Merge branch 'kvm-updates/2.6.39' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[pandora-kernel.git] / drivers / gpu / drm / ttm / ttm_bo.c
1 /**************************************************************************
2  *
3  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 /*
28  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29  */
30
31 #include "ttm/ttm_module.h"
32 #include "ttm/ttm_bo_driver.h"
33 #include "ttm/ttm_placement.h"
34 #include <linux/jiffies.h>
35 #include <linux/slab.h>
36 #include <linux/sched.h>
37 #include <linux/mm.h>
38 #include <linux/file.h>
39 #include <linux/module.h>
40 #include <asm/atomic.h>
41
42 #define TTM_ASSERT_LOCKED(param)
43 #define TTM_DEBUG(fmt, arg...)
44 #define TTM_BO_HASH_ORDER 13
45
46 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo);
47 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
48 static void ttm_bo_global_kobj_release(struct kobject *kobj);
49
50 static struct attribute ttm_bo_count = {
51         .name = "bo_count",
52         .mode = S_IRUGO
53 };
54
55 static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type)
56 {
57         int i;
58
59         for (i = 0; i <= TTM_PL_PRIV5; i++)
60                 if (flags & (1 << i)) {
61                         *mem_type = i;
62                         return 0;
63                 }
64         return -EINVAL;
65 }
66
67 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
68 {
69         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
70
71         printk(KERN_ERR TTM_PFX "    has_type: %d\n", man->has_type);
72         printk(KERN_ERR TTM_PFX "    use_type: %d\n", man->use_type);
73         printk(KERN_ERR TTM_PFX "    flags: 0x%08X\n", man->flags);
74         printk(KERN_ERR TTM_PFX "    gpu_offset: 0x%08lX\n", man->gpu_offset);
75         printk(KERN_ERR TTM_PFX "    size: %llu\n", man->size);
76         printk(KERN_ERR TTM_PFX "    available_caching: 0x%08X\n",
77                 man->available_caching);
78         printk(KERN_ERR TTM_PFX "    default_caching: 0x%08X\n",
79                 man->default_caching);
80         if (mem_type != TTM_PL_SYSTEM)
81                 (*man->func->debug)(man, TTM_PFX);
82 }
83
84 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
85                                         struct ttm_placement *placement)
86 {
87         int i, ret, mem_type;
88
89         printk(KERN_ERR TTM_PFX "No space for %p (%lu pages, %luK, %luM)\n",
90                 bo, bo->mem.num_pages, bo->mem.size >> 10,
91                 bo->mem.size >> 20);
92         for (i = 0; i < placement->num_placement; i++) {
93                 ret = ttm_mem_type_from_flags(placement->placement[i],
94                                                 &mem_type);
95                 if (ret)
96                         return;
97                 printk(KERN_ERR TTM_PFX "  placement[%d]=0x%08X (%d)\n",
98                         i, placement->placement[i], mem_type);
99                 ttm_mem_type_debug(bo->bdev, mem_type);
100         }
101 }
102
103 static ssize_t ttm_bo_global_show(struct kobject *kobj,
104                                   struct attribute *attr,
105                                   char *buffer)
106 {
107         struct ttm_bo_global *glob =
108                 container_of(kobj, struct ttm_bo_global, kobj);
109
110         return snprintf(buffer, PAGE_SIZE, "%lu\n",
111                         (unsigned long) atomic_read(&glob->bo_count));
112 }
113
114 static struct attribute *ttm_bo_global_attrs[] = {
115         &ttm_bo_count,
116         NULL
117 };
118
119 static const struct sysfs_ops ttm_bo_global_ops = {
120         .show = &ttm_bo_global_show
121 };
122
123 static struct kobj_type ttm_bo_glob_kobj_type  = {
124         .release = &ttm_bo_global_kobj_release,
125         .sysfs_ops = &ttm_bo_global_ops,
126         .default_attrs = ttm_bo_global_attrs
127 };
128
129
130 static inline uint32_t ttm_bo_type_flags(unsigned type)
131 {
132         return 1 << (type);
133 }
134
135 static void ttm_bo_release_list(struct kref *list_kref)
136 {
137         struct ttm_buffer_object *bo =
138             container_of(list_kref, struct ttm_buffer_object, list_kref);
139         struct ttm_bo_device *bdev = bo->bdev;
140
141         BUG_ON(atomic_read(&bo->list_kref.refcount));
142         BUG_ON(atomic_read(&bo->kref.refcount));
143         BUG_ON(atomic_read(&bo->cpu_writers));
144         BUG_ON(bo->sync_obj != NULL);
145         BUG_ON(bo->mem.mm_node != NULL);
146         BUG_ON(!list_empty(&bo->lru));
147         BUG_ON(!list_empty(&bo->ddestroy));
148
149         if (bo->ttm)
150                 ttm_tt_destroy(bo->ttm);
151         atomic_dec(&bo->glob->bo_count);
152         if (bo->destroy)
153                 bo->destroy(bo);
154         else {
155                 ttm_mem_global_free(bdev->glob->mem_glob, bo->acc_size);
156                 kfree(bo);
157         }
158 }
159
160 int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo, bool interruptible)
161 {
162         if (interruptible) {
163                 return wait_event_interruptible(bo->event_queue,
164                                                atomic_read(&bo->reserved) == 0);
165         } else {
166                 wait_event(bo->event_queue, atomic_read(&bo->reserved) == 0);
167                 return 0;
168         }
169 }
170 EXPORT_SYMBOL(ttm_bo_wait_unreserved);
171
172 void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
173 {
174         struct ttm_bo_device *bdev = bo->bdev;
175         struct ttm_mem_type_manager *man;
176
177         BUG_ON(!atomic_read(&bo->reserved));
178
179         if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
180
181                 BUG_ON(!list_empty(&bo->lru));
182
183                 man = &bdev->man[bo->mem.mem_type];
184                 list_add_tail(&bo->lru, &man->lru);
185                 kref_get(&bo->list_kref);
186
187                 if (bo->ttm != NULL) {
188                         list_add_tail(&bo->swap, &bo->glob->swap_lru);
189                         kref_get(&bo->list_kref);
190                 }
191         }
192 }
193
194 int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
195 {
196         int put_count = 0;
197
198         if (!list_empty(&bo->swap)) {
199                 list_del_init(&bo->swap);
200                 ++put_count;
201         }
202         if (!list_empty(&bo->lru)) {
203                 list_del_init(&bo->lru);
204                 ++put_count;
205         }
206
207         /*
208          * TODO: Add a driver hook to delete from
209          * driver-specific LRU's here.
210          */
211
212         return put_count;
213 }
214
215 int ttm_bo_reserve_locked(struct ttm_buffer_object *bo,
216                           bool interruptible,
217                           bool no_wait, bool use_sequence, uint32_t sequence)
218 {
219         struct ttm_bo_global *glob = bo->glob;
220         int ret;
221
222         while (unlikely(atomic_cmpxchg(&bo->reserved, 0, 1) != 0)) {
223                 /**
224                  * Deadlock avoidance for multi-bo reserving.
225                  */
226                 if (use_sequence && bo->seq_valid) {
227                         /**
228                          * We've already reserved this one.
229                          */
230                         if (unlikely(sequence == bo->val_seq))
231                                 return -EDEADLK;
232                         /**
233                          * Already reserved by a thread that will not back
234                          * off for us. We need to back off.
235                          */
236                         if (unlikely(sequence - bo->val_seq < (1 << 31)))
237                                 return -EAGAIN;
238                 }
239
240                 if (no_wait)
241                         return -EBUSY;
242
243                 spin_unlock(&glob->lru_lock);
244                 ret = ttm_bo_wait_unreserved(bo, interruptible);
245                 spin_lock(&glob->lru_lock);
246
247                 if (unlikely(ret))
248                         return ret;
249         }
250
251         if (use_sequence) {
252                 /**
253                  * Wake up waiters that may need to recheck for deadlock,
254                  * if we decreased the sequence number.
