].dch;
2172         if ((!dch) && (!bch))
2173                 return;
2174         if (dch) {
2175                 if (!test_bit(FLG_ACTIVE, &dch->Flags))
2176                         return;
2177                 sp = &dch->rx_skb;
2178                 maxlen = dch->maxlen;
2179         } else {
2180                 if (!test_bit(FLG_ACTIVE, &bch->Flags))
2181                         return;
2182                 sp = &bch->rx_skb;
2183                 maxlen = bch->maxlen;
2184         }
2185 next_frame:
2186         /* on first AND before getting next valid frame, R_FIFO must be written
2187            to. */
2188         if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
2189             (hc->chan[ch].protocol == ISDN_P_B_RAW) &&
2190             (hc->chan[ch].slot_rx < 0) &&
2191             (hc->chan[ch].slot_tx < 0))
2192                 HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch<<1) | 1);
2193         else
2194                 HFC_outb_nodebug(hc, R_FIFO, (ch<<1)|1);
2195         HFC_wait_nodebug(hc);
2196
2197         /* ignore if rx is off BUT change fifo (above) to start pending TX */
2198         if (hc->chan[ch].rx_off)
2199                 return;
2200
2201         if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2202                 f1 = HFC_inb_nodebug(hc, A_F1);
2203                 while (f1 != (temp = HFC_inb_nodebug(hc, A_F1))) {
2204                         if (debug & DEBUG_HFCMULTI_FIFO)
2205                                 printk(KERN_DEBUG
2206                                     "%s(card %d): reread f1 because %d!=%d\n",
2207                                     __func__, hc->id + 1, temp, f1);
2208                         f1 = temp; /* repeat until F1 is equal */
2209                 }
2210                 f2 = HFC_inb_nodebug(hc, A_F2);
2211         }
2212         z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin;
2213         while (z1 != (temp = (HFC_inw_nodebug(hc, A_Z1) - hc->Zmin))) {
2214                 if (debug & DEBUG_HFCMULTI_FIFO)
2215                         printk(KERN_DEBUG "%s(card %d): reread z2 because "
2216                                 "%d!=%d\n", __func__, hc->id + 1, temp, z2);
2217                 z1 = temp; /* repeat until Z1 is equal */
2218         }
2219         z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin;
2220         Zsize = z1 - z2;
2221         if ((dch || test_bit(FLG_HDLC, &bch->Flags)) && f1 != f2)
2222                 /* complete hdlc frame */
2223                 Zsize++;
2224         if (Zsize < 0)
2225                 Zsize += hc->Zlen;
2226         /* if buffer is empty */
2227         if (Zsize <= 0)
2228                 return;
2229
2230         if (*sp == NULL) {
2231                 *sp = mI_alloc_skb(maxlen + 3, GFP_ATOMIC);
2232                 if (*sp == NULL) {
2233                         printk(KERN_DEBUG "%s: No mem for rx_skb\n",
2234                             __func__);
2235                         return;
2236                 }
2237         }
2238         /* show activity */
2239         hc->activity[hc->chan[ch].port] = 1;
2240
2241         /* empty fifo with what we have */
2242         if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2243                 if (debug & DEBUG_HFCMULTI_FIFO)
2244                         printk(KERN_DEBUG "%s(card %d): fifo(%d) reading %d "
2245                             "bytes (z1=%04x, z2=%04x) HDLC %s (f1=%d, f2=%d) "
2246                             "got=%d (again %d)\n", __func__, hc->id + 1, ch,
2247                             Zsize, z1, z2, (f1 == f2) ? "fragment" : "COMPLETE",
2248                             f1, f2, Zsize + (*sp)->len, again);
2249                 /* HDLC */
2250                 if ((Zsize + (*sp)->len) > (maxlen + 3)) {
2251                         if (debug & DEBUG_HFCMULTI_FIFO)
2252                                 printk(KERN_DEBUG
2253                                     "%s(card %d): hdlc-frame too large.\n",
2254                                     __func__, hc->id + 1);
2255                         skb_trim(*sp, 0);
2256                         HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
2257                         HFC_wait_nodebug(hc);
2258                         return;
2259                 }
2260
2261                 hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize);
2262
2263                 if (f1 != f2) {
2264                         /* increment Z2,F2-counter */
2265                         HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F);
2266                         HFC_wait_nodebug(hc);
2267                         /* check size */
2268                         if ((*sp)->len < 4) {
2269                                 if (debug & DEBUG_HFCMULTI_FIFO)
2270                                         printk(KERN_DEBUG
2271                                             "%s(card %d): Frame below minimum "
2272                                             "size\n", __func__, hc->id + 1);
2273                                 skb_trim(*sp, 0);
2274                                 goto next_frame;
2275                         }
2276                         /* there is at least one complete frame, check crc */
2277                         if ((*sp)->data[(*sp)->len - 1]) {
2278                                 if (debug & DEBUG_HFCMULTI_CRC)
2279                                         printk(KERN_DEBUG
2280                                             "%s: CRC-error\n", __func__);
2281                                 skb_trim(*sp, 0);
2282                                 goto next_frame;
2283                         }
2284                         skb_trim(*sp, (*sp)->len - 3);
2285                         if ((*sp)->len < MISDN_COPY_SIZE) {
2286                                 skb = *sp;
2287                                 *sp = mI_alloc_skb(skb->len, GFP_ATOMIC);
2288                                 if (*sp) {
2289                                         memcpy(skb_put(*sp, skb->len),
2290                                             skb->data, skb->len);
2291                                         skb_trim(skb, 0);
2292                                 } else {
2293                                         printk(KERN_DEBUG "%s: No mem\n",
2294                                             __func__);
2295                                         *sp = skb;
2296                                         skb = NULL;
2297                                 }
2298                         } else {
2299                                 skb = NULL;
2300                         }
2301                         if (debug & DEBUG_HFCMULTI_FIFO) {
2302                                 printk(KERN_DEBUG "%s(card %d):",
2303                                         __func__, hc->id + 1);
2304                                 temp = 0;
2305                                 while (temp < (*sp)->len)
2306                                         printk(" %02x", (*sp)->data[temp++]);
2307                                 printk("\n");
2308                         }
2309                         if (dch)
2310                                 recv_Dchannel(dch);
2311                         else
2312                                 recv_Bchannel(bch, MISDN_ID_ANY);
2313                         *sp = skb;
2314                         again++;
2315                         goto next_frame;
2316                 }
2317                 /* there is an incomplete frame */
2318         } else {
2319                 /* transparent */
2320                 if (Zsize > skb_tailroom(*sp))
2321                         Zsize = skb_tailroom(*sp);
2322                 hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize);
2323                 if (((*sp)->len) < MISDN_COPY_SIZE) {
2324                         skb = *sp;
2325                         *sp = mI_alloc_skb(skb->len, GFP_ATOMIC);
2326                         if (*sp) {
2327                                 memcpy(skb_put(*sp, skb->len),
2328                                     skb->data, skb->len);
2329                                 skb_trim(skb, 0);
2330                         } else {
2331                                 printk(KERN_DEBUG "%s: No mem\n", __func__);
2332                                 *sp = skb;
2333                                 skb = NULL;
2334                         }
2335                 } else {
2336                         skb = NULL;
2337                 }
2338                 if (debug & DEBUG_HFCMULTI_FIFO)
2339                         printk(KERN_DEBUG
2340                             "%s(card %d): fifo(%d) reading %d bytes "
2341                             "(z1=%04x, z2=%04x) TRANS\n",
2342                                 __func__, hc->id + 1, ch, Zsize, z1, z2);
2343                 /* only bch is transparent */
2344                 recv_Bchannel(bch, hc->chan[ch].Zfill);
2345                 *sp = skb;
2346         }
2347 }
2348
2349
2350 /*
2351  * Interrupt handler
2352  */
2353 static void
2354 signal_state_up(struct dchannel *dch, int info, char *msg)
2355 {
2356         struct sk_buff  *skb;
2357         int             id, data = info;
2358
2359         if (debug & DEBUG_HFCMULTI_STATE)
2360                 printk(KERN_DEBUG "%s: %s\n", __func__, msg);
2361
2362         id = TEI_SAPI | (GROUP_TEI << 8); /* manager address */
2363
2364         skb = _alloc_mISDN_skb(MPH_INFORMATION_IND, id, sizeof(data), &data,
2365                 GFP_ATOMIC);
2366         if (!skb)
2367                 return;
2368         recv_Dchannel_skb(dch, skb);
2369 }
2370
2371 static inline void
2372 handle_timer_irq(struct hfc_multi *hc)
2373 {
2374         int             ch, temp;
2375         struct dchannel *dch;
2376         u_long          flags;
2377
2378         /* process queued resync jobs */
2379         if (hc->e1_resync) {
2380                 /* lock, so e1_resync gets not changed */
2381                 spin_lock_irqsave(&HFClock, flags);
2382                 if (hc->e1_resync & 1) {
2383                         if (debug & DEBUG_HFCMULTI_PLXSD)
2384                                 printk(KERN_DEBUG "Enable SYNC_I\n");
2385                         HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC);
2386                         /* disable JATT, if RX_SYNC is set */
2387                         if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip))
2388                                 HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX);
2389                 }
2390                 if (hc->e1_resync & 2) {
2391                         if (debug & DEBUG_HFCMULTI_PLXSD)
2392                                 printk(KERN_DEBUG "Enable jatt PLL\n");
2393                         HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS);
2394                 }
2395                 if (hc->e1_resync & 4) {
2396                         if (debug & DEBUG_HFCMULTI_PLXSD)
2397                                 printk(KERN_DEBUG
2398                                     "Enable QUARTZ for HFC-E1\n");
2399                         /* set jatt to quartz */
2400                         HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC
2401                                 | V_JATT_OFF);
2402                         /* switch to JATT, in case it is not already */
2403                         HFC_outb(hc, R_SYNC_OUT, 0);
2404                 }
2405                 hc->e1_resync = 0;
2406                 spin_unlock_irqrestore(&HFClock, flags);
2407         }
2408
2409         if (hc->ctype != HFC_TYPE_E1 || hc->e1_state == 1)
2410                 for (ch = 0; ch <= 31; ch++) {
2411                         if (hc->created[hc->chan[ch].port]) {
2412                                 hfcmulti_tx(hc, ch);
2413                                 /* fifo is started when switching to rx-fifo */
2414                                 hfcmulti_rx(hc, ch);
2415                                 if (hc->chan[ch].dch &&
2416                                     hc->chan[ch].nt_timer > -1) {
2417                                         dch = hc->chan[ch].dch;
2418                                         if (!(--hc->chan[ch].nt_timer)) {
2419                                                 schedule_event(dch,
2420                                                     FLG_PHCHANGE);
2421                                                 if (debug &
2422                                                     DEBUG_HFCMULTI_STATE)
2423                                                         printk(KERN_DEBUG
2424                                                             "%s: nt_timer at "
2425                                                             "state %x\n",
2426                                                             __func__,
2427                                                             dch->state);
2428                                         }
2429                                 }
2430                         }
2431                 }
2432         if (hc->ctype == HFC_TYPE_E1 && hc->created[0]) {
2433                 dch = hc->chan[hc->dslot].dch;
2434                 if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dslot].cfg)) {
2435                         /* LOS */
2436                         temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_SIG_LOS;
2437                         if (!temp && hc->chan[hc->dslot].los)
2438                                 signal_state_up(dch, L1_SIGNAL_LOS_ON,
2439                                     "LOS detected");
2440                         if (temp && !hc->chan[hc->dslot].los)
2441                                 signal_state_up(dch, L1_SIGNAL_LOS_OFF,
2442                                     "LOS gone");
2443                         hc->chan[hc->dslot].los = temp;
2444                 }
2445                 if (test_bit(HFC_CFG_REPORT_AIS, &hc->chan[hc->dslot].cfg)) {
2446                         /* AIS */
2447                         temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_AIS;
2448                         if (!temp && hc->chan[hc->dslot].ais)
2449                                 signal_state_up(dch, L1_SIGNAL_AIS_ON,
2450                                     "AIS detected");
2451                         if (temp && !hc->chan[hc->dslot].ais)
2452                                 signal_state_up(dch, L1_SIGNAL_AIS_OFF,
2453                                     "AIS gone");
2454                         hc->chan[hc->dslot].ais = temp;
2455                 }
2456                 if (test_bit(HFC_CFG_REPORT_SLIP, &hc->chan[hc->dslot].cfg)) {
2457                         /* SLIP */
2458                         temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_RX;
2459                         if (!temp && hc->chan[hc->dslot].slip_rx)
2460                                 signal_state_up(dch, L1_SIGNAL_SLIP_RX,
2461                                     " bit SLIP detected RX");
2462                         hc->chan[hc->dslot].slip_rx = temp;
2463                         temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_TX;
2464                         if (!temp && hc->chan[hc->dslot].slip_tx)
2465                                 signal_state_up(dch, L1_SIGNAL_SLIP_TX,
2466                                     " bit SLIP detected TX");
2467                         hc->chan[hc->dslot].slip_tx = temp;
2468                 }
2469                 if (test_bit(HFC_CFG_REPORT_RDI, &hc->chan[hc->dslot].cfg)) {
2470                         /* RDI */
2471                         temp = HFC_inb_nodebug(hc, R_RX_SL0_0) & V_A;
2472                         if (!temp && hc->chan[hc->dslot].rdi)
2473                                 signal_state_up(dch, L1_SIGNAL_RDI_ON,
2474                                     "RDI detected");
2475                         if (temp && !hc->chan[hc->dslot].rdi)
2476                                 signal_state_up(dch, L1_SIGNAL_RDI_OFF,
2477                                     "RDI gone");
2478                         hc->chan[hc->dslot].rdi = temp;
2479                 }
2480                 temp = HFC_inb_nodebug(hc, R_JATT_DIR);
2481                 switch (hc->chan[hc->dslot].sync) {
2482                 case 0:
2483                         if ((temp & 0x60) == 0x60) {
2484                                 if (debug & DEBUG_HFCMULTI_SYNC)
2485                                         printk(KERN_DEBUG
2486                                             "%s: (id=%d) E1 now "
2487                                             "in clock sync\n",
2488                                             __func__, hc->id);
2489                                 HFC_outb(hc, R_RX_OFF,
2490                                     hc->chan[hc->dslot].jitter | V_RX_INIT);
2491                                 HFC_outb(hc, R_TX_OFF,
2492                                     hc->chan[hc->dslot].jitter | V_RX_INIT);
2493                                 hc->chan[hc->dslot].sync = 1;
2494                                 goto check_framesync;
2495                         }
2496                         break;
2497                 case 1:
2498                         if ((temp & 0x60) != 0x60) {
2499                                 if (debug & DEBUG_HFCMULTI_SYNC)
2500                                         printk(KERN_DEBUG
2501                                             "%s: (id=%d) E1 "
2502                                             "lost clock sync\n",
2503                                             __func__, hc->id);
2504                                 hc->chan[hc->dslot].sync = 0;
2505                                 break;
2506                         }
2507 check_framesync:
2508                         temp = HFC_inb_nodebug(hc, R_SYNC_STA);
2509                         if (temp == 0x27) {
2510                                 if (debug & DEBUG_HFCMULTI_SYNC)
2511                                         printk(KERN_DEBUG
2512                                             "%s: (id=%d) E1 "
2513                                             "now in frame sync\n",
2514                                             __func__, hc->id);
2515                                 hc->chan[hc->dslot].sync = 2;
2516                         }
2517                         break;
2518                 case 2:
2519                         if ((temp & 0x60) != 0x60) {
2520                                 if (debug & DEBUG_HFCMULTI_SYNC)
2521                                         printk(KERN_DEBUG
2522                                             "%s: (id=%d) E1 lost "
2523                                             "clock & frame sync\n",
2524                                             __func__, hc->id);
2525                                 hc->chan[hc->dslot].sync = 0;
2526                                 break;
2527                         }
2528                         temp = HFC_inb_nodebug(hc, R_SYNC_STA);
2529                         if (temp != 0x27) {
2530                                 if (debug & DEBUG_HFCMULTI_SYNC)
2531                                         printk(KERN_DEBUG
2532                                             "%s: (id=%d) E1 "
2533                                             "lost frame sync\n",
2534                                             __func__, hc->id);
2535                                 hc->chan[hc->dslot].sync = 1;
2536                         }
2537                         break;
2538                 }
2539         }
2540
2541         if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip))
2542                 hfcmulti_watchdog(hc);
2543
2544         if (hc->leds)
2545                 hfcmulti_leds(hc);
2546 }
2547
2548 static void
2549 ph_state_irq(struct hfc_multi *hc, u_char r_irq_statech)
2550 {
2551         struct dchannel *dch;
2552         int             ch;
2553         int             active;
2554         u_char          st_status, temp;
2555
2556         /* state machine */
2557         for (ch = 0; ch <= 31; ch++) {
2558                 if (hc->chan[ch].dch) {
2559                         dch = hc->chan[ch].dch;
2560                         if (r_irq_statech & 1) {
2561                                 HFC_outb_nodebug(hc, R_ST_SEL,
2562                                         hc->chan[ch].port);
2563                                 /* undocumented: delay after R_ST_SEL */
