Merge branch 'topic/cleanup' into for-linus
[pandora-kernel.git] / drivers / gpu / drm / ttm / ttm_tt.c
1 /**************************************************************************
2  *
3  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 /*
28  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29  */
30
31 #include <linux/vmalloc.h>
32 #include <linux/sched.h>
33 #include <linux/highmem.h>
34 #include <linux/pagemap.h>
35 #include <linux/file.h>
36 #include <linux/swap.h>
37 #include "ttm/ttm_module.h"
38 #include "ttm/ttm_bo_driver.h"
39 #include "ttm/ttm_placement.h"
40
41 static int ttm_tt_swapin(struct ttm_tt *ttm);
42
43 #if defined(CONFIG_X86)
44 static void ttm_tt_clflush_page(struct page *page)
45 {
46         uint8_t *page_virtual;
47         unsigned int i;
48
49         if (unlikely(page == NULL))
50                 return;
51
52         page_virtual = kmap_atomic(page, KM_USER0);
53
54         for (i = 0; i < PAGE_SIZE; i += boot_cpu_data.x86_clflush_size)
55                 clflush(page_virtual + i);
56
57         kunmap_atomic(page_virtual, KM_USER0);
58 }
59
60 static void ttm_tt_cache_flush_clflush(struct page *pages[],
61                                        unsigned long num_pages)
62 {
63         unsigned long i;
64
65         mb();
66         for (i = 0; i < num_pages; ++i)
67                 ttm_tt_clflush_page(*pages++);
68         mb();
69 }
70 #elif !defined(__powerpc__)
71 static void ttm_tt_ipi_handler(void *null)
72 {
73         ;
74 }
75 #endif
76
77 void ttm_tt_cache_flush(struct page *pages[], unsigned long num_pages)
78 {
79
80 #if defined(CONFIG_X86)
81         if (cpu_has_clflush) {
82                 ttm_tt_cache_flush_clflush(pages, num_pages);
83                 return;
84         }
85 #elif defined(__powerpc__)
86         unsigned long i;
87
88         for (i = 0; i < num_pages; ++i) {
89                 struct page *page = pages[i];
90                 void *page_virtual;
91
92                 if (unlikely(page == NULL))
93                         continue;
94
95                 page_virtual = kmap_atomic(page, KM_USER0);
96                 flush_dcache_range((unsigned long) page_virtual,
97                                    (unsigned long) page_virtual + PAGE_SIZE);
98                 kunmap_atomic(page_virtual, KM_USER0);
99         }
100 #else
101         if (on_each_cpu(ttm_tt_ipi_handler, NULL, 1) != 0)
102                 printk(KERN_ERR TTM_PFX
103                        "Timed out waiting for drm cache flush.\n");
104 #endif
105 }
106
107 /**
108  * Allocates storage for pointers to the pages that back the ttm.
109  *
110  * Uses kmalloc if possible. Otherwise falls back to vmalloc.
111  */
112 static void ttm_tt_alloc_page_directory(struct ttm_tt *ttm)
113 {
114         unsigned long size = ttm->num_pages * sizeof(*ttm->pages);
115         ttm->pages = NULL;
116
117         if (size <= PAGE_SIZE)
118                 ttm->pages = kzalloc(size, GFP_KERNEL);
119
120         if (!ttm->pages) {
121                 ttm->pages = vmalloc_user(size);
122                 if (ttm->pages)
123                         ttm->page_flags |= TTM_PAGE_FLAG_VMALLOC;
124         }
125 }
126
127 static void ttm_tt_free_page_directory(struct ttm_tt *ttm)
128 {
129         if (ttm->page_flags & TTM_PAGE_FLAG_VMALLOC) {
130                 vfree(ttm->pages);
131                 ttm->page_flags &= ~TTM_PAGE_FLAG_VMALLOC;
132         } else {
133                 kfree(ttm->pages);
134         }
135         ttm->pages = NULL;
136 }
137
138 static struct page *ttm_tt_alloc_page(unsigned page_flags)
139 {
140         gfp_t gfp_flags = GFP_USER;
141
142         if (page_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
143                 gfp_flags |= __GFP_ZERO;
144
145         if (page_flags & TTM_PAGE_FLAG_DMA32)
146                 gfp_flags |= __GFP_DMA32;
147         else
148                 gfp_flags |= __GFP_HIGHMEM;
149
150         return alloc_page(gfp_flags);
151 }
152
153 static void ttm_tt_free_user_pages(struct ttm_tt *ttm)
154 {
155         int write;
156         int dirty;
157         struct page *page;
158         int i;
159         struct ttm_backend *be = ttm->be;
160
161         BUG_ON(!(ttm->page_flags & TTM_PAGE_FLAG_USER));
162         write = ((ttm->page_flags & TTM_PAGE_FLAG_WRITE) != 0);