255                  */
256                 if (unlikely((bo->val_seq - sequence < (1 << 31))
257                              || !bo->seq_valid))
258                         wake_up_all(&bo->event_queue);
259
260                 bo->val_seq = sequence;
261                 bo->seq_valid = true;
262         } else {
263                 bo->seq_valid = false;
264         }
265
266         return 0;
267 }
268 EXPORT_SYMBOL(ttm_bo_reserve);
269
270 static void ttm_bo_ref_bug(struct kref *list_kref)
271 {
272         BUG();
273 }
274
275 void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
276                          bool never_free)
277 {
278         kref_sub(&bo->list_kref, count,
279                  (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list);
280 }
281
282 int ttm_bo_reserve(struct ttm_buffer_object *bo,
283                    bool interruptible,
284                    bool no_wait, bool use_sequence, uint32_t sequence)
285 {
286         struct ttm_bo_global *glob = bo->glob;
287         int put_count = 0;
288         int ret;
289
290         spin_lock(&glob->lru_lock);
291         ret = ttm_bo_reserve_locked(bo, interruptible, no_wait, use_sequence,
292                                     sequence);
293         if (likely(ret == 0))
294                 put_count = ttm_bo_del_from_lru(bo);
295         spin_unlock(&glob->lru_lock);
296
297         ttm_bo_list_ref_sub(bo, put_count, true);
298
299         return ret;
300 }
301
302 void ttm_bo_unreserve_locked(struct ttm_buffer_object *bo)
303 {
304         ttm_bo_add_to_lru(bo);
305         atomic_set(&bo->reserved, 0);
306         wake_up_all(&bo->event_queue);
307 }
308
309 void ttm_bo_unreserve(struct ttm_buffer_object *bo)
310 {
311         struct ttm_bo_global *glob = bo->glob;
312
313         spin_lock(&glob->lru_lock);
314         ttm_bo_unreserve_locked(bo);
315         spin_unlock(&glob->lru_lock);
316 }
317 EXPORT_SYMBOL(ttm_bo_unreserve);
318
319 /*
320  * Call bo->mutex locked.
321  */
322 static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
323 {
324         struct ttm_bo_device *bdev = bo->bdev;
325         struct ttm_bo_global *glob = bo->glob;
326         int ret = 0;
327         uint32_t page_flags = 0;
328
329         TTM_ASSERT_LOCKED(&bo->mutex);
330         bo->ttm = NULL;
331
332         if (bdev->need_dma32)
333                 page_flags |= TTM_PAGE_FLAG_DMA32;
334
335         switch (bo->type) {
336         case ttm_bo_type_device:
337                 if (zero_alloc)
338                         page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
339         case ttm_bo_type_kernel:
340                 bo->ttm = ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
341                                         page_flags, glob->dummy_read_page);
342                 if (unlikely(bo->ttm == NULL))
343                         ret = -ENOMEM;
344                 break;
345         case ttm_bo_type_user:
346                 bo->ttm = ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
347                                         page_flags | TTM_PAGE_FLAG_USER,
348                                         glob->dummy_read_page);
349                 if (unlikely(bo->ttm == NULL)) {
350                         ret = -ENOMEM;
351                         break;
352                 }
353
354                 ret = ttm_tt_set_user(bo->ttm, current,
355                                       bo->buffer_start, bo->num_pages);
356                 if (unlikely(ret != 0))
357                         ttm_tt_destroy(bo->ttm);
358                 break;
359         default:
360                 printk(KERN_ERR TTM_PFX "Illegal buffer object type\n");
361                 ret = -EINVAL;
362                 break;
363         }
364
365         return ret;
366 }
367
368 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
369                                   struct ttm_mem_reg *mem,
370                                   bool evict, bool interruptible,
371                                   bool no_wait_reserve, bool no_wait_gpu)
372 {
373         struct ttm_bo_device *bdev = bo->bdev;
374         bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
375         bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
376         struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
377         struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
378         int ret = 0;
379
380         if (old_is_pci || new_is_pci ||
381             ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
382                 ret = ttm_mem_io_lock(old_man, true);
383                 if (unlikely(ret != 0))
384                         goto out_err;
385                 ttm_bo_unmap_virtual_locked(bo);
386                 ttm_mem_io_unlock(old_man);
387         }
388
389         /*
390          * Create and bind a ttm if required.
391          */
392
393         if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && (bo->ttm == NULL)) {
394                 ret = ttm_bo_add_ttm(bo, false);
395                 if (ret)
396                         goto out_err;
397
398                 ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
399                 if (ret)
400                         goto out_err;
401
402                 if (mem->mem_type != TTM_PL_SYSTEM) {
403                         ret = ttm_tt_bind(bo->ttm, mem);
404                         if (ret)
405                                 goto out_err;
406                 }
407
408                 if (bo->mem.mem_type == TTM_PL_SYSTEM) {
409                         if (bdev->driver->move_notify)
410                                 bdev->driver->move_notify(bo, mem);
411                         bo->mem = *mem;
412                         mem->mm_node = NULL;
413                         goto moved;
414                 }
415         }
416
417         if (bdev->driver->move_notify)
418                 bdev->driver->move_notify(bo, mem);
419
420         if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
421             !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
422                 ret = ttm_bo_move_ttm(bo, evict, no_wait_reserve, no_wait_gpu, mem);
423         else if (bdev->driver->move)
424                 ret = bdev->driver->move(bo, evict, interruptible,
425                                          no_wait_reserve, no_wait_gpu, mem);
426         else
427                 ret = ttm_bo_move_memcpy(bo, evict, no_wait_reserve, no_wait_gpu, mem);
428
429         if (ret)
430                 goto out_err;
431
432 moved:
433         if (bo->evicted) {
434                 ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
435                 if (ret)
436                         printk(KERN_ERR TTM_PFX "Can not flush read caches\n");
437                 bo->evicted = false;
438         }
439
440         if (bo->mem.mm_node) {
441                 bo->offset = (bo->mem.start << PAGE_SHIFT) +
442                     bdev->man[bo->mem.mem_type].gpu_offset;
443                 bo->cur_placement = bo->mem.placement;
444         } else
445                 bo->offset = 0;
446
447         return 0;
448
449 out_err:
450         new_man = &bdev->man[bo->mem.mem_type];
451         if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
452                 ttm_tt_unbind(bo->ttm);
453                 ttm_tt_destroy(bo->ttm);
454                 bo->ttm = NULL;
455         }
456
457         return ret;
458 }
459
460 /**
461  * Call bo::reserved.
462  * Will release GPU memory type usage on destruction.
463  * This is the place to put in driver specific hooks to release
464  * driver private resources.
465  * Will release the bo::reserved lock.
466  */
467
468 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
469 {
470         if (bo->ttm) {
471                 ttm_tt_unbind(bo->ttm);
472                 ttm_tt_destroy(bo->ttm);
473                 bo->ttm = NULL;
474         }
475         ttm_bo_mem_put(bo, &bo->mem);
476
477         atomic_set(&bo->reserved, 0);
478
479         /*
480          * Make processes trying to reserve really pick it up.
481          */
482         smp_mb__after_atomic_dec();
483         wake_up_all(&bo->event_queue);
484 }
485
486 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
487 {
488         struct ttm_bo_device *bdev = bo->bdev;
489         struct ttm_bo_global *glob = bo->glob;
490         struct ttm_bo_driver *driver;
491         void *sync_obj = NULL;
492         void *sync_obj_arg;
493         int put_count;
494         int ret;
495
496         spin_lock(&bdev->fence_lock);
497         (void) ttm_bo_wait(bo, false, false, true);
498         if (!bo->sync_obj) {
499
500                 spin_lock(&glob->lru_lock);
501
502                 /**
503                  * Lock inversion between bo:reserve and bdev::fence_lock here,
504                  * but that's OK, since we're only trylocking.
