ide: skip "VLB sync" if host uses MMIO
[pandora-kernel.git] / drivers / ide / ide-iops.c
1 /*
2  *  Copyright (C) 2000-2002     Andre Hedrick <andre@linux-ide.org>
3  *  Copyright (C) 2003          Red Hat <alan@redhat.com>
4  *
5  */
6
7 #include <linux/module.h>
8 #include <linux/types.h>
9 #include <linux/string.h>
10 #include <linux/kernel.h>
11 #include <linux/timer.h>
12 #include <linux/mm.h>
13 #include <linux/interrupt.h>
14 #include <linux/major.h>
15 #include <linux/errno.h>
16 #include <linux/genhd.h>
17 #include <linux/blkpg.h>
18 #include <linux/slab.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hdreg.h>
22 #include <linux/ide.h>
23 #include <linux/bitops.h>
24 #include <linux/nmi.h>
25
26 #include <asm/byteorder.h>
27 #include <asm/irq.h>
28 #include <asm/uaccess.h>
29 #include <asm/io.h>
30
31 /*
32  *      Conventional PIO operations for ATA devices
33  */
34
35 static u8 ide_inb (unsigned long port)
36 {
37         return (u8) inb(port);
38 }
39
40 static void ide_outb (u8 val, unsigned long port)
41 {
42         outb(val, port);
43 }
44
45 static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port)
46 {
47         outb(addr, port);
48 }
49
50 void default_hwif_iops (ide_hwif_t *hwif)
51 {
52         hwif->OUTB      = ide_outb;
53         hwif->OUTBSYNC  = ide_outbsync;
54         hwif->INB       = ide_inb;
55 }
56
57 /*
58  *      MMIO operations, typically used for SATA controllers
59  */
60
61 static u8 ide_mm_inb (unsigned long port)
62 {
63         return (u8) readb((void __iomem *) port);
64 }
65
66 static void ide_mm_outb (u8 value, unsigned long port)
67 {
68         writeb(value, (void __iomem *) port);
69 }
70
71 static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port)
72 {
73         writeb(value, (void __iomem *) port);
74 }
75
76 void default_hwif_mmiops (ide_hwif_t *hwif)
77 {
78         hwif->OUTB      = ide_mm_outb;
79         /* Most systems will need to override OUTBSYNC, alas however
80            this one is controller specific! */
81         hwif->OUTBSYNC  = ide_mm_outbsync;
82         hwif->INB       = ide_mm_inb;
83 }
84
85 EXPORT_SYMBOL(default_hwif_mmiops);
86
87 void SELECT_DRIVE (ide_drive_t *drive)
88 {
89         ide_hwif_t *hwif = drive->hwif;
90         const struct ide_port_ops *port_ops = hwif->port_ops;
91
92         if (port_ops && port_ops->selectproc)
93                 port_ops->selectproc(drive);
94
95         hwif->OUTB(drive->select.all, hwif->io_ports.device_addr);
96 }
97
98 void SELECT_MASK (ide_drive_t *drive, int mask)
99 {
100         const struct ide_port_ops *port_ops = drive->hwif->port_ops;
101
102         if (port_ops && port_ops->maskproc)
103                 port_ops->maskproc(drive, mask);
104 }
105
106 static void ide_tf_load(ide_drive_t *drive, ide_task_t *task)
107 {
108         ide_hwif_t *hwif = drive->hwif;
109         struct ide_io_ports *io_ports = &hwif->io_ports;
110         struct ide_taskfile *tf = &task->tf;
111         void (*tf_outb)(u8 addr, unsigned long port);
112         u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
113         u8 HIHI = (task->tf_flags & IDE_TFLAG_LBA48) ? 0xE0 : 0xEF;
114
115         if (mmio)
116                 tf_outb = ide_mm_outb;
117         else
118                 tf_outb = ide_outb;
119
120         if (task->tf_flags & IDE_TFLAG_FLAGGED)
121                 HIHI = 0xFF;
122
123         ide_set_irq(drive, 1);
124
125         if ((task->tf_flags & IDE_TFLAG_NO_SELECT_MASK) == 0)
126                 SELECT_MASK(drive, 0);
127
128         if (task->tf_flags & IDE_TFLAG_OUT_DATA) {
129                 u16 data = (tf->hob_data << 8) | tf->data;
130
131                 if (mmio)
132                         writew(data, (void __iomem *)io_ports->data_addr);
133                 else
134                         outw(data, io_ports->data_addr);
135         }
136
137         if (task->tf_flags & IDE_TFLAG_OUT_HOB_FEATURE)
138                 tf_outb(tf->hob_feature, io_ports->feature_addr);
139         if (task->tf_flags & IDE_TFLAG_OUT_HOB_NSECT)
140                 tf_outb(tf->hob_nsect, io_ports->nsect_addr);
141         if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAL)
142                 tf_outb(tf->hob_lbal, io_ports->lbal_addr);
143         if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAM)
144                 tf_outb(tf->hob_lbam, io_ports->lbam_addr);
145         if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAH)
146                 tf_outb(tf->hob_lbah, io_ports->lbah_addr);
147
148         if (task->tf_flags & IDE_TFLAG_OUT_FEATURE)
149                 tf_outb(tf->feature, io_ports->feature_addr);
150         if (task->tf_flags & IDE_TFLAG_OUT_NSECT)
151                 tf_outb(tf->nsect, io_ports->nsect_addr);
152         if (task->tf_flags & IDE_TFLAG_OUT_LBAL)
153                 tf_outb(tf->lbal, io_ports->lbal_addr);
154         if (task->tf_flags & IDE_TFLAG_OUT_LBAM)
155                 tf_outb(tf->lbam, io_ports->lbam_addr);
156         if (task->tf_flags & IDE_TFLAG_OUT_LBAH)
157                 tf_outb(tf->lbah, io_ports->lbah_addr);
158
159         if (task->tf_flags & IDE_TFLAG_OUT_DEVICE)
160                 tf_outb((tf->device & HIHI) | drive->select.all,
161                          io_ports->device_addr);
162 }
163
164 static void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
165 {
166         ide_hwif_t *hwif = drive->hwif;
167         struct ide_io_ports *io_ports = &hwif->io_ports;
168         struct ide_taskfile *tf = &task->tf;
169         void (*tf_outb)(u8 addr, unsigned long port);
170         u8 (*tf_inb)(unsigned long port);
171         u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
172
173         if (mmio) {
174                 tf_outb = ide_mm_outb;
175                 tf_inb  = ide_mm_inb;
176         } else {
177                 tf_outb = ide_outb;
178                 tf_inb  = ide_inb;
179         }
180
