drm/i915: Use chipset-specific irq installers
[pandora-kernel.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include "drmP.h"
31 #include "drm.h"
32 #include "drm_crtc.h"
33 #include "drm_crtc_helper.h"
34 #include "intel_drv.h"
35 #include "i915_drm.h"
36 #include "i915_drv.h"
37 #include "drm_dp_helper.h"
38
39
40 #define DP_LINK_STATUS_SIZE     6
41 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
42
43 #define DP_LINK_CONFIGURATION_SIZE      9
44
45 struct intel_dp {
46         struct intel_encoder base;
47         uint32_t output_reg;
48         uint32_t DP;
49         uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
50         bool has_audio;
51         int force_audio;
52         uint32_t color_range;
53         int dpms_mode;
54         uint8_t link_bw;
55         uint8_t lane_count;
56         uint8_t dpcd[4];
57         struct i2c_adapter adapter;
58         struct i2c_algo_dp_aux_data algo;
59         bool is_pch_edp;
60         uint8_t train_set[4];
61         uint8_t link_status[DP_LINK_STATUS_SIZE];
62 };
63
64 /**
65  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
66  * @intel_dp: DP struct
67  *
68  * If a CPU or PCH DP output is attached to an eDP panel, this function
69  * will return true, and false otherwise.
70  */
71 static bool is_edp(struct intel_dp *intel_dp)
72 {
73         return intel_dp->base.type == INTEL_OUTPUT_EDP;
74 }
75
76 /**
77  * is_pch_edp - is the port on the PCH and attached to an eDP panel?
78  * @intel_dp: DP struct
79  *
80  * Returns true if the given DP struct corresponds to a PCH DP port attached
81  * to an eDP panel, false otherwise.  Helpful for determining whether we
82  * may need FDI resources for a given DP output or not.
83  */
84 static bool is_pch_edp(struct intel_dp *intel_dp)
85 {
86         return intel_dp->is_pch_edp;
87 }
88
89 static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
90 {
91         return container_of(encoder, struct intel_dp, base.base);
92 }
93
94 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
95 {
96         return container_of(intel_attached_encoder(connector),
97                             struct intel_dp, base);
98 }
99
100 /**
101  * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
102  * @encoder: DRM encoder
103  *
104  * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
105  * by intel_display.c.
106  */
107 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
108 {
109         struct intel_dp *intel_dp;
110
111         if (!encoder)
112                 return false;
113
114         intel_dp = enc_to_intel_dp(encoder);
115
116         return is_pch_edp(intel_dp);
117 }
118
119 static void intel_dp_start_link_train(struct intel_dp *intel_dp);
120 static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
121 static void intel_dp_link_down(struct intel_dp *intel_dp);
122
123 void
124 intel_edp_link_config (struct intel_encoder *intel_encoder,
125                        int *lane_num, int *link_bw)
126 {
127         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
128
129         *lane_num = intel_dp->lane_count;
130         if (intel_dp->link_bw == DP_LINK_BW_1_62)
131                 *link_bw = 162000;
132         else if (intel_dp->link_bw == DP_LINK_BW_2_7)
133                 *link_bw = 270000;
134 }
135
136 static int
137 intel_dp_max_lane_count(struct intel_dp *intel_dp)
138 {
139         int max_lane_count = 4;
140
141         if (intel_dp->dpcd[0] >= 0x11) {
142                 max_lane_count = intel_dp->dpcd[2] & 0x1f;
143                 switch (max_lane_count) {
144                 case 1: case 2: case 4:
145                         break;
146                 default:
147                         max_lane_count = 4;
148                 }
149         }
150         return max_lane_count;
151 }
152
153 static int
154 intel_dp_max_link_bw(struct intel_dp *intel_dp)
155 {
156         int max_link_bw = intel_dp->dpcd[1];
157
158         switch (max_link_bw) {
159         case DP_LINK_BW_1_62:
160         case DP_LINK_BW_2_7:
161                 break;
162         default:
163                 max_link_bw = DP_LINK_BW_1_62;
164                 break;
165         }
166         return max_link_bw;
167 }
168
169 static int
170 intel_dp_link_clock(uint8_t link_bw)
171 {
172         if (link_bw == DP_LINK_BW_2_7)
173                 return 270000;
