Merge branch 'exynos-drm' of git://git.infradead.org/users/kmpark/linux-samsung into...
[pandora-kernel.git] / drivers / gpu / drm / ttm / ttm_bo.c
1 /**************************************************************************
2  *
3  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 /*
28  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29  */
30
31 #include "ttm/ttm_module.h"
32 #include "ttm/ttm_bo_driver.h"
33 #include "ttm/ttm_placement.h"
34 #include <linux/jiffies.h>
35 #include <linux/slab.h>
36 #include <linux/sched.h>
37 #include <linux/mm.h>
38 #include <linux/file.h>
39 #include <linux/module.h>
40 #include <linux/atomic.h>
41
42 #define TTM_ASSERT_LOCKED(param)
43 #define TTM_DEBUG(fmt, arg...)
44 #define TTM_BO_HASH_ORDER 13
45
46 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo);
47 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
48 static void ttm_bo_global_kobj_release(struct kobject *kobj);
49
50 static struct attribute ttm_bo_count = {
51         .name = "bo_count",
52         .mode = S_IRUGO
53 };
54
55 static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type)
56 {
57         int i;
58
59         for (i = 0; i <= TTM_PL_PRIV5; i++)
60                 if (flags & (1 << i)) {
61                         *mem_type = i;
62                         return 0;
63                 }
64         return -EINVAL;
65 }
66
67 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
68 {
69         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
70
71         printk(KERN_ERR TTM_PFX "    has_type: %d\n", man->has_type);
72         printk(KERN_ERR TTM_PFX "    use_type: %d\n", man->use_type);
73         printk(KERN_ERR TTM_PFX "    flags: 0x%08X\n", man->flags);
74         printk(KERN_ERR TTM_PFX "    gpu_offset: 0x%08lX\n", man->gpu_offset);
75         printk(KERN_ERR TTM_PFX "    size: %llu\n", man->size);
76         printk(KERN_ERR TTM_PFX "    available_caching: 0x%08X\n",
77                 man->available_caching);
78         printk(KERN_ERR TTM_PFX "    default_caching: 0x%08X\n",
79                 man->default_caching);
80         if (mem_type != TTM_PL_SYSTEM)
81                 (*man->func->debug)(man, TTM_PFX);
82 }
83
84 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
85                                         struct ttm_placement *placement)
86 {
87         int i, ret, mem_type;
88
89         printk(KERN_ERR TTM_PFX "No space for %p (%lu pages, %luK, %luM)\n",
90                 bo, bo->mem.num_pages, bo->mem.size >> 10,
91                 bo->mem.size >> 20);
92         for (i = 0; i < placement->num_placement; i++) {
93                 ret = ttm_mem_type_from_flags(placement->placement[i],
94                                                 &mem_type);
95                 if (ret)
96                         return;
97                 printk(KERN_ERR TTM_PFX "  placement[%d]=0x%08X (%d)\n",
98                         i, placement->placement[i], mem_type);
99                 ttm_mem_type_debug(bo->bdev, mem_type);
100         }
101 }
102
103 static ssize_t ttm_bo_global_show(struct kobject *kobj,
104                                   struct attribute *attr,
105                                   char *buffer)
106 {
107         struct ttm_bo_global *glob =
108                 container_of(kobj, struct ttm_bo_global, kobj);
109
110         return snprintf(buffer, PAGE_SIZE, "%lu\n",
111                         (unsigned long) atomic_read(&glob->bo_count));
112 }
113
114 static struct attribute *ttm_bo_global_attrs[] = {
115         &ttm_bo_count,
116         NULL
117 };
118
119 static const struct sysfs_ops ttm_bo_global_ops = {
120         .show = &ttm_bo_global_show
121 };
122
123 static struct kobj_type ttm_bo_glob_kobj_type  = {
124         .release = &ttm_bo_global_kobj_release,
125         .sysfs_ops = &ttm_bo_global_ops,
126         .default_attrs = ttm_bo_global_attrs
127 };
128
129
130 static inline uint32_t ttm_bo_type_flags(unsigned type)
131 {
132         return 1 << (type);
133 }
134
135 static void ttm_bo_release_list(struct kref *list_kref)
136 {
137         struct ttm_buffer_object *bo =
138             container_of(list_kref, struct ttm_buffer_object, list_kref);
139         struct ttm_bo_device *bdev = bo->bdev;
140
141         BUG_ON(atomic_read(&bo->list_kref.refcount));
142         BUG_ON(atomic_read(&bo->kref.refcount));
143         BUG_ON(atomic_read(&bo->cpu_writers));
144         BUG_ON(bo->sync_obj != NULL);
145         BUG_ON(bo->mem.mm_node != NULL);
146         BUG_ON(!list_empty(&bo->lru));
147         BUG_ON(!list_empty(&bo->ddestroy));
148
149         if (bo->ttm)
150                 ttm_tt_destroy(bo->ttm);
151         atomic_dec(&bo->glob->bo_count);
152         if (bo->destroy)
153                 bo->destroy(bo);
154         else {
155                 ttm_mem_global_free(bdev->glob->mem_glob, bo->acc_size);
156                 kfree(bo);
157         }
158 }
159
160 int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo, bool interruptible)
161 {
162         if (interruptible) {
163                 return wait_event_interruptible(bo->event_queue,
164                                                atomic_read(&bo->reserved) == 0);
165         } else {
166                 wait_event(bo->event_queue, atomic_read(&bo->reserved) == 0);
167                 return 0;
168         }
169 }
170 EXPORT_SYMBOL(ttm_bo_wait_unreserved);
171
172 void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
173 {
174         struct ttm_bo_device *bdev = bo->bdev;
175         struct ttm_mem_type_manager *man;
176
177         BUG_ON(!atomic_read(&bo->reserved));
178
179         if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
180
181                 BUG_ON(!list_empty(&bo->lru));
182
183                 man = &bdev->man[bo->mem.mem_type];
184                 list_add_tail(&bo->lru, &man->lru);
185                 kref_get(&bo->list_kref);
186
187                 if (bo->ttm != NULL) {
188                         list_add_tail(&bo->swap, &bo->glob->swap_lru);
189                         kref_get(&bo->list_kref);
190                 }
191         }
192 }
193
194 int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
195 {
196         int put_count = 0;
197
198         if (!list_empty(&bo->swap)) {
199                 list_del_init(&bo->swap);
200                 ++put_count;
201         }
202         if (!list_empty(&bo->lru)) {
203                 list_del_init(&bo->lru);
204                 ++put_count;
205         }
206
207         /*
208          * TODO: Add a driver hook to delete from
209          * driver-specific LRU's here.
210          */
211
212         return put_count;
213 }
214
215 int ttm_bo_reserve_locked(struct ttm_buffer_object *bo,
216                           bool interruptible,
217                           bool no_wait, bool use_sequence, uint32_t sequence)
218 {
219         struct ttm_bo_global *glob = bo->glob;
220         int ret;
221
222         while (unlikely(atomic_cmpxchg(&bo->reserved, 0, 1) != 0)) {
223                 /**
224                  * Deadlock avoidance for multi-bo reserving.
225                  */
226                 if (use_sequence && bo->seq_valid) {
227                         /**
228                          * We've already reserved this one.
229                          */
230                         if (unlikely(sequence == bo->val_seq))
231                                 return -EDEADLK;
232                         /**
233                          * Already reserved by a thread that will not back
234                          * off for us. We need to back off.
235                          */
236                         if (unlikely(sequence - bo->val_seq < (1 << 31)))
237                                 return -EAGAIN;
238                 }
239
240                 if (no_wait)
241                         return -EBUSY;
242
243                 spin_unlock(&glob->lru_lock);
244                 ret = ttm_bo_wait_unreserved(bo, interruptible);
245                 spin_lock(&glob->lru_lock);
246
247                 if (unlikely(ret))
248                         return ret;
249         }
250
251         if (use_sequence) {
252                 /**
253                  * Wake up waiters that may need to recheck for deadlock,
254                  * if we decreased the sequence number.