505                  */
506
507                 ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
508
509                 if (unlikely(ret == -EBUSY))
510                         goto queue;
511
512                 spin_unlock(&bdev->fence_lock);
513                 put_count = ttm_bo_del_from_lru(bo);
514
515                 spin_unlock(&glob->lru_lock);
516                 ttm_bo_cleanup_memtype_use(bo);
517
518                 ttm_bo_list_ref_sub(bo, put_count, true);
519
520                 return;
521         } else {
522                 spin_lock(&glob->lru_lock);
523         }
524 queue:
525         driver = bdev->driver;
526         if (bo->sync_obj)
527                 sync_obj = driver->sync_obj_ref(bo->sync_obj);
528         sync_obj_arg = bo->sync_obj_arg;
529
530         kref_get(&bo->list_kref);
531         list_add_tail(&bo->ddestroy, &bdev->ddestroy);
532         spin_unlock(&glob->lru_lock);
533         spin_unlock(&bdev->fence_lock);
534
535         if (sync_obj) {
536                 driver->sync_obj_flush(sync_obj, sync_obj_arg);
537                 driver->sync_obj_unref(&sync_obj);
538         }
539         schedule_delayed_work(&bdev->wq,
540                               ((HZ / 100) < 1) ? 1 : HZ / 100);
541 }
542
543 /**
544  * function ttm_bo_cleanup_refs
545  * If bo idle, remove from delayed- and lru lists, and unref.
546  * If not idle, do nothing.
547  *
548  * @interruptible         Any sleeps should occur interruptibly.
549  * @no_wait_reserve       Never wait for reserve. Return -EBUSY instead.
550  * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
551  */
552
553 static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo,
554                                bool interruptible,
555                                bool no_wait_reserve,
556                                bool no_wait_gpu)
557 {
558         struct ttm_bo_device *bdev = bo->bdev;
559         struct ttm_bo_global *glob = bo->glob;
560         int put_count;
561         int ret = 0;
562
563 retry:
564         spin_lock(&bdev->fence_lock);
565         ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
566         spin_unlock(&bdev->fence_lock);
567
568         if (unlikely(ret != 0))
569                 return ret;
570
571         spin_lock(&glob->lru_lock);
572         ret = ttm_bo_reserve_locked(bo, interruptible,
573                                     no_wait_reserve, false, 0);
574
575         if (unlikely(ret != 0) || list_empty(&bo->ddestroy)) {
576                 spin_unlock(&glob->lru_lock);
577                 return ret;
578         }
579
580         /**
581          * We can re-check for sync object without taking
582          * the bo::lock since setting the sync object requires
583          * also bo::reserved. A busy object at this point may
584          * be caused by another thread recently starting an accelerated
585          * eviction.
586          */
587
588         if (unlikely(bo->sync_obj)) {
589                 atomic_set(&bo->reserved, 0);
590                 wake_up_all(&bo->event_queue);
591                 spin_unlock(&glob->lru_lock);
592                 goto retry;
593         }
594
595         put_count = ttm_bo_del_from_lru(bo);
596         list_del_init(&bo->ddestroy);
597         ++put_count;
598
599         spin_unlock(&glob->lru_lock);
600         ttm_bo_cleanup_memtype_use(bo);
601
602         ttm_bo_list_ref_sub(bo, put_count, true);
603
604         return 0;
605 }
606
607 /**
608  * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
609  * encountered buffers.
610  */
611
612 static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
613 {
614         struct ttm_bo_global *glob = bdev->glob;
615         struct ttm_buffer_object *entry = NULL;
616         int ret = 0;
617
618         spin_lock(&glob->lru_lock);
619         if (list_empty(&bdev->ddestroy))
620                 goto out_unlock;
621
622         entry = list_first_entry(&bdev->ddestroy,
623                 struct ttm_buffer_object, ddestroy);
624         kref_get(&entry->list_kref);
625
626         for (;;) {
627                 struct ttm_buffer_object *nentry = NULL;
628
629                 if (entry->ddestroy.next != &bdev->ddestroy) {
630                         nentry = list_first_entry(&entry->ddestroy,
631                                 struct ttm_buffer_object, ddestroy);
632                         kref_get(&nentry->list_kref);
633                 }
634
635                 spin_unlock(&glob->lru_lock);
636                 ret = ttm_bo_cleanup_refs(entry, false, !remove_all,
637                                           !remove_all);
638                 kref_put(&entry->list_kref, ttm_bo_release_list);
639                 entry = nentry;
640
641                 if (ret || !entry)
642                         goto out;
643
644                 spin_lock(&glob->lru_lock);
645                 if (list_empty(&entry->ddestroy))
646                         break;
647         }
648
649 out_unlock:
650         spin_unlock(&glob->lru_lock);
651 out:
652         if (entry)
653                 kref_put(&entry->list_kref, ttm_bo_release_list);
654         return ret;
655 }
656
657 static void ttm_bo_delayed_workqueue(struct work_struct *work)
658 {
659         struct ttm_bo_device *bdev =
660             container_of(work, struct ttm_bo_device, wq.work);
661
662         if (ttm_bo_delayed_delete(bdev, false)) {
663                 schedule_delayed_work(&bdev->wq,
664                                       ((HZ / 100) < 1) ? 1 : HZ / 100);
665         }
666 }
667
668 static void ttm_bo_release(struct kref *kref)
669 {
670         struct ttm_buffer_object *bo =
671             container_of(kref, struct ttm_buffer_object, kref);
672         struct ttm_bo_device *bdev = bo->bdev;
673         struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
674
675         if (likely(bo->vm_node != NULL)) {
676                 rb_erase(&bo->vm_rb, &bdev->addr_space_rb);
677                 drm_mm_put_block(bo->vm_node);
678                 bo->vm_node = NULL;
679         }
680         write_unlock(&bdev->vm_lock);
681         ttm_mem_io_lock(man, false);
682         ttm_mem_io_free_vm(bo);
683         ttm_mem_io_unlock(man);
684         ttm_bo_cleanup_refs_or_queue(bo);
685         kref_put(&bo->list_kref, ttm_bo_release_list);
686         write_lock(&bdev->vm_lock);
687 }
688
689 void ttm_bo_unref(struct ttm_buffer_object **p_bo)
690 {
691         struct ttm_buffer_object *bo = *p_bo;
692         struct ttm_bo_device *bdev = bo->bdev;
693
694         *p_bo = NULL;
695         write_lock(&bdev->vm_lock);
696         kref_put(&bo->kref, ttm_bo_release);
697         write_unlock(&bdev->vm_lock);
698 }
699 EXPORT_SYMBOL(ttm_bo_unref);
700
701 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
702 {
703         return cancel_delayed_work_sync(&bdev->wq);
704 }
705 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
706
707 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
708 {
709         if (resched)
710                 schedule_delayed_work(&bdev->wq,
711                                       ((HZ / 100) < 1) ? 1 : HZ / 100);
712 }
713 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
714
715 static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
716                         bool no_wait_reserve, bool no_wait_gpu)
717 {
718         struct ttm_bo_device *bdev = bo->bdev;
719         struct ttm_mem_reg evict_mem;
720         struct ttm_placement placement;
721         int ret = 0;
722
723         spin_lock(&bdev->fence_lock);
724         ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
725         spin_unlock(&bdev->fence_lock);
726
727         if (unlikely(ret != 0)) {
728                 if (ret != -ERESTARTSYS) {
729                         printk(KERN_ERR TTM_PFX
