Merge branch 'for-linus' of git://oss.sgi.com/xfs/xfs
[pandora-kernel.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include "drmP.h"
30 #include "drm.h"
31 #include "drm_crtc.h"
32 #include "drm_crtc_helper.h"
33 #include "intel_drv.h"
34 #include "i915_drm.h"
35 #include "i915_drv.h"
36 #include "intel_dp.h"
37
38 #define DP_LINK_STATUS_SIZE     6
39 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
40
41 #define DP_LINK_CONFIGURATION_SIZE      9
42
43 #define IS_eDP(i) ((i)->type == INTEL_OUTPUT_EDP)
44
45 struct intel_dp_priv {
46         uint32_t output_reg;
47         uint32_t DP;
48         uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
49         uint32_t save_DP;
50         uint8_t  save_link_configuration[DP_LINK_CONFIGURATION_SIZE];
51         bool has_audio;
52         int dpms_mode;
53         uint8_t link_bw;
54         uint8_t lane_count;
55         uint8_t dpcd[4];
56         struct intel_output *intel_output;
57         struct i2c_adapter adapter;
58         struct i2c_algo_dp_aux_data algo;
59 };
60
61 static void
62 intel_dp_link_train(struct intel_output *intel_output, uint32_t DP,
63                     uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE]);
64
65 static void
66 intel_dp_link_down(struct intel_output *intel_output, uint32_t DP);
67
68 void
69 intel_edp_link_config (struct intel_output *intel_output,
70                 int *lane_num, int *link_bw)
71 {
72         struct intel_dp_priv   *dp_priv = intel_output->dev_priv;
73
74         *lane_num = dp_priv->lane_count;
75         if (dp_priv->link_bw == DP_LINK_BW_1_62)
76                 *link_bw = 162000;
77         else if (dp_priv->link_bw == DP_LINK_BW_2_7)
78                 *link_bw = 270000;
79 }
80
81 static int
82 intel_dp_max_lane_count(struct intel_output *intel_output)
83 {
84         struct intel_dp_priv   *dp_priv = intel_output->dev_priv;
85         int max_lane_count = 4;
86
87         if (dp_priv->dpcd[0] >= 0x11) {
88                 max_lane_count = dp_priv->dpcd[2] & 0x1f;
89                 switch (max_lane_count) {
90                 case 1: case 2: case 4:
91                         break;
92                 default:
93                         max_lane_count = 4;
94                 }
95         }
96         return max_lane_count;
97 }
98
99 static int
100 intel_dp_max_link_bw(struct intel_output *intel_output)
101 {
102         struct intel_dp_priv   *dp_priv = intel_output->dev_priv;
103         int max_link_bw = dp_priv->dpcd[1];
104
105         switch (max_link_bw) {
106         case DP_LINK_BW_1_62:
107         case DP_LINK_BW_2_7:
108                 break;
109         default:
110                 max_link_bw = DP_LINK_BW_1_62;
111                 break;
112         }
113         return max_link_bw;
114 }
115
116 static int
117 intel_dp_link_clock(uint8_t link_bw)
118 {
119         if (link_bw == DP_LINK_BW_2_7)
120                 return 270000;
121         else
122                 return 162000;
123 }
124
125 /* I think this is a fiction */
126 static int
127 intel_dp_link_required(int pixel_clock)
128 {
129         return pixel_clock * 3;
130 }
131
132 static int
133 intel_dp_mode_valid(struct drm_connector *connector,
134                     struct drm_display_mode *mode)
135 {
136         struct intel_output *intel_output = to_intel_output(connector);
137         int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_output));
138         int max_lanes = intel_dp_max_lane_count(intel_output);
139
140         if (intel_dp_link_required(mode->clock) > max_link_clock * max_lanes)
141                 return MODE_CLOCK_HIGH;
142
143         if (mode->clock < 10000)
144                 return MODE_CLOCK_LOW;
145
146         return MODE_OK;
147 }
148
149 static uint32_t
150 pack_aux(uint8_t *src, int src_bytes)
151 {
152         int     i;
153         uint32_t v = 0;
154
155         if (src_bytes > 4)
156                 src_bytes = 4;
157         for (i = 0; i < src_bytes; i++)
158                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
159         return v;
160 }
161
162 static void
163 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
164 {
165         int i;
166         if (dst_bytes > 4)
167                 dst_bytes = 4;
168         for (i = 0; i < dst_bytes; i++)
169                 dst[i] = src >> ((3-i) * 8);
170 }
171
172 /* hrawclock is 1/4 the FSB frequency */
173 static int
174 intel_hrawclk(struct drm_device *dev)
175 {
176         struct drm_i915_private *dev_priv = dev->dev_private;
177         uint32_t clkcfg;
178
179         clkcfg = I915_READ(CLKCFG);
180         switch (clkcfg & CLKCFG_FSB_MASK) {
181         case CLKCFG_FSB_400:
182                 return 100;
183         case CLKCFG_FSB_533:
184                 return 133;
185         case CLKCFG_FSB_667:
186                 return 166;
187         case CLKCFG_FSB_800:
188                 return 200;
189         case CLKCFG_FSB_1067:
190                 return 266;
191         case CLKCFG_FSB_1333:
192                 return 333;
193         /* these two are just a guess; one of them might be right */
194         case CLKCFG_FSB_1600:
195         case CLKCFG_FSB_1600_ALT:
196                 return 400;
197         default:
198                 return 133;
199         }
200 }
201
202 static int
203 intel_dp_aux_ch(struct intel_output *intel_output,
204                 uint8_t *send, int send_bytes,
205                 uint8_t *recv, int recv_size)
206 {
207         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
208         uint32_t output_reg = dp_priv->output_reg;
209         struct drm_device *dev = intel_output->base.dev;
210         struct drm_i915_private *dev_priv = dev->dev_private;
211         uint32_t ch_ctl = output_reg + 0x10;
212         uint32_t ch_data = ch_ctl + 4;
213         int i;
214         int recv_bytes;
215         uint32_t ctl;
216         uint32_t status;
217         uint32_t aux_clock_divider;
218         int try;
219
