Merge branch 'core-printk-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[pandora-kernel.git] / drivers / iommu / dmar.c
1 /*
2  * Copyright (c) 2006, Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Copyright (C) 2006-2008 Intel Corporation
18  * Author: Ashok Raj <ashok.raj@intel.com>
19  * Author: Shaohua Li <shaohua.li@intel.com>
20  * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21  *
22  * This file implements early detection/parsing of Remapping Devices
23  * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
24  * tables.
25  *
26  * These routines are used by both DMA-remapping and Interrupt-remapping
27  */
28
29 #include <linux/pci.h>
30 #include <linux/dmar.h>
31 #include <linux/iova.h>
32 #include <linux/intel-iommu.h>
33 #include <linux/timer.h>
34 #include <linux/irq.h>
35 #include <linux/interrupt.h>
36 #include <linux/tboot.h>
37 #include <linux/dmi.h>
38 #include <linux/slab.h>
39 #include <asm/iommu_table.h>
40
41 #define PREFIX "DMAR: "
42
43 /* No locks are needed as DMA remapping hardware unit
44  * list is constructed at boot time and hotplug of
45  * these units are not supported by the architecture.
46  */
47 LIST_HEAD(dmar_drhd_units);
48
49 static struct acpi_table_header * __initdata dmar_tbl;
50 static acpi_size dmar_tbl_size;
51
52 static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
53 {
54         /*
55          * add INCLUDE_ALL at the tail, so scan the list will find it at
56          * the very end.
57          */
58         if (drhd->include_all)
59                 list_add_tail(&drhd->list, &dmar_drhd_units);
60         else
61                 list_add(&drhd->list, &dmar_drhd_units);
62 }
63
64 static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope,
65                                            struct pci_dev **dev, u16 segment)
66 {
67         struct pci_bus *bus;
68         struct pci_dev *pdev = NULL;
69         struct acpi_dmar_pci_path *path;
70         int count;
71
72         bus = pci_find_bus(segment, scope->bus);
73         path = (struct acpi_dmar_pci_path *)(scope + 1);
74         count = (scope->length - sizeof(struct acpi_dmar_device_scope))
75                 / sizeof(struct acpi_dmar_pci_path);
76
77         while (count) {
78                 if (pdev)
79                         pci_dev_put(pdev);
80                 /*
81                  * Some BIOSes list non-exist devices in DMAR table, just
82                  * ignore it
83                  */
84                 if (!bus) {
85                         printk(KERN_WARNING
86                         PREFIX "Device scope bus [%d] not found\n",
87                         scope->bus);
88                         break;
89                 }
90                 pdev = pci_get_slot(bus, PCI_DEVFN(path->dev, path->fn));
91                 if (!pdev) {
92                         printk(KERN_WARNING PREFIX
93                         "Device scope device [%04x:%02x:%02x.%02x] not found\n",
94                                 segment, bus->number, path->dev, path->fn);
95                         break;
96                 }
97                 path ++;
98                 count --;
99                 bus = pdev->subordinate;
100         }
101         if (!pdev) {
102                 printk(KERN_WARNING PREFIX
103                 "Device scope device [%04x:%02x:%02x.%02x] not found\n",
104                 segment, scope->bus, path->dev, path->fn);
105                 *dev = NULL;
106                 return 0;
107         }
108         if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \
109                         pdev->subordinate) || (scope->entry_type == \
110                         ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) {
111                 pci_dev_put(pdev);
112                 printk(KERN_WARNING PREFIX
113                         "Device scope type does not match for %s\n",
114                          pci_name(pdev));
115                 return -EINVAL;
116         }
117         *dev = pdev;
118         return 0;
119 }
120
121 static int __init dmar_parse_dev_scope(void *start, void *end, int *cnt,
122                                        struct pci_dev ***devices, u16 segment)
123 {
124         struct acpi_dmar_device_scope *scope;
125         void * tmp = start;
126         int index;
127         int ret;
128
129         *cnt = 0;
130         while (start < end) {
131                 scope = start;
132                 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
133                     scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
134                         (*cnt)++;
135                 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC) {
136                         printk(KERN_WARNING PREFIX
137                                "Unsupported device scope\n");
138                 }
139                 start += scope->length;
140         }
141         if (*cnt == 0)
142                 return 0;
143
144         *devices = kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL);
145         if (!*devices)
146                 return -ENOMEM;
147
148         start = tmp;
149         index = 0;
150         while (start < end) {
151                 scope = start;
152                 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
153                     scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) {
154                         ret = dmar_parse_one_dev_scope(scope,
155                                 &(*devices)[index], segment);
156                         if (ret) {
157                                 kfree(*devices);
158                                 return ret;
159                         }
160                         index ++;
161                 }
162                 start += scope->length;
163         }
164
165         return 0;
166 }
167
168 /**
169  * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
170  * structure which uniquely represent one DMA remapping hardware unit
171  * present in the platform
172  */
173 static int __init
174 dmar_parse_one_drhd(struct acpi_dmar_header *header)
175 {
176         struct acpi_dmar_hardware_unit *drhd;
177         struct dmar_drhd_unit *dmaru;
178         int ret = 0;
179
180         drhd = (struct acpi_dmar_hardware_unit *)header;
181         dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
182         if (!dmaru)
183                 return -ENOMEM;
184
185         dmaru->hdr = header;