2564                                 udelay(1);
2565                                 /* undocumented: status changes during read */
2566                                 st_status = HFC_inb_nodebug(hc, A_ST_RD_STATE);
2567                                 while (st_status != (temp =
2568                                         HFC_inb_nodebug(hc, A_ST_RD_STATE))) {
2569                                         if (debug & DEBUG_HFCMULTI_STATE)
2570                                                 printk(KERN_DEBUG "%s: reread "
2571                                                     "STATE because %d!=%d\n",
2572                                                     __func__, temp,
2573                                                     st_status);
2574                                         st_status = temp; /* repeat */
2575                                 }
2576
2577                                 /* Speech Design TE-sync indication */
2578                                 if (test_bit(HFC_CHIP_PLXSD, &hc->chip) &&
2579                                         dch->dev.D.protocol == ISDN_P_TE_S0) {
2580                                         if (st_status & V_FR_SYNC_ST)
2581                                                 hc->syncronized |=
2582                                                     (1 << hc->chan[ch].port);
2583                                         else
2584                                                 hc->syncronized &=
2585                                                    ~(1 << hc->chan[ch].port);
2586                                 }
2587                                 dch->state = st_status & 0x0f;
2588                                 if (dch->dev.D.protocol == ISDN_P_NT_S0)
2589                                         active = 3;
2590                                 else
2591                                         active = 7;
2592                                 if (dch->state == active) {
2593                                         HFC_outb_nodebug(hc, R_FIFO,
2594                                                 (ch << 1) | 1);
2595                                         HFC_wait_nodebug(hc);
2596                                         HFC_outb_nodebug(hc,
2597                                                 R_INC_RES_FIFO, V_RES_F);
2598                                         HFC_wait_nodebug(hc);
2599                                         dch->tx_idx = 0;
2600                                 }
2601                                 schedule_event(dch, FLG_PHCHANGE);
2602                                 if (debug & DEBUG_HFCMULTI_STATE)
2603                                         printk(KERN_DEBUG
2604                                             "%s: S/T newstate %x port %d\n",
2605                                             __func__, dch->state,
2606                                             hc->chan[ch].port);
2607                         }
2608                         r_irq_statech >>= 1;
2609                 }
2610         }
2611         if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
2612                 plxsd_checksync(hc, 0);
2613 }
2614
2615 static void
2616 fifo_irq(struct hfc_multi *hc, int block)
2617 {
2618         int     ch, j;
2619         struct dchannel *dch;
2620         struct bchannel *bch;
2621         u_char r_irq_fifo_bl;
2622
2623         r_irq_fifo_bl = HFC_inb_nodebug(hc, R_IRQ_FIFO_BL0 + block);
2624         j = 0;
2625         while (j < 8) {
2626                 ch = (block << 2) + (j >> 1);
2627                 dch = hc->chan[ch].dch;
2628                 bch = hc->chan[ch].bch;
2629                 if (((!dch) && (!bch)) || (!hc->created[hc->chan[ch].port])) {
2630                         j += 2;
2631                         continue;
2632                 }
2633                 if (dch && (r_irq_fifo_bl & (1 << j)) &&
2634                     test_bit(FLG_ACTIVE, &dch->Flags)) {
2635                         hfcmulti_tx(hc, ch);
2636                         /* start fifo */
2637                         HFC_outb_nodebug(hc, R_FIFO, 0);
2638                         HFC_wait_nodebug(hc);
2639                 }
2640                 if (bch && (r_irq_fifo_bl & (1 << j)) &&
2641                     test_bit(FLG_ACTIVE, &bch->Flags)) {
2642                         hfcmulti_tx(hc, ch);
2643                         /* start fifo */
2644                         HFC_outb_nodebug(hc, R_FIFO, 0);
2645                         HFC_wait_nodebug(hc);
2646                 }
2647                 j++;
2648                 if (dch && (r_irq_fifo_bl & (1 << j)) &&
2649                     test_bit(FLG_ACTIVE, &dch->Flags)) {
2650                         hfcmulti_rx(hc, ch);
2651                 }
2652                 if (bch && (r_irq_fifo_bl & (1 << j)) &&
2653                     test_bit(FLG_ACTIVE, &bch->Flags)) {
2654                         hfcmulti_rx(hc, ch);
2655                 }
2656                 j++;
2657         }
2658 }
2659
2660 #ifdef IRQ_DEBUG
2661 int irqsem;
2662 #endif
2663 static irqreturn_t
2664 hfcmulti_interrupt(int intno, void *dev_id)
2665 {
2666 #ifdef IRQCOUNT_DEBUG
2667         static int iq1 = 0, iq2 = 0, iq3 = 0, iq4 = 0,
2668             iq5 = 0, iq6 = 0, iqcnt = 0;
2669 #endif
2670         struct hfc_multi        *hc = dev_id;
2671         struct dchannel         *dch;
2672         u_char                  r_irq_statech, status, r_irq_misc, r_irq_oview;
2673         int                     i;
2674         void __iomem            *plx_acc;
2675         u_short                 wval;
2676         u_char                  e1_syncsta, temp;
2677         u_long                  flags;
2678
2679         if (!hc) {
2680                 printk(KERN_ERR "HFC-multi: Spurious interrupt!\n");
2681                 return IRQ_NONE;
2682         }
2683
2684         spin_lock(&hc->lock);
2685
2686 #ifdef IRQ_DEBUG
2687         if (irqsem)
2688                 printk(KERN_ERR "irq for card %d during irq from "
2689                 "card %d, this is no bug.\n", hc->id + 1, irqsem);
2690         irqsem = hc->id + 1;
2691 #endif
2692 #ifdef CONFIG_MISDN_HFCMULTI_8xx
2693         if (hc->immap->im_cpm.cp_pbdat & hc->pb_irqmsk)
2694                 goto irq_notforus;
2695 #endif
2696         if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
2697                 spin_lock_irqsave(&plx_lock, flags);
2698                 plx_acc = hc->plx_membase + PLX_INTCSR;
2699                 wval = readw(plx_acc);
2700                 spin_unlock_irqrestore(&plx_lock, flags);
2701                 if (!(wval & PLX_INTCSR_LINTI1_STATUS))
2702                         goto irq_notforus;
2703         }
2704
2705         status = HFC_inb_nodebug(hc, R_STATUS);
2706         r_irq_statech = HFC_inb_nodebug(hc, R_IRQ_STATECH);
2707 #ifdef IRQCOUNT_DEBUG
2708         if (r_irq_statech)
2709                 iq1++;
2710         if (status & V_DTMF_STA)
2711                 iq2++;
2712         if (status & V_LOST_STA)
2713                 iq3++;
2714         if (status & V_EXT_IRQSTA)
2715                 iq4++;
2716         if (status & V_MISC_IRQSTA)
2717                 iq5++;
2718         if (status & V_FR_IRQSTA)
2719                 iq6++;
2720         if (iqcnt++ > 5000) {
2721                 printk(KERN_ERR "iq1:%x iq2:%x iq3:%x iq4:%x iq5:%x iq6:%x\n",
2722                     iq1, iq2, iq3, iq4, iq5, iq6);
2723                 iqcnt = 0;
2724         }
2725 #endif
2726
2727         if (!r_irq_statech &&
2728             !(status & (V_DTMF_STA | V_LOST_STA | V_EXT_IRQSTA |
2729             V_MISC_IRQSTA | V_FR_IRQSTA))) {
2730                 /* irq is not for us */
2731                 goto irq_notforus;
2732         }
2733         hc->irqcnt++;
2734         if (r_irq_statech) {
2735                 if (hc->ctype != HFC_TYPE_E1)
2736                         ph_state_irq(hc, r_irq_statech);
2737         }
2738         if (status & V_EXT_IRQSTA)
2739                 ; /* external IRQ */
2740         if (status & V_LOST_STA) {
2741                 /* LOST IRQ */
2742                 HFC_outb(hc, R_INC_RES_FIFO, V_RES_LOST); /* clear irq! */
2743         }
2744         if (status & V_MISC_IRQSTA) {
2745                 /* misc IRQ */
2746                 r_irq_misc = HFC_inb_nodebug(hc, R_IRQ_MISC);
2747                 r_irq_misc &= hc->hw.r_irqmsk_misc; /* ignore disabled irqs */
2748                 if (r_irq_misc & V_STA_IRQ) {
2749                         if (hc->ctype == HFC_TYPE_E1) {
2750                                 /* state machine */
2751                                 dch = hc->chan[hc->dslot].dch;
2752                                 e1_syncsta = HFC_inb_nodebug(hc, R_SYNC_STA);
2753                                 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)
2754                                  && hc->e1_getclock) {
2755                                         if (e1_syncsta & V_FR_SYNC_E1)
2756                                                 hc->syncronized = 1;
2757                                         else
2758                                                 hc->syncronized = 0;
2759                                 }
2760                                 /* undocumented: status changes during read */
2761                                 dch->state = HFC_inb_nodebug(hc, R_E1_RD_STA);
2762                                 while (dch->state != (temp =
2763                                         HFC_inb_nodebug(hc, R_E1_RD_STA))) {
2764                                         if (debug & DEBUG_HFCMULTI_STATE)
2765                                                 printk(KERN_DEBUG "%s: reread "
2766                                                     "STATE because %d!=%d\n",
2767                                                     __func__, temp,
2768                                                     dch->state);
2769                                         dch->state = temp; /* repeat */
2770                                 }
2771                                 dch->state = HFC_inb_nodebug(hc, R_E1_RD_STA)
2772                                         & 0x7;
2773                                 schedule_event(dch, FLG_PHCHANGE);
2774                                 if (debug & DEBUG_HFCMULTI_STATE)
2775                                         printk(KERN_DEBUG
2776                                             "%s: E1 (id=%d) newstate %x\n",
2777                                             __func__, hc->id, dch->state);
2778                                 if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
2779                                         plxsd_checksync(hc, 0);
2780                         }
2781                 }
2782                 if (r_irq_misc & V_TI_IRQ) {
2783                         if (hc->iclock_on)
2784                                 mISDN_clock_update(hc->iclock, poll, NULL);
2785                         handle_timer_irq(hc);
2786                 }
2787
2788                 if (r_irq_misc & V_DTMF_IRQ)
2789                         hfcmulti_dtmf(hc);
2790
2791                 if (r_irq_misc & V_IRQ_PROC) {
2792                         static int irq_proc_cnt;
2793                         if (!irq_proc_cnt++)
2794                                 printk(KERN_DEBUG "%s: got V_IRQ_PROC -"
2795                                     " this should not happen\n", __func__);
2796                 }
2797
2798         }
2799         if (status & V_FR_IRQSTA) {
2800                 /* FIFO IRQ */
2801                 r_irq_oview = HFC_inb_nodebug(hc, R_IRQ_OVIEW);
2802                 for (i = 0; i < 8; i++) {
2803                         if (r_irq_oview & (1 << i))
2804                                 fifo_irq(hc, i);
2805                 }
2806         }
2807
2808 #ifdef IRQ_DEBUG
2809         irqsem = 0;
2810 #endif
2811         spin_unlock(&hc->lock);
2812         return IRQ_HANDLED;
2813
2814 irq_notforus:
2815 #ifdef IRQ_DEBUG
2816         irqsem = 0;
2817 #endif
2818         spin_unlock(&hc->lock);
2819         return IRQ_NONE;
2820 }
2821
2822
2823 /*
2824  * timer callback for D-chan busy resolution. Currently no function
2825  */
2826
2827 static void
2828 hfcmulti_dbusy_timer(struct hfc_multi *hc)
2829 {
2830 }
2831
2832
2833 /*
2834  * activate/deactivate hardware for selected channels and mode
2835  *
2836  * configure B-channel with the given protocol
2837  * ch eqals to the HFC-channel (0-31)
2838  * ch is the number of channel (0-4,4-7,8-11,12-15,16-19,20-23,24-27,28-31
2839  * for S/T, 1-31 for E1)
2840  * the hdlc interrupts will be set/unset
2841  */
2842 static int
2843 mode_hfcmulti(struct hfc_multi *hc, int ch, int protocol, int slot_tx,
2844     int bank_tx, int slot_rx, int bank_rx)
2845 {
2846         int flow_tx = 0, flow_rx = 0, routing = 0;
2847         int oslot_tx, oslot_rx;
2848         int conf;
2849
2850         if (ch < 0 || ch > 31)
2851                 return -EINVAL;
2852         oslot_tx = hc->chan[ch].slot_tx;
2853         oslot_rx = hc->chan[ch].slot_rx;
2854         conf = hc->chan[ch].conf;
2855
2856         if (debug & DEBUG_HFCMULTI_MODE)
2857                 printk(KERN_DEBUG
2858                     "%s: card %d channel %d protocol %x slot old=%d new=%d "
2859                     "bank new=%d (TX) slot old=%d new=%d bank new=%d (RX)\n",
2860                     __func__, hc->id, ch, protocol, oslot_tx, slot_tx,
2861                     bank_tx, oslot_rx, slot_rx, bank_rx);
2862
2863         if (oslot_tx >= 0 && slot_tx != oslot_tx) {
2864                 /* remove from slot */
2865                 if (debug & DEBUG_HFCMULTI_MODE)
2866                         printk(KERN_DEBUG "%s: remove from slot %d (TX)\n",
2867                             __func__, oslot_tx);
2868                 if (hc->slot_owner[oslot_tx<<1] == ch) {
2869                         HFC_outb(hc, R_SLOT, oslot_tx << 1);
2870                         HFC_outb(hc, A_SL_CFG, 0);
2871                         if (hc->ctype != HFC_TYPE_XHFC)
2872                                 HFC_outb(hc, A_CONF, 0);
2873                         hc->slot_owner[oslot_tx<<1] = -1;
2874                 } else {
2875                         if (debug & DEBUG_HFCMULTI_MODE)
2876                                 printk(KERN_DEBUG
2877                                     "%s: we are not owner of this tx slot "
2878                                     "anymore, channel %d is.\n",
2879                                     __func__, hc->slot_owner[oslot_tx<<1]);
2880                 }
2881         }
2882
2883         if (oslot_rx >= 0 && slot_rx != oslot_rx) {
2884                 /* remove from slot */
2885                 if (debug & DEBUG_HFCMULTI_MODE)
2886                         printk(KERN_DEBUG
2887                             "%s: remove from slot %d (RX)\n",
2888                             __func__, oslot_rx);
2889                 if (hc->slot_owner[(oslot_rx << 1) | 1] == ch) {
2890                         HFC_outb(hc, R_SLOT, (oslot_rx << 1) | V_SL_DIR);
2891                         HFC_outb(hc, A_SL_CFG, 0);
2892                         hc->slot_owner[(oslot_rx << 1) | 1] = -1;
2893                 } else {
2894                         if (debug & DEBUG_HFCMULTI_MODE)
2895                                 printk(KERN_DEBUG
2896                                     "%s: we are not owner of this rx slot "
2897                                     "anymore, channel %d is.\n",
2898                                     __func__,
2899                                     hc->slot_owner[(oslot_rx << 1) | 1]);
2900                 }
2901         }
2902
2903         if (slot_tx < 0) {
2904                 flow_tx = 0x80; /* FIFO->ST */
2905                 /* disable pcm slot */
2906                 hc->chan[ch].slot_tx = -1;
2907                 hc->chan[ch].bank_tx = 0;
2908         } else {
2909                 /* set pcm slot */
2910                 if (hc->chan[ch].txpending)
2911                         flow_tx = 0x80; /* FIFO->ST */
2912                 else
2913                         flow_tx = 0xc0; /* PCM->ST */
2914                 /* put on slot */
2915                 routing = bank_tx ? 0xc0 : 0x80;
2916                 if (conf >= 0 || bank_tx > 1)
2917                         routing = 0x40; /* loop */
2918                 if (debug & DEBUG_HFCMULTI_MODE)
2919                         printk(KERN_DEBUG "%s: put channel %d to slot %d bank"
2920                             " %d flow %02x routing %02x conf %d (TX)\n",
2921                             __func__, ch, slot_tx, bank_tx,
2922                             flow_tx, routing, conf);
2923                 HFC_outb(hc, R_SLOT, slot_tx << 1);
2924                 HFC_outb(hc, A_SL_CFG, (ch<<1) | routing);
2925                 if (hc->ctype != HFC_TYPE_XHFC)
2926                         HFC_outb(hc, A_CONF,
2927                                 (conf < 0) ? 0 : (conf | V_CONF_SL));
2928                 hc->slot_owner[slot_tx << 1] = ch;
2929                 hc->chan[ch].slot_tx = slot_tx;
2930                 hc->chan[ch].bank_tx = bank_tx;
2931         }
2932         if (slot_rx < 0) {
2933                 /* disable pcm slot */
2934                 flow_rx = 0x80; /* ST->FIFO */
2935                 hc->chan[ch].slot_rx = -1;
2936                 hc->chan[ch].bank_rx = 0;
2937         } else {
2938                 /* set pcm slot */
2939                 if (hc->chan[ch].txpending)
2940                         flow_rx = 0x80; /* ST->FIFO */
2941                 else
2942                         flow_rx = 0xc0; /* ST->(FIFO,PCM) */
2943                 /* put on slot */
2944                 routing = bank_rx ? 0x80 : 0xc0; /* reversed */
2945                 if (conf >= 0 || bank_rx > 1)
2946                         routing = 0x40; /* loop */
2947                 if (debug & DEBUG_HFCMULTI_MODE)
2948                         printk(KERN_DEBUG "%s: put channel %d to slot %d bank"
2949                             " %d flow %02x routing %02x conf %d (RX)\n",
2950                             __func__, ch, slot_rx, bank_rx,
2951                             flow_rx, routing, conf);
2952                 HFC_outb(hc, R_SLOT, (slot_rx<<1) | V_SL_DIR);
2953                 HFC_outb(hc, A_SL_CFG, (ch<<1) | V_CH_DIR | routing);
2954                 hc->slot_owner[(slot_rx<<1)|1] = ch;
2955                 hc->chan[ch].slot_rx = slot_rx;
2956                 hc->chan[ch].bank_rx = bank_rx;
2957         }
2958
2959         switch (protocol) {
2960         case (ISDN_P_NONE):
2961                 /* disable TX fifo */
2962                 HFC_outb(hc, R_FIFO, ch << 1);
2963                 HFC_wait(hc);
2964                 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 | V_IFF);
2965                 HFC_outb(hc, A_SUBCH_CFG, 0);
2966                 HFC_outb(hc, A_IRQ_MSK, 0);
2967                 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2968                 HFC_wait(hc);
2969                 /* disable RX fifo */
2970                 HFC_outb(hc, R_FIFO, (ch<<1)|1);
2971                 HFC_wait(hc);
2972                 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00);
2973                 HFC_outb(hc, A_SUBCH_CFG, 0);
2974                 HFC_outb(hc, A_IRQ_MSK, 0);
2975                 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2976                 HFC_wait(hc);
2977                 if (hc->chan[ch].bch && hc->ctype != HFC_TYPE_E1) {
2978                         hc->hw.a_st_ctrl0[hc->chan[ch].port] &=
2979                             ((ch & 0x3) == 0) ? ~V_B1_EN : ~V_B2_EN;
2980                         HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
2981                         /* undocumented: delay after R_ST_SEL */
2982                         udelay(1);
2983                         HFC_outb(hc, A_ST_CTRL0,
2984                             hc->hw.a_st_ctrl0[hc->chan[ch].port]);
2985                 }
2986                 if (hc->chan[ch].bch) {
2987                         test_and_clear_bit(FLG_HDLC, &hc->chan[ch].bch->Flags);
2988                         test_and_clear_bit(FLG_TRANSPARENT,
2989                             &hc->chan[ch].bch->Flags);
2990                 }
2991                 break;
2992         case (ISDN_P_B_RAW): /* B-channel */
2993
2994                 if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