730                                "Failed to expire sync object before "
731                                "buffer eviction.\n");
732                 }
733                 goto out;
734         }
735
736         BUG_ON(!atomic_read(&bo->reserved));
737
738         evict_mem = bo->mem;
739         evict_mem.mm_node = NULL;
740         evict_mem.bus.io_reserved_vm = false;
741         evict_mem.bus.io_reserved_count = 0;
742
743         placement.fpfn = 0;
744         placement.lpfn = 0;
745         placement.num_placement = 0;
746         placement.num_busy_placement = 0;
747         bdev->driver->evict_flags(bo, &placement);
748         ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
749                                 no_wait_reserve, no_wait_gpu);
750         if (ret) {
751                 if (ret != -ERESTARTSYS) {
752                         printk(KERN_ERR TTM_PFX
753                                "Failed to find memory space for "
754                                "buffer 0x%p eviction.\n", bo);
755                         ttm_bo_mem_space_debug(bo, &placement);
756                 }
757                 goto out;
758         }
759
760         ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
761                                      no_wait_reserve, no_wait_gpu);
762         if (ret) {
763                 if (ret != -ERESTARTSYS)
764                         printk(KERN_ERR TTM_PFX "Buffer eviction failed\n");
765                 ttm_bo_mem_put(bo, &evict_mem);
766                 goto out;
767         }
768         bo->evicted = true;
769 out:
770         return ret;
771 }
772
773 static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
774                                 uint32_t mem_type,
775                                 bool interruptible, bool no_wait_reserve,
776                                 bool no_wait_gpu)
777 {
778         struct ttm_bo_global *glob = bdev->glob;
779         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
780         struct ttm_buffer_object *bo;
781         int ret, put_count = 0;
782
783 retry:
784         spin_lock(&glob->lru_lock);
785         if (list_empty(&man->lru)) {
786                 spin_unlock(&glob->lru_lock);
787                 return -EBUSY;
788         }
789
790         bo = list_first_entry(&man->lru, struct ttm_buffer_object, lru);
791         kref_get(&bo->list_kref);
792
793         if (!list_empty(&bo->ddestroy)) {
794                 spin_unlock(&glob->lru_lock);
795                 ret = ttm_bo_cleanup_refs(bo, interruptible,
796                                           no_wait_reserve, no_wait_gpu);
797                 kref_put(&bo->list_kref, ttm_bo_release_list);
798
799                 if (likely(ret == 0 || ret == -ERESTARTSYS))
800                         return ret;
801
802                 goto retry;
803         }
804
805         ret = ttm_bo_reserve_locked(bo, false, no_wait_reserve, false, 0);
806
807         if (unlikely(ret == -EBUSY)) {
808                 spin_unlock(&glob->lru_lock);
809                 if (likely(!no_wait_gpu))
810                         ret = ttm_bo_wait_unreserved(bo, interruptible);
811
812                 kref_put(&bo->list_kref, ttm_bo_release_list);
813
814                 /**
815                  * We *need* to retry after releasing the lru lock.
816                  */
817
818                 if (unlikely(ret != 0))
819                         return ret;
820                 goto retry;
821         }
822
823         put_count = ttm_bo_del_from_lru(bo);
824         spin_unlock(&glob->lru_lock);
825
826         BUG_ON(ret != 0);
827
828         ttm_bo_list_ref_sub(bo, put_count, true);
829
830         ret = ttm_bo_evict(bo, interruptible, no_wait_reserve, no_wait_gpu);
831         ttm_bo_unreserve(bo);
832
833         kref_put(&bo->list_kref, ttm_bo_release_list);
834         return ret;
835 }
836
837 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
838 {
839         struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
840
841         if (mem->mm_node)
842                 (*man->func->put_node)(man, mem);
843 }
844 EXPORT_SYMBOL(ttm_bo_mem_put);
845
846 /**
847  * Repeatedly evict memory from the LRU for @mem_type until we create enough
848  * space, or we've evicted everything and there isn't enough space.
849  */
850 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
851                                         uint32_t mem_type,
852                                         struct ttm_placement *placement,
853                                         struct ttm_mem_reg *mem,
854                                         bool interruptible,
855                                         bool no_wait_reserve,
856                                         bool no_wait_gpu)
857 {
858         struct ttm_bo_device *bdev = bo->bdev;
859         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
860         int ret;
861
862         do {
863                 ret = (*man->func->get_node)(man, bo, placement, mem);
864                 if (unlikely(ret != 0))
865                         return ret;
866                 if (mem->mm_node)
867                         break;
868                 ret = ttm_mem_evict_first(bdev, mem_type, interruptible,
869                                                 no_wait_reserve, no_wait_gpu);
870                 if (unlikely(ret != 0))
871                         return ret;
872         } while (1);
873         if (mem->mm_node == NULL)
874                 return -ENOMEM;
875         mem->mem_type = mem_type;
876         return 0;
877 }
878
879 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
880                                       uint32_t cur_placement,
881                                       uint32_t proposed_placement)
882 {
883         uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
884         uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
885
886         /**
887          * Keep current caching if possible.
888          */
889
890         if ((cur_placement & caching) != 0)
891                 result |= (cur_placement & caching);
892         else if ((man->default_caching & caching) != 0)
893                 result |= man->default_caching;
894         else if ((TTM_PL_FLAG_CACHED & caching) != 0)
895                 result |= TTM_PL_FLAG_CACHED;
896         else if ((TTM_PL_FLAG_WC & caching) != 0)
897                 result |= TTM_PL_FLAG_WC;
898         else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
899                 result |= TTM_PL_FLAG_UNCACHED;
900
901         return result;
902 }
903
904 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
905                                  bool disallow_fixed,
906                                  uint32_t mem_type,
907                                  uint32_t proposed_placement,
908                                  uint32_t *masked_placement)
909 {
910         uint32_t cur_flags = ttm_bo_type_flags(mem_type);
911
912         if ((man->flags & TTM_MEMTYPE_FLAG_FIXED) && disallow_fixed)
913                 return false;
914
915         if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
916                 return false;
917
918         if ((proposed_placement & man->available_caching) == 0)
919                 return false;
920
921         cur_flags |= (proposed_placement & man->available_caching);
922
923         *masked_placement = cur_flags;
924         return true;
925 }
926
927 /**
928  * Creates space for memory region @mem according to its type.
929  *
930  * This function first searches for free space in compatible memory types in
931  * the priority order defined by the driver.  If free space isn't found, then
932  * ttm_bo_mem_force_space is attempted in priority order to evict and find
933  * space.
