Merge branch 'tty-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[pandora-kernel.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include "drmP.h"
31 #include "drm.h"
32 #include "drm_crtc.h"
33 #include "drm_crtc_helper.h"
34 #include "intel_drv.h"
35 #include "i915_drm.h"
36 #include "i915_drv.h"
37 #include "drm_dp_helper.h"
38
39
40 #define DP_LINK_STATUS_SIZE     6
41 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
42
43 #define DP_LINK_CONFIGURATION_SIZE      9
44
45 struct intel_dp {
46         struct intel_encoder base;
47         uint32_t output_reg;
48         uint32_t DP;
49         uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
50         bool has_audio;
51         int force_audio;
52         int dpms_mode;
53         uint8_t link_bw;
54         uint8_t lane_count;
55         uint8_t dpcd[4];
56         struct i2c_adapter adapter;
57         struct i2c_algo_dp_aux_data algo;
58         bool is_pch_edp;
59         uint8_t train_set[4];
60         uint8_t link_status[DP_LINK_STATUS_SIZE];
61
62         struct drm_property *force_audio_property;
63 };
64
65 /**
66  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
67  * @intel_dp: DP struct
68  *
69  * If a CPU or PCH DP output is attached to an eDP panel, this function
70  * will return true, and false otherwise.
71  */
72 static bool is_edp(struct intel_dp *intel_dp)
73 {
74         return intel_dp->base.type == INTEL_OUTPUT_EDP;
75 }
76
77 /**
78  * is_pch_edp - is the port on the PCH and attached to an eDP panel?
79  * @intel_dp: DP struct
80  *
81  * Returns true if the given DP struct corresponds to a PCH DP port attached
82  * to an eDP panel, false otherwise.  Helpful for determining whether we
83  * may need FDI resources for a given DP output or not.
84  */
85 static bool is_pch_edp(struct intel_dp *intel_dp)
86 {
87         return intel_dp->is_pch_edp;
88 }
89
90 static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
91 {
92         return container_of(encoder, struct intel_dp, base.base);
93 }
94
95 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
96 {
97         return container_of(intel_attached_encoder(connector),
98                             struct intel_dp, base);
99 }
100
101 /**
102  * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
103  * @encoder: DRM encoder
104  *
105  * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
106  * by intel_display.c.
107  */
108 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
109 {
110         struct intel_dp *intel_dp;
111
112         if (!encoder)
113                 return false;
114
115         intel_dp = enc_to_intel_dp(encoder);
116
117         return is_pch_edp(intel_dp);
118 }
119
120 static void intel_dp_start_link_train(struct intel_dp *intel_dp);
121 static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
122 static void intel_dp_link_down(struct intel_dp *intel_dp);
123
124 void
125 intel_edp_link_config (struct intel_encoder *intel_encoder,
126                        int *lane_num, int *link_bw)
127 {
128         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
129
130         *lane_num = intel_dp->lane_count;
131         if (intel_dp->link_bw == DP_LINK_BW_1_62)
132                 *link_bw = 162000;
133         else if (intel_dp->link_bw == DP_LINK_BW_2_7)
134                 *link_bw = 270000;
135 }
136
137 static int
138 intel_dp_max_lane_count(struct intel_dp *intel_dp)
139 {
140         int max_lane_count = 4;
141
142         if (intel_dp->dpcd[0] >= 0x11) {
143                 max_lane_count = intel_dp->dpcd[2] & 0x1f;
144                 switch (max_lane_count) {
145                 case 1: case 2: case 4:
146                         break;
147                 default:
148                         max_lane_count = 4;
149                 }
150         }
151         return max_lane_count;
152 }
153
154 static int
155 intel_dp_max_link_bw(struct intel_dp *intel_dp)
156 {
157         int max_link_bw = intel_dp->dpcd[1];
158
159         switch (max_link_bw) {
160         case DP_LINK_BW_1_62:
161         case DP_LINK_BW_2_7:
162                 break;
163         default:
164                 max_link_bw = DP_LINK_BW_1_62;
165                 break;
166         }
167         return max_link_bw;
168 }
169
170 static int
171 intel_dp_link_clock(uint8_t link_bw)
172 {
173         if (link_bw == DP_LINK_BW_2_7)
174                 return 270000;
175         else
176                 return 162000;
177 }
178
179 /* I think this is a fiction */
180 static int
181 intel_dp_link_required(struct drm_device *dev, struct intel_dp *intel_dp, int pixel_clock)
182 {
183         struct drm_i915_private *dev_priv = dev->dev_private;
184
185         if (is_edp(intel_dp))
186                 return (pixel_clock * dev_priv->edp.bpp + 7) / 8;
187         else
188                 return pixel_clock * 3;
189 }
190
191 static int
192 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
193 {
194         return (max_link_clock * max_lanes * 8) / 10;
195 }
196
197 static int
198 intel_dp_mode_valid(struct drm_connector *connector,
199                     struct drm_display_mode *mode)
200 {
201         struct intel_dp *intel_dp = intel_attached_dp(connector);
202         struct drm_device *dev = connector->dev;
203         struct drm_i915_private *dev_priv = dev->dev_private;
204         int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
205         int max_lanes = intel_dp_max_lane_count(intel_dp);
206
207         if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
208                 if (mode->hdisplay > dev_priv->panel_fixed_mode->hdisplay)
209                         return MODE_PANEL;
210
211                 if (mode->vdisplay > dev_priv->panel_fixed_mode->vdisplay)
212                         return MODE_PANEL;
213         }
214
215         /* only refuse the mode on non eDP since we have seen some wierd eDP panels
216            which are outside spec tolerances but somehow work by magic */
217         if (!is_edp(intel_dp) &&
218             (intel_dp_link_required(connector->dev, intel_dp, mode->clock)
219              > intel_dp_max_data_rate(max_link_clock, max_lanes)))
220                 return MODE_CLOCK_HIGH;
221
222         if (mode->clock < 10000)
223                 return MODE_CLOCK_LOW;
224
225         return MODE_OK;
226 }
227
228 static uint32_t
229 pack_aux(uint8_t *src, int src_bytes)
230 {
231         int     i;
232         uint32_t v = 0;
233
234         if (src_bytes > 4)
235                 src_bytes = 4;
236         for (i = 0; i < src_bytes; i++)
237                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
238         return v;
239 }
240
241 static void
242 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
243 {
244         int i;
245         if (dst_bytes > 4)
246                 dst_bytes = 4;
247         for (i = 0; i < dst_bytes; i++)
248                 dst[i] = src >> ((3-i) * 8);
249 }
250
251 /* hrawclock is 1/4 the FSB frequency */
252 static int
253 intel_hrawclk(struct drm_device *dev)
254 {
255         struct drm_i915_private *dev_priv = dev->dev_private;
256         uint32_t clkcfg;
257
258         clkcfg = I915_READ(CLKCFG);
259         switch (clkcfg & CLKCFG_FSB_MASK) {
260         case CLKCFG_FSB_400:
261                 return 100;
262         case CLKCFG_FSB_533:
263                 return 133;
264         case CLKCFG_FSB_667:
265                 return 166;
266         case CLKCFG_FSB_800:
267                 return 200;
268         case CLKCFG_FSB_1067:
269                 return 266;
270         case CLKCFG_FSB_1333:
271                 return 333;
272         /* these two are just a guess; one of them might be right */
273         case CLKCFG_FSB_1600:
274         case CLKCFG_FSB_1600_ALT:
275                 return 400;
276         default:
277                 return 133;
278         }
279 }
280
281 static int
282 intel_dp_aux_ch(struct intel_dp *intel_dp,
283                 uint8_t *send, int send_bytes,
284                 uint8_t *recv, int recv_size)
285 {
286         uint32_t output_reg = intel_dp->output_reg;
287         struct drm_device *dev = intel_dp->base.base.dev;
288         struct drm_i915_private *dev_priv = dev->dev_private;
289         uint32_t ch_ctl = output_reg + 0x10;
290         uint32_t ch_data = ch_ctl + 4;
291         int i;
292         int recv_bytes;
293         uint32_t status;
294         uint32_t aux_clock_divider;
295         int try, precharge;
296
297         /* The clock divider is based off the hrawclk,
298          * and would like to run at 2MHz. So, take the
299          * hrawclk value and divide by 2 and use that
300          *
301          * Note that PCH attached eDP panels should use a 125MHz input
302          * clock divider.