2995                     (hc->chan[ch].slot_rx < 0) &&
2996                     (hc->chan[ch].slot_tx < 0)) {
2997
2998                         printk(KERN_DEBUG
2999                             "Setting B-channel %d to echo cancelable "
3000                             "state on PCM slot %d\n", ch,
3001                             ((ch / 4) * 8) + ((ch % 4) * 4) + 1);
3002                         printk(KERN_DEBUG
3003                             "Enabling pass through for channel\n");
3004                         vpm_out(hc, ch, ((ch / 4) * 8) +
3005                             ((ch % 4) * 4) + 1, 0x01);
3006                         /* rx path */
3007                         /* S/T -> PCM */
3008                         HFC_outb(hc, R_FIFO, (ch << 1));
3009                         HFC_wait(hc);
3010                         HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF);
3011                         HFC_outb(hc, R_SLOT, (((ch / 4) * 8) +
3012                             ((ch % 4) * 4) + 1) << 1);
3013                         HFC_outb(hc, A_SL_CFG, 0x80 | (ch << 1));
3014
3015                         /* PCM -> FIFO */
3016                         HFC_outb(hc, R_FIFO, 0x20 | (ch << 1) | 1);
3017                         HFC_wait(hc);
3018                         HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF);
3019                         HFC_outb(hc, A_SUBCH_CFG, 0);
3020                         HFC_outb(hc, A_IRQ_MSK, 0);
3021                         HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3022                         HFC_wait(hc);
3023                         HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) +
3024                             ((ch % 4) * 4) + 1) << 1) | 1);
3025                         HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1) | 1);
3026
3027                         /* tx path */
3028                         /* PCM -> S/T */
3029                         HFC_outb(hc, R_FIFO, (ch << 1) | 1);
3030                         HFC_wait(hc);
3031                         HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF);
3032                         HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) +
3033                             ((ch % 4) * 4)) << 1) | 1);
3034                         HFC_outb(hc, A_SL_CFG, 0x80 | 0x40 | (ch << 1) | 1);
3035
3036                         /* FIFO -> PCM */
3037                         HFC_outb(hc, R_FIFO, 0x20 | (ch << 1));
3038                         HFC_wait(hc);
3039                         HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF);
3040                         HFC_outb(hc, A_SUBCH_CFG, 0);
3041                         HFC_outb(hc, A_IRQ_MSK, 0);
3042                         HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3043                         HFC_wait(hc);
3044                         /* tx silence */
3045                         HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
3046                         HFC_outb(hc, R_SLOT, (((ch / 4) * 8) +
3047                             ((ch % 4) * 4)) << 1);
3048                         HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1));
3049                 } else {
3050                         /* enable TX fifo */
3051                         HFC_outb(hc, R_FIFO, ch << 1);
3052                         HFC_wait(hc);
3053                         if (hc->ctype == HFC_TYPE_XHFC)
3054                                 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x07 << 2 |
3055                                         V_HDLC_TRP | V_IFF);
3056                                         /* Enable FIFO, no interrupt */
3057                         else
3058                                 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 |
3059                                         V_HDLC_TRP | V_IFF);
3060                         HFC_outb(hc, A_SUBCH_CFG, 0);
3061                         HFC_outb(hc, A_IRQ_MSK, 0);
3062                         HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3063                         HFC_wait(hc);
3064                         /* tx silence */
3065                         HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
3066                         /* enable RX fifo */
3067                         HFC_outb(hc, R_FIFO, (ch<<1)|1);
3068                         HFC_wait(hc);
3069                         if (hc->ctype == HFC_TYPE_XHFC)
3070                                 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x07 << 2 |
3071                                         V_HDLC_TRP);
3072                                         /* Enable FIFO, no interrupt*/
3073                         else
3074                                 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00 |
3075                                                 V_HDLC_TRP);
3076                         HFC_outb(hc, A_SUBCH_CFG, 0);
3077                         HFC_outb(hc, A_IRQ_MSK, 0);
3078                         HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3079                         HFC_wait(hc);
3080                 }
3081                 if (hc->ctype != HFC_TYPE_E1) {
3082                         hc->hw.a_st_ctrl0[hc->chan[ch].port] |=
3083                             ((ch & 0x3) == 0) ? V_B1_EN : V_B2_EN;
3084                         HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
3085                         /* undocumented: delay after R_ST_SEL */
3086                         udelay(1);
3087                         HFC_outb(hc, A_ST_CTRL0,
3088                             hc->hw.a_st_ctrl0[hc->chan[ch].port]);
3089                 }
3090                 if (hc->chan[ch].bch)
3091                         test_and_set_bit(FLG_TRANSPARENT,
3092                             &hc->chan[ch].bch->Flags);
3093                 break;
3094         case (ISDN_P_B_HDLC): /* B-channel */
3095         case (ISDN_P_TE_S0): /* D-channel */
3096         case (ISDN_P_NT_S0):
3097         case (ISDN_P_TE_E1):
3098         case (ISDN_P_NT_E1):
3099                 /* enable TX fifo */
3100                 HFC_outb(hc, R_FIFO, ch<<1);
3101                 HFC_wait(hc);
3102                 if (hc->ctype == HFC_TYPE_E1 || hc->chan[ch].bch) {
3103                         /* E1 or B-channel */
3104                         HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04);
3105                         HFC_outb(hc, A_SUBCH_CFG, 0);
3106                 } else {
3107                         /* D-Channel without HDLC fill flags */
3108                         HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04 | V_IFF);
3109                         HFC_outb(hc, A_SUBCH_CFG, 2);
3110                 }
3111                 HFC_outb(hc, A_IRQ_MSK, V_IRQ);
3112                 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3113                 HFC_wait(hc);
3114                 /* enable RX fifo */
3115                 HFC_outb(hc, R_FIFO, (ch<<1)|1);
3116                 HFC_wait(hc);
3117                 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x04);
3118                 if (hc->ctype == HFC_TYPE_E1 || hc->chan[ch].bch)
3119                         HFC_outb(hc, A_SUBCH_CFG, 0); /* full 8 bits */
3120                 else
3121                         HFC_outb(hc, A_SUBCH_CFG, 2); /* 2 bits dchannel */
3122                 HFC_outb(hc, A_IRQ_MSK, V_IRQ);
3123                 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3124                 HFC_wait(hc);
3125                 if (hc->chan[ch].bch) {
3126                         test_and_set_bit(FLG_HDLC, &hc->chan[ch].bch->Flags);
3127                         if (hc->ctype != HFC_TYPE_E1) {
3128                                 hc->hw.a_st_ctrl0[hc->chan[ch].port] |=
3129                                   ((ch&0x3) == 0) ? V_B1_EN : V_B2_EN;
3130                                 HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
3131                                 /* undocumented: delay after R_ST_SEL */
3132                                 udelay(1);
3133                                 HFC_outb(hc, A_ST_CTRL0,
3134                                   hc->hw.a_st_ctrl0[hc->chan[ch].port]);
3135                         }
3136                 }
3137                 break;
3138         default:
3139                 printk(KERN_DEBUG "%s: protocol not known %x\n",
3140                     __func__, protocol);
3141                 hc->chan[ch].protocol = ISDN_P_NONE;
3142                 return -ENOPROTOOPT;
3143         }
3144         hc->chan[ch].protocol = protocol;
3145         return 0;
3146 }
3147
3148
3149 /*
3150  * connect/disconnect PCM
3151  */
3152
3153 static void
3154 hfcmulti_pcm(struct hfc_multi *hc, int ch, int slot_tx, int bank_tx,
3155     int slot_rx, int bank_rx)
3156 {
3157         if (slot_tx < 0 || slot_rx < 0 || bank_tx < 0 || bank_rx < 0) {
3158                 /* disable PCM */
3159                 mode_hfcmulti(hc, ch, hc->chan[ch].protocol, -1, 0, -1, 0);
3160                 return;
3161         }
3162
3163         /* enable pcm */
3164         mode_hfcmulti(hc, ch, hc->chan[ch].protocol, slot_tx, bank_tx,
3165                 slot_rx, bank_rx);
3166 }
3167
3168 /*
3169  * set/disable conference
3170  */
3171
3172 static void
3173 hfcmulti_conf(struct hfc_multi *hc, int ch, int num)
3174 {
3175         if (num >= 0 && num <= 7)
3176                 hc->chan[ch].conf = num;
3177         else
3178                 hc->chan[ch].conf = -1;
3179         mode_hfcmulti(hc, ch, hc->chan[ch].protocol, hc->chan[ch].slot_tx,
3180             hc->chan[ch].bank_tx, hc->chan[ch].slot_rx,
3181             hc->chan[ch].bank_rx);
3182 }
3183
3184
3185 /*
3186  * set/disable sample loop
3187  */
3188
3189 /* NOTE: this function is experimental and therefore disabled */
3190
3191 /*
3192  * Layer 1 callback function
3193  */
3194 static int
3195 hfcm_l1callback(struct dchannel *dch, u_int cmd)
3196 {
3197         struct hfc_multi        *hc = dch->hw;
3198         u_long  flags;
3199
3200         switch (cmd) {
3201         case INFO3_P8:
3202         case INFO3_P10:
3203                 break;
3204         case HW_RESET_REQ:
3205                 /* start activation */
3206                 spin_lock_irqsave(&hc->lock, flags);
3207                 if (hc->ctype == HFC_TYPE_E1) {
3208                         if (debug & DEBUG_HFCMULTI_MSG)
3209                                 printk(KERN_DEBUG
3210                                     "%s: HW_RESET_REQ no BRI\n",
3211                                     __func__);
3212                 } else {
3213                         HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3214                         /* undocumented: delay after R_ST_SEL */
3215                         udelay(1);
3216                         HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 3); /* F3 */
3217                         udelay(6); /* wait at least 5,21us */
3218                         HFC_outb(hc, A_ST_WR_STATE, 3);
3219                         HFC_outb(hc, A_ST_WR_STATE, 3 | (V_ST_ACT*3));
3220                                 /* activate */
3221                 }
3222                 spin_unlock_irqrestore(&hc->lock, flags);
3223                 l1_event(dch->l1, HW_POWERUP_IND);
3224                 break;
3225         case HW_DEACT_REQ:
3226                 /* start deactivation */
3227                 spin_lock_irqsave(&hc->lock, flags);
3228                 if (hc->ctype == HFC_TYPE_E1) {
3229                         if (debug & DEBUG_HFCMULTI_MSG)
3230                                 printk(KERN_DEBUG
3231                                     "%s: HW_DEACT_REQ no BRI\n",
3232                                     __func__);
3233                 } else {
3234                         HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3235                         /* undocumented: delay after R_ST_SEL */
3236                         udelay(1);
3237                         HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT*2);
3238                                 /* deactivate */
3239                         if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3240                                 hc->syncronized &=
3241                                    ~(1 << hc->chan[dch->slot].port);
3242                                 plxsd_checksync(hc, 0);
3243                         }
3244                 }
3245                 skb_queue_purge(&dch->squeue);
3246                 if (dch->tx_skb) {
3247                         dev_kfree_skb(dch->tx_skb);
3248                         dch->tx_skb = NULL;
3249                 }
3250                 dch->tx_idx = 0;
3251                 if (dch->rx_skb) {
3252                         dev_kfree_skb(dch->rx_skb);
3253                         dch->rx_skb = NULL;
3254                 }
3255                 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
3256                 if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
3257                         del_timer(&dch->timer);
3258                 spin_unlock_irqrestore(&hc->lock, flags);
3259                 break;
3260         case HW_POWERUP_REQ:
3261                 spin_lock_irqsave(&hc->lock, flags);
3262                 if (hc->ctype == HFC_TYPE_E1) {
3263                         if (debug & DEBUG_HFCMULTI_MSG)
3264                                 printk(KERN_DEBUG
3265                                     "%s: HW_POWERUP_REQ no BRI\n",
3266                                     __func__);
3267                 } else {
3268                         HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3269                         /* undocumented: delay after R_ST_SEL */
3270                         udelay(1);
3271                         HFC_outb(hc, A_ST_WR_STATE, 3 | 0x10); /* activate */
3272                         udelay(6); /* wait at least 5,21us */
3273                         HFC_outb(hc, A_ST_WR_STATE, 3); /* activate */
3274                 }
3275                 spin_unlock_irqrestore(&hc->lock, flags);
3276                 break;
3277         case PH_ACTIVATE_IND:
3278                 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3279                 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
3280                         GFP_ATOMIC);
3281                 break;
3282         case PH_DEACTIVATE_IND:
3283                 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3284                 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
3285                         GFP_ATOMIC);
3286                 break;
3287         default:
3288                 if (dch->debug & DEBUG_HW)
3289                         printk(KERN_DEBUG "%s: unknown command %x\n",
3290                             __func__, cmd);
3291                 return -1;
3292         }
3293         return 0;
3294 }
3295
3296 /*
3297  * Layer2 -> Layer 1 Transfer
3298  */
3299
3300 static int
3301 handle_dmsg(struct mISDNchannel *ch, struct sk_buff *skb)
3302 {
3303         struct mISDNdevice      *dev = container_of(ch, struct mISDNdevice, D);
3304         struct dchannel         *dch = container_of(dev, struct dchannel, dev);
3305         struct hfc_multi        *hc = dch->hw;
3306         struct mISDNhead        *hh = mISDN_HEAD_P(skb);
3307         int                     ret = -EINVAL;
3308         unsigned int            id;
3309         u_long                  flags;
3310
3311         switch (hh->prim) {
3312         case PH_DATA_REQ:
3313                 if (skb->len < 1)
3314                         break;
3315                 spin_lock_irqsave(&hc->lock, flags);
3316                 ret = dchannel_senddata(dch, skb);
3317                 if (ret > 0) { /* direct TX */
3318                         id = hh->id; /* skb can be freed */
3319                         hfcmulti_tx(hc, dch->slot);
3320                         ret = 0;
3321                         /* start fifo */
3322                         HFC_outb(hc, R_FIFO, 0);
3323                         HFC_wait(hc);
3324                         spin_unlock_irqrestore(&hc->lock, flags);
3325                         queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
3326                 } else
3327                         spin_unlock_irqrestore(&hc->lock, flags);
3328                 return ret;
3329         case PH_ACTIVATE_REQ:
3330                 if (dch->dev.D.protocol != ISDN_P_TE_S0) {
3331                         spin_lock_irqsave(&hc->lock, flags);
3332                         ret = 0;
3333                         if (debug & DEBUG_HFCMULTI_MSG)
3334                                 printk(KERN_DEBUG
3335                                     "%s: PH_ACTIVATE port %d (0..%d)\n",
3336                                     __func__, hc->chan[dch->slot].port,
3337                                     hc->ports-1);
3338                         /* start activation */
3339                         if (hc->ctype == HFC_TYPE_E1) {
3340                                 ph_state_change(dch);
3341                                 if (debug & DEBUG_HFCMULTI_STATE)
3342                                         printk(KERN_DEBUG
3343                                             "%s: E1 report state %x \n",
3344                                             __func__, dch->state);
3345                         } else {
3346                                 HFC_outb(hc, R_ST_SEL,
3347                                     hc->chan[dch->slot].port);
3348                                 /* undocumented: delay after R_ST_SEL */
3349                                 udelay(1);
3350                                 HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 1);
3351                                     /* G1 */
3352                                 udelay(6); /* wait at least 5,21us */
3353                                 HFC_outb(hc, A_ST_WR_STATE, 1);
3354                                 HFC_outb(hc, A_ST_WR_STATE, 1 |
3355                                     (V_ST_ACT*3)); /* activate */
3356                                 dch->state = 1;
3357                         }
3358                         spin_unlock_irqrestore(&hc->lock, flags);
3359                 } else
3360                         ret = l1_event(dch->l1, hh->prim);
3361                 break;
3362         case PH_DEACTIVATE_REQ:
3363                 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
3364                 if (dch->dev.D.protocol != ISDN_P_TE_S0) {
3365                         spin_lock_irqsave(&hc->lock, flags);
3366                         if (debug & DEBUG_HFCMULTI_MSG)
3367                                 printk(KERN_DEBUG
3368                                     "%s: PH_DEACTIVATE port %d (0..%d)\n",
3369                                     __func__, hc->chan[dch->slot].port,
3370                                     hc->ports-1);
3371                         /* start deactivation */
3372                         if (hc->ctype == HFC_TYPE_E1) {
3373                                 if (debug & DEBUG_HFCMULTI_MSG)
3374                                         printk(KERN_DEBUG
3375                                             "%s: PH_DEACTIVATE no BRI\n",
3376                                             __func__);
3377                         } else {
3378                                 HFC_outb(hc, R_ST_SEL,
3379                                     hc->chan[dch->slot].port);
3380                                 /* undocumented: delay after R_ST_SEL */
3381                                 udelay(1);
3382                                 HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT * 2);
3383                                     /* deactivate */
3384                                 dch->state = 1;
3385                         }
3386                         skb_queue_purge(&dch->squeue);
3387                         if (dch->tx_skb) {
3388                                 dev_kfree_skb(dch->tx_skb);
3389                                 dch->tx_skb = NULL;
3390                         }
3391                         dch->tx_idx = 0;
3392                         if (dch->rx_skb) {
3393                                 dev_kfree_skb(dch->rx_skb);
3394                                 dch->rx_skb = NULL;
3395                         }