255                  */
256                 if (unlikely((bo->val_seq - sequence < (1 << 31))
257                              || !bo->seq_valid))
258                         wake_up_all(&bo->event_queue);
259
260                 bo->val_seq = sequence;
261                 bo->seq_valid = true;
262         } else {
263                 bo->seq_valid = false;
264         }
265
266         return 0;
267 }
268 EXPORT_SYMBOL(ttm_bo_reserve);
269
270 static void ttm_bo_ref_bug(struct kref *list_kref)
271 {
272         BUG();
273 }
274
275 void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
276                          bool never_free)
277 {
278         kref_sub(&bo->list_kref, count,
279                  (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list);
280 }
281
282 int ttm_bo_reserve(struct ttm_buffer_object *bo,
283                    bool interruptible,
284                    bool no_wait, bool use_sequence, uint32_t sequence)
285 {
286         struct ttm_bo_global *glob = bo->glob;
287         int put_count = 0;
288         int ret;
289
290         spin_lock(&glob->lru_lock);
291         ret = ttm_bo_reserve_locked(bo, interruptible, no_wait, use_sequence,
292                                     sequence);
293         if (likely(ret == 0))
294                 put_count = ttm_bo_del_from_lru(bo);
295         spin_unlock(&glob->lru_lock);
296
297         ttm_bo_list_ref_sub(bo, put_count, true);
298
299         return ret;
300 }
301
302 void ttm_bo_unreserve_locked(struct ttm_buffer_object *bo)
303 {
304         ttm_bo_add_to_lru(bo);
305         atomic_set(&bo->reserved, 0);
306         wake_up_all(&bo->event_queue);
307 }
308
309 void ttm_bo_unreserve(struct ttm_buffer_object *bo)
310 {
311         struct ttm_bo_global *glob = bo->glob;
312
313         spin_lock(&glob->lru_lock);
314         ttm_bo_unreserve_locked(bo);
315         spin_unlock(&glob->lru_lock);
316 }
317 EXPORT_SYMBOL(ttm_bo_unreserve);
318
319 /*
320  * Call bo->mutex locked.
321  */
322 static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
323 {
324         struct ttm_bo_device *bdev = bo->bdev;
325         struct ttm_bo_global *glob = bo->glob;
326         int ret = 0;
327         uint32_t page_flags = 0;
328
329         TTM_ASSERT_LOCKED(&bo->mutex);
330         bo->ttm = NULL;
331
332         if (bdev->need_dma32)
333                 page_flags |= TTM_PAGE_FLAG_DMA32;
334
335         switch (bo->type) {
336         case ttm_bo_type_device:
337                 if (zero_alloc)
338                         page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
339         case ttm_bo_type_kernel:
340                 bo->ttm = ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
341                                         page_flags, glob->dummy_read_page);
342                 if (unlikely(bo->ttm == NULL))
343                         ret = -ENOMEM;
344                 break;
345         case ttm_bo_type_user:
346                 bo->ttm = ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
347                                         page_flags | TTM_PAGE_FLAG_USER,
348                                         glob->dummy_read_page);
349                 if (unlikely(bo->ttm == NULL)) {
350                         ret = -ENOMEM;
351                         break;
352                 }
353
354                 ret = ttm_tt_set_user(bo->ttm, current,
355                                       bo->buffer_start, bo->num_pages);
356                 if (unlikely(ret != 0)) {
357                         ttm_tt_destroy(bo->ttm);
358                         bo->ttm = NULL;
359                 }
360                 break;
361         default:
362                 printk(KERN_ERR TTM_PFX "Illegal buffer object type\n");
363                 ret = -EINVAL;
364                 break;
365         }
366
367         return ret;
368 }
369
370 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
371                                   struct ttm_mem_reg *mem,
372                                   bool evict, bool interruptible,
373                                   bool no_wait_reserve, bool no_wait_gpu)
374 {
375         struct ttm_bo_device *bdev = bo->bdev;
376         bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
377         bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
378         struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
379         struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
380         int ret = 0;
381
382         if (old_is_pci || new_is_pci ||
383             ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
384                 ret = ttm_mem_io_lock(old_man, true);
385                 if (unlikely(ret != 0))
386                         goto out_err;
387                 ttm_bo_unmap_virtual_locked(bo);
388                 ttm_mem_io_unlock(old_man);
389         }
390
391         /*
392          * Create and bind a ttm if required.
393          */
394
395         if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
396                 if (bo->ttm == NULL) {
397                         bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
398                         ret = ttm_bo_add_ttm(bo, zero);
399                         if (ret)
400                                 goto out_err;
401                 }
402
403                 ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
404                 if (ret)
405                         goto out_err;
406
407                 if (mem->mem_type != TTM_PL_SYSTEM) {
408                         ret = ttm_tt_bind(bo->ttm, mem);
409                         if (ret)
410                                 goto out_err;
411                 }
412
413                 if (bo->mem.mem_type == TTM_PL_SYSTEM) {
414                         if (bdev->driver->move_notify)
415                                 bdev->driver->move_notify(bo, mem);
416                         bo->mem = *mem;
417                         mem->mm_node = NULL;
418                         goto moved;
419                 }
420         }
421
422         if (bdev->driver->move_notify)
423                 bdev->driver->move_notify(bo, mem);
424
425         if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
426             !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
427                 ret = ttm_bo_move_ttm(bo, evict, no_wait_reserve, no_wait_gpu, mem);
428         else if (bdev->driver->move)
429                 ret = bdev->driver->move(bo, evict, interruptible,
430                                          no_wait_reserve, no_wait_gpu, mem);
431         else
432                 ret = ttm_bo_move_memcpy(bo, evict, no_wait_reserve, no_wait_gpu, mem);
433
434         if (ret)
435                 goto out_err;
436
437 moved:
438         if (bo->evicted) {
439                 ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
440                 if (ret)
441                         printk(KERN_ERR TTM_PFX "Can not flush read caches\n");
442                 bo->evicted = false;
443         }
444
445         if (bo->mem.mm_node) {
446                 bo->offset = (bo->mem.start << PAGE_SHIFT) +
447                     bdev->man[bo->mem.mem_type].gpu_offset;
448                 bo->cur_placement = bo->mem.placement;
449         } else
450                 bo->offset = 0;
451
452         return 0;
453
454 out_err:
455         new_man = &bdev->man[bo->mem.mem_type];
456         if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
457                 ttm_tt_unbind(bo->ttm);
458                 ttm_tt_destroy(bo->ttm);
459                 bo->ttm = NULL;
460         }
461
462         return ret;
463 }
464
465 /**
466  * Call bo::reserved.
467  * Will release GPU memory type usage on destruction.
468  * This is the place to put in driver specific hooks to release
469  * driver private resources.
470  * Will release the bo::reserved lock.
471  */
472
473 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
474 {
475         if (bo->ttm) {
476                 ttm_tt_unbind(bo->ttm);
477                 ttm_tt_destroy(bo->ttm);
478                 bo->ttm = NULL;
479         }
480         ttm_bo_mem_put(bo, &bo->mem);
481
482         atomic_set(&bo->reserved, 0);
483
484         /*
485          * Make processes trying to reserve really pick it up.
486          */
487         smp_mb__after_atomic_dec();
488         wake_up_all(&bo->event_queue);
489 }
490
491 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
492 {
493         struct ttm_bo_device *bdev = bo->bdev;
494         struct ttm_bo_global *glob = bo->glob;
495         struct ttm_bo_driver *driver;
496         void *sync_obj = NULL;
497         void *sync_obj_arg;
498         int put_count;
499         int ret;
500
501         spin_lock(&bdev->fence_lock);
502         (void) ttm_bo_wait(bo, false, false, true);
503         if (!bo->sync_obj) {
504
505                 spin_lock(&glob->lru_lock);
506
507                 /**
508                  * Lock inversion between bo:reserve and bdev::fence_lock here,
509                  * but that's OK, since we're only trylocking.