181         if (task->tf_flags & IDE_TFLAG_IN_DATA) {
182                 u16 data;
183
184                 if (mmio)
185                         data = readw((void __iomem *)io_ports->data_addr);
186                 else
187                         data = inw(io_ports->data_addr);
188
189                 tf->data = data & 0xff;
190                 tf->hob_data = (data >> 8) & 0xff;
191         }
192
193         /* be sure we're looking at the low order bits */
194         tf_outb(drive->ctl & ~0x80, io_ports->ctl_addr);
195
196         if (task->tf_flags & IDE_TFLAG_IN_NSECT)
197                 tf->nsect  = tf_inb(io_ports->nsect_addr);
198         if (task->tf_flags & IDE_TFLAG_IN_LBAL)
199                 tf->lbal   = tf_inb(io_ports->lbal_addr);
200         if (task->tf_flags & IDE_TFLAG_IN_LBAM)
201                 tf->lbam   = tf_inb(io_ports->lbam_addr);
202         if (task->tf_flags & IDE_TFLAG_IN_LBAH)
203                 tf->lbah   = tf_inb(io_ports->lbah_addr);
204         if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
205                 tf->device = tf_inb(io_ports->device_addr);
206
207         if (task->tf_flags & IDE_TFLAG_LBA48) {
208                 tf_outb(drive->ctl | 0x80, io_ports->ctl_addr);
209
210                 if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
211                         tf->hob_feature = tf_inb(io_ports->feature_addr);
212                 if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
213                         tf->hob_nsect   = tf_inb(io_ports->nsect_addr);
214                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
215                         tf->hob_lbal    = tf_inb(io_ports->lbal_addr);
216                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
217                         tf->hob_lbam    = tf_inb(io_ports->lbam_addr);
218                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
219                         tf->hob_lbah    = tf_inb(io_ports->lbah_addr);
220         }
221 }
222
223 /*
224  * Some localbus EIDE interfaces require a special access sequence
225  * when using 32-bit I/O instructions to transfer data.  We call this
226  * the "vlb_sync" sequence, which consists of three successive reads
227  * of the sector count register location, with interrupts disabled
228  * to ensure that the reads all happen together.
229  */
230 static void ata_vlb_sync(unsigned long port)
231 {
232         (void)inb(port);
233         (void)inb(port);
234         (void)inb(port);
235 }
236
237 /*
238  * This is used for most PIO data transfers *from* the IDE interface
239  *
240  * These routines will round up any request for an odd number of bytes,
241  * so if an odd len is specified, be sure that there's at least one
242  * extra byte allocated for the buffer.
243  */
244 static void ata_input_data(ide_drive_t *drive, struct request *rq,
245                            void *buf, unsigned int len)
246 {
247         ide_hwif_t *hwif = drive->hwif;
248         struct ide_io_ports *io_ports = &hwif->io_ports;
249         unsigned long data_addr = io_ports->data_addr;
250         u8 io_32bit = drive->io_32bit;
251         u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
252
253         len++;
254
255         if (io_32bit) {
256                 unsigned long uninitialized_var(flags);
257
258                 if ((io_32bit & 2) && !mmio) {
259                         local_irq_save(flags);
260                         ata_vlb_sync(io_ports->nsect_addr);
261                 }
262
263                 if (mmio)
264                         __ide_mm_insl((void __iomem *)data_addr, buf, len / 4);
265                 else
266                         insl(data_addr, buf, len / 4);
267
268                 if ((io_32bit & 2) && !mmio)
269                         local_irq_restore(flags);
270
271                 if ((len & 3) >= 2) {
272                         if (mmio)
273                                 __ide_mm_insw((void __iomem *)data_addr,
274                                                 (u8 *)buf + (len & ~3), 1);
275                         else
276                                 insw(data_addr, (u8 *)buf + (len & ~3), 1);
277                 }
278         } else {
279                 if (mmio)
280                         __ide_mm_insw((void __iomem *)data_addr, buf, len / 2);
281                 else
282                         insw(data_addr, buf, len / 2);
283         }
284 }
285
286 /*
287  * This is used for most PIO data transfers *to* the IDE interface
288  */
289 static void ata_output_data(ide_drive_t *drive, struct request *rq,
290                             void *buf, unsigned int len)
291 {
292         ide_hwif_t *hwif = drive->hwif;
293         struct ide_io_ports *io_ports = &hwif->io_ports;
294         unsigned long data_addr = io_ports->data_addr;
295         u8 io_32bit = drive->io_32bit;
296         u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
297
298         if (io_32bit) {
299                 unsigned long uninitialized_var(flags);
300
301                 if ((io_32bit & 2) && !mmio) {
302                         local_irq_save(flags);
303                         ata_vlb_sync(io_ports->nsect_addr);
304                 }
305
306                 if (mmio)
307                         __ide_mm_outsl((void __iomem *)data_addr, buf, len / 4);
308                 else
309                         outsl(data_addr, buf, len / 4);
310
311                 if ((io_32bit & 2) && !mmio)
312                         local_irq_restore(flags);
313
314                 if ((len & 3) >= 2) {
315                         if (mmio)
316                                 __ide_mm_outsw((void __iomem *)data_addr,
317                                                  (u8 *)buf + (len & ~3), 1);
318                         else
319                                 outsw(data_addr, (u8 *)buf + (len & ~3), 1);
320                 }
321         } else {
