Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound-2.6
[pandora-kernel.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include "drmP.h"
31 #include "drm.h"
32 #include "drm_crtc.h"
33 #include "drm_crtc_helper.h"
34 #include "intel_drv.h"
35 #include "i915_drm.h"
36 #include "i915_drv.h"
37 #include "drm_dp_helper.h"
38
39
40 #define DP_LINK_STATUS_SIZE     6
41 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
42
43 #define DP_LINK_CONFIGURATION_SIZE      9
44
45 #define IS_eDP(i) ((i)->type == INTEL_OUTPUT_EDP)
46
47 struct intel_dp_priv {
48         uint32_t output_reg;
49         uint32_t DP;
50         uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
51         bool has_audio;
52         int dpms_mode;
53         uint8_t link_bw;
54         uint8_t lane_count;
55         uint8_t dpcd[4];
56         struct intel_encoder *intel_encoder;
57         struct i2c_adapter adapter;
58         struct i2c_algo_dp_aux_data algo;
59 };
60
61 static void
62 intel_dp_link_train(struct intel_encoder *intel_encoder, uint32_t DP,
63                     uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE]);
64
65 static void
66 intel_dp_link_down(struct intel_encoder *intel_encoder, uint32_t DP);
67
68 void
69 intel_edp_link_config (struct intel_encoder *intel_encoder,
70                 int *lane_num, int *link_bw)
71 {
72         struct intel_dp_priv   *dp_priv = intel_encoder->dev_priv;
73
74         *lane_num = dp_priv->lane_count;
75         if (dp_priv->link_bw == DP_LINK_BW_1_62)
76                 *link_bw = 162000;
77         else if (dp_priv->link_bw == DP_LINK_BW_2_7)
78                 *link_bw = 270000;
79 }
80
81 static int
82 intel_dp_max_lane_count(struct intel_encoder *intel_encoder)
83 {
84         struct intel_dp_priv   *dp_priv = intel_encoder->dev_priv;
85         int max_lane_count = 4;
86
87         if (dp_priv->dpcd[0] >= 0x11) {
88                 max_lane_count = dp_priv->dpcd[2] & 0x1f;
89                 switch (max_lane_count) {
90                 case 1: case 2: case 4:
91                         break;
92                 default:
93                         max_lane_count = 4;
94                 }
95         }
96         return max_lane_count;
97 }
98
99 static int
100 intel_dp_max_link_bw(struct intel_encoder *intel_encoder)
101 {
102         struct intel_dp_priv   *dp_priv = intel_encoder->dev_priv;
103         int max_link_bw = dp_priv->dpcd[1];
104
105         switch (max_link_bw) {
106         case DP_LINK_BW_1_62:
107         case DP_LINK_BW_2_7:
108                 break;
109         default:
110                 max_link_bw = DP_LINK_BW_1_62;
111                 break;
112         }
113         return max_link_bw;
114 }
115
116 static int
117 intel_dp_link_clock(uint8_t link_bw)
118 {
119         if (link_bw == DP_LINK_BW_2_7)
120                 return 270000;
121         else
122                 return 162000;
123 }
124
125 /* I think this is a fiction */
126 static int
127 intel_dp_link_required(struct drm_device *dev,
128                        struct intel_encoder *intel_encoder, int pixel_clock)
129 {
130         struct drm_i915_private *dev_priv = dev->dev_private;
131
132         if (IS_eDP(intel_encoder))
133                 return (pixel_clock * dev_priv->edp_bpp) / 8;
134         else
135                 return pixel_clock * 3;
136 }
137
138 static int
139 intel_dp_mode_valid(struct drm_connector *connector,
140                     struct drm_display_mode *mode)
141 {
142         struct drm_encoder *encoder = intel_attached_encoder(connector);
143         struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
144         int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_encoder));
145         int max_lanes = intel_dp_max_lane_count(intel_encoder);
146
147         if (intel_dp_link_required(connector->dev, intel_encoder, mode->clock)
148                         > max_link_clock * max_lanes)
149                 return MODE_CLOCK_HIGH;
150
151         if (mode->clock < 10000)
152                 return MODE_CLOCK_LOW;
153
154         return MODE_OK;
155 }
156
157 static uint32_t
158 pack_aux(uint8_t *src, int src_bytes)
159 {
160         int     i;
161         uint32_t v = 0;
162
163         if (src_bytes > 4)
164                 src_bytes = 4;
165         for (i = 0; i < src_bytes; i++)
166                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
167         return v;
168 }
169
170 static void
171 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
172 {
173         int i;
174         if (dst_bytes > 4)
175                 dst_bytes = 4;
176         for (i = 0; i < dst_bytes; i++)
177                 dst[i] = src >> ((3-i) * 8);
178 }
179
180 /* hrawclock is 1/4 the FSB frequency */
181 static int
182 intel_hrawclk(struct drm_device *dev)
183 {
184         struct drm_i915_private *dev_priv = dev->dev_private;
185         uint32_t clkcfg;
186
187         clkcfg = I915_READ(CLKCFG);
188         switch (clkcfg & CLKCFG_FSB_MASK) {
189         case CLKCFG_FSB_400:
190                 return 100;
191         case CLKCFG_FSB_533:
192                 return 133;
193         case CLKCFG_FSB_667:
194                 return 166;
195         case CLKCFG_FSB_800:
196                 return 200;
197         case CLKCFG_FSB_1067:
198                 return 266;
199         case CLKCFG_FSB_1333:
200                 return 333;
201         /* these two are just a guess; one of them might be right */
202         case CLKCFG_FSB_1600:
203         case CLKCFG_FSB_1600_ALT:
204                 return 400;
205         default:
206                 return 133;
207         }
208 }
209
210 static int
211 intel_dp_aux_ch(struct intel_encoder *intel_encoder,
212                 uint8_t *send, int send_bytes,
213                 uint8_t *recv, int recv_size)
214 {
215         struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
216         uint32_t output_reg = dp_priv->output_reg;
217         struct drm_device *dev = intel_encoder->enc.dev;
218         struct drm_i915_private *dev_priv = dev->dev_private;
219         uint32_t ch_ctl = output_reg + 0x10;
220         uint32_t ch_data = ch_ctl + 4;
221         int i;
222         int recv_bytes;
223         uint32_t ctl;
224         uint32_t status;
225         uint32_t aux_clock_divider;
226         int try, precharge;
227
228         /* The clock divider is based off the hrawclk,
229          * and would like to run at 2MHz. So, take the
230          * hrawclk value and divide by 2 and use that
231          */
232         if (IS_eDP(intel_encoder)) {
233                 if (IS_GEN6(dev))
234                         aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
235                 else
236                         aux_clock_divider = 225; /* eDP input clock at 450Mhz */
237         } else if (HAS_PCH_SPLIT(dev))
238                 aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
239         else
240                 aux_clock_divider = intel_hrawclk(dev) / 2;
241
