ide: merge ->atapi_*put_bytes and ->ata_*put_data methods
[pandora-kernel.git] / drivers / ide / ide-iops.c
1 /*
2  *  Copyright (C) 2000-2002     Andre Hedrick <andre@linux-ide.org>
3  *  Copyright (C) 2003          Red Hat <alan@redhat.com>
4  *
5  */
6
7 #include <linux/module.h>
8 #include <linux/types.h>
9 #include <linux/string.h>
10 #include <linux/kernel.h>
11 #include <linux/timer.h>
12 #include <linux/mm.h>
13 #include <linux/interrupt.h>
14 #include <linux/major.h>
15 #include <linux/errno.h>
16 #include <linux/genhd.h>
17 #include <linux/blkpg.h>
18 #include <linux/slab.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hdreg.h>
22 #include <linux/ide.h>
23 #include <linux/bitops.h>
24 #include <linux/nmi.h>
25
26 #include <asm/byteorder.h>
27 #include <asm/irq.h>
28 #include <asm/uaccess.h>
29 #include <asm/io.h>
30
31 /*
32  *      Conventional PIO operations for ATA devices
33  */
34
35 static u8 ide_inb (unsigned long port)
36 {
37         return (u8) inb(port);
38 }
39
40 static u16 ide_inw (unsigned long port)
41 {
42         return (u16) inw(port);
43 }
44
45 static void ide_insw (unsigned long port, void *addr, u32 count)
46 {
47         insw(port, addr, count);
48 }
49
50 static void ide_insl (unsigned long port, void *addr, u32 count)
51 {
52         insl(port, addr, count);
53 }
54
55 static void ide_outb (u8 val, unsigned long port)
56 {
57         outb(val, port);
58 }
59
60 static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port)
61 {
62         outb(addr, port);
63 }
64
65 static void ide_outw (u16 val, unsigned long port)
66 {
67         outw(val, port);
68 }
69
70 static void ide_outsw (unsigned long port, void *addr, u32 count)
71 {
72         outsw(port, addr, count);
73 }
74
75 static void ide_outsl (unsigned long port, void *addr, u32 count)
76 {
77         outsl(port, addr, count);
78 }
79
80 void default_hwif_iops (ide_hwif_t *hwif)
81 {
82         hwif->OUTB      = ide_outb;
83         hwif->OUTBSYNC  = ide_outbsync;
84         hwif->OUTW      = ide_outw;
85         hwif->OUTSW     = ide_outsw;
86         hwif->OUTSL     = ide_outsl;
87         hwif->INB       = ide_inb;
88         hwif->INW       = ide_inw;
89         hwif->INSW      = ide_insw;
90         hwif->INSL      = ide_insl;
91 }
92
93 /*
94  *      MMIO operations, typically used for SATA controllers
95  */
96
97 static u8 ide_mm_inb (unsigned long port)
98 {
99         return (u8) readb((void __iomem *) port);
100 }
101
102 static u16 ide_mm_inw (unsigned long port)
103 {
104         return (u16) readw((void __iomem *) port);
105 }
106
107 static void ide_mm_insw (unsigned long port, void *addr, u32 count)
108 {
109         __ide_mm_insw((void __iomem *) port, addr, count);
110 }
111
112 static void ide_mm_insl (unsigned long port, void *addr, u32 count)
113 {
114         __ide_mm_insl((void __iomem *) port, addr, count);
115 }
116
117 static void ide_mm_outb (u8 value, unsigned long port)
118 {
119         writeb(value, (void __iomem *) port);
120 }
121
122 static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port)
123 {
124         writeb(value, (void __iomem *) port);
125 }
126
127 static void ide_mm_outw (u16 value, unsigned long port)
128 {
129         writew(value, (void __iomem *) port);
130 }
131
132 static void ide_mm_outsw (unsigned long port, void *addr, u32 count)
133 {
134         __ide_mm_outsw((void __iomem *) port, addr, count);
135 }
136
137 static void ide_mm_outsl (unsigned long port, void *addr, u32 count)
138 {
139         __ide_mm_outsl((void __iomem *) port, addr, count);
140 }
141
142 void default_hwif_mmiops (ide_hwif_t *hwif)
143 {
144         hwif->OUTB      = ide_mm_outb;
145         /* Most systems will need to override OUTBSYNC, alas however
146            this one is controller specific! */
147         hwif->OUTBSYNC  = ide_mm_outbsync;
148         hwif->OUTW      = ide_mm_outw;
149         hwif->OUTSW     = ide_mm_outsw;
150         hwif->OUTSL     = ide_mm_outsl;
151         hwif->INB       = ide_mm_inb;
152         hwif->INW       = ide_mm_inw;
153         hwif->INSW      = ide_mm_insw;
154         hwif->INSL      = ide_mm_insl;
155 }
156
157 EXPORT_SYMBOL(default_hwif_mmiops);
158
159 void SELECT_DRIVE (ide_drive_t *drive)
160 {
161         ide_hwif_t *hwif = drive->hwif;
162         const struct ide_port_ops *port_ops = hwif->port_ops;
163
164         if (port_ops && port_ops->selectproc)
165                 port_ops->selectproc(drive);
166
167         hwif->OUTB(drive->select.all, hwif->io_ports.device_addr);
168 }
169
170 void SELECT_MASK (ide_drive_t *drive, int mask)
171 {
172         const struct ide_port_ops *port_ops = drive->hwif->port_ops;
173
174         if (port_ops && port_ops->maskproc)
175                 port_ops->maskproc(drive, mask);
176 }
177
178 /*
179  * Some localbus EIDE interfaces require a special access sequence
180  * when using 32-bit I/O instructions to transfer data.  We call this
181  * the "vlb_sync" sequence, which consists of three successive reads
182  * of the sector count register location, with interrupts disabled
183  * to ensure that the reads all happen together.