303          */
304         if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
305                 if (IS_GEN6(dev))
306                         aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
307                 else
308                         aux_clock_divider = 225; /* eDP input clock at 450Mhz */
309         } else if (HAS_PCH_SPLIT(dev))
310                 aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
311         else
312                 aux_clock_divider = intel_hrawclk(dev) / 2;
313
314         if (IS_GEN6(dev))
315                 precharge = 3;
316         else
317                 precharge = 5;
318
319         if (I915_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
320                 DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
321                           I915_READ(ch_ctl));
322                 return -EBUSY;
323         }
324
325         /* Must try at least 3 times according to DP spec */
326         for (try = 0; try < 5; try++) {
327                 /* Load the send data into the aux channel data registers */
328                 for (i = 0; i < send_bytes; i += 4)
329                         I915_WRITE(ch_data + i,
330                                    pack_aux(send + i, send_bytes - i));
331         
332                 /* Send the command and wait for it to complete */
333                 I915_WRITE(ch_ctl,
334                            DP_AUX_CH_CTL_SEND_BUSY |
335                            DP_AUX_CH_CTL_TIME_OUT_400us |
336                            (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
337                            (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
338                            (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
339                            DP_AUX_CH_CTL_DONE |
340                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
341                            DP_AUX_CH_CTL_RECEIVE_ERROR);
342                 for (;;) {
343                         status = I915_READ(ch_ctl);
344                         if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
345                                 break;
346                         udelay(100);
347                 }
348         
349                 /* Clear done status and any errors */
350                 I915_WRITE(ch_ctl,
351                            status |
352                            DP_AUX_CH_CTL_DONE |
353                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
354                            DP_AUX_CH_CTL_RECEIVE_ERROR);
355                 if (status & DP_AUX_CH_CTL_DONE)
356                         break;
357         }
358
359         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
360                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
361                 return -EBUSY;
362         }
363
364         /* Check for timeout or receive error.
365          * Timeouts occur when the sink is not connected
366          */
367         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
368                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
369                 return -EIO;
370         }
371
372         /* Timeouts occur when the device isn't connected, so they're
373          * "normal" -- don't fill the kernel log with these */
374         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
375                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
376                 return -ETIMEDOUT;
377         }
378
379         /* Unload any bytes sent back from the other side */
380         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
381                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
382         if (recv_bytes > recv_size)
383                 recv_bytes = recv_size;
384         
385         for (i = 0; i < recv_bytes; i += 4)
386                 unpack_aux(I915_READ(ch_data + i),
387                            recv + i, recv_bytes - i);
388
389         return recv_bytes;
390 }
391
392 /* Write data to the aux channel in native mode */
393 static int
394 intel_dp_aux_native_write(struct intel_dp *intel_dp,
395                           uint16_t address, uint8_t *send, int send_bytes)
396 {
397         int ret;
398         uint8_t msg[20];
399         int msg_bytes;
400         uint8_t ack;
401
402         if (send_bytes > 16)
403                 return -1;
404         msg[0] = AUX_NATIVE_WRITE << 4;
405         msg[1] = address >> 8;
406         msg[2] = address & 0xff;
407         msg[3] = send_bytes - 1;
408         memcpy(&msg[4], send, send_bytes);
409         msg_bytes = send_bytes + 4;
410         for (;;) {
411                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
412                 if (ret < 0)
413                         return ret;
414                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
415                         break;
416                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
417                         udelay(100);
418                 else
419                         return -EIO;
420         }
421         return send_bytes;
422 }
423
424 /* Write a single byte to the aux channel in native mode */
425 static int
426 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
427                             uint16_t address, uint8_t byte)
428 {
429         return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
430 }
431
432 /* read bytes from a native aux channel */
433 static int
434 intel_dp_aux_native_read(struct intel_dp *intel_dp,
435                          uint16_t address, uint8_t *recv, int recv_bytes)
436 {
437         uint8_t msg[4];
438         int msg_bytes;
439         uint8_t reply[20];
440         int reply_bytes;
441         uint8_t ack;
442         int ret;
443
444         msg[0] = AUX_NATIVE_READ << 4;
445         msg[1] = address >> 8;
446         msg[2] = address & 0xff;
447         msg[3] = recv_bytes - 1;
448
449         msg_bytes = 4;
450         reply_bytes = recv_bytes + 1;
451
452         for (;;) {
453                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
454                                       reply, reply_bytes);
455                 if (ret == 0)
456                         return -EPROTO;
457                 if (ret < 0)
458                         return ret;
459                 ack = reply[0];
460                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
461                         memcpy(recv, reply + 1, ret - 1);
462                         return ret - 1;
463                 }
464                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
465                         udelay(100);
466                 else
467                         return -EIO;
468         }
469 }
470
471 static int
472 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
473                     uint8_t write_byte, uint8_t *read_byte)
474 {
475         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
476         struct intel_dp *intel_dp = container_of(adapter,
477                                                 struct intel_dp,
478                                                 adapter);
479         uint16_t address = algo_data->address;
480         uint8_t msg[5];
481         uint8_t reply[2];
482         int msg_bytes;
483         int reply_bytes;
484         int ret;
485
486         /* Set up the command byte */
487         if (mode & MODE_I2C_READ)
488                 msg[0] = AUX_I2C_READ << 4;
489         else
490                 msg[0] = AUX_I2C_WRITE << 4;
491
492         if (!(mode & MODE_I2C_STOP))
493                 msg[0] |= AUX_I2C_MOT << 4;
494
495         msg[1] = address >> 8;
496         msg[2] = address;
497
498         switch (mode) {
499         case MODE_I2C_WRITE:
500                 msg[3] = 0;
501                 msg[4] = write_byte;
502                 msg_bytes = 5;
503                 reply_bytes = 1;
504                 break;
505         case MODE_I2C_READ:
506                 msg[3] = 0;
507                 msg_bytes = 4;
508                 reply_bytes = 2;
509                 break;
510         default:
511                 msg_bytes = 3;
512                 reply_bytes = 1;
513                 break;
514         }
515
516         for (;;) {
517           ret = intel_dp_aux_ch(intel_dp,
518                                 msg, msg_bytes,
519                                 reply, reply_bytes);
520                 if (ret < 0) {
521                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
522                         return ret;
523                 }
524                 switch (reply[0] & AUX_I2C_REPLY_MASK) {
525                 case AUX_I2C_REPLY_ACK:
526                         if (mode == MODE_I2C_READ) {
527                                 *read_byte = reply[1];
528                         }
529                         return reply_bytes - 1;
530                 case AUX_I2C_REPLY_NACK:
531                         DRM_DEBUG_KMS("aux_ch nack\n");
532                         return -EREMOTEIO;
533                 case AUX_I2C_REPLY_DEFER:
534                         DRM_DEBUG_KMS("aux_ch defer\n");
535                         udelay(100);
536                         break;
537                 default:
538                         DRM_ERROR("aux_ch invalid reply 0x%02x\n", reply[0]);
539                         return -EREMOTEIO;
540                 }
541         }
542 }
543
544 static int
545 intel_dp_i2c_init(struct intel_dp *intel_dp,
546                   struct intel_connector *intel_connector, const char *name)
547 {
548         DRM_DEBUG_KMS("i2c_init %s\n", name);
549         intel_dp->algo.running = false;
550         intel_dp->algo.address = 0;
551         intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
552
553         memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
554         intel_dp->adapter.owner = THIS_MODULE;
555         intel_dp->adapter.class = I2C_CLASS_DDC;
556         strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
557         intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
558         intel_dp->adapter.algo_data = &intel_dp->algo;
559         intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
560
561         return i2c_dp_aux_add_bus(&intel_dp->adapter);
562 }
563
564 static bool
565 intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
566                     struct drm_display_mode *adjusted_mode)
567 {
568         struct drm_device *dev = encoder->dev;
569         struct drm_i915_private *dev_priv = dev->dev_private;
570         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
571         int lane_count, clock;
572         int max_lane_count = intel_dp_max_lane_count(intel_dp);
573         int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
574         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
575
576         if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
577                 intel_fixed_panel_mode(dev_priv->panel_fixed_mode, adjusted_mode);
578                 intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
579                                         mode, adjusted_mode);
580                 /*
581                  * the mode->clock is used to calculate the Data&Link M/N
582                  * of the pipe. For the eDP the fixed clock should be used.