242         if (IS_GEN6(dev))
243                 precharge = 3;
244         else
245                 precharge = 5;
246
247         /* Must try at least 3 times according to DP spec */
248         for (try = 0; try < 5; try++) {
249                 /* Load the send data into the aux channel data registers */
250                 for (i = 0; i < send_bytes; i += 4) {
251                         uint32_t    d = pack_aux(send + i, send_bytes - i);
252         
253                         I915_WRITE(ch_data + i, d);
254                 }
255         
256                 ctl = (DP_AUX_CH_CTL_SEND_BUSY |
257                        DP_AUX_CH_CTL_TIME_OUT_400us |
258                        (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
259                        (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
260                        (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
261                        DP_AUX_CH_CTL_DONE |
262                        DP_AUX_CH_CTL_TIME_OUT_ERROR |
263                        DP_AUX_CH_CTL_RECEIVE_ERROR);
264         
265                 /* Send the command and wait for it to complete */
266                 I915_WRITE(ch_ctl, ctl);
267                 (void) I915_READ(ch_ctl);
268                 for (;;) {
269                         udelay(100);
270                         status = I915_READ(ch_ctl);
271                         if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
272                                 break;
273                 }
274         
275                 /* Clear done status and any errors */
276                 I915_WRITE(ch_ctl, (status |
277                                 DP_AUX_CH_CTL_DONE |
278                                 DP_AUX_CH_CTL_TIME_OUT_ERROR |
279                                 DP_AUX_CH_CTL_RECEIVE_ERROR));
280                 (void) I915_READ(ch_ctl);
281                 if ((status & DP_AUX_CH_CTL_TIME_OUT_ERROR) == 0)
282                         break;
283         }
284
285         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
286                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
287                 return -EBUSY;
288         }
289
290         /* Check for timeout or receive error.
291          * Timeouts occur when the sink is not connected
292          */
293         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
294                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
295                 return -EIO;
296         }
297
298         /* Timeouts occur when the device isn't connected, so they're
299          * "normal" -- don't fill the kernel log with these */
300         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
301                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
302                 return -ETIMEDOUT;
303         }
304
305         /* Unload any bytes sent back from the other side */
306         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
307                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
308
309         if (recv_bytes > recv_size)
310                 recv_bytes = recv_size;
311         
312         for (i = 0; i < recv_bytes; i += 4) {
313                 uint32_t    d = I915_READ(ch_data + i);
314
315                 unpack_aux(d, recv + i, recv_bytes - i);
316         }
317
318         return recv_bytes;
319 }
320
321 /* Write data to the aux channel in native mode */
322 static int
323 intel_dp_aux_native_write(struct intel_encoder *intel_encoder,
324                           uint16_t address, uint8_t *send, int send_bytes)
325 {
326         int ret;
327         uint8_t msg[20];
328         int msg_bytes;
329         uint8_t ack;
330
331         if (send_bytes > 16)
332                 return -1;
333         msg[0] = AUX_NATIVE_WRITE << 4;
334         msg[1] = address >> 8;
335         msg[2] = address & 0xff;
336         msg[3] = send_bytes - 1;
337         memcpy(&msg[4], send, send_bytes);
338         msg_bytes = send_bytes + 4;
339         for (;;) {
340                 ret = intel_dp_aux_ch(intel_encoder, msg, msg_bytes, &ack, 1);
341                 if (ret < 0)
342                         return ret;
343                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
344                         break;
345                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
346                         udelay(100);
347                 else
348                         return -EIO;
349         }
350         return send_bytes;
351 }
352
353 /* Write a single byte to the aux channel in native mode */
354 static int
355 intel_dp_aux_native_write_1(struct intel_encoder *intel_encoder,
356                             uint16_t address, uint8_t byte)
357 {
358         return intel_dp_aux_native_write(intel_encoder, address, &byte, 1);
359 }
360
361 /* read bytes from a native aux channel */
362 static int
363 intel_dp_aux_native_read(struct intel_encoder *intel_encoder,
364                          uint16_t address, uint8_t *recv, int recv_bytes)
365 {
366         uint8_t msg[4];
367         int msg_bytes;
368         uint8_t reply[20];
369         int reply_bytes;
370         uint8_t ack;
371         int ret;
372
373         msg[0] = AUX_NATIVE_READ << 4;
374         msg[1] = address >> 8;
375         msg[2] = address & 0xff;
376         msg[3] = recv_bytes - 1;
377
378         msg_bytes = 4;
379         reply_bytes = recv_bytes + 1;
380
381         for (;;) {
382                 ret = intel_dp_aux_ch(intel_encoder, msg, msg_bytes,
383                                       reply, reply_bytes);
384                 if (ret == 0)
385                         return -EPROTO;
386                 if (ret < 0)
387                         return ret;
388                 ack = reply[0];
389                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
390                         memcpy(recv, reply + 1, ret - 1);
391                         return ret - 1;
392                 }
393                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
394                         udelay(100);
395                 else
396                         return -EIO;
397         }
398 }
399
400 static int
401 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
402                     uint8_t write_byte, uint8_t *read_byte)
403 {
404         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
405         struct intel_dp_priv *dp_priv = container_of(adapter,
406                                                      struct intel_dp_priv,
407                                                      adapter);
408         struct intel_encoder *intel_encoder = dp_priv->intel_encoder;
409         uint16_t address = algo_data->address;
410         uint8_t msg[5];
411         uint8_t reply[2];
412         int msg_bytes;
413         int reply_bytes;
414         int ret;
415
416         /* Set up the command byte */
417         if (mode & MODE_I2C_READ)
418                 msg[0] = AUX_I2C_READ << 4;
