percpu: Remove the multi-page alignment facility
[pandora-kernel.git] / drivers / ieee1394 / eth1394.c
1 /*
2  * eth1394.c -- IPv4 driver for Linux IEEE-1394 Subsystem
3  *
4  * Copyright (C) 2001-2003 Ben Collins <bcollins@debian.org>
5  *               2000 Bonin Franck <boninf@free.fr>
6  *               2003 Steve Kinneberg <kinnebergsteve@acmsystems.com>
7  *
8  * Mainly based on work by Emanuel Pirker and Andreas E. Bombe
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23  */
24
25 /*
26  * This driver intends to support RFC 2734, which describes a method for
27  * transporting IPv4 datagrams over IEEE-1394 serial busses.
28  *
29  * TODO:
30  * RFC 2734 related:
31  * - Add MCAP. Limited Multicast exists only to 224.0.0.1 and 224.0.0.2.
32  *
33  * Non-RFC 2734 related:
34  * - Handle fragmented skb's coming from the networking layer.
35  * - Move generic GASP reception to core 1394 code
36  * - Convert kmalloc/kfree for link fragments to use kmem_cache_* instead
37  * - Stability improvements
38  * - Performance enhancements
39  * - Consider garbage collecting old partial datagrams after X amount of time
40  */
41
42 #include <linux/module.h>
43
44 #include <linux/kernel.h>
45 #include <linux/slab.h>
46 #include <linux/errno.h>
47 #include <linux/types.h>
48 #include <linux/delay.h>
49 #include <linux/init.h>
50 #include <linux/workqueue.h>
51
52 #include <linux/netdevice.h>
53 #include <linux/inetdevice.h>
54 #include <linux/if_arp.h>
55 #include <linux/if_ether.h>
56 #include <linux/ip.h>
57 #include <linux/in.h>
58 #include <linux/tcp.h>
59 #include <linux/skbuff.h>
60 #include <linux/bitops.h>
61 #include <asm/uaccess.h>
62 #include <asm/delay.h>
63 #include <asm/unaligned.h>
64 #include <net/arp.h>
65
66 #include "config_roms.h"
67 #include "csr1212.h"
68 #include "eth1394.h"
69 #include "highlevel.h"
70 #include "ieee1394.h"
71 #include "ieee1394_core.h"
72 #include "ieee1394_hotplug.h"
73 #include "ieee1394_transactions.h"
74 #include "ieee1394_types.h"
75 #include "iso.h"
76 #include "nodemgr.h"
77
78 #define ETH1394_PRINT_G(level, fmt, args...) \
79         printk(level "%s: " fmt, driver_name, ## args)
80
81 #define ETH1394_PRINT(level, dev_name, fmt, args...) \
82         printk(level "%s: %s: " fmt, driver_name, dev_name, ## args)
83
84 struct fragment_info {
85         struct list_head list;
86         int offset;
87         int len;
88 };
89
90 struct partial_datagram {
91         struct list_head list;
92         u16 dgl;
93         u16 dg_size;
94         __be16 ether_type;
95         struct sk_buff *skb;
96         char *pbuf;
97         struct list_head frag_info;
98 };
99
100 struct pdg_list {
101         struct list_head list;  /* partial datagram list per node       */
102         unsigned int sz;        /* partial datagram list size per node  */
103         spinlock_t lock;        /* partial datagram lock                */
104 };
105
106 struct eth1394_host_info {
107         struct hpsb_host *host;
108         struct net_device *dev;
109 };
110
111 struct eth1394_node_ref {
112         struct unit_directory *ud;
113         struct list_head list;
114 };
115
116 struct eth1394_node_info {
117         u16 maxpayload;         /* max payload                  */
118         u8 sspd;                /* max speed                    */
119         u64 fifo;               /* FIFO address                 */
120         struct pdg_list pdg;    /* partial RX datagram lists    */
121         int dgl;                /* outgoing datagram label      */
122 };
123
124 static const char driver_name[] = "eth1394";
125
126 static struct kmem_cache *packet_task_cache;
127
128 static struct hpsb_highlevel eth1394_highlevel;
129
130 /* Use common.lf to determine header len */
131 static const int hdr_type_len[] = {
132         sizeof(struct eth1394_uf_hdr),
133         sizeof(struct eth1394_ff_hdr),
134         sizeof(struct eth1394_sf_hdr),
135         sizeof(struct eth1394_sf_hdr)
136 };
137
138 static const u16 eth1394_speedto_maxpayload[] = {
139 /*     S100, S200, S400, S800, S1600, S3200 */
140         512, 1024, 2048, 4096,  4096,  4096
141 };
142
143 MODULE_AUTHOR("Ben Collins (bcollins@debian.org)");
144 MODULE_DESCRIPTION("IEEE 1394 IPv4 Driver (IPv4-over-1394 as per RFC 2734)");
145 MODULE_LICENSE("GPL");
146
147 /*
148  * The max_partial_datagrams parameter is the maximum number of fragmented
149  * datagrams per node that eth1394 will keep in memory.  Providing an upper
150  * bound allows us to limit the amount of memory that partial datagrams
151  * consume in the event that some partial datagrams are never completed.
152  */
153 static int max_partial_datagrams = 25;
154 module_param(max_partial_datagrams, int, S_IRUGO | S_IWUSR);
155 MODULE_PARM_DESC(max_partial_datagrams,
156                  "Maximum number of partially received fragmented datagrams "
157                  "(default = 25).");
158
159
160 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
161                             unsigned short type, const void *daddr,
162                             const void *saddr, unsigned len);
163 static int ether1394_rebuild_header(struct sk_buff *skb);
164 static int ether1394_header_parse(const struct sk_buff *skb,
165                                   unsigned char *haddr);
166 static int ether1394_header_cache(const struct neighbour *neigh,
167                                   struct hh_cache *hh);
168 static void ether1394_header_cache_update(struct hh_cache *hh,
169                                           const struct net_device *dev,
170                                           const unsigned char *haddr);
171 static netdev_tx_t ether1394_tx(struct sk_buff *skb,
172                                 struct net_device *dev);
173 static void ether1394_iso(struct hpsb_iso *iso);
174
175 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
176                            quadlet_t *data, u64 addr, size_t len, u16 flags);
177 static void ether1394_add_host(struct hpsb_host *host);
178 static void ether1394_remove_host(struct hpsb_host *host);
179 static void ether1394_host_reset(struct hpsb_host *host);
180
181 /* Function for incoming 1394 packets */
182 static const struct hpsb_address_ops addr_ops = {
183         .write =        ether1394_write,
184 };
185
186 /* Ieee1394 highlevel driver functions */
187 static struct hpsb_highlevel eth1394_highlevel = {
188         .name =         driver_name,
189         .add_host =     ether1394_add_host,
190         .remove_host =  ether1394_remove_host,
191         .host_reset =   ether1394_host_reset,
192 };
193
194 static int ether1394_recv_init(struct eth1394_priv *priv)
195 {
196         unsigned int iso_buf_size;
197
198         /* FIXME: rawiso limits us to PAGE_SIZE */
199         iso_buf_size = min((unsigned int)PAGE_SIZE,
200                            2 * (1U << (priv->host->csr.max_rec + 1)));
201
202         priv->iso = hpsb_iso_recv_init(priv->host,
203                                        ETHER1394_GASP_BUFFERS * iso_buf_size,
204                                        ETHER1394_GASP_BUFFERS,
205                                        priv->broadcast_channel,
206                                        HPSB_ISO_DMA_PACKET_PER_BUFFER,
207                                        1, ether1394_iso);
208         if (priv->iso == NULL) {
209                 ETH1394_PRINT_G(KERN_ERR, "Failed to allocate IR context\n");
210                 priv->bc_state = ETHER1394_BC_ERROR;
211                 return -EAGAIN;
212         }
213
214         if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
215                 priv->bc_state = ETHER1394_BC_STOPPED;
216         else
217                 priv->bc_state = ETHER1394_BC_RUNNING;
218         return 0;
219 }
220
221 /* This is called after an "ifup" */
222 static int ether1394_open(struct net_device *dev)
223 {
224         struct eth1394_priv *priv = netdev_priv(dev);
225         int ret;
226
227         if (priv->bc_state == ETHER1394_BC_ERROR) {
228                 ret = ether1394_recv_init(priv);
229                 if (ret)
230                         return ret;
231         }