510                  */
511
512                 ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
513
514                 if (unlikely(ret == -EBUSY))
515                         goto queue;
516
517                 spin_unlock(&bdev->fence_lock);
518                 put_count = ttm_bo_del_from_lru(bo);
519
520                 spin_unlock(&glob->lru_lock);
521                 ttm_bo_cleanup_memtype_use(bo);
522
523                 ttm_bo_list_ref_sub(bo, put_count, true);
524
525                 return;
526         } else {
527                 spin_lock(&glob->lru_lock);
528         }
529 queue:
530         driver = bdev->driver;
531         if (bo->sync_obj)
532                 sync_obj = driver->sync_obj_ref(bo->sync_obj);
533         sync_obj_arg = bo->sync_obj_arg;
534
535         kref_get(&bo->list_kref);
536         list_add_tail(&bo->ddestroy, &bdev->ddestroy);
537         spin_unlock(&glob->lru_lock);
538         spin_unlock(&bdev->fence_lock);
539
540         if (sync_obj) {
541                 driver->sync_obj_flush(sync_obj, sync_obj_arg);
542                 driver->sync_obj_unref(&sync_obj);
543         }
544         schedule_delayed_work(&bdev->wq,
545                               ((HZ / 100) < 1) ? 1 : HZ / 100);
546 }
547
548 /**
549  * function ttm_bo_cleanup_refs
550  * If bo idle, remove from delayed- and lru lists, and unref.
551  * If not idle, do nothing.
552  *
553  * @interruptible         Any sleeps should occur interruptibly.
554  * @no_wait_reserve       Never wait for reserve. Return -EBUSY instead.
555  * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
556  */
557
558 static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo,
559                                bool interruptible,
560                                bool no_wait_reserve,
561                                bool no_wait_gpu)
562 {
563         struct ttm_bo_device *bdev = bo->bdev;
564         struct ttm_bo_global *glob = bo->glob;
565         int put_count;
566         int ret = 0;
567
568 retry:
569         spin_lock(&bdev->fence_lock);
570         ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
571         spin_unlock(&bdev->fence_lock);
572
573         if (unlikely(ret != 0))
574                 return ret;
575
576         spin_lock(&glob->lru_lock);
577
578         if (unlikely(list_empty(&bo->ddestroy))) {
579                 spin_unlock(&glob->lru_lock);
580                 return 0;
581         }
582
583         ret = ttm_bo_reserve_locked(bo, interruptible,
584                                     no_wait_reserve, false, 0);
585
586         if (unlikely(ret != 0)) {
587                 spin_unlock(&glob->lru_lock);
588                 return ret;
589         }
590
591         /**
592          * We can re-check for sync object without taking
593          * the bo::lock since setting the sync object requires
594          * also bo::reserved. A busy object at this point may
595          * be caused by another thread recently starting an accelerated
596          * eviction.
597          */
598
599         if (unlikely(bo->sync_obj)) {
600                 atomic_set(&bo->reserved, 0);
601                 wake_up_all(&bo->event_queue);
602                 spin_unlock(&glob->lru_lock);
603                 goto retry;
604         }
605
606         put_count = ttm_bo_del_from_lru(bo);
607         list_del_init(&bo->ddestroy);
608         ++put_count;
609
610         spin_unlock(&glob->lru_lock);
611         ttm_bo_cleanup_memtype_use(bo);
612
613         ttm_bo_list_ref_sub(bo, put_count, true);
614
615         return 0;
616 }
617
618 /**
619  * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
620  * encountered buffers.
621  */
622
623 static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
624 {
625         struct ttm_bo_global *glob = bdev->glob;
626         struct ttm_buffer_object *entry = NULL;
627         int ret = 0;
628
629         spin_lock(&glob->lru_lock);
630         if (list_empty(&bdev->ddestroy))
631                 goto out_unlock;
632
633         entry = list_first_entry(&bdev->ddestroy,
634                 struct ttm_buffer_object, ddestroy);
635         kref_get(&entry->list_kref);
636
637         for (;;) {
638                 struct ttm_buffer_object *nentry = NULL;
639
640                 if (entry->ddestroy.next != &bdev->ddestroy) {
641                         nentry = list_first_entry(&entry->ddestroy,
642                                 struct ttm_buffer_object, ddestroy);
643                         kref_get(&nentry->list_kref);
644                 }
645
646                 spin_unlock(&glob->lru_lock);
647                 ret = ttm_bo_cleanup_refs(entry, false, !remove_all,
648                                           !remove_all);
649                 kref_put(&entry->list_kref, ttm_bo_release_list);
650                 entry = nentry;
651
652                 if (ret || !entry)
653                         goto out;
654
655                 spin_lock(&glob->lru_lock);
656                 if (list_empty(&entry->ddestroy))
657                         break;
658         }
659
660 out_unlock:
661         spin_unlock(&glob->lru_lock);
662 out:
663         if (entry)
664                 kref_put(&entry->list_kref, ttm_bo_release_list);
665         return ret;
666 }
667
668 static void ttm_bo_delayed_workqueue(struct work_struct *work)
669 {
670         struct ttm_bo_device *bdev =
671             container_of(work, struct ttm_bo_device, wq.work);
672
673         if (ttm_bo_delayed_delete(bdev, false)) {
674                 schedule_delayed_work(&bdev->wq,
675                                       ((HZ / 100) < 1) ? 1 : HZ / 100);
676         }
677 }
678
679 static void ttm_bo_release(struct kref *kref)
680 {
681         struct ttm_buffer_object *bo =
682             container_of(kref, struct ttm_buffer_object, kref);
683         struct ttm_bo_device *bdev = bo->bdev;
684         struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
685
686         if (likely(bo->vm_node != NULL)) {
687                 rb_erase(&bo->vm_rb, &bdev->addr_space_rb);
688                 drm_mm_put_block(bo->vm_node);
689                 bo->vm_node = NULL;
690         }
691         write_unlock(&bdev->vm_lock);
692         ttm_mem_io_lock(man, false);
693         ttm_mem_io_free_vm(bo);
694         ttm_mem_io_unlock(man);
695         ttm_bo_cleanup_refs_or_queue(bo);
696         kref_put(&bo->list_kref, ttm_bo_release_list);
697         write_lock(&bdev->vm_lock);
698 }
699
700 void ttm_bo_unref(struct ttm_buffer_object **p_bo)
701 {
702         struct ttm_buffer_object *bo = *p_bo;
703         struct ttm_bo_device *bdev = bo->bdev;
704
705         *p_bo = NULL;
706         write_lock(&bdev->vm_lock);
707         kref_put(&bo->kref, ttm_bo_release);
708         write_unlock(&bdev->vm_lock);
709 }
710 EXPORT_SYMBOL(ttm_bo_unref);
711
712 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
713 {
714         return cancel_delayed_work_sync(&bdev->wq);
715 }
716 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
717
718 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
719 {
720         if (resched)
721                 schedule_delayed_work(&bdev->wq,
722                                       ((HZ / 100) < 1) ? 1 : HZ / 100);
723 }
724 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
725
726 static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
727                         bool no_wait_reserve, bool no_wait_gpu)
728 {
729         struct ttm_bo_device *bdev = bo->bdev;
730         struct ttm_mem_reg evict_mem;
731         struct ttm_placement placement;
732         int ret = 0;
733
734         spin_lock(&bdev->fence_lock);
735         ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
736         spin_unlock(&bdev->fence_lock);
737
738         if (unlikely(ret != 0)) {