934  */
935 int ttm_bo_mem_space(struct ttm_buffer_object *bo,
936                         struct ttm_placement *placement,
937                         struct ttm_mem_reg *mem,
938                         bool interruptible, bool no_wait_reserve,
939                         bool no_wait_gpu)
940 {
941         struct ttm_bo_device *bdev = bo->bdev;
942         struct ttm_mem_type_manager *man;
943         uint32_t mem_type = TTM_PL_SYSTEM;
944         uint32_t cur_flags = 0;
945         bool type_found = false;
946         bool type_ok = false;
947         bool has_erestartsys = false;
948         int i, ret;
949
950         mem->mm_node = NULL;
951         for (i = 0; i < placement->num_placement; ++i) {
952                 ret = ttm_mem_type_from_flags(placement->placement[i],
953                                                 &mem_type);
954                 if (ret)
955                         return ret;
956                 man = &bdev->man[mem_type];
957
958                 type_ok = ttm_bo_mt_compatible(man,
959                                                 bo->type == ttm_bo_type_user,
960                                                 mem_type,
961                                                 placement->placement[i],
962                                                 &cur_flags);
963
964                 if (!type_ok)
965                         continue;
966
967                 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
968                                                   cur_flags);
969                 /*
970                  * Use the access and other non-mapping-related flag bits from
971                  * the memory placement flags to the current flags
972                  */
973                 ttm_flag_masked(&cur_flags, placement->placement[i],
974                                 ~TTM_PL_MASK_MEMTYPE);
975
976                 if (mem_type == TTM_PL_SYSTEM)
977                         break;
978
979                 if (man->has_type && man->use_type) {
980                         type_found = true;
981                         ret = (*man->func->get_node)(man, bo, placement, mem);
982                         if (unlikely(ret))
983                                 return ret;
984                 }
985                 if (mem->mm_node)
986                         break;
987         }
988
989         if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
990                 mem->mem_type = mem_type;
991                 mem->placement = cur_flags;
992                 return 0;
993         }
994
995         if (!type_found)
996                 return -EINVAL;
997
998         for (i = 0; i < placement->num_busy_placement; ++i) {
999                 ret = ttm_mem_type_from_flags(placement->busy_placement[i],
1000                                                 &mem_type);
1001                 if (ret)
1002                         return ret;
1003                 man = &bdev->man[mem_type];
1004                 if (!man->has_type)
1005                         continue;
1006                 if (!ttm_bo_mt_compatible(man,
1007                                                 bo->type == ttm_bo_type_user,
1008                                                 mem_type,
1009                                                 placement->busy_placement[i],
1010                                                 &cur_flags))
1011                         continue;
1012
1013                 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
1014                                                   cur_flags);
1015                 /*
1016                  * Use the access and other non-mapping-related flag bits from
1017                  * the memory placement flags to the current flags
1018                  */
1019                 ttm_flag_masked(&cur_flags, placement->busy_placement[i],
1020                                 ~TTM_PL_MASK_MEMTYPE);
1021
1022
1023                 if (mem_type == TTM_PL_SYSTEM) {
1024                         mem->mem_type = mem_type;
1025                         mem->placement = cur_flags;
1026                         mem->mm_node = NULL;
1027                         return 0;
1028                 }
1029
1030                 ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem,
1031                                                 interruptible, no_wait_reserve, no_wait_gpu);
1032                 if (ret == 0 && mem->mm_node) {
1033                         mem->placement = cur_flags;
1034                         return 0;
1035                 }
1036                 if (ret == -ERESTARTSYS)
1037                         has_erestartsys = true;
1038         }
1039         ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
1040         return ret;
1041 }
1042 EXPORT_SYMBOL(ttm_bo_mem_space);
1043
1044 int ttm_bo_wait_cpu(struct ttm_buffer_object *bo, bool no_wait)
1045 {
1046         if ((atomic_read(&bo->cpu_writers) > 0) && no_wait)
1047                 return -EBUSY;
1048
1049         return wait_event_interruptible(bo->event_queue,
1050                                         atomic_read(&bo->cpu_writers) == 0);
1051 }
1052 EXPORT_SYMBOL(ttm_bo_wait_cpu);
1053
1054 int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1055                         struct ttm_placement *placement,
1056                         bool interruptible, bool no_wait_reserve,
1057                         bool no_wait_gpu)
1058 {
1059         int ret = 0;
1060         struct ttm_mem_reg mem;
1061         struct ttm_bo_device *bdev = bo->bdev;
1062
1063         BUG_ON(!atomic_read(&bo->reserved));
1064
1065         /*
1066          * FIXME: It's possible to pipeline buffer moves.
1067          * Have the driver move function wait for idle when necessary,
1068          * instead of doing it here.
1069          */
1070         spin_lock(&bdev->fence_lock);
1071         ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
1072         spin_unlock(&bdev->fence_lock);
1073         if (ret)
1074                 return ret;
1075         mem.num_pages = bo->num_pages;
1076         mem.size = mem.num_pages << PAGE_SHIFT;
1077         mem.page_alignment = bo->mem.page_alignment;
1078         mem.bus.io_reserved_vm = false;
1079         mem.bus.io_reserved_count = 0;
1080         /*
1081          * Determine where to move the buffer.
1082          */
1083         ret = ttm_bo_mem_space(bo, placement, &mem, interruptible, no_wait_reserve, no_wait_gpu);
1084         if (ret)
1085                 goto out_unlock;
1086         ret = ttm_bo_handle_move_mem(bo, &mem, false, interruptible, no_wait_reserve, no_wait_gpu);
1087 out_unlock:
1088         if (ret && mem.mm_node)
1089                 ttm_bo_mem_put(bo, &mem);
1090         return ret;
1091 }
1092
1093 static int ttm_bo_mem_compat(struct ttm_placement *placement,
1094                              struct ttm_mem_reg *mem)
1095 {
1096         int i;
1097
1098         if (mem->mm_node && placement->lpfn != 0 &&
1099             (mem->start < placement->fpfn ||
1100              mem->start + mem->num_pages > placement->lpfn))
1101                 return -1;
1102
1103         for (i = 0; i < placement->num_placement; i++) {
1104                 if ((placement->placement[i] & mem->placement &
1105                         TTM_PL_MASK_CACHING) &&
1106                         (placement->placement[i] & mem->placement &
1107                         TTM_PL_MASK_MEM))
1108                         return i;
1109         }
1110         return -1;
1111 }
1112
1113 int ttm_bo_validate(struct ttm_buffer_object *bo,
1114                         struct ttm_placement *placement,
1115                         bool interruptible, bool no_wait_reserve,
1116                         bool no_wait_gpu)
1117 {
1118         int ret;
1119
1120         BUG_ON(!atomic_read(&bo->reserved));
1121         /* Check that range is valid */
1122         if (placement->lpfn || placement->fpfn)
1123                 if (placement->fpfn > placement->lpfn ||
1124                         (placement->lpfn - placement->fpfn) < bo->num_pages)
1125                         return -EINVAL;
1126         /*
1127          * Check whether we need to move buffer.
1128          */
1129         ret = ttm_bo_mem_compat(placement, &bo->mem);
1130         if (ret < 0) {
1131                 ret = ttm_bo_move_buffer(bo, placement, interruptible, no_wait_reserve, no_wait_gpu);
1132                 if (ret)
1133                         return ret;
1134         } else {
1135                 /*
1136                  * Use the access and other non-mapping-related flag bits from
1137                  * the compatible memory placement flags to the active flags
1138                  */
1139                 ttm_flag_masked(&bo->mem.placement, placement->placement[ret],
1140                                 ~TTM_PL_MASK_MEMTYPE);
1141         }
1142         /*
1143          * We might need to add a TTM.
1144          */
1145         if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1146                 ret = ttm_bo_add_ttm(bo, true);
1147                 if (ret)
1148                         return ret;
1149         }
1150         return 0;
1151 }
1152 EXPORT_SYMBOL(ttm_bo_validate);
1153
1154 int ttm_bo_check_placement(struct ttm_buffer_object *bo,
1155                                 struct ttm_placement *placement)
1156 {
1157         BUG_ON((placement->fpfn || placement->lpfn) &&
1158                (bo->mem.num_pages > (placement->lpfn - placement->fpfn)));
1159
1160         return 0;
1161 }
1162
1163 int ttm_bo_init(struct ttm_bo_device *bdev,
1164                 struct ttm_buffer_object *bo,
1165                 unsigned long size,
1166                 enum ttm_bo_type type,
1167                 struct ttm_placement *placement,
1168                 uint32_t page_alignment,
1169                 unsigned long buffer_start,
1170                 bool interruptible,
1171                 struct file *persistant_swap_storage,
1172                 size_t acc_size,
1173                 void (*destroy) (struct ttm_buffer_object *))
1174 {
1175         int ret = 0;
1176         unsigned long num_pages;
1177
1178         size += buffer_start & ~PAGE_MASK;
1179         num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1180         if (num_pages == 0) {
1181                 printk(KERN_ERR TTM_PFX "Illegal buffer object size.\n");
1182                 if (destroy)
1183                         (*destroy)(bo);
1184                 else
1185                         kfree(bo);
1186                 return -EINVAL;
1187         }
1188         bo->destroy = destroy;
1189
1190         kref_init(&bo->kref);
1191         kref_init(&bo->list_kref);
1192         atomic_set(&bo->cpu_writers, 0);
1193         atomic_set(&bo->reserved, 1);
1194         init_waitqueue_head(&bo->event_queue);
1195         INIT_LIST_HEAD(&bo->lru);
1196         INIT_LIST_HEAD(&bo->ddestroy);
1197         INIT_LIST_HEAD(&bo->swap);
1198         INIT_LIST_HEAD(&bo->io_reserve_lru);
1199         bo->bdev = bdev;
1200         bo->glob = bdev->glob;
1201         bo->type = type;
1202         bo->num_pages = num_pages;
1203         bo->mem.size = num_pages << PAGE_SHIFT;
1204         bo->mem.mem_type = TTM_PL_SYSTEM;
1205         bo->mem.num_pages = bo->num_pages;
1206         bo->mem.mm_node = NULL;
1207         bo->mem.page_alignment = page_alignment;
1208         bo->mem.bus.io_reserved_vm = false;
1209         bo->mem.bus.io_reserved_count = 0;
1210         bo->buffer_start = buffer_start & PAGE_MASK;
1211         bo->priv_flags = 0;
1212         bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1213         bo->seq_valid = false;
1214         bo->persistant_swap_storage = persistant_swap_storage;
1215         bo->acc_size = acc_size;
1216         atomic_inc(&bo->glob->bo_count);
1217
1218         ret = ttm_bo_check_placement(bo, placement);
1219         if (unlikely(ret != 0))
1220                 goto out_err;
1221
1222         /*
1223          * For ttm_bo_type_device buffers, allocate
1224          * address space from the device.
