Merge branch 'drm-core-next' of git://git.kernel.org/pub/scm/linux/kernel/git/airlied...
[pandora-kernel.git] / drivers / gpu / drm / ttm / ttm_bo.c
1 /**************************************************************************
2  *
3  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 /*
28  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29  */
30
31 #include "ttm/ttm_module.h"
32 #include "ttm/ttm_bo_driver.h"
33 #include "ttm/ttm_placement.h"
34 #include <linux/jiffies.h>
35 #include <linux/slab.h>
36 #include <linux/sched.h>
37 #include <linux/mm.h>
38 #include <linux/file.h>
39 #include <linux/module.h>
40 #include <asm/atomic.h>
41
42 #define TTM_ASSERT_LOCKED(param)
43 #define TTM_DEBUG(fmt, arg...)
44 #define TTM_BO_HASH_ORDER 13
45
46 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo);
47 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
48 static void ttm_bo_global_kobj_release(struct kobject *kobj);
49
50 static struct attribute ttm_bo_count = {
51         .name = "bo_count",
52         .mode = S_IRUGO
53 };
54
55 static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type)
56 {
57         int i;
58
59         for (i = 0; i <= TTM_PL_PRIV5; i++)
60                 if (flags & (1 << i)) {
61                         *mem_type = i;
62                         return 0;
63                 }
64         return -EINVAL;
65 }
66
67 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
68 {
69         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
70
71         printk(KERN_ERR TTM_PFX "    has_type: %d\n", man->has_type);
72         printk(KERN_ERR TTM_PFX "    use_type: %d\n", man->use_type);
73         printk(KERN_ERR TTM_PFX "    flags: 0x%08X\n", man->flags);
74         printk(KERN_ERR TTM_PFX "    gpu_offset: 0x%08lX\n", man->gpu_offset);
75         printk(KERN_ERR TTM_PFX "    size: %llu\n", man->size);
76         printk(KERN_ERR TTM_PFX "    available_caching: 0x%08X\n",
77                 man->available_caching);
78         printk(KERN_ERR TTM_PFX "    default_caching: 0x%08X\n",
79                 man->default_caching);
80         if (mem_type != TTM_PL_SYSTEM)
81                 (*man->func->debug)(man, TTM_PFX);
82 }
83
84 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
85                                         struct ttm_placement *placement)
86 {
87         int i, ret, mem_type;
88
89         printk(KERN_ERR TTM_PFX "No space for %p (%lu pages, %luK, %luM)\n",
90                 bo, bo->mem.num_pages, bo->mem.size >> 10,
91                 bo->mem.size >> 20);
92         for (i = 0; i < placement->num_placement; i++) {
93                 ret = ttm_mem_type_from_flags(placement->placement[i],
94                                                 &mem_type);
95                 if (ret)
96                         return;
97                 printk(KERN_ERR TTM_PFX "  placement[%d]=0x%08X (%d)\n",
98                         i, placement->placement[i], mem_type);
99                 ttm_mem_type_debug(bo->bdev, mem_type);
100         }
101 }
102
103 static ssize_t ttm_bo_global_show(struct kobject *kobj,
104                                   struct attribute *attr,
105                                   char *buffer)
106 {
107         struct ttm_bo_global *glob =
108                 container_of(kobj, struct ttm_bo_global, kobj);
109
110         return snprintf(buffer, PAGE_SIZE, "%lu\n",
111                         (unsigned long) atomic_read(&glob->bo_count));
112 }
113
114 static struct attribute *ttm_bo_global_attrs[] = {
115         &ttm_bo_count,
116         NULL
117 };
118
119 static const struct sysfs_ops ttm_bo_global_ops = {
120         .show = &ttm_bo_global_show
121 };
122
123 static struct kobj_type ttm_bo_glob_kobj_type  = {
124         .release = &ttm_bo_global_kobj_release,
125         .sysfs_ops = &ttm_bo_global_ops,
126         .default_attrs = ttm_bo_global_attrs
127 };
128
129
130 static inline uint32_t ttm_bo_type_flags(unsigned type)
131 {
132         return 1 << (type);
133 }
134
135 static void ttm_bo_release_list(struct kref *list_kref)
136 {
137         struct ttm_buffer_object *bo =
138             container_of(list_kref, struct ttm_buffer_object, list_kref);
139         struct ttm_bo_device *bdev = bo->bdev;
140
141         BUG_ON(atomic_read(&bo->list_kref.refcount));
142         BUG_ON(atomic_read(&bo->kref.refcount));
143         BUG_ON(atomic_read(&bo->cpu_writers));
144         BUG_ON(bo->sync_obj != NULL);
145         BUG_ON(bo->mem.mm_node != NULL);
146         BUG_ON(!list_empty(&bo->lru));
147         BUG_ON(!list_empty(&bo->ddestroy));
148
149         if (bo->ttm)
150                 ttm_tt_destroy(bo->ttm);
151         atomic_dec(&bo->glob->bo_count);
152         if (bo->destroy)
153                 bo->destroy(bo);
154         else {
155                 ttm_mem_global_free(bdev->glob->mem_glob, bo->acc_size);
156                 kfree(bo);
157         }
158 }
159
160 int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo, bool interruptible)
161 {
162         if (interruptible) {
163                 return wait_event_interruptible(bo->event_queue,
164                                                atomic_read(&bo->reserved) == 0);
165         } else {
166                 wait_event(bo->event_queue, atomic_read(&bo->reserved) == 0);
167                 return 0;
168         }
169 }
170 EXPORT_SYMBOL(ttm_bo_wait_unreserved);
171
172 void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
173 {
174         struct ttm_bo_device *bdev = bo->bdev;
175         struct ttm_mem_type_manager *man;
176
177         BUG_ON(!atomic_read(&bo->reserved));
178
179         if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
180
181                 BUG_ON(!list_empty(&bo->lru));
182
183                 man = &bdev->man[bo->mem.mem_type];
184                 list_add_tail(&bo->lru, &man->lru);
185                 kref_get(&bo->list_kref);
186
187                 if (bo->ttm != NULL) {
188                         list_add_tail(&bo->swap, &bo->glob->swap_lru);
189                         kref_get(&bo->list_kref);
190                 }
191         }
192 }
193
194 int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
195 {
196         int put_count = 0;
197
198         if (!list_empty(&bo->swap)) {
199                 list_del_init(&bo->swap);
200                 ++put_count;
201         }
202         if (!list_empty(&bo->lru)) {
203                 list_del_init(&bo->lru);
204                 ++put_count;
205         }
206
207         /*
208          * TODO: Add a driver hook to delete from
209          * driver-specific LRU's here.
210          */
211
212         return put_count;
213 }
214
215 int ttm_bo_reserve_locked(struct ttm_buffer_object *bo,
216                           bool interruptible,
217                           bool no_wait, bool use_sequence, uint32_t sequence)
218 {
219         struct ttm_bo_global *glob = bo->glob;
220         int ret;
221
222         while (unlikely(atomic_cmpxchg(&bo->reserved, 0, 1) != 0)) {
223                 /**
224                  * Deadlock avoidance for multi-bo reserving.
225                  */
226                 if (use_sequence && bo->seq_valid) {
227                         /**
228                          * We've already reserved this one.
229                          */
230                         if (unlikely(sequence == bo->val_seq))
231                                 return -EDEADLK;
232                         /**
233                          * Already reserved by a thread that will not back
234                          * off for us. We need to back off.
235                          */
236                         if (unlikely(sequence - bo->val_seq < (1 << 31)))
237                                 return -EAGAIN;
238                 }
239
240                 if (no_wait)
241                         return -EBUSY;
242
243                 spin_unlock(&glob->lru_lock);
244                 ret = ttm_bo_wait_unreserved(bo, interruptible);
245                 spin_lock(&glob->lru_lock);
246
247                 if (unlikely(ret))
248                         return ret;
249         }
250
251         if (use_sequence) {
252                 /**
253                  * Wake up waiters that may need to recheck for deadlock,
254                  * if we decreased the sequence number.