186         dmaru->reg_base_addr = drhd->address;
187         dmaru->segment = drhd->segment;
188         dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
189
190         ret = alloc_iommu(dmaru);
191         if (ret) {
192                 kfree(dmaru);
193                 return ret;
194         }
195         dmar_register_drhd_unit(dmaru);
196         return 0;
197 }
198
199 static int __init dmar_parse_dev(struct dmar_drhd_unit *dmaru)
200 {
201         struct acpi_dmar_hardware_unit *drhd;
202         int ret = 0;
203
204         drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr;
205
206         if (dmaru->include_all)
207                 return 0;
208
209         ret = dmar_parse_dev_scope((void *)(drhd + 1),
210                                 ((void *)drhd) + drhd->header.length,
211                                 &dmaru->devices_cnt, &dmaru->devices,
212                                 drhd->segment);
213         if (ret) {
214                 list_del(&dmaru->list);
215                 kfree(dmaru);
216         }
217         return ret;
218 }
219
220 #ifdef CONFIG_DMAR
221 LIST_HEAD(dmar_rmrr_units);
222
223 static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
224 {
225         list_add(&rmrr->list, &dmar_rmrr_units);
226 }
227
228
229 static int __init
230 dmar_parse_one_rmrr(struct acpi_dmar_header *header)
231 {
232         struct acpi_dmar_reserved_memory *rmrr;
233         struct dmar_rmrr_unit *rmrru;
234
235         rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
236         if (!rmrru)
237                 return -ENOMEM;
238
239         rmrru->hdr = header;
240         rmrr = (struct acpi_dmar_reserved_memory *)header;
241         rmrru->base_address = rmrr->base_address;
242         rmrru->end_address = rmrr->end_address;
243
244         dmar_register_rmrr_unit(rmrru);
245         return 0;
246 }
247
248 static int __init
249 rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
250 {
251         struct acpi_dmar_reserved_memory *rmrr;
252         int ret;
253
254         rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
255         ret = dmar_parse_dev_scope((void *)(rmrr + 1),
256                 ((void *)rmrr) + rmrr->header.length,
257                 &rmrru->devices_cnt, &rmrru->devices, rmrr->segment);
258
259         if (ret || (rmrru->devices_cnt == 0)) {
260                 list_del(&rmrru->list);
261                 kfree(rmrru);
262         }
263         return ret;
264 }
265
266 static LIST_HEAD(dmar_atsr_units);
267
268 static int __init dmar_parse_one_atsr(struct acpi_dmar_header *hdr)
269 {
270         struct acpi_dmar_atsr *atsr;
271         struct dmar_atsr_unit *atsru;
272
273         atsr = container_of(hdr, struct acpi_dmar_atsr, header);
274         atsru = kzalloc(sizeof(*atsru), GFP_KERNEL);
275         if (!atsru)
276                 return -ENOMEM;
277
278         atsru->hdr = hdr;
279         atsru->include_all = atsr->flags & 0x1;
280
281         list_add(&atsru->list, &dmar_atsr_units);
282
283         return 0;
284 }
285
286 static int __init atsr_parse_dev(struct dmar_atsr_unit *atsru)
287 {
288         int rc;
289         struct acpi_dmar_atsr *atsr;
290
291         if (atsru->include_all)
292                 return 0;
293
294         atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
295         rc = dmar_parse_dev_scope((void *)(atsr + 1),
296                                 (void *)atsr + atsr->header.length,
297                                 &atsru->devices_cnt, &atsru->devices,
298                                 atsr->segment);
299         if (rc || !atsru->devices_cnt) {
300                 list_del(&atsru->list);
301                 kfree(atsru);
302         }
303
304         return rc;
305 }
306
307 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
308 {
309         int i;
310         struct pci_bus *bus;
311         struct acpi_dmar_atsr *atsr;
312         struct dmar_atsr_unit *atsru;
313
314         dev = pci_physfn(dev);
315
316         list_for_each_entry(atsru, &dmar_atsr_units, list) {
317                 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
318                 if (atsr->segment == pci_domain_nr(dev->bus))
319                         goto found;
320         }
321
322         return 0;
323
324 found:
325         for (bus = dev->bus; bus; bus = bus->parent) {
326                 struct pci_dev *bridge = bus->self;
327
328                 if (!bridge || !pci_is_pcie(bridge) ||
329                     bridge->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
330                         return 0;
331
332                 if (bridge->pcie_type == PCI_EXP_TYPE_ROOT_PORT) {
333                         for (i = 0; i < atsru->devices_cnt; i++)
334                                 if (atsru->devices[i] == bridge)
335                                         return 1;
336                         break;
337                 }
338         }
339
340         if (atsru->include_all)
341                 return 1;
342
343         return 0;
344 }
345 #endif
346
347 #ifdef CONFIG_ACPI_NUMA
348 static int __init
349 dmar_parse_one_rhsa(struct acpi_dmar_header *header)
350 {
351         struct acpi_dmar_rhsa *rhsa;
352         struct dmar_drhd_unit *drhd;
353
354         rhsa = (struct acpi_dmar_rhsa *)header;
355         for_each_drhd_unit(drhd) {
356                 if (drhd->reg_base_addr == rhsa->base_address) {
357                         int node = acpi_map_pxm_to_node(rhsa->proximity_domain);
358
359                         if (!node_online(node))
360                                 node = -1;
361                         drhd->iommu->node = node;
362                         return 0;
363                 }
364         }
365         WARN_TAINT(
366                 1, TAINT_FIRMWARE_WORKAROUND,
367                 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
368                 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
369                 drhd->reg_base_addr,
370                 dmi_get_system_info(DMI_BIOS_VENDOR),
371                 dmi_get_system_info(DMI_BIOS_VERSION),
372                 dmi_get_system_info(DMI_PRODUCT_VERSION));
373
374         return 0;
375 }
376 #endif
377
378 static void __init
379 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
380 {
381         struct acpi_dmar_hardware_unit *drhd;
382         struct acpi_dmar_reserved_memory *rmrr;
