Merge git://git.kernel.org/pub/scm/linux/kernel/git/sfrench/cifs-2.6
[pandora-kernel.git] / drivers / ide / ide-io.c
1 /*
2  *      IDE I/O functions
3  *
4  *      Basic PIO and command management functionality.
5  *
6  * This code was split off from ide.c. See ide.c for history and original
7  * copyrights.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the
11  * Free Software Foundation; either version 2, or (at your option) any
12  * later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * For the avoidance of doubt the "preferred form" of this code is one which
20  * is in an open non patent encumbered format. Where cryptographic key signing
21  * forms part of the process of creating an executable the information
22  * including keys needed to generate an equivalently functional executable
23  * are deemed to be part of the source code.
24  */
25  
26  
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
51
52 #include <asm/byteorder.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
55 #include <asm/io.h>
56
57 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58                              int uptodate, unsigned int nr_bytes, int dequeue)
59 {
60         int ret = 1;
61
62         /*
63          * if failfast is set on a request, override number of sectors and
64          * complete the whole request right now
65          */
66         if (blk_noretry_request(rq) && end_io_error(uptodate))
67                 nr_bytes = rq->hard_nr_sectors << 9;
68
69         if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
70                 rq->errors = -EIO;
71
72         /*
73          * decide whether to reenable DMA -- 3 is a random magic for now,
74          * if we DMA timeout more than 3 times, just stay in PIO
75          */
76         if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
77                 drive->state = 0;
78                 ide_dma_on(drive);
79         }
80
81         if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
82                 add_disk_randomness(rq->rq_disk);
83                 if (dequeue) {
84                         if (!list_empty(&rq->queuelist))
85                                 blkdev_dequeue_request(rq);
86                         HWGROUP(drive)->rq = NULL;
87                 }
88                 end_that_request_last(rq, uptodate);
89                 ret = 0;
90         }
91
92         return ret;
93 }
94
95 /**
96  *      ide_end_request         -       complete an IDE I/O
97  *      @drive: IDE device for the I/O
98  *      @uptodate:
99  *      @nr_sectors: number of sectors completed
100  *
101  *      This is our end_request wrapper function. We complete the I/O
102  *      update random number input and dequeue the request, which if
103  *      it was tagged may be out of order.
104  */
105
106 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
107 {
108         unsigned int nr_bytes = nr_sectors << 9;
109         struct request *rq;
110         unsigned long flags;
111         int ret = 1;
112
113         /*
114          * room for locking improvements here, the calls below don't
115          * need the queue lock held at all
116          */
117         spin_lock_irqsave(&ide_lock, flags);
118         rq = HWGROUP(drive)->rq;
119
120         if (!nr_bytes) {
121                 if (blk_pc_request(rq))
122                         nr_bytes = rq->data_len;
123                 else
124                         nr_bytes = rq->hard_cur_sectors << 9;
125         }
126
127         ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
128
129         spin_unlock_irqrestore(&ide_lock, flags);
130         return ret;
131 }
132 EXPORT_SYMBOL(ide_end_request);
133
134 /*
135  * Power Management state machine. This one is rather trivial for now,
136  * we should probably add more, like switching back to PIO on suspend
137  * to help some BIOSes, re-do the door locking on resume, etc...
138  */
139
140 enum {
141         ide_pm_flush_cache      = ide_pm_state_start_suspend,
142         idedisk_pm_standby,
143
144         idedisk_pm_restore_pio  = ide_pm_state_start_resume,
145         idedisk_pm_idle,
146         ide_pm_restore_dma,
147 };
148
149 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
150 {
151         struct request_pm_state *pm = rq->data;
152
153         if (drive->media != ide_disk)
154                 return;
155
156         switch (pm->pm_step) {
157         case ide_pm_flush_cache:        /* Suspend step 1 (flush cache) complete */
158                 if (pm->pm_state == PM_EVENT_FREEZE)
159                         pm->pm_step = ide_pm_state_completed;
160                 else
161                         pm->pm_step = idedisk_pm_standby;
162                 break;
163         case idedisk_pm_standby:        /* Suspend step 2 (standby) complete */
164                 pm->pm_step = ide_pm_state_completed;
165                 break;
166         case idedisk_pm_restore_pio:    /* Resume step 1 complete */
167                 pm->pm_step = idedisk_pm_idle;
168                 break;
169         case idedisk_pm_idle:           /* Resume step 2 (idle) complete */
170                 pm->pm_step = ide_pm_restore_dma;
171                 break;
172         }
173 }
174
175 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
176 {
177         struct request_pm_state *pm = rq->data;
178         ide_task_t *args = rq->special;
179
180         memset(args, 0, sizeof(*args));
181
182         switch (pm->pm_step) {
183         case ide_pm_flush_cache:        /* Suspend step 1 (flush cache) */
184                 if (drive->media != ide_disk)
185                         break;
186                 /* Not supported? Switch to next step now. */
187                 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
188                         ide_complete_power_step(drive, rq, 0, 0);
189                         return ide_stopped;
190                 }
191                 if (ide_id_has_flush_cache_ext(drive->id))
192                         args->tf.command = WIN_FLUSH_CACHE_EXT;
193                 else
194                         args->tf.command = WIN_FLUSH_CACHE;
195                 goto out_do_tf;
196
197         case idedisk_pm_standby:        /* Suspend step 2 (standby) */
198                 args->tf.command = WIN_STANDBYNOW1;
199                 goto out_do_tf;
200
201         case idedisk_pm_restore_pio:    /* Resume step 1 (restore PIO) */
202                 ide_set_max_pio(drive);
203                 /*
204                  * skip idedisk_pm_idle for ATAPI devices
205                  */
206                 if (drive->media != ide_disk)
207                         pm->pm_step = ide_pm_restore_dma;
208                 else
209                         ide_complete_power_step(drive, rq, 0, 0);
210                 return ide_stopped;
211
212         case idedisk_pm_idle:           /* Resume step 2 (idle) */
213                 args->tf.command = WIN_IDLEIMMEDIATE;
214                 goto out_do_tf;
215
216         case ide_pm_restore_dma:        /* Resume step 3 (restore DMA) */
217                 /*
218                  * Right now, all we do is call ide_set_dma(drive),
219                  * we could be smarter and check for current xfer_speed
220                  * in struct drive etc...
221                  */
222                 if (drive->hwif->dma_host_set == NULL)
223                         break;
224                 /*
225                  * TODO: respect ->using_dma setting
226                  */
227                 ide_set_dma(drive);
228                 break;
229         }
230         pm->pm_step = ide_pm_state_completed;
231         return ide_stopped;
232
233 out_do_tf:
234         args->tf_flags   = IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
235         args->data_phase = TASKFILE_NO_DATA;
236         return do_rw_taskfile(drive, args);
237 }
238
239 /**
240  *      ide_end_dequeued_request        -       complete an IDE I/O
241  *      @drive: IDE device for the I/O
242  *      @uptodate:
243  *      @nr_sectors: number of sectors completed
244  *
245  *      Complete an I/O that is no longer on the request queue. This
246  *      typically occurs when we pull the request and issue a REQUEST_SENSE.