232         netif_start_queue(dev);
233         return 0;
234 }
235
236 /* This is called after an "ifdown" */
237 static int ether1394_stop(struct net_device *dev)
238 {
239         /* flush priv->wake */
240         flush_scheduled_work();
241
242         netif_stop_queue(dev);
243         return 0;
244 }
245
246 /* FIXME: What to do if we timeout? I think a host reset is probably in order,
247  * so that's what we do. Should we increment the stat counters too?  */
248 static void ether1394_tx_timeout(struct net_device *dev)
249 {
250         struct hpsb_host *host =
251                         ((struct eth1394_priv *)netdev_priv(dev))->host;
252
253         ETH1394_PRINT(KERN_ERR, dev->name, "Timeout, resetting host\n");
254         ether1394_host_reset(host);
255 }
256
257 static inline int ether1394_max_mtu(struct hpsb_host* host)
258 {
259         return (1 << (host->csr.max_rec + 1))
260                         - sizeof(union eth1394_hdr) - ETHER1394_GASP_OVERHEAD;
261 }
262
263 static int ether1394_change_mtu(struct net_device *dev, int new_mtu)
264 {
265         int max_mtu;
266
267         if (new_mtu < 68)
268                 return -EINVAL;
269
270         max_mtu = ether1394_max_mtu(
271                         ((struct eth1394_priv *)netdev_priv(dev))->host);
272         if (new_mtu > max_mtu) {
273                 ETH1394_PRINT(KERN_INFO, dev->name,
274                               "Local node constrains MTU to %d\n", max_mtu);
275                 return -ERANGE;
276         }
277
278         dev->mtu = new_mtu;
279         return 0;
280 }
281
282 static void purge_partial_datagram(struct list_head *old)
283 {
284         struct partial_datagram *pd;
285         struct list_head *lh, *n;
286         struct fragment_info *fi;
287
288         pd = list_entry(old, struct partial_datagram, list);
289
290         list_for_each_safe(lh, n, &pd->frag_info) {
291                 fi = list_entry(lh, struct fragment_info, list);
292                 list_del(lh);
293                 kfree(fi);
294         }
295         list_del(old);
296         kfree_skb(pd->skb);
297         kfree(pd);
298 }
299
300 /******************************************
301  * 1394 bus activity functions
302  ******************************************/
303
304 static struct eth1394_node_ref *eth1394_find_node(struct list_head *inl,
305                                                   struct unit_directory *ud)
306 {
307         struct eth1394_node_ref *node;
308
309         list_for_each_entry(node, inl, list)
310                 if (node->ud == ud)
311                         return node;
312
313         return NULL;
314 }
315
316 static struct eth1394_node_ref *eth1394_find_node_guid(struct list_head *inl,
317                                                        u64 guid)
318 {
319         struct eth1394_node_ref *node;
320
321         list_for_each_entry(node, inl, list)
322                 if (node->ud->ne->guid == guid)
323                         return node;
324
325         return NULL;
326 }
327
328 static struct eth1394_node_ref *eth1394_find_node_nodeid(struct list_head *inl,
329                                                          nodeid_t nodeid)
330 {
331         struct eth1394_node_ref *node;
332
333         list_for_each_entry(node, inl, list)
334                 if (node->ud->ne->nodeid == nodeid)
335                         return node;
336
337         return NULL;
338 }
339
340 static int eth1394_new_node(struct eth1394_host_info *hi,
341                             struct unit_directory *ud)
342 {
343         struct eth1394_priv *priv;
344         struct eth1394_node_ref *new_node;
345         struct eth1394_node_info *node_info;
346
347         new_node = kmalloc(sizeof(*new_node), GFP_KERNEL);
348         if (!new_node)
349                 return -ENOMEM;
350
351         node_info = kmalloc(sizeof(*node_info), GFP_KERNEL);
352         if (!node_info) {
353                 kfree(new_node);
354                 return -ENOMEM;
355         }
356
357         spin_lock_init(&node_info->pdg.lock);
358         INIT_LIST_HEAD(&node_info->pdg.list);
359         node_info->pdg.sz = 0;
360         node_info->fifo = CSR1212_INVALID_ADDR_SPACE;
361
362         dev_set_drvdata(&ud->device, node_info);
363         new_node->ud = ud;
364
365         priv = netdev_priv(hi->dev);
366         list_add_tail(&new_node->list, &priv->ip_node_list);
367         return 0;
368 }
369
370 static int eth1394_probe(struct device *dev)
371 {
372         struct unit_directory *ud;
373         struct eth1394_host_info *hi;
374
375         ud = container_of(dev, struct unit_directory, device);
376         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
377         if (!hi)
378                 return -ENOENT;
379
380         return eth1394_new_node(hi, ud);
381 }
382
383 static int eth1394_remove(struct device *dev)
384 {
385         struct unit_directory *ud;
386         struct eth1394_host_info *hi;
387         struct eth1394_priv *priv;
388         struct eth1394_node_ref *old_node;
389         struct eth1394_node_info *node_info;
390         struct list_head *lh, *n;
391         unsigned long flags;
392
393         ud = container_of(dev, struct unit_directory, device);
394         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
395         if (!hi)
396                 return -ENOENT;
397
398         priv = netdev_priv(hi->dev);
399
400         old_node = eth1394_find_node(&priv->ip_node_list, ud);
401         if (!old_node)
402                 return 0;
403
404         list_del(&old_node->list);
405         kfree(old_node);
406
407         node_info = dev_get_drvdata(&ud->device);
408
409         spin_lock_irqsave(&node_info->pdg.lock, flags);
410         /* The partial datagram list should be empty, but we'll just
411          * make sure anyway... */
412         list_for_each_safe(lh, n, &node_info->pdg.list)
413                 purge_partial_datagram(lh);
414         spin_unlock_irqrestore(&node_info->pdg.lock, flags);
415
416         kfree(node_info);
417         dev_set_drvdata(&ud->device, NULL);
418         return 0;
419 }
420
421 static int eth1394_update(struct unit_directory *ud)
422 {
423         struct eth1394_host_info *hi;
424         struct eth1394_priv *priv;
425         struct eth1394_node_ref *node;
426
427         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
428         if (!hi)
429                 return -ENOENT;
430
431         priv = netdev_priv(hi->dev);
432         node = eth1394_find_node(&priv->ip_node_list, ud);
433         if (node)
434                 return 0;
435
436         return eth1394_new_node(hi, ud);
437 }
438
439 static const struct ieee1394_device_id eth1394_id_table[] = {
440         {
441                 .match_flags = (IEEE1394_MATCH_SPECIFIER_ID |
442                                 IEEE1394_MATCH_VERSION),
443                 .specifier_id = ETHER1394_GASP_SPECIFIER_ID,
444                 .version = ETHER1394_GASP_VERSION,
445         },
446         {}
447 };
448
449 MODULE_DEVICE_TABLE(ieee1394, eth1394_id_table);
450
451 static struct hpsb_protocol_driver eth1394_proto_driver = {
452         .name           = driver_name,
453         .id_table       = eth1394_id_table,
454         .update         = eth1394_update,
455         .driver         = {
456                 .probe          = eth1394_probe,
457                 .remove         = eth1394_remove,
458         },
459 };
460
461 static void ether1394_reset_priv(struct net_device *dev, int set_mtu)
462 {
463         unsigned long flags;
464         int i;
465         struct eth1394_priv *priv = netdev_priv(dev);
466         struct hpsb_host *host = priv->host;
467         u64 guid = get_unaligned((u64 *)&(host->csr.rom->bus_info_data[3]));
468         int max_speed = IEEE1394_SPEED_MAX;
469
470         spin_lock_irqsave(&priv->lock, flags);
471
472         memset(priv->ud_list, 0, sizeof(priv->ud_list));
473         priv->bc_maxpayload = 512;
474
475         /* Determine speed limit */
476         /* FIXME: This is broken for nodes with link speed < PHY speed,
477          * and it is suboptimal for S200B...S800B hardware.