3396                         test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
3397                         if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
3398                                 del_timer(&dch->timer);
3399 #ifdef FIXME
3400                         if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
3401                                 dchannel_sched_event(&hc->dch, D_CLEARBUSY);
3402 #endif
3403                         ret = 0;
3404                         spin_unlock_irqrestore(&hc->lock, flags);
3405                 } else
3406                         ret = l1_event(dch->l1, hh->prim);
3407                 break;
3408         }
3409         if (!ret)
3410                 dev_kfree_skb(skb);
3411         return ret;
3412 }
3413
3414 static void
3415 deactivate_bchannel(struct bchannel *bch)
3416 {
3417         struct hfc_multi        *hc = bch->hw;
3418         u_long                  flags;
3419
3420         spin_lock_irqsave(&hc->lock, flags);
3421         mISDN_clear_bchannel(bch);
3422         hc->chan[bch->slot].coeff_count = 0;
3423         hc->chan[bch->slot].rx_off = 0;
3424         hc->chan[bch->slot].conf = -1;
3425         mode_hfcmulti(hc, bch->slot, ISDN_P_NONE, -1, 0, -1, 0);
3426         spin_unlock_irqrestore(&hc->lock, flags);
3427 }
3428
3429 static int
3430 handle_bmsg(struct mISDNchannel *ch, struct sk_buff *skb)
3431 {
3432         struct bchannel         *bch = container_of(ch, struct bchannel, ch);
3433         struct hfc_multi        *hc = bch->hw;
3434         int                     ret = -EINVAL;
3435         struct mISDNhead        *hh = mISDN_HEAD_P(skb);
3436         unsigned int            id;
3437         u_long                  flags;
3438
3439         switch (hh->prim) {
3440         case PH_DATA_REQ:
3441                 if (!skb->len)
3442                         break;
3443                 spin_lock_irqsave(&hc->lock, flags);
3444                 ret = bchannel_senddata(bch, skb);
3445                 if (ret > 0) { /* direct TX */
3446                         id = hh->id; /* skb can be freed */
3447                         hfcmulti_tx(hc, bch->slot);
3448                         ret = 0;
3449                         /* start fifo */
3450                         HFC_outb_nodebug(hc, R_FIFO, 0);
3451                         HFC_wait_nodebug(hc);
3452                         if (!test_bit(FLG_TRANSPARENT, &bch->Flags)) {
3453                                 spin_unlock_irqrestore(&hc->lock, flags);
3454                                 queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
3455                         } else
3456                                 spin_unlock_irqrestore(&hc->lock, flags);
3457                 } else
3458                         spin_unlock_irqrestore(&hc->lock, flags);
3459                 return ret;
3460         case PH_ACTIVATE_REQ:
3461                 if (debug & DEBUG_HFCMULTI_MSG)
3462                         printk(KERN_DEBUG "%s: PH_ACTIVATE ch %d (0..32)\n",
3463                                 __func__, bch->slot);
3464                 spin_lock_irqsave(&hc->lock, flags);
3465                 /* activate B-channel if not already activated */
3466                 if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
3467                         hc->chan[bch->slot].txpending = 0;
3468                         ret = mode_hfcmulti(hc, bch->slot,
3469                                 ch->protocol,
3470                                 hc->chan[bch->slot].slot_tx,
3471                                 hc->chan[bch->slot].bank_tx,
3472                                 hc->chan[bch->slot].slot_rx,
3473                                 hc->chan[bch->slot].bank_rx);
3474                         if (!ret) {
3475                                 if (ch->protocol == ISDN_P_B_RAW && !hc->dtmf
3476                                         && test_bit(HFC_CHIP_DTMF, &hc->chip)) {
3477                                         /* start decoder */
3478                                         hc->dtmf = 1;
3479                                         if (debug & DEBUG_HFCMULTI_DTMF)
3480                                                 printk(KERN_DEBUG
3481                                                     "%s: start dtmf decoder\n",
3482                                                         __func__);
3483                                         HFC_outb(hc, R_DTMF, hc->hw.r_dtmf |
3484                                             V_RST_DTMF);
3485                                 }
3486                         }
3487                 } else
3488                         ret = 0;
3489                 spin_unlock_irqrestore(&hc->lock, flags);
3490                 if (!ret)
3491                         _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0, NULL,
3492                                 GFP_KERNEL);
3493                 break;
3494         case PH_CONTROL_REQ:
3495                 spin_lock_irqsave(&hc->lock, flags);
3496                 switch (hh->id) {
3497                 case HFC_SPL_LOOP_ON: /* set sample loop */
3498                         if (debug & DEBUG_HFCMULTI_MSG)
3499                                 printk(KERN_DEBUG
3500                                     "%s: HFC_SPL_LOOP_ON (len = %d)\n",
3501                                     __func__, skb->len);
3502                         ret = 0;
3503                         break;
3504                 case HFC_SPL_LOOP_OFF: /* set silence */
3505                         if (debug & DEBUG_HFCMULTI_MSG)
3506                                 printk(KERN_DEBUG "%s: HFC_SPL_LOOP_OFF\n",
3507                                     __func__);
3508                         ret = 0;
3509                         break;
3510                 default:
3511                         printk(KERN_ERR
3512                              "%s: unknown PH_CONTROL_REQ info %x\n",
3513                              __func__, hh->id);
3514                         ret = -EINVAL;
3515                 }
3516                 spin_unlock_irqrestore(&hc->lock, flags);
3517                 break;
3518         case PH_DEACTIVATE_REQ:
3519                 deactivate_bchannel(bch); /* locked there */
3520                 _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0, NULL,
3521                         GFP_KERNEL);
3522                 ret = 0;
3523                 break;
3524         }
3525         if (!ret)
3526                 dev_kfree_skb(skb);
3527         return ret;
3528 }
3529
3530 /*
3531  * bchannel control function
3532  */
3533 static int
3534 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
3535 {
3536         int                     ret = 0;
3537         struct dsp_features     *features =
3538                 (struct dsp_features *)(*((u_long *)&cq->p1));
3539         struct hfc_multi        *hc = bch->hw;
3540         int                     slot_tx;
3541         int                     bank_tx;
3542         int                     slot_rx;
3543         int                     bank_rx;
3544         int                     num;
3545
3546         switch (cq->op) {
3547         case MISDN_CTRL_GETOP:
3548                 cq->op = MISDN_CTRL_HFC_OP | MISDN_CTRL_HW_FEATURES_OP
3549                         | MISDN_CTRL_RX_OFF | MISDN_CTRL_FILL_EMPTY;
3550                 break;
3551         case MISDN_CTRL_RX_OFF: /* turn off / on rx stream */
3552                 hc->chan[bch->slot].rx_off = !!cq->p1;
3553                 if (!hc->chan[bch->slot].rx_off) {
3554                         /* reset fifo on rx on */
3555                         HFC_outb_nodebug(hc, R_FIFO, (bch->slot << 1) | 1);
3556                         HFC_wait_nodebug(hc);
3557                         HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
3558                         HFC_wait_nodebug(hc);
3559                 }
3560                 if (debug & DEBUG_HFCMULTI_MSG)
3561                         printk(KERN_DEBUG "%s: RX_OFF request (nr=%d off=%d)\n",
3562                             __func__, bch->nr, hc->chan[bch->slot].rx_off);
3563                 break;
3564         case MISDN_CTRL_FILL_EMPTY: /* fill fifo, if empty */
3565                 test_and_set_bit(FLG_FILLEMPTY, &bch->Flags);
3566                 if (debug & DEBUG_HFCMULTI_MSG)
3567                         printk(KERN_DEBUG "%s: FILL_EMPTY request (nr=%d "
3568                                 "off=%d)\n", __func__, bch->nr, !!cq->p1);
3569                 break;
3570         case MISDN_CTRL_HW_FEATURES: /* fill features structure */
3571                 if (debug & DEBUG_HFCMULTI_MSG)
3572                         printk(KERN_DEBUG "%s: HW_FEATURE request\n",
3573                             __func__);
3574                 /* create confirm */
3575                 features->hfc_id = hc->id;
3576                 if (test_bit(HFC_CHIP_DTMF, &hc->chip))
3577                         features->hfc_dtmf = 1;
3578                 if (test_bit(HFC_CHIP_CONF, &hc->chip))
3579                         features->hfc_conf = 1;
3580                 features->hfc_loops = 0;
3581                 if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
3582                         features->hfc_echocanhw = 1;
3583                 } else {
3584                         features->pcm_id = hc->pcm;
3585                         features->pcm_slots = hc->slots;
3586                         features->pcm_banks = 2;
3587                 }
3588                 break;
3589         case MISDN_CTRL_HFC_PCM_CONN: /* connect to pcm timeslot (0..N) */
3590                 slot_tx = cq->p1 & 0xff;
3591                 bank_tx = cq->p1 >> 8;
3592                 slot_rx = cq->p2 & 0xff;
3593                 bank_rx = cq->p2 >> 8;
3594                 if (debug & DEBUG_HFCMULTI_MSG)
3595                         printk(KERN_DEBUG
3596                             "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3597                             "slot %d bank %d (RX)\n",
3598                             __func__, slot_tx, bank_tx,
3599                             slot_rx, bank_rx);
3600                 if (slot_tx < hc->slots && bank_tx <= 2 &&
3601                     slot_rx < hc->slots && bank_rx <= 2)
3602                         hfcmulti_pcm(hc, bch->slot,
3603                             slot_tx, bank_tx, slot_rx, bank_rx);
3604                 else {
3605                         printk(KERN_WARNING
3606                             "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3607                             "slot %d bank %d (RX) out of range\n",
3608                             __func__, slot_tx, bank_tx,
3609                             slot_rx, bank_rx);
3610                         ret = -EINVAL;
3611                 }
3612                 break;
3613         case MISDN_CTRL_HFC_PCM_DISC: /* release interface from pcm timeslot */
3614                 if (debug & DEBUG_HFCMULTI_MSG)
3615                         printk(KERN_DEBUG "%s: HFC_PCM_DISC\n",
3616                             __func__);
3617                 hfcmulti_pcm(hc, bch->slot, -1, 0, -1, 0);
3618                 break;
3619         case MISDN_CTRL_HFC_CONF_JOIN: /* join conference (0..7) */
3620                 num = cq->p1 & 0xff;
3621                 if (debug & DEBUG_HFCMULTI_MSG)
3622                         printk(KERN_DEBUG "%s: HFC_CONF_JOIN conf %d\n",
3623                             __func__, num);
3624                 if (num <= 7)
3625                         hfcmulti_conf(hc, bch->slot, num);
3626                 else {
3627                         printk(KERN_WARNING
3628                             "%s: HW_CONF_JOIN conf %d out of range\n",
3629                             __func__, num);
3630                         ret = -EINVAL;
3631                 }
3632                 break;
3633         case MISDN_CTRL_HFC_CONF_SPLIT: /* split conference */
3634                 if (debug & DEBUG_HFCMULTI_MSG)
3635                         printk(KERN_DEBUG "%s: HFC_CONF_SPLIT\n", __func__);
3636                 hfcmulti_conf(hc, bch->slot, -1);
3637                 break;
3638         case MISDN_CTRL_HFC_ECHOCAN_ON:
3639                 if (debug & DEBUG_HFCMULTI_MSG)
3640                         printk(KERN_DEBUG "%s: HFC_ECHOCAN_ON\n", __func__);
3641                 if (test_bit(HFC_CHIP_B410P, &hc->chip))
3642                         vpm_echocan_on(hc, bch->slot, cq->p1);
3643                 else
3644                         ret = -EINVAL;
3645                 break;
3646
3647         case MISDN_CTRL_HFC_ECHOCAN_OFF:
3648                 if (debug & DEBUG_HFCMULTI_MSG)
3649                         printk(KERN_DEBUG "%s: HFC_ECHOCAN_OFF\n",
3650                                 __func__);
3651                 if (test_bit(HFC_CHIP_B410P, &hc->chip))
3652                         vpm_echocan_off(hc, bch->slot);
3653                 else
3654                         ret = -EINVAL;
3655                 break;
3656         default:
3657                 printk(KERN_WARNING "%s: unknown Op %x\n",
3658                     __func__, cq->op);
3659                 ret = -EINVAL;
3660                 break;
3661         }
3662         return ret;
3663 }
3664
3665 static int
3666 hfcm_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
3667 {
3668         struct bchannel         *bch = container_of(ch, struct bchannel, ch);
3669         struct hfc_multi        *hc = bch->hw;
3670         int                     err = -EINVAL;
3671         u_long  flags;
3672
3673         if (bch->debug & DEBUG_HW)
3674                 printk(KERN_DEBUG "%s: cmd:%x %p\n",
3675                     __func__, cmd, arg);
3676         switch (cmd) {
3677         case CLOSE_CHANNEL:
3678                 test_and_clear_bit(FLG_OPEN, &bch->Flags);
3679                 if (test_bit(FLG_ACTIVE, &bch->Flags))
3680                         deactivate_bchannel(bch); /* locked there */
3681                 ch->protocol = ISDN_P_NONE;
3682                 ch->peer = NULL;
3683                 module_put(THIS_MODULE);
3684                 err = 0;
3685                 break;
3686         case CONTROL_CHANNEL:
3687                 spin_lock_irqsave(&hc->lock, flags);
3688                 err = channel_bctrl(bch, arg);
3689                 spin_unlock_irqrestore(&hc->lock, flags);
3690                 break;
3691         default:
3692                 printk(KERN_WARNING "%s: unknown prim(%x)\n",
3693                         __func__, cmd);
3694         }
3695         return err;
3696 }
3697
3698 /*
3699  * handle D-channel events
3700  *
3701  * handle state change event
3702  */
3703 static void
3704 ph_state_change(struct dchannel *dch)
3705 {
3706         struct hfc_multi *hc;
3707         int ch, i;
3708
3709         if (!dch) {
3710                 printk(KERN_WARNING "%s: ERROR given dch is NULL\n", __func__);
3711                 return;
3712         }
3713         hc = dch->hw;
3714         ch = dch->slot;
3715
3716         if (hc->ctype == HFC_TYPE_E1) {
3717                 if (dch->dev.D.protocol == ISDN_P_TE_E1) {
3718                         if (debug & DEBUG_HFCMULTI_STATE)
3719                                 printk(KERN_DEBUG
3720                                     "%s: E1 TE (id=%d) newstate %x\n",
3721                                     __func__, hc->id, dch->state);
3722                 } else {
3723                         if (debug & DEBUG_HFCMULTI_STATE)
3724                                 printk(KERN_DEBUG
3725                                     "%s: E1 NT (id=%d) newstate %x\n",
3726                                     __func__, hc->id, dch->state);
3727                 }
3728                 switch (dch->state) {
3729                 case (1):
3730                         if (hc->e1_state != 1) {
3731                                 for (i = 1; i <= 31; i++) {
3732                                         /* reset fifos on e1 activation */
3733                                         HFC_outb_nodebug(hc, R_FIFO,
3734                                                 (i << 1) | 1);
3735                                         HFC_wait_nodebug(hc);
3736                                         HFC_outb_nodebug(hc, R_INC_RES_FIFO,
3737                                                 V_RES_F);
3738                                         HFC_wait_nodebug(hc);
3739                                 }
3740                         }
3741                         test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3742                         _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
3743                             MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3744                         break;
3745
3746                 default:
3747                         if (hc->e1_state != 1)
3748                                 return;
3749                         test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3750                         _queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
3751                             MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3752                 }
3753                 hc->e1_state = dch->state;
3754         } else {
3755                 if (dch->dev.D.protocol == ISDN_P_TE_S0) {
3756                         if (debug & DEBUG_HFCMULTI_STATE)
3757                                 printk(KERN_DEBUG
3758                                     "%s: S/T TE newstate %x\n",
3759                                     __func__, dch->state);
3760                         switch (dch->state) {
3761                         case (0):
3762                                 l1_event(dch->l1, HW_RESET_IND);
3763                                 break;
3764                         case (3):
3765                                 l1_event(dch->l1, HW_DEACT_IND);
3766                                 break;
3767                         case (5):
3768                         case (8):
3769                                 l1_event(dch->l1, ANYSIGNAL);
3770                                 break;
3771                         case (6):
3772                                 l1_event(dch->l1, INFO2);
3773                                 break;
3774                         case (7):
3775                                 l1_event(dch->l1, INFO4_P8);
3776                                 break;
3777                         }
3778                 } else {
3779                         if (debug & DEBUG_HFCMULTI_STATE)
3780                                 printk(KERN_DEBUG "%s: S/T NT newstate %x\n",
3781                                     __func__, dch->state);
3782                         switch (dch->state) {
3783                         case (2):
3784                                 if (hc->chan[ch].nt_timer == 0) {
3785                                         hc->chan[ch].nt_timer = -1;
3786                                         HFC_outb(hc, R_ST_SEL,
3787                                             hc->chan[ch].port);
3788                                         /* undocumented: delay after R_ST_SEL */
3789                                         udelay(1);
3790                                         HFC_outb(hc, A_ST_WR_STATE, 4 |
3791                                             V_ST_LD_STA); /* G4 */
3792                                         udelay(6); /* wait at least 5,21us */
3793                                         HFC_outb(hc, A_ST_WR_STATE, 4);
3794                                         dch->state = 4;
3795                                 } else {
3796                                         /* one extra count for the next event */
3797                                         hc->chan[ch].nt_timer =
3798                                             nt_t1_count[poll_timer] + 1;
3799                                         HFC_outb(hc, R_ST_SEL,
3800                                             hc->chan[ch].port);
3801                                         /* undocumented: delay after R_ST_SEL */
3802                                         udelay(1);
3803                                         /* allow G2 -> G3 transition */
3804                                         HFC_outb(hc, A_ST_WR_STATE, 2 |
3805                                             V_SET_G2_G3);
3806                                 }
3807                                 break;