247  *      We must still finish the old request but we must not tamper with the
248  *      queue in the meantime.
249  *
250  *      NOTE: This path does not handle barrier, but barrier is not supported
251  *      on ide-cd anyway.
252  */
253
254 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
255                              int uptodate, int nr_sectors)
256 {
257         unsigned long flags;
258         int ret;
259
260         spin_lock_irqsave(&ide_lock, flags);
261         BUG_ON(!blk_rq_started(rq));
262         ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
263         spin_unlock_irqrestore(&ide_lock, flags);
264
265         return ret;
266 }
267 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
268
269
270 /**
271  *      ide_complete_pm_request - end the current Power Management request
272  *      @drive: target drive
273  *      @rq: request
274  *
275  *      This function cleans up the current PM request and stops the queue
276  *      if necessary.
277  */
278 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
279 {
280         unsigned long flags;
281
282 #ifdef DEBUG_PM
283         printk("%s: completing PM request, %s\n", drive->name,
284                blk_pm_suspend_request(rq) ? "suspend" : "resume");
285 #endif
286         spin_lock_irqsave(&ide_lock, flags);
287         if (blk_pm_suspend_request(rq)) {
288                 blk_stop_queue(drive->queue);
289         } else {
290                 drive->blocked = 0;
291                 blk_start_queue(drive->queue);
292         }
293         blkdev_dequeue_request(rq);
294         HWGROUP(drive)->rq = NULL;
295         end_that_request_last(rq, 1);
296         spin_unlock_irqrestore(&ide_lock, flags);
297 }
298
299 void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
300 {
301         ide_hwif_t *hwif = drive->hwif;
302         struct ide_taskfile *tf = &task->tf;
303
304         if (task->tf_flags & IDE_TFLAG_IN_DATA) {
305                 u16 data = hwif->INW(IDE_DATA_REG);
306
307                 tf->data = data & 0xff;
308                 tf->hob_data = (data >> 8) & 0xff;
309         }
310
311         /* be sure we're looking at the low order bits */
312         hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
313
314         if (task->tf_flags & IDE_TFLAG_IN_NSECT)
315                 tf->nsect  = hwif->INB(IDE_NSECTOR_REG);
316         if (task->tf_flags & IDE_TFLAG_IN_LBAL)
317                 tf->lbal   = hwif->INB(IDE_SECTOR_REG);
318         if (task->tf_flags & IDE_TFLAG_IN_LBAM)
319                 tf->lbam   = hwif->INB(IDE_LCYL_REG);
320         if (task->tf_flags & IDE_TFLAG_IN_LBAH)
321                 tf->lbah   = hwif->INB(IDE_HCYL_REG);
322         if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
323                 tf->device = hwif->INB(IDE_SELECT_REG);
324
325         if (task->tf_flags & IDE_TFLAG_LBA48) {
326                 hwif->OUTB(drive->ctl | 0x80, IDE_CONTROL_REG);
327
328                 if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
329                         tf->hob_feature = hwif->INB(IDE_FEATURE_REG);
330                 if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
331                         tf->hob_nsect   = hwif->INB(IDE_NSECTOR_REG);
332                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
333                         tf->hob_lbal    = hwif->INB(IDE_SECTOR_REG);
334                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
335                         tf->hob_lbam    = hwif->INB(IDE_LCYL_REG);
336                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
337                         tf->hob_lbah    = hwif->INB(IDE_HCYL_REG);
338         }
339 }
340
341 /**
342  *      ide_end_drive_cmd       -       end an explicit drive command
343  *      @drive: command 
344  *      @stat: status bits
345  *      @err: error bits
346  *
347  *      Clean up after success/failure of an explicit drive command.
348  *      These get thrown onto the queue so they are synchronized with
349  *      real I/O operations on the drive.
350  *
351  *      In LBA48 mode we have to read the register set twice to get
352  *      all the extra information out.
353  */
354  
355 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
356 {
357         unsigned long flags;
358         struct request *rq;
359
360         spin_lock_irqsave(&ide_lock, flags);
361         rq = HWGROUP(drive)->rq;
362         spin_unlock_irqrestore(&ide_lock, flags);
363
364         if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
365                 ide_task_t *args = (ide_task_t *) rq->special;
366                 if (rq->errors == 0)
367                         rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
368                         
369                 if (args) {
370                         struct ide_taskfile *tf = &args->tf;
371
372                         tf->error = err;
373                         tf->status = stat;
374
375                         ide_tf_read(drive, args);
376                 }
377         } else if (blk_pm_request(rq)) {
378                 struct request_pm_state *pm = rq->data;
379 #ifdef DEBUG_PM
380                 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
381                         drive->name, rq->pm->pm_step, stat, err);
382 #endif
383                 ide_complete_power_step(drive, rq, stat, err);
384                 if (pm->pm_step == ide_pm_state_completed)
385                         ide_complete_pm_request(drive, rq);
386                 return;
387         }
388
389         spin_lock_irqsave(&ide_lock, flags);
390         blkdev_dequeue_request(rq);
391         HWGROUP(drive)->rq = NULL;
392         rq->errors = err;
393         end_that_request_last(rq, !rq->errors);
394         spin_unlock_irqrestore(&ide_lock, flags);
395 }
396
397 EXPORT_SYMBOL(ide_end_drive_cmd);
398
399 /**
400  *      try_to_flush_leftover_data      -       flush junk
401  *      @drive: drive to flush
402  *
403  *      try_to_flush_leftover_data() is invoked in response to a drive
404  *      unexpectedly having its DRQ_STAT bit set.  As an alternative to
405  *      resetting the drive, this routine tries to clear the condition
406  *      by read a sector's worth of data from the drive.  Of course,
407  *      this may not help if the drive is *waiting* for data from *us*.