419         else
420                 msg[0] = AUX_I2C_WRITE << 4;
421
422         if (!(mode & MODE_I2C_STOP))
423                 msg[0] |= AUX_I2C_MOT << 4;
424
425         msg[1] = address >> 8;
426         msg[2] = address;
427
428         switch (mode) {
429         case MODE_I2C_WRITE:
430                 msg[3] = 0;
431                 msg[4] = write_byte;
432                 msg_bytes = 5;
433                 reply_bytes = 1;
434                 break;
435         case MODE_I2C_READ:
436                 msg[3] = 0;
437                 msg_bytes = 4;
438                 reply_bytes = 2;
439                 break;
440         default:
441                 msg_bytes = 3;
442                 reply_bytes = 1;
443                 break;
444         }
445
446         for (;;) {
447           ret = intel_dp_aux_ch(intel_encoder,
448                                 msg, msg_bytes,
449                                 reply, reply_bytes);
450                 if (ret < 0) {
451                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
452                         return ret;
453                 }
454                 switch (reply[0] & AUX_I2C_REPLY_MASK) {
455                 case AUX_I2C_REPLY_ACK:
456                         if (mode == MODE_I2C_READ) {
457                                 *read_byte = reply[1];
458                         }
459                         return reply_bytes - 1;
460                 case AUX_I2C_REPLY_NACK:
461                         DRM_DEBUG_KMS("aux_ch nack\n");
462                         return -EREMOTEIO;
463                 case AUX_I2C_REPLY_DEFER:
464                         DRM_DEBUG_KMS("aux_ch defer\n");
465                         udelay(100);
466                         break;
467                 default:
468                         DRM_ERROR("aux_ch invalid reply 0x%02x\n", reply[0]);
469                         return -EREMOTEIO;
470                 }
471         }
472 }
473
474 static int
475 intel_dp_i2c_init(struct intel_encoder *intel_encoder,
476                   struct intel_connector *intel_connector, const char *name)
477 {
478         struct intel_dp_priv   *dp_priv = intel_encoder->dev_priv;
479
480         DRM_DEBUG_KMS("i2c_init %s\n", name);
481         dp_priv->algo.running = false;
482         dp_priv->algo.address = 0;
483         dp_priv->algo.aux_ch = intel_dp_i2c_aux_ch;
484
485         memset(&dp_priv->adapter, '\0', sizeof (dp_priv->adapter));
486         dp_priv->adapter.owner = THIS_MODULE;
487         dp_priv->adapter.class = I2C_CLASS_DDC;
488         strncpy (dp_priv->adapter.name, name, sizeof(dp_priv->adapter.name) - 1);
489         dp_priv->adapter.name[sizeof(dp_priv->adapter.name) - 1] = '\0';
490         dp_priv->adapter.algo_data = &dp_priv->algo;
491         dp_priv->adapter.dev.parent = &intel_connector->base.kdev;
492         
493         return i2c_dp_aux_add_bus(&dp_priv->adapter);
494 }
495
496 static bool
497 intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
498                     struct drm_display_mode *adjusted_mode)
499 {
500         struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
501         struct intel_dp_priv   *dp_priv = intel_encoder->dev_priv;
502         int lane_count, clock;
503         int max_lane_count = intel_dp_max_lane_count(intel_encoder);
504         int max_clock = intel_dp_max_link_bw(intel_encoder) == DP_LINK_BW_2_7 ? 1 : 0;
505         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
506
507         for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
508                 for (clock = 0; clock <= max_clock; clock++) {
509                         int link_avail = intel_dp_link_clock(bws[clock]) * lane_count;
510
511                         if (intel_dp_link_required(encoder->dev, intel_encoder, mode->clock)
512                                         <= link_avail) {
513                                 dp_priv->link_bw = bws[clock];
514                                 dp_priv->lane_count = lane_count;
515                                 adjusted_mode->clock = intel_dp_link_clock(dp_priv->link_bw);
516                                 DRM_DEBUG_KMS("Display port link bw %02x lane "
517                                                 "count %d clock %d\n",
518                                        dp_priv->link_bw, dp_priv->lane_count,
519                                        adjusted_mode->clock);
520                                 return true;
521                         }
522                 }
523         }
524         return false;
525 }
526
527 struct intel_dp_m_n {
528         uint32_t        tu;
529         uint32_t        gmch_m;
530         uint32_t        gmch_n;
531         uint32_t        link_m;
532         uint32_t        link_n;
533 };
534
535 static void
536 intel_reduce_ratio(uint32_t *num, uint32_t *den)
537 {
538         while (*num > 0xffffff || *den > 0xffffff) {
539                 *num >>= 1;
540                 *den >>= 1;
541         }
542 }
543
544 static void
545 intel_dp_compute_m_n(int bytes_per_pixel,
546                      int nlanes,
547                      int pixel_clock,
548                      int link_clock,
549                      struct intel_dp_m_n *m_n)
550 {
551         m_n->tu = 64;
552         m_n->gmch_m = pixel_clock * bytes_per_pixel;
553         m_n->gmch_n = link_clock * nlanes;
554         intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
555         m_n->link_m = pixel_clock;
556         m_n->link_n = link_clock;
557         intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
558 }
559
560 void
561 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
562                  struct drm_display_mode *adjusted_mode)
563 {
564         struct drm_device *dev = crtc->dev;
565         struct drm_mode_config *mode_config = &dev->mode_config;
566         struct drm_encoder *encoder;
567         struct drm_i915_private *dev_priv = dev->dev_private;
568         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
569         int lane_count = 4;
570         struct intel_dp_m_n m_n;
571
572         /*
573          * Find the lane count in the intel_encoder private
574          */
575         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
576                 struct intel_encoder *intel_encoder;
577                 struct intel_dp_priv *dp_priv;
578
579                 if (!encoder || encoder->crtc != crtc)
580                         continue;
581
582                 intel_encoder = enc_to_intel_encoder(encoder);
583                 dp_priv = intel_encoder->dev_priv;
584
585                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
586                         lane_count = dp_priv->lane_count;
587                         break;
588                 }
589         }
590
591         /*
592          * Compute the GMCH and Link ratios. The '3' here is
593          * the number of bytes_per_pixel post-LUT, which we always
594          * set up for 8-bits of R/G/B, or 3 bytes total.