383         struct acpi_dmar_atsr *atsr;
384         struct acpi_dmar_rhsa *rhsa;
385
386         switch (header->type) {
387         case ACPI_DMAR_TYPE_HARDWARE_UNIT:
388                 drhd = container_of(header, struct acpi_dmar_hardware_unit,
389                                     header);
390                 printk (KERN_INFO PREFIX
391                         "DRHD base: %#016Lx flags: %#x\n",
392                         (unsigned long long)drhd->address, drhd->flags);
393                 break;
394         case ACPI_DMAR_TYPE_RESERVED_MEMORY:
395                 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
396                                     header);
397                 printk (KERN_INFO PREFIX
398                         "RMRR base: %#016Lx end: %#016Lx\n",
399                         (unsigned long long)rmrr->base_address,
400                         (unsigned long long)rmrr->end_address);
401                 break;
402         case ACPI_DMAR_TYPE_ATSR:
403                 atsr = container_of(header, struct acpi_dmar_atsr, header);
404                 printk(KERN_INFO PREFIX "ATSR flags: %#x\n", atsr->flags);
405                 break;
406         case ACPI_DMAR_HARDWARE_AFFINITY:
407                 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
408                 printk(KERN_INFO PREFIX "RHSA base: %#016Lx proximity domain: %#x\n",
409                        (unsigned long long)rhsa->base_address,
410                        rhsa->proximity_domain);
411                 break;
412         }
413 }
414
415 /**
416  * dmar_table_detect - checks to see if the platform supports DMAR devices
417  */
418 static int __init dmar_table_detect(void)
419 {
420         acpi_status status = AE_OK;
421
422         /* if we could find DMAR table, then there are DMAR devices */
423         status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
424                                 (struct acpi_table_header **)&dmar_tbl,
425                                 &dmar_tbl_size);
426
427         if (ACPI_SUCCESS(status) && !dmar_tbl) {
428                 printk (KERN_WARNING PREFIX "Unable to map DMAR\n");
429                 status = AE_NOT_FOUND;
430         }
431
432         return (ACPI_SUCCESS(status) ? 1 : 0);
433 }
434
435 /**
436  * parse_dmar_table - parses the DMA reporting table
437  */
438 static int __init
439 parse_dmar_table(void)
440 {
441         struct acpi_table_dmar *dmar;
442         struct acpi_dmar_header *entry_header;
443         int ret = 0;
444
445         /*
446          * Do it again, earlier dmar_tbl mapping could be mapped with
447          * fixed map.
448          */
449         dmar_table_detect();
450
451         /*
452          * ACPI tables may not be DMA protected by tboot, so use DMAR copy
453          * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
454          */
455         dmar_tbl = tboot_get_dmar_table(dmar_tbl);
456
457         dmar = (struct acpi_table_dmar *)dmar_tbl;
458         if (!dmar)
459                 return -ENODEV;
460
461         if (dmar->width < PAGE_SHIFT - 1) {
462                 printk(KERN_WARNING PREFIX "Invalid DMAR haw\n");
463                 return -EINVAL;
464         }
465
466         printk (KERN_INFO PREFIX "Host address width %d\n",
467                 dmar->width + 1);
468
469         entry_header = (struct acpi_dmar_header *)(dmar + 1);
470         while (((unsigned long)entry_header) <
471                         (((unsigned long)dmar) + dmar_tbl->length)) {
472                 /* Avoid looping forever on bad ACPI tables */
473                 if (entry_header->length == 0) {
474                         printk(KERN_WARNING PREFIX
475                                 "Invalid 0-length structure\n");
476                         ret = -EINVAL;
477                         break;
478                 }
479
480                 dmar_table_print_dmar_entry(entry_header);
481
482                 switch (entry_header->type) {
483                 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
484                         ret = dmar_parse_one_drhd(entry_header);
485                         break;
486                 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
487 #ifdef CONFIG_DMAR
488                         ret = dmar_parse_one_rmrr(entry_header);
489 #endif
490                         break;
491                 case ACPI_DMAR_TYPE_ATSR:
492 #ifdef CONFIG_DMAR
493                         ret = dmar_parse_one_atsr(entry_header);
494 #endif
495                         break;
496                 case ACPI_DMAR_HARDWARE_AFFINITY:
497 #ifdef CONFIG_ACPI_NUMA
498                         ret = dmar_parse_one_rhsa(entry_header);
499 #endif
500                         break;
501                 default:
502                         printk(KERN_WARNING PREFIX
503                                 "Unknown DMAR structure type %d\n",
504                                 entry_header->type);
505                         ret = 0; /* for forward compatibility */
506                         break;
507                 }
508                 if (ret)
509                         break;
510
511                 entry_header = ((void *)entry_header + entry_header->length);
512         }
513         return ret;
514 }
515
516 static int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
517                           struct pci_dev *dev)
518 {
519         int index;
520
521         while (dev) {
522                 for (index = 0; index < cnt; index++)
523                         if (dev == devices[index])
524                                 return 1;
525
526                 /* Check our parent */
527                 dev = dev->bus->self;
528         }
529
530         return 0;
531 }
532
533 struct dmar_drhd_unit *
534 dmar_find_matched_drhd_unit(struct pci_dev *dev)
535 {
536         struct dmar_drhd_unit *dmaru = NULL;
537         struct acpi_dmar_hardware_unit *drhd;
538
539         dev = pci_physfn(dev);
540
541         list_for_each_entry(dmaru, &dmar_drhd_units, list) {
542                 drhd = container_of(dmaru->hdr,
543                                     struct acpi_dmar_hardware_unit,
544                                     header);
545
546                 if (dmaru->include_all &&
547                     drhd->segment == pci_domain_nr(dev->bus))
548                         return dmaru;
549
550                 if (dmar_pci_device_match(dmaru->devices,