255                  */
256                 if (unlikely((bo->val_seq - sequence < (1 << 31))
257                              || !bo->seq_valid))
258                         wake_up_all(&bo->event_queue);
259
260                 bo->val_seq = sequence;
261                 bo->seq_valid = true;
262         } else {
263                 bo->seq_valid = false;
264         }
265
266         return 0;
267 }
268 EXPORT_SYMBOL(ttm_bo_reserve);
269
270 static void ttm_bo_ref_bug(struct kref *list_kref)
271 {
272         BUG();
273 }
274
275 void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
276                          bool never_free)
277 {
278         kref_sub(&bo->list_kref, count,
279                  (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list);
280 }
281
282 int ttm_bo_reserve(struct ttm_buffer_object *bo,
283                    bool interruptible,
284                    bool no_wait, bool use_sequence, uint32_t sequence)
285 {
286         struct ttm_bo_global *glob = bo->glob;
287         int put_count = 0;
288         int ret;
289
290         spin_lock(&glob->lru_lock);
291         ret = ttm_bo_reserve_locked(bo, interruptible, no_wait, use_sequence,
292                                     sequence);
293         if (likely(ret == 0))
294                 put_count = ttm_bo_del_from_lru(bo);
295         spin_unlock(&glob->lru_lock);
296
297         ttm_bo_list_ref_sub(bo, put_count, true);
298
299         return ret;
300 }
301
302 void ttm_bo_unreserve_locked(struct ttm_buffer_object *bo)
303 {
304         ttm_bo_add_to_lru(bo);
305         atomic_set(&bo->reserved, 0);
306         wake_up_all(&bo->event_queue);
307 }
308
309 void ttm_bo_unreserve(struct ttm_buffer_object *bo)
310 {
311         struct ttm_bo_global *glob = bo->glob;
312
313         spin_lock(&glob->lru_lock);
314         ttm_bo_unreserve_locked(bo);
315         spin_unlock(&glob->lru_lock);
316 }
317 EXPORT_SYMBOL(ttm_bo_unreserve);
318
319 /*
320  * Call bo->mutex locked.
321  */
322 static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
323 {
324         struct ttm_bo_device *bdev = bo->bdev;
325         struct ttm_bo_global *glob = bo->glob;
326         int ret = 0;
327         uint32_t page_flags = 0;
328
329         TTM_ASSERT_LOCKED(&bo->mutex);
330         bo->ttm = NULL;
331
332         if (bdev->need_dma32)
333                 page_flags |= TTM_PAGE_FLAG_DMA32;
334
335         switch (bo->type) {
336         case ttm_bo_type_device:
337                 if (zero_alloc)
338                         page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
339         case ttm_bo_type_kernel:
340                 bo->ttm = ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
341                                         page_flags, glob->dummy_read_page);
342                 if (unlikely(bo->ttm == NULL))
343                         ret = -ENOMEM;
344                 break;
345         case ttm_bo_type_user:
346                 bo->ttm = ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
347                                         page_flags | TTM_PAGE_FLAG_USER,
348                                         glob->dummy_read_page);
349                 if (unlikely(bo->ttm == NULL)) {
350                         ret = -ENOMEM;
351                         break;
352                 }
353
354                 ret = ttm_tt_set_user(bo->ttm, current,
355                                       bo->buffer_start, bo->num_pages);
356                 if (unlikely(ret != 0))
357                         ttm_tt_destroy(bo->ttm);
358                 break;
359         default:
360                 printk(KERN_ERR TTM_PFX "Illegal buffer object type\n");
361                 ret = -EINVAL;
362                 break;
363         }
364
365         return ret;
366 }
367
368 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
369                                   struct ttm_mem_reg *mem,
370                                   bool evict, bool interruptible,
371                                   bool no_wait_reserve, bool no_wait_gpu)
372 {
373         struct ttm_bo_device *bdev = bo->bdev;
374         bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
375         bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
376         struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
377         struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
378         int ret = 0;
379
380         if (old_is_pci || new_is_pci ||
381             ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
382                 ret = ttm_mem_io_lock(old_man, true);
383                 if (unlikely(ret != 0))
384                         goto out_err;
385                 ttm_bo_unmap_virtual_locked(bo);
386                 ttm_mem_io_unlock(old_man);
387         }
388
389         /*
390          * Create and bind a ttm if required.
391          */
392
393         if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && (bo->ttm == NULL)) {
394                 ret = ttm_bo_add_ttm(bo, false);
395                 if (ret)
396                         goto out_err;
397
398                 ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
399                 if (ret)
400                         goto out_err;
401
402                 if (mem->mem_type != TTM_PL_SYSTEM) {
403                         ret = ttm_tt_bind(bo->ttm, mem);
404                         if (ret)
405                                 goto out_err;
406                 }
407
408                 if (bo->mem.mem_type == TTM_PL_SYSTEM) {
409                         bo->mem = *mem;
410                         mem->mm_node = NULL;
411                         goto moved;
412                 }
413
414         }
415
416         if (bdev->driver->move_notify)
417                 bdev->driver->move_notify(bo, mem);
418
419         if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
420             !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
421                 ret = ttm_bo_move_ttm(bo, evict, no_wait_reserve, no_wait_gpu, mem);
422         else if (bdev->driver->move)
423                 ret = bdev->driver->move(bo, evict, interruptible,
424                                          no_wait_reserve, no_wait_gpu, mem);
425         else
426                 ret = ttm_bo_move_memcpy(bo, evict, no_wait_reserve, no_wait_gpu, mem);
427
428         if (ret)
429                 goto out_err;
430
431 moved:
432         if (bo->evicted) {
433                 ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
434                 if (ret)
435                         printk(KERN_ERR TTM_PFX "Can not flush read caches\n");
436                 bo->evicted = false;
437         }
438
439         if (bo->mem.mm_node) {
440                 bo->offset = (bo->mem.start << PAGE_SHIFT) +
441                     bdev->man[bo->mem.mem_type].gpu_offset;
442                 bo->cur_placement = bo->mem.placement;
443         } else
444                 bo->offset = 0;
445
446         return 0;
447
448 out_err:
449         new_man = &bdev->man[bo->mem.mem_type];
450         if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
451                 ttm_tt_unbind(bo->ttm);
452                 ttm_tt_destroy(bo->ttm);
453                 bo->ttm = NULL;
454         }
455
456         return ret;
457 }
458
459 /**
460  * Call bo::reserved.
461  * Will release GPU memory type usage on destruction.
462  * This is the place to put in driver specific hooks to release
463  * driver private resources.
464  * Will release the bo::reserved lock.
465  */
466
467 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
468 {
469         if (bo->ttm) {
470                 ttm_tt_unbind(bo->ttm);
471                 ttm_tt_destroy(bo->ttm);
472                 bo->ttm = NULL;
473         }
474         ttm_bo_mem_put(bo, &bo->mem);
475
476         atomic_set(&bo->reserved, 0);
477
478         /*
479          * Make processes trying to reserve really pick it up.
480          */
481         smp_mb__after_atomic_dec();
482         wake_up_all(&bo->event_queue);
483 }
484
485 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
486 {
487         struct ttm_bo_device *bdev = bo->bdev;
488         struct ttm_bo_global *glob = bo->glob;
489         struct ttm_bo_driver *driver;
490         void *sync_obj = NULL;
491         void *sync_obj_arg;
492         int put_count;
493         int ret;
494
495         spin_lock(&bdev->fence_lock);
496         (void) ttm_bo_wait(bo, false, false, true);
497         if (!bo->sync_obj) {
498
499                 spin_lock(&glob->lru_lock);
500
501                 /**
502                  * Lock inversion between bo:reserve and bdev::fence_lock here,
503                  * but that's OK, since we're only trylocking.