408  */
409 static void try_to_flush_leftover_data (ide_drive_t *drive)
410 {
411         int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
412
413         if (drive->media != ide_disk)
414                 return;
415         while (i > 0) {
416                 u32 buffer[16];
417                 u32 wcount = (i > 16) ? 16 : i;
418
419                 i -= wcount;
420                 HWIF(drive)->ata_input_data(drive, buffer, wcount);
421         }
422 }
423
424 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
425 {
426         if (rq->rq_disk) {
427                 ide_driver_t *drv;
428
429                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
430                 drv->end_request(drive, 0, 0);
431         } else
432                 ide_end_request(drive, 0, 0);
433 }
434
435 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
436 {
437         ide_hwif_t *hwif = drive->hwif;
438
439         if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
440                 /* other bits are useless when BUSY */
441                 rq->errors |= ERROR_RESET;
442         } else if (stat & ERR_STAT) {
443                 /* err has different meaning on cdrom and tape */
444                 if (err == ABRT_ERR) {
445                         if (drive->select.b.lba &&
446                             /* some newer drives don't support WIN_SPECIFY */
447                             hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
448                                 return ide_stopped;
449                 } else if ((err & BAD_CRC) == BAD_CRC) {
450                         /* UDMA crc error, just retry the operation */
451                         drive->crc_count++;
452                 } else if (err & (BBD_ERR | ECC_ERR)) {
453                         /* retries won't help these */
454                         rq->errors = ERROR_MAX;
455                 } else if (err & TRK0_ERR) {
456                         /* help it find track zero */
457                         rq->errors |= ERROR_RECAL;
458                 }
459         }
460
461         if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ &&
462             (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0)
463                 try_to_flush_leftover_data(drive);
464
465         if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
466                 ide_kill_rq(drive, rq);
467                 return ide_stopped;
468         }
469
470         if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
471                 rq->errors |= ERROR_RESET;
472
473         if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
474                 ++rq->errors;
475                 return ide_do_reset(drive);
476         }
477
478         if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
479                 drive->special.b.recalibrate = 1;
480
481         ++rq->errors;
482
483         return ide_stopped;
484 }
485
486 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
487 {
488         ide_hwif_t *hwif = drive->hwif;
489
490         if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
491                 /* other bits are useless when BUSY */
492                 rq->errors |= ERROR_RESET;
493         } else {
494                 /* add decoding error stuff */
495         }
496
497         if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
498                 /* force an abort */
499                 hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
500
501         if (rq->errors >= ERROR_MAX) {
502                 ide_kill_rq(drive, rq);
503         } else {
504                 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
505                         ++rq->errors;
506                         return ide_do_reset(drive);
507                 }
508                 ++rq->errors;
509         }
510
511         return ide_stopped;
512 }
513
514 ide_startstop_t
515 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
516 {
517         if (drive->media == ide_disk)
518                 return ide_ata_error(drive, rq, stat, err);
519         return ide_atapi_error(drive, rq, stat, err);
520 }
521
522 EXPORT_SYMBOL_GPL(__ide_error);
523
524 /**
525  *      ide_error       -       handle an error on the IDE
526  *      @drive: drive the error occurred on
527  *      @msg: message to report
528  *      @stat: status bits
529  *
530  *      ide_error() takes action based on the error returned by the drive.
531  *      For normal I/O that may well include retries. We deal with
532  *      both new-style (taskfile) and old style command handling here.
533  *      In the case of taskfile command handling there is work left to
534  *      do
535  */
536  
537 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
538 {
539         struct request *rq;
540         u8 err;
541
542         err = ide_dump_status(drive, msg, stat);
543
544         if ((rq = HWGROUP(drive)->rq) == NULL)
545                 return ide_stopped;
546
547         /* retry only "normal" I/O: */
548         if (!blk_fs_request(rq)) {
549                 rq->errors = 1;
550                 ide_end_drive_cmd(drive, stat, err);
551                 return ide_stopped;
552         }
553
554         if (rq->rq_disk) {
555                 ide_driver_t *drv;
556
557                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
558                 return drv->error(drive, rq, stat, err);
559         } else
560                 return __ide_error(drive, rq, stat, err);
561 }
562
563 EXPORT_SYMBOL_GPL(ide_error);
564
565 ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
566 {
567         if (drive->media != ide_disk)
568                 rq->errors |= ERROR_RESET;
569
570         ide_kill_rq(drive, rq);
571
572         return ide_stopped;
573 }
574
575 EXPORT_SYMBOL_GPL(__ide_abort);
576
577 /**
578  *      ide_abort       -       abort pending IDE operations
579  *      @drive: drive the error occurred on
580  *      @msg: message to report
581  *
582  *      ide_abort kills and cleans up when we are about to do a 
583  *      host initiated reset on active commands. Longer term we
584  *      want handlers to have sensible abort handling themselves
585  *
586  *      This differs fundamentally from ide_error because in 
587  *      this case the command is doing just fine when we
588  *      blow it away.
589  */
590  
591 ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
592 {
593         struct request *rq;
594
595         if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
596                 return ide_stopped;
597
598         /* retry only "normal" I/O: */
599         if (!blk_fs_request(rq)) {
600                 rq->errors = 1;
601                 ide_end_drive_cmd(drive, BUSY_STAT, 0);
602                 return ide_stopped;
603         }
604
605         if (rq->rq_disk) {
606                 ide_driver_t *drv;
607
608                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
609                 return drv->abort(drive, rq);
610         } else
611                 return __ide_abort(drive, rq);
612 }
613
614 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
615 {
616         tf->nsect   = drive->sect;
617         tf->lbal    = drive->sect;
618         tf->lbam    = drive->cyl;
619         tf->lbah    = drive->cyl >> 8;
620         tf->device  = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
621         tf->command = WIN_SPECIFY;
622 }
623
624 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
625 {
626         tf->nsect   = drive->sect;
627         tf->command = WIN_RESTORE;
628 }
629
630 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
631 {
632         tf->nsect   = drive->mult_req;
633         tf->command = WIN_SETMULT;
634 }
635
636 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
637 {
638         special_t *s = &drive->special;
639         ide_task_t args;
640
641         memset(&args, 0, sizeof(ide_task_t));
642         args.data_phase = TASKFILE_NO_DATA;
643
644         if (s->b.set_geometry) {
645                 s->b.set_geometry = 0;
646                 ide_tf_set_specify_cmd(drive, &args.tf);
647         } else if (s->b.recalibrate) {
648                 s->b.recalibrate = 0;
649                 ide_tf_set_restore_cmd(drive, &args.tf);
650         } else if (s->b.set_multmode) {
651                 s->b.set_multmode = 0;
652                 if (drive->mult_req > drive->id->max_multsect)
653                         drive->mult_req = drive->id->max_multsect;
654                 ide_tf_set_setmult_cmd(drive, &args.tf);
655         } else if (s->all) {
656                 int special = s->all;
657                 s->all = 0;
658                 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
659                 return ide_stopped;
660         }
661
662         args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
663                         IDE_TFLAG_CUSTOM_HANDLER;
664
665         do_rw_taskfile(drive, &args);
666
667         return ide_started;
668 }
669
670 /*
671  * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
672  */
673 static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
674 {
675         switch (req_pio) {
676         case 202:
677         case 201:
678         case 200:
679         case 102:
680         case 101:
681         case 100:
682                 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
683         case 9:
684         case 8:
685                 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
686         case 7:
687         case 6:
688                 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
689         default:
690                 return 0;
691         }
692 }
693
694 /**
695  *      do_special              -       issue some special commands
696  *      @drive: drive the command is for
697  *
698  *      do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
699  *      commands to a drive.  It used to do much more, but has been scaled
700  *      back.