551                                           dmaru->devices_cnt, dev))
552                         return dmaru;
553         }
554
555         return NULL;
556 }
557
558 int __init dmar_dev_scope_init(void)
559 {
560         struct dmar_drhd_unit *drhd, *drhd_n;
561         int ret = -ENODEV;
562
563         list_for_each_entry_safe(drhd, drhd_n, &dmar_drhd_units, list) {
564                 ret = dmar_parse_dev(drhd);
565                 if (ret)
566                         return ret;
567         }
568
569 #ifdef CONFIG_DMAR
570         {
571                 struct dmar_rmrr_unit *rmrr, *rmrr_n;
572                 struct dmar_atsr_unit *atsr, *atsr_n;
573
574                 list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
575                         ret = rmrr_parse_dev(rmrr);
576                         if (ret)
577                                 return ret;
578                 }
579
580                 list_for_each_entry_safe(atsr, atsr_n, &dmar_atsr_units, list) {
581                         ret = atsr_parse_dev(atsr);
582                         if (ret)
583                                 return ret;
584                 }
585         }
586 #endif
587
588         return ret;
589 }
590
591
592 int __init dmar_table_init(void)
593 {
594         static int dmar_table_initialized;
595         int ret;
596
597         if (dmar_table_initialized)
598                 return 0;
599
600         dmar_table_initialized = 1;
601
602         ret = parse_dmar_table();
603         if (ret) {
604                 if (ret != -ENODEV)
605                         printk(KERN_INFO PREFIX "parse DMAR table failure.\n");
606                 return ret;
607         }
608
609         if (list_empty(&dmar_drhd_units)) {
610                 printk(KERN_INFO PREFIX "No DMAR devices found\n");
611                 return -ENODEV;
612         }
613
614 #ifdef CONFIG_DMAR
615         if (list_empty(&dmar_rmrr_units))
616                 printk(KERN_INFO PREFIX "No RMRR found\n");
617
618         if (list_empty(&dmar_atsr_units))
619                 printk(KERN_INFO PREFIX "No ATSR found\n");
620 #endif
621
622         return 0;
623 }
624
625 static void warn_invalid_dmar(u64 addr, const char *message)
626 {
627         WARN_TAINT_ONCE(
628                 1, TAINT_FIRMWARE_WORKAROUND,
629                 "Your BIOS is broken; DMAR reported at address %llx%s!\n"
630                 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
631                 addr, message,
632                 dmi_get_system_info(DMI_BIOS_VENDOR),
633                 dmi_get_system_info(DMI_BIOS_VERSION),
634                 dmi_get_system_info(DMI_PRODUCT_VERSION));
635 }
636
637 int __init check_zero_address(void)
638 {
639         struct acpi_table_dmar *dmar;
640         struct acpi_dmar_header *entry_header;
641         struct acpi_dmar_hardware_unit *drhd;
642
643         dmar = (struct acpi_table_dmar *)dmar_tbl;
644         entry_header = (struct acpi_dmar_header *)(dmar + 1);
645
646         while (((unsigned long)entry_header) <
647                         (((unsigned long)dmar) + dmar_tbl->length)) {
648                 /* Avoid looping forever on bad ACPI tables */
649                 if (entry_header->length == 0) {
650                         printk(KERN_WARNING PREFIX
651                                 "Invalid 0-length structure\n");
652                         return 0;
653                 }
654
655                 if (entry_header->type == ACPI_DMAR_TYPE_HARDWARE_UNIT) {
656                         void __iomem *addr;
657                         u64 cap, ecap;
658
659                         drhd = (void *)entry_header;
660                         if (!drhd->address) {
661                                 warn_invalid_dmar(0, "");
662                                 goto failed;
663                         }
664
665                         addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
666                         if (!addr ) {
667                                 printk("IOMMU: can't validate: %llx\n", drhd->address);
668                                 goto failed;
669                         }
670                         cap = dmar_readq(addr + DMAR_CAP_REG);
671                         ecap = dmar_readq(addr + DMAR_ECAP_REG);
672                         early_iounmap(addr, VTD_PAGE_SIZE);
673                         if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
674                                 warn_invalid_dmar(drhd->address,
675                                                   " returns all ones");
676                                 goto failed;
677                         }
678                 }
679
680                 entry_header = ((void *)entry_header + entry_header->length);
681         }
682         return 1;
683
684 failed:
685 #ifdef CONFIG_DMAR
686         dmar_disabled = 1;
687 #endif
688         return 0;
689 }
690
691 int __init detect_intel_iommu(void)
692 {
693         int ret;
694
695         ret = dmar_table_detect();
696         if (ret)
697                 ret = check_zero_address();
698         {
699 #ifdef CONFIG_INTR_REMAP
700                 struct acpi_table_dmar *dmar;
701
702                 dmar = (struct acpi_table_dmar *) dmar_tbl;
703                 if (ret && cpu_has_x2apic && dmar->flags & 0x1)
704                         printk(KERN_INFO
705                                "Queued invalidation will be enabled to support "
706                                "x2apic and Intr-remapping.\n");
707 #endif
708 #ifdef CONFIG_DMAR
709                 if (ret && !no_iommu && !iommu_detected && !dmar_disabled) {
710                         iommu_detected = 1;
711                         /* Make sure ACS will be enabled */
712                         pci_request_acs();
713                 }
714 #endif
715 #ifdef CONFIG_X86
716                 if (ret)
717                         x86_init.iommu.iommu_init = intel_iommu_init;
718 #endif
719         }
720         early_acpi_os_unmap_memory(dmar_tbl, dmar_tbl_size);
721         dmar_tbl = NULL;
722
723         return ret ? 1 : -ENODEV;
724 }
725
726
727 int alloc_iommu(struct dmar_drhd_unit *drhd)
728 {
729         struct intel_iommu *iommu;
730         int map_size;
731         u32 ver;
732         static int iommu_allocated = 0;
733         int agaw = 0;
734         int msagaw = 0;
735
736         if (!drhd->reg_base_addr) {