184  */
185 static void ata_vlb_sync(ide_drive_t *drive, unsigned long port)
186 {
187         (void) HWIF(drive)->INB(port);
188         (void) HWIF(drive)->INB(port);
189         (void) HWIF(drive)->INB(port);
190 }
191
192 /*
193  * This is used for most PIO data transfers *from* the IDE interface
194  *
195  * These routines will round up any request for an odd number of bytes,
196  * so if an odd len is specified, be sure that there's at least one
197  * extra byte allocated for the buffer.
198  */
199 static void ata_input_data(ide_drive_t *drive, struct request *rq,
200                            void *buf, unsigned int len)
201 {
202         ide_hwif_t *hwif = drive->hwif;
203         struct ide_io_ports *io_ports = &hwif->io_ports;
204         unsigned long data_addr = io_ports->data_addr;
205         u8 io_32bit = drive->io_32bit;
206
207         len++;
208
209         if (io_32bit) {
210                 if (io_32bit & 2) {
211                         unsigned long flags;
212
213                         local_irq_save(flags);
214                         ata_vlb_sync(drive, io_ports->nsect_addr);
215                         hwif->INSL(data_addr, buf, len / 4);
216                         local_irq_restore(flags);
217                 } else
218                         hwif->INSL(data_addr, buf, len / 4);
219
220                 if ((len & 3) >= 2)
221                         hwif->INSW(data_addr, (u8 *)buf + (len & ~3), 1);
222         } else
223                 hwif->INSW(data_addr, buf, len / 2);
224 }
225
226 /*
227  * This is used for most PIO data transfers *to* the IDE interface
228  */
229 static void ata_output_data(ide_drive_t *drive, struct request *rq,
230                             void *buf, unsigned int len)
231 {
232         ide_hwif_t *hwif = drive->hwif;
233         struct ide_io_ports *io_ports = &hwif->io_ports;
234         unsigned long data_addr = io_ports->data_addr;
235         u8 io_32bit = drive->io_32bit;
236
237         if (io_32bit) {
238                 if (io_32bit & 2) {
239                         unsigned long flags;
240
241                         local_irq_save(flags);
242                         ata_vlb_sync(drive, io_ports->nsect_addr);
243                         hwif->OUTSL(data_addr, buf, len / 4);
244                         local_irq_restore(flags);
245                 } else
246                         hwif->OUTSL(data_addr, buf, len / 4);
247
248                 if ((len & 3) >= 2)
249                         hwif->OUTSW(data_addr, (u8 *)buf + (len & ~3), 1);
250         } else
251                 hwif->OUTSW(data_addr, buf, len / 2);
252 }
253
254 void default_hwif_transport(ide_hwif_t *hwif)
255 {
256         hwif->input_data  = ata_input_data;
257         hwif->output_data = ata_output_data;
258 }
259
260 void ide_fix_driveid (struct hd_driveid *id)
261 {
262 #ifndef __LITTLE_ENDIAN
263 # ifdef __BIG_ENDIAN
264         int i;
265         u16 *stringcast;
266
267         id->config         = __le16_to_cpu(id->config);
268         id->cyls           = __le16_to_cpu(id->cyls);
269         id->reserved2      = __le16_to_cpu(id->reserved2);
270         id->heads          = __le16_to_cpu(id->heads);
271         id->track_bytes    = __le16_to_cpu(id->track_bytes);
272         id->sector_bytes   = __le16_to_cpu(id->sector_bytes);
273         id->sectors        = __le16_to_cpu(id->sectors);
274         id->vendor0        = __le16_to_cpu(id->vendor0);
275         id->vendor1        = __le16_to_cpu(id->vendor1);
276         id->vendor2        = __le16_to_cpu(id->vendor2);
277         stringcast = (u16 *)&id->serial_no[0];
278         for (i = 0; i < (20/2); i++)
279                 stringcast[i] = __le16_to_cpu(stringcast[i]);
280         id->buf_type       = __le16_to_cpu(id->buf_type);
281         id->buf_size       = __le16_to_cpu(id->buf_size);
282         id->ecc_bytes      = __le16_to_cpu(id->ecc_bytes);
283         stringcast = (u16 *)&id->fw_rev[0];
284         for (i = 0; i < (8/2); i++)
285                 stringcast[i] = __le16_to_cpu(stringcast[i]);
286         stringcast = (u16 *)&id->model[0];
287         for (i = 0; i < (40/2); i++)