220         /* The clock divider is based off the hrawclk,
221          * and would like to run at 2MHz. So, take the
222          * hrawclk value and divide by 2 and use that
223          */
224         if (IS_eDP(intel_output))
225                 aux_clock_divider = 225; /* eDP input clock at 450Mhz */
226         else if (IS_IGDNG(dev))
227                 aux_clock_divider = 62; /* IGDNG: input clock fixed at 125Mhz */
228         else
229                 aux_clock_divider = intel_hrawclk(dev) / 2;
230
231         /* Must try at least 3 times according to DP spec */
232         for (try = 0; try < 5; try++) {
233                 /* Load the send data into the aux channel data registers */
234                 for (i = 0; i < send_bytes; i += 4) {
235                         uint32_t    d = pack_aux(send + i, send_bytes - i);;
236         
237                         I915_WRITE(ch_data + i, d);
238                 }
239         
240                 ctl = (DP_AUX_CH_CTL_SEND_BUSY |
241                        DP_AUX_CH_CTL_TIME_OUT_400us |
242                        (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
243                        (5 << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
244                        (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
245                        DP_AUX_CH_CTL_DONE |
246                        DP_AUX_CH_CTL_TIME_OUT_ERROR |
247                        DP_AUX_CH_CTL_RECEIVE_ERROR);
248         
249                 /* Send the command and wait for it to complete */
250                 I915_WRITE(ch_ctl, ctl);
251                 (void) I915_READ(ch_ctl);
252                 for (;;) {
253                         udelay(100);
254                         status = I915_READ(ch_ctl);
255                         if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
256                                 break;
257                 }
258         
259                 /* Clear done status and any errors */
260                 I915_WRITE(ch_ctl, (status |
261                                 DP_AUX_CH_CTL_DONE |
262                                 DP_AUX_CH_CTL_TIME_OUT_ERROR |
263                                 DP_AUX_CH_CTL_RECEIVE_ERROR));
264                 (void) I915_READ(ch_ctl);
265                 if ((status & DP_AUX_CH_CTL_TIME_OUT_ERROR) == 0)
266                         break;
267         }
268
269         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
270                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
271                 return -EBUSY;
272         }
273
274         /* Check for timeout or receive error.
275          * Timeouts occur when the sink is not connected
276          */
277         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
278                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
279                 return -EIO;
280         }
281
282         /* Timeouts occur when the device isn't connected, so they're
283          * "normal" -- don't fill the kernel log with these */
284         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
285                 DRM_DEBUG("dp_aux_ch timeout status 0x%08x\n", status);
286                 return -ETIMEDOUT;
287         }
288
289         /* Unload any bytes sent back from the other side */
290         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
291                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
292
293         if (recv_bytes > recv_size)
294                 recv_bytes = recv_size;
295         
296         for (i = 0; i < recv_bytes; i += 4) {
297                 uint32_t    d = I915_READ(ch_data + i);
298
299                 unpack_aux(d, recv + i, recv_bytes - i);
300         }
301
302         return recv_bytes;
303 }
304
305 /* Write data to the aux channel in native mode */
306 static int
307 intel_dp_aux_native_write(struct intel_output *intel_output,
308                           uint16_t address, uint8_t *send, int send_bytes)
309 {
310         int ret;
311         uint8_t msg[20];
312         int msg_bytes;
313         uint8_t ack;
314
315         if (send_bytes > 16)
316                 return -1;
317         msg[0] = AUX_NATIVE_WRITE << 4;
318         msg[1] = address >> 8;
319         msg[2] = address & 0xff;
320         msg[3] = send_bytes - 1;
321         memcpy(&msg[4], send, send_bytes);
322         msg_bytes = send_bytes + 4;
323         for (;;) {
324                 ret = intel_dp_aux_ch(intel_output, msg, msg_bytes, &ack, 1);
325                 if (ret < 0)
326                         return ret;
327                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
328                         break;
329                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
330                         udelay(100);
331                 else
332                         return -EIO;
333         }
334         return send_bytes;
335 }
336
337 /* Write a single byte to the aux channel in native mode */
338 static int
339 intel_dp_aux_native_write_1(struct intel_output *intel_output,
340                             uint16_t address, uint8_t byte)
341 {
342         return intel_dp_aux_native_write(intel_output, address, &byte, 1);
343 }
344
345 /* read bytes from a native aux channel */
346 static int
347 intel_dp_aux_native_read(struct intel_output *intel_output,
348                          uint16_t address, uint8_t *recv, int recv_bytes)
349 {
350         uint8_t msg[4];
351         int msg_bytes;
352         uint8_t reply[20];
353         int reply_bytes;
354         uint8_t ack;
355         int ret;
356
357         msg[0] = AUX_NATIVE_READ << 4;
358         msg[1] = address >> 8;
359         msg[2] = address & 0xff;
360         msg[3] = recv_bytes - 1;
361
362         msg_bytes = 4;
363         reply_bytes = recv_bytes + 1;
364
365         for (;;) {
366                 ret = intel_dp_aux_ch(intel_output, msg, msg_bytes,
367                                       reply, reply_bytes);
368                 if (ret == 0)