322                 if (mmio)
323                         __ide_mm_outsw((void __iomem *)data_addr, buf, len / 2);
324                 else
325                         outsw(data_addr, buf, len / 2);
326         }
327 }
328
329 void default_hwif_transport(ide_hwif_t *hwif)
330 {
331         hwif->tf_load     = ide_tf_load;
332         hwif->tf_read     = ide_tf_read;
333
334         hwif->input_data  = ata_input_data;
335         hwif->output_data = ata_output_data;
336 }
337
338 void ide_fix_driveid (struct hd_driveid *id)
339 {
340 #ifndef __LITTLE_ENDIAN
341 # ifdef __BIG_ENDIAN
342         int i;
343         u16 *stringcast;
344
345         id->config         = __le16_to_cpu(id->config);
346         id->cyls           = __le16_to_cpu(id->cyls);
347         id->reserved2      = __le16_to_cpu(id->reserved2);
348         id->heads          = __le16_to_cpu(id->heads);
349         id->track_bytes    = __le16_to_cpu(id->track_bytes);
350         id->sector_bytes   = __le16_to_cpu(id->sector_bytes);
351         id->sectors        = __le16_to_cpu(id->sectors);
352         id->vendor0        = __le16_to_cpu(id->vendor0);
353         id->vendor1        = __le16_to_cpu(id->vendor1);
354         id->vendor2        = __le16_to_cpu(id->vendor2);
355         stringcast = (u16 *)&id->serial_no[0];
356         for (i = 0; i < (20/2); i++)
357                 stringcast[i] = __le16_to_cpu(stringcast[i]);
358         id->buf_type       = __le16_to_cpu(id->buf_type);
359         id->buf_size       = __le16_to_cpu(id->buf_size);
360         id->ecc_bytes      = __le16_to_cpu(id->ecc_bytes);
361         stringcast = (u16 *)&id->fw_rev[0];
362         for (i = 0; i < (8/2); i++)
363                 stringcast[i] = __le16_to_cpu(stringcast[i]);
364         stringcast = (u16 *)&id->model[0];
365         for (i = 0; i < (40/2); i++)
366                 stringcast[i] = __le16_to_cpu(stringcast[i]);
367         id->dword_io       = __le16_to_cpu(id->dword_io);
368         id->reserved50     = __le16_to_cpu(id->reserved50);
369         id->field_valid    = __le16_to_cpu(id->field_valid);
370         id->cur_cyls       = __le16_to_cpu(id->cur_cyls);
371         id->cur_heads      = __le16_to_cpu(id->cur_heads);
372         id->cur_sectors    = __le16_to_cpu(id->cur_sectors);
373         id->cur_capacity0  = __le16_to_cpu(id->cur_capacity0);
374         id->cur_capacity1  = __le16_to_cpu(id->cur_capacity1);
375         id->lba_capacity   = __le32_to_cpu(id->lba_capacity);
376         id->dma_1word      = __le16_to_cpu(id->dma_1word);
377         id->dma_mword      = __le16_to_cpu(id->dma_mword);
378         id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
379         id->eide_dma_min   = __le16_to_cpu(id->eide_dma_min);
380         id->eide_dma_time  = __le16_to_cpu(id->eide_dma_time);
381         id->eide_pio       = __le16_to_cpu(id->eide_pio);
382         id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
383         for (i = 0; i < 2; ++i)
384                 id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
385         for (i = 0; i < 4; ++i)
386                 id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
387         id->queue_depth    = __le16_to_cpu(id->queue_depth);
388         for (i = 0; i < 4; ++i)
389                 id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
390         id->major_rev_num  = __le16_to_cpu(id->major_rev_num);
391         id->minor_rev_num  = __le16_to_cpu(id->minor_rev_num);
392         id->command_set_1  = __le16_to_cpu(id->command_set_1);
393         id->command_set_2  = __le16_to_cpu(id->command_set_2);
394         id->cfsse          = __le16_to_cpu(id->cfsse);
395         id->cfs_enable_1   = __le16_to_cpu(id->cfs_enable_1);
396         id->cfs_enable_2   = __le16_to_cpu(id->cfs_enable_2);
397         id->csf_default    = __le16_to_cpu(id->csf_default);
398         id->dma_ultra      = __le16_to_cpu(id->dma_ultra);
399         id->trseuc         = __le16_to_cpu(id->trseuc);
400         id->trsEuc         = __le16_to_cpu(id->trsEuc);
401         id->CurAPMvalues   = __le16_to_cpu(id->CurAPMvalues);
402         id->mprc           = __le16_to_cpu(id->mprc);
403         id->hw_config      = __le16_to_cpu(id->hw_config);
404         id->acoustic       = __le16_to_cpu(id->acoustic);
405         id->msrqs          = __le16_to_cpu(id->msrqs);
406         id->sxfert         = __le16_to_cpu(id->sxfert);
407         id->sal            = __le16_to_cpu(id->sal);
408         id->spg            = __le32_to_cpu(id->spg);
409         id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
410         for (i = 0; i < 22; i++)
411                 id->words104_125[i]   = __le16_to_cpu(id->words104_125[i]);
412         id->last_lun       = __le16_to_cpu(id->last_lun);
413         id->word127        = __le16_to_cpu(id->word127);
414         id->dlf            = __le16_to_cpu(id->dlf);
415         id->csfo           = __le16_to_cpu(id->csfo);
416         for (i = 0; i < 26; i++)
417                 id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
418         id->word156        = __le16_to_cpu(id->word156);
419         for (i = 0; i < 3; i++)
420                 id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
421         id->cfa_power      = __le16_to_cpu(id->cfa_power);
422         for (i = 0; i < 14; i++)
423                 id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
424         for (i = 0; i < 31; i++)
425                 id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
426         for (i = 0; i < 48; i++)
427                 id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
428         id->integrity_word  = __le16_to_cpu(id->integrity_word);
429 # else
430 #  error "Please fix <asm/byteorder.h>"
431 # endif
432 #endif
433 }
434
435 /*
436  * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
437  * removing leading/trailing blanks and compressing internal blanks.