288                 stringcast[i] = __le16_to_cpu(stringcast[i]);
289         id->dword_io       = __le16_to_cpu(id->dword_io);
290         id->reserved50     = __le16_to_cpu(id->reserved50);
291         id->field_valid    = __le16_to_cpu(id->field_valid);
292         id->cur_cyls       = __le16_to_cpu(id->cur_cyls);
293         id->cur_heads      = __le16_to_cpu(id->cur_heads);
294         id->cur_sectors    = __le16_to_cpu(id->cur_sectors);
295         id->cur_capacity0  = __le16_to_cpu(id->cur_capacity0);
296         id->cur_capacity1  = __le16_to_cpu(id->cur_capacity1);
297         id->lba_capacity   = __le32_to_cpu(id->lba_capacity);
298         id->dma_1word      = __le16_to_cpu(id->dma_1word);
299         id->dma_mword      = __le16_to_cpu(id->dma_mword);
300         id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
301         id->eide_dma_min   = __le16_to_cpu(id->eide_dma_min);
302         id->eide_dma_time  = __le16_to_cpu(id->eide_dma_time);
303         id->eide_pio       = __le16_to_cpu(id->eide_pio);
304         id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
305         for (i = 0; i < 2; ++i)
306                 id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
307         for (i = 0; i < 4; ++i)
308                 id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
309         id->queue_depth    = __le16_to_cpu(id->queue_depth);
310         for (i = 0; i < 4; ++i)
311                 id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
312         id->major_rev_num  = __le16_to_cpu(id->major_rev_num);
313         id->minor_rev_num  = __le16_to_cpu(id->minor_rev_num);
314         id->command_set_1  = __le16_to_cpu(id->command_set_1);
315         id->command_set_2  = __le16_to_cpu(id->command_set_2);
316         id->cfsse          = __le16_to_cpu(id->cfsse);
317         id->cfs_enable_1   = __le16_to_cpu(id->cfs_enable_1);
318         id->cfs_enable_2   = __le16_to_cpu(id->cfs_enable_2);
319         id->csf_default    = __le16_to_cpu(id->csf_default);
320         id->dma_ultra      = __le16_to_cpu(id->dma_ultra);
321         id->trseuc         = __le16_to_cpu(id->trseuc);
322         id->trsEuc         = __le16_to_cpu(id->trsEuc);
323         id->CurAPMvalues   = __le16_to_cpu(id->CurAPMvalues);
324         id->mprc           = __le16_to_cpu(id->mprc);
325         id->hw_config      = __le16_to_cpu(id->hw_config);
326         id->acoustic       = __le16_to_cpu(id->acoustic);
327         id->msrqs          = __le16_to_cpu(id->msrqs);
328         id->sxfert         = __le16_to_cpu(id->sxfert);
329         id->sal            = __le16_to_cpu(id->sal);
330         id->spg            = __le32_to_cpu(id->spg);
331         id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
332         for (i = 0; i < 22; i++)
333                 id->words104_125[i]   = __le16_to_cpu(id->words104_125[i]);
334         id->last_lun       = __le16_to_cpu(id->last_lun);
335         id->word127        = __le16_to_cpu(id->word127);
336         id->dlf            = __le16_to_cpu(id->dlf);
337         id->csfo           = __le16_to_cpu(id->csfo);
338         for (i = 0; i < 26; i++)
339                 id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
340         id->word156        = __le16_to_cpu(id->word156);
341         for (i = 0; i < 3; i++)
342                 id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
343         id->cfa_power      = __le16_to_cpu(id->cfa_power);
344         for (i = 0; i < 14; i++)
345                 id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
346         for (i = 0; i < 31; i++)
347                 id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
348         for (i = 0; i < 48; i++)
349                 id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
350         id->integrity_word  = __le16_to_cpu(id->integrity_word);
351 # else
352 #  error "Please fix <asm/byteorder.h>"
353 # endif
354 #endif
355 }
356
357 /*
358  * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
359  * removing leading/trailing blanks and compressing internal blanks.
360  * It is primarily used to tidy up the model name/number fields as
361  * returned by the WIN_[P]IDENTIFY commands.