583                  */
584                 mode->clock = dev_priv->panel_fixed_mode->clock;
585         }
586
587         /* Just use VBT values for eDP */
588         if (is_edp(intel_dp)) {
589                 intel_dp->lane_count = dev_priv->edp.lanes;
590                 intel_dp->link_bw = dev_priv->edp.rate;
591                 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
592                 DRM_DEBUG_KMS("eDP link bw %02x lane count %d clock %d\n",
593                               intel_dp->link_bw, intel_dp->lane_count,
594                               adjusted_mode->clock);
595                 return true;
596         }
597
598         for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
599                 for (clock = 0; clock <= max_clock; clock++) {
600                         int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
601
602                         if (intel_dp_link_required(encoder->dev, intel_dp, mode->clock)
603                                         <= link_avail) {
604                                 intel_dp->link_bw = bws[clock];
605                                 intel_dp->lane_count = lane_count;
606                                 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
607                                 DRM_DEBUG_KMS("Display port link bw %02x lane "
608                                                 "count %d clock %d\n",
609                                        intel_dp->link_bw, intel_dp->lane_count,
610                                        adjusted_mode->clock);
611                                 return true;
612                         }
613                 }
614         }
615
616         return false;
617 }
618
619 struct intel_dp_m_n {
620         uint32_t        tu;
621         uint32_t        gmch_m;
622         uint32_t        gmch_n;
623         uint32_t        link_m;
624         uint32_t        link_n;
625 };
626
627 static void
628 intel_reduce_ratio(uint32_t *num, uint32_t *den)
629 {
630         while (*num > 0xffffff || *den > 0xffffff) {
631                 *num >>= 1;
632                 *den >>= 1;
633         }
634 }
635
636 static void
637 intel_dp_compute_m_n(int bpp,
638                      int nlanes,
639                      int pixel_clock,
640                      int link_clock,
641                      struct intel_dp_m_n *m_n)
642 {
643         m_n->tu = 64;
644         m_n->gmch_m = (pixel_clock * bpp) >> 3;
645         m_n->gmch_n = link_clock * nlanes;
646         intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
647         m_n->link_m = pixel_clock;
648         m_n->link_n = link_clock;
649         intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
650 }
651
652 void
653 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
654                  struct drm_display_mode *adjusted_mode)
655 {
656         struct drm_device *dev = crtc->dev;
657         struct drm_mode_config *mode_config = &dev->mode_config;
658         struct drm_encoder *encoder;
659         struct drm_i915_private *dev_priv = dev->dev_private;
660         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
661         int lane_count = 4, bpp = 24;
662         struct intel_dp_m_n m_n;
663
664         /*
665          * Find the lane count in the intel_encoder private
666          */
667         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
668                 struct intel_dp *intel_dp;
669
670                 if (encoder->crtc != crtc)
671                         continue;
672
673                 intel_dp = enc_to_intel_dp(encoder);
674                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT) {
675                         lane_count = intel_dp->lane_count;
676                         break;
677                 } else if (is_edp(intel_dp)) {
678                         lane_count = dev_priv->edp.lanes;
679                         bpp = dev_priv->edp.bpp;
680                         break;
681                 }
682         }
683
684         /*
685          * Compute the GMCH and Link ratios. The '3' here is
686          * the number of bytes_per_pixel post-LUT, which we always
687          * set up for 8-bits of R/G/B, or 3 bytes total.
688          */
689         intel_dp_compute_m_n(bpp, lane_count,
690                              mode->clock, adjusted_mode->clock, &m_n);
691
692         if (HAS_PCH_SPLIT(dev)) {
693                 if (intel_crtc->pipe == 0) {
694                         I915_WRITE(TRANSA_DATA_M1,
695                                    ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
696                                    m_n.gmch_m);
697                         I915_WRITE(TRANSA_DATA_N1, m_n.gmch_n);
698                         I915_WRITE(TRANSA_DP_LINK_M1, m_n.link_m);
699                         I915_WRITE(TRANSA_DP_LINK_N1, m_n.link_n);
700                 } else {
701                         I915_WRITE(TRANSB_DATA_M1,
702                                    ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
703                                    m_n.gmch_m);
704                         I915_WRITE(TRANSB_DATA_N1, m_n.gmch_n);
705                         I915_WRITE(TRANSB_DP_LINK_M1, m_n.link_m);
706                         I915_WRITE(TRANSB_DP_LINK_N1, m_n.link_n);
707                 }
708         } else {
709                 if (intel_crtc->pipe == 0) {
710                         I915_WRITE(PIPEA_GMCH_DATA_M,
711                                    ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
712                                    m_n.gmch_m);
713                         I915_WRITE(PIPEA_GMCH_DATA_N,
714                                    m_n.gmch_n);
715                         I915_WRITE(PIPEA_DP_LINK_M, m_n.link_m);
716                         I915_WRITE(PIPEA_DP_LINK_N, m_n.link_n);
717                 } else {
718                         I915_WRITE(PIPEB_GMCH_DATA_M,
719                                    ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
720                                    m_n.gmch_m);
721                         I915_WRITE(PIPEB_GMCH_DATA_N,
722                                         m_n.gmch_n);
723                         I915_WRITE(PIPEB_DP_LINK_M, m_n.link_m);
724                         I915_WRITE(PIPEB_DP_LINK_N, m_n.link_n);
725                 }
726         }
727 }
728
729 static void
730 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
731                   struct drm_display_mode *adjusted_mode)
732 {
733         struct drm_device *dev = encoder->dev;
734         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
735         struct drm_crtc *crtc = intel_dp->base.base.crtc;
736         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
737
738         intel_dp->DP = (DP_VOLTAGE_0_4 |
739                        DP_PRE_EMPHASIS_0);
740
741         if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
742                 intel_dp->DP |= DP_SYNC_HS_HIGH;
743         if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
744                 intel_dp->DP |= DP_SYNC_VS_HIGH;
745
746         if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
747                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
748         else
749                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
750
751         switch (intel_dp->lane_count) {
752         case 1:
753                 intel_dp->DP |= DP_PORT_WIDTH_1;
754                 break;
755         case 2:
756                 intel_dp->DP |= DP_PORT_WIDTH_2;
757                 break;
758         case 4:
759                 intel_dp->DP |= DP_PORT_WIDTH_4;
760                 break;
761         }
762         if (intel_dp->has_audio)
763                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
764
765         memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
766         intel_dp->link_configuration[0] = intel_dp->link_bw;
767         intel_dp->link_configuration[1] = intel_dp->lane_count;
768
769         /*
770          * Check for DPCD version > 1.1 and enhanced framing support
771          */
772         if (intel_dp->dpcd[0] >= 0x11 && (intel_dp->dpcd[2] & DP_ENHANCED_FRAME_CAP)) {
773                 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
774                 intel_dp->DP |= DP_ENHANCED_FRAMING;
775         }
776