739                 if (ret != -ERESTARTSYS) {
740                         printk(KERN_ERR TTM_PFX
741                                "Failed to expire sync object before "
742                                "buffer eviction.\n");
743                 }
744                 goto out;
745         }
746
747         BUG_ON(!atomic_read(&bo->reserved));
748
749         evict_mem = bo->mem;
750         evict_mem.mm_node = NULL;
751         evict_mem.bus.io_reserved_vm = false;
752         evict_mem.bus.io_reserved_count = 0;
753
754         placement.fpfn = 0;
755         placement.lpfn = 0;
756         placement.num_placement = 0;
757         placement.num_busy_placement = 0;
758         bdev->driver->evict_flags(bo, &placement);
759         ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
760                                 no_wait_reserve, no_wait_gpu);
761         if (ret) {
762                 if (ret != -ERESTARTSYS) {
763                         printk(KERN_ERR TTM_PFX
764                                "Failed to find memory space for "
765                                "buffer 0x%p eviction.\n", bo);
766                         ttm_bo_mem_space_debug(bo, &placement);
767                 }
768                 goto out;
769         }
770
771         ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
772                                      no_wait_reserve, no_wait_gpu);
773         if (ret) {
774                 if (ret != -ERESTARTSYS)
775                         printk(KERN_ERR TTM_PFX "Buffer eviction failed\n");
776                 ttm_bo_mem_put(bo, &evict_mem);
777                 goto out;
778         }
779         bo->evicted = true;
780 out:
781         return ret;
782 }
783
784 static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
785                                 uint32_t mem_type,
786                                 bool interruptible, bool no_wait_reserve,
787                                 bool no_wait_gpu)
788 {
789         struct ttm_bo_global *glob = bdev->glob;
790         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
791         struct ttm_buffer_object *bo;
792         int ret, put_count = 0;
793
794 retry:
795         spin_lock(&glob->lru_lock);
796         if (list_empty(&man->lru)) {
797                 spin_unlock(&glob->lru_lock);
798                 return -EBUSY;
799         }
800
801         bo = list_first_entry(&man->lru, struct ttm_buffer_object, lru);
802         kref_get(&bo->list_kref);
803
804         if (!list_empty(&bo->ddestroy)) {
805                 spin_unlock(&glob->lru_lock);
806                 ret = ttm_bo_cleanup_refs(bo, interruptible,
807                                           no_wait_reserve, no_wait_gpu);
808                 kref_put(&bo->list_kref, ttm_bo_release_list);
809
810                 if (likely(ret == 0 || ret == -ERESTARTSYS))
811                         return ret;
812
813                 goto retry;
814         }
815
816         ret = ttm_bo_reserve_locked(bo, false, no_wait_reserve, false, 0);
817
818         if (unlikely(ret == -EBUSY)) {
819                 spin_unlock(&glob->lru_lock);
820                 if (likely(!no_wait_gpu))
821                         ret = ttm_bo_wait_unreserved(bo, interruptible);
822
823                 kref_put(&bo->list_kref, ttm_bo_release_list);
824
825                 /**
826                  * We *need* to retry after releasing the lru lock.
827                  */
828
829                 if (unlikely(ret != 0))
830                         return ret;
831                 goto retry;
832         }
833
834         put_count = ttm_bo_del_from_lru(bo);
835         spin_unlock(&glob->lru_lock);
836
837         BUG_ON(ret != 0);
838
839         ttm_bo_list_ref_sub(bo, put_count, true);
840
841         ret = ttm_bo_evict(bo, interruptible, no_wait_reserve, no_wait_gpu);
842         ttm_bo_unreserve(bo);
843
844         kref_put(&bo->list_kref, ttm_bo_release_list);
845         return ret;
846 }
847
848 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
849 {
850         struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
851
852         if (mem->mm_node)
853                 (*man->func->put_node)(man, mem);
854 }
855 EXPORT_SYMBOL(ttm_bo_mem_put);
856
857 /**
858  * Repeatedly evict memory from the LRU for @mem_type until we create enough
859  * space, or we've evicted everything and there isn't enough space.
860  */
861 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
862                                         uint32_t mem_type,
863                                         struct ttm_placement *placement,
864                                         struct ttm_mem_reg *mem,
865                                         bool interruptible,
866                                         bool no_wait_reserve,
867                                         bool no_wait_gpu)
868 {
869         struct ttm_bo_device *bdev = bo->bdev;
870         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
871         int ret;
872
873         do {
874                 ret = (*man->func->get_node)(man, bo, placement, mem);
875                 if (unlikely(ret != 0))
876                         return ret;
877                 if (mem->mm_node)
878                         break;
879                 ret = ttm_mem_evict_first(bdev, mem_type, interruptible,
880                                                 no_wait_reserve, no_wait_gpu);
881                 if (unlikely(ret != 0))
882                         return ret;
883         } while (1);
884         if (mem->mm_node == NULL)
885                 return -ENOMEM;
886         mem->mem_type = mem_type;
887         return 0;
888 }
889
890 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
891                                       uint32_t cur_placement,
892                                       uint32_t proposed_placement)
893 {
894         uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
895         uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
896
897         /**
898          * Keep current caching if possible.
899          */
900
901         if ((cur_placement & caching) != 0)
902                 result |= (cur_placement & caching);
903         else if ((man->default_caching & caching) != 0)
904                 result |= man->default_caching;
905         else if ((TTM_PL_FLAG_CACHED & caching) != 0)
906                 result |= TTM_PL_FLAG_CACHED;
907         else if ((TTM_PL_FLAG_WC & caching) != 0)
908                 result |= TTM_PL_FLAG_WC;
909         else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
910                 result |= TTM_PL_FLAG_UNCACHED;
911
912         return result;
913 }
914
915 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
916                                  bool disallow_fixed,
917                                  uint32_t mem_type,
918                                  uint32_t proposed_placement,
919                                  uint32_t *masked_placement)
920 {
921         uint32_t cur_flags = ttm_bo_type_flags(mem_type);
922
923         if ((man->flags & TTM_MEMTYPE_FLAG_FIXED) && disallow_fixed)
924                 return false;
925
926         if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
927                 return false;
928
929         if ((proposed_placement & man->available_caching) == 0)
930                 return false;
931
932         cur_flags |= (proposed_placement & man->available_caching);
933
934         *masked_placement = cur_flags;
935         return true;
936 }
937
938 /**
939  * Creates space for memory region @mem according to its type.
940  *
941  * This function first searches for free space in compatible memory types in
942  * the priority order defined by the driver.  If free space isn't found, then
943  * ttm_bo_mem_force_space is attempted in priority order to evict and find
944  * space.