362  */
363
364 void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
365 {
366         u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
367
368         if (byteswap) {
369                 /* convert from big-endian to host byte order */
370                 for (p = end ; p != s;) {
371                         unsigned short *pp = (unsigned short *) (p -= 2);
372                         *pp = ntohs(*pp);
373                 }
374         }
375         /* strip leading blanks */
376         while (s != end && *s == ' ')
377                 ++s;
378         /* compress internal blanks and strip trailing blanks */
379         while (s != end && *s) {
380                 if (*s++ != ' ' || (s != end && *s && *s != ' '))
381                         *p++ = *(s-1);
382         }
383         /* wipe out trailing garbage */
384         while (p != end)
385                 *p++ = '\0';
386 }
387
388 EXPORT_SYMBOL(ide_fixstring);
389
390 /*
391  * Needed for PCI irq sharing
392  */
393 int drive_is_ready (ide_drive_t *drive)
394 {
395         ide_hwif_t *hwif        = HWIF(drive);
396         u8 stat                 = 0;
397
398         if (drive->waiting_for_dma)
399                 return hwif->dma_ops->dma_test_irq(drive);
400
401 #if 0
402         /* need to guarantee 400ns since last command was issued */
403         udelay(1);
404 #endif
405
406         /*
407          * We do a passive status test under shared PCI interrupts on
408          * cards that truly share the ATA side interrupt, but may also share
409          * an interrupt with another pci card/device.  We make no assumptions
410          * about possible isa-pnp and pci-pnp issues yet.
411          */
412         if (hwif->io_ports.ctl_addr)
413                 stat = ide_read_altstatus(drive);
414         else
415                 /* Note: this may clear a pending IRQ!! */
416                 stat = ide_read_status(drive);
417
418         if (stat & BUSY_STAT)
419                 /* drive busy:  definitely not interrupting */
420                 return 0;
421
422         /* drive ready: *might* be interrupting */
423         return 1;
424 }
425
426 EXPORT_SYMBOL(drive_is_ready);
427
428 /*
429  * This routine busy-waits for the drive status to be not "busy".
430  * It then checks the status for all of the "good" bits and none
431  * of the "bad" bits, and if all is okay it returns 0.  All other
432  * cases return error -- caller may then invoke ide_error().
433  *
434  * This routine should get fixed to not hog the cpu during extra long waits..
435  * That could be done by busy-waiting for the first jiffy or two, and then
436  * setting a timer to wake up at half second intervals thereafter,
437  * until timeout is achieved, before timing out.
438  */
439 static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
440 {
441         unsigned long flags;
442         int i;
443         u8 stat;
444
445         udelay(1);      /* spec allows drive 400ns to assert "BUSY" */
446         stat = ide_read_status(drive);
447
448         if (stat & BUSY_STAT) {
449                 local_irq_set(flags);
450                 timeout += jiffies;
451                 while ((stat = ide_read_status(drive)) & BUSY_STAT) {
452                         if (time_after(jiffies, timeout)) {
453                                 /*
454                                  * One last read after the timeout in case
455                                  * heavy interrupt load made us not make any
456                                  * progress during the timeout..
457                                  */
458                                 stat = ide_read_status(drive);
459                                 if (!(stat & BUSY_STAT))
460                                         break;
461
462                                 local_irq_restore(flags);
463                                 *rstat = stat;
464                                 return -EBUSY;
465                         }
466                 }
467                 local_irq_restore(flags);
468         }
469         /*
470          * Allow status to settle, then read it again.
471          * A few rare drives vastly violate the 400ns spec here,
472          * so we'll wait up to 10usec for a "good" status
473          * rather than expensively fail things immediately.
474          * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
475          */
476         for (i = 0; i < 10; i++) {
477                 udelay(1);
478                 stat = ide_read_status(drive);
479
480                 if (OK_STAT(stat, good, bad)) {
481                         *rstat = stat;
482                         return 0;
483                 }
484         }
485         *rstat = stat;
486         return -EFAULT;
487 }
488
489 /*
490  * In case of error returns error value after doing "*startstop = ide_error()".
491  * The caller should return the updated value of "startstop" in this case,
492  * "startstop" is unchanged when the function returns 0.
493  */
494 int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
495 {
496         int err;
497         u8 stat;
498
499         /* bail early if we've exceeded max_failures */
500         if (drive->max_failures && (drive->failures > drive->max_failures)) {
501                 *startstop = ide_stopped;
502                 return 1;
503         }
504
505         err = __ide_wait_stat(drive, good, bad, timeout, &stat);
506
507         if (err) {
508                 char *s = (err == -EBUSY) ? "status timeout" : "status error";
509                 *startstop = ide_error(drive, s, stat);
510         }
511
512         return err;
513 }
514
515 EXPORT_SYMBOL(ide_wait_stat);
516
517 /**
518  *      ide_in_drive_list       -       look for drive in black/white list
519  *      @id: drive identifier
520  *      @drive_table: list to inspect
521  *
522  *      Look for a drive in the blacklist and the whitelist tables
523  *      Returns 1 if the drive is found in the table.
524  */
525
526 int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
527 {
528         for ( ; drive_table->id_model; drive_table++)
529                 if ((!strcmp(drive_table->id_model, id->model)) &&
530                     (!drive_table->id_firmware ||
531                      strstr(id->fw_rev, drive_table->id_firmware)))
532                         return 1;
533         return 0;
534 }
535
536 EXPORT_SYMBOL_GPL(ide_in_drive_list);
537
538 /*
539  * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
540  * We list them here and depend on the device side cable detection for them.
541  *
542  * Some optical devices with the buggy firmwares have the same problem.