174         else
175                 return 162000;
176 }
177
178 /* I think this is a fiction */
179 static int
180 intel_dp_link_required(struct drm_device *dev, struct intel_dp *intel_dp, int pixel_clock)
181 {
182         struct drm_i915_private *dev_priv = dev->dev_private;
183
184         if (is_edp(intel_dp))
185                 return (pixel_clock * dev_priv->edp.bpp + 7) / 8;
186         else
187                 return pixel_clock * 3;
188 }
189
190 static int
191 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
192 {
193         return (max_link_clock * max_lanes * 8) / 10;
194 }
195
196 static int
197 intel_dp_mode_valid(struct drm_connector *connector,
198                     struct drm_display_mode *mode)
199 {
200         struct intel_dp *intel_dp = intel_attached_dp(connector);
201         struct drm_device *dev = connector->dev;
202         struct drm_i915_private *dev_priv = dev->dev_private;
203         int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
204         int max_lanes = intel_dp_max_lane_count(intel_dp);
205
206         if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
207                 if (mode->hdisplay > dev_priv->panel_fixed_mode->hdisplay)
208                         return MODE_PANEL;
209
210                 if (mode->vdisplay > dev_priv->panel_fixed_mode->vdisplay)
211                         return MODE_PANEL;
212         }
213
214         /* only refuse the mode on non eDP since we have seen some weird eDP panels
215            which are outside spec tolerances but somehow work by magic */
216         if (!is_edp(intel_dp) &&
217             (intel_dp_link_required(connector->dev, intel_dp, mode->clock)
218              > intel_dp_max_data_rate(max_link_clock, max_lanes)))
219                 return MODE_CLOCK_HIGH;
220
221         if (mode->clock < 10000)
222                 return MODE_CLOCK_LOW;
223
224         return MODE_OK;
225 }
226
227 static uint32_t
228 pack_aux(uint8_t *src, int src_bytes)
229 {
230         int     i;
231         uint32_t v = 0;
232
233         if (src_bytes > 4)
234                 src_bytes = 4;
235         for (i = 0; i < src_bytes; i++)
236                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
237         return v;
238 }
239
240 static void
241 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
242 {
243         int i;
244         if (dst_bytes > 4)
245                 dst_bytes = 4;
246         for (i = 0; i < dst_bytes; i++)
247                 dst[i] = src >> ((3-i) * 8);
248 }
249
250 /* hrawclock is 1/4 the FSB frequency */
251 static int
252 intel_hrawclk(struct drm_device *dev)
253 {
254         struct drm_i915_private *dev_priv = dev->dev_private;
255         uint32_t clkcfg;
256
257         clkcfg = I915_READ(CLKCFG);
258         switch (clkcfg & CLKCFG_FSB_MASK) {
259         case CLKCFG_FSB_400:
260                 return 100;
261         case CLKCFG_FSB_533:
262                 return 133;
263         case CLKCFG_FSB_667:
264                 return 166;
265         case CLKCFG_FSB_800:
266                 return 200;
267         case CLKCFG_FSB_1067:
268                 return 266;
269         case CLKCFG_FSB_1333:
270                 return 333;
271         /* these two are just a guess; one of them might be right */
272         case CLKCFG_FSB_1600:
273         case CLKCFG_FSB_1600_ALT:
274                 return 400;
275         default:
276                 return 133;
277         }
278 }
279
280 static int
281 intel_dp_aux_ch(struct intel_dp *intel_dp,
282                 uint8_t *send, int send_bytes,
283                 uint8_t *recv, int recv_size)
284 {
285         uint32_t output_reg = intel_dp->output_reg;
286         struct drm_device *dev = intel_dp->base.base.dev;
287         struct drm_i915_private *dev_priv = dev->dev_private;
288         uint32_t ch_ctl = output_reg + 0x10;
289         uint32_t ch_data = ch_ctl + 4;
290         int i;
291         int recv_bytes;
292         uint32_t status;
293         uint32_t aux_clock_divider;
294         int try, precharge;
295
296         /* The clock divider is based off the hrawclk,
297          * and would like to run at 2MHz. So, take the
298          * hrawclk value and divide by 2 and use that
299          *
300          * Note that PCH attached eDP panels should use a 125MHz input
301          * clock divider.