945  */
946 int ttm_bo_mem_space(struct ttm_buffer_object *bo,
947                         struct ttm_placement *placement,
948                         struct ttm_mem_reg *mem,
949                         bool interruptible, bool no_wait_reserve,
950                         bool no_wait_gpu)
951 {
952         struct ttm_bo_device *bdev = bo->bdev;
953         struct ttm_mem_type_manager *man;
954         uint32_t mem_type = TTM_PL_SYSTEM;
955         uint32_t cur_flags = 0;
956         bool type_found = false;
957         bool type_ok = false;
958         bool has_erestartsys = false;
959         int i, ret;
960
961         mem->mm_node = NULL;
962         for (i = 0; i < placement->num_placement; ++i) {
963                 ret = ttm_mem_type_from_flags(placement->placement[i],
964                                                 &mem_type);
965                 if (ret)
966                         return ret;
967                 man = &bdev->man[mem_type];
968
969                 type_ok = ttm_bo_mt_compatible(man,
970                                                 bo->type == ttm_bo_type_user,
971                                                 mem_type,
972                                                 placement->placement[i],
973                                                 &cur_flags);
974
975                 if (!type_ok)
976                         continue;
977
978                 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
979                                                   cur_flags);
980                 /*
981                  * Use the access and other non-mapping-related flag bits from
982                  * the memory placement flags to the current flags
983                  */
984                 ttm_flag_masked(&cur_flags, placement->placement[i],
985                                 ~TTM_PL_MASK_MEMTYPE);
986
987                 if (mem_type == TTM_PL_SYSTEM)
988                         break;
989
990                 if (man->has_type && man->use_type) {
991                         type_found = true;
992                         ret = (*man->func->get_node)(man, bo, placement, mem);
993                         if (unlikely(ret))
994                                 return ret;
995                 }
996                 if (mem->mm_node)
997                         break;
998         }
999
1000         if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
1001                 mem->mem_type = mem_type;
1002                 mem->placement = cur_flags;
1003                 return 0;
1004         }
1005
1006         if (!type_found)
1007                 return -EINVAL;
1008
1009         for (i = 0; i < placement->num_busy_placement; ++i) {
1010                 ret = ttm_mem_type_from_flags(placement->busy_placement[i],
1011                                                 &mem_type);
1012                 if (ret)
1013                         return ret;
1014                 man = &bdev->man[mem_type];
1015                 if (!man->has_type)
1016                         continue;
1017                 if (!ttm_bo_mt_compatible(man,
1018                                                 bo->type == ttm_bo_type_user,
1019                                                 mem_type,
1020                                                 placement->busy_placement[i],
1021                                                 &cur_flags))
1022                         continue;
1023
1024                 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
1025                                                   cur_flags);
1026                 /*
1027                  * Use the access and other non-mapping-related flag bits from
1028                  * the memory placement flags to the current flags
1029                  */
1030                 ttm_flag_masked(&cur_flags, placement->busy_placement[i],
1031                                 ~TTM_PL_MASK_MEMTYPE);
1032
1033
1034                 if (mem_type == TTM_PL_SYSTEM) {
1035                         mem->mem_type = mem_type;
1036                         mem->placement = cur_flags;
1037                         mem->mm_node = NULL;
1038                         return 0;
1039                 }
1040
1041                 ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem,
1042                                                 interruptible, no_wait_reserve, no_wait_gpu);
1043                 if (ret == 0 && mem->mm_node) {
1044                         mem->placement = cur_flags;
1045                         return 0;
1046                 }
1047                 if (ret == -ERESTARTSYS)
1048                         has_erestartsys = true;
1049         }
1050         ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
1051         return ret;
1052 }
1053 EXPORT_SYMBOL(ttm_bo_mem_space);
1054
1055 int ttm_bo_wait_cpu(struct ttm_buffer_object *bo, bool no_wait)
1056 {
1057         if ((atomic_read(&bo->cpu_writers) > 0) && no_wait)
1058                 return -EBUSY;
1059
1060         return wait_event_interruptible(bo->event_queue,
1061                                         atomic_read(&bo->cpu_writers) == 0);
1062 }
1063 EXPORT_SYMBOL(ttm_bo_wait_cpu);
1064
1065 int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1066                         struct ttm_placement *placement,
1067                         bool interruptible, bool no_wait_reserve,
1068                         bool no_wait_gpu)
1069 {
1070         int ret = 0;
1071         struct ttm_mem_reg mem;
1072         struct ttm_bo_device *bdev = bo->bdev;
1073
1074         BUG_ON(!atomic_read(&bo->reserved));
1075
1076         /*
1077          * FIXME: It's possible to pipeline buffer moves.
1078          * Have the driver move function wait for idle when necessary,
1079          * instead of doing it here.
1080          */
1081         spin_lock(&bdev->fence_lock);
1082         ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
1083         spin_unlock(&bdev->fence_lock);
1084         if (ret)
1085                 return ret;
1086         mem.num_pages = bo->num_pages;
1087         mem.size = mem.num_pages << PAGE_SHIFT;
1088         mem.page_alignment = bo->mem.page_alignment;
1089         mem.bus.io_reserved_vm = false;
1090         mem.bus.io_reserved_count = 0;
1091         /*
1092          * Determine where to move the buffer.
1093          */
1094         ret = ttm_bo_mem_space(bo, placement, &mem, interruptible, no_wait_reserve, no_wait_gpu);
1095         if (ret)
1096                 goto out_unlock;
1097         ret = ttm_bo_handle_move_mem(bo, &mem, false, interruptible, no_wait_reserve, no_wait_gpu);
1098 out_unlock:
1099         if (ret && mem.mm_node)
1100                 ttm_bo_mem_put(bo, &mem);
1101         return ret;
1102 }
1103
1104 static int ttm_bo_mem_compat(struct ttm_placement *placement,
1105                              struct ttm_mem_reg *mem)
1106 {
1107         int i;
1108
1109         if (mem->mm_node && placement->lpfn != 0 &&
1110             (mem->start < placement->fpfn ||
1111              mem->start + mem->num_pages > placement->lpfn))
1112                 return -1;
1113
1114         for (i = 0; i < placement->num_placement; i++) {
1115                 if ((placement->placement[i] & mem->placement &
1116                         TTM_PL_MASK_CACHING) &&
1117                         (placement->placement[i] & mem->placement &
1118                         TTM_PL_MASK_MEM))
1119                         return i;
1120         }
1121         return -1;
1122 }
1123
1124 int ttm_bo_validate(struct ttm_buffer_object *bo,
1125                         struct ttm_placement *placement,
1126                         bool interruptible, bool no_wait_reserve,
1127                         bool no_wait_gpu)
1128 {
1129         int ret;
1130
1131         BUG_ON(!atomic_read(&bo->reserved));
1132         /* Check that range is valid */
1133         if (placement->lpfn || placement->fpfn)
1134                 if (placement->fpfn > placement->lpfn ||
1135                         (placement->lpfn - placement->fpfn) < bo->num_pages)
1136                         return -EINVAL;
1137         /*
1138          * Check whether we need to move buffer.
1139          */
1140         ret = ttm_bo_mem_compat(placement, &bo->mem);
1141         if (ret < 0) {
1142                 ret = ttm_bo_move_buffer(bo, placement, interruptible, no_wait_reserve, no_wait_gpu);
1143                 if (ret)
1144                         return ret;
1145         } else {
1146                 /*
1147                  * Use the access and other non-mapping-related flag bits from
1148                  * the compatible memory placement flags to the active flags
1149                  */
1150                 ttm_flag_masked(&bo->mem.placement, placement->placement[ret],
1151                                 ~TTM_PL_MASK_MEMTYPE);
1152         }
1153         /*
1154          * We might need to add a TTM.
1155          */
1156         if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1157                 ret = ttm_bo_add_ttm(bo, true);
1158                 if (ret)
1159                         return ret;
1160         }
1161         return 0;
1162 }
1163 EXPORT_SYMBOL(ttm_bo_validate);
1164
1165 int ttm_bo_check_placement(struct ttm_buffer_object *bo,
1166                                 struct ttm_placement *placement)
1167 {
1168         BUG_ON((placement->fpfn || placement->lpfn) &&
1169                (bo->mem.num_pages > (placement->lpfn - placement->fpfn)));
1170
1171         return 0;
1172 }
1173
1174 int ttm_bo_init(struct ttm_bo_device *bdev,
1175                 struct ttm_buffer_object *bo,
1176                 unsigned long size,
1177                 enum ttm_bo_type type,
1178                 struct ttm_placement *placement,
1179                 uint32_t page_alignment,
1180                 unsigned long buffer_start,
1181                 bool interruptible,
1182                 struct file *persistent_swap_storage,
1183                 size_t acc_size,
1184                 void (*destroy) (struct ttm_buffer_object *))
1185 {
1186         int ret = 0;
1187         unsigned long num_pages;
1188
1189         size += buffer_start & ~PAGE_MASK;
1190         num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1191         if (num_pages == 0) {
1192                 printk(KERN_ERR TTM_PFX "Illegal buffer object size.\n");
1193                 if (destroy)
1194                         (*destroy)(bo);
1195                 else
1196                         kfree(bo);
1197                 return -EINVAL;
1198         }
1199         bo->destroy = destroy;
1200
1201         kref_init(&bo->kref);
1202         kref_init(&bo->list_kref);
1203         atomic_set(&bo->cpu_writers, 0);
1204         atomic_set(&bo->reserved, 1);
1205         init_waitqueue_head(&bo->event_queue);
1206         INIT_LIST_HEAD(&bo->lru);
1207         INIT_LIST_HEAD(&bo->ddestroy);
1208         INIT_LIST_HEAD(&bo->swap);
1209         INIT_LIST_HEAD(&bo->io_reserve_lru);
1210         bo->bdev = bdev;
1211         bo->glob = bdev->glob;
1212         bo->type = type;
1213         bo->num_pages = num_pages;
1214         bo->mem.size = num_pages << PAGE_SHIFT;
1215         bo->mem.mem_type = TTM_PL_SYSTEM;
1216         bo->mem.num_pages = bo->num_pages;
1217         bo->mem.mm_node = NULL;
1218         bo->mem.page_alignment = page_alignment;
1219         bo->mem.bus.io_reserved_vm = false;
1220         bo->mem.bus.io_reserved_count = 0;
1221         bo->buffer_start = buffer_start & PAGE_MASK;
1222         bo->priv_flags = 0;
1223         bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1224         bo->seq_valid = false;
1225         bo->persistent_swap_storage = persistent_swap_storage;
1226         bo->acc_size = acc_size;
1227         atomic_inc(&bo->glob->bo_count);
1228
1229         ret = ttm_bo_check_placement(bo, placement);
1230         if (unlikely(ret != 0))
1231                 goto out_err;
1232
1233         /*
1234          * For ttm_bo_type_device buffers, allocate
1235          * address space from the device.