737                 warn_invalid_dmar(0, "");
738                 return -EINVAL;
739         }
740
741         iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
742         if (!iommu)
743                 return -ENOMEM;
744
745         iommu->seq_id = iommu_allocated++;
746         sprintf (iommu->name, "dmar%d", iommu->seq_id);
747
748         iommu->reg = ioremap(drhd->reg_base_addr, VTD_PAGE_SIZE);
749         if (!iommu->reg) {
750                 printk(KERN_ERR "IOMMU: can't map the region\n");
751                 goto error;
752         }
753         iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
754         iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
755
756         if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
757                 warn_invalid_dmar(drhd->reg_base_addr, " returns all ones");
758                 goto err_unmap;
759         }
760
761 #ifdef CONFIG_DMAR
762         agaw = iommu_calculate_agaw(iommu);
763         if (agaw < 0) {
764                 printk(KERN_ERR
765                        "Cannot get a valid agaw for iommu (seq_id = %d)\n",
766                        iommu->seq_id);
767                 goto err_unmap;
768         }
769         msagaw = iommu_calculate_max_sagaw(iommu);
770         if (msagaw < 0) {
771                 printk(KERN_ERR
772                         "Cannot get a valid max agaw for iommu (seq_id = %d)\n",
773                         iommu->seq_id);
774                 goto err_unmap;
775         }
776 #endif
777         iommu->agaw = agaw;
778         iommu->msagaw = msagaw;
779
780         iommu->node = -1;
781
782         /* the registers might be more than one page */
783         map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
784                 cap_max_fault_reg_offset(iommu->cap));
785         map_size = VTD_PAGE_ALIGN(map_size);
786         if (map_size > VTD_PAGE_SIZE) {
787                 iounmap(iommu->reg);
788                 iommu->reg = ioremap(drhd->reg_base_addr, map_size);
789                 if (!iommu->reg) {
790                         printk(KERN_ERR "IOMMU: can't map the region\n");
791                         goto error;
792                 }
793         }
794
795         ver = readl(iommu->reg + DMAR_VER_REG);
796         pr_info("IOMMU %d: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
797                 iommu->seq_id,
798                 (unsigned long long)drhd->reg_base_addr,
799                 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
800                 (unsigned long long)iommu->cap,
801                 (unsigned long long)iommu->ecap);
802
803         spin_lock_init(&iommu->register_lock);
804
805         drhd->iommu = iommu;
806         return 0;
807
808  err_unmap:
809         iounmap(iommu->reg);
810  error:
811         kfree(iommu);
812         return -1;
813 }
814
815 void free_iommu(struct intel_iommu *iommu)
816 {
817         if (!iommu)
818                 return;
819
820 #ifdef CONFIG_DMAR
821         free_dmar_iommu(iommu);
822 #endif
823
824         if (iommu->reg)
825                 iounmap(iommu->reg);
826         kfree(iommu);
827 }
828
829 /*
830  * Reclaim all the submitted descriptors which have completed its work.
831  */
832 static inline void reclaim_free_desc(struct q_inval *qi)
833 {
834         while (qi->desc_status[qi->free_tail] == QI_DONE ||
835                qi->desc_status[qi->free_tail] == QI_ABORT) {
836                 qi->desc_status[qi->free_tail] = QI_FREE;
837                 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
838                 qi->free_cnt++;
839         }
840 }
841
842 static int qi_check_fault(struct intel_iommu *iommu, int index)
843 {
844         u32 fault;
845         int head, tail;
846         struct q_inval *qi = iommu->qi;
847         int wait_index = (index + 1) % QI_LENGTH;
848
849         if (qi->desc_status[wait_index] == QI_ABORT)
850                 return -EAGAIN;
851
852         fault = readl(iommu->reg + DMAR_FSTS_REG);
853
854         /*
855          * If IQE happens, the head points to the descriptor associated
856          * with the error. No new descriptors are fetched until the IQE
857          * is cleared.
858          */
859         if (fault & DMA_FSTS_IQE) {
860                 head = readl(iommu->reg + DMAR_IQH_REG);
861                 if ((head >> DMAR_IQ_SHIFT) == index) {
862                         printk(KERN_ERR "VT-d detected invalid descriptor: "
863                                 "low=%llx, high=%llx\n",
864                                 (unsigned long long)qi->desc[index].low,
865                                 (unsigned long long)qi->desc[index].high);
866                         memcpy(&qi->desc[index], &qi->desc[wait_index],
867                                         sizeof(struct qi_desc));
868                         __iommu_flush_cache(iommu, &qi->desc[index],
869                                         sizeof(struct qi_desc));
870                         writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
871                         return -EINVAL;
872                 }
873         }
874
875         /*
876          * If ITE happens, all pending wait_desc commands are aborted.
877          * No new descriptors are fetched until the ITE is cleared.
878          */
879         if (fault & DMA_FSTS_ITE) {
880                 head = readl(iommu->reg + DMAR_IQH_REG);
881                 head = ((head >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
882                 head |= 1;
883                 tail = readl(iommu->reg + DMAR_IQT_REG);
884                 tail = ((tail >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
885
886                 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
887
888                 do {
889                         if (qi->desc_status[head] == QI_IN_USE)
890                                 qi->desc_status[head] = QI_ABORT;
891                         head = (head - 2 + QI_LENGTH) % QI_LENGTH;
892                 } while (head != tail);
893
894                 if (qi->desc_status[wait_index] == QI_ABORT)
895                         return -EAGAIN;
896         }
897
898         if (fault & DMA_FSTS_ICE)
899                 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
900
901         return 0;
902 }
903
904 /*
905  * Submit the queued invalidation descriptor to the remapping
906  * hardware unit and wait for its completion.