302          */
303         if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
304                 if (IS_GEN6(dev))
305                         aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
306                 else
307                         aux_clock_divider = 225; /* eDP input clock at 450Mhz */
308         } else if (HAS_PCH_SPLIT(dev))
309                 aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
310         else
311                 aux_clock_divider = intel_hrawclk(dev) / 2;
312
313         if (IS_GEN6(dev))
314                 precharge = 3;
315         else
316                 precharge = 5;
317
318         if (I915_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
319                 DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
320                           I915_READ(ch_ctl));
321                 return -EBUSY;
322         }
323
324         /* Must try at least 3 times according to DP spec */
325         for (try = 0; try < 5; try++) {
326                 /* Load the send data into the aux channel data registers */
327                 for (i = 0; i < send_bytes; i += 4)
328                         I915_WRITE(ch_data + i,
329                                    pack_aux(send + i, send_bytes - i));
330         
331                 /* Send the command and wait for it to complete */
332                 I915_WRITE(ch_ctl,
333                            DP_AUX_CH_CTL_SEND_BUSY |
334                            DP_AUX_CH_CTL_TIME_OUT_400us |
335                            (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
336                            (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
337                            (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
338                            DP_AUX_CH_CTL_DONE |
339                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
340                            DP_AUX_CH_CTL_RECEIVE_ERROR);
341                 for (;;) {
342                         status = I915_READ(ch_ctl);
343                         if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
344                                 break;
345                         udelay(100);
346                 }
347         
348                 /* Clear done status and any errors */
349                 I915_WRITE(ch_ctl,
350                            status |
351                            DP_AUX_CH_CTL_DONE |
352                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
353                            DP_AUX_CH_CTL_RECEIVE_ERROR);
354                 if (status & DP_AUX_CH_CTL_DONE)
355                         break;
356         }
357
358         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
359                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
360                 return -EBUSY;
361         }
362
363         /* Check for timeout or receive error.
364          * Timeouts occur when the sink is not connected
365          */
366         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
367                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
368                 return -EIO;
369         }
370
371         /* Timeouts occur when the device isn't connected, so they're
372          * "normal" -- don't fill the kernel log with these */
373         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
374                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
375                 return -ETIMEDOUT;
376         }
377
378         /* Unload any bytes sent back from the other side */
379         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
380                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
381         if (recv_bytes > recv_size)
382                 recv_bytes = recv_size;
383         
384         for (i = 0; i < recv_bytes; i += 4)
385                 unpack_aux(I915_READ(ch_data + i),
386                            recv + i, recv_bytes - i);
387
388         return recv_bytes;
389 }
390
391 /* Write data to the aux channel in native mode */
392 static int
393 intel_dp_aux_native_write(struct intel_dp *intel_dp,
394                           uint16_t address, uint8_t *send, int send_bytes)
395 {
396         int ret;
397         uint8_t msg[20];
398         int msg_bytes;
399         uint8_t ack;
400
401         if (send_bytes > 16)
402                 return -1;
403         msg[0] = AUX_NATIVE_WRITE << 4;
404         msg[1] = address >> 8;
