IDE: Fix HDIO_DRIVE_RESET handling
[pandora-kernel.git] / drivers / ide / ide-io.c
1 /*
2  *      IDE I/O functions
3  *
4  *      Basic PIO and command management functionality.
5  *
6  * This code was split off from ide.c. See ide.c for history and original
7  * copyrights.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the
11  * Free Software Foundation; either version 2, or (at your option) any
12  * later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * For the avoidance of doubt the "preferred form" of this code is one which
20  * is in an open non patent encumbered format. Where cryptographic key signing
21  * forms part of the process of creating an executable the information
22  * including keys needed to generate an equivalently functional executable
23  * are deemed to be part of the source code.
24  */
25  
26  
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
51
52 #include <asm/byteorder.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
55 #include <asm/io.h>
56
57 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58                              int uptodate, unsigned int nr_bytes, int dequeue)
59 {
60         int ret = 1;
61         int error = 0;
62
63         if (uptodate <= 0)
64                 error = uptodate ? uptodate : -EIO;
65
66         /*
67          * if failfast is set on a request, override number of sectors and
68          * complete the whole request right now
69          */
70         if (blk_noretry_request(rq) && error)
71                 nr_bytes = rq->hard_nr_sectors << 9;
72
73         if (!blk_fs_request(rq) && error && !rq->errors)
74                 rq->errors = -EIO;
75
76         /*
77          * decide whether to reenable DMA -- 3 is a random magic for now,
78          * if we DMA timeout more than 3 times, just stay in PIO
79          */
80         if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
81                 drive->state = 0;
82                 ide_dma_on(drive);
83         }
84
85         if (!__blk_end_request(rq, error, nr_bytes)) {
86                 if (dequeue)
87                         HWGROUP(drive)->rq = NULL;
88                 ret = 0;
89         }
90
91         return ret;
92 }
93
94 /**
95  *      ide_end_request         -       complete an IDE I/O
96  *      @drive: IDE device for the I/O
97  *      @uptodate:
98  *      @nr_sectors: number of sectors completed
99  *
100  *      This is our end_request wrapper function. We complete the I/O
101  *      update random number input and dequeue the request, which if
102  *      it was tagged may be out of order.
103  */
104
105 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
106 {
107         unsigned int nr_bytes = nr_sectors << 9;
108         struct request *rq;
109         unsigned long flags;
110         int ret = 1;
111
112         /*
113          * room for locking improvements here, the calls below don't
114          * need the queue lock held at all
115          */
116         spin_lock_irqsave(&ide_lock, flags);
117         rq = HWGROUP(drive)->rq;
118
119         if (!nr_bytes) {
120                 if (blk_pc_request(rq))
121                         nr_bytes = rq->data_len;
122                 else
123                         nr_bytes = rq->hard_cur_sectors << 9;
124         }
125
126         ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
127
128         spin_unlock_irqrestore(&ide_lock, flags);
129         return ret;
130 }
131 EXPORT_SYMBOL(ide_end_request);
132
133 /*
134  * Power Management state machine. This one is rather trivial for now,
135  * we should probably add more, like switching back to PIO on suspend
136  * to help some BIOSes, re-do the door locking on resume, etc...
137  */
138
139 enum {
140         ide_pm_flush_cache      = ide_pm_state_start_suspend,
141         idedisk_pm_standby,
142
143         idedisk_pm_restore_pio  = ide_pm_state_start_resume,
144         idedisk_pm_idle,
145         ide_pm_restore_dma,
146 };
147
148 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
149 {
150         struct request_pm_state *pm = rq->data;
151
152         if (drive->media != ide_disk)
153                 return;
154
155         switch (pm->pm_step) {
156         case ide_pm_flush_cache:        /* Suspend step 1 (flush cache) complete */
157                 if (pm->pm_state == PM_EVENT_FREEZE)
158                         pm->pm_step = ide_pm_state_completed;
159                 else
160                         pm->pm_step = idedisk_pm_standby;
161                 break;
162         case idedisk_pm_standby:        /* Suspend step 2 (standby) complete */
163                 pm->pm_step = ide_pm_state_completed;
164                 break;
165         case idedisk_pm_restore_pio:    /* Resume step 1 complete */
166                 pm->pm_step = idedisk_pm_idle;
167                 break;
168         case idedisk_pm_idle:           /* Resume step 2 (idle) complete */
169                 pm->pm_step = ide_pm_restore_dma;
170                 break;
171         }
172 }
173
174 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
175 {
176         struct request_pm_state *pm = rq->data;
177         ide_task_t *args = rq->special;
178
179         memset(args, 0, sizeof(*args));
180
181         switch (pm->pm_step) {
182         case ide_pm_flush_cache:        /* Suspend step 1 (flush cache) */
183                 if (drive->media != ide_disk)
184                         break;
185                 /* Not supported? Switch to next step now. */
186                 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
187                         ide_complete_power_step(drive, rq, 0, 0);
188                         return ide_stopped;
189                 }
190                 if (ide_id_has_flush_cache_ext(drive->id))
191                         args->tf.command = WIN_FLUSH_CACHE_EXT;
192                 else
193                         args->tf.command = WIN_FLUSH_CACHE;
194                 goto out_do_tf;
195
196         case idedisk_pm_standby:        /* Suspend step 2 (standby) */
197                 args->tf.command = WIN_STANDBYNOW1;
198                 goto out_do_tf;
199
200         case idedisk_pm_restore_pio:    /* Resume step 1 (restore PIO) */
201                 ide_set_max_pio(drive);
202                 /*
203                  * skip idedisk_pm_idle for ATAPI devices
204                  */
205                 if (drive->media != ide_disk)
206                         pm->pm_step = ide_pm_restore_dma;
207                 else
208                         ide_complete_power_step(drive, rq, 0, 0);
209                 return ide_stopped;
210
211         case idedisk_pm_idle:           /* Resume step 2 (idle) */
212                 args->tf.command = WIN_IDLEIMMEDIATE;
213                 goto out_do_tf;
214
215         case ide_pm_restore_dma:        /* Resume step 3 (restore DMA) */
216                 /*
217                  * Right now, all we do is call ide_set_dma(drive),
218                  * we could be smarter and check for current xfer_speed
219                  * in struct drive etc...
220                  */
221                 if (drive->hwif->dma_ops == NULL)
222                         break;
223                 /*
224                  * TODO: respect ->using_dma setting
225                  */
226                 ide_set_dma(drive);
227                 break;
228         }
229         pm->pm_step = ide_pm_state_completed;
230         return ide_stopped;
231
232 out_do_tf:
233         args->tf_flags   = IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
234         args->data_phase = TASKFILE_NO_DATA;
235         return do_rw_taskfile(drive, args);
236 }
237
238 /**
239  *      ide_end_dequeued_request        -       complete an IDE I/O
240  *      @drive: IDE device for the I/O
241  *      @uptodate:
242  *      @nr_sectors: number of sectors completed
243  *
244  *      Complete an I/O that is no longer on the request queue. This
245  *      typically occurs when we pull the request and issue a REQUEST_SENSE.