369                         return -EPROTO;
370                 if (ret < 0)
371                         return ret;
372                 ack = reply[0];
373                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
374                         memcpy(recv, reply + 1, ret - 1);
375                         return ret - 1;
376                 }
377                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
378                         udelay(100);
379                 else
380                         return -EIO;
381         }
382 }
383
384 static int
385 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter,
386                     uint8_t *send, int send_bytes,
387                     uint8_t *recv, int recv_bytes)
388 {
389         struct intel_dp_priv *dp_priv = container_of(adapter,
390                                                      struct intel_dp_priv,
391                                                      adapter);
392         struct intel_output *intel_output = dp_priv->intel_output;
393
394         return intel_dp_aux_ch(intel_output,
395                                send, send_bytes, recv, recv_bytes);
396 }
397
398 static int
399 intel_dp_i2c_init(struct intel_output *intel_output, const char *name)
400 {
401         struct intel_dp_priv   *dp_priv = intel_output->dev_priv;
402
403         DRM_ERROR("i2c_init %s\n", name);
404         dp_priv->algo.running = false;
405         dp_priv->algo.address = 0;
406         dp_priv->algo.aux_ch = intel_dp_i2c_aux_ch;
407
408         memset(&dp_priv->adapter, '\0', sizeof (dp_priv->adapter));
409         dp_priv->adapter.owner = THIS_MODULE;
410         dp_priv->adapter.class = I2C_CLASS_DDC;
411         strncpy (dp_priv->adapter.name, name, sizeof(dp_priv->adapter.name) - 1);
412         dp_priv->adapter.name[sizeof(dp_priv->adapter.name) - 1] = '\0';
413         dp_priv->adapter.algo_data = &dp_priv->algo;
414         dp_priv->adapter.dev.parent = &intel_output->base.kdev;
415         
416         return i2c_dp_aux_add_bus(&dp_priv->adapter);
417 }
418
419 static bool
420 intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
421                     struct drm_display_mode *adjusted_mode)
422 {
423         struct intel_output *intel_output = enc_to_intel_output(encoder);
424         struct intel_dp_priv   *dp_priv = intel_output->dev_priv;
425         int lane_count, clock;
426         int max_lane_count = intel_dp_max_lane_count(intel_output);
427         int max_clock = intel_dp_max_link_bw(intel_output) == DP_LINK_BW_2_7 ? 1 : 0;
428         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
429
430         for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
431                 for (clock = 0; clock <= max_clock; clock++) {
432                         int link_avail = intel_dp_link_clock(bws[clock]) * lane_count;
433
434                         if (intel_dp_link_required(mode->clock) <= link_avail) {
435                                 dp_priv->link_bw = bws[clock];
436                                 dp_priv->lane_count = lane_count;
437                                 adjusted_mode->clock = intel_dp_link_clock(dp_priv->link_bw);
438                                 DRM_DEBUG("Display port link bw %02x lane count %d clock %d\n",
439                                        dp_priv->link_bw, dp_priv->lane_count,
440                                        adjusted_mode->clock);
441                                 return true;
442                         }
443                 }
444         }
445         return false;
446 }
447
448 struct intel_dp_m_n {
449         uint32_t        tu;
450         uint32_t        gmch_m;
451         uint32_t        gmch_n;
452         uint32_t        link_m;
453         uint32_t        link_n;
454 };
455
456 static void
457 intel_reduce_ratio(uint32_t *num, uint32_t *den)
458 {
459         while (*num > 0xffffff || *den > 0xffffff) {
460                 *num >>= 1;
461                 *den >>= 1;
462         }
463 }
464
465 static void
466 intel_dp_compute_m_n(int bytes_per_pixel,
467                      int nlanes,
468                      int pixel_clock,
469                      int link_clock,
470                      struct intel_dp_m_n *m_n)
471 {
472         m_n->tu = 64;
473         m_n->gmch_m = pixel_clock * bytes_per_pixel;
474         m_n->gmch_n = link_clock * nlanes;
475         intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
476         m_n->link_m = pixel_clock;
477         m_n->link_n = link_clock;
478         intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
479 }
480
481 void
482 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
483                  struct drm_display_mode *adjusted_mode)
484 {
485         struct drm_device *dev = crtc->dev;
486         struct drm_mode_config *mode_config = &dev->mode_config;
487         struct drm_connector *connector;
488         struct drm_i915_private *dev_priv = dev->dev_private;
489         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
490         int lane_count = 4;
491         struct intel_dp_m_n m_n;
492
493         /*
494          * Find the lane count in the intel_output private
495          */
496         list_for_each_entry(connector, &mode_config->connector_list, head) {
497                 struct intel_output *intel_output = to_intel_output(connector);
498                 struct intel_dp_priv *dp_priv = intel_output->dev_priv;
499
500                 if (!connector->encoder || connector->encoder->crtc != crtc)
501                         continue;
502
503                 if (intel_output->type == INTEL_OUTPUT_DISPLAYPORT) {
504                         lane_count = dp_priv->lane_count;
505                         break;
506                 }
507         }
508
509         /*
510          * Compute the GMCH and Link ratios. The '3' here is
511          * the number of bytes_per_pixel post-LUT, which we always
512          * set up for 8-bits of R/G/B, or 3 bytes total.