3808                         case (1):
3809                                 hc->chan[ch].nt_timer = -1;
3810                                 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3811                                 _queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
3812                                     MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3813                                 break;
3814                         case (4):
3815                                 hc->chan[ch].nt_timer = -1;
3816                                 break;
3817                         case (3):
3818                                 hc->chan[ch].nt_timer = -1;
3819                                 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3820                                 _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
3821                                     MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3822                                 break;
3823                         }
3824                 }
3825         }
3826 }
3827
3828 /*
3829  * called for card mode init message
3830  */
3831
3832 static void
3833 hfcmulti_initmode(struct dchannel *dch)
3834 {
3835         struct hfc_multi *hc = dch->hw;
3836         u_char          a_st_wr_state, r_e1_wr_sta;
3837         int             i, pt;
3838
3839         if (debug & DEBUG_HFCMULTI_INIT)
3840                 printk(KERN_DEBUG "%s: entered\n", __func__);
3841
3842         if (hc->ctype == HFC_TYPE_E1) {
3843                 hc->chan[hc->dslot].slot_tx = -1;
3844                 hc->chan[hc->dslot].slot_rx = -1;
3845                 hc->chan[hc->dslot].conf = -1;
3846                 if (hc->dslot) {
3847                         mode_hfcmulti(hc, hc->dslot, dch->dev.D.protocol,
3848                                 -1, 0, -1, 0);
3849                         dch->timer.function = (void *) hfcmulti_dbusy_timer;
3850                         dch->timer.data = (long) dch;
3851                         init_timer(&dch->timer);
3852                 }
3853                 for (i = 1; i <= 31; i++) {
3854                         if (i == hc->dslot)
3855                                 continue;
3856                         hc->chan[i].slot_tx = -1;
3857                         hc->chan[i].slot_rx = -1;
3858                         hc->chan[i].conf = -1;
3859                         mode_hfcmulti(hc, i, ISDN_P_NONE, -1, 0, -1, 0);
3860                 }
3861                 /* E1 */
3862                 if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dslot].cfg)) {
3863                         HFC_outb(hc, R_LOS0, 255); /* 2 ms */
3864                         HFC_outb(hc, R_LOS1, 255); /* 512 ms */
3865                 }
3866                 if (test_bit(HFC_CFG_OPTICAL, &hc->chan[hc->dslot].cfg)) {
3867                         HFC_outb(hc, R_RX0, 0);
3868                         hc->hw.r_tx0 = 0 | V_OUT_EN;
3869                 } else {
3870                         HFC_outb(hc, R_RX0, 1);
3871                         hc->hw.r_tx0 = 1 | V_OUT_EN;
3872                 }
3873                 hc->hw.r_tx1 = V_ATX | V_NTRI;
3874                 HFC_outb(hc, R_TX0, hc->hw.r_tx0);
3875                 HFC_outb(hc, R_TX1, hc->hw.r_tx1);
3876                 HFC_outb(hc, R_TX_FR0, 0x00);
3877                 HFC_outb(hc, R_TX_FR1, 0xf8);
3878
3879                 if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dslot].cfg))
3880                         HFC_outb(hc, R_TX_FR2, V_TX_MF | V_TX_E | V_NEG_E);
3881
3882                 HFC_outb(hc, R_RX_FR0, V_AUTO_RESYNC | V_AUTO_RECO | 0);
3883
3884                 if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dslot].cfg))
3885                         HFC_outb(hc, R_RX_FR1, V_RX_MF | V_RX_MF_SYNC);
3886
3887                 if (dch->dev.D.protocol == ISDN_P_NT_E1) {
3888                         if (debug & DEBUG_HFCMULTI_INIT)
3889                                 printk(KERN_DEBUG "%s: E1 port is NT-mode\n",
3890                                     __func__);
3891                         r_e1_wr_sta = 0; /* G0 */
3892                         hc->e1_getclock = 0;
3893                 } else {
3894                         if (debug & DEBUG_HFCMULTI_INIT)
3895                                 printk(KERN_DEBUG "%s: E1 port is TE-mode\n",
3896                                     __func__);
3897                         r_e1_wr_sta = 0; /* F0 */
3898                         hc->e1_getclock = 1;
3899                 }
3900                 if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip))
3901                         HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX);
3902                 else
3903                         HFC_outb(hc, R_SYNC_OUT, 0);
3904                 if (test_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip))
3905                         hc->e1_getclock = 1;
3906                 if (test_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip))
3907                         hc->e1_getclock = 0;
3908                 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
3909                         /* SLAVE (clock master) */
3910                         if (debug & DEBUG_HFCMULTI_INIT)
3911                                 printk(KERN_DEBUG
3912                                     "%s: E1 port is clock master "
3913                                     "(clock from PCM)\n", __func__);
3914                         HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC | V_PCM_SYNC);
3915                 } else {
3916                         if (hc->e1_getclock) {
3917                                 /* MASTER (clock slave) */
3918                                 if (debug & DEBUG_HFCMULTI_INIT)
3919                                         printk(KERN_DEBUG
3920                                             "%s: E1 port is clock slave "
3921                                             "(clock to PCM)\n", __func__);
3922                                 HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS);
3923                         } else {
3924                                 /* MASTER (clock master) */
3925                                 if (debug & DEBUG_HFCMULTI_INIT)
3926                                         printk(KERN_DEBUG "%s: E1 port is "
3927                                             "clock master "
3928                                             "(clock from QUARTZ)\n",
3929                                             __func__);
3930                                 HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC |
3931                                     V_PCM_SYNC | V_JATT_OFF);
3932                                 HFC_outb(hc, R_SYNC_OUT, 0);
3933                         }
3934                 }
3935                 HFC_outb(hc, R_JATT_ATT, 0x9c); /* undoc register */
3936                 HFC_outb(hc, R_PWM_MD, V_PWM0_MD);
3937                 HFC_outb(hc, R_PWM0, 0x50);
3938                 HFC_outb(hc, R_PWM1, 0xff);
3939                 /* state machine setup */
3940                 HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta | V_E1_LD_STA);
3941                 udelay(6); /* wait at least 5,21us */
3942                 HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta);
3943                 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3944                         hc->syncronized = 0;
3945                         plxsd_checksync(hc, 0);
3946                 }
3947         } else {
3948                 i = dch->slot;
3949                 hc->chan[i].slot_tx = -1;
3950                 hc->chan[i].slot_rx = -1;
3951                 hc->chan[i].conf = -1;
3952                 mode_hfcmulti(hc, i, dch->dev.D.protocol, -1, 0, -1, 0);
3953                 dch->timer.function = (void *)hfcmulti_dbusy_timer;
3954                 dch->timer.data = (long) dch;
3955                 init_timer(&dch->timer);
3956                 hc->chan[i - 2].slot_tx = -1;
3957                 hc->chan[i - 2].slot_rx = -1;
3958                 hc->chan[i - 2].conf = -1;
3959                 mode_hfcmulti(hc, i - 2, ISDN_P_NONE, -1, 0, -1, 0);
3960                 hc->chan[i - 1].slot_tx = -1;
3961                 hc->chan[i - 1].slot_rx = -1;
3962                 hc->chan[i - 1].conf = -1;
3963                 mode_hfcmulti(hc, i - 1, ISDN_P_NONE, -1, 0, -1, 0);
3964                 /* ST */
3965                 pt = hc->chan[i].port;
3966                 /* select interface */
3967                 HFC_outb(hc, R_ST_SEL, pt);
3968                 /* undocumented: delay after R_ST_SEL */
3969                 udelay(1);
3970                 if (dch->dev.D.protocol == ISDN_P_NT_S0) {
3971                         if (debug & DEBUG_HFCMULTI_INIT)
3972                                 printk(KERN_DEBUG
3973                                     "%s: ST port %d is NT-mode\n",
3974                                     __func__, pt);
3975                         /* clock delay */
3976                         HFC_outb(hc, A_ST_CLK_DLY, clockdelay_nt);
3977                         a_st_wr_state = 1; /* G1 */
3978                         hc->hw.a_st_ctrl0[pt] = V_ST_MD;
3979                 } else {
3980                         if (debug & DEBUG_HFCMULTI_INIT)
3981                                 printk(KERN_DEBUG
3982                                     "%s: ST port %d is TE-mode\n",
3983                                     __func__, pt);
3984                         /* clock delay */
3985                         HFC_outb(hc, A_ST_CLK_DLY, clockdelay_te);
3986                         a_st_wr_state = 2; /* F2 */
3987                         hc->hw.a_st_ctrl0[pt] = 0;
3988                 }
3989                 if (!test_bit(HFC_CFG_NONCAP_TX, &hc->chan[i].cfg))
3990                         hc->hw.a_st_ctrl0[pt] |= V_TX_LI;
3991                 if (hc->ctype == HFC_TYPE_XHFC) {
3992                         hc->hw.a_st_ctrl0[pt] |= 0x40 /* V_ST_PU_CTRL */;
3993                         HFC_outb(hc, 0x35 /* A_ST_CTRL3 */,
3994                                 0x7c << 1 /* V_ST_PULSE */);
3995                 }
3996                 /* line setup */
3997                 HFC_outb(hc, A_ST_CTRL0,  hc->hw.a_st_ctrl0[pt]);
3998                 /* disable E-channel */
3999                 if ((dch->dev.D.protocol == ISDN_P_NT_S0) ||
4000                     test_bit(HFC_CFG_DIS_ECHANNEL, &hc->chan[i].cfg))
4001                         HFC_outb(hc, A_ST_CTRL1, V_E_IGNO);
4002                 else
4003                         HFC_outb(hc, A_ST_CTRL1, 0);
4004                 /* enable B-channel receive */
4005                 HFC_outb(hc, A_ST_CTRL2,  V_B1_RX_EN | V_B2_RX_EN);
4006                 /* state machine setup */
4007                 HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state | V_ST_LD_STA);
4008                 udelay(6); /* wait at least 5,21us */
4009                 HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state);
4010                 hc->hw.r_sci_msk |= 1 << pt;
4011                 /* state machine interrupts */
4012                 HFC_outb(hc, R_SCI_MSK, hc->hw.r_sci_msk);
4013                 /* unset sync on port */
4014                 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4015                         hc->syncronized &=
4016                            ~(1 << hc->chan[dch->slot].port);
4017                         plxsd_checksync(hc, 0);
4018                 }
4019         }
4020         if (debug & DEBUG_HFCMULTI_INIT)
4021                 printk("%s: done\n", __func__);
4022 }
4023
4024
4025 static int
4026 open_dchannel(struct hfc_multi *hc, struct dchannel *dch,
4027     struct channel_req *rq)
4028 {
4029         int     err = 0;
4030         u_long  flags;
4031
4032         if (debug & DEBUG_HW_OPEN)
4033                 printk(KERN_DEBUG "%s: dev(%d) open from %p\n", __func__,
4034                     dch->dev.id, __builtin_return_address(0));
4035         if (rq->protocol == ISDN_P_NONE)
4036                 return -EINVAL;
4037         if ((dch->dev.D.protocol != ISDN_P_NONE) &&
4038             (dch->dev.D.protocol != rq->protocol)) {
4039                 if (debug & DEBUG_HFCMULTI_MODE)
4040                         printk(KERN_DEBUG "%s: change protocol %x to %x\n",
4041                             __func__, dch->dev.D.protocol, rq->protocol);
4042         }
4043         if ((dch->dev.D.protocol == ISDN_P_TE_S0) &&
4044             (rq->protocol != ISDN_P_TE_S0))
4045                 l1_event(dch->l1, CLOSE_CHANNEL);
4046         if (dch->dev.D.protocol != rq->protocol) {
4047                 if (rq->protocol == ISDN_P_TE_S0) {
4048                         err = create_l1(dch, hfcm_l1callback);
4049                         if (err)
4050                                 return err;
4051                 }
4052                 dch->dev.D.protocol = rq->protocol;
4053                 spin_lock_irqsave(&hc->lock, flags);
4054                 hfcmulti_initmode(dch);
4055                 spin_unlock_irqrestore(&hc->lock, flags);
4056         }
4057
4058         if (((rq->protocol == ISDN_P_NT_S0) && (dch->state == 3)) ||
4059             ((rq->protocol == ISDN_P_TE_S0) && (dch->state == 7)) ||
4060             ((rq->protocol == ISDN_P_NT_E1) && (dch->state == 1)) ||
4061             ((rq->protocol == ISDN_P_TE_E1) && (dch->state == 1))) {
4062                 _queue_data(&dch->dev.D, PH_ACTIVATE_IND, MISDN_ID_ANY,
4063                     0, NULL, GFP_KERNEL);
4064         }
4065         rq->ch = &dch->dev.D;
4066         if (!try_module_get(THIS_MODULE))
4067                 printk(KERN_WARNING "%s:cannot get module\n", __func__);
4068         return 0;
4069 }
4070
4071 static int
4072 open_bchannel(struct hfc_multi *hc, struct dchannel *dch,
4073     struct channel_req *rq)
4074 {
4075         struct bchannel *bch;
4076         int             ch;
4077
4078         if (!test_channelmap(rq->adr.channel, dch->dev.channelmap))
4079                 return -EINVAL;
4080         if (rq->protocol == ISDN_P_NONE)
4081                 return -EINVAL;
4082         if (hc->ctype == HFC_TYPE_E1)
4083                 ch = rq->adr.channel;
4084         else
4085                 ch = (rq->adr.channel - 1) + (dch->slot - 2);
4086         bch = hc->chan[ch].bch;
4087         if (!bch) {
4088                 printk(KERN_ERR "%s:internal error ch %d has no bch\n",
4089                     __func__, ch);
4090                 return -EINVAL;
4091         }
4092         if (test_and_set_bit(FLG_OPEN, &bch->Flags))
4093                 return -EBUSY; /* b-channel can be only open once */
4094         test_and_clear_bit(FLG_FILLEMPTY, &bch->Flags);
4095         bch->ch.protocol = rq->protocol;
4096         hc->chan[ch].rx_off = 0;
4097         rq->ch = &bch->ch;
4098         if (!try_module_get(THIS_MODULE))
4099                 printk(KERN_WARNING "%s:cannot get module\n", __func__);
4100         return 0;
4101 }
4102
4103 /*
4104  * device control function
4105  */
4106 static int
4107 channel_dctrl(struct dchannel *dch, struct mISDN_ctrl_req *cq)
4108 {
4109         struct hfc_multi        *hc = dch->hw;
4110         int     ret = 0;
4111         int     wd_mode, wd_cnt;
4112
4113         switch (cq->op) {
4114         case MISDN_CTRL_GETOP:
4115                 cq->op = MISDN_CTRL_HFC_OP;
4116                 break;
4117         case MISDN_CTRL_HFC_WD_INIT: /* init the watchdog */
4118                 wd_cnt = cq->p1 & 0xf;
4119                 wd_mode = !!(cq->p1 >> 4);
4120                 if (debug & DEBUG_HFCMULTI_MSG)
4121                         printk(KERN_DEBUG "%s: MISDN_CTRL_HFC_WD_INIT mode %s"
4122                             ", counter 0x%x\n", __func__,
4123                             wd_mode ? "AUTO" : "MANUAL", wd_cnt);
4124                 /* set the watchdog timer */
4125                 HFC_outb(hc, R_TI_WD, poll_timer | (wd_cnt << 4));
4126                 hc->hw.r_bert_wd_md = (wd_mode ? V_AUTO_WD_RES : 0);
4127                 if (hc->ctype == HFC_TYPE_XHFC)
4128                         hc->hw.r_bert_wd_md |= 0x40 /* V_WD_EN */;
4129                 /* init the watchdog register and reset the counter */
4130                 HFC_outb(hc, R_BERT_WD_MD, hc->hw.r_bert_wd_md | V_WD_RES);
4131                 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4132                         /* enable the watchdog output for Speech-Design */
4133                         HFC_outb(hc, R_GPIO_SEL,  V_GPIO_SEL7);
4134                         HFC_outb(hc, R_GPIO_EN1,  V_GPIO_EN15);
4135                         HFC_outb(hc, R_GPIO_OUT1, 0);
4136                         HFC_outb(hc, R_GPIO_OUT1, V_GPIO_OUT15);
4137                 }
4138                 break;
4139         case MISDN_CTRL_HFC_WD_RESET: /* reset the watchdog counter */
4140                 if (debug & DEBUG_HFCMULTI_MSG)
4141                         printk(KERN_DEBUG "%s: MISDN_CTRL_HFC_WD_RESET\n",
4142                             __func__);
4143                 HFC_outb(hc, R_BERT_WD_MD, hc->hw.r_bert_wd_md | V_WD_RES);
4144                 break;
4145         default:
4146                 printk(KERN_WARNING "%s: unknown Op %x\n",
4147                     __func__, cq->op);
4148                 ret = -EINVAL;
4149                 break;
4150         }
4151         return ret;
4152 }
4153
4154 static int
4155 hfcm_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
4156 {
4157         struct mISDNdevice      *dev = container_of(ch, struct mISDNdevice, D);
4158         struct dchannel         *dch = container_of(dev, struct dchannel, dev);
4159         struct hfc_multi        *hc = dch->hw;
4160         struct channel_req      *rq;
4161         int                     err = 0;
4162         u_long                  flags;
4163
4164         if (dch->debug & DEBUG_HW)
4165                 printk(KERN_DEBUG "%s: cmd:%x %p\n",
4166                     __func__, cmd, arg);
4167         switch (cmd) {
4168         case OPEN_CHANNEL:
4169                 rq = arg;
4170                 switch (rq->protocol) {
4171                 case ISDN_P_TE_S0:
4172                 case ISDN_P_NT_S0:
4173                         if (hc->ctype == HFC_TYPE_E1) {
4174                                 err = -EINVAL;
4175                                 break;
4176                         }
4177                         err = open_dchannel(hc, dch, rq); /* locked there */
4178                         break;
4179                 case ISDN_P_TE_E1:
4180                 case ISDN_P_NT_E1:
4181                         if (hc->ctype != HFC_TYPE_E1) {
4182                                 err = -EINVAL;
4183                                 break;
4184                         }
4185                         err = open_dchannel(hc, dch, rq); /* locked there */
4186                         break;
4187                 default:
4188                         spin_lock_irqsave(&hc->lock, flags);
4189                         err = open_bchannel(hc, dch, rq);
4190                         spin_unlock_irqrestore(&hc->lock, flags);
4191                 }
4192                 break;
4193         case CLOSE_CHANNEL:
4194                 if (debug & DEBUG_HW_OPEN)
4195                         printk(KERN_DEBUG "%s: dev(%d) close from %p\n",
4196                             __func__, dch->dev.id,
4197                             __builtin_return_address(0));
4198                 module_put(THIS_MODULE);
4199                 break;
4200         case CONTROL_CHANNEL:
4201                 spin_lock_irqsave(&hc->lock, flags);
4202                 err = channel_dctrl(dch, arg);
4203                 spin_unlock_irqrestore(&hc->lock, flags);
4204                 break;
4205         default:
4206                 if (dch->debug & DEBUG_HW)
4207                         printk(KERN_DEBUG "%s: unknown command %x\n",
4208                             __func__, cmd);
4209                 err = -EINVAL;
4210         }
4211         return err;
4212 }
4213
4214 static int
4215 clockctl(void *priv, int enable)
4216 {
4217         struct hfc_multi *hc = priv;
4218
4219         hc->iclock_on = enable;
4220         return 0;
4221 }
4222
4223 /*
4224  * initialize the card
4225  */
4226
4227 /*
4228  * start timer irq, wait some time and check if we have interrupts.
4229  * if not, reset chip and try again.