246  *      We must still finish the old request but we must not tamper with the
247  *      queue in the meantime.
248  *
249  *      NOTE: This path does not handle barrier, but barrier is not supported
250  *      on ide-cd anyway.
251  */
252
253 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
254                              int uptodate, int nr_sectors)
255 {
256         unsigned long flags;
257         int ret;
258
259         spin_lock_irqsave(&ide_lock, flags);
260         BUG_ON(!blk_rq_started(rq));
261         ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
262         spin_unlock_irqrestore(&ide_lock, flags);
263
264         return ret;
265 }
266 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
267
268
269 /**
270  *      ide_complete_pm_request - end the current Power Management request
271  *      @drive: target drive
272  *      @rq: request
273  *
274  *      This function cleans up the current PM request and stops the queue
275  *      if necessary.
276  */
277 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
278 {
279         unsigned long flags;
280
281 #ifdef DEBUG_PM
282         printk("%s: completing PM request, %s\n", drive->name,
283                blk_pm_suspend_request(rq) ? "suspend" : "resume");
284 #endif
285         spin_lock_irqsave(&ide_lock, flags);
286         if (blk_pm_suspend_request(rq)) {
287                 blk_stop_queue(drive->queue);
288         } else {
289                 drive->blocked = 0;
290                 blk_start_queue(drive->queue);
291         }
292         HWGROUP(drive)->rq = NULL;
293         if (__blk_end_request(rq, 0, 0))
294                 BUG();
295         spin_unlock_irqrestore(&ide_lock, flags);
296 }
297
298 /**
299  *      ide_end_drive_cmd       -       end an explicit drive command
300  *      @drive: command 
301  *      @stat: status bits
302  *      @err: error bits
303  *
304  *      Clean up after success/failure of an explicit drive command.
305  *      These get thrown onto the queue so they are synchronized with
306  *      real I/O operations on the drive.
307  *
308  *      In LBA48 mode we have to read the register set twice to get
309  *      all the extra information out.
310  */
311  
312 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
313 {
314         unsigned long flags;
315         struct request *rq;
316
317         spin_lock_irqsave(&ide_lock, flags);
318         rq = HWGROUP(drive)->rq;
319         spin_unlock_irqrestore(&ide_lock, flags);
320
321         if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
322                 ide_task_t *task = (ide_task_t *)rq->special;
323
324                 if (rq->errors == 0)
325                         rq->errors = !OK_STAT(stat, READY_STAT, BAD_STAT);
326
327                 if (task) {
328                         struct ide_taskfile *tf = &task->tf;
329
330                         tf->error = err;
331                         tf->status = stat;
332
333                         drive->hwif->tf_read(drive, task);
334
335                         if (task->tf_flags & IDE_TFLAG_DYN)
336                                 kfree(task);
337                 }
338         } else if (blk_pm_request(rq)) {
339                 struct request_pm_state *pm = rq->data;
340 #ifdef DEBUG_PM
341                 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
342                         drive->name, rq->pm->pm_step, stat, err);
343 #endif
344                 ide_complete_power_step(drive, rq, stat, err);
345                 if (pm->pm_step == ide_pm_state_completed)
346                         ide_complete_pm_request(drive, rq);
347                 return;
348         }
349
350         spin_lock_irqsave(&ide_lock, flags);
351         HWGROUP(drive)->rq = NULL;
352         rq->errors = err;
353         if (unlikely(__blk_end_request(rq, (rq->errors ? -EIO : 0),
354                                        blk_rq_bytes(rq))))
355                 BUG();
356         spin_unlock_irqrestore(&ide_lock, flags);
357 }
358
359 EXPORT_SYMBOL(ide_end_drive_cmd);
360
361 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
362 {
363         if (rq->rq_disk) {
364                 ide_driver_t *drv;
365
366                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
367                 drv->end_request(drive, 0, 0);
368         } else
369                 ide_end_request(drive, 0, 0);
370 }
371
372 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
373 {
374         ide_hwif_t *hwif = drive->hwif;
375
376         if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
377                 /* other bits are useless when BUSY */
378                 rq->errors |= ERROR_RESET;
379         } else if (stat & ERR_STAT) {
380                 /* err has different meaning on cdrom and tape */
381                 if (err == ABRT_ERR) {
382                         if (drive->select.b.lba &&
383                             /* some newer drives don't support WIN_SPECIFY */
384                             hwif->INB(hwif->io_ports.command_addr) ==
385                                 WIN_SPECIFY)
386                                 return ide_stopped;
387                 } else if ((err & BAD_CRC) == BAD_CRC) {
388                         /* UDMA crc error, just retry the operation */
389                         drive->crc_count++;
390                 } else if (err & (BBD_ERR | ECC_ERR)) {
391                         /* retries won't help these */
392                         rq->errors = ERROR_MAX;
393                 } else if (err & TRK0_ERR) {
394                         /* help it find track zero */
395                         rq->errors |= ERROR_RECAL;
396                 }
397         }
398
399         if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ &&
400             (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0) {
401                 int nsect = drive->mult_count ? drive->mult_count : 1;
402
403                 ide_pad_transfer(drive, READ, nsect * SECTOR_SIZE);
404         }
405
406         if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
407                 ide_kill_rq(drive, rq);
408                 return ide_stopped;
409         }
410
411         if (ide_read_status(drive) & (BUSY_STAT | DRQ_STAT))
412                 rq->errors |= ERROR_RESET;
413
414         if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
415                 ++rq->errors;
416                 return ide_do_reset(drive);
417         }
418
419         if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
420                 drive->special.b.recalibrate = 1;
421
422         ++rq->errors;
423
424         return ide_stopped;
425 }
426
427 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
428 {
429         ide_hwif_t *hwif = drive->hwif;
430
431         if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
432                 /* other bits are useless when BUSY */
433                 rq->errors |= ERROR_RESET;
434         } else {
435                 /* add decoding error stuff */
436         }
437
438         if (ide_read_status(drive) & (BUSY_STAT | DRQ_STAT))
439                 /* force an abort */
440                 hwif->OUTBSYNC(hwif, WIN_IDLEIMMEDIATE,
441                                hwif->io_ports.command_addr);
442
443         if (rq->errors >= ERROR_MAX) {
444                 ide_kill_rq(drive, rq);
445         } else {
446                 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
447                         ++rq->errors;
448                         return ide_do_reset(drive);
449                 }
450                 ++rq->errors;
451         }
452
453         return ide_stopped;
454 }
455
456 ide_startstop_t
457 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
458 {
459         if (drive->media == ide_disk)
460                 return ide_ata_error(drive, rq, stat, err);
461         return ide_atapi_error(drive, rq, stat, err);
462 }
463
464 EXPORT_SYMBOL_GPL(__ide_error);
465
466 /**
467  *      ide_error       -       handle an error on the IDE
468  *      @drive: drive the error occurred on
469  *      @msg: message to report
470  *      @stat: status bits
471  *
472  *      ide_error() takes action based on the error returned by the drive.