504                  */
505
506                 ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
507
508                 if (unlikely(ret == -EBUSY))
509                         goto queue;
510
511                 spin_unlock(&bdev->fence_lock);
512                 put_count = ttm_bo_del_from_lru(bo);
513
514                 spin_unlock(&glob->lru_lock);
515                 ttm_bo_cleanup_memtype_use(bo);
516
517                 ttm_bo_list_ref_sub(bo, put_count, true);
518
519                 return;
520         } else {
521                 spin_lock(&glob->lru_lock);
522         }
523 queue:
524         driver = bdev->driver;
525         if (bo->sync_obj)
526                 sync_obj = driver->sync_obj_ref(bo->sync_obj);
527         sync_obj_arg = bo->sync_obj_arg;
528
529         kref_get(&bo->list_kref);
530         list_add_tail(&bo->ddestroy, &bdev->ddestroy);
531         spin_unlock(&glob->lru_lock);
532         spin_unlock(&bdev->fence_lock);
533
534         if (sync_obj) {
535                 driver->sync_obj_flush(sync_obj, sync_obj_arg);
536                 driver->sync_obj_unref(&sync_obj);
537         }
538         schedule_delayed_work(&bdev->wq,
539                               ((HZ / 100) < 1) ? 1 : HZ / 100);
540 }
541
542 /**
543  * function ttm_bo_cleanup_refs
544  * If bo idle, remove from delayed- and lru lists, and unref.
545  * If not idle, do nothing.
546  *
547  * @interruptible         Any sleeps should occur interruptibly.
548  * @no_wait_reserve       Never wait for reserve. Return -EBUSY instead.
549  * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
550  */
551
552 static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo,
553                                bool interruptible,
554                                bool no_wait_reserve,
555                                bool no_wait_gpu)
556 {
557         struct ttm_bo_device *bdev = bo->bdev;
558         struct ttm_bo_global *glob = bo->glob;
559         int put_count;
560         int ret = 0;
561
562 retry:
563         spin_lock(&bdev->fence_lock);
564         ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
565         spin_unlock(&bdev->fence_lock);
566
567         if (unlikely(ret != 0))
568                 return ret;
569
570         spin_lock(&glob->lru_lock);
571         ret = ttm_bo_reserve_locked(bo, interruptible,
572                                     no_wait_reserve, false, 0);
573
574         if (unlikely(ret != 0) || list_empty(&bo->ddestroy)) {
575                 spin_unlock(&glob->lru_lock);
576                 return ret;
577         }
578
579         /**
580          * We can re-check for sync object without taking
581          * the bo::lock since setting the sync object requires
582          * also bo::reserved. A busy object at this point may
583          * be caused by another thread recently starting an accelerated
584          * eviction.
585          */
586
587         if (unlikely(bo->sync_obj)) {
588                 atomic_set(&bo->reserved, 0);
589                 wake_up_all(&bo->event_queue);
590                 spin_unlock(&glob->lru_lock);
591                 goto retry;
592         }
593
594         put_count = ttm_bo_del_from_lru(bo);
595         list_del_init(&bo->ddestroy);
596         ++put_count;
597
598         spin_unlock(&glob->lru_lock);
599         ttm_bo_cleanup_memtype_use(bo);
600
601         ttm_bo_list_ref_sub(bo, put_count, true);
602
603         return 0;
604 }
605
606 /**
607  * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
608  * encountered buffers.
609  */
610
611 static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
612 {
613         struct ttm_bo_global *glob = bdev->glob;
614         struct ttm_buffer_object *entry = NULL;
615         int ret = 0;
616
617         spin_lock(&glob->lru_lock);
618         if (list_empty(&bdev->ddestroy))
619                 goto out_unlock;
620
621         entry = list_first_entry(&bdev->ddestroy,
622                 struct ttm_buffer_object, ddestroy);
623         kref_get(&entry->list_kref);
624
625         for (;;) {
626                 struct ttm_buffer_object *nentry = NULL;
627
628                 if (entry->ddestroy.next != &bdev->ddestroy) {
629                         nentry = list_first_entry(&entry->ddestroy,
630                                 struct ttm_buffer_object, ddestroy);
631                         kref_get(&nentry->list_kref);
632                 }
633
634                 spin_unlock(&glob->lru_lock);
635                 ret = ttm_bo_cleanup_refs(entry, false, !remove_all,
636                                           !remove_all);
637                 kref_put(&entry->list_kref, ttm_bo_release_list);
638                 entry = nentry;
639
640                 if (ret || !entry)
641                         goto out;
642
643                 spin_lock(&glob->lru_lock);
644                 if (list_empty(&entry->ddestroy))
645                         break;
646         }
647
648 out_unlock:
649         spin_unlock(&glob->lru_lock);
650 out:
651         if (entry)
652                 kref_put(&entry->list_kref, ttm_bo_release_list);
653         return ret;
654 }
655
656 static void ttm_bo_delayed_workqueue(struct work_struct *work)
657 {
658         struct ttm_bo_device *bdev =
659             container_of(work, struct ttm_bo_device, wq.work);
660
661         if (ttm_bo_delayed_delete(bdev, false)) {
662                 schedule_delayed_work(&bdev->wq,
663                                       ((HZ / 100) < 1) ? 1 : HZ / 100);
664         }
665 }
666
667 static void ttm_bo_release(struct kref *kref)
668 {
669         struct ttm_buffer_object *bo =
670             container_of(kref, struct ttm_buffer_object, kref);
671         struct ttm_bo_device *bdev = bo->bdev;
672         struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
673
674         if (likely(bo->vm_node != NULL)) {
675                 rb_erase(&bo->vm_rb, &bdev->addr_space_rb);
676                 drm_mm_put_block(bo->vm_node);
677                 bo->vm_node = NULL;
678         }
679         write_unlock(&bdev->vm_lock);
680         ttm_mem_io_lock(man, false);
681         ttm_mem_io_free_vm(bo);
682         ttm_mem_io_unlock(man);
683         ttm_bo_cleanup_refs_or_queue(bo);
684         kref_put(&bo->list_kref, ttm_bo_release_list);
685         write_lock(&bdev->vm_lock);
686 }
687
688 void ttm_bo_unref(struct ttm_buffer_object **p_bo)
689 {
690         struct ttm_buffer_object *bo = *p_bo;
691         struct ttm_bo_device *bdev = bo->bdev;
692
693         *p_bo = NULL;
694         write_lock(&bdev->vm_lock);
695         kref_put(&bo->kref, ttm_bo_release);
696         write_unlock(&bdev->vm_lock);
697 }
698 EXPORT_SYMBOL(ttm_bo_unref);
699
700 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
701 {
702         return cancel_delayed_work_sync(&bdev->wq);
703 }
704 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
705
706 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
707 {
708         if (resched)
709                 schedule_delayed_work(&bdev->wq,
710                                       ((HZ / 100) < 1) ? 1 : HZ / 100);
711 }
712 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
713
714 static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
715                         bool no_wait_reserve, bool no_wait_gpu)
716 {
717         struct ttm_bo_device *bdev = bo->bdev;
718         struct ttm_mem_reg evict_mem;
719         struct ttm_placement placement;
720         int ret = 0;
721
722         spin_lock(&bdev->fence_lock);
723         ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
724         spin_unlock(&bdev->fence_lock);
725
726         if (unlikely(ret != 0)) {
727                 if (ret != -ERESTARTSYS) {
728                         printk(KERN_ERR TTM_PFX