701  */
702
703 static ide_startstop_t do_special (ide_drive_t *drive)
704 {
705         special_t *s = &drive->special;
706
707 #ifdef DEBUG
708         printk("%s: do_special: 0x%02x\n", drive->name, s->all);
709 #endif
710         if (s->b.set_tune) {
711                 ide_hwif_t *hwif = drive->hwif;
712                 u8 req_pio = drive->tune_req;
713
714                 s->b.set_tune = 0;
715
716                 if (set_pio_mode_abuse(drive->hwif, req_pio)) {
717
718                         if (hwif->set_pio_mode == NULL)
719                                 return ide_stopped;
720
721                         /*
722                          * take ide_lock for drive->[no_]unmask/[no_]io_32bit
723                          */
724                         if (req_pio == 8 || req_pio == 9) {
725                                 unsigned long flags;
726
727                                 spin_lock_irqsave(&ide_lock, flags);
728                                 hwif->set_pio_mode(drive, req_pio);
729                                 spin_unlock_irqrestore(&ide_lock, flags);
730                         } else
731                                 hwif->set_pio_mode(drive, req_pio);
732                 } else {
733                         int keep_dma = drive->using_dma;
734
735                         ide_set_pio(drive, req_pio);
736
737                         if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
738                                 if (keep_dma)
739                                         ide_dma_on(drive);
740                         }
741                 }
742
743                 return ide_stopped;
744         } else {
745                 if (drive->media == ide_disk)
746                         return ide_disk_special(drive);
747
748                 s->all = 0;
749                 drive->mult_req = 0;
750                 return ide_stopped;
751         }
752 }
753
754 void ide_map_sg(ide_drive_t *drive, struct request *rq)
755 {
756         ide_hwif_t *hwif = drive->hwif;
757         struct scatterlist *sg = hwif->sg_table;
758
759         if (hwif->sg_mapped)    /* needed by ide-scsi */
760                 return;
761
762         if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
763                 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
764         } else {
765                 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
766                 hwif->sg_nents = 1;
767         }
768 }
769
770 EXPORT_SYMBOL_GPL(ide_map_sg);
771
772 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
773 {
774         ide_hwif_t *hwif = drive->hwif;
775
776         hwif->nsect = hwif->nleft = rq->nr_sectors;
777         hwif->cursg_ofs = 0;
778         hwif->cursg = NULL;
779 }
780
781 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
782
783 /**
784  *      execute_drive_command   -       issue special drive command
785  *      @drive: the drive to issue the command on
786  *      @rq: the request structure holding the command
787  *
788  *      execute_drive_cmd() issues a special drive command,  usually 
789  *      initiated by ioctl() from the external hdparm program. The
790  *      command can be a drive command, drive task or taskfile 
791  *      operation. Weirdly you can call it with NULL to wait for
792  *      all commands to finish. Don't do this as that is due to change
793  */
794
795 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
796                 struct request *rq)
797 {
798         ide_hwif_t *hwif = HWIF(drive);
799         ide_task_t *task = rq->special;
800
801         if (task) {
802                 hwif->data_phase = task->data_phase;
803
804                 switch (hwif->data_phase) {
805                 case TASKFILE_MULTI_OUT:
806                 case TASKFILE_OUT:
807                 case TASKFILE_MULTI_IN:
808                 case TASKFILE_IN:
809                         ide_init_sg_cmd(drive, rq);
810                         ide_map_sg(drive, rq);
811                 default:
812                         break;
813                 }
814
815                 return do_rw_taskfile(drive, task);
816         }
817
818         /*
819          * NULL is actually a valid way of waiting for
820          * all current requests to be flushed from the queue.
821          */
822 #ifdef DEBUG
823         printk("%s: DRIVE_CMD (null)\n", drive->name);
824 #endif
825         ide_end_drive_cmd(drive,
826                         hwif->INB(IDE_STATUS_REG),
827                         hwif->INB(IDE_ERROR_REG));
828         return ide_stopped;
829 }
830
831 static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
832 {
833         struct request_pm_state *pm = rq->data;
834
835         if (blk_pm_suspend_request(rq) &&
836             pm->pm_step == ide_pm_state_start_suspend)
837                 /* Mark drive blocked when starting the suspend sequence. */
838                 drive->blocked = 1;
839         else if (blk_pm_resume_request(rq) &&
840                  pm->pm_step == ide_pm_state_start_resume) {
841                 /* 
842                  * The first thing we do on wakeup is to wait for BSY bit to
843                  * go away (with a looong timeout) as a drive on this hwif may
844                  * just be POSTing itself.
845                  * We do that before even selecting as the "other" device on
846                  * the bus may be broken enough to walk on our toes at this
847                  * point.
848                  */
849                 int rc;
850 #ifdef DEBUG_PM
851                 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
852 #endif
853                 rc = ide_wait_not_busy(HWIF(drive), 35000);
854                 if (rc)
855                         printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
856                 SELECT_DRIVE(drive);
857                 ide_set_irq(drive, 1);
858                 rc = ide_wait_not_busy(HWIF(drive), 100000);
859                 if (rc)
860                         printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
861         }
862 }
863
864 /**
865  *      start_request   -       start of I/O and command issuing for IDE
866  *
867  *      start_request() initiates handling of a new I/O request. It
868  *      accepts commands and I/O (read/write) requests. It also does
869  *      the final remapping for weird stuff like EZDrive. Once 
870  *      device mapper can work sector level the EZDrive stuff can go away
871  *
872  *      FIXME: this function needs a rename
873  */
874  
875 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
876 {
877         ide_startstop_t startstop;
878         sector_t block;
879
880         BUG_ON(!blk_rq_started(rq));
881
882 #ifdef DEBUG
883         printk("%s: start_request: current=0x%08lx\n",
884                 HWIF(drive)->name, (unsigned long) rq);
885 #endif
886
887         /* bail early if we've exceeded max_failures */
888         if (drive->max_failures && (drive->failures > drive->max_failures)) {
889                 rq->cmd_flags |= REQ_FAILED;
890                 goto kill_rq;
891         }
892
893         block    = rq->sector;
894         if (blk_fs_request(rq) &&
895             (drive->media == ide_disk || drive->media == ide_floppy)) {
896                 block += drive->sect0;
897         }
898         /* Yecch - this will shift the entire interval,
899            possibly killing some innocent following sector */
900         if (block == 0 && drive->remap_0_to_1 == 1)
901                 block = 1;  /* redirect MBR access to EZ-Drive partn table */
902
903         if (blk_pm_request(rq))
904                 ide_check_pm_state(drive, rq);
905
906         SELECT_DRIVE(drive);
907         if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
908                 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
909                 return startstop;
910         }
911         if (!drive->special.all) {
912                 ide_driver_t *drv;
913
914                 /*
915                  * We reset the drive so we need to issue a SETFEATURES.
916                  * Do it _after_ do_special() restored device parameters.