473  *      For normal I/O that may well include retries. We deal with
474  *      both new-style (taskfile) and old style command handling here.
475  *      In the case of taskfile command handling there is work left to
476  *      do
477  */
478  
479 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
480 {
481         struct request *rq;
482         u8 err;
483
484         err = ide_dump_status(drive, msg, stat);
485
486         if ((rq = HWGROUP(drive)->rq) == NULL)
487                 return ide_stopped;
488
489         /* retry only "normal" I/O: */
490         if (!blk_fs_request(rq)) {
491                 rq->errors = 1;
492                 ide_end_drive_cmd(drive, stat, err);
493                 return ide_stopped;
494         }
495
496         if (rq->rq_disk) {
497                 ide_driver_t *drv;
498
499                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
500                 return drv->error(drive, rq, stat, err);
501         } else
502                 return __ide_error(drive, rq, stat, err);
503 }
504
505 EXPORT_SYMBOL_GPL(ide_error);
506
507 ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
508 {
509         if (drive->media != ide_disk)
510                 rq->errors |= ERROR_RESET;
511
512         ide_kill_rq(drive, rq);
513
514         return ide_stopped;
515 }
516
517 EXPORT_SYMBOL_GPL(__ide_abort);
518
519 /**
520  *      ide_abort       -       abort pending IDE operations
521  *      @drive: drive the error occurred on
522  *      @msg: message to report
523  *
524  *      ide_abort kills and cleans up when we are about to do a 
525  *      host initiated reset on active commands. Longer term we
526  *      want handlers to have sensible abort handling themselves
527  *
528  *      This differs fundamentally from ide_error because in 
529  *      this case the command is doing just fine when we
530  *      blow it away.
531  */
532  
533 ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
534 {
535         struct request *rq;
536
537         if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
538                 return ide_stopped;
539
540         /* retry only "normal" I/O: */
541         if (!blk_fs_request(rq)) {
542                 rq->errors = 1;
543                 ide_end_drive_cmd(drive, BUSY_STAT, 0);
544                 return ide_stopped;
545         }
546
547         if (rq->rq_disk) {
548                 ide_driver_t *drv;
549
550                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
551                 return drv->abort(drive, rq);
552         } else
553                 return __ide_abort(drive, rq);
554 }
555
556 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
557 {
558         tf->nsect   = drive->sect;
559         tf->lbal    = drive->sect;
560         tf->lbam    = drive->cyl;
561         tf->lbah    = drive->cyl >> 8;
562         tf->device  = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
563         tf->command = WIN_SPECIFY;
564 }
565
566 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
567 {
568         tf->nsect   = drive->sect;
569         tf->command = WIN_RESTORE;
570 }
571
572 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
573 {
574         tf->nsect   = drive->mult_req;
575         tf->command = WIN_SETMULT;
576 }
577
578 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
579 {
580         special_t *s = &drive->special;
581         ide_task_t args;
582
583         memset(&args, 0, sizeof(ide_task_t));
584         args.data_phase = TASKFILE_NO_DATA;
585
586         if (s->b.set_geometry) {
587                 s->b.set_geometry = 0;
588                 ide_tf_set_specify_cmd(drive, &args.tf);
589         } else if (s->b.recalibrate) {
590                 s->b.recalibrate = 0;
591                 ide_tf_set_restore_cmd(drive, &args.tf);
592         } else if (s->b.set_multmode) {
593                 s->b.set_multmode = 0;
594                 if (drive->mult_req > drive->id->max_multsect)
595                         drive->mult_req = drive->id->max_multsect;
596                 ide_tf_set_setmult_cmd(drive, &args.tf);
597         } else if (s->all) {
598                 int special = s->all;
599                 s->all = 0;
600                 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
601                 return ide_stopped;
602         }
603
604         args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
605                         IDE_TFLAG_CUSTOM_HANDLER;
606
607         do_rw_taskfile(drive, &args);
608
609         return ide_started;
610 }
611
612 /*
613  * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
614  */
615 static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
616 {
617         switch (req_pio) {
618         case 202:
619         case 201:
620         case 200:
621         case 102:
622         case 101:
623         case 100:
624                 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
625         case 9:
626         case 8:
627                 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
628         case 7:
629         case 6:
630                 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
631         default:
632                 return 0;
633         }
634 }
635
636 /**
637  *      do_special              -       issue some special commands
638  *      @drive: drive the command is for
639  *
640  *      do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
641  *      commands to a drive.  It used to do much more, but has been scaled
642  *      back.