513          */
514         intel_dp_compute_m_n(3, lane_count,
515                              mode->clock, adjusted_mode->clock, &m_n);
516
517         if (IS_IGDNG(dev)) {
518                 if (intel_crtc->pipe == 0) {
519                         I915_WRITE(TRANSA_DATA_M1,
520                                    ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
521                                    m_n.gmch_m);
522                         I915_WRITE(TRANSA_DATA_N1, m_n.gmch_n);
523                         I915_WRITE(TRANSA_DP_LINK_M1, m_n.link_m);
524                         I915_WRITE(TRANSA_DP_LINK_N1, m_n.link_n);
525                 } else {
526                         I915_WRITE(TRANSB_DATA_M1,
527                                    ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
528                                    m_n.gmch_m);
529                         I915_WRITE(TRANSB_DATA_N1, m_n.gmch_n);
530                         I915_WRITE(TRANSB_DP_LINK_M1, m_n.link_m);
531                         I915_WRITE(TRANSB_DP_LINK_N1, m_n.link_n);
532                 }
533         } else {
534                 if (intel_crtc->pipe == 0) {
535                         I915_WRITE(PIPEA_GMCH_DATA_M,
536                                    ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
537                                    m_n.gmch_m);
538                         I915_WRITE(PIPEA_GMCH_DATA_N,
539                                    m_n.gmch_n);
540                         I915_WRITE(PIPEA_DP_LINK_M, m_n.link_m);
541                         I915_WRITE(PIPEA_DP_LINK_N, m_n.link_n);
542                 } else {
543                         I915_WRITE(PIPEB_GMCH_DATA_M,
544                                    ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
545                                    m_n.gmch_m);
546                         I915_WRITE(PIPEB_GMCH_DATA_N,
547                                         m_n.gmch_n);
548                         I915_WRITE(PIPEB_DP_LINK_M, m_n.link_m);
549                         I915_WRITE(PIPEB_DP_LINK_N, m_n.link_n);
550                 }
551         }
552 }
553
554 static void
555 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
556                   struct drm_display_mode *adjusted_mode)
557 {
558         struct intel_output *intel_output = enc_to_intel_output(encoder);
559         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
560         struct drm_crtc *crtc = intel_output->enc.crtc;
561         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
562
563         dp_priv->DP = (DP_LINK_TRAIN_OFF |
564                         DP_VOLTAGE_0_4 |
565                         DP_PRE_EMPHASIS_0 |
566                         DP_SYNC_VS_HIGH |
567                         DP_SYNC_HS_HIGH);
568
569         switch (dp_priv->lane_count) {
570         case 1:
571                 dp_priv->DP |= DP_PORT_WIDTH_1;
572                 break;
573         case 2:
574                 dp_priv->DP |= DP_PORT_WIDTH_2;
575                 break;
576         case 4:
577                 dp_priv->DP |= DP_PORT_WIDTH_4;
578                 break;
579         }
580         if (dp_priv->has_audio)
581                 dp_priv->DP |= DP_AUDIO_OUTPUT_ENABLE;
582
583         memset(dp_priv->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
584         dp_priv->link_configuration[0] = dp_priv->link_bw;
585         dp_priv->link_configuration[1] = dp_priv->lane_count;
586
587         /*
588          * Check for DPCD version > 1.1,
589          * enable enahanced frame stuff in that case
590          */
591         if (dp_priv->dpcd[0] >= 0x11) {
592                 dp_priv->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
593                 dp_priv->DP |= DP_ENHANCED_FRAMING;
594         }
595
596         if (intel_crtc->pipe == 1)
597                 dp_priv->DP |= DP_PIPEB_SELECT;
598
599         if (IS_eDP(intel_output)) {
600                 /* don't miss out required setting for eDP */
601                 dp_priv->DP |= DP_PLL_ENABLE;
602                 if (adjusted_mode->clock < 200000)
603                         dp_priv->DP |= DP_PLL_FREQ_160MHZ;
604                 else
605                         dp_priv->DP |= DP_PLL_FREQ_270MHZ;
606         }
607 }
608
609 static void igdng_edp_backlight_on (struct drm_device *dev)
610 {
611         struct drm_i915_private *dev_priv = dev->dev_private;
612         u32 pp;
613
614         DRM_DEBUG("\n");
615         pp = I915_READ(PCH_PP_CONTROL);
616         pp |= EDP_BLC_ENABLE;
617         I915_WRITE(PCH_PP_CONTROL, pp);
618 }
619
620 static void igdng_edp_backlight_off (struct drm_device *dev)
621 {
622         struct drm_i915_private *dev_priv = dev->dev_private;
623         u32 pp;
624
625         DRM_DEBUG("\n");
626         pp = I915_READ(PCH_PP_CONTROL);
627         pp &= ~EDP_BLC_ENABLE;
628         I915_WRITE(PCH_PP_CONTROL, pp);
629 }
630
631 static void
632 intel_dp_dpms(struct drm_encoder *encoder, int mode)
633 {
634         struct intel_output *intel_output = enc_to_intel_output(encoder);
635         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
636         struct drm_device *dev = intel_output->base.dev;
637         struct drm_i915_private *dev_priv = dev->dev_private;
638         uint32_t dp_reg = I915_READ(dp_priv->output_reg);
639
640         if (mode != DRM_MODE_DPMS_ON) {
641                 if (dp_reg & DP_PORT_EN) {
642                         intel_dp_link_down(intel_output, dp_priv->DP);
643                         if (IS_eDP(intel_output))
644                                 igdng_edp_backlight_off(dev);
645                 }
646         } else {
647                 if (!(dp_reg & DP_PORT_EN)) {
648                         intel_dp_link_train(intel_output, dp_priv->DP, dp_priv->link_configuration);
649                         if (IS_eDP(intel_output))
650                                 igdng_edp_backlight_on(dev);
651                 }
652         }
653         dp_priv->dpms_mode = mode;
654 }
655
656 /*
657  * Fetch AUX CH registers 0x202 - 0x207 which contain
658  * link status information
659  */
660 static bool
661 intel_dp_get_link_status(struct intel_output *intel_output,
662                          uint8_t link_status[DP_LINK_STATUS_SIZE])
663 {
664         int ret;
665
666         ret = intel_dp_aux_native_read(intel_output,
667                                        DP_LANE0_1_STATUS,
668                                        link_status, DP_LINK_STATUS_SIZE);
669         if (ret != DP_LINK_STATUS_SIZE)
670                 return false;
671         return true;
672 }
673
674 static uint8_t
675 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
676                      int r)
677 {
678         return link_status[r - DP_LANE0_1_STATUS];
679 }
680
681 static void
682 intel_dp_save(struct drm_connector *connector)
683 {
684         struct intel_output *intel_output = to_intel_output(connector);
685         struct drm_device *dev = intel_output->base.dev;
686         struct drm_i915_private *dev_priv = dev->dev_private;
687         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
688
689         dp_priv->save_DP = I915_READ(dp_priv->output_reg);
690         intel_dp_aux_native_read(intel_output, DP_LINK_BW_SET,
691                                  dp_priv->save_link_configuration,
692                                  sizeof (dp_priv->save_link_configuration));
693 }
694
695 static uint8_t
696 intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
697                                  int lane)
698 {
699         int         i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
700         int         s = ((lane & 1) ?