729                                "Failed to expire sync object before "
730                                "buffer eviction.\n");
731                 }
732                 goto out;
733         }
734
735         BUG_ON(!atomic_read(&bo->reserved));
736
737         evict_mem = bo->mem;
738         evict_mem.mm_node = NULL;
739         evict_mem.bus.io_reserved_vm = false;
740         evict_mem.bus.io_reserved_count = 0;
741
742         placement.fpfn = 0;
743         placement.lpfn = 0;
744         placement.num_placement = 0;
745         placement.num_busy_placement = 0;
746         bdev->driver->evict_flags(bo, &placement);
747         ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
748                                 no_wait_reserve, no_wait_gpu);
749         if (ret) {
750                 if (ret != -ERESTARTSYS) {
751                         printk(KERN_ERR TTM_PFX
752                                "Failed to find memory space for "
753                                "buffer 0x%p eviction.\n", bo);
754                         ttm_bo_mem_space_debug(bo, &placement);
755                 }
756                 goto out;
757         }
758
759         ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
760                                      no_wait_reserve, no_wait_gpu);
761         if (ret) {
762                 if (ret != -ERESTARTSYS)
763                         printk(KERN_ERR TTM_PFX "Buffer eviction failed\n");
764                 ttm_bo_mem_put(bo, &evict_mem);
765                 goto out;
766         }
767         bo->evicted = true;
768 out:
769         return ret;
770 }
771
772 static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
773                                 uint32_t mem_type,
774                                 bool interruptible, bool no_wait_reserve,
775                                 bool no_wait_gpu)
776 {
777         struct ttm_bo_global *glob = bdev->glob;
778         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
779         struct ttm_buffer_object *bo;
780         int ret, put_count = 0;
781
782 retry:
783         spin_lock(&glob->lru_lock);
784         if (list_empty(&man->lru)) {
785                 spin_unlock(&glob->lru_lock);
786                 return -EBUSY;
787         }
788
789         bo = list_first_entry(&man->lru, struct ttm_buffer_object, lru);
790         kref_get(&bo->list_kref);
791
792         if (!list_empty(&bo->ddestroy)) {
793                 spin_unlock(&glob->lru_lock);
794                 ret = ttm_bo_cleanup_refs(bo, interruptible,
795                                           no_wait_reserve, no_wait_gpu);
796                 kref_put(&bo->list_kref, ttm_bo_release_list);
797
798                 if (likely(ret == 0 || ret == -ERESTARTSYS))
799                         return ret;
800
801                 goto retry;
802         }
803
804         ret = ttm_bo_reserve_locked(bo, false, no_wait_reserve, false, 0);
805
806         if (unlikely(ret == -EBUSY)) {
807                 spin_unlock(&glob->lru_lock);
808                 if (likely(!no_wait_gpu))
809                         ret = ttm_bo_wait_unreserved(bo, interruptible);
810
811                 kref_put(&bo->list_kref, ttm_bo_release_list);
812
813                 /**
814                  * We *need* to retry after releasing the lru lock.
815                  */
816
817                 if (unlikely(ret != 0))
818                         return ret;
819                 goto retry;
820         }
821
822         put_count = ttm_bo_del_from_lru(bo);
823         spin_unlock(&glob->lru_lock);
824
825         BUG_ON(ret != 0);
826
827         ttm_bo_list_ref_sub(bo, put_count, true);
828
829         ret = ttm_bo_evict(bo, interruptible, no_wait_reserve, no_wait_gpu);
830         ttm_bo_unreserve(bo);
831
832         kref_put(&bo->list_kref, ttm_bo_release_list);
833         return ret;
834 }
835
836 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
837 {
838         struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
839
840         if (mem->mm_node)
841                 (*man->func->put_node)(man, mem);
842 }
843 EXPORT_SYMBOL(ttm_bo_mem_put);
844
845 /**
846  * Repeatedly evict memory from the LRU for @mem_type until we create enough
847  * space, or we've evicted everything and there isn't enough space.
848  */
849 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
850                                         uint32_t mem_type,
851                                         struct ttm_placement *placement,
852                                         struct ttm_mem_reg *mem,
853                                         bool interruptible,
854                                         bool no_wait_reserve,
855                                         bool no_wait_gpu)
856 {
857         struct ttm_bo_device *bdev = bo->bdev;
858         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
859         int ret;
860
861         do {
862                 ret = (*man->func->get_node)(man, bo, placement, mem);
863                 if (unlikely(ret != 0))
864                         return ret;
865                 if (mem->mm_node)
866                         break;
867                 ret = ttm_mem_evict_first(bdev, mem_type, interruptible,
868                                                 no_wait_reserve, no_wait_gpu);
869                 if (unlikely(ret != 0))
870                         return ret;
871         } while (1);
872         if (mem->mm_node == NULL)
873                 return -ENOMEM;
874         mem->mem_type = mem_type;
875         return 0;
876 }
877
878 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
879                                       uint32_t cur_placement,
880                                       uint32_t proposed_placement)
881 {
882         uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
883         uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
884
885         /**
886          * Keep current caching if possible.
887          */
888
889         if ((cur_placement & caching) != 0)
890                 result |= (cur_placement & caching);
891         else if ((man->default_caching & caching) != 0)
892                 result |= man->default_caching;
893         else if ((TTM_PL_FLAG_CACHED & caching) != 0)
894                 result |= TTM_PL_FLAG_CACHED;
895         else if ((TTM_PL_FLAG_WC & caching) != 0)
896                 result |= TTM_PL_FLAG_WC;
897         else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
898                 result |= TTM_PL_FLAG_UNCACHED;
899
900         return result;
901 }
902
903 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
904                                  bool disallow_fixed,
905                                  uint32_t mem_type,
906                                  uint32_t proposed_placement,
907                                  uint32_t *masked_placement)
908 {
909         uint32_t cur_flags = ttm_bo_type_flags(mem_type);
910
911         if ((man->flags & TTM_MEMTYPE_FLAG_FIXED) && disallow_fixed)
912                 return false;
913
914         if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
915                 return false;
916
917         if ((proposed_placement & man->available_caching) == 0)
918                 return false;
919
920         cur_flags |= (proposed_placement & man->available_caching);
921
922         *masked_placement = cur_flags;
923         return true;
924 }
925
926 /**
927  * Creates space for memory region @mem according to its type.
928  *
929  * This function first searches for free space in compatible memory types in
930  * the priority order defined by the driver.  If free space isn't found, then
931  * ttm_bo_mem_force_space is attempted in priority order to evict and find
932  * space.