643  */
644
645 static ide_startstop_t do_special (ide_drive_t *drive)
646 {
647         special_t *s = &drive->special;
648
649 #ifdef DEBUG
650         printk("%s: do_special: 0x%02x\n", drive->name, s->all);
651 #endif
652         if (s->b.set_tune) {
653                 ide_hwif_t *hwif = drive->hwif;
654                 const struct ide_port_ops *port_ops = hwif->port_ops;
655                 u8 req_pio = drive->tune_req;
656
657                 s->b.set_tune = 0;
658
659                 if (set_pio_mode_abuse(drive->hwif, req_pio)) {
660                         /*
661                          * take ide_lock for drive->[no_]unmask/[no_]io_32bit
662                          */
663                         if (req_pio == 8 || req_pio == 9) {
664                                 unsigned long flags;
665
666                                 spin_lock_irqsave(&ide_lock, flags);
667                                 port_ops->set_pio_mode(drive, req_pio);
668                                 spin_unlock_irqrestore(&ide_lock, flags);
669                         } else
670                                 port_ops->set_pio_mode(drive, req_pio);
671                 } else {
672                         int keep_dma = drive->using_dma;
673
674                         ide_set_pio(drive, req_pio);
675
676                         if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
677                                 if (keep_dma)
678                                         ide_dma_on(drive);
679                         }
680                 }
681
682                 return ide_stopped;
683         } else {
684                 if (drive->media == ide_disk)
685                         return ide_disk_special(drive);
686
687                 s->all = 0;
688                 drive->mult_req = 0;
689                 return ide_stopped;
690         }
691 }
692
693 void ide_map_sg(ide_drive_t *drive, struct request *rq)
694 {
695         ide_hwif_t *hwif = drive->hwif;
696         struct scatterlist *sg = hwif->sg_table;
697
698         if (hwif->sg_mapped)    /* needed by ide-scsi */
699                 return;
700
701         if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
702                 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
703         } else {
704                 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
705                 hwif->sg_nents = 1;
706         }
707 }
708
709 EXPORT_SYMBOL_GPL(ide_map_sg);
710
711 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
712 {
713         ide_hwif_t *hwif = drive->hwif;
714
715         hwif->nsect = hwif->nleft = rq->nr_sectors;
716         hwif->cursg_ofs = 0;
717         hwif->cursg = NULL;
718 }
719
720 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
721
722 /**
723  *      execute_drive_command   -       issue special drive command
724  *      @drive: the drive to issue the command on
725  *      @rq: the request structure holding the command
726  *
727  *      execute_drive_cmd() issues a special drive command,  usually 
728  *      initiated by ioctl() from the external hdparm program. The
729  *      command can be a drive command, drive task or taskfile 
730  *      operation. Weirdly you can call it with NULL to wait for
731  *      all commands to finish. Don't do this as that is due to change
732  */
733
734 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
735                 struct request *rq)
736 {
737         ide_hwif_t *hwif = HWIF(drive);
738         ide_task_t *task = rq->special;
739
740         if (task) {
741                 hwif->data_phase = task->data_phase;
742
743                 switch (hwif->data_phase) {
744                 case TASKFILE_MULTI_OUT:
745                 case TASKFILE_OUT:
746                 case TASKFILE_MULTI_IN:
747                 case TASKFILE_IN:
748                         ide_init_sg_cmd(drive, rq);
749                         ide_map_sg(drive, rq);
750                 default:
751                         break;
752                 }
753
754                 return do_rw_taskfile(drive, task);
755         }
756
757         /*
758          * NULL is actually a valid way of waiting for
759          * all current requests to be flushed from the queue.
760          */
761 #ifdef DEBUG
762         printk("%s: DRIVE_CMD (null)\n", drive->name);
763 #endif
764         ide_end_drive_cmd(drive, ide_read_status(drive), ide_read_error(drive));
765
766         return ide_stopped;
767 }
768
769 static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
770 {
771         switch (rq->cmd[0]) {
772         case REQ_DRIVE_RESET:
773                 return ide_do_reset(drive);
774         default:
775                 blk_dump_rq_flags(rq, "ide_special_rq - bad request");
776                 ide_end_request(drive, 0, 0);
777                 return ide_stopped;
778         }
779 }
780
781 static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
782 {
783         struct request_pm_state *pm = rq->data;
784
785         if (blk_pm_suspend_request(rq) &&
786             pm->pm_step == ide_pm_state_start_suspend)
787                 /* Mark drive blocked when starting the suspend sequence. */
788                 drive->blocked = 1;
789         else if (blk_pm_resume_request(rq) &&
790                  pm->pm_step == ide_pm_state_start_resume) {
791                 /* 
792                  * The first thing we do on wakeup is to wait for BSY bit to
793                  * go away (with a looong timeout) as a drive on this hwif may
794                  * just be POSTing itself.
795                  * We do that before even selecting as the "other" device on
796                  * the bus may be broken enough to walk on our toes at this
797                  * point.
798                  */
799                 int rc;
800 #ifdef DEBUG_PM
801                 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
802 #endif
803                 rc = ide_wait_not_busy(HWIF(drive), 35000);
804                 if (rc)
805                         printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
806                 SELECT_DRIVE(drive);
807                 ide_set_irq(drive, 1);
808                 rc = ide_wait_not_busy(HWIF(drive), 100000);
809                 if (rc)
810                         printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
811         }
812 }
813
814 /**
815  *      start_request   -       start of I/O and command issuing for IDE
816  *
817  *      start_request() initiates handling of a new I/O request. It
818  *      accepts commands and I/O (read/write) requests. It also does
819  *      the final remapping for weird stuff like EZDrive. Once 
820  *      device mapper can work sector level the EZDrive stuff can go away
821  *
822  *      FIXME: this function needs a rename
823  */
824  
825 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
826 {
827         ide_startstop_t startstop;
828         sector_t block;
829
830         BUG_ON(!blk_rq_started(rq));
831
832 #ifdef DEBUG
833         printk("%s: start_request: current=0x%08lx\n",
834                 HWIF(drive)->name, (unsigned long) rq);
835 #endif
836
837         /* bail early if we've exceeded max_failures */
838         if (drive->max_failures && (drive->failures > drive->max_failures)) {
839                 rq->cmd_flags |= REQ_FAILED;
840                 goto kill_rq;
841         }
842
843         block    = rq->sector;
844         if (blk_fs_request(rq) &&
845             (drive->media == ide_disk || drive->media == ide_floppy)) {
846                 block += drive->sect0;
847         }
848         /* Yecch - this will shift the entire interval,
849            possibly killing some innocent following sector */
850         if (block == 0 && drive->remap_0_to_1 == 1)
851                 block = 1;  /* redirect MBR access to EZ-Drive partn table */
852
853         if (blk_pm_request(rq))
854                 ide_check_pm_state(drive, rq);
855
856         SELECT_DRIVE(drive);
857         if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
858                 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
859                 return startstop;
860         }
861         if (!drive->special.all) {
862                 ide_driver_t *drv;
863
864                 /*
865                  * We reset the drive so we need to issue a SETFEATURES.
866                  * Do it _after_ do_special() restored device parameters.
867                  */
868                 if (drive->current_speed == 0xff)
869                         ide_config_drive_speed(drive, drive->desired_speed);
870
871                 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
872                         return execute_drive_cmd(drive, rq);
873                 else if (blk_pm_request(rq)) {
874                         struct request_pm_state *pm = rq->data;
875 #ifdef DEBUG_PM
876                         printk("%s: start_power_step(step: %d)\n",
877                                 drive->name, rq->pm->pm_step);
878 #endif
879                         startstop = ide_start_power_step(drive, rq);
880                         if (startstop == ide_stopped &&
881                             pm->pm_step == ide_pm_state_completed)
882                                 ide_complete_pm_request(drive, rq);
883                         return startstop;
884                 } else if (!rq->rq_disk && blk_special_request(rq))
885                         /*
886                          * TODO: Once all ULDs have been modified to
887                          * check for specific op codes rather than
888                          * blindly accepting any special request, the
889                          * check for ->rq_disk above may be replaced
890                          * by a more suitable mechanism or even
891                          * dropped entirely.