478          * The result of nodemgr's speed probe should be used somehow. */
479         for (i = 0; i < host->node_count; i++) {
480                 /* take care of S100B...S400B PHY ports */
481                 if (host->speed[i] == SELFID_SPEED_UNKNOWN) {
482                         max_speed = IEEE1394_SPEED_100;
483                         break;
484                 }
485                 if (max_speed > host->speed[i])
486                         max_speed = host->speed[i];
487         }
488         priv->bc_sspd = max_speed;
489
490         if (set_mtu) {
491                 /* Use the RFC 2734 default 1500 octets or the maximum payload
492                  * as initial MTU */
493                 dev->mtu = min(1500, ether1394_max_mtu(host));
494
495                 /* Set our hardware address while we're at it */
496                 memcpy(dev->dev_addr, &guid, sizeof(u64));
497                 memset(dev->broadcast, 0xff, sizeof(u64));
498         }
499
500         spin_unlock_irqrestore(&priv->lock, flags);
501 }
502
503 static const struct header_ops ether1394_header_ops = {
504         .create         = ether1394_header,
505         .rebuild        = ether1394_rebuild_header,
506         .cache          = ether1394_header_cache,
507         .cache_update   = ether1394_header_cache_update,
508         .parse          = ether1394_header_parse,
509 };
510
511 static const struct net_device_ops ether1394_netdev_ops = {
512         .ndo_open       = ether1394_open,
513         .ndo_stop       = ether1394_stop,
514         .ndo_start_xmit = ether1394_tx,
515         .ndo_tx_timeout = ether1394_tx_timeout,
516         .ndo_change_mtu = ether1394_change_mtu,
517 };
518
519 static void ether1394_init_dev(struct net_device *dev)
520 {
521
522         dev->header_ops         = &ether1394_header_ops;
523         dev->netdev_ops         = &ether1394_netdev_ops;
524
525         dev->watchdog_timeo     = ETHER1394_TIMEOUT;
526         dev->flags              = IFF_BROADCAST | IFF_MULTICAST;
527         dev->features           = NETIF_F_HIGHDMA;
528         dev->addr_len           = ETH1394_ALEN;
529         dev->hard_header_len    = ETH1394_HLEN;
530         dev->type               = ARPHRD_IEEE1394;
531
532         /* FIXME: This value was copied from ether_setup(). Is it too much? */
533         dev->tx_queue_len       = 1000;
534 }
535
536 /*
537  * Wake the queue up after commonly encountered transmit failure conditions are
538  * hopefully over.  Currently only tlabel exhaustion is accounted for.
539  */
540 static void ether1394_wake_queue(struct work_struct *work)
541 {
542         struct eth1394_priv *priv;
543         struct hpsb_packet *packet;
544
545         priv = container_of(work, struct eth1394_priv, wake);
546         packet = hpsb_alloc_packet(0);
547
548         /* This is really bad, but unjam the queue anyway. */
549         if (!packet)
550                 goto out;
551
552         packet->host = priv->host;
553         packet->node_id = priv->wake_node;
554         /*
555          * A transaction label is all we really want.  If we get one, it almost
556          * always means we can get a lot more because the ieee1394 core recycled
557          * a whole batch of tlabels, at last.
558          */
559         if (hpsb_get_tlabel(packet) == 0)
560                 hpsb_free_tlabel(packet);
561
562         hpsb_free_packet(packet);
563 out:
564         netif_wake_queue(priv->wake_dev);
565 }
566
567 /*
568  * This function is called every time a card is found. It is generally called
569  * when the module is installed. This is where we add all of our ethernet
570  * devices. One for each host.
571  */
572 static void ether1394_add_host(struct hpsb_host *host)
573 {
574         struct eth1394_host_info *hi = NULL;
575         struct net_device *dev = NULL;
576         struct eth1394_priv *priv;
577         u64 fifo_addr;
578
579         if (hpsb_config_rom_ip1394_add(host) != 0) {
580                 ETH1394_PRINT_G(KERN_ERR, "Can't add IP-over-1394 ROM entry\n");
581                 return;
582         }
583
584         fifo_addr = hpsb_allocate_and_register_addrspace(
585                         &eth1394_highlevel, host, &addr_ops,
586                         ETHER1394_REGION_ADDR_LEN, ETHER1394_REGION_ADDR_LEN,
587                         CSR1212_INVALID_ADDR_SPACE, CSR1212_INVALID_ADDR_SPACE);
588         if (fifo_addr == CSR1212_INVALID_ADDR_SPACE) {
589                 ETH1394_PRINT_G(KERN_ERR, "Cannot register CSR space\n");
590                 hpsb_config_rom_ip1394_remove(host);
591                 return;
592         }
593
594         dev = alloc_netdev(sizeof(*priv), "eth%d", ether1394_init_dev);
595         if (dev == NULL) {
596                 ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
597                 goto out;
598         }
599
600         SET_NETDEV_DEV(dev, &host->device);
601
602         priv = netdev_priv(dev);
603         INIT_LIST_HEAD(&priv->ip_node_list);
604         spin_lock_init(&priv->lock);
605         priv->host = host;
606         priv->local_fifo = fifo_addr;
607         INIT_WORK(&priv->wake, ether1394_wake_queue);
608         priv->wake_dev = dev;
609
610         hi = hpsb_create_hostinfo(&eth1394_highlevel, host, sizeof(*hi));
611         if (hi == NULL) {
612                 ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
613                 goto out;
614         }
615
616         ether1394_reset_priv(dev, 1);
617
618         if (register_netdev(dev)) {
619                 ETH1394_PRINT_G(KERN_ERR, "Cannot register the driver\n");
620                 goto out;
621         }
622
623         ETH1394_PRINT(KERN_INFO, dev->name, "IPv4 over IEEE 1394 (fw-host%d)\n",
624                       host->id);
625
626         hi->host = host;
627         hi->dev = dev;
628
629         /* Ignore validity in hopes that it will be set in the future.  It'll
630          * be checked when the eth device is opened. */
631         priv->broadcast_channel = host->csr.broadcast_channel & 0x3f;
632
633         ether1394_recv_init(priv);
634         return;
635 out:
636         if (dev)
637                 free_netdev(dev);
638         if (hi)
639                 hpsb_destroy_hostinfo(&eth1394_highlevel, host);
640         hpsb_unregister_addrspace(&eth1394_highlevel, host, fifo_addr);
641         hpsb_config_rom_ip1394_remove(host);
642 }
643
644 /* Remove a card from our list */
645 static void ether1394_remove_host(struct hpsb_host *host)
646 {
647         struct eth1394_host_info *hi;
648         struct eth1394_priv *priv;
649
650         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
651         if (!hi)
652                 return;
653         priv = netdev_priv(hi->dev);
654         hpsb_unregister_addrspace(&eth1394_highlevel, host, priv->local_fifo);
655         hpsb_config_rom_ip1394_remove(host);
656         if (priv->iso)
657                 hpsb_iso_shutdown(priv->iso);
658         unregister_netdev(hi->dev);
659         free_netdev(hi->dev);
660 }
661
662 /* A bus reset happened */
663 static void ether1394_host_reset(struct hpsb_host *host)
664 {
665         struct eth1394_host_info *hi;
666         struct eth1394_priv *priv;
667         struct net_device *dev;
668         struct list_head *lh, *n;
669         struct eth1394_node_ref *node;
670         struct eth1394_node_info *node_info;
671         unsigned long flags;
672
673         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
674
675         /* This can happen for hosts that we don't use */
676         if (!hi)
677                 return;
678
679         dev = hi->dev;
680         priv = netdev_priv(dev);
681
682         /* Reset our private host data, but not our MTU */
683         netif_stop_queue(dev);
684         ether1394_reset_priv(dev, 0);
685
686         list_for_each_entry(node, &priv->ip_node_list, list) {
687                 node_info = dev_get_drvdata(&node->ud->device);
688
689                 spin_lock_irqsave(&node_info->pdg.lock, flags);
690
691                 list_for_each_safe(lh, n, &node_info->pdg.list)
692                         purge_partial_datagram(lh);
693
694                 INIT_LIST_HEAD(&(node_info->pdg.list));
695                 node_info->pdg.sz = 0;
696
697                 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
698         }
699
700         netif_wake_queue(dev);
701 }
702
703 /******************************************
704  * HW Header net device functions
705  ******************************************/
706 /* These functions have been adapted from net/ethernet/eth.c */
707
708 /* Create a fake MAC header for an arbitrary protocol layer.