163         dirty = ((ttm->page_flags & TTM_PAGE_FLAG_USER_DIRTY) != 0);
164
165         if (be)
166                 be->func->clear(be);
167
168         for (i = 0; i < ttm->num_pages; ++i) {
169                 page = ttm->pages[i];
170                 if (page == NULL)
171                         continue;
172
173                 if (page == ttm->dummy_read_page) {
174                         BUG_ON(write);
175                         continue;
176                 }
177
178                 if (write && dirty && !PageReserved(page))
179                         set_page_dirty_lock(page);
180
181                 ttm->pages[i] = NULL;
182                 ttm_mem_global_free(ttm->bdev->mem_glob, PAGE_SIZE, false);
183                 put_page(page);
184         }
185         ttm->state = tt_unpopulated;
186         ttm->first_himem_page = ttm->num_pages;
187         ttm->last_lomem_page = -1;
188 }
189
190 static struct page *__ttm_tt_get_page(struct ttm_tt *ttm, int index)
191 {
192         struct page *p;
193         struct ttm_bo_device *bdev = ttm->bdev;
194         struct ttm_mem_global *mem_glob = bdev->mem_glob;
195         int ret;
196
197         while (NULL == (p = ttm->pages[index])) {
198                 p = ttm_tt_alloc_page(ttm->page_flags);
199
200                 if (!p)
201                         return NULL;
202
203                 if (PageHighMem(p)) {
204                         ret =
205                             ttm_mem_global_alloc(mem_glob, PAGE_SIZE,
206                                                  false, false, true);
207                         if (unlikely(ret != 0))
208                                 goto out_err;
209                         ttm->pages[--ttm->first_himem_page] = p;
210                 } else {
211                         ret =
212                             ttm_mem_global_alloc(mem_glob, PAGE_SIZE,
213                                                  false, false, false);
214                         if (unlikely(ret != 0))
215                                 goto out_err;
216                         ttm->pages[++ttm->last_lomem_page] = p;
217                 }
218         }
219         return p;
220 out_err:
221         put_page(p);
222         return NULL;
223 }
224
225 struct page *ttm_tt_get_page(struct ttm_tt *ttm, int index)
226 {
227         int ret;
228
229         if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
230                 ret = ttm_tt_swapin(ttm);
231                 if (unlikely(ret != 0))
232                         return NULL;
233         }
234         return __ttm_tt_get_page(ttm, index);
235 }
236
237 int ttm_tt_populate(struct ttm_tt *ttm)
238 {
239         struct page *page;
240         unsigned long i;
241         struct ttm_backend *be;
242         int ret;
243
244         if (ttm->state != tt_unpopulated)
245                 return 0;
246
247         if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
248                 ret = ttm_tt_swapin(ttm);
249                 if (unlikely(ret != 0))
250                         return ret;
251         }
252
253         be = ttm->be;
254
255         for (i = 0; i < ttm->num_pages; ++i) {
256                 page = __ttm_tt_get_page(ttm, i);
257                 if (!page)
258                         return -ENOMEM;
259         }
260
261         be->func->populate(be, ttm->num_pages, ttm->pages,
262                            ttm->dummy_read_page);
263         ttm->state = tt_unbound;
264         return 0;
265 }
266
267 #ifdef CONFIG_X86
268 static inline int ttm_tt_set_page_caching(struct page *p,
269                                           enum ttm_caching_state c_state)
270 {
271         if (PageHighMem(p))
272                 return 0;
273
274         switch (c_state) {
275         case tt_cached:
276                 return set_pages_wb(p, 1);
277         case tt_wc:
278             return set_memory_wc((unsigned long) page_address(p), 1);
279         default:
280                 return set_pages_uc(p, 1);
281         }
282 }
283 #else /* CONFIG_X86 */
284 static inline int ttm_tt_set_page_caching(struct page *p,
285                                           enum ttm_caching_state c_state)
286 {
287         return 0;
288 }
289 #endif /* CONFIG_X86 */
290
291 /*
292  * Change caching policy for the linear kernel map
293  * for range of pages in a ttm.