892                          */
893                         return ide_special_rq(drive, rq);
894
895                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
896                 return drv->do_request(drive, rq, block);
897         }
898         return do_special(drive);
899 kill_rq:
900         ide_kill_rq(drive, rq);
901         return ide_stopped;
902 }
903
904 /**
905  *      ide_stall_queue         -       pause an IDE device
906  *      @drive: drive to stall
907  *      @timeout: time to stall for (jiffies)
908  *
909  *      ide_stall_queue() can be used by a drive to give excess bandwidth back
910  *      to the hwgroup by sleeping for timeout jiffies.
911  */
912  
913 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
914 {
915         if (timeout > WAIT_WORSTCASE)
916                 timeout = WAIT_WORSTCASE;
917         drive->sleep = timeout + jiffies;
918         drive->sleeping = 1;
919 }
920
921 EXPORT_SYMBOL(ide_stall_queue);
922
923 #define WAKEUP(drive)   ((drive)->service_start + 2 * (drive)->service_time)
924
925 /**
926  *      choose_drive            -       select a drive to service
927  *      @hwgroup: hardware group to select on
928  *
929  *      choose_drive() selects the next drive which will be serviced.
930  *      This is necessary because the IDE layer can't issue commands
931  *      to both drives on the same cable, unlike SCSI.
932  */
933  
934 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
935 {
936         ide_drive_t *drive, *best;
937
938 repeat: 
939         best = NULL;
940         drive = hwgroup->drive;
941
942         /*
943          * drive is doing pre-flush, ordered write, post-flush sequence. even
944          * though that is 3 requests, it must be seen as a single transaction.
945          * we must not preempt this drive until that is complete
946          */
947         if (blk_queue_flushing(drive->queue)) {
948                 /*
949                  * small race where queue could get replugged during
950                  * the 3-request flush cycle, just yank the plug since
951                  * we want it to finish asap
952                  */
953                 blk_remove_plug(drive->queue);
954                 return drive;
955         }
956
957         do {
958                 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
959                     && !elv_queue_empty(drive->queue)) {
960                         if (!best
961                          || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
962                          || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
963                         {
964                                 if (!blk_queue_plugged(drive->queue))
965                                         best = drive;
966                         }
967                 }
968         } while ((drive = drive->next) != hwgroup->drive);
969         if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
970                 long t = (signed long)(WAKEUP(best) - jiffies);
971                 if (t >= WAIT_MIN_SLEEP) {
972                 /*
973                  * We *may* have some time to spare, but first let's see if
974                  * someone can potentially benefit from our nice mood today..
975                  */
976                         drive = best->next;
977                         do {
978                                 if (!drive->sleeping
979                                  && time_before(jiffies - best->service_time, WAKEUP(drive))
980                                  && time_before(WAKEUP(drive), jiffies + t))
981                                 {
982                                         ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
983                                         goto repeat;
984                                 }
985                         } while ((drive = drive->next) != best);
986                 }
987         }
988         return best;
989 }
990
991 /*
992  * Issue a new request to a drive from hwgroup
993  * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
994  *
995  * A hwgroup is a serialized group of IDE interfaces.  Usually there is
996  * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
997  * may have both interfaces in a single hwgroup to "serialize" access.
998  * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
999  * together into one hwgroup for serialized access.
1000  *
1001  * Note also that several hwgroups can end up sharing a single IRQ,
1002  * possibly along with many other devices.  This is especially common in
1003  * PCI-based systems with off-board IDE controller cards.
1004  *
1005  * The IDE driver uses the single global ide_lock spinlock to protect
1006  * access to the request queues, and to protect the hwgroup->busy flag.
1007  *
1008  * The first thread into the driver for a particular hwgroup sets the
1009  * hwgroup->busy flag to indicate that this hwgroup is now active,
1010  * and then initiates processing of the top request from the request queue.
1011  *
1012  * Other threads attempting entry notice the busy setting, and will simply
1013  * queue their new requests and exit immediately.  Note that hwgroup->busy
1014  * remains set even when the driver is merely awaiting the next interrupt.
1015  * Thus, the meaning is "this hwgroup is busy processing a request".
1016  *
1017  * When processing of a request completes, the completing thread or IRQ-handler
1018  * will start the next request from the queue.  If no more work remains,
1019  * the driver will clear the hwgroup->busy flag and exit.
1020  *
1021  * The ide_lock (spinlock) is used to protect all access to the
1022  * hwgroup->busy flag, but is otherwise not needed for most processing in
1023  * the driver.  This makes the driver much more friendlier to shared IRQs
1024  * than previous designs, while remaining 100% (?) SMP safe and capable.
1025  */
1026 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1027 {
1028         ide_drive_t     *drive;
1029         ide_hwif_t      *hwif;
1030         struct request  *rq;
1031         ide_startstop_t startstop;
1032         int             loops = 0;
1033
1034         /* for atari only: POSSIBLY BROKEN HERE(?) */
1035         ide_get_lock(ide_intr, hwgroup);
1036
1037         /* caller must own ide_lock */
1038         BUG_ON(!irqs_disabled());
1039
1040         while (!hwgroup->busy) {
1041                 hwgroup->busy = 1;
1042                 drive = choose_drive(hwgroup);
1043                 if (drive == NULL) {
1044                         int sleeping = 0;
1045                         unsigned long sleep = 0; /* shut up, gcc */
1046                         hwgroup->rq = NULL;
1047                         drive = hwgroup->drive;
1048                         do {
1049                                 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1050                                         sleeping = 1;
1051                                         sleep = drive->sleep;
1052                                 }
1053                         } while ((drive = drive->next) != hwgroup->drive);
1054                         if (sleeping) {
1055                 /*
1056                  * Take a short snooze, and then wake up this hwgroup again.
1057                  * This gives other hwgroups on the same a chance to
1058                  * play fairly with us, just in case there are big differences
1059                  * in relative throughputs.. don't want to hog the cpu too much.
1060                  */
1061                                 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1062                                         sleep = jiffies + WAIT_MIN_SLEEP;
1063 #if 1
1064                                 if (timer_pending(&hwgroup->timer))
1065                                         printk(KERN_CRIT "ide_set_handler: timer already active\n");
1066 #endif
1067                                 /* so that ide_timer_expiry knows what to do */
1068                                 hwgroup->sleeping = 1;
1069                                 hwgroup->req_gen_timer = hwgroup->req_gen;
1070                                 mod_timer(&hwgroup->timer, sleep);
1071                                 /* we purposely leave hwgroup->busy==1
1072                                  * while sleeping */
1073                         } else {
1074                                 /* Ugly, but how can we sleep for the lock
1075                                  * otherwise? perhaps from tq_disk?