4230  */
4231 static int
4232 init_card(struct hfc_multi *hc)
4233 {
4234         int     err = -EIO;
4235         u_long  flags;
4236         void    __iomem *plx_acc;
4237         u_long  plx_flags;
4238
4239         if (debug & DEBUG_HFCMULTI_INIT)
4240                 printk(KERN_DEBUG "%s: entered\n", __func__);
4241
4242         spin_lock_irqsave(&hc->lock, flags);
4243         /* set interrupts but leave global interrupt disabled */
4244         hc->hw.r_irq_ctrl = V_FIFO_IRQ;
4245         disable_hwirq(hc);
4246         spin_unlock_irqrestore(&hc->lock, flags);
4247
4248         if (request_irq(hc->irq, hfcmulti_interrupt, IRQF_SHARED,
4249             "HFC-multi", hc)) {
4250                 printk(KERN_WARNING "mISDN: Could not get interrupt %d.\n",
4251                     hc->irq);
4252                 hc->irq = 0;
4253                 return -EIO;
4254         }
4255
4256         if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4257                 spin_lock_irqsave(&plx_lock, plx_flags);
4258                 plx_acc = hc->plx_membase + PLX_INTCSR;
4259                 writew((PLX_INTCSR_PCIINT_ENABLE | PLX_INTCSR_LINTI1_ENABLE),
4260                         plx_acc); /* enable PCI & LINT1 irq */
4261                 spin_unlock_irqrestore(&plx_lock, plx_flags);
4262         }
4263
4264         if (debug & DEBUG_HFCMULTI_INIT)
4265                 printk(KERN_DEBUG "%s: IRQ %d count %d\n",
4266                     __func__, hc->irq, hc->irqcnt);
4267         err = init_chip(hc);
4268         if (err)
4269                 goto error;
4270         /*
4271          * Finally enable IRQ output
4272          * this is only allowed, if an IRQ routine is already
4273          * established for this HFC, so don't do that earlier
4274          */
4275         spin_lock_irqsave(&hc->lock, flags);
4276         enable_hwirq(hc);
4277         spin_unlock_irqrestore(&hc->lock, flags);
4278         /* printk(KERN_DEBUG "no master irq set!!!\n"); */
4279         set_current_state(TASK_UNINTERRUPTIBLE);
4280         schedule_timeout((100*HZ)/1000); /* Timeout 100ms */
4281         /* turn IRQ off until chip is completely initialized */
4282         spin_lock_irqsave(&hc->lock, flags);
4283         disable_hwirq(hc);
4284         spin_unlock_irqrestore(&hc->lock, flags);
4285         if (debug & DEBUG_HFCMULTI_INIT)
4286                 printk(KERN_DEBUG "%s: IRQ %d count %d\n",
4287                     __func__, hc->irq, hc->irqcnt);
4288         if (hc->irqcnt) {
4289                 if (debug & DEBUG_HFCMULTI_INIT)
4290                         printk(KERN_DEBUG "%s: done\n", __func__);
4291
4292                 return 0;
4293         }
4294         if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
4295                 printk(KERN_INFO "ignoring missing interrupts\n");
4296                 return 0;
4297         }
4298
4299         printk(KERN_ERR "HFC PCI: IRQ(%d) getting no interrupts during init.\n",
4300                 hc->irq);
4301
4302         err = -EIO;
4303
4304 error:
4305         if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4306                 spin_lock_irqsave(&plx_lock, plx_flags);
4307                 plx_acc = hc->plx_membase + PLX_INTCSR;
4308                 writew(0x00, plx_acc); /*disable IRQs*/
4309                 spin_unlock_irqrestore(&plx_lock, plx_flags);
4310         }
4311
4312         if (debug & DEBUG_HFCMULTI_INIT)
4313                 printk(KERN_DEBUG "%s: free irq %d\n", __func__, hc->irq);
4314         if (hc->irq) {
4315                 free_irq(hc->irq, hc);
4316                 hc->irq = 0;
4317         }
4318
4319         if (debug & DEBUG_HFCMULTI_INIT)
4320                 printk(KERN_DEBUG "%s: done (err=%d)\n", __func__, err);
4321         return err;
4322 }
4323
4324 /*
4325  * find pci device and set it up
4326  */
4327
4328 static int
4329 setup_pci(struct hfc_multi *hc, struct pci_dev *pdev,
4330                 const struct pci_device_id *ent)
4331 {
4332         struct hm_map   *m = (struct hm_map *)ent->driver_data;
4333
4334         printk(KERN_INFO
4335             "HFC-multi: card manufacturer: '%s' card name: '%s' clock: %s\n",
4336             m->vendor_name, m->card_name, m->clock2 ? "double" : "normal");
4337
4338         hc->pci_dev = pdev;
4339         if (m->clock2)
4340                 test_and_set_bit(HFC_CHIP_CLOCK2, &hc->chip);
4341
4342         if (ent->device == 0xB410) {
4343                 test_and_set_bit(HFC_CHIP_B410P, &hc->chip);
4344                 test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip);
4345                 test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
4346                 hc->slots = 32;
4347         }
4348
4349         if (hc->pci_dev->irq <= 0) {
4350                 printk(KERN_WARNING "HFC-multi: No IRQ for PCI card found.\n");
4351                 return -EIO;
4352         }
4353         if (pci_enable_device(hc->pci_dev)) {
4354                 printk(KERN_WARNING "HFC-multi: Error enabling PCI card.\n");
4355                 return -EIO;
4356         }
4357         hc->leds = m->leds;
4358         hc->ledstate = 0xAFFEAFFE;
4359         hc->opticalsupport = m->opticalsupport;
4360
4361         hc->pci_iobase = 0;
4362         hc->pci_membase = NULL;
4363         hc->plx_membase = NULL;
4364
4365         /* set memory access methods */
4366         if (m->io_mode) /* use mode from card config */
4367                 hc->io_mode = m->io_mode;
4368         switch (hc->io_mode) {
4369         case HFC_IO_MODE_PLXSD:
4370                 test_and_set_bit(HFC_CHIP_PLXSD, &hc->chip);
4371                 hc->slots = 128; /* required */
4372                 hc->HFC_outb = HFC_outb_pcimem;
4373                 hc->HFC_inb = HFC_inb_pcimem;
4374                 hc->HFC_inw = HFC_inw_pcimem;
4375                 hc->HFC_wait = HFC_wait_pcimem;
4376                 hc->read_fifo = read_fifo_pcimem;
4377                 hc->write_fifo = write_fifo_pcimem;
4378                 hc->plx_origmembase =  hc->pci_dev->resource[0].start;
4379                 /* MEMBASE 1 is PLX PCI Bridge */
4380
4381                 if (!hc->plx_origmembase) {
4382                         printk(KERN_WARNING
4383                           "HFC-multi: No IO-Memory for PCI PLX bridge found\n");
4384                         pci_disable_device(hc->pci_dev);
4385                         return -EIO;
4386                 }
4387
4388                 hc->plx_membase = ioremap(hc->plx_origmembase, 0x80);
4389                 if (!hc->plx_membase) {
4390                         printk(KERN_WARNING
4391                             "HFC-multi: failed to remap plx address space. "
4392                             "(internal error)\n");
4393                         pci_disable_device(hc->pci_dev);
4394                         return -EIO;
4395                 }
4396                 printk(KERN_INFO
4397                     "HFC-multi: plx_membase:%#lx plx_origmembase:%#lx\n",
4398                     (u_long)hc->plx_membase, hc->plx_origmembase);
4399
4400                 hc->pci_origmembase =  hc->pci_dev->resource[2].start;
4401                     /* MEMBASE 1 is PLX PCI Bridge */
4402                 if (!hc->pci_origmembase) {
4403                         printk(KERN_WARNING
4404                             "HFC-multi: No IO-Memory for PCI card found\n");
4405                         pci_disable_device(hc->pci_dev);
4406                         return -EIO;
4407                 }
4408
4409                 hc->pci_membase = ioremap(hc->pci_origmembase, 0x400);
4410                 if (!hc->pci_membase) {
4411                         printk(KERN_WARNING "HFC-multi: failed to remap io "
4412                             "address space. (internal error)\n");
4413                         pci_disable_device(hc->pci_dev);
4414                         return -EIO;
4415                 }
4416
4417                 printk(KERN_INFO
4418                     "card %d: defined at MEMBASE %#lx (%#lx) IRQ %d HZ %d "
4419                     "leds-type %d\n",
4420                     hc->id, (u_long)hc->pci_membase, hc->pci_origmembase,
4421                     hc->pci_dev->irq, HZ, hc->leds);
4422                 pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO);
4423                 break;
4424         case HFC_IO_MODE_PCIMEM:
4425                 hc->HFC_outb = HFC_outb_pcimem;
4426                 hc->HFC_inb = HFC_inb_pcimem;
4427                 hc->HFC_inw = HFC_inw_pcimem;
4428                 hc->HFC_wait = HFC_wait_pcimem;
4429                 hc->read_fifo = read_fifo_pcimem;
4430                 hc->write_fifo = write_fifo_pcimem;
4431                 hc->pci_origmembase = hc->pci_dev->resource[1].start;
4432                 if (!hc->pci_origmembase) {
4433                         printk(KERN_WARNING
4434                             "HFC-multi: No IO-Memory for PCI card found\n");
4435                         pci_disable_device(hc->pci_dev);
4436                         return -EIO;
4437                 }
4438
4439                 hc->pci_membase = ioremap(hc->pci_origmembase, 256);
4440                 if (!hc->pci_membase) {
4441                         printk(KERN_WARNING
4442                             "HFC-multi: failed to remap io address space. "
4443                             "(internal error)\n");
4444                         pci_disable_device(hc->pci_dev);
4445                         return -EIO;
4446                 }
4447                 printk(KERN_INFO "card %d: defined at MEMBASE %#lx (%#lx) IRQ "
4448                     "%d HZ %d leds-type %d\n", hc->id, (u_long)hc->pci_membase,
4449                     hc->pci_origmembase, hc->pci_dev->irq, HZ, hc->leds);
4450                 pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO);
4451                 break;
4452         case HFC_IO_MODE_REGIO:
4453                 hc->HFC_outb = HFC_outb_regio;
4454                 hc->HFC_inb = HFC_inb_regio;
4455                 hc->HFC_inw = HFC_inw_regio;
4456                 hc->HFC_wait = HFC_wait_regio;
4457                 hc->read_fifo = read_fifo_regio;
4458                 hc->write_fifo = write_fifo_regio;
4459                 hc->pci_iobase = (u_int) hc->pci_dev->resource[0].start;
4460                 if (!hc->pci_iobase) {
4461                         printk(KERN_WARNING
4462                                 "HFC-multi: No IO for PCI card found\n");
4463                         pci_disable_device(hc->pci_dev);
4464                         return -EIO;
4465                 }
4466
4467                 if (!request_region(hc->pci_iobase, 8, "hfcmulti")) {
4468                         printk(KERN_WARNING "HFC-multi: failed to request "
4469                             "address space at 0x%08lx (internal error)\n",
4470                             hc->pci_iobase);
4471                         pci_disable_device(hc->pci_dev);
4472                         return -EIO;
4473                 }
4474
4475                 printk(KERN_INFO
4476                     "%s %s: defined at IOBASE %#x IRQ %d HZ %d leds-type %d\n",
4477                     m->vendor_name, m->card_name, (u_int) hc->pci_iobase,
4478                     hc->pci_dev->irq, HZ, hc->leds);
4479                 pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_REGIO);
4480                 break;
4481         default:
4482                 printk(KERN_WARNING "HFC-multi: Invalid IO mode.\n");
4483                 pci_disable_device(hc->pci_dev);
4484                 return -EIO;
4485         }
4486
4487         pci_set_drvdata(hc->pci_dev, hc);
4488
4489         /* At this point the needed PCI config is done */
4490         /* fifos are still not enabled */
4491         return 0;
4492 }
4493
4494
4495 /*
4496  * remove port
4497  */
4498
4499 static void
4500 release_port(struct hfc_multi *hc, struct dchannel *dch)
4501 {
4502         int     pt, ci, i = 0;
4503         u_long  flags;
4504         struct bchannel *pb;
4505
4506         ci = dch->slot;
4507         pt = hc->chan[ci].port;
4508
4509         if (debug & DEBUG_HFCMULTI_INIT)
4510                 printk(KERN_DEBUG "%s: entered for port %d\n",
4511                         __func__, pt + 1);
4512
4513         if (pt >= hc->ports) {
4514                 printk(KERN_WARNING "%s: ERROR port out of range (%d).\n",
4515                      __func__, pt + 1);
4516                 return;
4517         }
4518
4519         if (debug & DEBUG_HFCMULTI_INIT)
4520                 printk(KERN_DEBUG "%s: releasing port=%d\n",
4521                     __func__, pt + 1);
4522
4523         if (dch->dev.D.protocol == ISDN_P_TE_S0)
4524                 l1_event(dch->l1, CLOSE_CHANNEL);
4525
4526         hc->chan[ci].dch = NULL;
4527
4528         if (hc->created[pt]) {
4529                 hc->created[pt] = 0;
4530                 mISDN_unregister_device(&dch->dev);
4531         }
4532
4533         spin_lock_irqsave(&hc->lock, flags);
4534
4535         if (dch->timer.function) {
4536                 del_timer(&dch->timer);
4537                 dch->timer.function = NULL;
4538         }
4539
4540         if (hc->ctype == HFC_TYPE_E1) { /* E1 */
4541                 /* remove sync */
4542                 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4543                         hc->syncronized = 0;
4544                         plxsd_checksync(hc, 1);
4545                 }
4546                 /* free channels */
4547                 for (i = 0; i <= 31; i++) {
4548                         if (hc->chan[i].bch) {
4549                                 if (debug & DEBUG_HFCMULTI_INIT)
4550                                         printk(KERN_DEBUG
4551                                             "%s: free port %d channel %d\n",
4552                                             __func__, hc->chan[i].port+1, i);
4553                                 pb = hc->chan[i].bch;
4554                                 hc->chan[i].bch = NULL;
4555                                 spin_unlock_irqrestore(&hc->lock, flags);
4556                                 mISDN_freebchannel(pb);
4557                                 kfree(pb);
4558                                 kfree(hc->chan[i].coeff);
4559                                 spin_lock_irqsave(&hc->lock, flags);
4560                         }
4561                 }
4562         } else {
4563                 /* remove sync */
4564                 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4565                         hc->syncronized &=
4566                            ~(1 << hc->chan[ci].port);
4567                         plxsd_checksync(hc, 1);
4568                 }
4569                 /* free channels */
4570                 if (hc->chan[ci - 2].bch) {
4571                         if (debug & DEBUG_HFCMULTI_INIT)
4572                                 printk(KERN_DEBUG
4573                                     "%s: free port %d channel %d\n",
4574                                     __func__, hc->chan[ci - 2].port+1,
4575                                     ci - 2);
4576                         pb = hc->chan[ci - 2].bch;
4577                         hc->chan[ci - 2].bch = NULL;
4578                         spin_unlock_irqrestore(&hc->lock, flags);
4579                         mISDN_freebchannel(pb);
4580                         kfree(pb);
4581                         kfree(hc->chan[ci - 2].coeff);
4582                         spin_lock_irqsave(&hc->lock, flags);
4583                 }
4584                 if (hc->chan[ci - 1].bch) {
4585                         if (debug & DEBUG_HFCMULTI_INIT)
4586                                 printk(KERN_DEBUG
4587                                     "%s: free port %d channel %d\n",
4588                                     __func__, hc->chan[ci - 1].port+1,
4589                                     ci - 1);
4590                         pb = hc->chan[ci - 1].bch;
4591                         hc->chan[ci - 1].bch = NULL;
4592                         spin_unlock_irqrestore(&hc->lock, flags);
4593                         mISDN_freebchannel(pb);
4594                         kfree(pb);
4595                         kfree(hc->chan[ci - 1].coeff);
4596                         spin_lock_irqsave(&hc->lock, flags);
4597                 }
4598         }
4599
4600         spin_unlock_irqrestore(&hc->lock, flags);
4601
4602         if (debug & DEBUG_HFCMULTI_INIT)
4603                 printk(KERN_DEBUG "%s: free port %d channel D\n", __func__, pt);
4604         mISDN_freedchannel(dch);
4605         kfree(dch);
4606
4607         if (debug & DEBUG_HFCMULTI_INIT)
4608                 printk(KERN_DEBUG "%s: done!\n", __func__);
4609 }
4610
4611 static void
4612 release_card(struct hfc_multi *hc)
4613 {
4614         u_long  flags;
4615         int     ch;
4616
4617         if (debug & DEBUG_HFCMULTI_INIT)
4618                 printk(KERN_DEBUG "%s: release card (%d) entered\n",
4619                     __func__, hc->id);
4620
4621         /* unregister clock source */
4622         if (hc->iclock)
4623                 mISDN_unregister_clock(hc->iclock);
4624
4625         /* disable irq */
4626         spin_lock_irqsave(&hc->lock, flags);
4627         disable_hwirq(hc);
4628         spin_unlock_irqrestore(&hc->lock, flags);
4629         udelay(1000);
4630
4631         /* dimm leds */
4632         if (hc->leds)
4633                 hfcmulti_leds(hc);
4634
4635         /* disable D-channels & B-channels */
4636         if (debug & DEBUG_HFCMULTI_INIT)
4637                 printk(KERN_DEBUG "%s: disable all channels (d and b)\n",
4638                     __func__);
4639         for (ch = 0; ch <= 31; ch++) {
4640                 if (hc->chan[ch].dch)
4641                         release_port(hc, hc->chan[ch].dch);
4642         }
4643
4644         /* release hardware & irq */
4645         if (hc->irq) {
4646                 if (debug & DEBUG_HFCMULTI_INIT)
4647                         printk(KERN_DEBUG "%s: free irq %d\n",
4648                             __func__, hc->irq);
4649                 free_irq(hc->irq, hc);
4650                 hc->irq = 0;
4651
4652         }
4653         release_io_hfcmulti(hc);
4654
4655         if (debug & DEBUG_HFCMULTI_INIT)
4656                 printk(KERN_DEBUG "%s: remove instance from list\n",
4657                      __func__);
4658         list_del(&hc->list);
4659
4660         if (debug & DEBUG_HFCMULTI_INIT)
4661                 printk(KERN_DEBUG "%s: delete instance\n", __func__);
4662         if (hc == syncmaster)
4663                 syncmaster = NULL;
4664         kfree(hc);
4665         if (debug & DEBUG_HFCMULTI_INIT)
4666                 printk(KERN_DEBUG "%s: card successfully removed\n",
4667                     __func__);
4668 }
4669
4670 static int
4671 init_e1_port(struct hfc_multi *hc, struct hm_map *m)
4672 {
4673         struct dchannel *dch;
4674         struct bchannel *bch;
4675         int             ch, ret = 0;
4676         char            name[MISDN_MAX_IDLEN];
4677
4678         dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL);
4679         if (!dch)
4680                 return -ENOMEM;
4681         dch->debug = debug;
4682         mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change);
4683         dch->hw = hc;
4684         dch->dev.Dprotocols = (1 << ISDN_P_TE_E1) | (1 << ISDN_P_NT_E1);
4685         dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
4686             (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
4687         dch->dev.D.send = handle_dmsg;
4688         dch->dev.D.ctrl = hfcm_dctrl;
4689         dch->dev.nrbchan = (hc->dslot) ? 30 : 31;
4690         dch->slot = hc->dslot;
4691         hc->chan[hc->dslot].dch = dch;
4692         hc->chan[hc->dslot].port = 0;
4693         hc->chan[hc->dslot].nt_timer = -1;
4694         for (ch = 1; ch <= 31; ch++) {
4695                 if (ch == hc->dslot) /* skip dchannel */
4696                         continue;
4697                 bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL);
4698                 if (!bch) {
4699                         printk(KERN_ERR "%s: no memory for bchannel\n",
4700                             __func__);
4701                         ret = -ENOMEM;
4702                         goto free_chan;
4703                 }
4704                 hc->chan[ch].coeff = kzalloc(512, GFP_KERNEL);
4705                 if (!hc->chan[ch].coeff) {
4706                         printk(KERN_ERR "%s: no memory for coeffs\n",
4707                             __func__);
4708                         ret = -ENOMEM;
4709                         kfree(bch);
4710                         goto free_chan;
4711                 }
4712                 bch->nr = ch;
4713                 bch->slot = ch;
4714                 bch->debug = debug;
4715                 mISDN_initbchannel(bch, MAX_DATA_MEM);
4716                 bch->hw = hc;
4717                 bch->ch.send = handle_bmsg;
4718                 bch->ch.ctrl = hfcm_bctrl;
4719                 bch->ch.nr = ch;
4720                 list_add(&bch->ch.list, &dch->dev.bchannels);
4721                 hc->chan[ch].bch = bch;
4722                 hc->chan[ch].port = 0;
4723                 set_channelmap(bch->nr, dch->dev.channelmap);
4724         }
4725         /* set optical line type */
4726         if (port[Port_cnt] & 0x001) {
4727                 if (!m->opticalsupport)  {
4728                         printk(KERN_INFO
4729                             "This board has no optical "
4730                             "support\n");
4731                 } else {
4732                         if (debug & DEBUG_HFCMULTI_INIT)
4733                                 printk(KERN_DEBUG
4734                                     "%s: PORT set optical "
4735                                     "interfacs: card(%d) "
4736                                     "port(%d)\n",
4737                                     __func__,