777         /* CPT DP's pipe select is decided in TRANS_DP_CTL */
778         if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
779                 intel_dp->DP |= DP_PIPEB_SELECT;
780
781         if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
782                 /* don't miss out required setting for eDP */
783                 intel_dp->DP |= DP_PLL_ENABLE;
784                 if (adjusted_mode->clock < 200000)
785                         intel_dp->DP |= DP_PLL_FREQ_160MHZ;
786                 else
787                         intel_dp->DP |= DP_PLL_FREQ_270MHZ;
788         }
789 }
790
791 /* Returns true if the panel was already on when called */
792 static bool ironlake_edp_panel_on (struct intel_dp *intel_dp)
793 {
794         struct drm_device *dev = intel_dp->base.base.dev;
795         struct drm_i915_private *dev_priv = dev->dev_private;
796         u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_STATE_ON_IDLE;
797
798         if (I915_READ(PCH_PP_STATUS) & PP_ON)
799                 return true;
800
801         pp = I915_READ(PCH_PP_CONTROL);
802
803         /* ILK workaround: disable reset around power sequence */
804         pp &= ~PANEL_POWER_RESET;
805         I915_WRITE(PCH_PP_CONTROL, pp);
806         POSTING_READ(PCH_PP_CONTROL);
807
808         pp |= PANEL_UNLOCK_REGS | POWER_TARGET_ON;
809         I915_WRITE(PCH_PP_CONTROL, pp);
810         POSTING_READ(PCH_PP_CONTROL);
811
812         /* Ouch. We need to wait here for some panels, like Dell e6510
813          * https://bugs.freedesktop.org/show_bug.cgi?id=29278i
814          */
815         msleep(300);
816
817         if (wait_for((I915_READ(PCH_PP_STATUS) & idle_on_mask) == idle_on_mask,
818                      5000))
819                 DRM_ERROR("panel on wait timed out: 0x%08x\n",
820                           I915_READ(PCH_PP_STATUS));
821
822         pp |= PANEL_POWER_RESET; /* restore panel reset bit */
823         I915_WRITE(PCH_PP_CONTROL, pp);
824         POSTING_READ(PCH_PP_CONTROL);
825
826         return false;
827 }
828
829 static void ironlake_edp_panel_off (struct drm_device *dev)
830 {
831         struct drm_i915_private *dev_priv = dev->dev_private;
832         u32 pp, idle_off_mask = PP_ON | PP_SEQUENCE_MASK |
833                 PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK;
834
835         pp = I915_READ(PCH_PP_CONTROL);
836
837         /* ILK workaround: disable reset around power sequence */
838         pp &= ~PANEL_POWER_RESET;
839         I915_WRITE(PCH_PP_CONTROL, pp);
840         POSTING_READ(PCH_PP_CONTROL);
841
842         pp &= ~POWER_TARGET_ON;
843         I915_WRITE(PCH_PP_CONTROL, pp);
844         POSTING_READ(PCH_PP_CONTROL);
845
846         if (wait_for((I915_READ(PCH_PP_STATUS) & idle_off_mask) == 0, 5000))
847                 DRM_ERROR("panel off wait timed out: 0x%08x\n",
848                           I915_READ(PCH_PP_STATUS));
849
850         pp |= PANEL_POWER_RESET; /* restore panel reset bit */
851         I915_WRITE(PCH_PP_CONTROL, pp);
852         POSTING_READ(PCH_PP_CONTROL);
853
854         /* Ouch. We need to wait here for some panels, like Dell e6510
855          * https://bugs.freedesktop.org/show_bug.cgi?id=29278i
856          */
857         msleep(300);
858 }
859
860 static void ironlake_edp_backlight_on (struct drm_device *dev)
861 {
862         struct drm_i915_private *dev_priv = dev->dev_private;
863         u32 pp;
864
865         DRM_DEBUG_KMS("\n");
866         /*
867          * If we enable the backlight right away following a panel power
868          * on, we may see slight flicker as the panel syncs with the eDP
869          * link.  So delay a bit to make sure the image is solid before
870          * allowing it to appear.
871          */
872         msleep(300);
873         pp = I915_READ(PCH_PP_CONTROL);
874         pp |= EDP_BLC_ENABLE;
875         I915_WRITE(PCH_PP_CONTROL, pp);
876 }
877
878 static void ironlake_edp_backlight_off (struct drm_device *dev)
879 {
880         struct drm_i915_private *dev_priv = dev->dev_private;
881         u32 pp;
882
883         DRM_DEBUG_KMS("\n");
884         pp = I915_READ(PCH_PP_CONTROL);
885         pp &= ~EDP_BLC_ENABLE;
886         I915_WRITE(PCH_PP_CONTROL, pp);
887 }
888
889 static void ironlake_edp_pll_on(struct drm_encoder *encoder)
890 {
891         struct drm_device *dev = encoder->dev;
892         struct drm_i915_private *dev_priv = dev->dev_private;
893         u32 dpa_ctl;
894
895         DRM_DEBUG_KMS("\n");
896         dpa_ctl = I915_READ(DP_A);
897         dpa_ctl |= DP_PLL_ENABLE;
898         I915_WRITE(DP_A, dpa_ctl);
899         POSTING_READ(DP_A);
900         udelay(200);
901 }
902
903 static void ironlake_edp_pll_off(struct drm_encoder *encoder)
904 {
905         struct drm_device *dev = encoder->dev;
906         struct drm_i915_private *dev_priv = dev->dev_private;
907         u32 dpa_ctl;
908
909         dpa_ctl = I915_READ(DP_A);
910         dpa_ctl &= ~DP_PLL_ENABLE;
911         I915_WRITE(DP_A, dpa_ctl);
912         POSTING_READ(DP_A);
913         udelay(200);
914 }
915
916 static void intel_dp_prepare(struct drm_encoder *encoder)
917 {
918         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
919         struct drm_device *dev = encoder->dev;
920
921         if (is_edp(intel_dp)) {
922                 ironlake_edp_backlight_off(dev);
923                 ironlake_edp_panel_on(intel_dp);
924                 if (!is_pch_edp(intel_dp))
925                         ironlake_edp_pll_on(encoder);
926                 else
927                         ironlake_edp_pll_off(encoder);
928         }
929         intel_dp_link_down(intel_dp);
930 }
931
932 static void intel_dp_commit(struct drm_encoder *encoder)
933 {
934         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
935         struct drm_device *dev = encoder->dev;
936
937         intel_dp_start_link_train(intel_dp);
938
939         if (is_edp(intel_dp))
940                 ironlake_edp_panel_on(intel_dp);
941
942         intel_dp_complete_link_train(intel_dp);
943
944         if (is_edp(intel_dp))
945                 ironlake_edp_backlight_on(dev);
946 }
947
948 static void
949 intel_dp_dpms(struct drm_encoder *encoder, int mode)
950 {
951         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
952         struct drm_device *dev = encoder->dev;
953         struct drm_i915_private *dev_priv = dev->dev_private;
954         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
955
956         if (mode != DRM_MODE_DPMS_ON) {
957                 if (is_edp(intel_dp))
958                         ironlake_edp_backlight_off(dev);
959                 intel_dp_link_down(intel_dp);
960                 if (is_edp(intel_dp))
961                         ironlake_edp_panel_off(dev);
962                 if (is_edp(intel_dp) && !is_pch_edp(intel_dp))
963                         ironlake_edp_pll_off(encoder);
964         } else {
965                 if (is_edp(intel_dp))
966                         ironlake_edp_panel_on(intel_dp);
967                 if (!(dp_reg & DP_PORT_EN)) {
968                         intel_dp_start_link_train(intel_dp);
969                         intel_dp_complete_link_train(intel_dp);
970                 }
971                 if (is_edp(intel_dp))
972                         ironlake_edp_backlight_on(dev);
973         }
974         intel_dp->dpms_mode = mode;
975 }
976
977 /*
978  * Fetch AUX CH registers 0x202 - 0x207 which contain
979  * link status information
980  */
981 static bool
982 intel_dp_get_link_status(struct intel_dp *intel_dp)
983 {
984         int ret;
985
986         ret = intel_dp_aux_native_read(intel_dp,
987                                        DP_LANE0_1_STATUS,
988                                        intel_dp->link_status, DP_LINK_STATUS_SIZE);
989         if (ret != DP_LINK_STATUS_SIZE)
990                 return false;
991         return true;
992 }
993
994 static uint8_t
995 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
996                      int r)
997 {
998         return link_status[r - DP_LANE0_1_STATUS];
999 }
1000
1001 static uint8_t
1002 intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
1003                                  int lane)
1004 {
1005         int         i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1006         int         s = ((lane & 1) ?