405         msg[2] = address & 0xff;
406         msg[3] = send_bytes - 1;
407         memcpy(&msg[4], send, send_bytes);
408         msg_bytes = send_bytes + 4;
409         for (;;) {
410                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
411                 if (ret < 0)
412                         return ret;
413                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
414                         break;
415                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
416                         udelay(100);
417                 else
418                         return -EIO;
419         }
420         return send_bytes;
421 }
422
423 /* Write a single byte to the aux channel in native mode */
424 static int
425 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
426                             uint16_t address, uint8_t byte)
427 {
428         return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
429 }
430
431 /* read bytes from a native aux channel */
432 static int
433 intel_dp_aux_native_read(struct intel_dp *intel_dp,
434                          uint16_t address, uint8_t *recv, int recv_bytes)
435 {
436         uint8_t msg[4];
437         int msg_bytes;
438         uint8_t reply[20];
439         int reply_bytes;
440         uint8_t ack;
441         int ret;
442
443         msg[0] = AUX_NATIVE_READ << 4;
444         msg[1] = address >> 8;
445         msg[2] = address & 0xff;
446         msg[3] = recv_bytes - 1;
447
448         msg_bytes = 4;
449         reply_bytes = recv_bytes + 1;
450
451         for (;;) {
452                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
453                                       reply, reply_bytes);
454                 if (ret == 0)
455                         return -EPROTO;
456                 if (ret < 0)
457                         return ret;
458                 ack = reply[0];
459                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
460                         memcpy(recv, reply + 1, ret - 1);
461                         return ret - 1;
462                 }
463                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
464                         udelay(100);
465                 else
466                         return -EIO;
467         }
468 }
469
470 static int
471 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
472                     uint8_t write_byte, uint8_t *read_byte)
473 {
474         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
475         struct intel_dp *intel_dp = container_of(adapter,
476                                                 struct intel_dp,
477                                                 adapter);
478         uint16_t address = algo_data->address;
479         uint8_t msg[5];
480         uint8_t reply[2];
481         unsigned retry;
482         int msg_bytes;
483         int reply_bytes;
484         int ret;
485
486         /* Set up the command byte */
487         if (mode & MODE_I2C_READ)
488                 msg[0] = AUX_I2C_READ << 4;
489         else
490                 msg[0] = AUX_I2C_WRITE << 4;
491
492         if (!(mode & MODE_I2C_STOP))
493                 msg[0] |= AUX_I2C_MOT << 4;
494
495         msg[1] = address >> 8;
496         msg[2] = address;
497
498         switch (mode) {
499         case MODE_I2C_WRITE:
500                 msg[3] = 0;
501                 msg[4] = write_byte;
502                 msg_bytes = 5;
503                 reply_bytes = 1;
504                 break;
505         case MODE_I2C_READ:
506                 msg[3] = 0;
507                 msg_bytes = 4;
508                 reply_bytes = 2;
509                 break;
510         default:
511                 msg_bytes = 3;
512                 reply_bytes = 1;
513                 break;
514         }
515
516         for (retry = 0; retry < 5; retry++) {
517                 ret = intel_dp_aux_ch(intel_dp,
518                                       msg, msg_bytes,
519                                       reply, reply_bytes);
520                 if (ret < 0) {
521                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
522                         return ret;
523                 }
524
525                 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
526                 case AUX_NATIVE_REPLY_ACK:
527                         /* I2C-over-AUX Reply field is only valid
528                          * when paired with AUX ACK.