917                  */
918                 if (drive->current_speed == 0xff)
919                         ide_config_drive_speed(drive, drive->desired_speed);
920
921                 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
922                         return execute_drive_cmd(drive, rq);
923                 else if (blk_pm_request(rq)) {
924                         struct request_pm_state *pm = rq->data;
925 #ifdef DEBUG_PM
926                         printk("%s: start_power_step(step: %d)\n",
927                                 drive->name, rq->pm->pm_step);
928 #endif
929                         startstop = ide_start_power_step(drive, rq);
930                         if (startstop == ide_stopped &&
931                             pm->pm_step == ide_pm_state_completed)
932                                 ide_complete_pm_request(drive, rq);
933                         return startstop;
934                 }
935
936                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
937                 return drv->do_request(drive, rq, block);
938         }
939         return do_special(drive);
940 kill_rq:
941         ide_kill_rq(drive, rq);
942         return ide_stopped;
943 }
944
945 /**
946  *      ide_stall_queue         -       pause an IDE device
947  *      @drive: drive to stall
948  *      @timeout: time to stall for (jiffies)
949  *
950  *      ide_stall_queue() can be used by a drive to give excess bandwidth back
951  *      to the hwgroup by sleeping for timeout jiffies.
952  */
953  
954 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
955 {
956         if (timeout > WAIT_WORSTCASE)
957                 timeout = WAIT_WORSTCASE;
958         drive->sleep = timeout + jiffies;
959         drive->sleeping = 1;
960 }
961
962 EXPORT_SYMBOL(ide_stall_queue);
963
964 #define WAKEUP(drive)   ((drive)->service_start + 2 * (drive)->service_time)
965
966 /**
967  *      choose_drive            -       select a drive to service
968  *      @hwgroup: hardware group to select on
969  *
970  *      choose_drive() selects the next drive which will be serviced.
971  *      This is necessary because the IDE layer can't issue commands
972  *      to both drives on the same cable, unlike SCSI.
973  */
974  
975 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
976 {
977         ide_drive_t *drive, *best;
978
979 repeat: 
980         best = NULL;
981         drive = hwgroup->drive;
982
983         /*
984          * drive is doing pre-flush, ordered write, post-flush sequence. even
985          * though that is 3 requests, it must be seen as a single transaction.
986          * we must not preempt this drive until that is complete
987          */
988         if (blk_queue_flushing(drive->queue)) {
989                 /*
990                  * small race where queue could get replugged during
991                  * the 3-request flush cycle, just yank the plug since
992                  * we want it to finish asap
993                  */
994                 blk_remove_plug(drive->queue);
995                 return drive;
996         }
997
998         do {
999                 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1000                     && !elv_queue_empty(drive->queue)) {
1001                         if (!best
1002                          || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1003                          || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1004                         {
1005                                 if (!blk_queue_plugged(drive->queue))
1006                                         best = drive;
1007                         }
1008                 }
1009         } while ((drive = drive->next) != hwgroup->drive);
1010         if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1011                 long t = (signed long)(WAKEUP(best) - jiffies);
1012                 if (t >= WAIT_MIN_SLEEP) {
1013                 /*
1014                  * We *may* have some time to spare, but first let's see if
1015                  * someone can potentially benefit from our nice mood today..
1016                  */
1017                         drive = best->next;
1018                         do {
1019                                 if (!drive->sleeping
1020                                  && time_before(jiffies - best->service_time, WAKEUP(drive))
1021                                  && time_before(WAKEUP(drive), jiffies + t))
1022                                 {
1023                                         ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1024                                         goto repeat;
1025                                 }
1026                         } while ((drive = drive->next) != best);
1027                 }
1028         }
1029         return best;
1030 }
1031
1032 /*
1033  * Issue a new request to a drive from hwgroup
1034  * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1035  *
1036  * A hwgroup is a serialized group of IDE interfaces.  Usually there is
1037  * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1038  * may have both interfaces in a single hwgroup to "serialize" access.
1039  * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1040  * together into one hwgroup for serialized access.
1041  *
1042  * Note also that several hwgroups can end up sharing a single IRQ,
1043  * possibly along with many other devices.  This is especially common in
1044  * PCI-based systems with off-board IDE controller cards.
1045  *
1046  * The IDE driver uses the single global ide_lock spinlock to protect
1047  * access to the request queues, and to protect the hwgroup->busy flag.
1048  *
1049  * The first thread into the driver for a particular hwgroup sets the
1050  * hwgroup->busy flag to indicate that this hwgroup is now active,
1051  * and then initiates processing of the top request from the request queue.
1052  *
1053  * Other threads attempting entry notice the busy setting, and will simply
1054  * queue their new requests and exit immediately.  Note that hwgroup->busy
1055  * remains set even when the driver is merely awaiting the next interrupt.
1056  * Thus, the meaning is "this hwgroup is busy processing a request".
1057  *
1058  * When processing of a request completes, the completing thread or IRQ-handler
1059  * will start the next request from the queue.  If no more work remains,
1060  * the driver will clear the hwgroup->busy flag and exit.
1061  *
1062  * The ide_lock (spinlock) is used to protect all access to the
1063  * hwgroup->busy flag, but is otherwise not needed for most processing in
1064  * the driver.  This makes the driver much more friendlier to shared IRQs
1065  * than previous designs, while remaining 100% (?) SMP safe and capable.
1066  */
1067 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1068 {
1069         ide_drive_t     *drive;
1070         ide_hwif_t      *hwif;
1071         struct request  *rq;
1072         ide_startstop_t startstop;
1073         int             loops = 0;
1074
1075         /* for atari only: POSSIBLY BROKEN HERE(?) */
1076         ide_get_lock(ide_intr, hwgroup);
1077
1078         /* caller must own ide_lock */
1079         BUG_ON(!irqs_disabled());
1080
1081         while (!hwgroup->busy) {
1082                 hwgroup->busy = 1;
1083                 drive = choose_drive(hwgroup);
1084                 if (drive == NULL) {
1085                         int sleeping = 0;
1086                         unsigned long sleep = 0; /* shut up, gcc */
1087                         hwgroup->rq = NULL;
1088                         drive = hwgroup->drive;
1089                         do {
1090                                 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1091                                         sleeping = 1;
1092                                         sleep = drive->sleep;
1093                                 }
1094                         } while ((drive = drive->next) != hwgroup->drive);
1095                         if (sleeping) {
1096                 /*
1097                  * Take a short snooze, and then wake up this hwgroup again.
1098                  * This gives other hwgroups on the same a chance to
1099                  * play fairly with us, just in case there are big differences
1100                  * in relative throughputs.. don't want to hog the cpu too much.
1101                  */
1102                                 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1103                                         sleep = jiffies + WAIT_MIN_SLEEP;
1104 #if 1
1105                                 if (timer_pending(&hwgroup->timer))
1106                                         printk(KERN_CRIT "ide_set_handler: timer already active\n");
1107 #endif
1108                                 /* so that ide_timer_expiry knows what to do */
1109                                 hwgroup->sleeping = 1;
1110                                 hwgroup->req_gen_timer = hwgroup->req_gen;
1111                                 mod_timer(&hwgroup->timer, sleep);
1112                                 /* we purposely leave hwgroup->busy==1
1113                                  * while sleeping */
1114                         } else {
1115                                 /* Ugly, but how can we sleep for the lock
1116                                  * otherwise? perhaps from tq_disk?