1007                          DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1008                          DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1009         uint8_t l = intel_dp_link_status(link_status, i);
1010
1011         return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1012 }
1013
1014 static uint8_t
1015 intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
1016                                       int lane)
1017 {
1018         int         i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1019         int         s = ((lane & 1) ?
1020                          DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1021                          DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1022         uint8_t l = intel_dp_link_status(link_status, i);
1023
1024         return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1025 }
1026
1027
1028 #if 0
1029 static char     *voltage_names[] = {
1030         "0.4V", "0.6V", "0.8V", "1.2V"
1031 };
1032 static char     *pre_emph_names[] = {
1033         "0dB", "3.5dB", "6dB", "9.5dB"
1034 };
1035 static char     *link_train_names[] = {
1036         "pattern 1", "pattern 2", "idle", "off"
1037 };
1038 #endif
1039
1040 /*
1041  * These are source-specific values; current Intel hardware supports
1042  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1043  */
1044 #define I830_DP_VOLTAGE_MAX         DP_TRAIN_VOLTAGE_SWING_800
1045
1046 static uint8_t
1047 intel_dp_pre_emphasis_max(uint8_t voltage_swing)
1048 {
1049         switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1050         case DP_TRAIN_VOLTAGE_SWING_400:
1051                 return DP_TRAIN_PRE_EMPHASIS_6;
1052         case DP_TRAIN_VOLTAGE_SWING_600:
1053                 return DP_TRAIN_PRE_EMPHASIS_6;
1054         case DP_TRAIN_VOLTAGE_SWING_800:
1055                 return DP_TRAIN_PRE_EMPHASIS_3_5;
1056         case DP_TRAIN_VOLTAGE_SWING_1200:
1057         default:
1058                 return DP_TRAIN_PRE_EMPHASIS_0;
1059         }
1060 }
1061
1062 static void
1063 intel_get_adjust_train(struct intel_dp *intel_dp)
1064 {
1065         uint8_t v = 0;
1066         uint8_t p = 0;
1067         int lane;
1068
1069         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1070                 uint8_t this_v = intel_get_adjust_request_voltage(intel_dp->link_status, lane);
1071                 uint8_t this_p = intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
1072
1073                 if (this_v > v)
1074                         v = this_v;
1075                 if (this_p > p)
1076                         p = this_p;
1077         }
1078
1079         if (v >= I830_DP_VOLTAGE_MAX)
1080                 v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
1081
1082         if (p >= intel_dp_pre_emphasis_max(v))
1083                 p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1084
1085         for (lane = 0; lane < 4; lane++)
1086                 intel_dp->train_set[lane] = v | p;
1087 }
1088
1089 static uint32_t
1090 intel_dp_signal_levels(struct intel_dp *intel_dp)
1091 {
1092         struct drm_device *dev = intel_dp->base.base.dev;
1093         struct drm_i915_private *dev_priv = dev->dev_private;
1094         uint32_t signal_levels = 0;
1095         u8 train_set = intel_dp->train_set[0];
1096         u32 vswing = train_set & DP_TRAIN_VOLTAGE_SWING_MASK;
1097         u32 preemphasis = train_set & DP_TRAIN_PRE_EMPHASIS_MASK;
1098
1099         if (is_edp(intel_dp)) {
1100                 vswing = dev_priv->edp.vswing;
1101                 preemphasis = dev_priv->edp.preemphasis;
1102         }
1103
1104         switch (vswing) {
1105         case DP_TRAIN_VOLTAGE_SWING_400:
1106         default:
1107                 signal_levels |= DP_VOLTAGE_0_4;
1108                 break;
1109         case DP_TRAIN_VOLTAGE_SWING_600:
1110                 signal_levels |= DP_VOLTAGE_0_6;
1111                 break;
1112         case DP_TRAIN_VOLTAGE_SWING_800:
1113                 signal_levels |= DP_VOLTAGE_0_8;
1114                 break;
1115         case DP_TRAIN_VOLTAGE_SWING_1200:
1116                 signal_levels |= DP_VOLTAGE_1_2;
1117                 break;
1118         }
1119         switch (preemphasis) {
1120         case DP_TRAIN_PRE_EMPHASIS_0:
1121         default:
1122                 signal_levels |= DP_PRE_EMPHASIS_0;
1123                 break;
1124         case DP_TRAIN_PRE_EMPHASIS_3_5:
1125                 signal_levels |= DP_PRE_EMPHASIS_3_5;
1126                 break;
1127         case DP_TRAIN_PRE_EMPHASIS_6:
1128                 signal_levels |= DP_PRE_EMPHASIS_6;
1129                 break;
1130         case DP_TRAIN_PRE_EMPHASIS_9_5:
1131                 signal_levels |= DP_PRE_EMPHASIS_9_5;
1132                 break;
1133         }
1134         return signal_levels;
1135 }
1136
1137 /* Gen6's DP voltage swing and pre-emphasis control */
1138 static uint32_t
1139 intel_gen6_edp_signal_levels(uint8_t train_set)
1140 {
1141         switch (train_set & (DP_TRAIN_VOLTAGE_SWING_MASK|DP_TRAIN_PRE_EMPHASIS_MASK)) {
1142         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1143                 return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
1144         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1145                 return EDP_LINK_TRAIN_400MV_6DB_SNB_B;
1146         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1147                 return EDP_LINK_TRAIN_600MV_3_5DB_SNB_B;
1148         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1149                 return EDP_LINK_TRAIN_800MV_0DB_SNB_B;
1150         default:
1151                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level\n");
1152                 return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
1153         }
1154 }
1155
1156 static uint8_t
1157 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1158                       int lane)
1159 {
1160         int i = DP_LANE0_1_STATUS + (lane >> 1);
1161         int s = (lane & 1) * 4;
1162         uint8_t l = intel_dp_link_status(link_status, i);
1163
1164         return (l >> s) & 0xf;
1165 }
1166
1167 /* Check for clock recovery is done on all channels */
1168 static bool
1169 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1170 {
1171         int lane;
1172         uint8_t lane_status;
1173
1174         for (lane = 0; lane < lane_count; lane++) {
1175                 lane_status = intel_get_lane_status(link_status, lane);
1176                 if ((lane_status & DP_LANE_CR_DONE) == 0)
1177                         return false;
1178         }
1179         return true;
1180 }
1181
1182 /* Check to see if channel eq is done on all channels */
1183 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1184                          DP_LANE_CHANNEL_EQ_DONE|\
1185                          DP_LANE_SYMBOL_LOCKED)
1186 static bool
1187 intel_channel_eq_ok(struct intel_dp *intel_dp)
1188 {
1189         uint8_t lane_align;
1190         uint8_t lane_status;
1191         int lane;
1192
1193         lane_align = intel_dp_link_status(intel_dp->link_status,
1194                                           DP_LANE_ALIGN_STATUS_UPDATED);
1195         if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1196                 return false;
1197         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1198                 lane_status = intel_get_lane_status(intel_dp->link_status, lane);
1199                 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1200                         return false;
1201         }
1202         return true;
1203 }
1204
1205 static bool
1206 intel_dp_aux_handshake_required(struct intel_dp *intel_dp)
1207 {
1208         struct drm_device *dev = intel_dp->base.base.dev;
1209         struct drm_i915_private *dev_priv = dev->dev_private;
1210
1211         if (is_edp(intel_dp) && dev_priv->no_aux_handshake)
1212                 return false;
1213
1214         return true;
1215 }
1216
1217 static bool
1218 intel_dp_set_link_train(struct intel_dp *intel_dp,
1219                         uint32_t dp_reg_value,
1220                         uint8_t dp_train_pat)
1221 {
1222         struct drm_device *dev = intel_dp->base.base.dev;
1223         struct drm_i915_private *dev_priv = dev->dev_private;
1224         int ret;
1225
1226         I915_WRITE(intel_dp->output_reg, dp_reg_value);
1227         POSTING_READ(intel_dp->output_reg);
1228
1229         if (!intel_dp_aux_handshake_required(intel_dp))
1230                 return true;
1231
1232         intel_dp_aux_native_write_1(intel_dp,