709  * saddr=NULL means use device source address
710  * daddr=NULL means leave destination address (eg unresolved arp). */
711 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
712                             unsigned short type, const void *daddr,
713                             const void *saddr, unsigned len)
714 {
715         struct eth1394hdr *eth =
716                         (struct eth1394hdr *)skb_push(skb, ETH1394_HLEN);
717
718         eth->h_proto = htons(type);
719
720         if (dev->flags & (IFF_LOOPBACK | IFF_NOARP)) {
721                 memset(eth->h_dest, 0, dev->addr_len);
722                 return dev->hard_header_len;
723         }
724
725         if (daddr) {
726                 memcpy(eth->h_dest, daddr, dev->addr_len);
727                 return dev->hard_header_len;
728         }
729
730         return -dev->hard_header_len;
731 }
732
733 /* Rebuild the faked MAC header. This is called after an ARP
734  * (or in future other address resolution) has completed on this
735  * sk_buff. We now let ARP fill in the other fields.
736  *
737  * This routine CANNOT use cached dst->neigh!
738  * Really, it is used only when dst->neigh is wrong.
739  */
740 static int ether1394_rebuild_header(struct sk_buff *skb)
741 {
742         struct eth1394hdr *eth = (struct eth1394hdr *)skb->data;
743
744         if (eth->h_proto == htons(ETH_P_IP))
745                 return arp_find((unsigned char *)&eth->h_dest, skb);
746
747         ETH1394_PRINT(KERN_DEBUG, skb->dev->name,
748                       "unable to resolve type %04x addresses\n",
749                       ntohs(eth->h_proto));
750         return 0;
751 }
752
753 static int ether1394_header_parse(const struct sk_buff *skb,
754                                   unsigned char *haddr)
755 {
756         memcpy(haddr, skb->dev->dev_addr, ETH1394_ALEN);
757         return ETH1394_ALEN;
758 }
759
760 static int ether1394_header_cache(const struct neighbour *neigh,
761                                   struct hh_cache *hh)
762 {
763         __be16 type = hh->hh_type;
764         struct net_device *dev = neigh->dev;
765         struct eth1394hdr *eth =
766                 (struct eth1394hdr *)((u8 *)hh->hh_data + 16 - ETH1394_HLEN);
767
768         if (type == htons(ETH_P_802_3))
769                 return -1;
770
771         eth->h_proto = type;
772         memcpy(eth->h_dest, neigh->ha, dev->addr_len);
773
774         hh->hh_len = ETH1394_HLEN;
775         return 0;
776 }
777
778 /* Called by Address Resolution module to notify changes in address. */
779 static void ether1394_header_cache_update(struct hh_cache *hh,
780                                           const struct net_device *dev,
781                                           const unsigned char * haddr)
782 {
783         memcpy((u8 *)hh->hh_data + 16 - ETH1394_HLEN, haddr, dev->addr_len);
784 }
785
786 /******************************************
787  * Datagram reception code
788  ******************************************/
789
790 /* Copied from net/ethernet/eth.c */
791 static __be16 ether1394_type_trans(struct sk_buff *skb, struct net_device *dev)
792 {
793         struct eth1394hdr *eth;
794         unsigned char *rawp;
795
796         skb_reset_mac_header(skb);
797         skb_pull(skb, ETH1394_HLEN);
798         eth = eth1394_hdr(skb);
799
800         if (*eth->h_dest & 1) {
801                 if (memcmp(eth->h_dest, dev->broadcast, dev->addr_len) == 0)
802                         skb->pkt_type = PACKET_BROADCAST;
803 #if 0
804                 else
805                         skb->pkt_type = PACKET_MULTICAST;
806 #endif
807         } else {
808                 if (memcmp(eth->h_dest, dev->dev_addr, dev->addr_len))
809                         skb->pkt_type = PACKET_OTHERHOST;
810         }
811
812         if (ntohs(eth->h_proto) >= 1536)
813                 return eth->h_proto;
814
815         rawp = skb->data;
816
817         if (*(unsigned short *)rawp == 0xFFFF)
818                 return htons(ETH_P_802_3);
819
820         return htons(ETH_P_802_2);
821 }
822
823 /* Parse an encapsulated IP1394 header into an ethernet frame packet.
824  * We also perform ARP translation here, if need be.  */
825 static __be16 ether1394_parse_encap(struct sk_buff *skb, struct net_device *dev,
826                                  nodeid_t srcid, nodeid_t destid,
827                                  __be16 ether_type)
828 {
829         struct eth1394_priv *priv = netdev_priv(dev);
830         __be64 dest_hw;
831         __be16 ret = 0;
832
833         /* Setup our hw addresses. We use these to build the ethernet header. */
834         if (destid == (LOCAL_BUS | ALL_NODES))
835                 dest_hw = ~cpu_to_be64(0);  /* broadcast */
836         else
837                 dest_hw = cpu_to_be64((u64)priv->host->csr.guid_hi << 32 |
838                                       priv->host->csr.guid_lo);
839
840         /* If this is an ARP packet, convert it. First, we want to make
841          * use of some of the fields, since they tell us a little bit
842          * about the sending machine.  */
843         if (ether_type == htons(ETH_P_ARP)) {
844                 struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
845                 struct arphdr *arp = (struct arphdr *)skb->data;
846                 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
847                 u64 fifo_addr = (u64)ntohs(arp1394->fifo_hi) << 32 |
848                                            ntohl(arp1394->fifo_lo);
849                 u8 max_rec = min(priv->host->csr.max_rec,
850                                  (u8)(arp1394->max_rec));
851                 int sspd = arp1394->sspd;
852                 u16 maxpayload;
853                 struct eth1394_node_ref *node;
854                 struct eth1394_node_info *node_info;
855                 __be64 guid;
856
857                 /* Sanity check. MacOSX seems to be sending us 131 in this
858                  * field (atleast on my Panther G5). Not sure why. */
859                 if (sspd > 5 || sspd < 0)
860                         sspd = 0;
861
862                 maxpayload = min(eth1394_speedto_maxpayload[sspd],
863                                  (u16)(1 << (max_rec + 1)));
864
865                 guid = get_unaligned(&arp1394->s_uniq_id);
866                 node = eth1394_find_node_guid(&priv->ip_node_list,
867                                               be64_to_cpu(guid));
868                 if (!node)
869                         return cpu_to_be16(0);
870
871                 node_info = dev_get_drvdata(&node->ud->device);
872
873                 /* Update our speed/payload/fifo_offset table */
874                 node_info->maxpayload = maxpayload;
875                 node_info->sspd =       sspd;
876                 node_info->fifo =       fifo_addr;
877
878                 /* Now that we're done with the 1394 specific stuff, we'll
879                  * need to alter some of the data.  Believe it or not, all
880                  * that needs to be done is sender_IP_address needs to be
881                  * moved, the destination hardware address get stuffed
882                  * in and the hardware address length set to 8.