1117                                  */
1118
1119                                 /* for atari only */
1120                                 ide_release_lock();
1121                                 hwgroup->busy = 0;
1122                         }
1123
1124                         /* no more work for this hwgroup (for now) */
1125                         return;
1126                 }
1127         again:
1128                 hwif = HWIF(drive);
1129                 if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) {
1130                         /*
1131                          * set nIEN for previous hwif, drives in the
1132                          * quirk_list may not like intr setups/cleanups
1133                          */
1134                         if (drive->quirk_list != 1)
1135                                 ide_set_irq(drive, 0);
1136                 }
1137                 hwgroup->hwif = hwif;
1138                 hwgroup->drive = drive;
1139                 drive->sleeping = 0;
1140                 drive->service_start = jiffies;
1141
1142                 if (blk_queue_plugged(drive->queue)) {
1143                         printk(KERN_ERR "ide: huh? queue was plugged!\n");
1144                         break;
1145                 }
1146
1147                 /*
1148                  * we know that the queue isn't empty, but this can happen
1149                  * if the q->prep_rq_fn() decides to kill a request
1150                  */
1151                 rq = elv_next_request(drive->queue);
1152                 if (!rq) {
1153                         hwgroup->busy = 0;
1154                         break;
1155                 }
1156
1157                 /*
1158                  * Sanity: don't accept a request that isn't a PM request
1159                  * if we are currently power managed. This is very important as
1160                  * blk_stop_queue() doesn't prevent the elv_next_request()
1161                  * above to return us whatever is in the queue. Since we call
1162                  * ide_do_request() ourselves, we end up taking requests while
1163                  * the queue is blocked...
1164                  * 
1165                  * We let requests forced at head of queue with ide-preempt
1166                  * though. I hope that doesn't happen too much, hopefully not
1167                  * unless the subdriver triggers such a thing in its own PM
1168                  * state machine.
1169                  *
1170                  * We count how many times we loop here to make sure we service
1171                  * all drives in the hwgroup without looping for ever
1172                  */
1173                 if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1174                         drive = drive->next ? drive->next : hwgroup->drive;
1175                         if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1176                                 goto again;
1177                         /* We clear busy, there should be no pending ATA command at this point. */
1178                         hwgroup->busy = 0;
1179                         break;
1180                 }
1181
1182                 hwgroup->rq = rq;
1183
1184                 /*
1185                  * Some systems have trouble with IDE IRQs arriving while
1186                  * the driver is still setting things up.  So, here we disable
1187                  * the IRQ used by this interface while the request is being started.
1188                  * This may look bad at first, but pretty much the same thing
1189                  * happens anyway when any interrupt comes in, IDE or otherwise
1190                  *  -- the kernel masks the IRQ while it is being handled.
1191                  */
1192                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1193                         disable_irq_nosync(hwif->irq);
1194                 spin_unlock(&ide_lock);
1195                 local_irq_enable_in_hardirq();
1196                         /* allow other IRQs while we start this request */
1197                 startstop = start_request(drive, rq);
1198                 spin_lock_irq(&ide_lock);
1199                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1200                         enable_irq(hwif->irq);
1201                 if (startstop == ide_stopped)
1202                         hwgroup->busy = 0;
1203         }
1204 }
1205
1206 /*
1207  * Passes the stuff to ide_do_request
1208  */
1209 void do_ide_request(struct request_queue *q)
1210 {
1211         ide_drive_t *drive = q->queuedata;
1212
1213         ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1214 }
1215
1216 /*
1217  * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1218  * retry the current request in pio mode instead of risking tossing it
1219  * all away
1220  */
1221 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1222 {
1223         ide_hwif_t *hwif = HWIF(drive);
1224         struct request *rq;
1225         ide_startstop_t ret = ide_stopped;
1226
1227         /*
1228          * end current dma transaction
1229          */
1230
1231         if (error < 0) {
1232                 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1233                 (void)HWIF(drive)->ide_dma_end(drive);
1234                 ret = ide_error(drive, "dma timeout error",
1235                                                 hwif->INB(IDE_STATUS_REG));
1236         } else {
1237                 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1238                 hwif->dma_timeout(drive);
1239         }
1240
1241         /*
1242          * disable dma for now, but remember that we did so because of
1243          * a timeout -- we'll reenable after we finish this next request
1244          * (or rather the first chunk of it) in pio.
1245          */
1246         drive->retry_pio++;
1247         drive->state = DMA_PIO_RETRY;
1248         ide_dma_off_quietly(drive);
1249
1250         /*
1251          * un-busy drive etc (hwgroup->busy is cleared on return) and
1252          * make sure request is sane
1253          */
1254         rq = HWGROUP(drive)->rq;
1255
1256         if (!rq)
1257                 goto out;
1258
1259         HWGROUP(drive)->rq = NULL;
1260
1261         rq->errors = 0;
1262
1263         if (!rq->bio)
1264                 goto out;
1265
1266         rq->sector = rq->bio->bi_sector;
1267         rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1268         rq->hard_cur_sectors = rq->current_nr_sectors;
1269         rq->buffer = bio_data(rq->bio);
1270 out:
1271         return ret;
1272 }
1273
1274 /**
1275  *      ide_timer_expiry        -       handle lack of an IDE interrupt
1276  *      @data: timer callback magic (hwgroup)
1277  *
1278  *      An IDE command has timed out before the expected drive return
1279  *      occurred. At this point we attempt to clean up the current
1280  *      mess. If the current handler includes an expiry handler then
1281  *      we invoke the expiry handler, and providing it is happy the
1282  *      work is done. If that fails we apply generic recovery rules
1283  *      invoking the handler and checking the drive DMA status. We
1284  *      have an excessively incestuous relationship with the DMA
1285  *      logic that wants cleaning up.
1286  */
1287  
1288 void ide_timer_expiry (unsigned long data)
1289 {
1290         ide_hwgroup_t   *hwgroup = (ide_hwgroup_t *) data;
1291         ide_handler_t   *handler;
1292         ide_expiry_t    *expiry;
1293         unsigned long   flags;
1294         unsigned long   wait = -1;
1295
1296         spin_lock_irqsave(&ide_lock, flags);
1297
1298         if (((handler = hwgroup->handler) == NULL) ||
1299             (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1300                 /*
1301                  * Either a marginal timeout occurred
1302                  * (got the interrupt just as timer expired),
1303                  * or we were "sleeping" to give other devices a chance.
1304                  * Either way, we don't really want to complain about anything.