1233                                     DP_TRAINING_PATTERN_SET,
1234                                     dp_train_pat);
1235
1236         ret = intel_dp_aux_native_write(intel_dp,
1237                                         DP_TRAINING_LANE0_SET,
1238                                         intel_dp->train_set, 4);
1239         if (ret != 4)
1240                 return false;
1241
1242         return true;
1243 }
1244
1245 /* Enable corresponding port and start training pattern 1 */
1246 static void
1247 intel_dp_start_link_train(struct intel_dp *intel_dp)
1248 {
1249         struct drm_device *dev = intel_dp->base.base.dev;
1250         struct drm_i915_private *dev_priv = dev->dev_private;
1251         struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1252         int i;
1253         uint8_t voltage;
1254         bool clock_recovery = false;
1255         int tries;
1256         u32 reg;
1257         uint32_t DP = intel_dp->DP;
1258
1259         /* Enable output, wait for it to become active */
1260         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1261         POSTING_READ(intel_dp->output_reg);
1262         intel_wait_for_vblank(dev, intel_crtc->pipe);
1263
1264         if (intel_dp_aux_handshake_required(intel_dp))
1265                 /* Write the link configuration data */
1266                 intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1267                                           intel_dp->link_configuration,
1268                                           DP_LINK_CONFIGURATION_SIZE);
1269
1270         DP |= DP_PORT_EN;
1271         if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1272                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1273         else
1274                 DP &= ~DP_LINK_TRAIN_MASK;
1275         memset(intel_dp->train_set, 0, 4);
1276         voltage = 0xff;
1277         tries = 0;
1278         clock_recovery = false;
1279         for (;;) {
1280                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1281                 uint32_t    signal_levels;
1282                 if (IS_GEN6(dev) && is_edp(intel_dp)) {
1283                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1284                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1285                 } else {
1286                         signal_levels = intel_dp_signal_levels(intel_dp);
1287                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1288                 }
1289
1290                 if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1291                         reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1292                 else
1293                         reg = DP | DP_LINK_TRAIN_PAT_1;
1294
1295                 if (!intel_dp_set_link_train(intel_dp, reg,
1296                                              DP_TRAINING_PATTERN_1))
1297                         break;
1298                 /* Set training pattern 1 */
1299
1300                 udelay(500);
1301                 if (intel_dp_aux_handshake_required(intel_dp)) {
1302                         break;
1303                 } else {
1304                         if (!intel_dp_get_link_status(intel_dp))
1305                                 break;
1306
1307                         if (intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1308                                 clock_recovery = true;
1309                                 break;
1310                         }
1311
1312                         /* Check to see if we've tried the max voltage */
1313                         for (i = 0; i < intel_dp->lane_count; i++)
1314                                 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1315                                         break;
1316                         if (i == intel_dp->lane_count)
1317                                 break;
1318
1319                         /* Check to see if we've tried the same voltage 5 times */
1320                         if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1321                                 ++tries;
1322                                 if (tries == 5)
1323                                         break;
1324                         } else
1325                                 tries = 0;
1326                         voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1327
1328                         /* Compute new intel_dp->train_set as requested by target */
1329                         intel_get_adjust_train(intel_dp);
1330                 }
1331         }
1332
1333         intel_dp->DP = DP;
1334 }
1335
1336 static void
1337 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1338 {
1339         struct drm_device *dev = intel_dp->base.base.dev;
1340         struct drm_i915_private *dev_priv = dev->dev_private;
1341         bool channel_eq = false;
1342         int tries;
1343         u32 reg;
1344         uint32_t DP = intel_dp->DP;
1345
1346         /* channel equalization */
1347         tries = 0;
1348         channel_eq = false;
1349         for (;;) {
1350                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1351                 uint32_t    signal_levels;
1352
1353                 if (IS_GEN6(dev) && is_edp(intel_dp)) {
1354                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1355                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1356                 } else {
1357                         signal_levels = intel_dp_signal_levels(intel_dp);
1358                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1359                 }
1360
1361                 if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1362                         reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1363                 else
1364                         reg = DP | DP_LINK_TRAIN_PAT_2;
1365
1366                 /* channel eq pattern */
1367                 if (!intel_dp_set_link_train(intel_dp, reg,
1368                                              DP_TRAINING_PATTERN_2))
1369                         break;
1370
1371                 udelay(500);
1372
1373                 if (!intel_dp_aux_handshake_required(intel_dp)) {
1374                         break;
1375                 } else {
1376                         if (!intel_dp_get_link_status(intel_dp))
1377                                 break;
1378
1379                         if (intel_channel_eq_ok(intel_dp)) {
1380                                 channel_eq = true;
1381                                 break;
1382                         }
1383
1384                         /* Try 5 times */
1385                         if (tries > 5)
1386                                 break;
1387
1388                         /* Compute new intel_dp->train_set as requested by target */
1389                         intel_get_adjust_train(intel_dp);
1390                         ++tries;
1391                 }
1392         }
1393         if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1394                 reg = DP | DP_LINK_TRAIN_OFF_CPT;
1395         else
1396                 reg = DP | DP_LINK_TRAIN_OFF;
1397
1398         I915_WRITE(intel_dp->output_reg, reg);
1399         POSTING_READ(intel_dp->output_reg);
1400         intel_dp_aux_native_write_1(intel_dp,
1401                                     DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1402 }
1403
1404 static void
1405 intel_dp_link_down(struct intel_dp *intel_dp)
1406 {
1407         struct drm_device *dev = intel_dp->base.base.dev;
1408         struct drm_i915_private *dev_priv = dev->dev_private;
1409         uint32_t DP = intel_dp->DP;
1410
1411         DRM_DEBUG_KMS("\n");
1412
1413         if (is_edp(intel_dp)) {
1414                 DP &= ~DP_PLL_ENABLE;
1415                 I915_WRITE(intel_dp->output_reg, DP);
1416                 POSTING_READ(intel_dp->output_reg);
1417                 udelay(100);
1418         }
1419
1420         if (HAS_PCH_CPT(dev) && !is_edp(intel_dp)) {
1421                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1422                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1423         } else {
1424                 DP &= ~DP_LINK_TRAIN_MASK;
1425                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1426         }
1427         POSTING_READ(intel_dp->output_reg);
1428
1429         msleep(17);
1430
1431         if (is_edp(intel_dp))
1432                 DP |= DP_LINK_TRAIN_OFF;
1433         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1434         POSTING_READ(intel_dp->output_reg);
1435 }
1436
1437 /*