883                  *
884                  * IMPORTANT: The code below overwrites 1394 specific data
885                  * needed above so keep the munging of the data for the
886                  * higher level IP stack last. */
887
888                 arp->ar_hln = 8;
889                 arp_ptr += arp->ar_hln;         /* skip over sender unique id */
890                 *(u32 *)arp_ptr = arp1394->sip; /* move sender IP addr */
891                 arp_ptr += arp->ar_pln;         /* skip over sender IP addr */
892
893                 if (arp->ar_op == htons(ARPOP_REQUEST))
894                         memset(arp_ptr, 0, sizeof(u64));
895                 else
896                         memcpy(arp_ptr, dev->dev_addr, sizeof(u64));
897         }
898
899         /* Now add the ethernet header. */
900         if (dev_hard_header(skb, dev, ntohs(ether_type), &dest_hw, NULL,
901                             skb->len) >= 0)
902                 ret = ether1394_type_trans(skb, dev);
903
904         return ret;
905 }
906
907 static int fragment_overlap(struct list_head *frag_list, int offset, int len)
908 {
909         struct fragment_info *fi;
910         int end = offset + len;
911
912         list_for_each_entry(fi, frag_list, list)
913                 if (offset < fi->offset + fi->len && end > fi->offset)
914                         return 1;
915
916         return 0;
917 }
918
919 static struct list_head *find_partial_datagram(struct list_head *pdgl, int dgl)
920 {
921         struct partial_datagram *pd;
922
923         list_for_each_entry(pd, pdgl, list)
924                 if (pd->dgl == dgl)
925                         return &pd->list;
926
927         return NULL;
928 }
929
930 /* Assumes that new fragment does not overlap any existing fragments */
931 static int new_fragment(struct list_head *frag_info, int offset, int len)
932 {
933         struct list_head *lh;
934         struct fragment_info *fi, *fi2, *new;
935
936         list_for_each(lh, frag_info) {
937                 fi = list_entry(lh, struct fragment_info, list);
938                 if (fi->offset + fi->len == offset) {
939                         /* The new fragment can be tacked on to the end */
940                         fi->len += len;
941                         /* Did the new fragment plug a hole? */
942                         fi2 = list_entry(lh->next, struct fragment_info, list);
943                         if (fi->offset + fi->len == fi2->offset) {
944                                 /* glue fragments together */
945                                 fi->len += fi2->len;
946                                 list_del(lh->next);
947                                 kfree(fi2);
948                         }
949                         return 0;
950                 } else if (offset + len == fi->offset) {
951                         /* The new fragment can be tacked on to the beginning */
952                         fi->offset = offset;
953                         fi->len += len;
954                         /* Did the new fragment plug a hole? */
955                         fi2 = list_entry(lh->prev, struct fragment_info, list);
956                         if (fi2->offset + fi2->len == fi->offset) {
957                                 /* glue fragments together */
958                                 fi2->len += fi->len;
959                                 list_del(lh);
960                                 kfree(fi);
961                         }
962                         return 0;
963                 } else if (offset > fi->offset + fi->len) {
964                         break;
965                 } else if (offset + len < fi->offset) {
966                         lh = lh->prev;
967                         break;
968                 }
969         }
970
971         new = kmalloc(sizeof(*new), GFP_ATOMIC);
972         if (!new)
973                 return -ENOMEM;
974
975         new->offset = offset;
976         new->len = len;
977
978         list_add(&new->list, lh);
979         return 0;
980 }
981
982 static int new_partial_datagram(struct net_device *dev, struct list_head *pdgl,
983                                 int dgl, int dg_size, char *frag_buf,
984                                 int frag_off, int frag_len)
985 {
986         struct partial_datagram *new;
987
988         new = kmalloc(sizeof(*new), GFP_ATOMIC);
989         if (!new)
990                 return -ENOMEM;
991
992         INIT_LIST_HEAD(&new->frag_info);
993
994         if (new_fragment(&new->frag_info, frag_off, frag_len) < 0) {
995                 kfree(new);
996                 return -ENOMEM;
997         }
998
999         new->dgl = dgl;
1000         new->dg_size = dg_size;
1001
1002         new->skb = dev_alloc_skb(dg_size + dev->hard_header_len + 15);
1003         if (!new->skb) {
1004                 struct fragment_info *fi = list_entry(new->frag_info.next,
1005                                                       struct fragment_info,
1006                                                       list);
1007                 kfree(fi);
1008                 kfree(new);
1009                 return -ENOMEM;
1010         }
1011
1012         skb_reserve(new->skb, (dev->hard_header_len + 15) & ~15);
1013         new->pbuf = skb_put(new->skb, dg_size);
1014         memcpy(new->pbuf + frag_off, frag_buf, frag_len);
1015
1016         list_add(&new->list, pdgl);
1017         return 0;
1018 }
1019
1020 static int update_partial_datagram(struct list_head *pdgl, struct list_head *lh,
1021                                    char *frag_buf, int frag_off, int frag_len)
1022 {
1023         struct partial_datagram *pd =
1024                         list_entry(lh, struct partial_datagram, list);
1025
1026         if (new_fragment(&pd->frag_info, frag_off, frag_len) < 0)
1027                 return -ENOMEM;
1028
1029         memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
1030
1031         /* Move list entry to beginnig of list so that oldest partial
1032          * datagrams percolate to the end of the list */
1033         list_move(lh, pdgl);
1034         return 0;
1035 }
1036
1037 static int is_datagram_complete(struct list_head *lh, int dg_size)
1038 {
1039         struct partial_datagram *pd;
1040         struct fragment_info *fi;
1041
1042         pd = list_entry(lh, struct partial_datagram, list);
1043         fi = list_entry(pd->frag_info.next, struct fragment_info, list);
1044
1045         return (fi->len == dg_size);
1046 }
1047
1048 /* Packet reception. We convert the IP1394 encapsulation header to an
1049  * ethernet header, and fill it with some of our other fields. This is
1050  * an incoming packet from the 1394 bus.  */
1051 static int ether1394_data_handler(struct net_device *dev, int srcid, int destid,
1052                                   char *buf, int len)
1053 {
1054         struct sk_buff *skb;
1055         unsigned long flags;
1056         struct eth1394_priv *priv = netdev_priv(dev);
1057         union eth1394_hdr *hdr = (union eth1394_hdr *)buf;
1058         __be16 ether_type = cpu_to_be16(0);  /* initialized to clear warning */
1059         int hdr_len;
1060         struct unit_directory *ud = priv->ud_list[NODEID_TO_NODE(srcid)];
1061         struct eth1394_node_info *node_info;
1062
1063         if (!ud) {
1064                 struct eth1394_node_ref *node;
1065                 node = eth1394_find_node_nodeid(&priv->ip_node_list, srcid);
1066                 if (unlikely(!node)) {
1067                         HPSB_PRINT(KERN_ERR, "ether1394 rx: sender nodeid "
1068                                    "lookup failure: " NODE_BUS_FMT,
1069                                    NODE_BUS_ARGS(priv->host, srcid));
1070                         dev->stats.rx_dropped++;
1071                         return -1;
1072                 }
1073                 ud = node->ud;
1074
1075                 priv->ud_list[NODEID_TO_NODE(srcid)] = ud;
1076         }
1077
1078         node_info = dev_get_drvdata(&ud->device);
1079
1080         /* First, did we receive a fragmented or unfragmented datagram? */
1081         hdr->words.word1 = ntohs(hdr->words.word1);
1082
1083         hdr_len = hdr_type_len[hdr->common.lf];
1084
1085         if (hdr->common.lf == ETH1394_HDR_LF_UF) {
1086                 /* An unfragmented datagram has been received by the ieee1394
1087                  * bus. Build an skbuff around it so we can pass it to the
1088                  * high level network layer. */
1089
1090                 skb = dev_alloc_skb(len + dev->hard_header_len + 15);
1091                 if (unlikely(!skb)) {
1092                         ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
1093                         dev->stats.rx_dropped++;
1094                         return -1;
1095                 }
1096                 skb_reserve(skb, (dev->hard_header_len + 15) & ~15);
1097                 memcpy(skb_put(skb, len - hdr_len), buf + hdr_len,
1098                        len - hdr_len);
1099                 ether_type = hdr->uf.ether_type;
1100         } else {
1101                 /* A datagram fragment has been received, now the fun begins. */
1102
1103                 struct list_head *pdgl, *lh;
1104                 struct partial_datagram *pd;
1105                 int fg_off;
1106                 int fg_len = len - hdr_len;
1107                 int dg_size;
1108                 int dgl;
1109                 int retval;