1236          */
1237         if (bo->type == ttm_bo_type_device) {
1238                 ret = ttm_bo_setup_vm(bo);
1239                 if (ret)
1240                         goto out_err;
1241         }
1242
1243         ret = ttm_bo_validate(bo, placement, interruptible, false, false);
1244         if (ret)
1245                 goto out_err;
1246
1247         ttm_bo_unreserve(bo);
1248         return 0;
1249
1250 out_err:
1251         ttm_bo_unreserve(bo);
1252         ttm_bo_unref(&bo);
1253
1254         return ret;
1255 }
1256 EXPORT_SYMBOL(ttm_bo_init);
1257
1258 static inline size_t ttm_bo_size(struct ttm_bo_global *glob,
1259                                  unsigned long num_pages)
1260 {
1261         size_t page_array_size = (num_pages * sizeof(void *) + PAGE_SIZE - 1) &
1262             PAGE_MASK;
1263
1264         return glob->ttm_bo_size + 2 * page_array_size;
1265 }
1266
1267 int ttm_bo_create(struct ttm_bo_device *bdev,
1268                         unsigned long size,
1269                         enum ttm_bo_type type,
1270                         struct ttm_placement *placement,
1271                         uint32_t page_alignment,
1272                         unsigned long buffer_start,
1273                         bool interruptible,
1274                         struct file *persistent_swap_storage,
1275                         struct ttm_buffer_object **p_bo)
1276 {
1277         struct ttm_buffer_object *bo;
1278         struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1279         int ret;
1280
1281         size_t acc_size =
1282             ttm_bo_size(bdev->glob, (size + PAGE_SIZE - 1) >> PAGE_SHIFT);
1283         ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1284         if (unlikely(ret != 0))
1285                 return ret;
1286
1287         bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1288
1289         if (unlikely(bo == NULL)) {
1290                 ttm_mem_global_free(mem_glob, acc_size);
1291                 return -ENOMEM;
1292         }
1293
1294         ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1295                                 buffer_start, interruptible,
1296                                 persistent_swap_storage, acc_size, NULL);
1297         if (likely(ret == 0))
1298                 *p_bo = bo;
1299
1300         return ret;
1301 }
1302 EXPORT_SYMBOL(ttm_bo_create);
1303
1304 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1305                                         unsigned mem_type, bool allow_errors)
1306 {
1307         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1308         struct ttm_bo_global *glob = bdev->glob;
1309         int ret;
1310
1311         /*
1312          * Can't use standard list traversal since we're unlocking.
1313          */
1314
1315         spin_lock(&glob->lru_lock);
1316         while (!list_empty(&man->lru)) {
1317                 spin_unlock(&glob->lru_lock);
1318                 ret = ttm_mem_evict_first(bdev, mem_type, false, false, false);
1319                 if (ret) {
1320                         if (allow_errors) {
1321                                 return ret;
1322                         } else {
1323                                 printk(KERN_ERR TTM_PFX
1324                                         "Cleanup eviction failed\n");
1325                         }
1326                 }
1327                 spin_lock(&glob->lru_lock);
1328         }
1329         spin_unlock(&glob->lru_lock);
1330         return 0;
1331 }
1332
1333 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1334 {
1335         struct ttm_mem_type_manager *man;
1336         int ret = -EINVAL;
1337
1338         if (mem_type >= TTM_NUM_MEM_TYPES) {
1339                 printk(KERN_ERR TTM_PFX "Illegal memory type %d\n", mem_type);
1340                 return ret;
1341         }
1342         man = &bdev->man[mem_type];
1343
1344         if (!man->has_type) {
1345                 printk(KERN_ERR TTM_PFX "Trying to take down uninitialized "
1346                        "memory manager type %u\n", mem_type);
1347                 return ret;
1348         }
1349
1350         man->use_type = false;
1351         man->has_type = false;
1352
1353         ret = 0;
1354         if (mem_type > 0) {
1355                 ttm_bo_force_list_clean(bdev, mem_type, false);
1356
1357                 ret = (*man->func->takedown)(man);
1358         }
1359
1360         return ret;
1361 }
1362 EXPORT_SYMBOL(ttm_bo_clean_mm);
1363
1364 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1365 {
1366         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1367
1368         if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1369                 printk(KERN_ERR TTM_PFX
1370                        "Illegal memory manager memory type %u.\n",
1371                        mem_type);
1372                 return -EINVAL;
1373         }
1374
1375         if (!man->has_type) {
1376                 printk(KERN_ERR TTM_PFX
1377                        "Memory type %u has not been initialized.\n",
1378                        mem_type);
1379                 return 0;
1380         }
1381
1382         return ttm_bo_force_list_clean(bdev, mem_type, true);
1383 }
1384 EXPORT_SYMBOL(ttm_bo_evict_mm);
1385
1386 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1387                         unsigned long p_size)
1388 {
1389         int ret = -EINVAL;
1390         struct ttm_mem_type_manager *man;
1391
1392         BUG_ON(type >= TTM_NUM_MEM_TYPES);
1393         man = &bdev->man[type];
1394         BUG_ON(man->has_type);
1395         man->io_reserve_fastpath = true;
1396         man->use_io_reserve_lru = false;
1397         mutex_init(&man->io_reserve_mutex);
1398         INIT_LIST_HEAD(&man->io_reserve_lru);
1399
1400         ret = bdev->driver->init_mem_type(bdev, type, man);
1401         if (ret)
1402                 return ret;
1403         man->bdev = bdev;
1404
1405         ret = 0;
1406         if (type != TTM_PL_SYSTEM) {
1407                 ret = (*man->func->init)(man, p_size);
1408                 if (ret)
1409                         return ret;
1410         }
1411         man->has_type = true;
1412         man->use_type = true;
1413         man->size = p_size;
1414
1415         INIT_LIST_HEAD(&man->lru);
1416
1417         return 0;
1418 }
1419 EXPORT_SYMBOL(ttm_bo_init_mm);
1420
1421 static void ttm_bo_global_kobj_release(struct kobject *kobj)
1422 {
1423         struct ttm_bo_global *glob =
1424                 container_of(kobj, struct ttm_bo_global, kobj);
1425
1426         ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1427         __free_page(glob->dummy_read_page);
1428         kfree(glob);
1429 }
1430
1431 void ttm_bo_global_release(struct drm_global_reference *ref)
1432 {
1433         struct ttm_bo_global *glob = ref->object;
1434
1435         kobject_del(&glob->kobj);
1436         kobject_put(&glob->kobj);
1437 }
1438 EXPORT_SYMBOL(ttm_bo_global_release);
1439
1440 int ttm_bo_global_init(struct drm_global_reference *ref)
1441 {
1442         struct ttm_bo_global_ref *bo_ref =
1443                 container_of(ref, struct ttm_bo_global_ref, ref);
1444         struct ttm_bo_global *glob = ref->object;
1445         int ret;
1446
1447         mutex_init(&glob->device_list_mutex);
1448         spin_lock_init(&glob->lru_lock);
1449         glob->mem_glob = bo_ref->mem_glob;
1450         glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1451
1452         if (unlikely(glob->dummy_read_page == NULL)) {
1453                 ret = -ENOMEM;