543  */
544 static const struct drive_list_entry ivb_list[] = {
545         { "QUANTUM FIREBALLlct10 05"    , "A03.0900"    },
546         { "TSSTcorp CDDVDW SH-S202J"    , "SB00"        },
547         { "TSSTcorp CDDVDW SH-S202J"    , "SB01"        },
548         { "TSSTcorp CDDVDW SH-S202N"    , "SB00"        },
549         { "TSSTcorp CDDVDW SH-S202N"    , "SB01"        },
550         { NULL                          , NULL          }
551 };
552
553 /*
554  *  All hosts that use the 80c ribbon must use!
555  *  The name is derived from upper byte of word 93 and the 80c ribbon.
556  */
557 u8 eighty_ninty_three (ide_drive_t *drive)
558 {
559         ide_hwif_t *hwif = drive->hwif;
560         struct hd_driveid *id = drive->id;
561         int ivb = ide_in_drive_list(id, ivb_list);
562
563         if (hwif->cbl == ATA_CBL_PATA40_SHORT)
564                 return 1;
565
566         if (ivb)
567                 printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
568                                   drive->name);
569
570         if (ide_dev_is_sata(id) && !ivb)
571                 return 1;
572
573         if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
574                 goto no_80w;
575
576         /*
577          * FIXME:
578          * - change master/slave IDENTIFY order
579          * - force bit13 (80c cable present) check also for !ivb devices
580          *   (unless the slave device is pre-ATA3)
581          */
582         if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000)))
583                 return 1;
584
585 no_80w:
586         if (drive->udma33_warned == 1)
587                 return 0;
588
589         printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
590                             "limiting max speed to UDMA33\n",
591                             drive->name,
592                             hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
593
594         drive->udma33_warned = 1;
595
596         return 0;
597 }
598
599 int ide_driveid_update(ide_drive_t *drive)
600 {
601         ide_hwif_t *hwif = drive->hwif;
602         struct hd_driveid *id;
603         unsigned long timeout, flags;
604         u8 stat;
605
606         /*
607          * Re-read drive->id for possible DMA mode
608          * change (copied from ide-probe.c)
609          */
610
611         SELECT_MASK(drive, 1);
612         ide_set_irq(drive, 1);
613         msleep(50);
614         hwif->OUTB(WIN_IDENTIFY, hwif->io_ports.command_addr);
615         timeout = jiffies + WAIT_WORSTCASE;
616         do {
617                 if (time_after(jiffies, timeout)) {
618                         SELECT_MASK(drive, 0);
619                         return 0;       /* drive timed-out */
620                 }
621
622                 msleep(50);     /* give drive a breather */
623                 stat = ide_read_altstatus(drive);
624         } while (stat & BUSY_STAT);
625
626         msleep(50);     /* wait for IRQ and DRQ_STAT */
627         stat = ide_read_status(drive);
628
629         if (!OK_STAT(stat, DRQ_STAT, BAD_R_STAT)) {
630                 SELECT_MASK(drive, 0);
631                 printk("%s: CHECK for good STATUS\n", drive->name);
632                 return 0;
633         }
634         local_irq_save(flags);
635         SELECT_MASK(drive, 0);
636         id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
637         if (!id) {
638                 local_irq_restore(flags);
639                 return 0;
640         }
641         hwif->input_data(drive, NULL, id, SECTOR_SIZE);
642         (void)ide_read_status(drive);   /* clear drive IRQ */
643         local_irq_enable();
644         local_irq_restore(flags);
645         ide_fix_driveid(id);
646         if (id) {
647                 drive->id->dma_ultra = id->dma_ultra;
648                 drive->id->dma_mword = id->dma_mword;
649                 drive->id->dma_1word = id->dma_1word;
650                 /* anything more ? */
651                 kfree(id);
652
653                 if (drive->using_dma && ide_id_dma_bug(drive))
654                         ide_dma_off(drive);
655         }
656
657         return 1;
658 }
659
660 int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
661 {
662         ide_hwif_t *hwif = drive->hwif;
663         struct ide_io_ports *io_ports = &hwif->io_ports;
664         int error = 0;
665         u8 stat;
666
667 //      while (HWGROUP(drive)->busy)
668 //              msleep(50);
669
670 #ifdef CONFIG_BLK_DEV_IDEDMA
671         if (hwif->dma_ops)      /* check if host supports DMA */
672                 hwif->dma_ops->dma_host_set(drive, 0);
673 #endif
674
675         /* Skip setting PIO flow-control modes on pre-EIDE drives */
676         if ((speed & 0xf8) == XFER_PIO_0 && !(drive->id->capability & 0x08))
677                 goto skip;
678
679         /*
680          * Don't use ide_wait_cmd here - it will
681          * attempt to set_geometry and recalibrate,
682          * but for some reason these don't work at
683          * this point (lost interrupt).
684          */
685         /*
686          * Select the drive, and issue the SETFEATURES command
687          */
688         disable_irq_nosync(hwif->irq);
689         
690         /*
691          *      FIXME: we race against the running IRQ here if
692          *      this is called from non IRQ context. If we use
693          *      disable_irq() we hang on the error path. Work
694          *      is needed.