438  * It is primarily used to tidy up the model name/number fields as
439  * returned by the WIN_[P]IDENTIFY commands.
440  */
441
442 void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
443 {
444         u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
445
446         if (byteswap) {
447                 /* convert from big-endian to host byte order */
448                 for (p = end ; p != s;) {
449                         unsigned short *pp = (unsigned short *) (p -= 2);
450                         *pp = ntohs(*pp);
451                 }
452         }
453         /* strip leading blanks */
454         while (s != end && *s == ' ')
455                 ++s;
456         /* compress internal blanks and strip trailing blanks */
457         while (s != end && *s) {
458                 if (*s++ != ' ' || (s != end && *s && *s != ' '))
459                         *p++ = *(s-1);
460         }
461         /* wipe out trailing garbage */
462         while (p != end)
463                 *p++ = '\0';
464 }
465
466 EXPORT_SYMBOL(ide_fixstring);
467
468 /*
469  * Needed for PCI irq sharing
470  */
471 int drive_is_ready (ide_drive_t *drive)
472 {
473         ide_hwif_t *hwif        = HWIF(drive);
474         u8 stat                 = 0;
475
476         if (drive->waiting_for_dma)
477                 return hwif->dma_ops->dma_test_irq(drive);
478
479 #if 0
480         /* need to guarantee 400ns since last command was issued */
481         udelay(1);
482 #endif
483
484         /*
485          * We do a passive status test under shared PCI interrupts on
486          * cards that truly share the ATA side interrupt, but may also share
487          * an interrupt with another pci card/device.  We make no assumptions
488          * about possible isa-pnp and pci-pnp issues yet.
489          */
490         if (hwif->io_ports.ctl_addr)
491                 stat = ide_read_altstatus(drive);
492         else
493                 /* Note: this may clear a pending IRQ!! */
494                 stat = ide_read_status(drive);
495
496         if (stat & BUSY_STAT)
497                 /* drive busy:  definitely not interrupting */
498                 return 0;
499
500         /* drive ready: *might* be interrupting */
501         return 1;
502 }
503
504 EXPORT_SYMBOL(drive_is_ready);
505
506 /*
507  * This routine busy-waits for the drive status to be not "busy".
508  * It then checks the status for all of the "good" bits and none
509  * of the "bad" bits, and if all is okay it returns 0.  All other
510  * cases return error -- caller may then invoke ide_error().
511  *
512  * This routine should get fixed to not hog the cpu during extra long waits..
513  * That could be done by busy-waiting for the first jiffy or two, and then
514  * setting a timer to wake up at half second intervals thereafter,
515  * until timeout is achieved, before timing out.
516  */
517 static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
518 {
519         unsigned long flags;
520         int i;
521         u8 stat;
522
523         udelay(1);      /* spec allows drive 400ns to assert "BUSY" */
524         stat = ide_read_status(drive);
525
526         if (stat & BUSY_STAT) {
527                 local_irq_set(flags);
528                 timeout += jiffies;
529                 while ((stat = ide_read_status(drive)) & BUSY_STAT) {
530                         if (time_after(jiffies, timeout)) {
531                                 /*
532                                  * One last read after the timeout in case
533                                  * heavy interrupt load made us not make any
534                                  * progress during the timeout..
535                                  */
536                                 stat = ide_read_status(drive);
537                                 if (!(stat & BUSY_STAT))
538                                         break;
539
540                                 local_irq_restore(flags);
541                                 *rstat = stat;
542                                 return -EBUSY;
543                         }
544                 }
545                 local_irq_restore(flags);
546         }
547         /*
548          * Allow status to settle, then read it again.
549          * A few rare drives vastly violate the 400ns spec here,
550          * so we'll wait up to 10usec for a "good" status
551          * rather than expensively fail things immediately.
552          * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
553          */
554         for (i = 0; i < 10; i++) {
555                 udelay(1);
556                 stat = ide_read_status(drive);
557
558                 if (OK_STAT(stat, good, bad)) {
559                         *rstat = stat;
560                         return 0;
561                 }
562         }
563         *rstat = stat;
564         return -EFAULT;
565 }
566
567 /*
568  * In case of error returns error value after doing "*startstop = ide_error()".
569  * The caller should return the updated value of "startstop" in this case,
570  * "startstop" is unchanged when the function returns 0.