933  */
934 int ttm_bo_mem_space(struct ttm_buffer_object *bo,
935                         struct ttm_placement *placement,
936                         struct ttm_mem_reg *mem,
937                         bool interruptible, bool no_wait_reserve,
938                         bool no_wait_gpu)
939 {
940         struct ttm_bo_device *bdev = bo->bdev;
941         struct ttm_mem_type_manager *man;
942         uint32_t mem_type = TTM_PL_SYSTEM;
943         uint32_t cur_flags = 0;
944         bool type_found = false;
945         bool type_ok = false;
946         bool has_erestartsys = false;
947         int i, ret;
948
949         mem->mm_node = NULL;
950         for (i = 0; i < placement->num_placement; ++i) {
951                 ret = ttm_mem_type_from_flags(placement->placement[i],
952                                                 &mem_type);
953                 if (ret)
954                         return ret;
955                 man = &bdev->man[mem_type];
956
957                 type_ok = ttm_bo_mt_compatible(man,
958                                                 bo->type == ttm_bo_type_user,
959                                                 mem_type,
960                                                 placement->placement[i],
961                                                 &cur_flags);
962
963                 if (!type_ok)
964                         continue;
965
966                 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
967                                                   cur_flags);
968                 /*
969                  * Use the access and other non-mapping-related flag bits from
970                  * the memory placement flags to the current flags
971                  */
972                 ttm_flag_masked(&cur_flags, placement->placement[i],
973                                 ~TTM_PL_MASK_MEMTYPE);
974
975                 if (mem_type == TTM_PL_SYSTEM)
976                         break;
977
978                 if (man->has_type && man->use_type) {
979                         type_found = true;
980                         ret = (*man->func->get_node)(man, bo, placement, mem);
981                         if (unlikely(ret))
982                                 return ret;
983                 }
984                 if (mem->mm_node)
985                         break;
986         }
987
988         if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
989                 mem->mem_type = mem_type;
990                 mem->placement = cur_flags;
991                 return 0;
992         }
993
994         if (!type_found)
995                 return -EINVAL;
996
997         for (i = 0; i < placement->num_busy_placement; ++i) {
998                 ret = ttm_mem_type_from_flags(placement->busy_placement[i],
999                                                 &mem_type);
1000                 if (ret)
1001                         return ret;
1002                 man = &bdev->man[mem_type];
1003                 if (!man->has_type)
1004                         continue;
1005                 if (!ttm_bo_mt_compatible(man,
1006                                                 bo->type == ttm_bo_type_user,
1007                                                 mem_type,
1008                                                 placement->busy_placement[i],
1009                                                 &cur_flags))
1010                         continue;
1011
1012                 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
1013                                                   cur_flags);
1014                 /*
1015                  * Use the access and other non-mapping-related flag bits from
1016                  * the memory placement flags to the current flags
1017                  */
1018                 ttm_flag_masked(&cur_flags, placement->busy_placement[i],
1019                                 ~TTM_PL_MASK_MEMTYPE);
1020
1021
1022                 if (mem_type == TTM_PL_SYSTEM) {
1023                         mem->mem_type = mem_type;
1024                         mem->placement = cur_flags;
1025                         mem->mm_node = NULL;
1026                         return 0;
1027                 }
1028
1029                 ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem,
1030                                                 interruptible, no_wait_reserve, no_wait_gpu);
1031                 if (ret == 0 && mem->mm_node) {
1032                         mem->placement = cur_flags;
1033                         return 0;
1034                 }
1035                 if (ret == -ERESTARTSYS)
1036                         has_erestartsys = true;
1037         }
1038         ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
1039         return ret;
1040 }
1041 EXPORT_SYMBOL(ttm_bo_mem_space);
1042
1043 int ttm_bo_wait_cpu(struct ttm_buffer_object *bo, bool no_wait)
1044 {
1045         if ((atomic_read(&bo->cpu_writers) > 0) && no_wait)
1046                 return -EBUSY;
1047
1048         return wait_event_interruptible(bo->event_queue,
1049                                         atomic_read(&bo->cpu_writers) == 0);
1050 }
1051 EXPORT_SYMBOL(ttm_bo_wait_cpu);
1052
1053 int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1054                         struct ttm_placement *placement,
1055                         bool interruptible, bool no_wait_reserve,
1056                         bool no_wait_gpu)
1057 {
1058         int ret = 0;
1059         struct ttm_mem_reg mem;
1060         struct ttm_bo_device *bdev = bo->bdev;
1061
1062         BUG_ON(!atomic_read(&bo->reserved));
1063
1064         /*
1065          * FIXME: It's possible to pipeline buffer moves.
1066          * Have the driver move function wait for idle when necessary,
1067          * instead of doing it here.
1068          */
1069         spin_lock(&bdev->fence_lock);
1070         ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
1071         spin_unlock(&bdev->fence_lock);
1072         if (ret)
1073                 return ret;
1074         mem.num_pages = bo->num_pages;
1075         mem.size = mem.num_pages << PAGE_SHIFT;
1076         mem.page_alignment = bo->mem.page_alignment;
1077         mem.bus.io_reserved_vm = false;
1078         mem.bus.io_reserved_count = 0;
1079         /*
1080          * Determine where to move the buffer.
1081          */
1082         ret = ttm_bo_mem_space(bo, placement, &mem, interruptible, no_wait_reserve, no_wait_gpu);
1083         if (ret)
1084                 goto out_unlock;
1085         ret = ttm_bo_handle_move_mem(bo, &mem, false, interruptible, no_wait_reserve, no_wait_gpu);
1086 out_unlock:
1087         if (ret && mem.mm_node)
1088                 ttm_bo_mem_put(bo, &mem);
1089         return ret;
1090 }
1091
1092 static int ttm_bo_mem_compat(struct ttm_placement *placement,
1093                              struct ttm_mem_reg *mem)
1094 {
1095         int i;
1096
1097         if (mem->mm_node && placement->lpfn != 0 &&
1098             (mem->start < placement->fpfn ||
1099              mem->start + mem->num_pages > placement->lpfn))
1100                 return -1;
1101
1102         for (i = 0; i < placement->num_placement; i++) {
1103                 if ((placement->placement[i] & mem->placement &
1104                         TTM_PL_MASK_CACHING) &&
1105                         (placement->placement[i] & mem->placement &
1106                         TTM_PL_MASK_MEM))
1107                         return i;
1108         }
1109         return -1;
1110 }
1111
1112 int ttm_bo_validate(struct ttm_buffer_object *bo,
1113                         struct ttm_placement *placement,
1114                         bool interruptible, bool no_wait_reserve,
1115                         bool no_wait_gpu)
1116 {
1117         int ret;
1118
1119         BUG_ON(!atomic_read(&bo->reserved));
1120         /* Check that range is valid */
1121         if (placement->lpfn || placement->fpfn)
1122                 if (placement->fpfn > placement->lpfn ||
1123                         (placement->lpfn - placement->fpfn) < bo->num_pages)
1124                         return -EINVAL;
1125         /*
1126          * Check whether we need to move buffer.
1127          */
1128         ret = ttm_bo_mem_compat(placement, &bo->mem);
1129         if (ret < 0) {
1130                 ret = ttm_bo_move_buffer(bo, placement, interruptible, no_wait_reserve, no_wait_gpu);
1131                 if (ret)
1132                         return ret;
1133         } else {
1134                 /*
1135                  * Use the access and other non-mapping-related flag bits from
1136                  * the compatible memory placement flags to the active flags
1137                  */
1138                 ttm_flag_masked(&bo->mem.placement, placement->placement[ret],
1139                                 ~TTM_PL_MASK_MEMTYPE);
1140         }
1141         /*
1142          * We might need to add a TTM.
1143          */
1144         if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1145                 ret = ttm_bo_add_ttm(bo, true);
1146                 if (ret)
1147                         return ret;
1148         }
1149         return 0;
1150 }
1151 EXPORT_SYMBOL(ttm_bo_validate);
1152
1153 int ttm_bo_check_placement(struct ttm_buffer_object *bo,
1154                                 struct ttm_placement *placement)
1155 {
1156         BUG_ON((placement->fpfn || placement->lpfn) &&
1157                (bo->mem.num_pages > (placement->lpfn - placement->fpfn)));
1158
1159         return 0;
1160 }
1161
1162 int ttm_bo_init(struct ttm_bo_device *bdev,
1163                 struct ttm_buffer_object *bo,
1164                 unsigned long size,
1165                 enum ttm_bo_type type,
1166                 struct ttm_placement *placement,
1167                 uint32_t page_alignment,
1168                 unsigned long buffer_start,
1169                 bool interruptible,
1170                 struct file *persistant_swap_storage,
1171                 size_t acc_size,
1172                 void (*destroy) (struct ttm_buffer_object *))
1173 {
1174         int ret = 0;
1175         unsigned long num_pages;
1176
1177         size += buffer_start & ~PAGE_MASK;
1178         num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1179         if (num_pages == 0) {
1180                 printk(KERN_ERR TTM_PFX "Illegal buffer object size.\n");
1181                 if (destroy)
1182                         (*destroy)(bo);
1183                 else
1184                         kfree(bo);
1185                 return -EINVAL;
1186         }
1187         bo->destroy = destroy;
1188
1189         kref_init(&bo->kref);
1190         kref_init(&bo->list_kref);
1191         atomic_set(&bo->cpu_writers, 0);
1192         atomic_set(&bo->reserved, 1);
1193         init_waitqueue_head(&bo->event_queue);
1194         INIT_LIST_HEAD(&bo->lru);
1195         INIT_LIST_HEAD(&bo->ddestroy);
1196         INIT_LIST_HEAD(&bo->swap);
1197         INIT_LIST_HEAD(&bo->io_reserve_lru);
1198         bo->bdev = bdev;
1199         bo->glob = bdev->glob;
1200         bo->type = type;
1201         bo->num_pages = num_pages;
1202         bo->mem.size = num_pages << PAGE_SHIFT;
1203         bo->mem.mem_type = TTM_PL_SYSTEM;
1204         bo->mem.num_pages = bo->num_pages;
1205         bo->mem.mm_node = NULL;
1206         bo->mem.page_alignment = page_alignment;
1207         bo->mem.bus.io_reserved_vm = false;
1208         bo->mem.bus.io_reserved_count = 0;
1209         bo->buffer_start = buffer_start & PAGE_MASK;
1210         bo->priv_flags = 0;
1211         bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1212         bo->seq_valid = false;
1213         bo->persistant_swap_storage = persistant_swap_storage;
1214         bo->acc_size = acc_size;
1215         atomic_inc(&bo->glob->bo_count);
1216
1217         ret = ttm_bo_check_placement(bo, placement);
1218         if (unlikely(ret != 0))
1219                 goto out_err;
1220
1221         /*
1222          * For ttm_bo_type_device buffers, allocate
1223          * address space from the device.