1438  * According to DP spec
1439  * 5.1.2:
1440  *  1. Read DPCD
1441  *  2. Configure link according to Receiver Capabilities
1442  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
1443  *  4. Check link status on receipt of hot-plug interrupt
1444  */
1445
1446 static void
1447 intel_dp_check_link_status(struct intel_dp *intel_dp)
1448 {
1449         if (!intel_dp->base.base.crtc)
1450                 return;
1451
1452         if (!intel_dp_get_link_status(intel_dp)) {
1453                 intel_dp_link_down(intel_dp);
1454                 return;
1455         }
1456
1457         if (!intel_channel_eq_ok(intel_dp)) {
1458                 intel_dp_start_link_train(intel_dp);
1459                 intel_dp_complete_link_train(intel_dp);
1460         }
1461 }
1462
1463 static enum drm_connector_status
1464 ironlake_dp_detect(struct intel_dp *intel_dp)
1465 {
1466         enum drm_connector_status status;
1467
1468         /* Can't disconnect eDP */
1469         if (is_edp(intel_dp))
1470                 return connector_status_connected;
1471
1472         status = connector_status_disconnected;
1473         if (intel_dp_aux_native_read(intel_dp,
1474                                      0x000, intel_dp->dpcd,
1475                                      sizeof (intel_dp->dpcd))
1476             == sizeof(intel_dp->dpcd)) {
1477                 if (intel_dp->dpcd[0] != 0)
1478                         status = connector_status_connected;
1479         }
1480         DRM_DEBUG_KMS("DPCD: %hx%hx%hx%hx\n", intel_dp->dpcd[0],
1481                       intel_dp->dpcd[1], intel_dp->dpcd[2], intel_dp->dpcd[3]);
1482         return status;
1483 }
1484
1485 static enum drm_connector_status
1486 g4x_dp_detect(struct intel_dp *intel_dp)
1487 {
1488         struct drm_device *dev = intel_dp->base.base.dev;
1489         struct drm_i915_private *dev_priv = dev->dev_private;
1490         enum drm_connector_status status;
1491         uint32_t temp, bit;
1492
1493         switch (intel_dp->output_reg) {
1494         case DP_B:
1495                 bit = DPB_HOTPLUG_INT_STATUS;
1496                 break;
1497         case DP_C:
1498                 bit = DPC_HOTPLUG_INT_STATUS;
1499                 break;
1500         case DP_D:
1501                 bit = DPD_HOTPLUG_INT_STATUS;
1502                 break;
1503         default:
1504                 return connector_status_unknown;
1505         }
1506
1507         temp = I915_READ(PORT_HOTPLUG_STAT);
1508
1509         if ((temp & bit) == 0)
1510                 return connector_status_disconnected;
1511
1512         status = connector_status_disconnected;
1513         if (intel_dp_aux_native_read(intel_dp, 0x000, intel_dp->dpcd,
1514                                      sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
1515         {
1516                 if (intel_dp->dpcd[0] != 0)
1517                         status = connector_status_connected;
1518         }
1519
1520         return status;
1521 }
1522
1523 /**
1524  * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1525  *
1526  * \return true if DP port is connected.
1527  * \return false if DP port is disconnected.
1528  */
1529 static enum drm_connector_status
1530 intel_dp_detect(struct drm_connector *connector, bool force)
1531 {
1532         struct intel_dp *intel_dp = intel_attached_dp(connector);
1533         struct drm_device *dev = intel_dp->base.base.dev;
1534         enum drm_connector_status status;
1535         struct edid *edid = NULL;
1536
1537         intel_dp->has_audio = false;
1538
1539         if (HAS_PCH_SPLIT(dev))
1540                 status = ironlake_dp_detect(intel_dp);
1541         else
1542                 status = g4x_dp_detect(intel_dp);
1543         if (status != connector_status_connected)
1544                 return status;
1545
1546         if (intel_dp->force_audio) {
1547                 intel_dp->has_audio = intel_dp->force_audio > 0;
1548         } else {
1549                 edid = drm_get_edid(connector, &intel_dp->adapter);
1550                 if (edid) {
1551                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
1552                         connector->display_info.raw_edid = NULL;
1553                         kfree(edid);
1554                 }
1555         }
1556
1557         return connector_status_connected;
1558 }
1559
1560 static int intel_dp_get_modes(struct drm_connector *connector)
1561 {
1562         struct intel_dp *intel_dp = intel_attached_dp(connector);
1563         struct drm_device *dev = intel_dp->base.base.dev;
1564         struct drm_i915_private *dev_priv = dev->dev_private;
1565         int ret;
1566
1567         /* We should parse the EDID data and find out if it has an audio sink
1568          */
1569
1570         ret = intel_ddc_get_modes(connector, &intel_dp->adapter);
1571         if (ret) {
1572                 if (is_edp(intel_dp) && !dev_priv->panel_fixed_mode) {
1573                         struct drm_display_mode *newmode;
1574                         list_for_each_entry(newmode, &connector->probed_modes,
1575                                             head) {
1576                                 if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
1577                                         dev_priv->panel_fixed_mode =
1578                                                 drm_mode_duplicate(dev, newmode);
1579                                         break;
1580                                 }
1581                         }
1582                 }
1583
1584                 return ret;
1585         }
1586
1587         /* if eDP has no EDID, try to use fixed panel mode from VBT */
1588         if (is_edp(intel_dp)) {
1589                 if (dev_priv->panel_fixed_mode != NULL) {
1590                         struct drm_display_mode *mode;
1591                         mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
1592                         drm_mode_probed_add(connector, mode);
1593                         return 1;
1594                 }
1595         }
1596         return 0;
1597 }
1598
1599 static int
1600 intel_dp_set_property(struct drm_connector *connector,
1601                       struct drm_property *property,
1602                       uint64_t val)
1603 {
1604         struct intel_dp *intel_dp = intel_attached_dp(connector);
1605         int ret;
1606
1607         ret = drm_connector_property_set_value(connector, property, val);
1608         if (ret)
1609                 return ret;
1610
1611         if (property == intel_dp->force_audio_property) {
1612                 if (val == intel_dp->force_audio)
1613                         return 0;
1614
1615                 intel_dp->force_audio = val;
1616
1617                 if (val > 0 && intel_dp->has_audio)
1618                         return 0;
1619                 if (val < 0 && !intel_dp->has_audio)
1620                         return 0;
1621
1622                 intel_dp->has_audio = val > 0;
1623                 goto done;
1624         }
1625
1626         return -EINVAL;
1627
1628 done:
1629         if (intel_dp->base.base.crtc) {
1630                 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1631                 drm_crtc_helper_set_mode(crtc, &crtc->mode,
1632                                          crtc->x, crtc->y,
1633                                          crtc->fb);
1634         }
1635
1636         return 0;
1637 }
1638
1639 static void
1640 intel_dp_destroy (struct drm_connector *connector)
1641 {
1642         drm_sysfs_connector_remove(connector);
1643         drm_connector_cleanup(connector);
1644         kfree(connector);
1645 }
1646
1647 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
1648 {
1649         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1650
1651         i2c_del_adapter(&intel_dp->adapter);
1652         drm_encoder_cleanup(encoder);
1653         kfree(intel_dp);
1654 }
1655
1656 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
1657         .dpms = intel_dp_dpms,
1658         .mode_fixup = intel_dp_mode_fixup,
1659         .prepare = intel_dp_prepare,
1660         .mode_set = intel_dp_mode_set,
1661         .commit = intel_dp_commit,
1662 };
1663
1664 static const struct drm_connector_funcs intel_dp_connector_funcs = {
1665         .dpms = drm_helper_connector_dpms,
1666         .detect = intel_dp_detect,
1667         .fill_modes = drm_helper_probe_single_connector_modes,
1668         .set_property = intel_dp_set_property,
1669         .destroy = intel_dp_destroy,
1670 };
1671
1672 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
1673         .get_modes = intel_dp_get_modes,