571  */
572 int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
573 {
574         int err;
575         u8 stat;
576
577         /* bail early if we've exceeded max_failures */
578         if (drive->max_failures && (drive->failures > drive->max_failures)) {
579                 *startstop = ide_stopped;
580                 return 1;
581         }
582
583         err = __ide_wait_stat(drive, good, bad, timeout, &stat);
584
585         if (err) {
586                 char *s = (err == -EBUSY) ? "status timeout" : "status error";
587                 *startstop = ide_error(drive, s, stat);
588         }
589
590         return err;
591 }
592
593 EXPORT_SYMBOL(ide_wait_stat);
594
595 /**
596  *      ide_in_drive_list       -       look for drive in black/white list
597  *      @id: drive identifier
598  *      @drive_table: list to inspect
599  *
600  *      Look for a drive in the blacklist and the whitelist tables
601  *      Returns 1 if the drive is found in the table.
602  */
603
604 int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
605 {
606         for ( ; drive_table->id_model; drive_table++)
607                 if ((!strcmp(drive_table->id_model, id->model)) &&
608                     (!drive_table->id_firmware ||
609                      strstr(id->fw_rev, drive_table->id_firmware)))
610                         return 1;
611         return 0;
612 }
613
614 EXPORT_SYMBOL_GPL(ide_in_drive_list);
615
616 /*
617  * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
618  * We list them here and depend on the device side cable detection for them.
619  *
620  * Some optical devices with the buggy firmwares have the same problem.
621  */
622 static const struct drive_list_entry ivb_list[] = {
623         { "QUANTUM FIREBALLlct10 05"    , "A03.0900"    },
624         { "TSSTcorp CDDVDW SH-S202J"    , "SB00"        },
625         { "TSSTcorp CDDVDW SH-S202J"    , "SB01"        },
626         { "TSSTcorp CDDVDW SH-S202N"    , "SB00"        },
627         { "TSSTcorp CDDVDW SH-S202N"    , "SB01"        },
628         { NULL                          , NULL          }
629 };
630
631 /*
632  *  All hosts that use the 80c ribbon must use!
633  *  The name is derived from upper byte of word 93 and the 80c ribbon.
634  */
635 u8 eighty_ninty_three (ide_drive_t *drive)
636 {
637         ide_hwif_t *hwif = drive->hwif;
638         struct hd_driveid *id = drive->id;
639         int ivb = ide_in_drive_list(id, ivb_list);
640
641         if (hwif->cbl == ATA_CBL_PATA40_SHORT)
642                 return 1;
643
644         if (ivb)
645                 printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
646                                   drive->name);
647
648         if (ide_dev_is_sata(id) && !ivb)
649                 return 1;
650
651         if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
652                 goto no_80w;
653
654         /*
655          * FIXME:
656          * - change master/slave IDENTIFY order
657          * - force bit13 (80c cable present) check also for !ivb devices
658          *   (unless the slave device is pre-ATA3)
659          */
660         if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000)))
661                 return 1;
662
663 no_80w:
664         if (drive->udma33_warned == 1)
665                 return 0;
666
667         printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
668                             "limiting max speed to UDMA33\n",
669                             drive->name,
670                             hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
671
672         drive->udma33_warned = 1;
673
674         return 0;
675 }
676
677 int ide_driveid_update(ide_drive_t *drive)
678 {
679         ide_hwif_t *hwif = drive->hwif;
680         struct hd_driveid *id;
681         unsigned long timeout, flags;
682         u8 stat;
683
684         /*
685          * Re-read drive->id for possible DMA mode
686          * change (copied from ide-probe.c)
687          */
688
689         SELECT_MASK(drive, 1);
690         ide_set_irq(drive, 1);
691         msleep(50);
692         hwif->OUTBSYNC(drive, WIN_IDENTIFY, hwif->io_ports.command_addr);
693         timeout = jiffies + WAIT_WORSTCASE;
694         do {
695                 if (time_after(jiffies, timeout)) {
696                         SELECT_MASK(drive, 0);
697                         return 0;       /* drive timed-out */
698                 }
699
700                 msleep(50);     /* give drive a breather */
701                 stat = ide_read_altstatus(drive);
702         } while (stat & BUSY_STAT);
703
704         msleep(50);     /* wait for IRQ and DRQ_STAT */
705         stat = ide_read_status(drive);
706
707         if (!OK_STAT(stat, DRQ_STAT, BAD_R_STAT)) {
708                 SELECT_MASK(drive, 0);
709                 printk("%s: CHECK for good STATUS\n", drive->name);
710                 return 0;
711         }
712         local_irq_save(flags);
713         SELECT_MASK(drive, 0);
714         id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
715         if (!id) {
716                 local_irq_restore(flags);
717                 return 0;
718         }
719         hwif->input_data(drive, NULL, id, SECTOR_SIZE);
720         (void)ide_read_status(drive);   /* clear drive IRQ */
721         local_irq_enable();
722         local_irq_restore(flags);
723         ide_fix_driveid(id);
724         if (id) {
725                 drive->id->dma_ultra = id->dma_ultra;
726                 drive->id->dma_mword = id->dma_mword;
727                 drive->id->dma_1word = id->dma_1word;
728                 /* anything more ? */
729                 kfree(id);
730
731                 if (drive->using_dma && ide_id_dma_bug(drive))
732                         ide_dma_off(drive);
733         }
734
735         return 1;
736 }
737
738 int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
739 {
740         ide_hwif_t *hwif = drive->hwif;
741         struct ide_io_ports *io_ports = &hwif->io_ports;
742         int error = 0;
743         u8 stat;
744
745 //      while (HWGROUP(drive)->busy)
746 //              msleep(50);
747
748 #ifdef CONFIG_BLK_DEV_IDEDMA
749         if (hwif->dma_ops)      /* check if host supports DMA */
750                 hwif->dma_ops->dma_host_set(drive, 0);
751 #endif
752
753         /* Skip setting PIO flow-control modes on pre-EIDE drives */
754         if ((speed & 0xf8) == XFER_PIO_0 && !(drive->id->capability & 0x08))
755                 goto skip;
756
757         /*
758          * Don't use ide_wait_cmd here - it will
759          * attempt to set_geometry and recalibrate,
760          * but for some reason these don't work at
761          * this point (lost interrupt).