701                          DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
702                          DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
703         uint8_t l = intel_dp_link_status(link_status, i);
704
705         return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
706 }
707
708 static uint8_t
709 intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
710                                       int lane)
711 {
712         int         i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
713         int         s = ((lane & 1) ?
714                          DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
715                          DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
716         uint8_t l = intel_dp_link_status(link_status, i);
717
718         return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
719 }
720
721
722 #if 0
723 static char     *voltage_names[] = {
724         "0.4V", "0.6V", "0.8V", "1.2V"
725 };
726 static char     *pre_emph_names[] = {
727         "0dB", "3.5dB", "6dB", "9.5dB"
728 };
729 static char     *link_train_names[] = {
730         "pattern 1", "pattern 2", "idle", "off"
731 };
732 #endif
733
734 /*
735  * These are source-specific values; current Intel hardware supports
736  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
737  */
738 #define I830_DP_VOLTAGE_MAX         DP_TRAIN_VOLTAGE_SWING_800
739
740 static uint8_t
741 intel_dp_pre_emphasis_max(uint8_t voltage_swing)
742 {
743         switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
744         case DP_TRAIN_VOLTAGE_SWING_400:
745                 return DP_TRAIN_PRE_EMPHASIS_6;
746         case DP_TRAIN_VOLTAGE_SWING_600:
747                 return DP_TRAIN_PRE_EMPHASIS_6;
748         case DP_TRAIN_VOLTAGE_SWING_800:
749                 return DP_TRAIN_PRE_EMPHASIS_3_5;
750         case DP_TRAIN_VOLTAGE_SWING_1200:
751         default:
752                 return DP_TRAIN_PRE_EMPHASIS_0;
753         }
754 }
755
756 static void
757 intel_get_adjust_train(struct intel_output *intel_output,
758                        uint8_t link_status[DP_LINK_STATUS_SIZE],
759                        int lane_count,
760                        uint8_t train_set[4])
761 {
762         uint8_t v = 0;
763         uint8_t p = 0;
764         int lane;
765
766         for (lane = 0; lane < lane_count; lane++) {
767                 uint8_t this_v = intel_get_adjust_request_voltage(link_status, lane);
768                 uint8_t this_p = intel_get_adjust_request_pre_emphasis(link_status, lane);
769
770                 if (this_v > v)
771                         v = this_v;
772                 if (this_p > p)
773                         p = this_p;
774         }
775
776         if (v >= I830_DP_VOLTAGE_MAX)
777                 v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
778
779         if (p >= intel_dp_pre_emphasis_max(v))
780                 p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
781
782         for (lane = 0; lane < 4; lane++)
783                 train_set[lane] = v | p;
784 }
785
786 static uint32_t
787 intel_dp_signal_levels(uint8_t train_set, int lane_count)
788 {
789         uint32_t        signal_levels = 0;
790
791         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
792         case DP_TRAIN_VOLTAGE_SWING_400:
793         default:
794                 signal_levels |= DP_VOLTAGE_0_4;
795                 break;
796         case DP_TRAIN_VOLTAGE_SWING_600:
797                 signal_levels |= DP_VOLTAGE_0_6;
798                 break;
799         case DP_TRAIN_VOLTAGE_SWING_800:
800                 signal_levels |= DP_VOLTAGE_0_8;
801                 break;
802         case DP_TRAIN_VOLTAGE_SWING_1200:
803                 signal_levels |= DP_VOLTAGE_1_2;
804                 break;
805         }
806         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
807         case DP_TRAIN_PRE_EMPHASIS_0:
808         default:
809                 signal_levels |= DP_PRE_EMPHASIS_0;
810                 break;
811         case DP_TRAIN_PRE_EMPHASIS_3_5:
812                 signal_levels |= DP_PRE_EMPHASIS_3_5;
813                 break;
814         case DP_TRAIN_PRE_EMPHASIS_6:
815                 signal_levels |= DP_PRE_EMPHASIS_6;
816                 break;
817         case DP_TRAIN_PRE_EMPHASIS_9_5:
818                 signal_levels |= DP_PRE_EMPHASIS_9_5;
819                 break;
820         }
821         return signal_levels;
822 }
823
824 static uint8_t
825 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
826                       int lane)
827 {
828         int i = DP_LANE0_1_STATUS + (lane >> 1);
829         int s = (lane & 1) * 4;
830         uint8_t l = intel_dp_link_status(link_status, i);
831
832         return (l >> s) & 0xf;
833 }
834
835 /* Check for clock recovery is done on all channels */
836 static bool
837 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
838 {
839         int lane;
840         uint8_t lane_status;
841
842         for (lane = 0; lane < lane_count; lane++) {
843                 lane_status = intel_get_lane_status(link_status, lane);
844                 if ((lane_status & DP_LANE_CR_DONE) == 0)
845                         return false;
846         }
847         return true;
848 }
849
850 /* Check to see if channel eq is done on all channels */
851 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
852                          DP_LANE_CHANNEL_EQ_DONE|\
853                          DP_LANE_SYMBOL_LOCKED)
854 static bool
855 intel_channel_eq_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
856 {
857         uint8_t lane_align;
858         uint8_t lane_status;
859         int lane;
860
861         lane_align = intel_dp_link_status(link_status,
862                                           DP_LANE_ALIGN_STATUS_UPDATED);
863         if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
864                 return false;
865         for (lane = 0; lane < lane_count; lane++) {
866                 lane_status = intel_get_lane_status(link_status, lane);