695          */
696          
697         udelay(1);
698         SELECT_DRIVE(drive);
699         SELECT_MASK(drive, 0);
700         udelay(1);
701         ide_set_irq(drive, 0);
702         hwif->OUTB(speed, io_ports->nsect_addr);
703         hwif->OUTB(SETFEATURES_XFER, io_ports->feature_addr);
704         hwif->OUTBSYNC(drive, WIN_SETFEATURES, io_ports->command_addr);
705         if (drive->quirk_list == 2)
706                 ide_set_irq(drive, 1);
707
708         error = __ide_wait_stat(drive, drive->ready_stat,
709                                 BUSY_STAT|DRQ_STAT|ERR_STAT,
710                                 WAIT_CMD, &stat);
711
712         SELECT_MASK(drive, 0);
713
714         enable_irq(hwif->irq);
715
716         if (error) {
717                 (void) ide_dump_status(drive, "set_drive_speed_status", stat);
718                 return error;
719         }
720
721         drive->id->dma_ultra &= ~0xFF00;
722         drive->id->dma_mword &= ~0x0F00;
723         drive->id->dma_1word &= ~0x0F00;
724
725  skip:
726 #ifdef CONFIG_BLK_DEV_IDEDMA
727         if ((speed >= XFER_SW_DMA_0 || (hwif->host_flags & IDE_HFLAG_VDMA)) &&
728             drive->using_dma)
729                 hwif->dma_ops->dma_host_set(drive, 1);
730         else if (hwif->dma_ops) /* check if host supports DMA */
731                 ide_dma_off_quietly(drive);
732 #endif
733
734         switch(speed) {
735                 case XFER_UDMA_7:   drive->id->dma_ultra |= 0x8080; break;
736                 case XFER_UDMA_6:   drive->id->dma_ultra |= 0x4040; break;
737                 case XFER_UDMA_5:   drive->id->dma_ultra |= 0x2020; break;
738                 case XFER_UDMA_4:   drive->id->dma_ultra |= 0x1010; break;
739                 case XFER_UDMA_3:   drive->id->dma_ultra |= 0x0808; break;
740                 case XFER_UDMA_2:   drive->id->dma_ultra |= 0x0404; break;
741                 case XFER_UDMA_1:   drive->id->dma_ultra |= 0x0202; break;
742                 case XFER_UDMA_0:   drive->id->dma_ultra |= 0x0101; break;
743                 case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
744                 case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
745                 case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
746                 case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
747                 case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
748                 case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
749                 default: break;
750         }
751         if (!drive->init_speed)
752                 drive->init_speed = speed;
753         drive->current_speed = speed;
754         return error;
755 }
756
757 /*
758  * This should get invoked any time we exit the driver to
759  * wait for an interrupt response from a drive.  handler() points
760  * at the appropriate code to handle the next interrupt, and a
761  * timer is started to prevent us from waiting forever in case
762  * something goes wrong (see the ide_timer_expiry() handler later on).
763  *
764  * See also ide_execute_command
765  */
766 static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
767                       unsigned int timeout, ide_expiry_t *expiry)
768 {
769         ide_hwgroup_t *hwgroup = HWGROUP(drive);
770
771         BUG_ON(hwgroup->handler);
772         hwgroup->handler        = handler;
773         hwgroup->expiry         = expiry;
774         hwgroup->timer.expires  = jiffies + timeout;
775         hwgroup->req_gen_timer  = hwgroup->req_gen;
776         add_timer(&hwgroup->timer);
777 }
778
779 void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
780                       unsigned int timeout, ide_expiry_t *expiry)
781 {
782         unsigned long flags;
783         spin_lock_irqsave(&ide_lock, flags);
784         __ide_set_handler(drive, handler, timeout, expiry);
785         spin_unlock_irqrestore(&ide_lock, flags);
786 }
787
788 EXPORT_SYMBOL(ide_set_handler);
789  
790 /**
791  *      ide_execute_command     -       execute an IDE command
792  *      @drive: IDE drive to issue the command against
793  *      @command: command byte to write
794  *      @handler: handler for next phase
795  *      @timeout: timeout for command
796  *      @expiry:  handler to run on timeout
797  *
798  *      Helper function to issue an IDE command. This handles the
799  *      atomicity requirements, command timing and ensures that the 
800  *      handler and IRQ setup do not race. All IDE command kick off
801  *      should go via this function or do equivalent locking.
802  */
803
804 void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
805                          unsigned timeout, ide_expiry_t *expiry)
806 {
807         unsigned long flags;
808         ide_hwif_t *hwif = HWIF(drive);
809
810         spin_lock_irqsave(&ide_lock, flags);
811         __ide_set_handler(drive, handler, timeout, expiry);
812         hwif->OUTBSYNC(drive, cmd, hwif->io_ports.command_addr);
813         /*
814          * Drive takes 400nS to respond, we must avoid the IRQ being
815          * serviced before that.