907  */
908 int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
909 {
910         int rc;
911         struct q_inval *qi = iommu->qi;
912         struct qi_desc *hw, wait_desc;
913         int wait_index, index;
914         unsigned long flags;
915
916         if (!qi)
917                 return 0;
918
919         hw = qi->desc;
920
921 restart:
922         rc = 0;
923
924         spin_lock_irqsave(&qi->q_lock, flags);
925         while (qi->free_cnt < 3) {
926                 spin_unlock_irqrestore(&qi->q_lock, flags);
927                 cpu_relax();
928                 spin_lock_irqsave(&qi->q_lock, flags);
929         }
930
931         index = qi->free_head;
932         wait_index = (index + 1) % QI_LENGTH;
933
934         qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
935
936         hw[index] = *desc;
937
938         wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
939                         QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
940         wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);
941
942         hw[wait_index] = wait_desc;
943
944         __iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
945         __iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));
946
947         qi->free_head = (qi->free_head + 2) % QI_LENGTH;
948         qi->free_cnt -= 2;
949
950         /*
951          * update the HW tail register indicating the presence of
952          * new descriptors.
953          */
954         writel(qi->free_head << DMAR_IQ_SHIFT, iommu->reg + DMAR_IQT_REG);
955
956         while (qi->desc_status[wait_index] != QI_DONE) {
957                 /*
958                  * We will leave the interrupts disabled, to prevent interrupt
959                  * context to queue another cmd while a cmd is already submitted
960                  * and waiting for completion on this cpu. This is to avoid
961                  * a deadlock where the interrupt context can wait indefinitely
962                  * for free slots in the queue.
963                  */
964                 rc = qi_check_fault(iommu, index);
965                 if (rc)
966                         break;
967
968                 spin_unlock(&qi->q_lock);
969                 cpu_relax();
970                 spin_lock(&qi->q_lock);
971         }
972
973         qi->desc_status[index] = QI_DONE;
974
975         reclaim_free_desc(qi);
976         spin_unlock_irqrestore(&qi->q_lock, flags);
977
978         if (rc == -EAGAIN)
979                 goto restart;
980
981         return rc;
982 }
983
984 /*
985  * Flush the global interrupt entry cache.
986  */
987 void qi_global_iec(struct intel_iommu *iommu)
988 {
989         struct qi_desc desc;
990
991         desc.low = QI_IEC_TYPE;
992         desc.high = 0;
993
994         /* should never fail */
995         qi_submit_sync(&desc, iommu);
996 }
997
998 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
999                       u64 type)
1000 {
1001         struct qi_desc desc;
1002
1003         desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1004                         | QI_CC_GRAN(type) | QI_CC_TYPE;
1005         desc.high = 0;
1006
1007         qi_submit_sync(&desc, iommu);
1008 }
1009
1010 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1011                     unsigned int size_order, u64 type)
1012 {
1013         u8 dw = 0, dr = 0;
1014
1015         struct qi_desc desc;
1016         int ih = 0;
1017
1018         if (cap_write_drain(iommu->cap))
1019                 dw = 1;
1020
1021         if (cap_read_drain(iommu->cap))
1022                 dr = 1;
1023
1024         desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1025                 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1026         desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1027                 | QI_IOTLB_AM(size_order);
1028
1029         qi_submit_sync(&desc, iommu);
1030 }
1031
1032 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 qdep,
1033                         u64 addr, unsigned mask)
1034 {
1035         struct qi_desc desc;
1036
1037         if (mask) {
1038                 BUG_ON(addr & ((1 << (VTD_PAGE_SHIFT + mask)) - 1));
1039                 addr |= (1 << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1040                 desc.high = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1041         } else
1042                 desc.high = QI_DEV_IOTLB_ADDR(addr);
1043
1044         if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1045                 qdep = 0;
1046
1047         desc.low = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1048                    QI_DIOTLB_TYPE;
1049
1050         qi_submit_sync(&desc, iommu);
1051 }
1052
1053 /*
1054  * Disable Queued Invalidation interface.
1055  */
1056 void dmar_disable_qi(struct intel_iommu *iommu)
1057 {
1058         unsigned long flags;
1059         u32 sts;
1060         cycles_t start_time = get_cycles();
1061
1062         if (!ecap_qis(iommu->ecap))
1063                 return;
1064
1065         spin_lock_irqsave(&iommu->register_lock, flags);
1066
1067         sts =  dmar_readq(iommu->reg + DMAR_GSTS_REG);
1068         if (!(sts & DMA_GSTS_QIES))
1069                 goto end;
1070
1071         /*
1072          * Give a chance to HW to complete the pending invalidation requests.
1073          */
1074         while ((readl(iommu->reg + DMAR_IQT_REG) !=
1075                 readl(iommu->reg + DMAR_IQH_REG)) &&
1076                 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1077                 cpu_relax();
1078
1079         iommu->gcmd &= ~DMA_GCMD_QIE;
1080         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1081
1082         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1083                       !(sts & DMA_GSTS_QIES), sts);
1084 end:
1085         spin_unlock_irqrestore(&iommu->register_lock, flags);
1086 }
1087
1088 /*
1089  * Enable queued invalidation.
1090  */
1091 static void __dmar_enable_qi(struct intel_iommu *iommu)
1092 {
1093         u32 sts;
1094         unsigned long flags;
1095         struct q_inval *qi = iommu->qi;
1096
1097         qi->free_head = qi->free_tail = 0;
1098         qi->free_cnt = QI_LENGTH;
1099
1100         spin_lock_irqsave(&iommu->register_lock, flags);
1101
1102         /* write zero to the tail reg */
1103         writel(0, iommu->reg + DMAR_IQT_REG);
1104
1105         dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));
1106
1107         iommu->gcmd |= DMA_GCMD_QIE;
1108         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1109
1110         /* Make sure hardware complete it */
1111         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1112
1113         spin_unlock_irqrestore(&iommu->register_lock, flags);
1114 }
1115
1116 /*
1117  * Enable Queued Invalidation interface. This is a must to support
1118  * interrupt-remapping. Also used by DMA-remapping, which replaces
1119  * register based IOTLB invalidation.