867                 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
868                         return false;
869         }
870         return true;
871 }
872
873 static bool
874 intel_dp_set_link_train(struct intel_output *intel_output,
875                         uint32_t dp_reg_value,
876                         uint8_t dp_train_pat,
877                         uint8_t train_set[4],
878                         bool first)
879 {
880         struct drm_device *dev = intel_output->base.dev;
881         struct drm_i915_private *dev_priv = dev->dev_private;
882         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
883         int ret;
884
885         I915_WRITE(dp_priv->output_reg, dp_reg_value);
886         POSTING_READ(dp_priv->output_reg);
887         if (first)
888                 intel_wait_for_vblank(dev);
889
890         intel_dp_aux_native_write_1(intel_output,
891                                     DP_TRAINING_PATTERN_SET,
892                                     dp_train_pat);
893
894         ret = intel_dp_aux_native_write(intel_output,
895                                         DP_TRAINING_LANE0_SET, train_set, 4);
896         if (ret != 4)
897                 return false;
898
899         return true;
900 }
901
902 static void
903 intel_dp_link_train(struct intel_output *intel_output, uint32_t DP,
904                     uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE])
905 {
906         struct drm_device *dev = intel_output->base.dev;
907         struct drm_i915_private *dev_priv = dev->dev_private;
908         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
909         uint8_t train_set[4];
910         uint8_t link_status[DP_LINK_STATUS_SIZE];
911         int i;
912         uint8_t voltage;
913         bool clock_recovery = false;
914         bool channel_eq = false;
915         bool first = true;
916         int tries;
917
918         /* Write the link configuration data */
919         intel_dp_aux_native_write(intel_output, 0x100,
920                                   link_configuration, DP_LINK_CONFIGURATION_SIZE);
921
922         DP |= DP_PORT_EN;
923         DP &= ~DP_LINK_TRAIN_MASK;
924         memset(train_set, 0, 4);
925         voltage = 0xff;
926         tries = 0;
927         clock_recovery = false;
928         for (;;) {
929                 /* Use train_set[0] to set the voltage and pre emphasis values */
930                 uint32_t    signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
931                 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
932
933                 if (!intel_dp_set_link_train(intel_output, DP | DP_LINK_TRAIN_PAT_1,
934                                              DP_TRAINING_PATTERN_1, train_set, first))
935                         break;
936                 first = false;
937                 /* Set training pattern 1 */
938
939                 udelay(100);
940                 if (!intel_dp_get_link_status(intel_output, link_status))
941                         break;
942
943                 if (intel_clock_recovery_ok(link_status, dp_priv->lane_count)) {
944                         clock_recovery = true;
945                         break;
946                 }
947
948                 /* Check to see if we've tried the max voltage */
949                 for (i = 0; i < dp_priv->lane_count; i++)
950                         if ((train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
951                                 break;
952                 if (i == dp_priv->lane_count)
953                         break;
954
955                 /* Check to see if we've tried the same voltage 5 times */
956                 if ((train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
957                         ++tries;
958                         if (tries == 5)
959                                 break;
960                 } else
961                         tries = 0;
962                 voltage = train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
963
964                 /* Compute new train_set as requested by target */
965                 intel_get_adjust_train(intel_output, link_status, dp_priv->lane_count, train_set);
966         }
967
968         /* channel equalization */
969         tries = 0;
970         channel_eq = false;
971         for (;;) {
972                 /* Use train_set[0] to set the voltage and pre emphasis values */
973                 uint32_t    signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
974                 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
975
976                 /* channel eq pattern */
977                 if (!intel_dp_set_link_train(intel_output, DP | DP_LINK_TRAIN_PAT_2,
978                                              DP_TRAINING_PATTERN_2, train_set,
979                                              false))
980                         break;
981
982                 udelay(400);
983                 if (!intel_dp_get_link_status(intel_output, link_status))
984                         break;
985
986                 if (intel_channel_eq_ok(link_status, dp_priv->lane_count)) {
987                         channel_eq = true;
988                         break;
989                 }
990
991                 /* Try 5 times */
992                 if (tries > 5)
993                         break;
994
995                 /* Compute new train_set as requested by target */
996                 intel_get_adjust_train(intel_output, link_status, dp_priv->lane_count, train_set);
997                 ++tries;
998         }
999
1000         I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_OFF);
1001         POSTING_READ(dp_priv->output_reg);
1002         intel_dp_aux_native_write_1(intel_output,
1003                                     DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1004 }
1005
1006 static void
1007 intel_dp_link_down(struct intel_output *intel_output, uint32_t DP)
1008 {
1009         struct drm_device *dev = intel_output->base.dev;
1010         struct drm_i915_private *dev_priv = dev->dev_private;
1011         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