595          */
596         intel_dp_compute_m_n(3, lane_count,
597                              mode->clock, adjusted_mode->clock, &m_n);
598
599         if (HAS_PCH_SPLIT(dev)) {
600                 if (intel_crtc->pipe == 0) {
601                         I915_WRITE(TRANSA_DATA_M1,
602                                    ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
603                                    m_n.gmch_m);
604                         I915_WRITE(TRANSA_DATA_N1, m_n.gmch_n);
605                         I915_WRITE(TRANSA_DP_LINK_M1, m_n.link_m);
606                         I915_WRITE(TRANSA_DP_LINK_N1, m_n.link_n);
607                 } else {
608                         I915_WRITE(TRANSB_DATA_M1,
609                                    ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
610                                    m_n.gmch_m);
611                         I915_WRITE(TRANSB_DATA_N1, m_n.gmch_n);
612                         I915_WRITE(TRANSB_DP_LINK_M1, m_n.link_m);
613                         I915_WRITE(TRANSB_DP_LINK_N1, m_n.link_n);
614                 }
615         } else {
616                 if (intel_crtc->pipe == 0) {
617                         I915_WRITE(PIPEA_GMCH_DATA_M,
618                                    ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
619                                    m_n.gmch_m);
620                         I915_WRITE(PIPEA_GMCH_DATA_N,
621                                    m_n.gmch_n);
622                         I915_WRITE(PIPEA_DP_LINK_M, m_n.link_m);
623                         I915_WRITE(PIPEA_DP_LINK_N, m_n.link_n);
624                 } else {
625                         I915_WRITE(PIPEB_GMCH_DATA_M,
626                                    ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
627                                    m_n.gmch_m);
628                         I915_WRITE(PIPEB_GMCH_DATA_N,
629                                         m_n.gmch_n);
630                         I915_WRITE(PIPEB_DP_LINK_M, m_n.link_m);
631                         I915_WRITE(PIPEB_DP_LINK_N, m_n.link_n);
632                 }
633         }
634 }
635
636 static void
637 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
638                   struct drm_display_mode *adjusted_mode)
639 {
640         struct drm_device *dev = encoder->dev;
641         struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
642         struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
643         struct drm_crtc *crtc = intel_encoder->enc.crtc;
644         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
645
646         dp_priv->DP = (DP_VOLTAGE_0_4 |
647                        DP_PRE_EMPHASIS_0);
648
649         if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
650                 dp_priv->DP |= DP_SYNC_HS_HIGH;
651         if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
652                 dp_priv->DP |= DP_SYNC_VS_HIGH;
653
654         if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
655                 dp_priv->DP |= DP_LINK_TRAIN_OFF_CPT;
656         else
657                 dp_priv->DP |= DP_LINK_TRAIN_OFF;
658
659         switch (dp_priv->lane_count) {
660         case 1:
661                 dp_priv->DP |= DP_PORT_WIDTH_1;
662                 break;
663         case 2:
664                 dp_priv->DP |= DP_PORT_WIDTH_2;
665                 break;
666         case 4:
667                 dp_priv->DP |= DP_PORT_WIDTH_4;
668                 break;
669         }
670         if (dp_priv->has_audio)
671                 dp_priv->DP |= DP_AUDIO_OUTPUT_ENABLE;
672
673         memset(dp_priv->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
674         dp_priv->link_configuration[0] = dp_priv->link_bw;
675         dp_priv->link_configuration[1] = dp_priv->lane_count;
676
677         /*
678          * Check for DPCD version > 1.1,
679          * enable enahanced frame stuff in that case
680          */
681         if (dp_priv->dpcd[0] >= 0x11) {
682                 dp_priv->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
683                 dp_priv->DP |= DP_ENHANCED_FRAMING;
684         }
685
686         /* CPT DP's pipe select is decided in TRANS_DP_CTL */
687         if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
688                 dp_priv->DP |= DP_PIPEB_SELECT;
689
690         if (IS_eDP(intel_encoder)) {
691                 /* don't miss out required setting for eDP */
692                 dp_priv->DP |= DP_PLL_ENABLE;
693                 if (adjusted_mode->clock < 200000)
694                         dp_priv->DP |= DP_PLL_FREQ_160MHZ;
695                 else
696                         dp_priv->DP |= DP_PLL_FREQ_270MHZ;
697         }
698 }
699
700 static void ironlake_edp_backlight_on (struct drm_device *dev)
701 {
702         struct drm_i915_private *dev_priv = dev->dev_private;
703         u32 pp;
704
705         DRM_DEBUG_KMS("\n");
706         pp = I915_READ(PCH_PP_CONTROL);
707         pp |= EDP_BLC_ENABLE;
708         I915_WRITE(PCH_PP_CONTROL, pp);
709 }
710
711 static void ironlake_edp_backlight_off (struct drm_device *dev)
712 {
713         struct drm_i915_private *dev_priv = dev->dev_private;
714         u32 pp;
715
716         DRM_DEBUG_KMS("\n");
717         pp = I915_READ(PCH_PP_CONTROL);
718         pp &= ~EDP_BLC_ENABLE;
719         I915_WRITE(PCH_PP_CONTROL, pp);
720 }
721
722 static void
723 intel_dp_dpms(struct drm_encoder *encoder, int mode)
724 {
725         struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
726         struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
727         struct drm_device *dev = encoder->dev;
728         struct drm_i915_private *dev_priv = dev->dev_private;
729         uint32_t dp_reg = I915_READ(dp_priv->output_reg);
730
731         if (mode != DRM_MODE_DPMS_ON) {
732                 if (dp_reg & DP_PORT_EN) {
733                         intel_dp_link_down(intel_encoder, dp_priv->DP);
734                         if (IS_eDP(intel_encoder))
735                                 ironlake_edp_backlight_off(dev);
736                 }
737         } else {
738                 if (!(dp_reg & DP_PORT_EN)) {
739                         intel_dp_link_train(intel_encoder, dp_priv->DP, dp_priv->link_configuration);
740                         if (IS_eDP(intel_encoder))
741                                 ironlake_edp_backlight_on(dev);
742                 }
743         }
744         dp_priv->dpms_mode = mode;
745 }
746
747 /*
748  * Fetch AUX CH registers 0x202 - 0x207 which contain
749  * link status information
750  */
751 static bool
752 intel_dp_get_link_status(struct intel_encoder *intel_encoder,
753                          uint8_t link_status[DP_LINK_STATUS_SIZE])
754 {
755         int ret;
756
757         ret = intel_dp_aux_native_read(intel_encoder,
758                                        DP_LANE0_1_STATUS,
759                                        link_status, DP_LINK_STATUS_SIZE);
760         if (ret != DP_LINK_STATUS_SIZE)
761                 return false;
762         return true;
763 }
764
765 static uint8_t
766 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
767                      int r)
768 {
769         return link_status[r - DP_LANE0_1_STATUS];
770 }
771
772 static uint8_t
773 intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
774                                  int lane)
775 {
776         int         i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
777         int         s = ((lane & 1) ?