1225          */
1226         if (bo->type == ttm_bo_type_device) {
1227                 ret = ttm_bo_setup_vm(bo);
1228                 if (ret)
1229                         goto out_err;
1230         }
1231
1232         ret = ttm_bo_validate(bo, placement, interruptible, false, false);
1233         if (ret)
1234                 goto out_err;
1235
1236         ttm_bo_unreserve(bo);
1237         return 0;
1238
1239 out_err:
1240         ttm_bo_unreserve(bo);
1241         ttm_bo_unref(&bo);
1242
1243         return ret;
1244 }
1245 EXPORT_SYMBOL(ttm_bo_init);
1246
1247 static inline size_t ttm_bo_size(struct ttm_bo_global *glob,
1248                                  unsigned long num_pages)
1249 {
1250         size_t page_array_size = (num_pages * sizeof(void *) + PAGE_SIZE - 1) &
1251             PAGE_MASK;
1252
1253         return glob->ttm_bo_size + 2 * page_array_size;
1254 }
1255
1256 int ttm_bo_create(struct ttm_bo_device *bdev,
1257                         unsigned long size,
1258                         enum ttm_bo_type type,
1259                         struct ttm_placement *placement,
1260                         uint32_t page_alignment,
1261                         unsigned long buffer_start,
1262                         bool interruptible,
1263                         struct file *persistant_swap_storage,
1264                         struct ttm_buffer_object **p_bo)
1265 {
1266         struct ttm_buffer_object *bo;
1267         struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1268         int ret;
1269
1270         size_t acc_size =
1271             ttm_bo_size(bdev->glob, (size + PAGE_SIZE - 1) >> PAGE_SHIFT);
1272         ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1273         if (unlikely(ret != 0))
1274                 return ret;
1275
1276         bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1277
1278         if (unlikely(bo == NULL)) {
1279                 ttm_mem_global_free(mem_glob, acc_size);
1280                 return -ENOMEM;
1281         }
1282
1283         ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1284                                 buffer_start, interruptible,
1285                                 persistant_swap_storage, acc_size, NULL);
1286         if (likely(ret == 0))
1287                 *p_bo = bo;
1288
1289         return ret;
1290 }
1291
1292 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1293                                         unsigned mem_type, bool allow_errors)
1294 {
1295         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1296         struct ttm_bo_global *glob = bdev->glob;
1297         int ret;
1298
1299         /*
1300          * Can't use standard list traversal since we're unlocking.
1301          */
1302
1303         spin_lock(&glob->lru_lock);
1304         while (!list_empty(&man->lru)) {
1305                 spin_unlock(&glob->lru_lock);
1306                 ret = ttm_mem_evict_first(bdev, mem_type, false, false, false);
1307                 if (ret) {
1308                         if (allow_errors) {
1309                                 return ret;
1310                         } else {
1311                                 printk(KERN_ERR TTM_PFX
1312                                         "Cleanup eviction failed\n");
1313                         }
1314                 }
1315                 spin_lock(&glob->lru_lock);
1316         }
1317         spin_unlock(&glob->lru_lock);
1318         return 0;
1319 }
1320
1321 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1322 {
1323         struct ttm_mem_type_manager *man;
1324         int ret = -EINVAL;
1325
1326         if (mem_type >= TTM_NUM_MEM_TYPES) {
1327                 printk(KERN_ERR TTM_PFX "Illegal memory type %d\n", mem_type);
1328                 return ret;
1329         }
1330         man = &bdev->man[mem_type];
1331
1332         if (!man->has_type) {
1333                 printk(KERN_ERR TTM_PFX "Trying to take down uninitialized "
1334                        "memory manager type %u\n", mem_type);
1335                 return ret;
1336         }
1337
1338         man->use_type = false;
1339         man->has_type = false;
1340
1341         ret = 0;
1342         if (mem_type > 0) {
1343                 ttm_bo_force_list_clean(bdev, mem_type, false);
1344
1345                 ret = (*man->func->takedown)(man);
1346         }
1347
1348         return ret;
1349 }
1350 EXPORT_SYMBOL(ttm_bo_clean_mm);
1351
1352 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1353 {
1354         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1355
1356         if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1357                 printk(KERN_ERR TTM_PFX
1358                        "Illegal memory manager memory type %u.\n",
1359                        mem_type);
1360                 return -EINVAL;
1361         }
1362
1363         if (!man->has_type) {
1364                 printk(KERN_ERR TTM_PFX
1365                        "Memory type %u has not been initialized.\n",
1366                        mem_type);
1367                 return 0;
1368         }
1369
1370         return ttm_bo_force_list_clean(bdev, mem_type, true);
1371 }
1372 EXPORT_SYMBOL(ttm_bo_evict_mm);
1373
1374 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1375                         unsigned long p_size)
1376 {
1377         int ret = -EINVAL;
1378         struct ttm_mem_type_manager *man;
1379
1380         BUG_ON(type >= TTM_NUM_MEM_TYPES);
1381         man = &bdev->man[type];
1382         BUG_ON(man->has_type);
1383         man->io_reserve_fastpath = true;
1384         man->use_io_reserve_lru = false;
1385         mutex_init(&man->io_reserve_mutex);
1386         INIT_LIST_HEAD(&man->io_reserve_lru);
1387
1388         ret = bdev->driver->init_mem_type(bdev, type, man);
1389         if (ret)
1390                 return ret;
1391         man->bdev = bdev;
1392
1393         ret = 0;
1394         if (type != TTM_PL_SYSTEM) {
1395                 ret = (*man->func->init)(man, p_size);
1396                 if (ret)
1397                         return ret;
1398         }
1399         man->has_type = true;
1400         man->use_type = true;
1401         man->size = p_size;
1402
1403         INIT_LIST_HEAD(&man->lru);
1404
1405         return 0;
1406 }
1407 EXPORT_SYMBOL(ttm_bo_init_mm);
1408
1409 static void ttm_bo_global_kobj_release(struct kobject *kobj)
1410 {
1411         struct ttm_bo_global *glob =
1412                 container_of(kobj, struct ttm_bo_global, kobj);
1413
1414         ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1415         __free_page(glob->dummy_read_page);
1416         kfree(glob);
1417 }
1418
1419 void ttm_bo_global_release(struct drm_global_reference *ref)
1420 {
1421         struct ttm_bo_global *glob = ref->object;
1422
1423         kobject_del(&glob->kobj);
1424         kobject_put(&glob->kobj);
1425 }
1426 EXPORT_SYMBOL(ttm_bo_global_release);
1427
1428 int ttm_bo_global_init(struct drm_global_reference *ref)
1429 {
1430         struct ttm_bo_global_ref *bo_ref =
1431                 container_of(ref, struct ttm_bo_global_ref, ref);
1432         struct ttm_bo_global *glob = ref->object;
1433         int ret;
1434
1435         mutex_init(&glob->device_list_mutex);
1436         spin_lock_init(&glob->lru_lock);
1437         glob->mem_glob = bo_ref->mem_glob;
1438         glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1439
1440         if (unlikely(glob->dummy_read_page == NULL)) {
1441                 ret = -ENOMEM;