1110                 struct pdg_list *pdg = &(node_info->pdg);
1111
1112                 hdr->words.word3 = ntohs(hdr->words.word3);
1113                 /* The 4th header word is reserved so no need to do ntohs() */
1114
1115                 if (hdr->common.lf == ETH1394_HDR_LF_FF) {
1116                         ether_type = hdr->ff.ether_type;
1117                         dgl = hdr->ff.dgl;
1118                         dg_size = hdr->ff.dg_size + 1;
1119                         fg_off = 0;
1120                 } else {
1121                         hdr->words.word2 = ntohs(hdr->words.word2);
1122                         dgl = hdr->sf.dgl;
1123                         dg_size = hdr->sf.dg_size + 1;
1124                         fg_off = hdr->sf.fg_off;
1125                 }
1126                 spin_lock_irqsave(&pdg->lock, flags);
1127
1128                 pdgl = &(pdg->list);
1129                 lh = find_partial_datagram(pdgl, dgl);
1130
1131                 if (lh == NULL) {
1132                         while (pdg->sz >= max_partial_datagrams) {
1133                                 /* remove the oldest */
1134                                 purge_partial_datagram(pdgl->prev);
1135                                 pdg->sz--;
1136                         }
1137
1138                         retval = new_partial_datagram(dev, pdgl, dgl, dg_size,
1139                                                       buf + hdr_len, fg_off,
1140                                                       fg_len);
1141                         if (retval < 0) {
1142                                 spin_unlock_irqrestore(&pdg->lock, flags);
1143                                 goto bad_proto;
1144                         }
1145                         pdg->sz++;
1146                         lh = find_partial_datagram(pdgl, dgl);
1147                 } else {
1148                         pd = list_entry(lh, struct partial_datagram, list);
1149
1150                         if (fragment_overlap(&pd->frag_info, fg_off, fg_len)) {
1151                                 /* Overlapping fragments, obliterate old
1152                                  * datagram and start new one. */
1153                                 purge_partial_datagram(lh);
1154                                 retval = new_partial_datagram(dev, pdgl, dgl,
1155                                                               dg_size,
1156                                                               buf + hdr_len,
1157                                                               fg_off, fg_len);
1158                                 if (retval < 0) {
1159                                         pdg->sz--;
1160                                         spin_unlock_irqrestore(&pdg->lock, flags);
1161                                         goto bad_proto;
1162                                 }
1163                         } else {
1164                                 retval = update_partial_datagram(pdgl, lh,
1165                                                                  buf + hdr_len,
1166                                                                  fg_off, fg_len);
1167                                 if (retval < 0) {
1168                                         /* Couldn't save off fragment anyway
1169                                          * so might as well obliterate the
1170                                          * datagram now. */
1171                                         purge_partial_datagram(lh);
1172                                         pdg->sz--;
1173                                         spin_unlock_irqrestore(&pdg->lock, flags);
1174                                         goto bad_proto;
1175                                 }
1176                         } /* fragment overlap */
1177                 } /* new datagram or add to existing one */
1178
1179                 pd = list_entry(lh, struct partial_datagram, list);
1180
1181                 if (hdr->common.lf == ETH1394_HDR_LF_FF)
1182                         pd->ether_type = ether_type;
1183
1184                 if (is_datagram_complete(lh, dg_size)) {
1185                         ether_type = pd->ether_type;
1186                         pdg->sz--;
1187                         skb = skb_get(pd->skb);
1188                         purge_partial_datagram(lh);
1189                         spin_unlock_irqrestore(&pdg->lock, flags);
1190                 } else {
1191                         /* Datagram is not complete, we're done for the
1192                          * moment. */
1193                         spin_unlock_irqrestore(&pdg->lock, flags);
1194                         return 0;
1195                 }
1196         } /* unframgented datagram or fragmented one */
1197
1198         /* Write metadata, and then pass to the receive level */
1199         skb->dev = dev;
1200         skb->ip_summed = CHECKSUM_UNNECESSARY;  /* don't check it */
1201
1202         /* Parse the encapsulation header. This actually does the job of
1203          * converting to an ethernet frame header, aswell as arp
1204          * conversion if needed. ARP conversion is easier in this
1205          * direction, since we are using ethernet as our backend.  */
1206         skb->protocol = ether1394_parse_encap(skb, dev, srcid, destid,
1207                                               ether_type);
1208
1209         spin_lock_irqsave(&priv->lock, flags);
1210
1211         if (!skb->protocol) {
1212                 dev->stats.rx_errors++;
1213                 dev->stats.rx_dropped++;
1214                 dev_kfree_skb_any(skb);
1215         } else if (netif_rx(skb) == NET_RX_DROP) {
1216                 dev->stats.rx_errors++;
1217                 dev->stats.rx_dropped++;
1218         } else {
1219                 dev->stats.rx_packets++;
1220                 dev->stats.rx_bytes += skb->len;
1221         }
1222
1223         spin_unlock_irqrestore(&priv->lock, flags);
1224
1225 bad_proto:
1226         if (netif_queue_stopped(dev))
1227                 netif_wake_queue(dev);
1228
1229         return 0;
1230 }
1231
1232 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
1233                            quadlet_t *data, u64 addr, size_t len, u16 flags)
1234 {
1235         struct eth1394_host_info *hi;
1236
1237         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
1238         if (unlikely(!hi)) {
1239                 ETH1394_PRINT_G(KERN_ERR, "No net device at fw-host%d\n",
1240                                 host->id);
1241                 return RCODE_ADDRESS_ERROR;
1242         }
1243
1244         if (ether1394_data_handler(hi->dev, srcid, destid, (char*)data, len))
1245                 return RCODE_ADDRESS_ERROR;
1246         else
1247                 return RCODE_COMPLETE;
1248 }
1249
1250 static void ether1394_iso(struct hpsb_iso *iso)
1251 {
1252         __be32 *data;
1253         char *buf;
1254         struct eth1394_host_info *hi;
1255         struct net_device *dev;
1256         unsigned int len;
1257         u32 specifier_id;
1258         u16 source_id;
1259         int i;
1260         int nready;
1261
1262         hi = hpsb_get_hostinfo(&eth1394_highlevel, iso->host);
1263         if (unlikely(!hi)) {
1264                 ETH1394_PRINT_G(KERN_ERR, "No net device at fw-host%d\n",
1265                                 iso->host->id);
1266                 return;
1267         }
1268
1269         dev = hi->dev;
1270
1271         nready = hpsb_iso_n_ready(iso);
1272         for (i = 0; i < nready; i++) {
1273                 struct hpsb_iso_packet_info *info =
1274                         &iso->infos[(iso->first_packet + i) % iso->buf_packets];
1275                 data = (__be32 *)(iso->data_buf.kvirt + info->offset);
1276
1277                 /* skip over GASP header */
1278                 buf = (char *)data + 8;
1279                 len = info->len - 8;
1280
1281                 specifier_id = (be32_to_cpu(data[0]) & 0xffff) << 8 |
1282                                (be32_to_cpu(data[1]) & 0xff000000) >> 24;
1283                 source_id = be32_to_cpu(data[0]) >> 16;
1284
1285                 if (info->channel != (iso->host->csr.broadcast_channel & 0x3f)
1286                     || specifier_id != ETHER1394_GASP_SPECIFIER_ID) {
1287                         /* This packet is not for us */
1288                         continue;
1289                 }
1290                 ether1394_data_handler(dev, source_id, LOCAL_BUS | ALL_NODES,
1291                                        buf, len);
1292         }
1293
1294         hpsb_iso_recv_release_packets(iso, i);
1295
1296 }
1297
1298 /******************************************
1299  * Datagram transmission code
1300  ******************************************/
1301
1302 /* Convert a standard ARP packet to 1394 ARP. The first 8 bytes (the entire
1303  * arphdr) is the same format as the ip1394 header, so they overlap.  The rest
1304  * needs to be munged a bit.  The remainder of the arphdr is formatted based
1305  * on hwaddr len and ipaddr len.  We know what they'll be, so it's easy to
1306  * judge.
1307  *
1308  * Now that the EUI is used for the hardware address all we need to do to make
1309  * this work for 1394 is to insert 2 quadlets that contain max_rec size,
1310  * speed, and unicast FIFO address information between the sender_unique_id
1311  * and the IP addresses.