778                          DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
779                          DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
780         uint8_t l = intel_dp_link_status(link_status, i);
781
782         return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
783 }
784
785 static uint8_t
786 intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
787                                       int lane)
788 {
789         int         i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
790         int         s = ((lane & 1) ?
791                          DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
792                          DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
793         uint8_t l = intel_dp_link_status(link_status, i);
794
795         return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
796 }
797
798
799 #if 0
800 static char     *voltage_names[] = {
801         "0.4V", "0.6V", "0.8V", "1.2V"
802 };
803 static char     *pre_emph_names[] = {
804         "0dB", "3.5dB", "6dB", "9.5dB"
805 };
806 static char     *link_train_names[] = {
807         "pattern 1", "pattern 2", "idle", "off"
808 };
809 #endif
810
811 /*
812  * These are source-specific values; current Intel hardware supports
813  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
814  */
815 #define I830_DP_VOLTAGE_MAX         DP_TRAIN_VOLTAGE_SWING_800
816
817 static uint8_t
818 intel_dp_pre_emphasis_max(uint8_t voltage_swing)
819 {
820         switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
821         case DP_TRAIN_VOLTAGE_SWING_400:
822                 return DP_TRAIN_PRE_EMPHASIS_6;
823         case DP_TRAIN_VOLTAGE_SWING_600:
824                 return DP_TRAIN_PRE_EMPHASIS_6;
825         case DP_TRAIN_VOLTAGE_SWING_800:
826                 return DP_TRAIN_PRE_EMPHASIS_3_5;
827         case DP_TRAIN_VOLTAGE_SWING_1200:
828         default:
829                 return DP_TRAIN_PRE_EMPHASIS_0;
830         }
831 }
832
833 static void
834 intel_get_adjust_train(struct intel_encoder *intel_encoder,
835                        uint8_t link_status[DP_LINK_STATUS_SIZE],
836                        int lane_count,
837                        uint8_t train_set[4])
838 {
839         uint8_t v = 0;
840         uint8_t p = 0;
841         int lane;
842
843         for (lane = 0; lane < lane_count; lane++) {
844                 uint8_t this_v = intel_get_adjust_request_voltage(link_status, lane);
845                 uint8_t this_p = intel_get_adjust_request_pre_emphasis(link_status, lane);
846
847                 if (this_v > v)
848                         v = this_v;
849                 if (this_p > p)
850                         p = this_p;
851         }
852
853         if (v >= I830_DP_VOLTAGE_MAX)
854                 v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
855
856         if (p >= intel_dp_pre_emphasis_max(v))
857                 p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
858
859         for (lane = 0; lane < 4; lane++)
860                 train_set[lane] = v | p;
861 }
862
863 static uint32_t
864 intel_dp_signal_levels(uint8_t train_set, int lane_count)
865 {
866         uint32_t        signal_levels = 0;
867
868         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
869         case DP_TRAIN_VOLTAGE_SWING_400:
870         default:
871                 signal_levels |= DP_VOLTAGE_0_4;
872                 break;
873         case DP_TRAIN_VOLTAGE_SWING_600:
874                 signal_levels |= DP_VOLTAGE_0_6;
875                 break;
876         case DP_TRAIN_VOLTAGE_SWING_800:
877                 signal_levels |= DP_VOLTAGE_0_8;
878                 break;
879         case DP_TRAIN_VOLTAGE_SWING_1200:
880                 signal_levels |= DP_VOLTAGE_1_2;
881                 break;
882         }
883         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
884         case DP_TRAIN_PRE_EMPHASIS_0:
885         default:
886                 signal_levels |= DP_PRE_EMPHASIS_0;
887                 break;
888         case DP_TRAIN_PRE_EMPHASIS_3_5:
889                 signal_levels |= DP_PRE_EMPHASIS_3_5;
890                 break;
891         case DP_TRAIN_PRE_EMPHASIS_6:
892                 signal_levels |= DP_PRE_EMPHASIS_6;
893                 break;
894         case DP_TRAIN_PRE_EMPHASIS_9_5:
895                 signal_levels |= DP_PRE_EMPHASIS_9_5;
896                 break;
897         }
898         return signal_levels;
899 }
900
901 /* Gen6's DP voltage swing and pre-emphasis control */
902 static uint32_t
903 intel_gen6_edp_signal_levels(uint8_t train_set)
904 {
905         switch (train_set & (DP_TRAIN_VOLTAGE_SWING_MASK|DP_TRAIN_PRE_EMPHASIS_MASK)) {
906         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
907                 return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
908         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
909                 return EDP_LINK_TRAIN_400MV_6DB_SNB_B;
910         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
911                 return EDP_LINK_TRAIN_600MV_3_5DB_SNB_B;
912         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
913                 return EDP_LINK_TRAIN_800MV_0DB_SNB_B;
914         default:
915                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level\n");
916                 return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
917         }
918 }
919
920 static uint8_t
921 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
922                       int lane)
923 {
924         int i = DP_LANE0_1_STATUS + (lane >> 1);
925         int s = (lane & 1) * 4;
926         uint8_t l = intel_dp_link_status(link_status, i);
927
928         return (l >> s) & 0xf;
929 }
930
931 /* Check for clock recovery is done on all channels */
932 static bool
933 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
934 {
935         int lane;
936         uint8_t lane_status;
937
938         for (lane = 0; lane < lane_count; lane++) {
939                 lane_status = intel_get_lane_status(link_status, lane);
940                 if ((lane_status & DP_LANE_CR_DONE) == 0)
941                         return false;
942         }
943         return true;
944 }
945
946 /* Check to see if channel eq is done on all channels */
947 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
948                          DP_LANE_CHANNEL_EQ_DONE|\
949                          DP_LANE_SYMBOL_LOCKED)
950 static bool
951 intel_channel_eq_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
952 {
953         uint8_t lane_align;
954         uint8_t lane_status;
955         int lane;
956
957         lane_align = intel_dp_link_status(link_status,
958                                           DP_LANE_ALIGN_STATUS_UPDATED);
959         if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
960                 return false;
961         for (lane = 0; lane < lane_count; lane++) {
962                 lane_status = intel_get_lane_status(link_status, lane);
963                 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