762          */
763         /*
764          * Select the drive, and issue the SETFEATURES command
765          */
766         disable_irq_nosync(hwif->irq);
767         
768         /*
769          *      FIXME: we race against the running IRQ here if
770          *      this is called from non IRQ context. If we use
771          *      disable_irq() we hang on the error path. Work
772          *      is needed.
773          */
774          
775         udelay(1);
776         SELECT_DRIVE(drive);
777         SELECT_MASK(drive, 0);
778         udelay(1);
779         ide_set_irq(drive, 0);
780         hwif->OUTB(speed, io_ports->nsect_addr);
781         hwif->OUTB(SETFEATURES_XFER, io_ports->feature_addr);
782         hwif->OUTBSYNC(drive, WIN_SETFEATURES, io_ports->command_addr);
783         if (drive->quirk_list == 2)
784                 ide_set_irq(drive, 1);
785
786         error = __ide_wait_stat(drive, drive->ready_stat,
787                                 BUSY_STAT|DRQ_STAT|ERR_STAT,
788                                 WAIT_CMD, &stat);
789
790         SELECT_MASK(drive, 0);
791
792         enable_irq(hwif->irq);
793
794         if (error) {
795                 (void) ide_dump_status(drive, "set_drive_speed_status", stat);
796                 return error;
797         }
798
799         drive->id->dma_ultra &= ~0xFF00;
800         drive->id->dma_mword &= ~0x0F00;
801         drive->id->dma_1word &= ~0x0F00;
802
803  skip:
804 #ifdef CONFIG_BLK_DEV_IDEDMA
805         if ((speed >= XFER_SW_DMA_0 || (hwif->host_flags & IDE_HFLAG_VDMA)) &&
806             drive->using_dma)
807                 hwif->dma_ops->dma_host_set(drive, 1);
808         else if (hwif->dma_ops) /* check if host supports DMA */
809                 ide_dma_off_quietly(drive);
810 #endif
811
812         switch(speed) {
813                 case XFER_UDMA_7:   drive->id->dma_ultra |= 0x8080; break;
814                 case XFER_UDMA_6:   drive->id->dma_ultra |= 0x4040; break;
815                 case XFER_UDMA_5:   drive->id->dma_ultra |= 0x2020; break;
816                 case XFER_UDMA_4:   drive->id->dma_ultra |= 0x1010; break;
817                 case XFER_UDMA_3:   drive->id->dma_ultra |= 0x0808; break;
818                 case XFER_UDMA_2:   drive->id->dma_ultra |= 0x0404; break;
819                 case XFER_UDMA_1:   drive->id->dma_ultra |= 0x0202; break;
820                 case XFER_UDMA_0:   drive->id->dma_ultra |= 0x0101; break;
821                 case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
822                 case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
823                 case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
824                 case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
825                 case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
826                 case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
827                 default: break;
828         }
829         if (!drive->init_speed)
830                 drive->init_speed = speed;
831         drive->current_speed = speed;
832         return error;
833 }
834
835 /*
836  * This should get invoked any time we exit the driver to
837  * wait for an interrupt response from a drive.  handler() points
838  * at the appropriate code to handle the next interrupt, and a
839  * timer is started to prevent us from waiting forever in case
840  * something goes wrong (see the ide_timer_expiry() handler later on).
841  *
842  * See also ide_execute_command
843  */
844 static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
845                       unsigned int timeout, ide_expiry_t *expiry)
846 {
847         ide_hwgroup_t *hwgroup = HWGROUP(drive);
848
849         BUG_ON(hwgroup->handler);
850         hwgroup->handler        = handler;
851         hwgroup->expiry         = expiry;
852         hwgroup->timer.expires  = jiffies + timeout;
853         hwgroup->req_gen_timer  = hwgroup->req_gen;
854         add_timer(&hwgroup->timer);
855 }
856
857 void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
858                       unsigned int timeout, ide_expiry_t *expiry)
859 {
860         unsigned long flags;
861         spin_lock_irqsave(&ide_lock, flags);
862         __ide_set_handler(drive, handler, timeout, expiry);
863         spin_unlock_irqrestore(&ide_lock, flags);
864 }
865
866 EXPORT_SYMBOL(ide_set_handler);
867  
868 /**
869  *      ide_execute_command     -       execute an IDE command
870  *      @drive: IDE drive to issue the command against
871  *      @command: command byte to write
872  *      @handler: handler for next phase
873  *      @timeout: timeout for command
874  *      @expiry:  handler to run on timeout
875  *
876  *      Helper function to issue an IDE command. This handles the
877  *      atomicity requirements, command timing and ensures that the 
878  *      handler and IRQ setup do not race. All IDE command kick off
879  *      should go via this function or do equivalent locking.