4738                                     HFC_cnt + 1, 1);
4739                         test_and_set_bit(HFC_CFG_OPTICAL,
4740                             &hc->chan[hc->dslot].cfg);
4741                 }
4742         }
4743         /* set LOS report */
4744         if (port[Port_cnt] & 0x004) {
4745                 if (debug & DEBUG_HFCMULTI_INIT)
4746                         printk(KERN_DEBUG "%s: PORT set "
4747                             "LOS report: card(%d) port(%d)\n",
4748                             __func__, HFC_cnt + 1, 1);
4749                 test_and_set_bit(HFC_CFG_REPORT_LOS,
4750                     &hc->chan[hc->dslot].cfg);
4751         }
4752         /* set AIS report */
4753         if (port[Port_cnt] & 0x008) {
4754                 if (debug & DEBUG_HFCMULTI_INIT)
4755                         printk(KERN_DEBUG "%s: PORT set "
4756                             "AIS report: card(%d) port(%d)\n",
4757                             __func__, HFC_cnt + 1, 1);
4758                 test_and_set_bit(HFC_CFG_REPORT_AIS,
4759                     &hc->chan[hc->dslot].cfg);
4760         }
4761         /* set SLIP report */
4762         if (port[Port_cnt] & 0x010) {
4763                 if (debug & DEBUG_HFCMULTI_INIT)
4764                         printk(KERN_DEBUG
4765                             "%s: PORT set SLIP report: "
4766                             "card(%d) port(%d)\n",
4767                             __func__, HFC_cnt + 1, 1);
4768                 test_and_set_bit(HFC_CFG_REPORT_SLIP,
4769                     &hc->chan[hc->dslot].cfg);
4770         }
4771         /* set RDI report */
4772         if (port[Port_cnt] & 0x020) {
4773                 if (debug & DEBUG_HFCMULTI_INIT)
4774                         printk(KERN_DEBUG
4775                             "%s: PORT set RDI report: "
4776                             "card(%d) port(%d)\n",
4777                             __func__, HFC_cnt + 1, 1);
4778                 test_and_set_bit(HFC_CFG_REPORT_RDI,
4779                     &hc->chan[hc->dslot].cfg);
4780         }
4781         /* set CRC-4 Mode */
4782         if (!(port[Port_cnt] & 0x100)) {
4783                 if (debug & DEBUG_HFCMULTI_INIT)
4784                         printk(KERN_DEBUG "%s: PORT turn on CRC4 report:"
4785                                 " card(%d) port(%d)\n",
4786                                 __func__, HFC_cnt + 1, 1);
4787                 test_and_set_bit(HFC_CFG_CRC4,
4788                     &hc->chan[hc->dslot].cfg);
4789         } else {
4790                 if (debug & DEBUG_HFCMULTI_INIT)
4791                         printk(KERN_DEBUG "%s: PORT turn off CRC4"
4792                                 " report: card(%d) port(%d)\n",
4793                                 __func__, HFC_cnt + 1, 1);
4794         }
4795         /* set forced clock */
4796         if (port[Port_cnt] & 0x0200) {
4797                 if (debug & DEBUG_HFCMULTI_INIT)
4798                         printk(KERN_DEBUG "%s: PORT force getting clock from "
4799                                 "E1: card(%d) port(%d)\n",
4800                                 __func__, HFC_cnt + 1, 1);
4801                 test_and_set_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip);
4802         } else
4803         if (port[Port_cnt] & 0x0400) {
4804                 if (debug & DEBUG_HFCMULTI_INIT)
4805                         printk(KERN_DEBUG "%s: PORT force putting clock to "
4806                                 "E1: card(%d) port(%d)\n",
4807                                 __func__, HFC_cnt + 1, 1);
4808                 test_and_set_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip);
4809         }
4810         /* set JATT PLL */
4811         if (port[Port_cnt] & 0x0800) {
4812                 if (debug & DEBUG_HFCMULTI_INIT)
4813                         printk(KERN_DEBUG "%s: PORT disable JATT PLL on "
4814                                 "E1: card(%d) port(%d)\n",
4815                                 __func__, HFC_cnt + 1, 1);
4816                 test_and_set_bit(HFC_CHIP_RX_SYNC, &hc->chip);
4817         }
4818         /* set elastic jitter buffer */
4819         if (port[Port_cnt] & 0x3000) {
4820                 hc->chan[hc->dslot].jitter = (port[Port_cnt]>>12) & 0x3;
4821                 if (debug & DEBUG_HFCMULTI_INIT)
4822                         printk(KERN_DEBUG
4823                             "%s: PORT set elastic "
4824                             "buffer to %d: card(%d) port(%d)\n",
4825                             __func__, hc->chan[hc->dslot].jitter,
4826                             HFC_cnt + 1, 1);
4827         } else
4828                 hc->chan[hc->dslot].jitter = 2; /* default */
4829         snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-e1.%d", HFC_cnt + 1);
4830         ret = mISDN_register_device(&dch->dev, &hc->pci_dev->dev, name);
4831         if (ret)
4832                 goto free_chan;
4833         hc->created[0] = 1;
4834         return ret;
4835 free_chan:
4836         release_port(hc, dch);
4837         return ret;
4838 }
4839
4840 static int
4841 init_multi_port(struct hfc_multi *hc, int pt)
4842 {
4843         struct dchannel *dch;
4844         struct bchannel *bch;
4845         int             ch, i, ret = 0;
4846         char            name[MISDN_MAX_IDLEN];
4847
4848         dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL);
4849         if (!dch)
4850                 return -ENOMEM;
4851         dch->debug = debug;
4852         mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change);
4853         dch->hw = hc;
4854         dch->dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
4855         dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
4856             (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
4857         dch->dev.D.send = handle_dmsg;
4858         dch->dev.D.ctrl = hfcm_dctrl;
4859         dch->dev.nrbchan = 2;
4860         i = pt << 2;
4861         dch->slot = i + 2;
4862         hc->chan[i + 2].dch = dch;
4863         hc->chan[i + 2].port = pt;
4864         hc->chan[i + 2].nt_timer = -1;
4865         for (ch = 0; ch < dch->dev.nrbchan; ch++) {
4866                 bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL);
4867                 if (!bch) {
4868                         printk(KERN_ERR "%s: no memory for bchannel\n",
4869                             __func__);
4870                         ret = -ENOMEM;
4871                         goto free_chan;
4872                 }
4873                 hc->chan[i + ch].coeff = kzalloc(512, GFP_KERNEL);
4874                 if (!hc->chan[i + ch].coeff) {
4875                         printk(KERN_ERR "%s: no memory for coeffs\n",
4876                             __func__);
4877                         ret = -ENOMEM;
4878                         kfree(bch);
4879                         goto free_chan;
4880                 }
4881                 bch->nr = ch + 1;
4882                 bch->slot = i + ch;
4883                 bch->debug = debug;
4884                 mISDN_initbchannel(bch, MAX_DATA_MEM);
4885                 bch->hw = hc;
4886                 bch->ch.send = handle_bmsg;
4887                 bch->ch.ctrl = hfcm_bctrl;
4888                 bch->ch.nr = ch + 1;
4889                 list_add(&bch->ch.list, &dch->dev.bchannels);
4890                 hc->chan[i + ch].bch = bch;
4891                 hc->chan[i + ch].port = pt;
4892                 set_channelmap(bch->nr, dch->dev.channelmap);
4893         }
4894         /* set master clock */
4895         if (port[Port_cnt] & 0x001) {
4896                 if (debug & DEBUG_HFCMULTI_INIT)
4897                         printk(KERN_DEBUG
4898                             "%s: PROTOCOL set master clock: "
4899                             "card(%d) port(%d)\n",
4900                             __func__, HFC_cnt + 1, pt + 1);
4901                 if (dch->dev.D.protocol != ISDN_P_TE_S0) {
4902                         printk(KERN_ERR "Error: Master clock "
4903                             "for port(%d) of card(%d) is only"
4904                             " possible with TE-mode\n",
4905                             pt + 1, HFC_cnt + 1);
4906                         ret = -EINVAL;
4907                         goto free_chan;
4908                 }
4909                 if (hc->masterclk >= 0) {
4910                         printk(KERN_ERR "Error: Master clock "
4911                             "for port(%d) of card(%d) already "
4912                             "defined for port(%d)\n",
4913                             pt + 1, HFC_cnt + 1, hc->masterclk+1);
4914                         ret = -EINVAL;
4915                         goto free_chan;
4916                 }
4917                 hc->masterclk = pt;
4918         }
4919         /* set transmitter line to non capacitive */
4920         if (port[Port_cnt] & 0x002) {
4921                 if (debug & DEBUG_HFCMULTI_INIT)
4922                         printk(KERN_DEBUG
4923                             "%s: PROTOCOL set non capacitive "
4924                             "transmitter: card(%d) port(%d)\n",
4925                             __func__, HFC_cnt + 1, pt + 1);
4926                 test_and_set_bit(HFC_CFG_NONCAP_TX,
4927                     &hc->chan[i + 2].cfg);
4928         }
4929         /* disable E-channel */
4930         if (port[Port_cnt] & 0x004) {
4931                 if (debug & DEBUG_HFCMULTI_INIT)
4932                         printk(KERN_DEBUG
4933                             "%s: PROTOCOL disable E-channel: "
4934                             "card(%d) port(%d)\n",
4935                             __func__, HFC_cnt + 1, pt + 1);
4936                 test_and_set_bit(HFC_CFG_DIS_ECHANNEL,
4937                     &hc->chan[i + 2].cfg);
4938         }
4939         if (hc->ctype == HFC_TYPE_XHFC) {
4940                 snprintf(name, MISDN_MAX_IDLEN - 1, "xhfc.%d-%d",
4941                         HFC_cnt + 1, pt + 1);
4942                 ret = mISDN_register_device(&dch->dev, NULL, name);
4943         } else {
4944                 snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-%ds.%d-%d",
4945                         hc->ctype, HFC_cnt + 1, pt + 1);
4946                 ret = mISDN_register_device(&dch->dev, &hc->pci_dev->dev, name);
4947         }
4948         if (ret)
4949                 goto free_chan;
4950         hc->created[pt] = 1;
4951         return ret;
4952 free_chan:
4953         release_port(hc, dch);
4954         return ret;
4955 }
4956
4957 static int
4958 hfcmulti_init(struct hm_map *m, struct pci_dev *pdev,
4959     const struct pci_device_id *ent)
4960 {
4961         int             ret_err = 0;
4962         int             pt;
4963         struct hfc_multi        *hc;
4964         u_long          flags;
4965         u_char          dips = 0, pmj = 0; /* dip settings, port mode Jumpers */
4966         int             i;
4967
4968         if (HFC_cnt >= MAX_CARDS) {
4969                 printk(KERN_ERR "too many cards (max=%d).\n",
4970                         MAX_CARDS);
4971                 return -EINVAL;
4972         }
4973         if ((type[HFC_cnt] & 0xff) && (type[HFC_cnt] & 0xff) != m->type) {
4974                 printk(KERN_WARNING "HFC-MULTI: Card '%s:%s' type %d found but "
4975                     "type[%d] %d was supplied as module parameter\n",
4976                     m->vendor_name, m->card_name, m->type, HFC_cnt,
4977                     type[HFC_cnt] & 0xff);
4978                 printk(KERN_WARNING "HFC-MULTI: Load module without parameters "
4979                         "first, to see cards and their types.");
4980                 return -EINVAL;
4981         }
4982         if (debug & DEBUG_HFCMULTI_INIT)
4983                 printk(KERN_DEBUG "%s: Registering %s:%s chip type %d (0x%x)\n",
4984                     __func__, m->vendor_name, m->card_name, m->type,
4985                     type[HFC_cnt]);
4986
4987         /* allocate card+fifo structure */
4988         hc = kzalloc(sizeof(struct hfc_multi), GFP_KERNEL);
4989         if (!hc) {
4990                 printk(KERN_ERR "No kmem for HFC-Multi card\n");
4991                 return -ENOMEM;
4992         }
4993         spin_lock_init(&hc->lock);
4994         hc->mtyp = m;
4995         hc->ctype =  m->type;
4996         hc->ports = m->ports;
4997         hc->id = HFC_cnt;
4998         hc->pcm = pcm[HFC_cnt];
4999         hc->io_mode = iomode[HFC_cnt];
5000         if (dslot[HFC_cnt] < 0 && hc->ctype == HFC_TYPE_E1) {
5001                 hc->dslot = 0;
5002                 printk(KERN_INFO "HFC-E1 card has disabled D-channel, but "
5003                         "31 B-channels\n");
5004         }
5005         if (dslot[HFC_cnt] > 0 && dslot[HFC_cnt] < 32
5006             && hc->ctype == HFC_TYPE_E1) {
5007                 hc->dslot = dslot[HFC_cnt];
5008                 printk(KERN_INFO "HFC-E1 card has alternating D-channel on "
5009                         "time slot %d\n", dslot[HFC_cnt]);
5010         } else
5011                 hc->dslot = 16;
5012
5013         /* set chip specific features */
5014         hc->masterclk = -1;
5015         if (type[HFC_cnt] & 0x100) {
5016                 test_and_set_bit(HFC_CHIP_ULAW, &hc->chip);
5017                 hc->silence = 0xff; /* ulaw silence */
5018         } else
5019                 hc->silence = 0x2a; /* alaw silence */
5020         if ((poll >> 1) > sizeof(hc->silence_data)) {
5021                 printk(KERN_ERR "HFCMULTI error: silence_data too small, "
5022                         "please fix\n");
5023                 return -EINVAL;
5024         }
5025         for (i = 0; i < (poll >> 1); i++)
5026                 hc->silence_data[i] = hc->silence;
5027
5028         if (hc->ctype != HFC_TYPE_XHFC) {
5029                 if (!(type[HFC_cnt] & 0x200))
5030                         test_and_set_bit(HFC_CHIP_DTMF, &hc->chip);
5031                 test_and_set_bit(HFC_CHIP_CONF, &hc->chip);
5032         }
5033
5034         if (type[HFC_cnt] & 0x800)
5035                 test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
5036         if (type[HFC_cnt] & 0x1000) {
5037                 test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip);
5038                 test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
5039         }
5040         if (type[HFC_cnt] & 0x4000)
5041                 test_and_set_bit(HFC_CHIP_EXRAM_128, &hc->chip);
5042         if (type[HFC_cnt] & 0x8000)
5043                 test_and_set_bit(HFC_CHIP_EXRAM_512, &hc->chip);
5044         hc->slots = 32;
5045         if (type[HFC_cnt] & 0x10000)
5046                 hc->slots = 64;
5047         if (type[HFC_cnt] & 0x20000)
5048                 hc->slots = 128;
5049         if (type[HFC_cnt] & 0x80000) {
5050                 test_and_set_bit(HFC_CHIP_WATCHDOG, &hc->chip);
5051                 hc->wdcount = 0;
5052                 hc->wdbyte = V_GPIO_OUT2;
5053                 printk(KERN_NOTICE "Watchdog enabled\n");
5054         }
5055
5056         if (pdev && ent)
5057                 /* setup pci, hc->slots may change due to PLXSD */
5058                 ret_err = setup_pci(hc, pdev, ent);
5059         else
5060 #ifdef CONFIG_MISDN_HFCMULTI_8xx
5061                 ret_err = setup_embedded(hc, m);
5062 #else
5063         {
5064                 printk(KERN_WARNING "Embedded IO Mode not selected\n");
5065                 ret_err = -EIO;
5066         }
5067 #endif
5068         if (ret_err) {
5069                 if (hc == syncmaster)
5070                         syncmaster = NULL;
5071                 kfree(hc);
5072                 return ret_err;
5073         }
5074
5075         hc->HFC_outb_nodebug = hc->HFC_outb;
5076         hc->HFC_inb_nodebug = hc->HFC_inb;
5077         hc->HFC_inw_nodebug = hc->HFC_inw;
5078         hc->HFC_wait_nodebug = hc->HFC_wait;
5079 #ifdef HFC_REGISTER_DEBUG
5080         hc->HFC_outb = HFC_outb_debug;
5081         hc->HFC_inb = HFC_inb_debug;
5082         hc->HFC_inw = HFC_inw_debug;
5083         hc->HFC_wait = HFC_wait_debug;
5084 #endif
5085         /* create channels */
5086         for (pt = 0; pt < hc->ports; pt++) {
5087                 if (Port_cnt >= MAX_PORTS) {
5088                         printk(KERN_ERR "too many ports (max=%d).\n",
5089                                 MAX_PORTS);
5090                         ret_err = -EINVAL;
5091                         goto free_card;
5092                 }
5093                 if (hc->ctype == HFC_TYPE_E1)
5094                         ret_err = init_e1_port(hc, m);
5095                 else
5096                         ret_err = init_multi_port(hc, pt);
5097                 if (debug & DEBUG_HFCMULTI_INIT)
5098                         printk(KERN_DEBUG
5099                             "%s: Registering D-channel, card(%d) port(%d)"
5100                             "result %d\n",
5101                             __func__, HFC_cnt + 1, pt, ret_err);
5102
5103                 if (ret_err) {
5104                         while (pt) { /* release already registered ports */
5105                                 pt--;
5106                                 release_port(hc, hc->chan[(pt << 2) + 2].dch);
5107                         }
5108                         goto free_card;
5109                 }
5110                 Port_cnt++;
5111         }
5112
5113         /* disp switches */
5114         switch (m->dip_type) {
5115         case DIP_4S:
5116                 /*
5117                  * Get DIP setting for beroNet 1S/2S/4S cards
5118                  * DIP Setting: (collect GPIO 13/14/15 (R_GPIO_IN1) +
5119                  * GPI 19/23 (R_GPI_IN2))
5120                  */
5121                 dips = ((~HFC_inb(hc, R_GPIO_IN1) & 0xE0) >> 5) |
5122                         ((~HFC_inb(hc, R_GPI_IN2) & 0x80) >> 3) |
5123                         (~HFC_inb(hc, R_GPI_IN2) & 0x08);
5124
5125                 /* Port mode (TE/NT) jumpers */
5126                 pmj = ((HFC_inb(hc, R_GPI_IN3) >> 4)  & 0xf);
5127
5128                 if (test_bit(HFC_CHIP_B410P, &hc->chip))
5129                         pmj = ~pmj & 0xf;
5130
5131                 printk(KERN_INFO "%s: %s DIPs(0x%x) jumpers(0x%x)\n",
5132                         m->vendor_name, m->card_name, dips, pmj);
5133                 break;
5134         case DIP_8S:
5135                 /*
5136                  * Get DIP Setting for beroNet 8S0+ cards
5137                  * Enable PCI auxbridge function
5138                  */
5139                 HFC_outb(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK);
5140                 /* prepare access to auxport */
5141                 outw(0x4000, hc->pci_iobase + 4);
5142                 /*
5143                  * some dummy reads are required to
5144                  * read valid DIP switch data
5145                  */
5146                 dips = inb(hc->pci_iobase);
5147                 dips = inb(hc->pci_iobase);
5148                 dips = inb(hc->pci_iobase);
5149                 dips = ~inb(hc->pci_iobase) & 0x3F;
5150                 outw(0x0, hc->pci_iobase + 4);
5151                 /* disable PCI auxbridge function */
5152                 HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK);
5153                 printk(KERN_INFO "%s: %s DIPs(0x%x)\n",
5154                     m->vendor_name, m->card_name, dips);
5155                 break;
5156         case DIP_E1:
5157                 /*
5158                  * get DIP Setting for beroNet E1 cards
5159                  * DIP Setting: collect GPI 4/5/6/7 (R_GPI_IN0)
5160                  */
5161                 dips = (~HFC_inb(hc, R_GPI_IN0) & 0xF0)>>4;
5162                 printk(KERN_INFO "%s: %s DIPs(0x%x)\n",
5163                     m->vendor_name, m->card_name, dips);
5164                 break;
5165         }
5166
5167         /* add to list */
5168         spin_lock_irqsave(&HFClock, flags);
5169         list_add_tail(&hc->list, &HFClist);
5170         spin_unlock_irqrestore(&HFClock, flags);
5171
5172         /* use as clock source */
5173         if (clock == HFC_cnt + 1)
5174                 hc->iclock = mISDN_register_clock("HFCMulti", 0, clockctl, hc);
5175
5176         /* initialize hardware */
5177         hc->irq = (m->irq) ? : hc->pci_dev->irq;
5178         ret_err = init_card(hc);
5179         if (ret_err) {
5180                 printk(KERN_ERR "init card returns %d\n", ret_err);
5181                 release_card(hc);
5182                 return ret_err;
5183         }
5184
5185         /* start IRQ and return */
5186         spin_lock_irqsave(&hc->lock, flags);
5187         enable_hwirq(hc);
5188         spin_unlock_irqrestore(&hc->lock, flags);
5189         return 0;
5190
5191 free_card:
5192         release_io_hfcmulti(hc);
5193         if (hc == syncmaster)
5194                 syncmaster = NULL;
5195         kfree(hc);
5196         return ret_err;
5197 }
5198
5199 static void __devexit hfc_remove_pci(struct pci_dev *pdev)
5200 {
5201         struct hfc_multi        *card = pci_get_drvdata(pdev);
5202         u_long                  flags;
5203
5204         if (debug)
5205                 printk(KERN_INFO "removing hfc_multi card vendor:%x "
5206                     "device:%x subvendor:%x subdevice:%x\n",
5207                     pdev->vendor, pdev->device,
5208                     pdev->subsystem_vendor, pdev->subsystem_device);
5209
5210         if (card) {
5211                 spin_lock_irqsave(&HFClock, flags);
5212                 release_card(card);
5213                 spin_unlock_irqrestore(&HFClock, flags);
5214         }  else {
5215                 if (debug)
5216                         printk(KERN_DEBUG "%s: drvdata already removed\n",
5217                             __func__);
5218         }
5219 }
5220
5221 #define VENDOR_CCD      "Cologne Chip AG"
5222 #define VENDOR_BN       "beroNet GmbH"
5223 #define VENDOR_DIG      "Digium Inc."