964                         return false;
965         }
966         return true;
967 }
968
969 static bool
970 intel_dp_set_link_train(struct intel_encoder *intel_encoder,
971                         uint32_t dp_reg_value,
972                         uint8_t dp_train_pat,
973                         uint8_t train_set[4],
974                         bool first)
975 {
976         struct drm_device *dev = intel_encoder->enc.dev;
977         struct drm_i915_private *dev_priv = dev->dev_private;
978         struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
979         int ret;
980
981         I915_WRITE(dp_priv->output_reg, dp_reg_value);
982         POSTING_READ(dp_priv->output_reg);
983         if (first)
984                 intel_wait_for_vblank(dev);
985
986         intel_dp_aux_native_write_1(intel_encoder,
987                                     DP_TRAINING_PATTERN_SET,
988                                     dp_train_pat);
989
990         ret = intel_dp_aux_native_write(intel_encoder,
991                                         DP_TRAINING_LANE0_SET, train_set, 4);
992         if (ret != 4)
993                 return false;
994
995         return true;
996 }
997
998 static void
999 intel_dp_link_train(struct intel_encoder *intel_encoder, uint32_t DP,
1000                     uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE])
1001 {
1002         struct drm_device *dev = intel_encoder->enc.dev;
1003         struct drm_i915_private *dev_priv = dev->dev_private;
1004         struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
1005         uint8_t train_set[4];
1006         uint8_t link_status[DP_LINK_STATUS_SIZE];
1007         int i;
1008         uint8_t voltage;
1009         bool clock_recovery = false;
1010         bool channel_eq = false;
1011         bool first = true;
1012         int tries;
1013         u32 reg;
1014
1015         /* Write the link configuration data */
1016         intel_dp_aux_native_write(intel_encoder, DP_LINK_BW_SET,
1017                                   link_configuration, DP_LINK_CONFIGURATION_SIZE);
1018
1019         DP |= DP_PORT_EN;
1020         if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
1021                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1022         else
1023                 DP &= ~DP_LINK_TRAIN_MASK;
1024         memset(train_set, 0, 4);
1025         voltage = 0xff;
1026         tries = 0;
1027         clock_recovery = false;
1028         for (;;) {
1029                 /* Use train_set[0] to set the voltage and pre emphasis values */
1030                 uint32_t    signal_levels;
1031                 if (IS_GEN6(dev) && IS_eDP(intel_encoder)) {
1032                         signal_levels = intel_gen6_edp_signal_levels(train_set[0]);
1033                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1034                 } else {
1035                         signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
1036                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1037                 }
1038
1039                 if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
1040                         reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1041                 else
1042                         reg = DP | DP_LINK_TRAIN_PAT_1;
1043
1044                 if (!intel_dp_set_link_train(intel_encoder, reg,
1045                                              DP_TRAINING_PATTERN_1, train_set, first))
1046                         break;
1047                 first = false;
1048                 /* Set training pattern 1 */
1049
1050                 udelay(100);
1051                 if (!intel_dp_get_link_status(intel_encoder, link_status))
1052                         break;
1053
1054                 if (intel_clock_recovery_ok(link_status, dp_priv->lane_count)) {
1055                         clock_recovery = true;
1056                         break;
1057                 }
1058
1059                 /* Check to see if we've tried the max voltage */
1060                 for (i = 0; i < dp_priv->lane_count; i++)
1061                         if ((train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1062                                 break;
1063                 if (i == dp_priv->lane_count)
1064                         break;
1065
1066                 /* Check to see if we've tried the same voltage 5 times */
1067                 if ((train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1068                         ++tries;
1069                         if (tries == 5)
1070                                 break;
1071                 } else
1072                         tries = 0;
1073                 voltage = train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1074
1075                 /* Compute new train_set as requested by target */
1076                 intel_get_adjust_train(intel_encoder, link_status, dp_priv->lane_count, train_set);
1077         }
1078
1079         /* channel equalization */
1080         tries = 0;
1081         channel_eq = false;
1082         for (;;) {
1083                 /* Use train_set[0] to set the voltage and pre emphasis values */
1084                 uint32_t    signal_levels;
1085
1086                 if (IS_GEN6(dev) && IS_eDP(intel_encoder)) {
1087                         signal_levels = intel_gen6_edp_signal_levels(train_set[0]);
1088                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1089                 } else {
1090                         signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
1091                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1092                 }
1093
1094                 if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
1095                         reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1096                 else
1097                         reg = DP | DP_LINK_TRAIN_PAT_2;
1098
1099                 /* channel eq pattern */
1100                 if (!intel_dp_set_link_train(intel_encoder, reg,
1101                                              DP_TRAINING_PATTERN_2, train_set,
1102                                              false))
1103                         break;
1104
1105                 udelay(400);
1106                 if (!intel_dp_get_link_status(intel_encoder, link_status))
1107                         break;
1108
1109                 if (intel_channel_eq_ok(link_status, dp_priv->lane_count)) {
1110                         channel_eq = true;
1111                         break;
1112                 }
1113
1114                 /* Try 5 times */
1115                 if (tries > 5)
1116                         break;
1117
1118                 /* Compute new train_set as requested by target */
1119                 intel_get_adjust_train(intel_encoder, link_status, dp_priv->lane_count, train_set);
1120                 ++tries;
1121         }
1122
1123         if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
1124                 reg = DP | DP_LINK_TRAIN_OFF_CPT;
1125         else