1454                 goto out_no_drp;
1455         }
1456
1457         INIT_LIST_HEAD(&glob->swap_lru);
1458         INIT_LIST_HEAD(&glob->device_list);
1459
1460         ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1461         ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1462         if (unlikely(ret != 0)) {
1463                 printk(KERN_ERR TTM_PFX
1464                        "Could not register buffer object swapout.\n");
1465                 goto out_no_shrink;
1466         }
1467
1468         glob->ttm_bo_extra_size =
1469                 ttm_round_pot(sizeof(struct ttm_tt)) +
1470                 ttm_round_pot(sizeof(struct ttm_backend));
1471
1472         glob->ttm_bo_size = glob->ttm_bo_extra_size +
1473                 ttm_round_pot(sizeof(struct ttm_buffer_object));
1474
1475         atomic_set(&glob->bo_count, 0);
1476
1477         ret = kobject_init_and_add(
1478                 &glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1479         if (unlikely(ret != 0))
1480                 kobject_put(&glob->kobj);
1481         return ret;
1482 out_no_shrink:
1483         __free_page(glob->dummy_read_page);
1484 out_no_drp:
1485         kfree(glob);
1486         return ret;
1487 }
1488 EXPORT_SYMBOL(ttm_bo_global_init);
1489
1490
1491 int ttm_bo_device_release(struct ttm_bo_device *bdev)
1492 {
1493         int ret = 0;
1494         unsigned i = TTM_NUM_MEM_TYPES;
1495         struct ttm_mem_type_manager *man;
1496         struct ttm_bo_global *glob = bdev->glob;
1497
1498         while (i--) {
1499                 man = &bdev->man[i];
1500                 if (man->has_type) {
1501                         man->use_type = false;
1502                         if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1503                                 ret = -EBUSY;
1504                                 printk(KERN_ERR TTM_PFX
1505                                        "DRM memory manager type %d "
1506                                        "is not clean.\n", i);
1507                         }
1508                         man->has_type = false;
1509                 }
1510         }
1511
1512         mutex_lock(&glob->device_list_mutex);
1513         list_del(&bdev->device_list);
1514         mutex_unlock(&glob->device_list_mutex);
1515
1516         cancel_delayed_work_sync(&bdev->wq);
1517
1518         while (ttm_bo_delayed_delete(bdev, true))
1519                 ;
1520
1521         spin_lock(&glob->lru_lock);
1522         if (list_empty(&bdev->ddestroy))
1523                 TTM_DEBUG("Delayed destroy list was clean\n");
1524
1525         if (list_empty(&bdev->man[0].lru))
1526                 TTM_DEBUG("Swap list was clean\n");
1527         spin_unlock(&glob->lru_lock);
1528
1529         BUG_ON(!drm_mm_clean(&bdev->addr_space_mm));
1530         write_lock(&bdev->vm_lock);
1531         drm_mm_takedown(&bdev->addr_space_mm);
1532         write_unlock(&bdev->vm_lock);
1533
1534         return ret;
1535 }
1536 EXPORT_SYMBOL(ttm_bo_device_release);
1537
1538 int ttm_bo_device_init(struct ttm_bo_device *bdev,
1539                        struct ttm_bo_global *glob,
1540                        struct ttm_bo_driver *driver,
1541                        uint64_t file_page_offset,
1542                        bool need_dma32)
1543 {
1544         int ret = -EINVAL;
1545
1546         rwlock_init(&bdev->vm_lock);
1547         bdev->driver = driver;
1548
1549         memset(bdev->man, 0, sizeof(bdev->man));
1550
1551         /*
1552          * Initialize the system memory buffer type.
1553          * Other types need to be driver / IOCTL initialized.
1554          */
1555         ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1556         if (unlikely(ret != 0))
1557                 goto out_no_sys;
1558
1559         bdev->addr_space_rb = RB_ROOT;
1560         ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000);
1561         if (unlikely(ret != 0))
1562                 goto out_no_addr_mm;
1563
1564         INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1565         bdev->nice_mode = true;
1566         INIT_LIST_HEAD(&bdev->ddestroy);
1567         bdev->dev_mapping = NULL;
1568         bdev->glob = glob;
1569         bdev->need_dma32 = need_dma32;
1570         bdev->val_seq = 0;
1571         spin_lock_init(&bdev->fence_lock);
1572         mutex_lock(&glob->device_list_mutex);
1573         list_add_tail(&bdev->device_list, &glob->device_list);
1574         mutex_unlock(&glob->device_list_mutex);
1575
1576         return 0;
1577 out_no_addr_mm:
1578         ttm_bo_clean_mm(bdev, 0);
1579 out_no_sys:
1580         return ret;
1581 }
1582 EXPORT_SYMBOL(ttm_bo_device_init);
1583
1584 /*
1585  * buffer object vm functions.
1586  */
1587
1588 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1589 {
1590         struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1591
1592         if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1593                 if (mem->mem_type == TTM_PL_SYSTEM)
1594                         return false;
1595
1596                 if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1597                         return false;
1598
1599                 if (mem->placement & TTM_PL_FLAG_CACHED)
1600                         return false;
1601         }
1602         return true;
1603 }
1604
1605 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1606 {
1607         struct ttm_bo_device *bdev = bo->bdev;
1608         loff_t offset = (loff_t) bo->addr_space_offset;
1609         loff_t holelen = ((loff_t) bo->mem.num_pages) << PAGE_SHIFT;
1610
1611         if (!bdev->dev_mapping)
1612                 return;
1613         unmap_mapping_range(bdev->dev_mapping, offset, holelen, 1);
1614         ttm_mem_io_free_vm(bo);
1615 }
1616
1617 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1618 {
1619         struct ttm_bo_device *bdev = bo->bdev;
1620         struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1621
1622         ttm_mem_io_lock(man, false);
1623         ttm_bo_unmap_virtual_locked(bo);
1624         ttm_mem_io_unlock(man);
1625 }
1626
1627
1628 EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1629
1630 static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo)
1631 {
1632         struct ttm_bo_device *bdev = bo->bdev;
1633         struct rb_node **cur = &bdev->addr_space_rb.rb_node;
1634         struct rb_node *parent = NULL;
1635         struct ttm_buffer_object *cur_bo;
1636         unsigned long offset = bo->vm_node->start;
1637         unsigned long cur_offset;
1638
1639         while (*cur) {
1640                 parent = *cur;
1641                 cur_bo = rb_entry(parent, struct ttm_buffer_object, vm_rb);
1642                 cur_offset = cur_bo->vm_node->start;
1643                 if (offset < cur_offset)
1644                         cur = &parent->rb_left;
1645                 else if (offset > cur_offset)
1646                         cur = &parent->rb_right;
1647                 else
1648                         BUG();
1649         }
1650
1651         rb_link_node(&bo->vm_rb, parent, cur);
1652         rb_insert_color(&bo->vm_rb, &bdev->addr_space_rb);
1653 }
1654
1655 /**
1656  * ttm_bo_setup_vm:
1657  *
1658  * @bo: the buffer to allocate address space for
1659  *
1660  * Allocate address space in the drm device so that applications
1661  * can mmap the buffer and access the contents. This only
1662  * applies to ttm_bo_type_device objects as others are not
1663  * placed in the drm device address space.