1312  */
1313 static void ether1394_arp_to_1394arp(struct sk_buff *skb,
1314                                      struct net_device *dev)
1315 {
1316         struct eth1394_priv *priv = netdev_priv(dev);
1317         struct arphdr *arp = (struct arphdr *)skb->data;
1318         unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1319         struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
1320
1321         arp1394->hw_addr_len    = 16;
1322         arp1394->sip            = *(u32*)(arp_ptr + ETH1394_ALEN);
1323         arp1394->max_rec        = priv->host->csr.max_rec;
1324         arp1394->sspd           = priv->host->csr.lnk_spd;
1325         arp1394->fifo_hi        = htons(priv->local_fifo >> 32);
1326         arp1394->fifo_lo        = htonl(priv->local_fifo & ~0x0);
1327 }
1328
1329 /* We need to encapsulate the standard header with our own. We use the
1330  * ethernet header's proto for our own. */
1331 static unsigned int ether1394_encapsulate_prep(unsigned int max_payload,
1332                                                __be16 proto,
1333                                                union eth1394_hdr *hdr,
1334                                                u16 dg_size, u16 dgl)
1335 {
1336         unsigned int adj_max_payload =
1337                                 max_payload - hdr_type_len[ETH1394_HDR_LF_UF];
1338
1339         /* Does it all fit in one packet? */
1340         if (dg_size <= adj_max_payload) {
1341                 hdr->uf.lf = ETH1394_HDR_LF_UF;
1342                 hdr->uf.ether_type = proto;
1343         } else {
1344                 hdr->ff.lf = ETH1394_HDR_LF_FF;
1345                 hdr->ff.ether_type = proto;
1346                 hdr->ff.dg_size = dg_size - 1;
1347                 hdr->ff.dgl = dgl;
1348                 adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_FF];
1349         }
1350         return DIV_ROUND_UP(dg_size, adj_max_payload);
1351 }
1352
1353 static unsigned int ether1394_encapsulate(struct sk_buff *skb,
1354                                           unsigned int max_payload,
1355                                           union eth1394_hdr *hdr)
1356 {
1357         union eth1394_hdr *bufhdr;
1358         int ftype = hdr->common.lf;
1359         int hdrsz = hdr_type_len[ftype];
1360         unsigned int adj_max_payload = max_payload - hdrsz;
1361
1362         switch (ftype) {
1363         case ETH1394_HDR_LF_UF:
1364                 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1365                 bufhdr->words.word1 = htons(hdr->words.word1);
1366                 bufhdr->words.word2 = hdr->words.word2;
1367                 break;
1368
1369         case ETH1394_HDR_LF_FF:
1370                 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1371                 bufhdr->words.word1 = htons(hdr->words.word1);
1372                 bufhdr->words.word2 = hdr->words.word2;
1373                 bufhdr->words.word3 = htons(hdr->words.word3);
1374                 bufhdr->words.word4 = 0;
1375
1376                 /* Set frag type here for future interior fragments */
1377                 hdr->common.lf = ETH1394_HDR_LF_IF;
1378                 hdr->sf.fg_off = 0;
1379                 break;
1380
1381         default:
1382                 hdr->sf.fg_off += adj_max_payload;
1383                 bufhdr = (union eth1394_hdr *)skb_pull(skb, adj_max_payload);
1384                 if (max_payload >= skb->len)
1385                         hdr->common.lf = ETH1394_HDR_LF_LF;
1386                 bufhdr->words.word1 = htons(hdr->words.word1);
1387                 bufhdr->words.word2 = htons(hdr->words.word2);
1388                 bufhdr->words.word3 = htons(hdr->words.word3);
1389                 bufhdr->words.word4 = 0;
1390         }
1391         return min(max_payload, skb->len);
1392 }
1393
1394 static struct hpsb_packet *ether1394_alloc_common_packet(struct hpsb_host *host)
1395 {
1396         struct hpsb_packet *p;
1397
1398         p = hpsb_alloc_packet(0);
1399         if (p) {
1400                 p->host = host;
1401                 p->generation = get_hpsb_generation(host);
1402                 p->type = hpsb_async;
1403         }
1404         return p;
1405 }
1406
1407 static int ether1394_prep_write_packet(struct hpsb_packet *p,
1408                                        struct hpsb_host *host, nodeid_t node,
1409                                        u64 addr, void *data, int tx_len)
1410 {
1411         p->node_id = node;
1412
1413         if (hpsb_get_tlabel(p))
1414                 return -EAGAIN;
1415
1416         p->tcode = TCODE_WRITEB;
1417         p->header_size = 16;
1418         p->expect_response = 1;
1419         p->header[0] =
1420                 p->node_id << 16 | p->tlabel << 10 | 1 << 8 | TCODE_WRITEB << 4;
1421         p->header[1] = host->node_id << 16 | addr >> 32;
1422         p->header[2] = addr & 0xffffffff;
1423         p->header[3] = tx_len << 16;
1424         p->data_size = (tx_len + 3) & ~3;
1425         p->data = data;
1426
1427         return 0;
1428 }
1429
1430 static void ether1394_prep_gasp_packet(struct hpsb_packet *p,
1431                                        struct eth1394_priv *priv,
1432                                        struct sk_buff *skb, int length)
1433 {
1434         p->header_size = 4;
1435         p->tcode = TCODE_STREAM_DATA;
1436
1437         p->header[0] = length << 16 | 3 << 14 | priv->broadcast_channel << 8 |
1438                        TCODE_STREAM_DATA << 4;
1439         p->data_size = length;
1440         p->data = (quadlet_t *)skb->data - 2;
1441         p->data[0] = cpu_to_be32(priv->host->node_id << 16 |
1442                                  ETHER1394_GASP_SPECIFIER_ID_HI);
1443         p->data[1] = cpu_to_be32(ETHER1394_GASP_SPECIFIER_ID_LO << 24 |
1444                                  ETHER1394_GASP_VERSION);
1445
1446         p->speed_code = priv->bc_sspd;
1447
1448         /* prevent hpsb_send_packet() from overriding our speed code */
1449         p->node_id = LOCAL_BUS | ALL_NODES;
1450 }
1451
1452 static void ether1394_free_packet(struct hpsb_packet *packet)
1453 {
1454         if (packet->tcode != TCODE_STREAM_DATA)
1455                 hpsb_free_tlabel(packet);
1456         hpsb_free_packet(packet);
1457 }
1458
1459 static void ether1394_complete_cb(void *__ptask);
1460
1461 static int ether1394_send_packet(struct packet_task *ptask, unsigned int tx_len)
1462 {
1463         struct eth1394_priv *priv = ptask->priv;
1464         struct hpsb_packet *packet = NULL;
1465
1466         packet = ether1394_alloc_common_packet(priv->host);
1467         if (!packet)
1468                 return -ENOMEM;
1469
1470         if (ptask->tx_type == ETH1394_GASP) {
1471                 int length = tx_len + 2 * sizeof(quadlet_t);
1472
1473                 ether1394_prep_gasp_packet(packet, priv, ptask->skb, length);
1474         } else if (ether1394_prep_write_packet(packet, priv->host,
1475                                                ptask->dest_node,
1476                                                ptask->addr, ptask->skb->data,
1477                                                tx_len)) {
1478                 hpsb_free_packet(packet);
1479                 return -EAGAIN;
1480         }
1481
1482         ptask->packet = packet;
1483         hpsb_set_packet_complete_task(ptask->packet, ether1394_complete_cb,
1484                                       ptask);
1485
1486         if (hpsb_send_packet(packet) < 0) {
1487                 ether1394_free_packet(packet);
1488                 return -EIO;
1489         }
1490
1491         return 0;
1492 }
1493
1494 /* Task function to be run when a datagram transmission is completed */
1495 static void ether1394_dg_complete(struct packet_task *ptask, int fail)
1496 {
1497         struct sk_buff *skb = ptask->skb;
1498         struct net_device *dev = skb->dev;
1499         struct eth1394_priv *priv = netdev_priv(dev);
1500         unsigned long flags;
1501
1502         /* Statistics */
1503         spin_lock_irqsave(&priv->lock, flags);
1504         if (fail) {
1505                 dev->stats.tx_dropped++;
1506                 dev->stats.tx_errors++;
1507         } else {
1508                 dev->stats.tx_bytes += skb->len;
1509                 dev->stats.tx_packets++;
1510         }
1511         spin_unlock_irqrestore(&priv->lock, flags);
1512
1513         dev_kfree_skb_any(skb);