1126                 reg = DP | DP_LINK_TRAIN_OFF;
1127
1128         I915_WRITE(dp_priv->output_reg, reg);
1129         POSTING_READ(dp_priv->output_reg);
1130         intel_dp_aux_native_write_1(intel_encoder,
1131                                     DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1132 }
1133
1134 static void
1135 intel_dp_link_down(struct intel_encoder *intel_encoder, uint32_t DP)
1136 {
1137         struct drm_device *dev = intel_encoder->enc.dev;
1138         struct drm_i915_private *dev_priv = dev->dev_private;
1139         struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
1140
1141         DRM_DEBUG_KMS("\n");
1142
1143         if (IS_eDP(intel_encoder)) {
1144                 DP &= ~DP_PLL_ENABLE;
1145                 I915_WRITE(dp_priv->output_reg, DP);
1146                 POSTING_READ(dp_priv->output_reg);
1147                 udelay(100);
1148         }
1149
1150         if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder)) {
1151                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1152                 I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1153                 POSTING_READ(dp_priv->output_reg);
1154         } else {
1155                 DP &= ~DP_LINK_TRAIN_MASK;
1156                 I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1157                 POSTING_READ(dp_priv->output_reg);
1158         }
1159
1160         udelay(17000);
1161
1162         if (IS_eDP(intel_encoder))
1163                 DP |= DP_LINK_TRAIN_OFF;
1164         I915_WRITE(dp_priv->output_reg, DP & ~DP_PORT_EN);
1165         POSTING_READ(dp_priv->output_reg);
1166 }
1167
1168 /*
1169  * According to DP spec
1170  * 5.1.2:
1171  *  1. Read DPCD
1172  *  2. Configure link according to Receiver Capabilities
1173  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
1174  *  4. Check link status on receipt of hot-plug interrupt
1175  */
1176
1177 static void
1178 intel_dp_check_link_status(struct intel_encoder *intel_encoder)
1179 {
1180         struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
1181         uint8_t link_status[DP_LINK_STATUS_SIZE];
1182
1183         if (!intel_encoder->enc.crtc)
1184                 return;
1185
1186         if (!intel_dp_get_link_status(intel_encoder, link_status)) {
1187                 intel_dp_link_down(intel_encoder, dp_priv->DP);
1188                 return;
1189         }
1190
1191         if (!intel_channel_eq_ok(link_status, dp_priv->lane_count))
1192                 intel_dp_link_train(intel_encoder, dp_priv->DP, dp_priv->link_configuration);
1193 }
1194
1195 static enum drm_connector_status
1196 ironlake_dp_detect(struct drm_connector *connector)
1197 {
1198         struct drm_encoder *encoder = intel_attached_encoder(connector);
1199         struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
1200         struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
1201         enum drm_connector_status status;
1202
1203         status = connector_status_disconnected;
1204         if (intel_dp_aux_native_read(intel_encoder,
1205                                      0x000, dp_priv->dpcd,
1206                                      sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd))
1207         {
1208                 if (dp_priv->dpcd[0] != 0)
1209                         status = connector_status_connected;
1210         }
1211         return status;
1212 }
1213
1214 /**
1215  * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1216  *
1217  * \return true if DP port is connected.
1218  * \return false if DP port is disconnected.
1219  */
1220 static enum drm_connector_status
1221 intel_dp_detect(struct drm_connector *connector)
1222 {
1223         struct drm_encoder *encoder = intel_attached_encoder(connector);
1224         struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
1225         struct drm_device *dev = intel_encoder->enc.dev;
1226         struct drm_i915_private *dev_priv = dev->dev_private;
1227         struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
1228         uint32_t temp, bit;
1229         enum drm_connector_status status;
1230
1231         dp_priv->has_audio = false;
1232
1233         if (HAS_PCH_SPLIT(dev))
1234                 return ironlake_dp_detect(connector);
1235
1236         switch (dp_priv->output_reg) {
1237         case DP_B:
1238                 bit = DPB_HOTPLUG_INT_STATUS;
1239                 break;
1240         case DP_C:
1241                 bit = DPC_HOTPLUG_INT_STATUS;
1242                 break;
1243         case DP_D:
1244                 bit = DPD_HOTPLUG_INT_STATUS;
1245                 break;
1246         default:
1247                 return connector_status_unknown;
1248         }
1249
1250         temp = I915_READ(PORT_HOTPLUG_STAT);
1251
1252         if ((temp & bit) == 0)
1253                 return connector_status_disconnected;
1254
1255         status = connector_status_disconnected;
1256         if (intel_dp_aux_native_read(intel_encoder,
1257                                      0x000, dp_priv->dpcd,
1258                                      sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd))
1259         {
1260                 if (dp_priv->dpcd[0] != 0)
1261                         status = connector_status_connected;
1262         }
1263         return status;
1264 }
1265
1266 static int intel_dp_get_modes(struct drm_connector *connector)
1267 {
1268         struct drm_encoder *encoder = intel_attached_encoder(connector);
1269         struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
1270         struct drm_device *dev = intel_encoder->enc.dev;
1271         struct drm_i915_private *dev_priv = dev->dev_private;
1272         int ret;
1273
1274         /* We should parse the EDID data and find out if it has an audio sink
1275          */
1276
1277         ret = intel_ddc_get_modes(connector, intel_encoder->ddc_bus);
1278         if (ret)
1279                 return ret;
1280
1281         /* if eDP has no EDID, try to use fixed panel mode from VBT */
1282         if (IS_eDP(intel_encoder)) {
1283                 if (dev_priv->panel_fixed_mode != NULL) {
1284                         struct drm_display_mode *mode;
1285                         mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
1286                         drm_mode_probed_add(connector, mode);
1287                         return 1;
1288                 }
1289         }
1290         return 0;
1291 }
1292
1293 static void
1294 intel_dp_destroy (struct drm_connector *connector)
1295 {
1296         drm_sysfs_connector_remove(connector);
1297         drm_connector_cleanup(connector);
1298         kfree(connector);
1299 }
1300
1301 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
1302         .dpms = intel_dp_dpms,
1303         .mode_fixup = intel_dp_mode_fixup,
1304         .prepare = intel_encoder_prepare,
1305         .mode_set = intel_dp_mode_set,
1306         .commit = intel_encoder_commit,
1307 };
1308
1309 static const struct drm_connector_funcs intel_dp_connector_funcs = {
1310         .dpms = drm_helper_connector_dpms,