294  */
295
296 static int ttm_tt_set_caching(struct ttm_tt *ttm,
297                               enum ttm_caching_state c_state)
298 {
299         int i, j;
300         struct page *cur_page;
301         int ret;
302
303         if (ttm->caching_state == c_state)
304                 return 0;
305
306         if (c_state != tt_cached) {
307                 ret = ttm_tt_populate(ttm);
308                 if (unlikely(ret != 0))
309                         return ret;
310         }
311
312         if (ttm->caching_state == tt_cached)
313                 ttm_tt_cache_flush(ttm->pages, ttm->num_pages);
314
315         for (i = 0; i < ttm->num_pages; ++i) {
316                 cur_page = ttm->pages[i];
317                 if (likely(cur_page != NULL)) {
318                         ret = ttm_tt_set_page_caching(cur_page, c_state);
319                         if (unlikely(ret != 0))
320                                 goto out_err;
321                 }
322         }
323
324         ttm->caching_state = c_state;
325
326         return 0;
327
328 out_err:
329         for (j = 0; j < i; ++j) {
330                 cur_page = ttm->pages[j];
331                 if (likely(cur_page != NULL)) {
332                         (void)ttm_tt_set_page_caching(cur_page,
333                                                       ttm->caching_state);
334                 }
335         }
336
337         return ret;
338 }
339
340 int ttm_tt_set_placement_caching(struct ttm_tt *ttm, uint32_t placement)
341 {
342         enum ttm_caching_state state;
343
344         if (placement & TTM_PL_FLAG_WC)
345                 state = tt_wc;
346         else if (placement & TTM_PL_FLAG_UNCACHED)
347                 state = tt_uncached;
348         else
349                 state = tt_cached;
350
351         return ttm_tt_set_caching(ttm, state);
352 }
353
354 static void ttm_tt_free_alloced_pages(struct ttm_tt *ttm)
355 {
356         int i;
357         struct page *cur_page;
358         struct ttm_backend *be = ttm->be;
359
360         if (be)
361                 be->func->clear(be);
362         (void)ttm_tt_set_caching(ttm, tt_cached);
363         for (i = 0; i < ttm->num_pages; ++i) {
364                 cur_page = ttm->pages[i];
365                 ttm->pages[i] = NULL;
366                 if (cur_page) {
367                         if (page_count(cur_page) != 1)
368                                 printk(KERN_ERR TTM_PFX
369                                        "Erroneous page count. "
370                                        "Leaking pages.\n");
371                         ttm_mem_global_free(ttm->bdev->mem_glob, PAGE_SIZE,
372                                             PageHighMem(cur_page));
373                         __free_page(cur_page);
374                 }
375         }
376         ttm->state = tt_unpopulated;
377         ttm->first_himem_page = ttm->num_pages;
378         ttm->last_lomem_page = -1;
379 }
380
381 void ttm_tt_destroy(struct ttm_tt *ttm)
382 {
383         struct ttm_backend *be;
384
385         if (unlikely(ttm == NULL))
386                 return;
387
388         be = ttm->be;
389         if (likely(be != NULL)) {
390                 be->func->destroy(be);
391                 ttm->be = NULL;
392         }
393
394         if (likely(ttm->pages != NULL)) {
395                 if (ttm->page_flags & TTM_PAGE_FLAG_USER)
396                         ttm_tt_free_user_pages(ttm);
397                 else
398                         ttm_tt_free_alloced_pages(ttm);
399
400                 ttm_tt_free_page_directory(ttm);
401         }
402
403         if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTANT_SWAP) &&
404             ttm->swap_storage)
405                 fput(ttm->swap_storage);
406
407         kfree(ttm);
408 }
409
410 int ttm_tt_set_user(struct ttm_tt *ttm,
411                     struct task_struct *tsk,
412                     unsigned long start, unsigned long num_pages)
413 {
414         struct mm_struct *mm = tsk->mm;
415         int ret;
416         int write = (ttm->page_flags & TTM_PAGE_FLAG_WRITE) != 0;
417         struct ttm_mem_global *mem_glob = ttm->bdev->mem_glob;
418
419         BUG_ON(num_pages != ttm->num_pages);
420         BUG_ON((ttm->page_flags & TTM_PAGE_FLAG_USER) == 0);
421
422         /**
423          * Account user pages as lowmem pages for now.