1442                 goto out_no_drp;
1443         }
1444
1445         INIT_LIST_HEAD(&glob->swap_lru);
1446         INIT_LIST_HEAD(&glob->device_list);
1447
1448         ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1449         ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1450         if (unlikely(ret != 0)) {
1451                 printk(KERN_ERR TTM_PFX
1452                        "Could not register buffer object swapout.\n");
1453                 goto out_no_shrink;
1454         }
1455
1456         glob->ttm_bo_extra_size =
1457                 ttm_round_pot(sizeof(struct ttm_tt)) +
1458                 ttm_round_pot(sizeof(struct ttm_backend));
1459
1460         glob->ttm_bo_size = glob->ttm_bo_extra_size +
1461                 ttm_round_pot(sizeof(struct ttm_buffer_object));
1462
1463         atomic_set(&glob->bo_count, 0);
1464
1465         ret = kobject_init_and_add(
1466                 &glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1467         if (unlikely(ret != 0))
1468                 kobject_put(&glob->kobj);
1469         return ret;
1470 out_no_shrink:
1471         __free_page(glob->dummy_read_page);
1472 out_no_drp:
1473         kfree(glob);
1474         return ret;
1475 }
1476 EXPORT_SYMBOL(ttm_bo_global_init);
1477
1478
1479 int ttm_bo_device_release(struct ttm_bo_device *bdev)
1480 {
1481         int ret = 0;
1482         unsigned i = TTM_NUM_MEM_TYPES;
1483         struct ttm_mem_type_manager *man;
1484         struct ttm_bo_global *glob = bdev->glob;
1485
1486         while (i--) {
1487                 man = &bdev->man[i];
1488                 if (man->has_type) {
1489                         man->use_type = false;
1490                         if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1491                                 ret = -EBUSY;
1492                                 printk(KERN_ERR TTM_PFX
1493                                        "DRM memory manager type %d "
1494                                        "is not clean.\n", i);
1495                         }
1496                         man->has_type = false;
1497                 }
1498         }
1499
1500         mutex_lock(&glob->device_list_mutex);
1501         list_del(&bdev->device_list);
1502         mutex_unlock(&glob->device_list_mutex);
1503
1504         cancel_delayed_work_sync(&bdev->wq);
1505
1506         while (ttm_bo_delayed_delete(bdev, true))
1507                 ;
1508
1509         spin_lock(&glob->lru_lock);
1510         if (list_empty(&bdev->ddestroy))
1511                 TTM_DEBUG("Delayed destroy list was clean\n");
1512
1513         if (list_empty(&bdev->man[0].lru))
1514                 TTM_DEBUG("Swap list was clean\n");
1515         spin_unlock(&glob->lru_lock);
1516
1517         BUG_ON(!drm_mm_clean(&bdev->addr_space_mm));
1518         write_lock(&bdev->vm_lock);
1519         drm_mm_takedown(&bdev->addr_space_mm);
1520         write_unlock(&bdev->vm_lock);
1521
1522         return ret;
1523 }
1524 EXPORT_SYMBOL(ttm_bo_device_release);
1525
1526 int ttm_bo_device_init(struct ttm_bo_device *bdev,
1527                        struct ttm_bo_global *glob,
1528                        struct ttm_bo_driver *driver,
1529                        uint64_t file_page_offset,
1530                        bool need_dma32)
1531 {
1532         int ret = -EINVAL;
1533
1534         rwlock_init(&bdev->vm_lock);
1535         bdev->driver = driver;
1536
1537         memset(bdev->man, 0, sizeof(bdev->man));
1538
1539         /*
1540          * Initialize the system memory buffer type.
1541          * Other types need to be driver / IOCTL initialized.
1542          */
1543         ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1544         if (unlikely(ret != 0))
1545                 goto out_no_sys;
1546
1547         bdev->addr_space_rb = RB_ROOT;
1548         ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000);
1549         if (unlikely(ret != 0))
1550                 goto out_no_addr_mm;
1551
1552         INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1553         bdev->nice_mode = true;
1554         INIT_LIST_HEAD(&bdev->ddestroy);
1555         bdev->dev_mapping = NULL;
1556         bdev->glob = glob;
1557         bdev->need_dma32 = need_dma32;
1558         bdev->val_seq = 0;
1559         spin_lock_init(&bdev->fence_lock);
1560         mutex_lock(&glob->device_list_mutex);
1561         list_add_tail(&bdev->device_list, &glob->device_list);
1562         mutex_unlock(&glob->device_list_mutex);
1563
1564         return 0;
1565 out_no_addr_mm:
1566         ttm_bo_clean_mm(bdev, 0);
1567 out_no_sys:
1568         return ret;
1569 }
1570 EXPORT_SYMBOL(ttm_bo_device_init);
1571
1572 /*
1573  * buffer object vm functions.
1574  */
1575
1576 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1577 {
1578         struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1579
1580         if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1581                 if (mem->mem_type == TTM_PL_SYSTEM)
1582                         return false;
1583
1584                 if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1585                         return false;
1586
1587                 if (mem->placement & TTM_PL_FLAG_CACHED)
1588                         return false;
1589         }
1590         return true;
1591 }
1592
1593 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1594 {
1595         struct ttm_bo_device *bdev = bo->bdev;
1596         loff_t offset = (loff_t) bo->addr_space_offset;
1597         loff_t holelen = ((loff_t) bo->mem.num_pages) << PAGE_SHIFT;
1598
1599         if (!bdev->dev_mapping)
1600                 return;
1601         unmap_mapping_range(bdev->dev_mapping, offset, holelen, 1);
1602         ttm_mem_io_free_vm(bo);
1603 }
1604
1605 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1606 {
1607         struct ttm_bo_device *bdev = bo->bdev;
1608         struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1609
1610         ttm_mem_io_lock(man, false);
1611         ttm_bo_unmap_virtual_locked(bo);
1612         ttm_mem_io_unlock(man);
1613 }
1614
1615
1616 EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1617
1618 static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo)
1619 {
1620         struct ttm_bo_device *bdev = bo->bdev;
1621         struct rb_node **cur = &bdev->addr_space_rb.rb_node;
1622         struct rb_node *parent = NULL;
1623         struct ttm_buffer_object *cur_bo;
1624         unsigned long offset = bo->vm_node->start;
1625         unsigned long cur_offset;
1626
1627         while (*cur) {
1628                 parent = *cur;
1629                 cur_bo = rb_entry(parent, struct ttm_buffer_object, vm_rb);
1630                 cur_offset = cur_bo->vm_node->start;
1631                 if (offset < cur_offset)
1632                         cur = &parent->rb_left;
1633                 else if (offset > cur_offset)
1634                         cur = &parent->rb_right;
1635                 else
1636                         BUG();
1637         }
1638
1639         rb_link_node(&bo->vm_rb, parent, cur);
1640         rb_insert_color(&bo->vm_rb, &bdev->addr_space_rb);
1641 }
1642
1643 /**
1644  * ttm_bo_setup_vm:
1645  *
1646  * @bo: the buffer to allocate address space for
1647  *
1648  * Allocate address space in the drm device so that applications
1649  * can mmap the buffer and access the contents. This only
1650  * applies to ttm_bo_type_device objects as others are not
1651  * placed in the drm device address space.