880  */
881
882 void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
883                          unsigned timeout, ide_expiry_t *expiry)
884 {
885         unsigned long flags;
886         ide_hwif_t *hwif = HWIF(drive);
887
888         spin_lock_irqsave(&ide_lock, flags);
889         __ide_set_handler(drive, handler, timeout, expiry);
890         hwif->OUTBSYNC(drive, cmd, hwif->io_ports.command_addr);
891         /*
892          * Drive takes 400nS to respond, we must avoid the IRQ being
893          * serviced before that.
894          *
895          * FIXME: we could skip this delay with care on non shared devices
896          */
897         ndelay(400);
898         spin_unlock_irqrestore(&ide_lock, flags);
899 }
900 EXPORT_SYMBOL(ide_execute_command);
901
902 void ide_execute_pkt_cmd(ide_drive_t *drive)
903 {
904         ide_hwif_t *hwif = drive->hwif;
905         unsigned long flags;
906
907         spin_lock_irqsave(&ide_lock, flags);
908         hwif->OUTBSYNC(drive, WIN_PACKETCMD, hwif->io_ports.command_addr);
909         ndelay(400);
910         spin_unlock_irqrestore(&ide_lock, flags);
911 }
912 EXPORT_SYMBOL_GPL(ide_execute_pkt_cmd);
913
914 /* needed below */
915 static ide_startstop_t do_reset1 (ide_drive_t *, int);
916
917 /*
918  * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
919  * during an atapi drive reset operation. If the drive has not yet responded,
920  * and we have not yet hit our maximum waiting time, then the timer is restarted
921  * for another 50ms.
922  */
923 static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
924 {
925         ide_hwgroup_t *hwgroup  = HWGROUP(drive);
926         u8 stat;
927
928         SELECT_DRIVE(drive);
929         udelay (10);
930         stat = ide_read_status(drive);
931
932         if (OK_STAT(stat, 0, BUSY_STAT))
933                 printk("%s: ATAPI reset complete\n", drive->name);
934         else {
935                 if (time_before(jiffies, hwgroup->poll_timeout)) {
936                         ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
937                         /* continue polling */
938                         return ide_started;
939                 }
940                 /* end of polling */
941                 hwgroup->polling = 0;
942                 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
943                                 drive->name, stat);
944                 /* do it the old fashioned way */
945                 return do_reset1(drive, 1);
946         }
947         /* done polling */
948         hwgroup->polling = 0;
949         hwgroup->resetting = 0;
950         return ide_stopped;
951 }
952
953 /*
954  * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
955  * during an ide reset operation. If the drives have not yet responded,
956  * and we have not yet hit our maximum waiting time, then the timer is restarted
957  * for another 50ms.
958  */
959 static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
960 {
961         ide_hwgroup_t *hwgroup  = HWGROUP(drive);
962         ide_hwif_t *hwif        = HWIF(drive);
963         const struct ide_port_ops *port_ops = hwif->port_ops;
964         u8 tmp;
965
966         if (port_ops && port_ops->reset_poll) {
967                 if (port_ops->reset_poll(drive)) {
968                         printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
969                                 hwif->name, drive->name);
970                         return ide_stopped;
971                 }
972         }
973
974         tmp = ide_read_status(drive);
975
976         if (!OK_STAT(tmp, 0, BUSY_STAT)) {
977                 if (time_before(jiffies, hwgroup->poll_timeout)) {
978                         ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
979                         /* continue polling */
980                         return ide_started;
981                 }
982                 printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
983                 drive->failures++;
984         } else  {
985                 printk("%s: reset: ", hwif->name);
986                 tmp = ide_read_error(drive);
987
988                 if (tmp == 1) {
989                         printk("success\n");
990                         drive->failures = 0;
991                 } else {
992                         drive->failures++;
993                         printk("master: ");
994                         switch (tmp & 0x7f) {
995                                 case 1: printk("passed");
996                                         break;
997                                 case 2: printk("formatter device error");
998                                         break;
999                                 case 3: printk("sector buffer error");
1000                                         break;
1001                                 case 4: printk("ECC circuitry error");
1002                                         break;
1003                                 case 5: printk("controlling MPU error");
1004                                         break;
1005                                 default:printk("error (0x%02x?)", tmp);
1006                         }
1007                         if (tmp & 0x80)
1008                                 printk("; slave: failed");
1009                         printk("\n");
1010                 }
1011         }
1012         hwgroup->polling = 0;   /* done polling */
1013         hwgroup->resetting = 0; /* done reset attempt */
1014         return ide_stopped;
1015 }
1016
1017 static void ide_disk_pre_reset(ide_drive_t *drive)
1018 {
1019         int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
1020
1021         drive->special.all = 0;
1022         drive->special.b.set_geometry = legacy;
1023         drive->special.b.recalibrate  = legacy;
1024         drive->mult_count = 0;
1025         if (!drive->keep_settings && !drive->using_dma)
1026                 drive->mult_req = 0;
1027         if (drive->mult_req != drive->mult_count)
1028                 drive->special.b.set_multmode = 1;
1029 }
1030
1031 static void pre_reset(ide_drive_t *drive)
1032 {
1033         const struct ide_port_ops *port_ops = drive->hwif->port_ops;
1034
1035         if (drive->media == ide_disk)
1036                 ide_disk_pre_reset(drive);
1037         else
1038                 drive->post_reset = 1;
1039
1040         if (drive->using_dma) {
1041                 if (drive->crc_count)
1042                         ide_check_dma_crc(drive);
1043                 else
1044                         ide_dma_off(drive);
1045         }
1046
1047         if (!drive->keep_settings) {
1048                 if (!drive->using_dma) {
1049                         drive->unmask = 0;
1050                         drive->io_32bit = 0;
1051                 }
1052                 return;
1053         }
1054
1055         if (port_ops && port_ops->pre_reset)
1056                 port_ops->pre_reset(drive);
1057
1058         if (drive->current_speed != 0xff)
1059                 drive->desired_speed = drive->current_speed;
1060         drive->current_speed = 0xff;
1061 }
1062
1063 /*
1064  * do_reset1() attempts to recover a confused drive by resetting it.