1664  */
1665
1666 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo)
1667 {
1668         struct ttm_bo_device *bdev = bo->bdev;
1669         int ret;
1670
1671 retry_pre_get:
1672         ret = drm_mm_pre_get(&bdev->addr_space_mm);
1673         if (unlikely(ret != 0))
1674                 return ret;
1675
1676         write_lock(&bdev->vm_lock);
1677         bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm,
1678                                          bo->mem.num_pages, 0, 0);
1679
1680         if (unlikely(bo->vm_node == NULL)) {
1681                 ret = -ENOMEM;
1682                 goto out_unlock;
1683         }
1684
1685         bo->vm_node = drm_mm_get_block_atomic(bo->vm_node,
1686                                               bo->mem.num_pages, 0);
1687
1688         if (unlikely(bo->vm_node == NULL)) {
1689                 write_unlock(&bdev->vm_lock);
1690                 goto retry_pre_get;
1691         }
1692
1693         ttm_bo_vm_insert_rb(bo);
1694         write_unlock(&bdev->vm_lock);
1695         bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT;
1696
1697         return 0;
1698 out_unlock:
1699         write_unlock(&bdev->vm_lock);
1700         return ret;
1701 }
1702
1703 int ttm_bo_wait(struct ttm_buffer_object *bo,
1704                 bool lazy, bool interruptible, bool no_wait)
1705 {
1706         struct ttm_bo_driver *driver = bo->bdev->driver;
1707         struct ttm_bo_device *bdev = bo->bdev;
1708         void *sync_obj;
1709         void *sync_obj_arg;
1710         int ret = 0;
1711
1712         if (likely(bo->sync_obj == NULL))
1713                 return 0;
1714
1715         while (bo->sync_obj) {
1716
1717                 if (driver->sync_obj_signaled(bo->sync_obj, bo->sync_obj_arg)) {
1718                         void *tmp_obj = bo->sync_obj;
1719                         bo->sync_obj = NULL;
1720                         clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
1721                         spin_unlock(&bdev->fence_lock);
1722                         driver->sync_obj_unref(&tmp_obj);
1723                         spin_lock(&bdev->fence_lock);
1724                         continue;
1725                 }
1726
1727                 if (no_wait)
1728                         return -EBUSY;
1729
1730                 sync_obj = driver->sync_obj_ref(bo->sync_obj);
1731                 sync_obj_arg = bo->sync_obj_arg;
1732                 spin_unlock(&bdev->fence_lock);
1733                 ret = driver->sync_obj_wait(sync_obj, sync_obj_arg,
1734                                             lazy, interruptible);
1735                 if (unlikely(ret != 0)) {
1736                         driver->sync_obj_unref(&sync_obj);
1737                         spin_lock(&bdev->fence_lock);
1738                         return ret;
1739                 }
1740                 spin_lock(&bdev->fence_lock);
1741                 if (likely(bo->sync_obj == sync_obj &&
1742                            bo->sync_obj_arg == sync_obj_arg)) {
1743                         void *tmp_obj = bo->sync_obj;
1744                         bo->sync_obj = NULL;
1745                         clear_bit(TTM_BO_PRIV_FLAG_MOVING,
1746                                   &bo->priv_flags);
1747                         spin_unlock(&bdev->fence_lock);
1748                         driver->sync_obj_unref(&sync_obj);
1749                         driver->sync_obj_unref(&tmp_obj);
1750                         spin_lock(&bdev->fence_lock);
1751                 } else {
1752                         spin_unlock(&bdev->fence_lock);
1753                         driver->sync_obj_unref(&sync_obj);
1754                         spin_lock(&bdev->fence_lock);
1755                 }
1756         }
1757         return 0;
1758 }
1759 EXPORT_SYMBOL(ttm_bo_wait);
1760
1761 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1762 {
1763         struct ttm_bo_device *bdev = bo->bdev;
1764         int ret = 0;
1765
1766         /*
1767          * Using ttm_bo_reserve makes sure the lru lists are updated.
1768          */
1769
1770         ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
1771         if (unlikely(ret != 0))
1772                 return ret;
1773         spin_lock(&bdev->fence_lock);
1774         ret = ttm_bo_wait(bo, false, true, no_wait);
1775         spin_unlock(&bdev->fence_lock);
1776         if (likely(ret == 0))
1777                 atomic_inc(&bo->cpu_writers);
1778         ttm_bo_unreserve(bo);
1779         return ret;
1780 }
1781 EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1782
1783 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1784 {
1785         if (atomic_dec_and_test(&bo->cpu_writers))
1786                 wake_up_all(&bo->event_queue);
1787 }
1788 EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1789
1790 /**
1791  * A buffer object shrink method that tries to swap out the first
1792  * buffer object on the bo_global::swap_lru list.
1793  */
1794
1795 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1796 {
1797         struct ttm_bo_global *glob =
1798             container_of(shrink, struct ttm_bo_global, shrink);
1799         struct ttm_buffer_object *bo;
1800         int ret = -EBUSY;
1801         int put_count;
1802         uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1803
1804         spin_lock(&glob->lru_lock);
1805         while (ret == -EBUSY) {
1806                 if (unlikely(list_empty(&glob->swap_lru))) {
1807                         spin_unlock(&glob->lru_lock);
1808                         return -EBUSY;
1809                 }
1810
1811                 bo = list_first_entry(&glob->swap_lru,
1812                                       struct ttm_buffer_object, swap);
1813                 kref_get(&bo->list_kref);
1814
1815                 if (!list_empty(&bo->ddestroy)) {
1816                         spin_unlock(&glob->lru_lock);
1817                         (void) ttm_bo_cleanup_refs(bo, false, false, false);
1818                         kref_put(&bo->list_kref, ttm_bo_release_list);
1819                         continue;
1820                 }
1821
1822                 /**
1823                  * Reserve buffer. Since we unlock while sleeping, we need
1824                  * to re-check that nobody removed us from the swap-list while
1825                  * we slept.
1826                  */
1827
1828                 ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
1829                 if (unlikely(ret == -EBUSY)) {
1830                         spin_unlock(&glob->lru_lock);
1831                         ttm_bo_wait_unreserved(bo, false);
1832                         kref_put(&bo->list_kref, ttm_bo_release_list);
1833                         spin_lock(&glob->lru_lock);
1834                 }
1835         }
1836
1837         BUG_ON(ret != 0);
1838         put_count = ttm_bo_del_from_lru(bo);
1839         spin_unlock(&glob->lru_lock);
1840
1841         ttm_bo_list_ref_sub(bo, put_count, true);
1842
1843         /**
1844          * Wait for GPU, then move to system cached.
1845          */
1846
1847         spin_lock(&bo->bdev->fence_lock);
1848         ret = ttm_bo_wait(bo, false, false, false);
1849         spin_unlock(&bo->bdev->fence_lock);
1850
1851         if (unlikely(ret != 0))
1852                 goto out;
1853
1854         if ((bo->mem.placement & swap_placement) != swap_placement) {
1855                 struct ttm_mem_reg evict_mem;
1856
1857                 evict_mem = bo->mem;
1858                 evict_mem.mm_node = NULL;
1859                 evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1860                 evict_mem.mem_type = TTM_PL_SYSTEM;
1861
1862                 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1863                                              false, false, false);
1864                 if (unlikely(ret != 0))
1865                         goto out;
1866         }
1867
1868         ttm_bo_unmap_virtual(bo);
1869
1870         /**
1871          * Swap out. Buffer will be swapped in again as soon as
1872          * anyone tries to access a ttm page.
1873          */
1874
1875         if (bo->bdev->driver->swap_notify)
1876                 bo->bdev->driver->swap_notify(bo);
1877
1878         ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1879 out:
1880
1881         /**
1882          *
1883          * Unreserve without putting on LRU to avoid swapping out an
1884          * already swapped buffer.
1885          */
1886
1887         atomic_set(&bo->reserved, 0);
1888         wake_up_all(&bo->event_queue);
1889         kref_put(&bo->list_kref, ttm_bo_release_list);
1890         return ret;
1891 }
1892
1893 void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1894 {
1895         while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1896                 ;
1897 }
1898 EXPORT_SYMBOL(ttm_bo_swapout_all);