1652  */
1653
1654 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo)
1655 {
1656         struct ttm_bo_device *bdev = bo->bdev;
1657         int ret;
1658
1659 retry_pre_get:
1660         ret = drm_mm_pre_get(&bdev->addr_space_mm);
1661         if (unlikely(ret != 0))
1662                 return ret;
1663
1664         write_lock(&bdev->vm_lock);
1665         bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm,
1666                                          bo->mem.num_pages, 0, 0);
1667
1668         if (unlikely(bo->vm_node == NULL)) {
1669                 ret = -ENOMEM;
1670                 goto out_unlock;
1671         }
1672
1673         bo->vm_node = drm_mm_get_block_atomic(bo->vm_node,
1674                                               bo->mem.num_pages, 0);
1675
1676         if (unlikely(bo->vm_node == NULL)) {
1677                 write_unlock(&bdev->vm_lock);
1678                 goto retry_pre_get;
1679         }
1680
1681         ttm_bo_vm_insert_rb(bo);
1682         write_unlock(&bdev->vm_lock);
1683         bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT;
1684
1685         return 0;
1686 out_unlock:
1687         write_unlock(&bdev->vm_lock);
1688         return ret;
1689 }
1690
1691 int ttm_bo_wait(struct ttm_buffer_object *bo,
1692                 bool lazy, bool interruptible, bool no_wait)
1693 {
1694         struct ttm_bo_driver *driver = bo->bdev->driver;
1695         struct ttm_bo_device *bdev = bo->bdev;
1696         void *sync_obj;
1697         void *sync_obj_arg;
1698         int ret = 0;
1699
1700         if (likely(bo->sync_obj == NULL))
1701                 return 0;
1702
1703         while (bo->sync_obj) {
1704
1705                 if (driver->sync_obj_signaled(bo->sync_obj, bo->sync_obj_arg)) {
1706                         void *tmp_obj = bo->sync_obj;
1707                         bo->sync_obj = NULL;
1708                         clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
1709                         spin_unlock(&bdev->fence_lock);
1710                         driver->sync_obj_unref(&tmp_obj);
1711                         spin_lock(&bdev->fence_lock);
1712                         continue;
1713                 }
1714
1715                 if (no_wait)
1716                         return -EBUSY;
1717
1718                 sync_obj = driver->sync_obj_ref(bo->sync_obj);
1719                 sync_obj_arg = bo->sync_obj_arg;
1720                 spin_unlock(&bdev->fence_lock);
1721                 ret = driver->sync_obj_wait(sync_obj, sync_obj_arg,
1722                                             lazy, interruptible);
1723                 if (unlikely(ret != 0)) {
1724                         driver->sync_obj_unref(&sync_obj);
1725                         spin_lock(&bdev->fence_lock);
1726                         return ret;
1727                 }
1728                 spin_lock(&bdev->fence_lock);
1729                 if (likely(bo->sync_obj == sync_obj &&
1730                            bo->sync_obj_arg == sync_obj_arg)) {
1731                         void *tmp_obj = bo->sync_obj;
1732                         bo->sync_obj = NULL;
1733                         clear_bit(TTM_BO_PRIV_FLAG_MOVING,
1734                                   &bo->priv_flags);
1735                         spin_unlock(&bdev->fence_lock);
1736                         driver->sync_obj_unref(&sync_obj);
1737                         driver->sync_obj_unref(&tmp_obj);
1738                         spin_lock(&bdev->fence_lock);
1739                 } else {
1740                         spin_unlock(&bdev->fence_lock);
1741                         driver->sync_obj_unref(&sync_obj);
1742                         spin_lock(&bdev->fence_lock);
1743                 }
1744         }
1745         return 0;
1746 }
1747 EXPORT_SYMBOL(ttm_bo_wait);
1748
1749 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1750 {
1751         struct ttm_bo_device *bdev = bo->bdev;
1752         int ret = 0;
1753
1754         /*
1755          * Using ttm_bo_reserve makes sure the lru lists are updated.
1756          */
1757
1758         ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
1759         if (unlikely(ret != 0))
1760                 return ret;
1761         spin_lock(&bdev->fence_lock);
1762         ret = ttm_bo_wait(bo, false, true, no_wait);
1763         spin_unlock(&bdev->fence_lock);
1764         if (likely(ret == 0))
1765                 atomic_inc(&bo->cpu_writers);
1766         ttm_bo_unreserve(bo);
1767         return ret;
1768 }
1769 EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1770
1771 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1772 {
1773         if (atomic_dec_and_test(&bo->cpu_writers))
1774                 wake_up_all(&bo->event_queue);
1775 }
1776 EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1777
1778 /**
1779  * A buffer object shrink method that tries to swap out the first
1780  * buffer object on the bo_global::swap_lru list.
1781  */
1782
1783 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1784 {
1785         struct ttm_bo_global *glob =
1786             container_of(shrink, struct ttm_bo_global, shrink);
1787         struct ttm_buffer_object *bo;
1788         int ret = -EBUSY;
1789         int put_count;
1790         uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1791
1792         spin_lock(&glob->lru_lock);
1793         while (ret == -EBUSY) {
1794                 if (unlikely(list_empty(&glob->swap_lru))) {
1795                         spin_unlock(&glob->lru_lock);
1796                         return -EBUSY;
1797                 }
1798
1799                 bo = list_first_entry(&glob->swap_lru,
1800                                       struct ttm_buffer_object, swap);
1801                 kref_get(&bo->list_kref);
1802
1803                 if (!list_empty(&bo->ddestroy)) {
1804                         spin_unlock(&glob->lru_lock);
1805                         (void) ttm_bo_cleanup_refs(bo, false, false, false);
1806                         kref_put(&bo->list_kref, ttm_bo_release_list);
1807                         continue;
1808                 }
1809
1810                 /**
1811                  * Reserve buffer. Since we unlock while sleeping, we need
1812                  * to re-check that nobody removed us from the swap-list while
1813                  * we slept.
1814                  */
1815
1816                 ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
1817                 if (unlikely(ret == -EBUSY)) {
1818                         spin_unlock(&glob->lru_lock);
1819                         ttm_bo_wait_unreserved(bo, false);
1820                         kref_put(&bo->list_kref, ttm_bo_release_list);
1821                         spin_lock(&glob->lru_lock);
1822                 }
1823         }
1824
1825         BUG_ON(ret != 0);
1826         put_count = ttm_bo_del_from_lru(bo);
1827         spin_unlock(&glob->lru_lock);
1828
1829         ttm_bo_list_ref_sub(bo, put_count, true);
1830
1831         /**
1832          * Wait for GPU, then move to system cached.
1833          */
1834
1835         spin_lock(&bo->bdev->fence_lock);
1836         ret = ttm_bo_wait(bo, false, false, false);
1837         spin_unlock(&bo->bdev->fence_lock);
1838
1839         if (unlikely(ret != 0))
1840                 goto out;
1841
1842         if ((bo->mem.placement & swap_placement) != swap_placement) {
1843                 struct ttm_mem_reg evict_mem;
1844
1845                 evict_mem = bo->mem;
1846                 evict_mem.mm_node = NULL;
1847                 evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1848                 evict_mem.mem_type = TTM_PL_SYSTEM;
1849
1850                 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1851                                              false, false, false);
1852                 if (unlikely(ret != 0))
1853                         goto out;
1854         }
1855
1856         ttm_bo_unmap_virtual(bo);
1857
1858         /**
1859          * Swap out. Buffer will be swapped in again as soon as
1860          * anyone tries to access a ttm page.
1861          */
1862
1863         if (bo->bdev->driver->swap_notify)
1864                 bo->bdev->driver->swap_notify(bo);
1865
1866         ret = ttm_tt_swapout(bo->ttm, bo->persistant_swap_storage);
1867 out:
1868
1869         /**
1870          *
1871          * Unreserve without putting on LRU to avoid swapping out an
1872          * already swapped buffer.
1873          */
1874
1875         atomic_set(&bo->reserved, 0);
1876         wake_up_all(&bo->event_queue);
1877         kref_put(&bo->list_kref, ttm_bo_release_list);
1878         return ret;
1879 }
1880
1881 void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1882 {
1883         while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1884                 ;
1885 }
1886 EXPORT_SYMBOL(ttm_bo_swapout_all);