1076                                  */
1077
1078                                 /* for atari only */
1079                                 ide_release_lock();
1080                                 hwgroup->busy = 0;
1081                         }
1082
1083                         /* no more work for this hwgroup (for now) */
1084                         return;
1085                 }
1086         again:
1087                 hwif = HWIF(drive);
1088                 if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) {
1089                         /*
1090                          * set nIEN for previous hwif, drives in the
1091                          * quirk_list may not like intr setups/cleanups
1092                          */
1093                         if (drive->quirk_list != 1)
1094                                 ide_set_irq(drive, 0);
1095                 }
1096                 hwgroup->hwif = hwif;
1097                 hwgroup->drive = drive;
1098                 drive->sleeping = 0;
1099                 drive->service_start = jiffies;
1100
1101                 if (blk_queue_plugged(drive->queue)) {
1102                         printk(KERN_ERR "ide: huh? queue was plugged!\n");
1103                         break;
1104                 }
1105
1106                 /*
1107                  * we know that the queue isn't empty, but this can happen
1108                  * if the q->prep_rq_fn() decides to kill a request
1109                  */
1110                 rq = elv_next_request(drive->queue);
1111                 if (!rq) {
1112                         hwgroup->busy = 0;
1113                         break;
1114                 }
1115
1116                 /*
1117                  * Sanity: don't accept a request that isn't a PM request
1118                  * if we are currently power managed. This is very important as
1119                  * blk_stop_queue() doesn't prevent the elv_next_request()
1120                  * above to return us whatever is in the queue. Since we call
1121                  * ide_do_request() ourselves, we end up taking requests while
1122                  * the queue is blocked...
1123                  * 
1124                  * We let requests forced at head of queue with ide-preempt
1125                  * though. I hope that doesn't happen too much, hopefully not
1126                  * unless the subdriver triggers such a thing in its own PM
1127                  * state machine.
1128                  *
1129                  * We count how many times we loop here to make sure we service
1130                  * all drives in the hwgroup without looping for ever
1131                  */
1132                 if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1133                         drive = drive->next ? drive->next : hwgroup->drive;
1134                         if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1135                                 goto again;
1136                         /* We clear busy, there should be no pending ATA command at this point. */
1137                         hwgroup->busy = 0;
1138                         break;
1139                 }
1140
1141                 hwgroup->rq = rq;
1142
1143                 /*
1144                  * Some systems have trouble with IDE IRQs arriving while
1145                  * the driver is still setting things up.  So, here we disable
1146                  * the IRQ used by this interface while the request is being started.
1147                  * This may look bad at first, but pretty much the same thing
1148                  * happens anyway when any interrupt comes in, IDE or otherwise
1149                  *  -- the kernel masks the IRQ while it is being handled.
1150                  */
1151                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1152                         disable_irq_nosync(hwif->irq);
1153                 spin_unlock(&ide_lock);
1154                 local_irq_enable_in_hardirq();
1155                         /* allow other IRQs while we start this request */
1156                 startstop = start_request(drive, rq);
1157                 spin_lock_irq(&ide_lock);
1158                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1159                         enable_irq(hwif->irq);
1160                 if (startstop == ide_stopped)
1161                         hwgroup->busy = 0;
1162         }
1163 }
1164
1165 /*
1166  * Passes the stuff to ide_do_request
1167  */
1168 void do_ide_request(struct request_queue *q)
1169 {
1170         ide_drive_t *drive = q->queuedata;
1171
1172         ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1173 }
1174
1175 /*
1176  * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1177  * retry the current request in pio mode instead of risking tossing it
1178  * all away
1179  */
1180 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1181 {
1182         ide_hwif_t *hwif = HWIF(drive);
1183         struct request *rq;
1184         ide_startstop_t ret = ide_stopped;
1185
1186         /*
1187          * end current dma transaction
1188          */
1189
1190         if (error < 0) {
1191                 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1192                 (void)hwif->dma_ops->dma_end(drive);
1193                 ret = ide_error(drive, "dma timeout error",
1194                                 ide_read_status(drive));
1195         } else {
1196                 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1197                 hwif->dma_ops->dma_timeout(drive);
1198         }
1199
1200         /*
1201          * disable dma for now, but remember that we did so because of
1202          * a timeout -- we'll reenable after we finish this next request
1203          * (or rather the first chunk of it) in pio.
1204          */
1205         drive->retry_pio++;
1206         drive->state = DMA_PIO_RETRY;
1207         ide_dma_off_quietly(drive);
1208
1209         /*
1210          * un-busy drive etc (hwgroup->busy is cleared on return) and
1211          * make sure request is sane
1212          */
1213         rq = HWGROUP(drive)->rq;
1214
1215         if (!rq)
1216                 goto out;
1217
1218         HWGROUP(drive)->rq = NULL;
1219
1220         rq->errors = 0;
1221
1222         if (!rq->bio)
1223                 goto out;
1224
1225         rq->sector = rq->bio->bi_sector;
1226         rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1227         rq->hard_cur_sectors = rq->current_nr_sectors;
1228         rq->buffer = bio_data(rq->bio);
1229 out:
1230         return ret;
1231 }
1232
1233 /**
1234  *      ide_timer_expiry        -       handle lack of an IDE interrupt
1235  *      @data: timer callback magic (hwgroup)
1236  *
1237  *      An IDE command has timed out before the expected drive return
1238  *      occurred. At this point we attempt to clean up the current
1239  *      mess. If the current handler includes an expiry handler then
1240  *      we invoke the expiry handler, and providing it is happy the
1241  *      work is done. If that fails we apply generic recovery rules
1242  *      invoking the handler and checking the drive DMA status. We
1243  *      have an excessively incestuous relationship with the DMA
1244  *      logic that wants cleaning up.
1245  */
1246  
1247 void ide_timer_expiry (unsigned long data)
1248 {
1249         ide_hwgroup_t   *hwgroup = (ide_hwgroup_t *) data;
1250         ide_handler_t   *handler;
1251         ide_expiry_t    *expiry;
1252         unsigned long   flags;
1253         unsigned long   wait = -1;
1254
1255         spin_lock_irqsave(&ide_lock, flags);
1256
1257         if (((handler = hwgroup->handler) == NULL) ||
1258             (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1259                 /*
1260                  * Either a marginal timeout occurred
1261                  * (got the interrupt just as timer expired),
1262                  * or we were "sleeping" to give other devices a chance.
1263                  * Either way, we don't really want to complain about anything.