1224          */
1225         if (bo->type == ttm_bo_type_device) {
1226                 ret = ttm_bo_setup_vm(bo);
1227                 if (ret)
1228                         goto out_err;
1229         }
1230
1231         ret = ttm_bo_validate(bo, placement, interruptible, false, false);
1232         if (ret)
1233                 goto out_err;
1234
1235         ttm_bo_unreserve(bo);
1236         return 0;
1237
1238 out_err:
1239         ttm_bo_unreserve(bo);
1240         ttm_bo_unref(&bo);
1241
1242         return ret;
1243 }
1244 EXPORT_SYMBOL(ttm_bo_init);
1245
1246 static inline size_t ttm_bo_size(struct ttm_bo_global *glob,
1247                                  unsigned long num_pages)
1248 {
1249         size_t page_array_size = (num_pages * sizeof(void *) + PAGE_SIZE - 1) &
1250             PAGE_MASK;
1251
1252         return glob->ttm_bo_size + 2 * page_array_size;
1253 }
1254
1255 int ttm_bo_create(struct ttm_bo_device *bdev,
1256                         unsigned long size,
1257                         enum ttm_bo_type type,
1258                         struct ttm_placement *placement,
1259                         uint32_t page_alignment,
1260                         unsigned long buffer_start,
1261                         bool interruptible,
1262                         struct file *persistant_swap_storage,
1263                         struct ttm_buffer_object **p_bo)
1264 {
1265         struct ttm_buffer_object *bo;
1266         struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1267         int ret;
1268
1269         size_t acc_size =
1270             ttm_bo_size(bdev->glob, (size + PAGE_SIZE - 1) >> PAGE_SHIFT);
1271         ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1272         if (unlikely(ret != 0))
1273                 return ret;
1274
1275         bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1276
1277         if (unlikely(bo == NULL)) {
1278                 ttm_mem_global_free(mem_glob, acc_size);
1279                 return -ENOMEM;
1280         }
1281
1282         ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1283                                 buffer_start, interruptible,
1284                                 persistant_swap_storage, acc_size, NULL);
1285         if (likely(ret == 0))
1286                 *p_bo = bo;
1287
1288         return ret;
1289 }
1290
1291 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1292                                         unsigned mem_type, bool allow_errors)
1293 {
1294         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1295         struct ttm_bo_global *glob = bdev->glob;
1296         int ret;
1297
1298         /*
1299          * Can't use standard list traversal since we're unlocking.
1300          */
1301
1302         spin_lock(&glob->lru_lock);
1303         while (!list_empty(&man->lru)) {
1304                 spin_unlock(&glob->lru_lock);
1305                 ret = ttm_mem_evict_first(bdev, mem_type, false, false, false);
1306                 if (ret) {
1307                         if (allow_errors) {
1308                                 return ret;
1309                         } else {
1310                                 printk(KERN_ERR TTM_PFX
1311                                         "Cleanup eviction failed\n");
1312                         }
1313                 }
1314                 spin_lock(&glob->lru_lock);
1315         }
1316         spin_unlock(&glob->lru_lock);
1317         return 0;
1318 }
1319
1320 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1321 {
1322         struct ttm_mem_type_manager *man;
1323         int ret = -EINVAL;
1324
1325         if (mem_type >= TTM_NUM_MEM_TYPES) {
1326                 printk(KERN_ERR TTM_PFX "Illegal memory type %d\n", mem_type);
1327                 return ret;
1328         }
1329         man = &bdev->man[mem_type];
1330
1331         if (!man->has_type) {
1332                 printk(KERN_ERR TTM_PFX "Trying to take down uninitialized "
1333                        "memory manager type %u\n", mem_type);
1334                 return ret;
1335         }
1336
1337         man->use_type = false;
1338         man->has_type = false;
1339
1340         ret = 0;
1341         if (mem_type > 0) {
1342                 ttm_bo_force_list_clean(bdev, mem_type, false);
1343
1344                 ret = (*man->func->takedown)(man);
1345         }
1346
1347         return ret;
1348 }
1349 EXPORT_SYMBOL(ttm_bo_clean_mm);
1350
1351 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1352 {
1353         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1354
1355         if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1356                 printk(KERN_ERR TTM_PFX
1357                        "Illegal memory manager memory type %u.\n",
1358                        mem_type);
1359                 return -EINVAL;
1360         }
1361
1362         if (!man->has_type) {
1363                 printk(KERN_ERR TTM_PFX
1364                        "Memory type %u has not been initialized.\n",
1365                        mem_type);
1366                 return 0;
1367         }
1368
1369         return ttm_bo_force_list_clean(bdev, mem_type, true);
1370 }
1371 EXPORT_SYMBOL(ttm_bo_evict_mm);
1372
1373 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1374                         unsigned long p_size)
1375 {
1376         int ret = -EINVAL;
1377         struct ttm_mem_type_manager *man;
1378
1379         BUG_ON(type >= TTM_NUM_MEM_TYPES);
1380         man = &bdev->man[type];
1381         BUG_ON(man->has_type);
1382         man->io_reserve_fastpath = true;
1383         man->use_io_reserve_lru = false;
1384         mutex_init(&man->io_reserve_mutex);
1385         INIT_LIST_HEAD(&man->io_reserve_lru);
1386
1387         ret = bdev->driver->init_mem_type(bdev, type, man);
1388         if (ret)
1389                 return ret;
1390         man->bdev = bdev;
1391
1392         ret = 0;
1393         if (type != TTM_PL_SYSTEM) {
1394                 ret = (*man->func->init)(man, p_size);
1395                 if (ret)
1396                         return ret;
1397         }
1398         man->has_type = true;
1399         man->use_type = true;
1400         man->size = p_size;
1401
1402         INIT_LIST_HEAD(&man->lru);
1403
1404         return 0;
1405 }
1406 EXPORT_SYMBOL(ttm_bo_init_mm);
1407
1408 static void ttm_bo_global_kobj_release(struct kobject *kobj)
1409 {
1410         struct ttm_bo_global *glob =
1411                 container_of(kobj, struct ttm_bo_global, kobj);
1412
1413         ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1414         __free_page(glob->dummy_read_page);
1415         kfree(glob);
1416 }
1417
1418 void ttm_bo_global_release(struct drm_global_reference *ref)
1419 {
1420         struct ttm_bo_global *glob = ref->object;
1421
1422         kobject_del(&glob->kobj);
1423         kobject_put(&glob->kobj);
1424 }
1425 EXPORT_SYMBOL(ttm_bo_global_release);
1426
1427 int ttm_bo_global_init(struct drm_global_reference *ref)
1428 {
1429         struct ttm_bo_global_ref *bo_ref =
1430                 container_of(ref, struct ttm_bo_global_ref, ref);
1431         struct ttm_bo_global *glob = ref->object;
1432         int ret;
1433
1434         mutex_init(&glob->device_list_mutex);
1435         spin_lock_init(&glob->lru_lock);
1436         glob->mem_glob = bo_ref->mem_glob;
1437         glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1438
1439         if (unlikely(glob->dummy_read_page == NULL)) {
1440                 ret = -ENOMEM;