424          */
425
426         ret = ttm_mem_global_alloc(mem_glob, num_pages * PAGE_SIZE,
427                                    false, false, false);
428         if (unlikely(ret != 0))
429                 return ret;
430
431         down_read(&mm->mmap_sem);
432         ret = get_user_pages(tsk, mm, start, num_pages,
433                              write, 0, ttm->pages, NULL);
434         up_read(&mm->mmap_sem);
435
436         if (ret != num_pages && write) {
437                 ttm_tt_free_user_pages(ttm);
438                 ttm_mem_global_free(mem_glob, num_pages * PAGE_SIZE, false);
439                 return -ENOMEM;
440         }
441
442         ttm->tsk = tsk;
443         ttm->start = start;
444         ttm->state = tt_unbound;
445
446         return 0;
447 }
448
449 struct ttm_tt *ttm_tt_create(struct ttm_bo_device *bdev, unsigned long size,
450                              uint32_t page_flags, struct page *dummy_read_page)
451 {
452         struct ttm_bo_driver *bo_driver = bdev->driver;
453         struct ttm_tt *ttm;
454
455         if (!bo_driver)
456                 return NULL;
457
458         ttm = kzalloc(sizeof(*ttm), GFP_KERNEL);
459         if (!ttm)
460                 return NULL;
461
462         ttm->bdev = bdev;
463
464         ttm->num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
465         ttm->first_himem_page = ttm->num_pages;
466         ttm->last_lomem_page = -1;
467         ttm->caching_state = tt_cached;
468         ttm->page_flags = page_flags;
469
470         ttm->dummy_read_page = dummy_read_page;
471
472         ttm_tt_alloc_page_directory(ttm);
473         if (!ttm->pages) {
474                 ttm_tt_destroy(ttm);
475                 printk(KERN_ERR TTM_PFX "Failed allocating page table\n");
476                 return NULL;
477         }
478         ttm->be = bo_driver->create_ttm_backend_entry(bdev);
479         if (!ttm->be) {
480                 ttm_tt_destroy(ttm);
481                 printk(KERN_ERR TTM_PFX "Failed creating ttm backend entry\n");
482                 return NULL;
483         }
484         ttm->state = tt_unpopulated;
485         return ttm;
486 }
487
488 void ttm_tt_unbind(struct ttm_tt *ttm)
489 {
490         int ret;
491         struct ttm_backend *be = ttm->be;
492
493         if (ttm->state == tt_bound) {
494                 ret = be->func->unbind(be);
495                 BUG_ON(ret);
496                 ttm->state = tt_unbound;
497         }
498 }
499
500 int ttm_tt_bind(struct ttm_tt *ttm, struct ttm_mem_reg *bo_mem)
501 {
502         int ret = 0;
503         struct ttm_backend *be;
504
505         if (!ttm)
506                 return -EINVAL;
507
508         if (ttm->state == tt_bound)
509                 return 0;
510
511         be = ttm->be;
512
513         ret = ttm_tt_populate(ttm);
514         if (ret)
515                 return ret;
516
517         ret = be->func->bind(be, bo_mem);
518         if (ret) {
519                 printk(KERN_ERR TTM_PFX "Couldn't bind backend.\n");
520                 return ret;
521         }
522
523         ttm->state = tt_bound;
524
525         if (ttm->page_flags & TTM_PAGE_FLAG_USER)
526                 ttm->page_flags |= TTM_PAGE_FLAG_USER_DIRTY;
527         return 0;
528 }
529 EXPORT_SYMBOL(ttm_tt_bind);
530
531 static int ttm_tt_swapin(struct ttm_tt *ttm)
532 {
533         struct address_space *swap_space;
534         struct file *swap_storage;
535         struct page *from_page;
536         struct page *to_page;
537         void *from_virtual;
538         void *to_virtual;
539         int i;
540         int ret;
541
542         if (ttm->page_flags & TTM_PAGE_FLAG_USER) {
543                 ret = ttm_tt_set_user(ttm, ttm->tsk, ttm->start,
544                                       ttm->num_pages);
545                 if (unlikely(ret != 0))
546                         return ret;
547
548                 ttm->page_flags &= ~TTM_PAGE_FLAG_SWAPPED;
549                 return 0;
550         }
551
552         swap_storage = ttm->swap_storage;
553         BUG_ON(swap_storage == NULL);