1065  * Unfortunately, resetting a disk drive actually resets all devices on
1066  * the same interface, so it can really be thought of as resetting the
1067  * interface rather than resetting the drive.
1068  *
1069  * ATAPI devices have their own reset mechanism which allows them to be
1070  * individually reset without clobbering other devices on the same interface.
1071  *
1072  * Unfortunately, the IDE interface does not generate an interrupt to let
1073  * us know when the reset operation has finished, so we must poll for this.
1074  * Equally poor, though, is the fact that this may a very long time to complete,
1075  * (up to 30 seconds worstcase).  So, instead of busy-waiting here for it,
1076  * we set a timer to poll at 50ms intervals.
1077  */
1078 static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1079 {
1080         unsigned int unit;
1081         unsigned long flags;
1082         ide_hwif_t *hwif;
1083         ide_hwgroup_t *hwgroup;
1084         struct ide_io_ports *io_ports;
1085         const struct ide_port_ops *port_ops;
1086         u8 ctl;
1087
1088         spin_lock_irqsave(&ide_lock, flags);
1089         hwif = HWIF(drive);
1090         hwgroup = HWGROUP(drive);
1091
1092         io_ports = &hwif->io_ports;
1093
1094         /* We must not reset with running handlers */
1095         BUG_ON(hwgroup->handler != NULL);
1096
1097         /* For an ATAPI device, first try an ATAPI SRST. */
1098         if (drive->media != ide_disk && !do_not_try_atapi) {
1099                 hwgroup->resetting = 1;
1100                 pre_reset(drive);
1101                 SELECT_DRIVE(drive);
1102                 udelay (20);
1103                 hwif->OUTBSYNC(drive, WIN_SRST, io_ports->command_addr);
1104                 ndelay(400);
1105                 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1106                 hwgroup->polling = 1;
1107                 __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1108                 spin_unlock_irqrestore(&ide_lock, flags);
1109                 return ide_started;
1110         }
1111
1112         /*
1113          * First, reset any device state data we were maintaining
1114          * for any of the drives on this interface.
1115          */
1116         for (unit = 0; unit < MAX_DRIVES; ++unit)
1117                 pre_reset(&hwif->drives[unit]);
1118
1119         if (io_ports->ctl_addr == 0) {
1120                 spin_unlock_irqrestore(&ide_lock, flags);
1121                 return ide_stopped;
1122         }
1123
1124         hwgroup->resetting = 1;
1125         /*
1126          * Note that we also set nIEN while resetting the device,
1127          * to mask unwanted interrupts from the interface during the reset.
1128          * However, due to the design of PC hardware, this will cause an
1129          * immediate interrupt due to the edge transition it produces.
1130          * This single interrupt gives us a "fast poll" for drives that
1131          * recover from reset very quickly, saving us the first 50ms wait time.
1132          */
1133         /* set SRST and nIEN */
1134         hwif->OUTBSYNC(drive, drive->ctl|6, io_ports->ctl_addr);
1135         /* more than enough time */
1136         udelay(10);
1137         if (drive->quirk_list == 2)
1138                 ctl = drive->ctl;       /* clear SRST and nIEN */
1139         else
1140                 ctl = drive->ctl | 2;   /* clear SRST, leave nIEN */
1141         hwif->OUTBSYNC(drive, ctl, io_ports->ctl_addr);
1142         /* more than enough time */
1143         udelay(10);
1144         hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1145         hwgroup->polling = 1;
1146         __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1147
1148         /*
1149          * Some weird controller like resetting themselves to a strange
1150          * state when the disks are reset this way. At least, the Winbond
1151          * 553 documentation says that
1152          */
1153         port_ops = hwif->port_ops;
1154         if (port_ops && port_ops->resetproc)
1155                 port_ops->resetproc(drive);
1156
1157         spin_unlock_irqrestore(&ide_lock, flags);
1158         return ide_started;
1159 }
1160
1161 /*
1162  * ide_do_reset() is the entry point to the drive/interface reset code.
1163  */
1164
1165 ide_startstop_t ide_do_reset (ide_drive_t *drive)
1166 {
1167         return do_reset1(drive, 0);
1168 }
1169
1170 EXPORT_SYMBOL(ide_do_reset);
1171
1172 /*
1173  * ide_wait_not_busy() waits for the currently selected device on the hwif
1174  * to report a non-busy status, see comments in ide_probe_port().
1175  */
1176 int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1177 {
1178         u8 stat = 0;
1179
1180         while(timeout--) {
1181                 /*
1182                  * Turn this into a schedule() sleep once I'm sure
1183                  * about locking issues (2.5 work ?).
1184                  */
1185                 mdelay(1);
1186                 stat = hwif->INB(hwif->io_ports.status_addr);
1187                 if ((stat & BUSY_STAT) == 0)
1188                         return 0;
1189                 /*
1190                  * Assume a value of 0xff means nothing is connected to
1191                  * the interface and it doesn't implement the pull-down
1192                  * resistor on D7.
1193                  */
1194                 if (stat == 0xff)
1195                         return -ENODEV;
1196                 touch_softlockup_watchdog();
1197                 touch_nmi_watchdog();
1198         }
1199         return -EBUSY;
1200 }
1201
1202 EXPORT_SYMBOL_GPL(ide_wait_not_busy);
1203