1120  */
1121 int dmar_enable_qi(struct intel_iommu *iommu)
1122 {
1123         struct q_inval *qi;
1124         struct page *desc_page;
1125
1126         if (!ecap_qis(iommu->ecap))
1127                 return -ENOENT;
1128
1129         /*
1130          * queued invalidation is already setup and enabled.
1131          */
1132         if (iommu->qi)
1133                 return 0;
1134
1135         iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1136         if (!iommu->qi)
1137                 return -ENOMEM;
1138
1139         qi = iommu->qi;
1140
1141
1142         desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, 0);
1143         if (!desc_page) {
1144                 kfree(qi);
1145                 iommu->qi = 0;
1146                 return -ENOMEM;
1147         }
1148
1149         qi->desc = page_address(desc_page);
1150
1151         qi->desc_status = kmalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC);
1152         if (!qi->desc_status) {
1153                 free_page((unsigned long) qi->desc);
1154                 kfree(qi);
1155                 iommu->qi = 0;
1156                 return -ENOMEM;
1157         }
1158
1159         qi->free_head = qi->free_tail = 0;
1160         qi->free_cnt = QI_LENGTH;
1161
1162         spin_lock_init(&qi->q_lock);
1163
1164         __dmar_enable_qi(iommu);
1165
1166         return 0;
1167 }
1168
1169 /* iommu interrupt handling. Most stuff are MSI-like. */
1170
1171 enum faulttype {
1172         DMA_REMAP,
1173         INTR_REMAP,
1174         UNKNOWN,
1175 };
1176
1177 static const char *dma_remap_fault_reasons[] =
1178 {
1179         "Software",
1180         "Present bit in root entry is clear",
1181         "Present bit in context entry is clear",
1182         "Invalid context entry",
1183         "Access beyond MGAW",
1184         "PTE Write access is not set",
1185         "PTE Read access is not set",
1186         "Next page table ptr is invalid",
1187         "Root table address invalid",
1188         "Context table ptr is invalid",
1189         "non-zero reserved fields in RTP",
1190         "non-zero reserved fields in CTP",
1191         "non-zero reserved fields in PTE",
1192 };
1193
1194 static const char *intr_remap_fault_reasons[] =
1195 {
1196         "Detected reserved fields in the decoded interrupt-remapped request",
1197         "Interrupt index exceeded the interrupt-remapping table size",
1198         "Present field in the IRTE entry is clear",
1199         "Error accessing interrupt-remapping table pointed by IRTA_REG",
1200         "Detected reserved fields in the IRTE entry",
1201         "Blocked a compatibility format interrupt request",
1202         "Blocked an interrupt request due to source-id verification failure",
1203 };
1204
1205 #define MAX_FAULT_REASON_IDX    (ARRAY_SIZE(fault_reason_strings) - 1)
1206
1207 const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1208 {
1209         if (fault_reason >= 0x20 && (fault_reason <= 0x20 +
1210                                      ARRAY_SIZE(intr_remap_fault_reasons))) {
1211                 *fault_type = INTR_REMAP;
1212                 return intr_remap_fault_reasons[fault_reason - 0x20];
1213         } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1214                 *fault_type = DMA_REMAP;
1215                 return dma_remap_fault_reasons[fault_reason];
1216         } else {
1217                 *fault_type = UNKNOWN;
1218                 return "Unknown";
1219         }
1220 }
1221
1222 void dmar_msi_unmask(struct irq_data *data)
1223 {
1224         struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1225         unsigned long flag;
1226
1227         /* unmask it */
1228         spin_lock_irqsave(&iommu->register_lock, flag);
1229         writel(0, iommu->reg + DMAR_FECTL_REG);
1230         /* Read a reg to force flush the post write */
1231         readl(iommu->reg + DMAR_FECTL_REG);
1232         spin_unlock_irqrestore(&iommu->register_lock, flag);
1233 }
1234
1235 void dmar_msi_mask(struct irq_data *data)
1236 {
1237         unsigned long flag;
1238         struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1239
1240         /* mask it */
1241         spin_lock_irqsave(&iommu->register_lock, flag);
1242         writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
1243         /* Read a reg to force flush the post write */
1244         readl(iommu->reg + DMAR_FECTL_REG);
1245         spin_unlock_irqrestore(&iommu->register_lock, flag);
1246 }
1247
1248 void dmar_msi_write(int irq, struct msi_msg *msg)
1249 {
1250         struct intel_iommu *iommu = irq_get_handler_data(irq);
1251         unsigned long flag;
1252
1253         spin_lock_irqsave(&iommu->register_lock, flag);
1254         writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
1255         writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
1256         writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
1257         spin_unlock_irqrestore(&iommu->register_lock, flag);
1258 }
1259
1260 void dmar_msi_read(int irq, struct msi_msg *msg)
1261 {
1262         struct intel_iommu *iommu = irq_get_handler_data(irq);
1263         unsigned long flag;
1264
1265         spin_lock_irqsave(&iommu->register_lock, flag);
1266         msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
1267         msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
1268         msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
1269         spin_unlock_irqrestore(&iommu->register_lock, flag);
1270 }
1271
1272 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1273                 u8 fault_reason, u16 source_id, unsigned long long addr)
1274 {
1275         const char *reason;
1276         int fault_type;
1277
1278         reason = dmar_get_fault_reason(fault_reason, &fault_type);
1279
1280         if (fault_type == INTR_REMAP)
1281                 printk(KERN_ERR "INTR-REMAP: Request device [[%02x:%02x.%d] "
1282                        "fault index %llx\n"
1283                         "INTR-REMAP:[fault reason %02d] %s\n",
1284                         (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1285                         PCI_FUNC(source_id & 0xFF), addr >> 48,