5224 #define VENDOR_JH       "Junghanns.NET GmbH"
5225 #define VENDOR_PRIM     "PrimuX"
5226
5227 static const struct hm_map hfcm_map[] = {
5228 /*0*/   {VENDOR_BN, "HFC-1S Card (mini PCI)", 4, 1, 1, 3, 0, DIP_4S, 0, 0},
5229 /*1*/   {VENDOR_BN, "HFC-2S Card", 4, 2, 1, 3, 0, DIP_4S, 0, 0},
5230 /*2*/   {VENDOR_BN, "HFC-2S Card (mini PCI)", 4, 2, 1, 3, 0, DIP_4S, 0, 0},
5231 /*3*/   {VENDOR_BN, "HFC-4S Card", 4, 4, 1, 2, 0, DIP_4S, 0, 0},
5232 /*4*/   {VENDOR_BN, "HFC-4S Card (mini PCI)", 4, 4, 1, 2, 0, 0, 0, 0},
5233 /*5*/   {VENDOR_CCD, "HFC-4S Eval (old)", 4, 4, 0, 0, 0, 0, 0, 0},
5234 /*6*/   {VENDOR_CCD, "HFC-4S IOB4ST", 4, 4, 1, 2, 0, DIP_4S, 0, 0},
5235 /*7*/   {VENDOR_CCD, "HFC-4S", 4, 4, 1, 2, 0, 0, 0, 0},
5236 /*8*/   {VENDOR_DIG, "HFC-4S Card", 4, 4, 0, 2, 0, 0, HFC_IO_MODE_REGIO, 0},
5237 /*9*/   {VENDOR_CCD, "HFC-4S Swyx 4xS0 SX2 QuadBri", 4, 4, 1, 2, 0, 0, 0, 0},
5238 /*10*/  {VENDOR_JH, "HFC-4S (junghanns 2.0)", 4, 4, 1, 2, 0, 0, 0, 0},
5239 /*11*/  {VENDOR_PRIM, "HFC-2S Primux Card", 4, 2, 0, 0, 0, 0, 0, 0},
5240
5241 /*12*/  {VENDOR_BN, "HFC-8S Card", 8, 8, 1, 0, 0, 0, 0, 0},
5242 /*13*/  {VENDOR_BN, "HFC-8S Card (+)", 8, 8, 1, 8, 0, DIP_8S,
5243                 HFC_IO_MODE_REGIO, 0},
5244 /*14*/  {VENDOR_CCD, "HFC-8S Eval (old)", 8, 8, 0, 0, 0, 0, 0, 0},
5245 /*15*/  {VENDOR_CCD, "HFC-8S IOB4ST Recording", 8, 8, 1, 0, 0, 0, 0, 0},
5246
5247 /*16*/  {VENDOR_CCD, "HFC-8S IOB8ST", 8, 8, 1, 0, 0, 0, 0, 0},
5248 /*17*/  {VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0, 0},
5249 /*18*/  {VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0, 0},
5250
5251 /*19*/  {VENDOR_BN, "HFC-E1 Card", 1, 1, 0, 1, 0, DIP_E1, 0, 0},
5252 /*20*/  {VENDOR_BN, "HFC-E1 Card (mini PCI)", 1, 1, 0, 1, 0, 0, 0, 0},
5253 /*21*/  {VENDOR_BN, "HFC-E1+ Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0, 0},
5254 /*22*/  {VENDOR_BN, "HFC-E1 Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0, 0},
5255
5256 /*23*/  {VENDOR_CCD, "HFC-E1 Eval (old)", 1, 1, 0, 0, 0, 0, 0, 0},
5257 /*24*/  {VENDOR_CCD, "HFC-E1 IOB1E1", 1, 1, 0, 1, 0, 0, 0, 0},
5258 /*25*/  {VENDOR_CCD, "HFC-E1", 1, 1, 0, 1, 0, 0, 0, 0},
5259
5260 /*26*/  {VENDOR_CCD, "HFC-4S Speech Design", 4, 4, 0, 0, 0, 0,
5261                 HFC_IO_MODE_PLXSD, 0},
5262 /*27*/  {VENDOR_CCD, "HFC-E1 Speech Design", 1, 1, 0, 0, 0, 0,
5263                 HFC_IO_MODE_PLXSD, 0},
5264 /*28*/  {VENDOR_CCD, "HFC-4S OpenVox", 4, 4, 1, 0, 0, 0, 0, 0},
5265 /*29*/  {VENDOR_CCD, "HFC-2S OpenVox", 4, 2, 1, 0, 0, 0, 0, 0},
5266 /*30*/  {VENDOR_CCD, "HFC-8S OpenVox", 8, 8, 1, 0, 0, 0, 0, 0},
5267 /*31*/  {VENDOR_CCD, "XHFC-4S Speech Design", 5, 4, 0, 0, 0, 0,
5268                 HFC_IO_MODE_EMBSD, XHFC_IRQ},
5269 /*32*/  {VENDOR_JH, "HFC-8S (junghanns)", 8, 8, 1, 0, 0, 0, 0, 0},
5270 /*33*/  {VENDOR_BN, "HFC-2S Beronet Card PCIe", 4, 2, 1, 3, 0, DIP_4S, 0, 0},
5271 /*34*/  {VENDOR_BN, "HFC-4S Beronet Card PCIe", 4, 4, 1, 2, 0, DIP_4S, 0, 0},
5272 };
5273
5274 #undef H
5275 #define H(x)    ((unsigned long)&hfcm_map[x])
5276 static struct pci_device_id hfmultipci_ids[] __devinitdata = {
5277
5278         /* Cards with HFC-4S Chip */
5279         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5280                 PCI_SUBDEVICE_ID_CCD_BN1SM, 0, 0, H(0)}, /* BN1S mini PCI */
5281         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5282                 PCI_SUBDEVICE_ID_CCD_BN2S, 0, 0, H(1)}, /* BN2S */
5283         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5284                 PCI_SUBDEVICE_ID_CCD_BN2SM, 0, 0, H(2)}, /* BN2S mini PCI */
5285         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5286                 PCI_SUBDEVICE_ID_CCD_BN4S, 0, 0, H(3)}, /* BN4S */
5287         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5288                 PCI_SUBDEVICE_ID_CCD_BN4SM, 0, 0, H(4)}, /* BN4S mini PCI */
5289         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5290                 PCI_DEVICE_ID_CCD_HFC4S, 0, 0, H(5)}, /* Old Eval */
5291         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5292                 PCI_SUBDEVICE_ID_CCD_IOB4ST, 0, 0, H(6)}, /* IOB4ST */
5293         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5294                 PCI_SUBDEVICE_ID_CCD_HFC4S, 0, 0, H(7)}, /* 4S */
5295         { PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S,
5296                 PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S, 0, 0, H(8)},
5297         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5298                 PCI_SUBDEVICE_ID_CCD_SWYX4S, 0, 0, H(9)}, /* 4S Swyx */
5299         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5300                 PCI_SUBDEVICE_ID_CCD_JH4S20, 0, 0, H(10)},
5301         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5302                 PCI_SUBDEVICE_ID_CCD_PMX2S, 0, 0, H(11)}, /* Primux */
5303         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5304                 PCI_SUBDEVICE_ID_CCD_OV4S, 0, 0, H(28)}, /* OpenVox 4 */
5305         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5306                 PCI_SUBDEVICE_ID_CCD_OV2S, 0, 0, H(29)}, /* OpenVox 2 */
5307         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5308                 0xb761, 0, 0, H(33)}, /* BN2S PCIe */
5309         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5310                 0xb762, 0, 0, H(34)}, /* BN4S PCIe */
5311
5312         /* Cards with HFC-8S Chip */
5313         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5314         PCI_SUBDEVICE_ID_CCD_BN8S, 0, 0, H(12)}, /* BN8S */
5315         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5316         PCI_SUBDEVICE_ID_CCD_BN8SP, 0, 0, H(13)}, /* BN8S+ */
5317         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5318         PCI_DEVICE_ID_CCD_HFC8S, 0, 0, H(14)}, /* old Eval */
5319         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5320         PCI_SUBDEVICE_ID_CCD_IOB8STR, 0, 0, H(15)}, /* IOB8ST Recording */
5321         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5322                 PCI_SUBDEVICE_ID_CCD_IOB8ST, 0, 0, H(16)}, /* IOB8ST  */
5323         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5324                 PCI_SUBDEVICE_ID_CCD_IOB8ST_1, 0, 0, H(17)}, /* IOB8ST  */
5325         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5326                 PCI_SUBDEVICE_ID_CCD_HFC8S, 0, 0, H(18)}, /* 8S */
5327         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5328                 PCI_SUBDEVICE_ID_CCD_OV8S, 0, 0, H(30)}, /* OpenVox 8 */
5329         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5330                 PCI_SUBDEVICE_ID_CCD_JH8S, 0, 0, H(32)}, /* Junganns 8S  */
5331
5332
5333         /* Cards with HFC-E1 Chip */
5334         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5335                 PCI_SUBDEVICE_ID_CCD_BNE1, 0, 0, H(19)}, /* BNE1 */
5336         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5337                 PCI_SUBDEVICE_ID_CCD_BNE1M, 0, 0, H(20)}, /* BNE1 mini PCI */
5338         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5339                 PCI_SUBDEVICE_ID_CCD_BNE1DP, 0, 0, H(21)}, /* BNE1 + (Dual) */
5340         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5341                 PCI_SUBDEVICE_ID_CCD_BNE1D, 0, 0, H(22)}, /* BNE1 (Dual) */
5342
5343         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5344                 PCI_DEVICE_ID_CCD_HFCE1, 0, 0, H(23)}, /* Old Eval */
5345         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5346                 PCI_SUBDEVICE_ID_CCD_IOB1E1, 0, 0, H(24)}, /* IOB1E1 */
5347         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5348                 PCI_SUBDEVICE_ID_CCD_HFCE1, 0, 0, H(25)}, /* E1 */
5349
5350         { PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD,
5351                 PCI_SUBDEVICE_ID_CCD_SPD4S, 0, 0, H(26)}, /* PLX PCI Bridge */
5352         { PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD,
5353                 PCI_SUBDEVICE_ID_CCD_SPDE1, 0, 0, H(27)}, /* PLX PCI Bridge */
5354
5355         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5356                 PCI_SUBDEVICE_ID_CCD_JHSE1, 0, 0, H(25)}, /* Junghanns E1 */
5357
5358         { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFC4S), 0 },
5359         { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFC8S), 0 },
5360         { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFCE1), 0 },
5361         {0, }
5362 };
5363 #undef H
5364
5365 MODULE_DEVICE_TABLE(pci, hfmultipci_ids);
5366
5367 static int
5368 hfcmulti_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
5369 {
5370         struct hm_map   *m = (struct hm_map *)ent->driver_data;
5371         int             ret;
5372
5373         if (m == NULL && ent->vendor == PCI_VENDOR_ID_CCD && (
5374             ent->device == PCI_DEVICE_ID_CCD_HFC4S ||
5375             ent->device == PCI_DEVICE_ID_CCD_HFC8S ||
5376             ent->device == PCI_DEVICE_ID_CCD_HFCE1)) {
5377                 printk(KERN_ERR
5378                     "Unknown HFC multiport controller (vendor:%04x device:%04x "
5379                     "subvendor:%04x subdevice:%04x)\n", pdev->vendor,
5380                     pdev->device, pdev->subsystem_vendor,
5381                     pdev->subsystem_device);
5382                 printk(KERN_ERR
5383                     "Please contact the driver maintainer for support.\n");
5384                 return -ENODEV;
5385         }
5386         ret = hfcmulti_init(m, pdev, ent);
5387         if (ret)
5388                 return ret;
5389         HFC_cnt++;
5390         printk(KERN_INFO "%d devices registered\n", HFC_cnt);
5391         return 0;
5392 }
5393
5394 static struct pci_driver hfcmultipci_driver = {
5395         .name           = "hfc_multi",
5396         .probe          = hfcmulti_probe,
5397         .remove         = __devexit_p(hfc_remove_pci),
5398         .id_table       = hfmultipci_ids,
5399 };
5400
5401 static void __exit
5402 HFCmulti_cleanup(void)
5403 {
5404         struct hfc_multi *card, *next;
5405
5406         /* get rid of all devices of this driver */
5407         list_for_each_entry_safe(card, next, &HFClist, list)
5408                 release_card(card);
5409         pci_unregister_driver(&hfcmultipci_driver);
5410 }
5411
5412 static int __init
5413 HFCmulti_init(void)
5414 {
5415         int err;
5416         int i, xhfc = 0;
5417         struct hm_map m;
5418
5419         printk(KERN_INFO "mISDN: HFC-multi driver %s\n", HFC_MULTI_VERSION);
5420
5421 #ifdef IRQ_DEBUG
5422         printk(KERN_DEBUG "%s: IRQ_DEBUG IS ENABLED!\n", __func__);
5423 #endif
5424
5425         spin_lock_init(&HFClock);
5426         spin_lock_init(&plx_lock);
5427
5428         if (debug & DEBUG_HFCMULTI_INIT)
5429                 printk(KERN_DEBUG "%s: init entered\n", __func__);
5430
5431         switch (poll) {
5432         case 0:
5433                 poll_timer = 6;
5434                 poll = 128;
5435                 break;
5436         case 8:
5437                 poll_timer = 2;
5438                 break;
5439         case 16:
5440                 poll_timer = 3;
5441                 break;
5442         case 32:
5443                 poll_timer = 4;
5444                 break;
5445         case 64:
5446                 poll_timer = 5;
5447                 break;
5448         case 128:
5449                 poll_timer = 6;
5450                 break;
5451         case 256:
5452                 poll_timer = 7;
5453                 break;
5454         default:
5455                 printk(KERN_ERR
5456                     "%s: Wrong poll value (%d).\n", __func__, poll);
5457                 err = -EINVAL;
5458                 return err;
5459
5460         }
5461
5462         if (!clock)
5463                 clock = 1;
5464
5465         /* Register the embedded devices.
5466          * This should be done before the PCI cards registration */
5467         switch (hwid) {
5468         case HWID_MINIP4:
5469                 xhfc = 1;
5470                 m = hfcm_map[31];
5471                 break;
5472         case HWID_MINIP8:
5473                 xhfc = 2;
5474                 m = hfcm_map[31];
5475                 break;
5476         case HWID_MINIP16:
5477                 xhfc = 4;
5478                 m = hfcm_map[31];
5479                 break;
5480         default:
5481                 xhfc = 0;
5482         }
5483
5484         for (i = 0; i < xhfc; ++i) {
5485                 err = hfcmulti_init(&m, NULL, NULL);
5486                 if (err) {
5487                         printk(KERN_ERR "error registering embedded driver: "
5488                                 "%x\n", err);
5489                         return err;
5490                 }
5491                 HFC_cnt++;
5492                 printk(KERN_INFO "%d devices registered\n", HFC_cnt);
5493         }
5494
5495         /* Register the PCI cards */
5496         err = pci_register_driver(&hfcmultipci_driver);
5497         if (err < 0) {
5498                 printk(KERN_ERR "error registering pci driver: %x\n", err);
5499                 return err;
5500         }
5501
5502         return 0;
5503 }
5504
5505
5506 module_init(HFCmulti_init);
5507 module_exit(HFCmulti_cleanup);