1305                  */
1306                 if (hwgroup->sleeping) {
1307                         hwgroup->sleeping = 0;
1308                         hwgroup->busy = 0;
1309                 }
1310         } else {
1311                 ide_drive_t *drive = hwgroup->drive;
1312                 if (!drive) {
1313                         printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1314                         hwgroup->handler = NULL;
1315                 } else {
1316                         ide_hwif_t *hwif;
1317                         ide_startstop_t startstop = ide_stopped;
1318                         if (!hwgroup->busy) {
1319                                 hwgroup->busy = 1;      /* paranoia */
1320                                 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1321                         }
1322                         if ((expiry = hwgroup->expiry) != NULL) {
1323                                 /* continue */
1324                                 if ((wait = expiry(drive)) > 0) {
1325                                         /* reset timer */
1326                                         hwgroup->timer.expires  = jiffies + wait;
1327                                         hwgroup->req_gen_timer = hwgroup->req_gen;
1328                                         add_timer(&hwgroup->timer);
1329                                         spin_unlock_irqrestore(&ide_lock, flags);
1330                                         return;
1331                                 }
1332                         }
1333                         hwgroup->handler = NULL;
1334                         /*
1335                          * We need to simulate a real interrupt when invoking
1336                          * the handler() function, which means we need to
1337                          * globally mask the specific IRQ:
1338                          */
1339                         spin_unlock(&ide_lock);
1340                         hwif  = HWIF(drive);
1341                         /* disable_irq_nosync ?? */
1342                         disable_irq(hwif->irq);
1343                         /* local CPU only,
1344                          * as if we were handling an interrupt */
1345                         local_irq_disable();
1346                         if (hwgroup->polling) {
1347                                 startstop = handler(drive);
1348                         } else if (drive_is_ready(drive)) {
1349                                 if (drive->waiting_for_dma)
1350                                         hwgroup->hwif->dma_lost_irq(drive);
1351                                 (void)ide_ack_intr(hwif);
1352                                 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1353                                 startstop = handler(drive);
1354                         } else {
1355                                 if (drive->waiting_for_dma) {
1356                                         startstop = ide_dma_timeout_retry(drive, wait);
1357                                 } else
1358                                         startstop =
1359                                         ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1360                         }
1361                         drive->service_time = jiffies - drive->service_start;
1362                         spin_lock_irq(&ide_lock);
1363                         enable_irq(hwif->irq);
1364                         if (startstop == ide_stopped)
1365                                 hwgroup->busy = 0;
1366                 }
1367         }
1368         ide_do_request(hwgroup, IDE_NO_IRQ);
1369         spin_unlock_irqrestore(&ide_lock, flags);
1370 }
1371
1372 /**
1373  *      unexpected_intr         -       handle an unexpected IDE interrupt
1374  *      @irq: interrupt line
1375  *      @hwgroup: hwgroup being processed
1376  *
1377  *      There's nothing really useful we can do with an unexpected interrupt,
1378  *      other than reading the status register (to clear it), and logging it.
1379  *      There should be no way that an irq can happen before we're ready for it,
1380  *      so we needn't worry much about losing an "important" interrupt here.
1381  *
1382  *      On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1383  *      the drive enters "idle", "standby", or "sleep" mode, so if the status
1384  *      looks "good", we just ignore the interrupt completely.
1385  *
1386  *      This routine assumes __cli() is in effect when called.
1387  *
1388  *      If an unexpected interrupt happens on irq15 while we are handling irq14
1389  *      and if the two interfaces are "serialized" (CMD640), then it looks like
1390  *      we could screw up by interfering with a new request being set up for 
1391  *      irq15.
1392  *
1393  *      In reality, this is a non-issue.  The new command is not sent unless 
1394  *      the drive is ready to accept one, in which case we know the drive is
1395  *      not trying to interrupt us.  And ide_set_handler() is always invoked
1396  *      before completing the issuance of any new drive command, so we will not
1397  *      be accidentally invoked as a result of any valid command completion
1398  *      interrupt.
1399  *
1400  *      Note that we must walk the entire hwgroup here. We know which hwif
1401  *      is doing the current command, but we don't know which hwif burped
1402  *      mysteriously.
1403  */
1404  
1405 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1406 {
1407         u8 stat;
1408         ide_hwif_t *hwif = hwgroup->hwif;
1409
1410         /*
1411          * handle the unexpected interrupt
1412          */
1413         do {
1414                 if (hwif->irq == irq) {
1415                         stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1416                         if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1417                                 /* Try to not flood the console with msgs */
1418                                 static unsigned long last_msgtime, count;
1419                                 ++count;
1420                                 if (time_after(jiffies, last_msgtime + HZ)) {
1421                                         last_msgtime = jiffies;
1422                                         printk(KERN_ERR "%s%s: unexpected interrupt, "
1423                                                 "status=0x%02x, count=%ld\n",
1424                                                 hwif->name,
1425                                                 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1426                                 }
1427                         }
1428                 }
1429         } while ((hwif = hwif->next) != hwgroup->hwif);
1430 }
1431
1432 /**
1433  *      ide_intr        -       default IDE interrupt handler
1434  *      @irq: interrupt number
1435  *      @dev_id: hwif group
1436  *      @regs: unused weirdness from the kernel irq layer
1437  *
1438  *      This is the default IRQ handler for the IDE layer. You should
1439  *      not need to override it. If you do be aware it is subtle in
1440  *      places
1441  *
1442  *      hwgroup->hwif is the interface in the group currently performing
1443  *      a command. hwgroup->drive is the drive and hwgroup->handler is
1444  *      the IRQ handler to call. As we issue a command the handlers
1445  *      step through multiple states, reassigning the handler to the
1446  *      next step in the process. Unlike a smart SCSI controller IDE
1447  *      expects the main processor to sequence the various transfer
1448  *      stages. We also manage a poll timer to catch up with most
1449  *      timeout situations. There are still a few where the handlers
1450  *      don't ever decide to give up.
1451  *
1452  *      The handler eventually returns ide_stopped to indicate the
1453  *      request completed. At this point we issue the next request
1454  *      on the hwgroup and the process begins again.
1455  */
1456  
1457 irqreturn_t ide_intr (int irq, void *dev_id)
1458 {
1459         unsigned long flags;
1460         ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1461         ide_hwif_t *hwif;
1462         ide_drive_t *drive;
1463         ide_handler_t *handler;
1464         ide_startstop_t startstop;
1465
1466         spin_lock_irqsave(&ide_lock, flags);
1467         hwif = hwgroup->hwif;
1468
1469         if (!ide_ack_intr(hwif)) {
1470                 spin_unlock_irqrestore(&ide_lock, flags);
1471                 return IRQ_NONE;
1472         }
1473
1474         if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1475                 /*
1476                  * Not expecting an interrupt from this drive.
1477                  * That means this could be:
1478                  *      (1) an interrupt from another PCI device
1479                  *      sharing the same PCI INT# as us.
1480                  * or   (2) a drive just entered sleep or standby mode,
1481                  *      and is interrupting to let us know.
1482                  * or   (3) a spurious interrupt of unknown origin.
1483                  *
1484                  * For PCI, we cannot tell the difference,
1485                  * so in that case we just ignore it and hope it goes away.
1486                  *
1487                  * FIXME: unexpected_intr should be hwif-> then we can
1488                  * remove all the ifdef PCI crap
1489                  */
1490 #ifdef CONFIG_BLK_DEV_IDEPCI
1491                 if (hwif->pci_dev && !hwif->pci_dev->vendor)
1492 #endif  /* CONFIG_BLK_DEV_IDEPCI */
1493                 {
1494                         /*
1495                          * Probably not a shared PCI interrupt,
1496                          * so we can safely try to do something about it:
1497                          */
1498                         unexpected_intr(irq, hwgroup);
1499 #ifdef CONFIG_BLK_DEV_IDEPCI
1500                 } else {
1501                         /*
1502                          * Whack the status register, just in case
1503                          * we have a leftover pending IRQ.