1311         .detect = intel_dp_detect,
1312         .fill_modes = drm_helper_probe_single_connector_modes,
1313         .destroy = intel_dp_destroy,
1314 };
1315
1316 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
1317         .get_modes = intel_dp_get_modes,
1318         .mode_valid = intel_dp_mode_valid,
1319         .best_encoder = intel_attached_encoder,
1320 };
1321
1322 static void intel_dp_enc_destroy(struct drm_encoder *encoder)
1323 {
1324         struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
1325
1326         if (intel_encoder->i2c_bus)
1327                 intel_i2c_destroy(intel_encoder->i2c_bus);
1328         drm_encoder_cleanup(encoder);
1329         kfree(intel_encoder);
1330 }
1331
1332 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
1333         .destroy = intel_dp_enc_destroy,
1334 };
1335
1336 void
1337 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
1338 {
1339         struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
1340
1341         if (dp_priv->dpms_mode == DRM_MODE_DPMS_ON)
1342                 intel_dp_check_link_status(intel_encoder);
1343 }
1344
1345 /* Return which DP Port should be selected for Transcoder DP control */
1346 int
1347 intel_trans_dp_port_sel (struct drm_crtc *crtc)
1348 {
1349         struct drm_device *dev = crtc->dev;
1350         struct drm_mode_config *mode_config = &dev->mode_config;
1351         struct drm_encoder *encoder;
1352         struct intel_encoder *intel_encoder = NULL;
1353
1354         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
1355                 if (!encoder || encoder->crtc != crtc)
1356                         continue;
1357
1358                 intel_encoder = enc_to_intel_encoder(encoder);
1359                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
1360                         struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
1361                         return dp_priv->output_reg;
1362                 }
1363         }
1364         return -1;
1365 }
1366
1367 void
1368 intel_dp_init(struct drm_device *dev, int output_reg)
1369 {
1370         struct drm_i915_private *dev_priv = dev->dev_private;
1371         struct drm_connector *connector;
1372         struct intel_encoder *intel_encoder;
1373         struct intel_connector *intel_connector;
1374         struct intel_dp_priv *dp_priv;
1375         const char *name = NULL;
1376
1377         intel_encoder = kcalloc(sizeof(struct intel_encoder) +
1378                                sizeof(struct intel_dp_priv), 1, GFP_KERNEL);
1379         if (!intel_encoder)
1380                 return;
1381
1382         intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
1383         if (!intel_connector) {
1384                 kfree(intel_encoder);
1385                 return;
1386         }
1387
1388         dp_priv = (struct intel_dp_priv *)(intel_encoder + 1);
1389
1390         connector = &intel_connector->base;
1391         drm_connector_init(dev, connector, &intel_dp_connector_funcs,
1392                            DRM_MODE_CONNECTOR_DisplayPort);
1393         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
1394
1395         connector->polled = DRM_CONNECTOR_POLL_HPD;
1396
1397         if (output_reg == DP_A)
1398                 intel_encoder->type = INTEL_OUTPUT_EDP;
1399         else
1400                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
1401
1402         if (output_reg == DP_B || output_reg == PCH_DP_B)
1403                 intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
1404         else if (output_reg == DP_C || output_reg == PCH_DP_C)
1405                 intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
1406         else if (output_reg == DP_D || output_reg == PCH_DP_D)
1407                 intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
1408
1409         if (IS_eDP(intel_encoder))
1410                 intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
1411
1412         intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
1413         connector->interlace_allowed = true;
1414         connector->doublescan_allowed = 0;
1415
1416         dp_priv->intel_encoder = intel_encoder;
1417         dp_priv->output_reg = output_reg;
1418         dp_priv->has_audio = false;
1419         dp_priv->dpms_mode = DRM_MODE_DPMS_ON;
1420         intel_encoder->dev_priv = dp_priv;
1421
1422         drm_encoder_init(dev, &intel_encoder->enc, &intel_dp_enc_funcs,
1423                          DRM_MODE_ENCODER_TMDS);
1424         drm_encoder_helper_add(&intel_encoder->enc, &intel_dp_helper_funcs);
1425
1426         drm_mode_connector_attach_encoder(&intel_connector->base,
1427                                           &intel_encoder->enc);
1428         drm_sysfs_connector_add(connector);
1429
1430         /* Set up the DDC bus. */
1431         switch (output_reg) {
1432                 case DP_A:
1433                         name = "DPDDC-A";
1434                         break;
1435                 case DP_B:
1436                 case PCH_DP_B:
1437                         dev_priv->hotplug_supported_mask |=
1438                                 HDMIB_HOTPLUG_INT_STATUS;
1439                         name = "DPDDC-B";
1440                         break;
1441                 case DP_C:
1442                 case PCH_DP_C:
1443                         dev_priv->hotplug_supported_mask |=
1444                                 HDMIC_HOTPLUG_INT_STATUS;
1445                         name = "DPDDC-C";
1446                         break;
1447                 case DP_D:
1448                 case PCH_DP_D:
1449                         dev_priv->hotplug_supported_mask |=
1450                                 HDMID_HOTPLUG_INT_STATUS;
1451                         name = "DPDDC-D";
1452                         break;
1453         }
1454
1455         intel_dp_i2c_init(intel_encoder, intel_connector, name);
1456
1457         intel_encoder->ddc_bus = &dp_priv->adapter;
1458         intel_encoder->hot_plug = intel_dp_hot_plug;
1459
1460         if (output_reg == DP_A) {
1461                 /* initialize panel mode from VBT if available for eDP */
1462                 if (dev_priv->lfp_lvds_vbt_mode) {
1463                         dev_priv->panel_fixed_mode =
1464                                 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
1465                         if (dev_priv->panel_fixed_mode) {
1466                                 dev_priv->panel_fixed_mode->type |=
1467                                         DRM_MODE_TYPE_PREFERRED;
1468                         }
1469                 }
1470         }
1471
1472         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
1473          * 0xd.  Failure to do so will result in spurious interrupts being
1474          * generated on the port when a cable is not attached.
1475          */
1476         if (IS_G4X(dev) && !IS_GM45(dev)) {
1477                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
1478                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
1479         }
1480 }