554
555         swap_space = swap_storage->f_path.dentry->d_inode->i_mapping;
556
557         for (i = 0; i < ttm->num_pages; ++i) {
558                 from_page = read_mapping_page(swap_space, i, NULL);
559                 if (IS_ERR(from_page))
560                         goto out_err;
561                 to_page = __ttm_tt_get_page(ttm, i);
562                 if (unlikely(to_page == NULL))
563                         goto out_err;
564
565                 preempt_disable();
566                 from_virtual = kmap_atomic(from_page, KM_USER0);
567                 to_virtual = kmap_atomic(to_page, KM_USER1);
568                 memcpy(to_virtual, from_virtual, PAGE_SIZE);
569                 kunmap_atomic(to_virtual, KM_USER1);
570                 kunmap_atomic(from_virtual, KM_USER0);
571                 preempt_enable();
572                 page_cache_release(from_page);
573         }
574
575         if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTANT_SWAP))
576                 fput(swap_storage);
577         ttm->swap_storage = NULL;
578         ttm->page_flags &= ~TTM_PAGE_FLAG_SWAPPED;
579
580         return 0;
581 out_err:
582         ttm_tt_free_alloced_pages(ttm);
583         return -ENOMEM;
584 }
585
586 int ttm_tt_swapout(struct ttm_tt *ttm, struct file *persistant_swap_storage)
587 {
588         struct address_space *swap_space;
589         struct file *swap_storage;
590         struct page *from_page;
591         struct page *to_page;
592         void *from_virtual;
593         void *to_virtual;
594         int i;
595
596         BUG_ON(ttm->state != tt_unbound && ttm->state != tt_unpopulated);
597         BUG_ON(ttm->caching_state != tt_cached);
598
599         /*
600          * For user buffers, just unpin the pages, as there should be
601          * vma references.
602          */
603
604         if (ttm->page_flags & TTM_PAGE_FLAG_USER) {
605                 ttm_tt_free_user_pages(ttm);
606                 ttm->page_flags |= TTM_PAGE_FLAG_SWAPPED;
607                 ttm->swap_storage = NULL;
608                 return 0;
609         }
610
611         if (!persistant_swap_storage) {
612                 swap_storage = shmem_file_setup("ttm swap",
613                                                 ttm->num_pages << PAGE_SHIFT,
614                                                 0);
615                 if (unlikely(IS_ERR(swap_storage))) {
616                         printk(KERN_ERR "Failed allocating swap storage.\n");
617                         return -ENOMEM;
618                 }
619         } else
620                 swap_storage = persistant_swap_storage;
621
622         swap_space = swap_storage->f_path.dentry->d_inode->i_mapping;
623
624         for (i = 0; i < ttm->num_pages; ++i) {
625                 from_page = ttm->pages[i];
626                 if (unlikely(from_page == NULL))
627                         continue;
628                 to_page = read_mapping_page(swap_space, i, NULL);
629                 if (unlikely(to_page == NULL))
630                         goto out_err;
631
632                 preempt_disable();
633                 from_virtual = kmap_atomic(from_page, KM_USER0);
634                 to_virtual = kmap_atomic(to_page, KM_USER1);
635                 memcpy(to_virtual, from_virtual, PAGE_SIZE);
636                 kunmap_atomic(to_virtual, KM_USER1);
637                 kunmap_atomic(from_virtual, KM_USER0);
638                 preempt_enable();
639                 set_page_dirty(to_page);
640                 mark_page_accessed(to_page);
641                 page_cache_release(to_page);
642         }
643
644         ttm_tt_free_alloced_pages(ttm);
645         ttm->swap_storage = swap_storage;
646         ttm->page_flags |= TTM_PAGE_FLAG_SWAPPED;
647         if (persistant_swap_storage)
648                 ttm->page_flags |= TTM_PAGE_FLAG_PERSISTANT_SWAP;
649
650         return 0;
651 out_err:
652         if (!persistant_swap_storage)
653                 fput(swap_storage);
654
655         return -ENOMEM;
656 }