1504                          */
1505                         (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1506 #endif /* CONFIG_BLK_DEV_IDEPCI */
1507                 }
1508                 spin_unlock_irqrestore(&ide_lock, flags);
1509                 return IRQ_NONE;
1510         }
1511         drive = hwgroup->drive;
1512         if (!drive) {
1513                 /*
1514                  * This should NEVER happen, and there isn't much
1515                  * we could do about it here.
1516                  *
1517                  * [Note - this can occur if the drive is hot unplugged]
1518                  */
1519                 spin_unlock_irqrestore(&ide_lock, flags);
1520                 return IRQ_HANDLED;
1521         }
1522         if (!drive_is_ready(drive)) {
1523                 /*
1524                  * This happens regularly when we share a PCI IRQ with
1525                  * another device.  Unfortunately, it can also happen
1526                  * with some buggy drives that trigger the IRQ before
1527                  * their status register is up to date.  Hopefully we have
1528                  * enough advance overhead that the latter isn't a problem.
1529                  */
1530                 spin_unlock_irqrestore(&ide_lock, flags);
1531                 return IRQ_NONE;
1532         }
1533         if (!hwgroup->busy) {
1534                 hwgroup->busy = 1;      /* paranoia */
1535                 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1536         }
1537         hwgroup->handler = NULL;
1538         hwgroup->req_gen++;
1539         del_timer(&hwgroup->timer);
1540         spin_unlock(&ide_lock);
1541
1542         /* Some controllers might set DMA INTR no matter DMA or PIO;
1543          * bmdma status might need to be cleared even for
1544          * PIO interrupts to prevent spurious/lost irq.
1545          */
1546         if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1547                 /* ide_dma_end() needs bmdma status for error checking.
1548                  * So, skip clearing bmdma status here and leave it
1549                  * to ide_dma_end() if this is dma interrupt.
1550                  */
1551                 hwif->ide_dma_clear_irq(drive);
1552
1553         if (drive->unmask)
1554                 local_irq_enable_in_hardirq();
1555         /* service this interrupt, may set handler for next interrupt */
1556         startstop = handler(drive);
1557         spin_lock_irq(&ide_lock);
1558
1559         /*
1560          * Note that handler() may have set things up for another
1561          * interrupt to occur soon, but it cannot happen until
1562          * we exit from this routine, because it will be the
1563          * same irq as is currently being serviced here, and Linux
1564          * won't allow another of the same (on any CPU) until we return.
1565          */
1566         drive->service_time = jiffies - drive->service_start;
1567         if (startstop == ide_stopped) {
1568                 if (hwgroup->handler == NULL) { /* paranoia */
1569                         hwgroup->busy = 0;
1570                         ide_do_request(hwgroup, hwif->irq);
1571                 } else {
1572                         printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1573                                 "on exit\n", drive->name);
1574                 }
1575         }
1576         spin_unlock_irqrestore(&ide_lock, flags);
1577         return IRQ_HANDLED;
1578 }
1579
1580 /**
1581  *      ide_init_drive_cmd      -       initialize a drive command request
1582  *      @rq: request object
1583  *
1584  *      Initialize a request before we fill it in and send it down to
1585  *      ide_do_drive_cmd. Commands must be set up by this function. Right
1586  *      now it doesn't do a lot, but if that changes abusers will have a
1587  *      nasty surprise.
1588  */
1589
1590 void ide_init_drive_cmd (struct request *rq)
1591 {
1592         memset(rq, 0, sizeof(*rq));
1593         rq->ref_count = 1;
1594 }
1595
1596 EXPORT_SYMBOL(ide_init_drive_cmd);
1597
1598 /**
1599  *      ide_do_drive_cmd        -       issue IDE special command
1600  *      @drive: device to issue command
1601  *      @rq: request to issue
1602  *      @action: action for processing
1603  *
1604  *      This function issues a special IDE device request
1605  *      onto the request queue.
1606  *
1607  *      If action is ide_wait, then the rq is queued at the end of the
1608  *      request queue, and the function sleeps until it has been processed.
1609  *      This is for use when invoked from an ioctl handler.
1610  *
1611  *      If action is ide_preempt, then the rq is queued at the head of
1612  *      the request queue, displacing the currently-being-processed
1613  *      request and this function returns immediately without waiting
1614  *      for the new rq to be completed.  This is VERY DANGEROUS, and is
1615  *      intended for careful use by the ATAPI tape/cdrom driver code.
1616  *
1617  *      If action is ide_end, then the rq is queued at the end of the
1618  *      request queue, and the function returns immediately without waiting
1619  *      for the new rq to be completed. This is again intended for careful
1620  *      use by the ATAPI tape/cdrom driver code.
1621  */
1622  
1623 int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1624 {
1625         unsigned long flags;
1626         ide_hwgroup_t *hwgroup = HWGROUP(drive);
1627         DECLARE_COMPLETION_ONSTACK(wait);
1628         int where = ELEVATOR_INSERT_BACK, err;
1629         int must_wait = (action == ide_wait || action == ide_head_wait);
1630
1631         rq->errors = 0;
1632
1633         /*
1634          * we need to hold an extra reference to request for safe inspection
1635          * after completion
1636          */
1637         if (must_wait) {
1638                 rq->ref_count++;
1639                 rq->end_io_data = &wait;
1640                 rq->end_io = blk_end_sync_rq;
1641         }
1642
1643         spin_lock_irqsave(&ide_lock, flags);
1644         if (action == ide_preempt)
1645                 hwgroup->rq = NULL;
1646         if (action == ide_preempt || action == ide_head_wait) {
1647                 where = ELEVATOR_INSERT_FRONT;
1648                 rq->cmd_flags |= REQ_PREEMPT;
1649         }
1650         __elv_add_request(drive->queue, rq, where, 0);
1651         ide_do_request(hwgroup, IDE_NO_IRQ);
1652         spin_unlock_irqrestore(&ide_lock, flags);
1653
1654         err = 0;
1655         if (must_wait) {
1656                 wait_for_completion(&wait);
1657                 if (rq->errors)
1658                         err = -EIO;
1659
1660                 blk_put_request(rq);
1661         }
1662
1663         return err;
1664 }
1665
1666 EXPORT_SYMBOL(ide_do_drive_cmd);
1667
1668 void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1669 {
1670         ide_task_t task;
1671
1672         memset(&task, 0, sizeof(task));
1673         task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1674                         IDE_TFLAG_OUT_FEATURE | tf_flags;
1675         task.tf.feature = dma;          /* Use PIO/DMA */
1676         task.tf.lbam    = bcount & 0xff;
1677         task.tf.lbah    = (bcount >> 8) & 0xff;
1678
1679         ide_tf_load(drive, &task);
1680 }
1681
1682 EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);