1441                 goto out_no_drp;
1442         }
1443
1444         INIT_LIST_HEAD(&glob->swap_lru);
1445         INIT_LIST_HEAD(&glob->device_list);
1446
1447         ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1448         ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1449         if (unlikely(ret != 0)) {
1450                 printk(KERN_ERR TTM_PFX
1451                        "Could not register buffer object swapout.\n");
1452                 goto out_no_shrink;
1453         }
1454
1455         glob->ttm_bo_extra_size =
1456                 ttm_round_pot(sizeof(struct ttm_tt)) +
1457                 ttm_round_pot(sizeof(struct ttm_backend));
1458
1459         glob->ttm_bo_size = glob->ttm_bo_extra_size +
1460                 ttm_round_pot(sizeof(struct ttm_buffer_object));
1461
1462         atomic_set(&glob->bo_count, 0);
1463
1464         ret = kobject_init_and_add(
1465                 &glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1466         if (unlikely(ret != 0))
1467                 kobject_put(&glob->kobj);
1468         return ret;
1469 out_no_shrink:
1470         __free_page(glob->dummy_read_page);
1471 out_no_drp:
1472         kfree(glob);
1473         return ret;
1474 }
1475 EXPORT_SYMBOL(ttm_bo_global_init);
1476
1477
1478 int ttm_bo_device_release(struct ttm_bo_device *bdev)
1479 {
1480         int ret = 0;
1481         unsigned i = TTM_NUM_MEM_TYPES;
1482         struct ttm_mem_type_manager *man;
1483         struct ttm_bo_global *glob = bdev->glob;
1484
1485         while (i--) {
1486                 man = &bdev->man[i];
1487                 if (man->has_type) {
1488                         man->use_type = false;
1489                         if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1490                                 ret = -EBUSY;
1491                                 printk(KERN_ERR TTM_PFX
1492                                        "DRM memory manager type %d "
1493                                        "is not clean.\n", i);
1494                         }
1495                         man->has_type = false;
1496                 }
1497         }
1498
1499         mutex_lock(&glob->device_list_mutex);
1500         list_del(&bdev->device_list);
1501         mutex_unlock(&glob->device_list_mutex);
1502
1503         cancel_delayed_work_sync(&bdev->wq);
1504
1505         while (ttm_bo_delayed_delete(bdev, true))
1506                 ;
1507
1508         spin_lock(&glob->lru_lock);
1509         if (list_empty(&bdev->ddestroy))
1510                 TTM_DEBUG("Delayed destroy list was clean\n");
1511
1512         if (list_empty(&bdev->man[0].lru))
1513                 TTM_DEBUG("Swap list was clean\n");
1514         spin_unlock(&glob->lru_lock);
1515
1516         BUG_ON(!drm_mm_clean(&bdev->addr_space_mm));
1517         write_lock(&bdev->vm_lock);
1518         drm_mm_takedown(&bdev->addr_space_mm);
1519         write_unlock(&bdev->vm_lock);
1520
1521         return ret;
1522 }
1523 EXPORT_SYMBOL(ttm_bo_device_release);
1524
1525 int ttm_bo_device_init(struct ttm_bo_device *bdev,
1526                        struct ttm_bo_global *glob,
1527                        struct ttm_bo_driver *driver,
1528                        uint64_t file_page_offset,
1529                        bool need_dma32)
1530 {
1531         int ret = -EINVAL;
1532
1533         rwlock_init(&bdev->vm_lock);
1534         bdev->driver = driver;
1535
1536         memset(bdev->man, 0, sizeof(bdev->man));
1537
1538         /*
1539          * Initialize the system memory buffer type.
1540          * Other types need to be driver / IOCTL initialized.
1541          */
1542         ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1543         if (unlikely(ret != 0))
1544                 goto out_no_sys;
1545
1546         bdev->addr_space_rb = RB_ROOT;
1547         ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000);
1548         if (unlikely(ret != 0))
1549                 goto out_no_addr_mm;
1550
1551         INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1552         bdev->nice_mode = true;
1553         INIT_LIST_HEAD(&bdev->ddestroy);
1554         bdev->dev_mapping = NULL;
1555         bdev->glob = glob;
1556         bdev->need_dma32 = need_dma32;
1557         bdev->val_seq = 0;
1558         spin_lock_init(&bdev->fence_lock);
1559         mutex_lock(&glob->device_list_mutex);
1560         list_add_tail(&bdev->device_list, &glob->device_list);
1561         mutex_unlock(&glob->device_list_mutex);
1562
1563         return 0;
1564 out_no_addr_mm:
1565         ttm_bo_clean_mm(bdev, 0);
1566 out_no_sys:
1567         return ret;
1568 }
1569 EXPORT_SYMBOL(ttm_bo_device_init);
1570
1571 /*
1572  * buffer object vm functions.
1573  */
1574
1575 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1576 {
1577         struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1578
1579         if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1580                 if (mem->mem_type == TTM_PL_SYSTEM)
1581                         return false;
1582
1583                 if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1584                         return false;
1585
1586                 if (mem->placement & TTM_PL_FLAG_CACHED)
1587                         return false;
1588         }
1589         return true;
1590 }
1591
1592 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1593 {
1594         struct ttm_bo_device *bdev = bo->bdev;
1595         loff_t offset = (loff_t) bo->addr_space_offset;
1596         loff_t holelen = ((loff_t) bo->mem.num_pages) << PAGE_SHIFT;
1597
1598         if (!bdev->dev_mapping)
1599                 return;
1600         unmap_mapping_range(bdev->dev_mapping, offset, holelen, 1);
1601         ttm_mem_io_free_vm(bo);
1602 }
1603
1604 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1605 {
1606         struct ttm_bo_device *bdev = bo->bdev;
1607         struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1608
1609         ttm_mem_io_lock(man, false);
1610         ttm_bo_unmap_virtual_locked(bo);
1611         ttm_mem_io_unlock(man);
1612 }
1613
1614
1615 EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1616
1617 static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo)
1618 {
1619         struct ttm_bo_device *bdev = bo->bdev;
1620         struct rb_node **cur = &bdev->addr_space_rb.rb_node;
1621         struct rb_node *parent = NULL;
1622         struct ttm_buffer_object *cur_bo;
1623         unsigned long offset = bo->vm_node->start;
1624         unsigned long cur_offset;
1625
1626         while (*cur) {
1627                 parent = *cur;
1628                 cur_bo = rb_entry(parent, struct ttm_buffer_object, vm_rb);
1629                 cur_offset = cur_bo->vm_node->start;
1630                 if (offset < cur_offset)
1631                         cur = &parent->rb_left;
1632                 else if (offset > cur_offset)
1633                         cur = &parent->rb_right;
1634                 else
1635                         BUG();
1636         }
1637
1638         rb_link_node(&bo->vm_rb, parent, cur);
1639         rb_insert_color(&bo->vm_rb, &bdev->addr_space_rb);
1640 }
1641
1642 /**
1643  * ttm_bo_setup_vm:
1644  *
1645  * @bo: the buffer to allocate address space for
1646  *
1647  * Allocate address space in the drm device so that applications
1648  * can mmap the buffer and access the contents. This only
1649  * applies to ttm_bo_type_device objects as others are not
1650  * placed in the drm device address space.