1012
1013         DRM_DEBUG("\n");
1014
1015         if (IS_eDP(intel_output)) {
1016                 DP &= ~DP_PLL_ENABLE;
1017                 I915_WRITE(dp_priv->output_reg, DP);
1018                 POSTING_READ(dp_priv->output_reg);
1019                 udelay(100);
1020         }
1021
1022         DP &= ~DP_LINK_TRAIN_MASK;
1023         I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1024         POSTING_READ(dp_priv->output_reg);
1025
1026         udelay(17000);
1027
1028         if (IS_eDP(intel_output))
1029                 DP |= DP_LINK_TRAIN_OFF;
1030         I915_WRITE(dp_priv->output_reg, DP & ~DP_PORT_EN);
1031         POSTING_READ(dp_priv->output_reg);
1032 }
1033
1034 static void
1035 intel_dp_restore(struct drm_connector *connector)
1036 {
1037         struct intel_output *intel_output = to_intel_output(connector);
1038         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
1039
1040         if (dp_priv->save_DP & DP_PORT_EN)
1041                 intel_dp_link_train(intel_output, dp_priv->save_DP, dp_priv->save_link_configuration);
1042         else
1043                 intel_dp_link_down(intel_output,  dp_priv->save_DP);
1044 }
1045
1046 /*
1047  * According to DP spec
1048  * 5.1.2:
1049  *  1. Read DPCD
1050  *  2. Configure link according to Receiver Capabilities
1051  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
1052  *  4. Check link status on receipt of hot-plug interrupt
1053  */
1054
1055 static void
1056 intel_dp_check_link_status(struct intel_output *intel_output)
1057 {
1058         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
1059         uint8_t link_status[DP_LINK_STATUS_SIZE];
1060
1061         if (!intel_output->enc.crtc)
1062                 return;
1063
1064         if (!intel_dp_get_link_status(intel_output, link_status)) {
1065                 intel_dp_link_down(intel_output, dp_priv->DP);
1066                 return;
1067         }
1068
1069         if (!intel_channel_eq_ok(link_status, dp_priv->lane_count))
1070                 intel_dp_link_train(intel_output, dp_priv->DP, dp_priv->link_configuration);
1071 }
1072
1073 static enum drm_connector_status
1074 igdng_dp_detect(struct drm_connector *connector)
1075 {
1076         struct intel_output *intel_output = to_intel_output(connector);
1077         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
1078         enum drm_connector_status status;
1079
1080         status = connector_status_disconnected;
1081         if (intel_dp_aux_native_read(intel_output,
1082                                      0x000, dp_priv->dpcd,
1083                                      sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd))
1084         {
1085                 if (dp_priv->dpcd[0] != 0)
1086                         status = connector_status_connected;
1087         }
1088         return status;
1089 }
1090
1091 /**
1092  * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1093  *
1094  * \return true if DP port is connected.
1095  * \return false if DP port is disconnected.
1096  */
1097 static enum drm_connector_status
1098 intel_dp_detect(struct drm_connector *connector)
1099 {
1100         struct intel_output *intel_output = to_intel_output(connector);
1101         struct drm_device *dev = intel_output->base.dev;
1102         struct drm_i915_private *dev_priv = dev->dev_private;
1103         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
1104         uint32_t temp, bit;
1105         enum drm_connector_status status;
1106
1107         dp_priv->has_audio = false;
1108
1109         if (IS_IGDNG(dev))
1110                 return igdng_dp_detect(connector);
1111
1112         temp = I915_READ(PORT_HOTPLUG_EN);
1113
1114         I915_WRITE(PORT_HOTPLUG_EN,
1115                temp |
1116                DPB_HOTPLUG_INT_EN |
1117                DPC_HOTPLUG_INT_EN |
1118                DPD_HOTPLUG_INT_EN);
1119
1120         POSTING_READ(PORT_HOTPLUG_EN);
1121
1122         switch (dp_priv->output_reg) {
1123         case DP_B:
1124                 bit = DPB_HOTPLUG_INT_STATUS;
1125                 break;
1126         case DP_C:
1127                 bit = DPC_HOTPLUG_INT_STATUS;
1128                 break;
1129         case DP_D:
1130                 bit = DPD_HOTPLUG_INT_STATUS;
1131                 break;
1132         default:
1133                 return connector_status_unknown;
1134         }
1135
1136         temp = I915_READ(PORT_HOTPLUG_STAT);
1137
1138         if ((temp & bit) == 0)
1139                 return connector_status_disconnected;
1140
1141         status = connector_status_disconnected;
1142         if (intel_dp_aux_native_read(intel_output,
1143                                      0x000, dp_priv->dpcd,
1144                                      sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd))
1145         {
1146                 if (dp_priv->dpcd[0] != 0)
1147                         status = connector_status_connected;
1148         }
1149         return status;
1150 }
1151
1152 static int intel_dp_get_modes(struct drm_connector *connector)
1153 {
1154         struct intel_output *intel_output = to_intel_output(connector);
1155         struct drm_device *dev = intel_output->base.dev;
1156         struct drm_i915_private *dev_priv = dev->dev_private;
1157         int ret;
1158
1159         /* We should parse the EDID data and find out if it has an audio sink
1160          */
1161
1162         ret = intel_ddc_get_modes(intel_output);
1163         if (ret)
1164                 return ret;
1165
1166         /* if eDP has no EDID, try to use fixed panel mode from VBT */
1167         if (IS_eDP(intel_output)) {
1168                 if (dev_priv->panel_fixed_mode != NULL) {
1169                         struct drm_display_mode *mode;
1170                         mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
1171                         drm_mode_probed_add(connector, mode);
1172                         return 1;
1173                 }
1174         }
1175         return 0;
1176 }
1177
1178 static void
1179 intel_dp_destroy (struct drm_connector *connector)