1514         kmem_cache_free(packet_task_cache, ptask);
1515 }
1516
1517 /* Callback for when a packet has been sent and the status of that packet is
1518  * known */
1519 static void ether1394_complete_cb(void *__ptask)
1520 {
1521         struct packet_task *ptask = (struct packet_task *)__ptask;
1522         struct hpsb_packet *packet = ptask->packet;
1523         int fail = 0;
1524
1525         if (packet->tcode != TCODE_STREAM_DATA)
1526                 fail = hpsb_packet_success(packet);
1527
1528         ether1394_free_packet(packet);
1529
1530         ptask->outstanding_pkts--;
1531         if (ptask->outstanding_pkts > 0 && !fail) {
1532                 int tx_len, err;
1533
1534                 /* Add the encapsulation header to the fragment */
1535                 tx_len = ether1394_encapsulate(ptask->skb, ptask->max_payload,
1536                                                &ptask->hdr);
1537                 err = ether1394_send_packet(ptask, tx_len);
1538                 if (err) {
1539                         if (err == -EAGAIN)
1540                                 ETH1394_PRINT_G(KERN_ERR, "Out of tlabels\n");
1541
1542                         ether1394_dg_complete(ptask, 1);
1543                 }
1544         } else {
1545                 ether1394_dg_complete(ptask, fail);
1546         }
1547 }
1548
1549 /* Transmit a packet (called by kernel) */
1550 static netdev_tx_t ether1394_tx(struct sk_buff *skb,
1551                                 struct net_device *dev)
1552 {
1553         struct eth1394hdr hdr_buf;
1554         struct eth1394_priv *priv = netdev_priv(dev);
1555         __be16 proto;
1556         unsigned long flags;
1557         nodeid_t dest_node;
1558         eth1394_tx_type tx_type;
1559         unsigned int tx_len;
1560         unsigned int max_payload;
1561         u16 dg_size;
1562         u16 dgl;
1563         struct packet_task *ptask;
1564         struct eth1394_node_ref *node;
1565         struct eth1394_node_info *node_info = NULL;
1566
1567         ptask = kmem_cache_alloc(packet_task_cache, GFP_ATOMIC);
1568         if (ptask == NULL)
1569                 goto fail;
1570
1571         /* XXX Ignore this for now. Noticed that when MacOSX is the IRM,
1572          * it does not set our validity bit. We need to compensate for
1573          * that somewhere else, but not in eth1394. */
1574 #if 0
1575         if ((priv->host->csr.broadcast_channel & 0xc0000000) != 0xc0000000)
1576                 goto fail;
1577 #endif
1578
1579         skb = skb_share_check(skb, GFP_ATOMIC);
1580         if (!skb)
1581                 goto fail;
1582
1583         /* Get rid of the fake eth1394 header, but first make a copy.
1584          * We might need to rebuild the header on tx failure. */
1585         memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1586         skb_pull(skb, ETH1394_HLEN);
1587
1588         proto = hdr_buf.h_proto;
1589         dg_size = skb->len;
1590
1591         /* Set the transmission type for the packet.  ARP packets and IP
1592          * broadcast packets are sent via GASP. */
1593         if (memcmp(hdr_buf.h_dest, dev->broadcast, ETH1394_ALEN) == 0 ||
1594             proto == htons(ETH_P_ARP) ||
1595             (proto == htons(ETH_P_IP) &&
1596              IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
1597                 tx_type = ETH1394_GASP;
1598                 dest_node = LOCAL_BUS | ALL_NODES;
1599                 max_payload = priv->bc_maxpayload - ETHER1394_GASP_OVERHEAD;
1600                 BUG_ON(max_payload < 512 - ETHER1394_GASP_OVERHEAD);
1601                 dgl = priv->bc_dgl;
1602                 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1603                         priv->bc_dgl++;
1604         } else {
1605                 __be64 guid = get_unaligned((__be64 *)hdr_buf.h_dest);
1606
1607                 node = eth1394_find_node_guid(&priv->ip_node_list,
1608                                               be64_to_cpu(guid));
1609                 if (!node)
1610                         goto fail;
1611
1612                 node_info = dev_get_drvdata(&node->ud->device);
1613                 if (node_info->fifo == CSR1212_INVALID_ADDR_SPACE)
1614                         goto fail;
1615
1616                 dest_node = node->ud->ne->nodeid;
1617                 max_payload = node_info->maxpayload;
1618                 BUG_ON(max_payload < 512 - ETHER1394_GASP_OVERHEAD);
1619
1620                 dgl = node_info->dgl;
1621                 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1622                         node_info->dgl++;
1623                 tx_type = ETH1394_WRREQ;
1624         }
1625
1626         /* If this is an ARP packet, convert it */
1627         if (proto == htons(ETH_P_ARP))
1628                 ether1394_arp_to_1394arp(skb, dev);
1629
1630         ptask->hdr.words.word1 = 0;
1631         ptask->hdr.words.word2 = 0;
1632         ptask->hdr.words.word3 = 0;
1633         ptask->hdr.words.word4 = 0;
1634         ptask->skb = skb;
1635         ptask->priv = priv;
1636         ptask->tx_type = tx_type;
1637
1638         if (tx_type != ETH1394_GASP) {
1639                 u64 addr;
1640
1641                 spin_lock_irqsave(&priv->lock, flags);
1642                 addr = node_info->fifo;
1643                 spin_unlock_irqrestore(&priv->lock, flags);
1644
1645                 ptask->addr = addr;
1646                 ptask->dest_node = dest_node;
1647         }
1648
1649         ptask->tx_type = tx_type;
1650         ptask->max_payload = max_payload;
1651         ptask->outstanding_pkts = ether1394_encapsulate_prep(max_payload,
1652                                         proto, &ptask->hdr, dg_size, dgl);
1653
1654         /* Add the encapsulation header to the fragment */
1655         tx_len = ether1394_encapsulate(skb, max_payload, &ptask->hdr);
1656         dev->trans_start = jiffies;
1657         if (ether1394_send_packet(ptask, tx_len)) {
1658                 if (dest_node == (LOCAL_BUS | ALL_NODES))
1659                         goto fail;
1660
1661                 /* At this point we want to restore the packet.  When we return
1662                  * here with NETDEV_TX_BUSY we will get another entrance in this
1663                  * routine with the same skb and we need it to look the same.
1664                  * So we pull 4 more bytes, then build the header again. */
1665                 skb_pull(skb, 4);
1666                 ether1394_header(skb, dev, ntohs(hdr_buf.h_proto),
1667                                  hdr_buf.h_dest, NULL, 0);
1668
1669                 /* Most failures of ether1394_send_packet are recoverable. */
1670                 netif_stop_queue(dev);
1671                 priv->wake_node = dest_node;
1672                 schedule_work(&priv->wake);
1673                 kmem_cache_free(packet_task_cache, ptask);
1674                 return NETDEV_TX_BUSY;
1675         }
1676
1677         return NETDEV_TX_OK;
1678 fail:
1679         if (ptask)
1680                 kmem_cache_free(packet_task_cache, ptask);
1681
1682         if (skb != NULL)
1683                 dev_kfree_skb(skb);
1684
1685         spin_lock_irqsave(&priv->lock, flags);
1686         dev->stats.tx_dropped++;
1687         dev->stats.tx_errors++;
1688         spin_unlock_irqrestore(&priv->lock, flags);
1689
1690         return NETDEV_TX_OK;
1691 }
1692
1693 static int __init ether1394_init_module(void)
1694 {
1695         int err;
1696
1697         packet_task_cache = kmem_cache_create("packet_task",
1698                                               sizeof(struct packet_task),
1699                                               0, 0, NULL);
1700         if (!packet_task_cache)
1701                 return -ENOMEM;
1702
1703         hpsb_register_highlevel(&eth1394_highlevel);
1704         err = hpsb_register_protocol(&eth1394_proto_driver);
1705         if (err) {
1706                 hpsb_unregister_highlevel(&eth1394_highlevel);
1707                 kmem_cache_destroy(packet_task_cache);
1708         }
1709         return err;
1710 }
1711
1712 static void __exit ether1394_exit_module(void)
1713 {
1714         hpsb_unregister_protocol(&eth1394_proto_driver);
1715         hpsb_unregister_highlevel(&eth1394_highlevel);
1716         kmem_cache_destroy(packet_task_cache);
1717 }
1718
1719 module_init(ether1394_init_module);
1720 module_exit(ether1394_exit_module);