1651  */
1652
1653 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo)
1654 {
1655         struct ttm_bo_device *bdev = bo->bdev;
1656         int ret;
1657
1658 retry_pre_get:
1659         ret = drm_mm_pre_get(&bdev->addr_space_mm);
1660         if (unlikely(ret != 0))
1661                 return ret;
1662
1663         write_lock(&bdev->vm_lock);
1664         bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm,
1665                                          bo->mem.num_pages, 0, 0);
1666
1667         if (unlikely(bo->vm_node == NULL)) {
1668                 ret = -ENOMEM;
1669                 goto out_unlock;
1670         }
1671
1672         bo->vm_node = drm_mm_get_block_atomic(bo->vm_node,
1673                                               bo->mem.num_pages, 0);
1674
1675         if (unlikely(bo->vm_node == NULL)) {
1676                 write_unlock(&bdev->vm_lock);
1677                 goto retry_pre_get;
1678         }
1679
1680         ttm_bo_vm_insert_rb(bo);
1681         write_unlock(&bdev->vm_lock);
1682         bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT;
1683
1684         return 0;
1685 out_unlock:
1686         write_unlock(&bdev->vm_lock);
1687         return ret;
1688 }
1689
1690 int ttm_bo_wait(struct ttm_buffer_object *bo,
1691                 bool lazy, bool interruptible, bool no_wait)
1692 {
1693         struct ttm_bo_driver *driver = bo->bdev->driver;
1694         struct ttm_bo_device *bdev = bo->bdev;
1695         void *sync_obj;
1696         void *sync_obj_arg;
1697         int ret = 0;
1698
1699         if (likely(bo->sync_obj == NULL))
1700                 return 0;
1701
1702         while (bo->sync_obj) {
1703
1704                 if (driver->sync_obj_signaled(bo->sync_obj, bo->sync_obj_arg)) {
1705                         void *tmp_obj = bo->sync_obj;
1706                         bo->sync_obj = NULL;
1707                         clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
1708                         spin_unlock(&bdev->fence_lock);
1709                         driver->sync_obj_unref(&tmp_obj);
1710                         spin_lock(&bdev->fence_lock);
1711                         continue;
1712                 }
1713
1714                 if (no_wait)
1715                         return -EBUSY;
1716
1717                 sync_obj = driver->sync_obj_ref(bo->sync_obj);
1718                 sync_obj_arg = bo->sync_obj_arg;
1719                 spin_unlock(&bdev->fence_lock);
1720                 ret = driver->sync_obj_wait(sync_obj, sync_obj_arg,
1721                                             lazy, interruptible);
1722                 if (unlikely(ret != 0)) {
1723                         driver->sync_obj_unref(&sync_obj);
1724                         spin_lock(&bdev->fence_lock);
1725                         return ret;
1726                 }
1727                 spin_lock(&bdev->fence_lock);
1728                 if (likely(bo->sync_obj == sync_obj &&
1729                            bo->sync_obj_arg == sync_obj_arg)) {
1730                         void *tmp_obj = bo->sync_obj;
1731                         bo->sync_obj = NULL;
1732                         clear_bit(TTM_BO_PRIV_FLAG_MOVING,
1733                                   &bo->priv_flags);
1734                         spin_unlock(&bdev->fence_lock);
1735                         driver->sync_obj_unref(&sync_obj);
1736                         driver->sync_obj_unref(&tmp_obj);
1737                         spin_lock(&bdev->fence_lock);
1738                 } else {
1739                         spin_unlock(&bdev->fence_lock);
1740                         driver->sync_obj_unref(&sync_obj);
1741                         spin_lock(&bdev->fence_lock);
1742                 }
1743         }
1744         return 0;
1745 }
1746 EXPORT_SYMBOL(ttm_bo_wait);
1747
1748 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1749 {
1750         struct ttm_bo_device *bdev = bo->bdev;
1751         int ret = 0;
1752
1753         /*
1754          * Using ttm_bo_reserve makes sure the lru lists are updated.
1755          */
1756
1757         ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
1758         if (unlikely(ret != 0))
1759                 return ret;
1760         spin_lock(&bdev->fence_lock);
1761         ret = ttm_bo_wait(bo, false, true, no_wait);
1762         spin_unlock(&bdev->fence_lock);
1763         if (likely(ret == 0))
1764                 atomic_inc(&bo->cpu_writers);
1765         ttm_bo_unreserve(bo);
1766         return ret;
1767 }
1768 EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1769
1770 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1771 {
1772         if (atomic_dec_and_test(&bo->cpu_writers))
1773                 wake_up_all(&bo->event_queue);
1774 }
1775 EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1776
1777 /**
1778  * A buffer object shrink method that tries to swap out the first
1779  * buffer object on the bo_global::swap_lru list.
1780  */
1781
1782 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1783 {
1784         struct ttm_bo_global *glob =
1785             container_of(shrink, struct ttm_bo_global, shrink);
1786         struct ttm_buffer_object *bo;
1787         int ret = -EBUSY;
1788         int put_count;
1789         uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1790
1791         spin_lock(&glob->lru_lock);
1792         while (ret == -EBUSY) {
1793                 if (unlikely(list_empty(&glob->swap_lru))) {
1794                         spin_unlock(&glob->lru_lock);
1795                         return -EBUSY;
1796                 }
1797
1798                 bo = list_first_entry(&glob->swap_lru,
1799                                       struct ttm_buffer_object, swap);
1800                 kref_get(&bo->list_kref);
1801
1802                 if (!list_empty(&bo->ddestroy)) {
1803                         spin_unlock(&glob->lru_lock);
1804                         (void) ttm_bo_cleanup_refs(bo, false, false, false);
1805                         kref_put(&bo->list_kref, ttm_bo_release_list);
1806                         continue;
1807                 }
1808
1809                 /**
1810                  * Reserve buffer. Since we unlock while sleeping, we need
1811                  * to re-check that nobody removed us from the swap-list while
1812                  * we slept.
1813                  */
1814
1815                 ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
1816                 if (unlikely(ret == -EBUSY)) {
1817                         spin_unlock(&glob->lru_lock);
1818                         ttm_bo_wait_unreserved(bo, false);
1819                         kref_put(&bo->list_kref, ttm_bo_release_list);
1820                         spin_lock(&glob->lru_lock);
1821                 }
1822         }
1823
1824         BUG_ON(ret != 0);
1825         put_count = ttm_bo_del_from_lru(bo);
1826         spin_unlock(&glob->lru_lock);
1827
1828         ttm_bo_list_ref_sub(bo, put_count, true);
1829
1830         /**
1831          * Wait for GPU, then move to system cached.
1832          */
1833
1834         spin_lock(&bo->bdev->fence_lock);
1835         ret = ttm_bo_wait(bo, false, false, false);
1836         spin_unlock(&bo->bdev->fence_lock);
1837
1838         if (unlikely(ret != 0))
1839                 goto out;
1840
1841         if ((bo->mem.placement & swap_placement) != swap_placement) {
1842                 struct ttm_mem_reg evict_mem;
1843
1844                 evict_mem = bo->mem;
1845                 evict_mem.mm_node = NULL;
1846                 evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1847                 evict_mem.mem_type = TTM_PL_SYSTEM;
1848
1849                 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1850                                              false, false, false);
1851                 if (unlikely(ret != 0))
1852                         goto out;
1853         }
1854
1855         ttm_bo_unmap_virtual(bo);
1856
1857         /**
1858          * Swap out. Buffer will be swapped in again as soon as
1859          * anyone tries to access a ttm page.
1860          */
1861
1862         if (bo->bdev->driver->swap_notify)
1863                 bo->bdev->driver->swap_notify(bo);
1864
1865         ret = ttm_tt_swapout(bo->ttm, bo->persistant_swap_storage);
1866 out:
1867
1868         /**
1869          *
1870          * Unreserve without putting on LRU to avoid swapping out an
1871          * already swapped buffer.
1872          */
1873
1874         atomic_set(&bo->reserved, 0);
1875         wake_up_all(&bo->event_queue);
1876         kref_put(&bo->list_kref, ttm_bo_release_list);
1877         return ret;
1878 }
1879
1880 void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1881 {
1882         while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1883                 ;
1884 }
1885 EXPORT_SYMBOL(ttm_bo_swapout_all);