816          *
817          * FIXME: we could skip this delay with care on non shared devices
818          */
819         ndelay(400);
820         spin_unlock_irqrestore(&ide_lock, flags);
821 }
822
823 EXPORT_SYMBOL(ide_execute_command);
824
825
826 /* needed below */
827 static ide_startstop_t do_reset1 (ide_drive_t *, int);
828
829 /*
830  * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
831  * during an atapi drive reset operation. If the drive has not yet responded,
832  * and we have not yet hit our maximum waiting time, then the timer is restarted
833  * for another 50ms.
834  */
835 static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
836 {
837         ide_hwgroup_t *hwgroup  = HWGROUP(drive);
838         u8 stat;
839
840         SELECT_DRIVE(drive);
841         udelay (10);
842         stat = ide_read_status(drive);
843
844         if (OK_STAT(stat, 0, BUSY_STAT))
845                 printk("%s: ATAPI reset complete\n", drive->name);
846         else {
847                 if (time_before(jiffies, hwgroup->poll_timeout)) {
848                         ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
849                         /* continue polling */
850                         return ide_started;
851                 }
852                 /* end of polling */
853                 hwgroup->polling = 0;
854                 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
855                                 drive->name, stat);
856                 /* do it the old fashioned way */
857                 return do_reset1(drive, 1);
858         }
859         /* done polling */
860         hwgroup->polling = 0;
861         hwgroup->resetting = 0;
862         return ide_stopped;
863 }
864
865 /*
866  * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
867  * during an ide reset operation. If the drives have not yet responded,
868  * and we have not yet hit our maximum waiting time, then the timer is restarted
869  * for another 50ms.
870  */
871 static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
872 {
873         ide_hwgroup_t *hwgroup  = HWGROUP(drive);
874         ide_hwif_t *hwif        = HWIF(drive);
875         const struct ide_port_ops *port_ops = hwif->port_ops;
876         u8 tmp;
877
878         if (port_ops && port_ops->reset_poll) {
879                 if (port_ops->reset_poll(drive)) {
880                         printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
881                                 hwif->name, drive->name);
882                         return ide_stopped;
883                 }
884         }
885
886         tmp = ide_read_status(drive);
887
888         if (!OK_STAT(tmp, 0, BUSY_STAT)) {
889                 if (time_before(jiffies, hwgroup->poll_timeout)) {
890                         ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
891                         /* continue polling */
892                         return ide_started;
893                 }
894                 printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
895                 drive->failures++;
896         } else  {
897                 printk("%s: reset: ", hwif->name);
898                 tmp = ide_read_error(drive);
899
900                 if (tmp == 1) {
901                         printk("success\n");
902                         drive->failures = 0;
903                 } else {
904                         drive->failures++;
905                         printk("master: ");
906                         switch (tmp & 0x7f) {
907                                 case 1: printk("passed");
908                                         break;
909                                 case 2: printk("formatter device error");
910                                         break;
911                                 case 3: printk("sector buffer error");
912                                         break;
913                                 case 4: printk("ECC circuitry error");
914                                         break;
915                                 case 5: printk("controlling MPU error");
916                                         break;
917                                 default:printk("error (0x%02x?)", tmp);
918                         }
919                         if (tmp & 0x80)
920                                 printk("; slave: failed");
921                         printk("\n");
922                 }
923         }
924         hwgroup->polling = 0;   /* done polling */
925         hwgroup->resetting = 0; /* done reset attempt */
926         return ide_stopped;
927 }
928
929 static void ide_disk_pre_reset(ide_drive_t *drive)
930 {
931         int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
932
933         drive->special.all = 0;
934         drive->special.b.set_geometry = legacy;
935         drive->special.b.recalibrate  = legacy;
936         drive->mult_count = 0;
937         if (!drive->keep_settings && !drive->using_dma)
938                 drive->mult_req = 0;
939         if (drive->mult_req != drive->mult_count)
940                 drive->special.b.set_multmode = 1;
941 }
942
943 static void pre_reset(ide_drive_t *drive)
944 {
945         const struct ide_port_ops *port_ops = drive->hwif->port_ops;
946
947         if (drive->media == ide_disk)
948                 ide_disk_pre_reset(drive);
949         else
950                 drive->post_reset = 1;
951
952         if (drive->using_dma) {
953                 if (drive->crc_count)
954                         ide_check_dma_crc(drive);
955                 else
956                         ide_dma_off(drive);
957         }
958
959         if (!drive->keep_settings) {
960                 if (!drive->using_dma) {
961                         drive->unmask = 0;
962                         drive->io_32bit = 0;
963                 }
964                 return;
965         }
966
967         if (port_ops && port_ops->pre_reset)
968                 port_ops->pre_reset(drive);
969
970         if (drive->current_speed != 0xff)
971                 drive->desired_speed = drive->current_speed;
972         drive->current_speed = 0xff;
973 }
974
975 /*
976  * do_reset1() attempts to recover a confused drive by resetting it.
977  * Unfortunately, resetting a disk drive actually resets all devices on
978  * the same interface, so it can really be thought of as resetting the
979  * interface rather than resetting the drive.