1180 {
1181         struct intel_output *intel_output = to_intel_output(connector);
1182
1183         if (intel_output->i2c_bus)
1184                 intel_i2c_destroy(intel_output->i2c_bus);
1185         drm_sysfs_connector_remove(connector);
1186         drm_connector_cleanup(connector);
1187         kfree(intel_output);
1188 }
1189
1190 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
1191         .dpms = intel_dp_dpms,
1192         .mode_fixup = intel_dp_mode_fixup,
1193         .prepare = intel_encoder_prepare,
1194         .mode_set = intel_dp_mode_set,
1195         .commit = intel_encoder_commit,
1196 };
1197
1198 static const struct drm_connector_funcs intel_dp_connector_funcs = {
1199         .dpms = drm_helper_connector_dpms,
1200         .save = intel_dp_save,
1201         .restore = intel_dp_restore,
1202         .detect = intel_dp_detect,
1203         .fill_modes = drm_helper_probe_single_connector_modes,
1204         .destroy = intel_dp_destroy,
1205 };
1206
1207 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
1208         .get_modes = intel_dp_get_modes,
1209         .mode_valid = intel_dp_mode_valid,
1210         .best_encoder = intel_best_encoder,
1211 };
1212
1213 static void intel_dp_enc_destroy(struct drm_encoder *encoder)
1214 {
1215         drm_encoder_cleanup(encoder);
1216 }
1217
1218 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
1219         .destroy = intel_dp_enc_destroy,
1220 };
1221
1222 void
1223 intel_dp_hot_plug(struct intel_output *intel_output)
1224 {
1225         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
1226
1227         if (dp_priv->dpms_mode == DRM_MODE_DPMS_ON)
1228                 intel_dp_check_link_status(intel_output);
1229 }
1230
1231 void
1232 intel_dp_init(struct drm_device *dev, int output_reg)
1233 {
1234         struct drm_i915_private *dev_priv = dev->dev_private;
1235         struct drm_connector *connector;
1236         struct intel_output *intel_output;
1237         struct intel_dp_priv *dp_priv;
1238         const char *name = NULL;
1239
1240         intel_output = kcalloc(sizeof(struct intel_output) + 
1241                                sizeof(struct intel_dp_priv), 1, GFP_KERNEL);
1242         if (!intel_output)
1243                 return;
1244
1245         dp_priv = (struct intel_dp_priv *)(intel_output + 1);
1246
1247         connector = &intel_output->base;
1248         drm_connector_init(dev, connector, &intel_dp_connector_funcs,
1249                            DRM_MODE_CONNECTOR_DisplayPort);
1250         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
1251
1252         if (output_reg == DP_A)
1253                 intel_output->type = INTEL_OUTPUT_EDP;
1254         else
1255                 intel_output->type = INTEL_OUTPUT_DISPLAYPORT;
1256
1257         if (output_reg == DP_B)
1258                 intel_output->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
1259         else if (output_reg == DP_C)
1260                 intel_output->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
1261         else if (output_reg == DP_D)
1262                 intel_output->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
1263
1264         if (IS_eDP(intel_output)) {
1265                 intel_output->crtc_mask = (1 << 1);
1266                 intel_output->clone_mask = (1 << INTEL_OUTPUT_EDP);
1267         } else
1268                 intel_output->crtc_mask = (1 << 0) | (1 << 1);
1269         connector->interlace_allowed = true;
1270         connector->doublescan_allowed = 0;
1271
1272         dp_priv->intel_output = intel_output;
1273         dp_priv->output_reg = output_reg;
1274         dp_priv->has_audio = false;
1275         dp_priv->dpms_mode = DRM_MODE_DPMS_ON;
1276         intel_output->dev_priv = dp_priv;
1277
1278         drm_encoder_init(dev, &intel_output->enc, &intel_dp_enc_funcs,
1279                          DRM_MODE_ENCODER_TMDS);
1280         drm_encoder_helper_add(&intel_output->enc, &intel_dp_helper_funcs);
1281
1282         drm_mode_connector_attach_encoder(&intel_output->base,
1283                                           &intel_output->enc);
1284         drm_sysfs_connector_add(connector);
1285
1286         /* Set up the DDC bus. */
1287         switch (output_reg) {
1288                 case DP_A:
1289                         name = "DPDDC-A";
1290                         break;
1291                 case DP_B:
1292                 case PCH_DP_B:
1293                         name = "DPDDC-B";
1294                         break;
1295                 case DP_C:
1296                 case PCH_DP_C:
1297                         name = "DPDDC-C";
1298                         break;
1299                 case DP_D:
1300                 case PCH_DP_D:
1301                         name = "DPDDC-D";
1302                         break;
1303         }
1304
1305         intel_dp_i2c_init(intel_output, name);
1306
1307         intel_output->ddc_bus = &dp_priv->adapter;
1308         intel_output->hot_plug = intel_dp_hot_plug;
1309
1310         if (output_reg == DP_A) {
1311                 /* initialize panel mode from VBT if available for eDP */
1312                 if (dev_priv->lfp_lvds_vbt_mode) {
1313                         dev_priv->panel_fixed_mode =
1314                                 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
1315                         if (dev_priv->panel_fixed_mode) {
1316                                 dev_priv->panel_fixed_mode->type |=
1317                                         DRM_MODE_TYPE_PREFERRED;
1318                         }
1319                 }
1320         }
1321
1322         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
1323          * 0xd.  Failure to do so will result in spurious interrupts being
1324          * generated on the port when a cable is not attached.
1325          */
1326         if (IS_G4X(dev) && !IS_GM45(dev)) {
1327                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
1328                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
1329         }
1330 }