1286                         fault_reason, reason);
1287         else
1288                 printk(KERN_ERR
1289                        "DMAR:[%s] Request device [%02x:%02x.%d] "
1290                        "fault addr %llx \n"
1291                        "DMAR:[fault reason %02d] %s\n",
1292                        (type ? "DMA Read" : "DMA Write"),
1293                        (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1294                        PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
1295         return 0;
1296 }
1297
1298 #define PRIMARY_FAULT_REG_LEN (16)
1299 irqreturn_t dmar_fault(int irq, void *dev_id)
1300 {
1301         struct intel_iommu *iommu = dev_id;
1302         int reg, fault_index;
1303         u32 fault_status;
1304         unsigned long flag;
1305
1306         spin_lock_irqsave(&iommu->register_lock, flag);
1307         fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1308         if (fault_status)
1309                 printk(KERN_ERR "DRHD: handling fault status reg %x\n",
1310                        fault_status);
1311
1312         /* TBD: ignore advanced fault log currently */
1313         if (!(fault_status & DMA_FSTS_PPF))
1314                 goto clear_rest;
1315
1316         fault_index = dma_fsts_fault_record_index(fault_status);
1317         reg = cap_fault_reg_offset(iommu->cap);
1318         while (1) {
1319                 u8 fault_reason;
1320                 u16 source_id;
1321                 u64 guest_addr;
1322                 int type;
1323                 u32 data;
1324
1325                 /* highest 32 bits */
1326                 data = readl(iommu->reg + reg +
1327                                 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1328                 if (!(data & DMA_FRCD_F))
1329                         break;
1330
1331                 fault_reason = dma_frcd_fault_reason(data);
1332                 type = dma_frcd_type(data);
1333
1334                 data = readl(iommu->reg + reg +
1335                                 fault_index * PRIMARY_FAULT_REG_LEN + 8);
1336                 source_id = dma_frcd_source_id(data);
1337
1338                 guest_addr = dmar_readq(iommu->reg + reg +
1339                                 fault_index * PRIMARY_FAULT_REG_LEN);
1340                 guest_addr = dma_frcd_page_addr(guest_addr);
1341                 /* clear the fault */
1342                 writel(DMA_FRCD_F, iommu->reg + reg +
1343                         fault_index * PRIMARY_FAULT_REG_LEN + 12);
1344
1345                 spin_unlock_irqrestore(&iommu->register_lock, flag);
1346
1347                 dmar_fault_do_one(iommu, type, fault_reason,
1348                                 source_id, guest_addr);
1349
1350                 fault_index++;
1351                 if (fault_index >= cap_num_fault_regs(iommu->cap))
1352                         fault_index = 0;
1353                 spin_lock_irqsave(&iommu->register_lock, flag);
1354         }
1355 clear_rest:
1356         /* clear all the other faults */
1357         fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1358         writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1359
1360         spin_unlock_irqrestore(&iommu->register_lock, flag);
1361         return IRQ_HANDLED;
1362 }
1363
1364 int dmar_set_interrupt(struct intel_iommu *iommu)
1365 {
1366         int irq, ret;
1367
1368         /*
1369          * Check if the fault interrupt is already initialized.
1370          */
1371         if (iommu->irq)
1372                 return 0;
1373
1374         irq = create_irq();
1375         if (!irq) {
1376                 printk(KERN_ERR "IOMMU: no free vectors\n");
1377                 return -EINVAL;
1378         }
1379
1380         irq_set_handler_data(irq, iommu);
1381         iommu->irq = irq;
1382
1383         ret = arch_setup_dmar_msi(irq);
1384         if (ret) {
1385                 irq_set_handler_data(irq, NULL);
1386                 iommu->irq = 0;
1387                 destroy_irq(irq);
1388                 return ret;
1389         }
1390
1391         ret = request_irq(irq, dmar_fault, 0, iommu->name, iommu);
1392         if (ret)
1393                 printk(KERN_ERR "IOMMU: can't request irq\n");
1394         return ret;
1395 }
1396
1397 int __init enable_drhd_fault_handling(void)
1398 {
1399         struct dmar_drhd_unit *drhd;
1400
1401         /*
1402          * Enable fault control interrupt.
1403          */
1404         for_each_drhd_unit(drhd) {
1405                 int ret;
1406                 struct intel_iommu *iommu = drhd->iommu;
1407                 ret = dmar_set_interrupt(iommu);
1408
1409                 if (ret) {
1410                         printk(KERN_ERR "DRHD %Lx: failed to enable fault, "
1411                                " interrupt, ret %d\n",
1412                                (unsigned long long)drhd->reg_base_addr, ret);
1413                         return -1;
1414                 }
1415
1416                 /*
1417                  * Clear any previous faults.
1418                  */
1419                 dmar_fault(iommu->irq, iommu);
1420         }
1421
1422         return 0;
1423 }
1424
1425 /*
1426  * Re-enable Queued Invalidation interface.
1427  */
1428 int dmar_reenable_qi(struct intel_iommu *iommu)
1429 {
1430         if (!ecap_qis(iommu->ecap))
1431                 return -ENOENT;
1432
1433         if (!iommu->qi)
1434                 return -ENOENT;
1435
1436         /*
1437          * First disable queued invalidation.
1438          */
1439         dmar_disable_qi(iommu);
1440         /*
1441          * Then enable queued invalidation again. Since there is no pending
1442          * invalidation requests now, it's safe to re-enable queued
1443          * invalidation.
1444          */
1445         __dmar_enable_qi(iommu);
1446
1447         return 0;
1448 }
1449
1450 /*
1451  * Check interrupt remapping support in DMAR table description.
1452  */
1453 int __init dmar_ir_support(void)
1454 {
1455         struct acpi_table_dmar *dmar;
1456         dmar = (struct acpi_table_dmar *)dmar_tbl;
1457         if (!dmar)
1458                 return 0;
1459         return dmar->flags & 0x1;
1460 }
1461 IOMMU_INIT_POST(detect_intel_iommu);