980  *
981  * ATAPI devices have their own reset mechanism which allows them to be
982  * individually reset without clobbering other devices on the same interface.
983  *
984  * Unfortunately, the IDE interface does not generate an interrupt to let
985  * us know when the reset operation has finished, so we must poll for this.
986  * Equally poor, though, is the fact that this may a very long time to complete,
987  * (up to 30 seconds worstcase).  So, instead of busy-waiting here for it,
988  * we set a timer to poll at 50ms intervals.
989  */
990 static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
991 {
992         unsigned int unit;
993         unsigned long flags;
994         ide_hwif_t *hwif;
995         ide_hwgroup_t *hwgroup;
996         struct ide_io_ports *io_ports;
997         const struct ide_port_ops *port_ops;
998         u8 ctl;
999
1000         spin_lock_irqsave(&ide_lock, flags);
1001         hwif = HWIF(drive);
1002         hwgroup = HWGROUP(drive);
1003
1004         io_ports = &hwif->io_ports;
1005
1006         /* We must not reset with running handlers */
1007         BUG_ON(hwgroup->handler != NULL);
1008
1009         /* For an ATAPI device, first try an ATAPI SRST. */
1010         if (drive->media != ide_disk && !do_not_try_atapi) {
1011                 hwgroup->resetting = 1;
1012                 pre_reset(drive);
1013                 SELECT_DRIVE(drive);
1014                 udelay (20);
1015                 hwif->OUTBSYNC(drive, WIN_SRST, io_ports->command_addr);
1016                 ndelay(400);
1017                 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1018                 hwgroup->polling = 1;
1019                 __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1020                 spin_unlock_irqrestore(&ide_lock, flags);
1021                 return ide_started;
1022         }
1023
1024         /*
1025          * First, reset any device state data we were maintaining
1026          * for any of the drives on this interface.
1027          */
1028         for (unit = 0; unit < MAX_DRIVES; ++unit)
1029                 pre_reset(&hwif->drives[unit]);
1030
1031         if (io_ports->ctl_addr == 0) {
1032                 spin_unlock_irqrestore(&ide_lock, flags);
1033                 return ide_stopped;
1034         }
1035
1036         hwgroup->resetting = 1;
1037         /*
1038          * Note that we also set nIEN while resetting the device,
1039          * to mask unwanted interrupts from the interface during the reset.
1040          * However, due to the design of PC hardware, this will cause an
1041          * immediate interrupt due to the edge transition it produces.
1042          * This single interrupt gives us a "fast poll" for drives that
1043          * recover from reset very quickly, saving us the first 50ms wait time.
1044          */
1045         /* set SRST and nIEN */
1046         hwif->OUTBSYNC(drive, drive->ctl|6, io_ports->ctl_addr);
1047         /* more than enough time */
1048         udelay(10);
1049         if (drive->quirk_list == 2)
1050                 ctl = drive->ctl;       /* clear SRST and nIEN */
1051         else
1052                 ctl = drive->ctl | 2;   /* clear SRST, leave nIEN */
1053         hwif->OUTBSYNC(drive, ctl, io_ports->ctl_addr);
1054         /* more than enough time */
1055         udelay(10);
1056         hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1057         hwgroup->polling = 1;
1058         __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1059
1060         /*
1061          * Some weird controller like resetting themselves to a strange
1062          * state when the disks are reset this way. At least, the Winbond
1063          * 553 documentation says that
1064          */
1065         port_ops = hwif->port_ops;
1066         if (port_ops && port_ops->resetproc)
1067                 port_ops->resetproc(drive);
1068
1069         spin_unlock_irqrestore(&ide_lock, flags);
1070         return ide_started;
1071 }
1072
1073 /*
1074  * ide_do_reset() is the entry point to the drive/interface reset code.
1075  */
1076
1077 ide_startstop_t ide_do_reset (ide_drive_t *drive)
1078 {
1079         return do_reset1(drive, 0);
1080 }
1081
1082 EXPORT_SYMBOL(ide_do_reset);
1083
1084 /*
1085  * ide_wait_not_busy() waits for the currently selected device on the hwif
1086  * to report a non-busy status, see comments in ide_probe_port().
1087  */
1088 int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1089 {
1090         u8 stat = 0;
1091
1092         while(timeout--) {
1093                 /*
1094                  * Turn this into a schedule() sleep once I'm sure
1095                  * about locking issues (2.5 work ?).
1096                  */
1097                 mdelay(1);
1098                 stat = hwif->INB(hwif->io_ports.status_addr);
1099                 if ((stat & BUSY_STAT) == 0)
1100                         return 0;
1101                 /*
1102                  * Assume a value of 0xff means nothing is connected to
1103                  * the interface and it doesn't implement the pull-down
1104                  * resistor on D7.
1105                  */
1106                 if (stat == 0xff)
1107                         return -ENODEV;
1108                 touch_softlockup_watchdog();
1109                 touch_nmi_watchdog();
1110         }
1111         return -EBUSY;
1112 }
1113
1114 EXPORT_SYMBOL_GPL(ide_wait_not_busy);
1115