1264                  */
1265                 if (hwgroup->sleeping) {
1266                         hwgroup->sleeping = 0;
1267                         hwgroup->busy = 0;
1268                 }
1269         } else {
1270                 ide_drive_t *drive = hwgroup->drive;
1271                 if (!drive) {
1272                         printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1273                         hwgroup->handler = NULL;
1274                 } else {
1275                         ide_hwif_t *hwif;
1276                         ide_startstop_t startstop = ide_stopped;
1277                         if (!hwgroup->busy) {
1278                                 hwgroup->busy = 1;      /* paranoia */
1279                                 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1280                         }
1281                         if ((expiry = hwgroup->expiry) != NULL) {
1282                                 /* continue */
1283                                 if ((wait = expiry(drive)) > 0) {
1284                                         /* reset timer */
1285                                         hwgroup->timer.expires  = jiffies + wait;
1286                                         hwgroup->req_gen_timer = hwgroup->req_gen;
1287                                         add_timer(&hwgroup->timer);
1288                                         spin_unlock_irqrestore(&ide_lock, flags);
1289                                         return;
1290                                 }
1291                         }
1292                         hwgroup->handler = NULL;
1293                         /*
1294                          * We need to simulate a real interrupt when invoking
1295                          * the handler() function, which means we need to
1296                          * globally mask the specific IRQ:
1297                          */
1298                         spin_unlock(&ide_lock);
1299                         hwif  = HWIF(drive);
1300                         /* disable_irq_nosync ?? */
1301                         disable_irq(hwif->irq);
1302                         /* local CPU only,
1303                          * as if we were handling an interrupt */
1304                         local_irq_disable();
1305                         if (hwgroup->polling) {
1306                                 startstop = handler(drive);
1307                         } else if (drive_is_ready(drive)) {
1308                                 if (drive->waiting_for_dma)
1309                                         hwif->dma_ops->dma_lost_irq(drive);
1310                                 (void)ide_ack_intr(hwif);
1311                                 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1312                                 startstop = handler(drive);
1313                         } else {
1314                                 if (drive->waiting_for_dma) {
1315                                         startstop = ide_dma_timeout_retry(drive, wait);
1316                                 } else
1317                                         startstop =
1318                                         ide_error(drive, "irq timeout",
1319                                                   ide_read_status(drive));
1320                         }
1321                         drive->service_time = jiffies - drive->service_start;
1322                         spin_lock_irq(&ide_lock);
1323                         enable_irq(hwif->irq);
1324                         if (startstop == ide_stopped)
1325                                 hwgroup->busy = 0;
1326                 }
1327         }
1328         ide_do_request(hwgroup, IDE_NO_IRQ);
1329         spin_unlock_irqrestore(&ide_lock, flags);
1330 }
1331
1332 /**
1333  *      unexpected_intr         -       handle an unexpected IDE interrupt
1334  *      @irq: interrupt line
1335  *      @hwgroup: hwgroup being processed
1336  *
1337  *      There's nothing really useful we can do with an unexpected interrupt,
1338  *      other than reading the status register (to clear it), and logging it.
1339  *      There should be no way that an irq can happen before we're ready for it,
1340  *      so we needn't worry much about losing an "important" interrupt here.
1341  *
1342  *      On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1343  *      the drive enters "idle", "standby", or "sleep" mode, so if the status
1344  *      looks "good", we just ignore the interrupt completely.
1345  *
1346  *      This routine assumes __cli() is in effect when called.
1347  *
1348  *      If an unexpected interrupt happens on irq15 while we are handling irq14
1349  *      and if the two interfaces are "serialized" (CMD640), then it looks like
1350  *      we could screw up by interfering with a new request being set up for 
1351  *      irq15.
1352  *
1353  *      In reality, this is a non-issue.  The new command is not sent unless 
1354  *      the drive is ready to accept one, in which case we know the drive is
1355  *      not trying to interrupt us.  And ide_set_handler() is always invoked
1356  *      before completing the issuance of any new drive command, so we will not
1357  *      be accidentally invoked as a result of any valid command completion
1358  *      interrupt.
1359  *
1360  *      Note that we must walk the entire hwgroup here. We know which hwif
1361  *      is doing the current command, but we don't know which hwif burped
1362  *      mysteriously.
1363  */
1364  
1365 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1366 {
1367         u8 stat;
1368         ide_hwif_t *hwif = hwgroup->hwif;
1369
1370         /*
1371          * handle the unexpected interrupt
1372          */
1373         do {
1374                 if (hwif->irq == irq) {
1375                         stat = hwif->INB(hwif->io_ports.status_addr);
1376                         if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1377                                 /* Try to not flood the console with msgs */
1378                                 static unsigned long last_msgtime, count;
1379                                 ++count;
1380                                 if (time_after(jiffies, last_msgtime + HZ)) {
1381                                         last_msgtime = jiffies;
1382                                         printk(KERN_ERR "%s%s: unexpected interrupt, "
1383                                                 "status=0x%02x, count=%ld\n",
1384                                                 hwif->name,
1385                                                 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1386                                 }
1387                         }
1388                 }
1389         } while ((hwif = hwif->next) != hwgroup->hwif);
1390 }
1391
1392 /**
1393  *      ide_intr        -       default IDE interrupt handler
1394  *      @irq: interrupt number
1395  *      @dev_id: hwif group
1396  *      @regs: unused weirdness from the kernel irq layer
1397  *
1398  *      This is the default IRQ handler for the IDE layer. You should
1399  *      not need to override it. If you do be aware it is subtle in
1400  *      places
1401  *
1402  *      hwgroup->hwif is the interface in the group currently performing
1403  *      a command. hwgroup->drive is the drive and hwgroup->handler is
1404  *      the IRQ handler to call. As we issue a command the handlers
1405  *      step through multiple states, reassigning the handler to the
1406  *      next step in the process. Unlike a smart SCSI controller IDE
1407  *      expects the main processor to sequence the various transfer
1408  *      stages. We also manage a poll timer to catch up with most
1409  *      timeout situations. There are still a few where the handlers
1410  *      don't ever decide to give up.
1411  *
1412  *      The handler eventually returns ide_stopped to indicate the
1413  *      request completed. At this point we issue the next request
1414  *      on the hwgroup and the process begins again.
1415  */
1416  
1417 irqreturn_t ide_intr (int irq, void *dev_id)
1418 {
1419         unsigned long flags;
1420         ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1421         ide_hwif_t *hwif;
1422         ide_drive_t *drive;
1423         ide_handler_t *handler;
1424         ide_startstop_t startstop;
1425
1426         spin_lock_irqsave(&ide_lock, flags);
1427         hwif = hwgroup->hwif;
1428
1429         if (!ide_ack_intr(hwif)) {
1430                 spin_unlock_irqrestore(&ide_lock, flags);
1431                 return IRQ_NONE;
1432         }
1433
1434         if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1435                 /*
1436                  * Not expecting an interrupt from this drive.