1674         .mode_valid = intel_dp_mode_valid,
1675         .best_encoder = intel_best_encoder,
1676 };
1677
1678 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
1679         .destroy = intel_dp_encoder_destroy,
1680 };
1681
1682 static void
1683 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
1684 {
1685         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
1686
1687         if (intel_dp->dpms_mode == DRM_MODE_DPMS_ON)
1688                 intel_dp_check_link_status(intel_dp);
1689 }
1690
1691 /* Return which DP Port should be selected for Transcoder DP control */
1692 int
1693 intel_trans_dp_port_sel (struct drm_crtc *crtc)
1694 {
1695         struct drm_device *dev = crtc->dev;
1696         struct drm_mode_config *mode_config = &dev->mode_config;
1697         struct drm_encoder *encoder;
1698
1699         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
1700                 struct intel_dp *intel_dp;
1701
1702                 if (encoder->crtc != crtc)
1703                         continue;
1704
1705                 intel_dp = enc_to_intel_dp(encoder);
1706                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
1707                         return intel_dp->output_reg;
1708         }
1709
1710         return -1;
1711 }
1712
1713 /* check the VBT to see whether the eDP is on DP-D port */
1714 bool intel_dpd_is_edp(struct drm_device *dev)
1715 {
1716         struct drm_i915_private *dev_priv = dev->dev_private;
1717         struct child_device_config *p_child;
1718         int i;
1719
1720         if (!dev_priv->child_dev_num)
1721                 return false;
1722
1723         for (i = 0; i < dev_priv->child_dev_num; i++) {
1724                 p_child = dev_priv->child_dev + i;
1725
1726                 if (p_child->dvo_port == PORT_IDPD &&
1727                     p_child->device_type == DEVICE_TYPE_eDP)
1728                         return true;
1729         }
1730         return false;
1731 }
1732
1733 static void
1734 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
1735 {
1736         struct drm_device *dev = connector->dev;
1737
1738         intel_dp->force_audio_property =
1739                 drm_property_create(dev, DRM_MODE_PROP_RANGE, "force_audio", 2);
1740         if (intel_dp->force_audio_property) {
1741                 intel_dp->force_audio_property->values[0] = -1;
1742                 intel_dp->force_audio_property->values[1] = 1;
1743                 drm_connector_attach_property(connector, intel_dp->force_audio_property, 0);
1744         }
1745 }
1746
1747 void
1748 intel_dp_init(struct drm_device *dev, int output_reg)
1749 {
1750         struct drm_i915_private *dev_priv = dev->dev_private;
1751         struct drm_connector *connector;
1752         struct intel_dp *intel_dp;
1753         struct intel_encoder *intel_encoder;
1754         struct intel_connector *intel_connector;
1755         const char *name = NULL;
1756         int type;
1757
1758         intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
1759         if (!intel_dp)
1760                 return;
1761
1762         intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
1763         if (!intel_connector) {
1764                 kfree(intel_dp);
1765                 return;
1766         }
1767         intel_encoder = &intel_dp->base;
1768
1769         if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
1770                 if (intel_dpd_is_edp(dev))
1771                         intel_dp->is_pch_edp = true;
1772
1773         if (output_reg == DP_A || is_pch_edp(intel_dp)) {
1774                 type = DRM_MODE_CONNECTOR_eDP;
1775                 intel_encoder->type = INTEL_OUTPUT_EDP;
1776         } else {
1777                 type = DRM_MODE_CONNECTOR_DisplayPort;
1778                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
1779         }
1780
1781         connector = &intel_connector->base;
1782         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
1783         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
1784
1785         connector->polled = DRM_CONNECTOR_POLL_HPD;
1786
1787         if (output_reg == DP_B || output_reg == PCH_DP_B)
1788                 intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
1789         else if (output_reg == DP_C || output_reg == PCH_DP_C)
1790                 intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
1791         else if (output_reg == DP_D || output_reg == PCH_DP_D)
1792                 intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
1793
1794         if (is_edp(intel_dp))
1795                 intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
1796
1797         intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
1798         connector->interlace_allowed = true;
1799         connector->doublescan_allowed = 0;
1800
1801         intel_dp->output_reg = output_reg;
1802         intel_dp->has_audio = false;
1803         intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
1804
1805         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
1806                          DRM_MODE_ENCODER_TMDS);
1807         drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
1808
1809         intel_connector_attach_encoder(intel_connector, intel_encoder);
1810         drm_sysfs_connector_add(connector);
1811
1812         /* Set up the DDC bus. */
1813         switch (output_reg) {
1814                 case DP_A:
1815                         name = "DPDDC-A";
1816                         break;
1817                 case DP_B:
1818                 case PCH_DP_B:
1819                         dev_priv->hotplug_supported_mask |=
1820                                 HDMIB_HOTPLUG_INT_STATUS;
1821                         name = "DPDDC-B";
1822                         break;
1823                 case DP_C:
1824                 case PCH_DP_C:
1825                         dev_priv->hotplug_supported_mask |=
1826                                 HDMIC_HOTPLUG_INT_STATUS;
1827                         name = "DPDDC-C";
1828                         break;
1829                 case DP_D:
1830                 case PCH_DP_D:
1831                         dev_priv->hotplug_supported_mask |=
1832                                 HDMID_HOTPLUG_INT_STATUS;
1833                         name = "DPDDC-D";
1834                         break;
1835         }
1836
1837         intel_dp_i2c_init(intel_dp, intel_connector, name);
1838
1839         /* Cache some DPCD data in the eDP case */
1840         if (is_edp(intel_dp)) {
1841                 int ret;
1842                 bool was_on;
1843
1844                 was_on = ironlake_edp_panel_on(intel_dp);
1845                 ret = intel_dp_aux_native_read(intel_dp, DP_DPCD_REV,
1846                                                intel_dp->dpcd,
1847                                                sizeof(intel_dp->dpcd));
1848                 if (ret == sizeof(intel_dp->dpcd)) {
1849                         if (intel_dp->dpcd[0] >= 0x11)
1850                                 dev_priv->no_aux_handshake = intel_dp->dpcd[3] &
1851                                         DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
1852                 } else {
1853                         DRM_ERROR("failed to retrieve link info\n");
1854                 }
1855                 if (!was_on)
1856                         ironlake_edp_panel_off(dev);
1857         }
1858
1859         intel_encoder->hot_plug = intel_dp_hot_plug;
1860
1861         if (is_edp(intel_dp)) {
1862                 /* initialize panel mode from VBT if available for eDP */
1863                 if (dev_priv->lfp_lvds_vbt_mode) {
1864                         dev_priv->panel_fixed_mode =
1865                                 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
1866                         if (dev_priv->panel_fixed_mode) {
1867                                 dev_priv->panel_fixed_mode->type |=
1868                                         DRM_MODE_TYPE_PREFERRED;
1869                         }
1870                 }
1871         }
1872
1873         intel_dp_add_properties(intel_dp, connector);
1874
1875         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
1876          * 0xd.  Failure to do so will result in spurious interrupts being
1877          * generated on the port when a cable is not attached.
1878          */
1879         if (IS_G4X(dev) && !IS_GM45(dev)) {
1880                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
1881                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
1882         }
1883 }