1437                  * That means this could be:
1438                  *      (1) an interrupt from another PCI device
1439                  *      sharing the same PCI INT# as us.
1440                  * or   (2) a drive just entered sleep or standby mode,
1441                  *      and is interrupting to let us know.
1442                  * or   (3) a spurious interrupt of unknown origin.
1443                  *
1444                  * For PCI, we cannot tell the difference,
1445                  * so in that case we just ignore it and hope it goes away.
1446                  *
1447                  * FIXME: unexpected_intr should be hwif-> then we can
1448                  * remove all the ifdef PCI crap
1449                  */
1450 #ifdef CONFIG_BLK_DEV_IDEPCI
1451                 if (hwif->chipset != ide_pci)
1452 #endif  /* CONFIG_BLK_DEV_IDEPCI */
1453                 {
1454                         /*
1455                          * Probably not a shared PCI interrupt,
1456                          * so we can safely try to do something about it:
1457                          */
1458                         unexpected_intr(irq, hwgroup);
1459 #ifdef CONFIG_BLK_DEV_IDEPCI
1460                 } else {
1461                         /*
1462                          * Whack the status register, just in case
1463                          * we have a leftover pending IRQ.
1464                          */
1465                         (void) hwif->INB(hwif->io_ports.status_addr);
1466 #endif /* CONFIG_BLK_DEV_IDEPCI */
1467                 }
1468                 spin_unlock_irqrestore(&ide_lock, flags);
1469                 return IRQ_NONE;
1470         }
1471         drive = hwgroup->drive;
1472         if (!drive) {
1473                 /*
1474                  * This should NEVER happen, and there isn't much
1475                  * we could do about it here.
1476                  *
1477                  * [Note - this can occur if the drive is hot unplugged]
1478                  */
1479                 spin_unlock_irqrestore(&ide_lock, flags);
1480                 return IRQ_HANDLED;
1481         }
1482         if (!drive_is_ready(drive)) {
1483                 /*
1484                  * This happens regularly when we share a PCI IRQ with
1485                  * another device.  Unfortunately, it can also happen
1486                  * with some buggy drives that trigger the IRQ before
1487                  * their status register is up to date.  Hopefully we have
1488                  * enough advance overhead that the latter isn't a problem.
1489                  */
1490                 spin_unlock_irqrestore(&ide_lock, flags);
1491                 return IRQ_NONE;
1492         }
1493         if (!hwgroup->busy) {
1494                 hwgroup->busy = 1;      /* paranoia */
1495                 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1496         }
1497         hwgroup->handler = NULL;
1498         hwgroup->req_gen++;
1499         del_timer(&hwgroup->timer);
1500         spin_unlock(&ide_lock);
1501
1502         /* Some controllers might set DMA INTR no matter DMA or PIO;
1503          * bmdma status might need to be cleared even for
1504          * PIO interrupts to prevent spurious/lost irq.
1505          */
1506         if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1507                 /* ide_dma_end() needs bmdma status for error checking.
1508                  * So, skip clearing bmdma status here and leave it
1509                  * to ide_dma_end() if this is dma interrupt.
1510                  */
1511                 hwif->ide_dma_clear_irq(drive);
1512
1513         if (drive->unmask)
1514                 local_irq_enable_in_hardirq();
1515         /* service this interrupt, may set handler for next interrupt */
1516         startstop = handler(drive);
1517         spin_lock_irq(&ide_lock);
1518
1519         /*
1520          * Note that handler() may have set things up for another
1521          * interrupt to occur soon, but it cannot happen until
1522          * we exit from this routine, because it will be the
1523          * same irq as is currently being serviced here, and Linux
1524          * won't allow another of the same (on any CPU) until we return.
1525          */
1526         drive->service_time = jiffies - drive->service_start;
1527         if (startstop == ide_stopped) {
1528                 if (hwgroup->handler == NULL) { /* paranoia */
1529                         hwgroup->busy = 0;
1530                         ide_do_request(hwgroup, hwif->irq);
1531                 } else {
1532                         printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1533                                 "on exit\n", drive->name);
1534                 }
1535         }
1536         spin_unlock_irqrestore(&ide_lock, flags);
1537         return IRQ_HANDLED;
1538 }
1539
1540 /**
1541  *      ide_do_drive_cmd        -       issue IDE special command
1542  *      @drive: device to issue command
1543  *      @rq: request to issue
1544  *
1545  *      This function issues a special IDE device request
1546  *      onto the request queue.
1547  *
1548  *      the rq is queued at the head of the request queue, displacing
1549  *      the currently-being-processed request and this function
1550  *      returns immediately without waiting for the new rq to be
1551  *      completed.  This is VERY DANGEROUS, and is intended for
1552  *      careful use by the ATAPI tape/cdrom driver code.
1553  */
1554
1555 void ide_do_drive_cmd(ide_drive_t *drive, struct request *rq)
1556 {
1557         unsigned long flags;
1558         ide_hwgroup_t *hwgroup = HWGROUP(drive);
1559
1560         spin_lock_irqsave(&ide_lock, flags);
1561         hwgroup->rq = NULL;
1562         __elv_add_request(drive->queue, rq, ELEVATOR_INSERT_FRONT, 1);
1563         __generic_unplug_device(drive->queue);
1564         spin_unlock_irqrestore(&ide_lock, flags);
1565 }
1566
1567 EXPORT_SYMBOL(ide_do_drive_cmd);
1568
1569 void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1570 {
1571         ide_task_t task;
1572
1573         memset(&task, 0, sizeof(task));
1574         task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1575                         IDE_TFLAG_OUT_FEATURE | tf_flags;
1576         task.tf.feature = dma;          /* Use PIO/DMA */
1577         task.tf.lbam    = bcount & 0xff;
1578         task.tf.lbah    = (bcount >> 8) & 0xff;
1579
1580         ide_tf_dump(drive->name, &task.tf);
1581         ide_set_irq(drive, 1);
1582         SELECT_MASK(drive, 0);
1583         drive->hwif->tf_load(drive, &task);
1584 }
1585
1586 EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);
1587
1588 void ide_pad_transfer(ide_drive_t *drive, int write, int len)
1589 {
1590         ide_hwif_t *hwif = drive->hwif;
1591         u8 buf[4] = { 0 };
1592
1593         while (len > 0) {
1594                 if (write)
1595                         hwif->output_data(drive, NULL, buf, min(4, len));
1596                 else
1597                         hwif->input_data(drive, NULL, buf, min(4, len));
1598                 len -= 4;
1599         }
1600 }
1601 EXPORT_SYMBOL_GPL(ide_pad_transfer);