529                          */
530                         break;
531                 case AUX_NATIVE_REPLY_NACK:
532                         DRM_DEBUG_KMS("aux_ch native nack\n");
533                         return -EREMOTEIO;
534                 case AUX_NATIVE_REPLY_DEFER:
535                         udelay(100);
536                         continue;
537                 default:
538                         DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
539                                   reply[0]);
540                         return -EREMOTEIO;
541                 }
542
543                 switch (reply[0] & AUX_I2C_REPLY_MASK) {
544                 case AUX_I2C_REPLY_ACK:
545                         if (mode == MODE_I2C_READ) {
546                                 *read_byte = reply[1];
547                         }
548                         return reply_bytes - 1;
549                 case AUX_I2C_REPLY_NACK:
550                         DRM_DEBUG_KMS("aux_i2c nack\n");
551                         return -EREMOTEIO;
552                 case AUX_I2C_REPLY_DEFER:
553                         DRM_DEBUG_KMS("aux_i2c defer\n");
554                         udelay(100);
555                         break;
556                 default:
557                         DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
558                         return -EREMOTEIO;
559                 }
560         }
561
562         DRM_ERROR("too many retries, giving up\n");
563         return -EREMOTEIO;
564 }
565
566 static int
567 intel_dp_i2c_init(struct intel_dp *intel_dp,
568                   struct intel_connector *intel_connector, const char *name)
569 {
570         DRM_DEBUG_KMS("i2c_init %s\n", name);
571         intel_dp->algo.running = false;
572         intel_dp->algo.address = 0;
573         intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
574
575         memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
576         intel_dp->adapter.owner = THIS_MODULE;
577         intel_dp->adapter.class = I2C_CLASS_DDC;
578         strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
579         intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
580         intel_dp->adapter.algo_data = &intel_dp->algo;
581         intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
582
583         return i2c_dp_aux_add_bus(&intel_dp->adapter);
584 }
585
586 static bool
587 intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
588                     struct drm_display_mode *adjusted_mode)
589 {
590         struct drm_device *dev = encoder->dev;
591         struct drm_i915_private *dev_priv = dev->dev_private;
592         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
593         int lane_count, clock;
594         int max_lane_count = intel_dp_max_lane_count(intel_dp);
595         int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
596         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
597
598         if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
599                 intel_fixed_panel_mode(dev_priv->panel_fixed_mode, adjusted_mode);
600                 intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
601                                         mode, adjusted_mode);
602                 /*
603                  * the mode->clock is used to calculate the Data&Link M/N
604                  * of the pipe. For the eDP the fixed clock should be used.
605                  */
606                 mode->clock = dev_priv->panel_fixed_mode->clock;
607         }
608
609         for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
610                 for (clock = 0; clock <= max_clock; clock++) {
611                         int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
612
613                         if (intel_dp_link_required(encoder->dev, intel_dp, mode->clock)
614                                         <= link_avail) {
615                                 intel_dp->link_bw = bws[clock];
616                                 intel_dp->lane_count = lane_count;
617                                 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
618                                 DRM_DEBUG_KMS("Display port link bw %02x lane "
619                                                 "count %d clock %d\n",
620                                        intel_dp->link_bw, intel_dp->lane_count,
621                                        adjusted_mode->clock);
622                                 return true;
623                         }
624                 }
625         }
626
627         if (is_edp(intel_dp)) {
628                 /* okay we failed just pick the highest */
629                 intel_dp->lane_count = max_lane_count;
630                 intel_dp->link_bw = bws[max_clock];
631                 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
632                 DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
633                               "count %d clock %d\n",
634                               intel_dp->link_bw, intel_dp->lane_count,
635                               adjusted_mode->clock);
636
637                 return true;
638         }
639
640         return false;
641 }
642
643 struct intel_dp_m_n {
644         uint32_t        tu;
645         uint32_t        gmch_m;
646         uint32_t        gmch_n;
647         uint32_t        link_m;
648         uint32_t        link_n;
649 };
650
651 static void
652 intel_reduce_ratio(uint32_t *num, uint32_t *den)
653 {
654         while (*num > 0xffffff || *den > 0xffffff) {
655                 *num >>= 1;
656                 *den >>= 1;
657         }
658 }
659
660 static void
661 intel_dp_compute_m_n(int bpp,
662                      int nlanes,
663                      int pixel_clock,
664                      int link_clock,
665                      struct intel_dp_m_n *m_n)
666 {
667         m_n->tu = 64;
668         m_n->gmch_m = (pixel_clock * bpp) >> 3;
669         m_n->gmch_n = link_clock * nlanes;
670         intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
671         m_n->link_m = pixel_clock;
672         m_n->link_n = link_clock;
673         intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
674 }
675
676 void
677 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
678                  struct drm_display_mode *adjusted_mode)
679 {
680         struct drm_device *dev = crtc->dev;
681         struct drm_mode_config *mode_config = &dev->mode_config;
682         struct drm_encoder *encoder;
683         struct drm_i915_private *dev_priv = dev->dev_private;
684         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
685         int lane_count = 4, bpp = 24;
686         struct intel_dp_m_n m_n;
687         int pipe = intel_crtc->pipe;
688
689         /*
690          * Find the lane count in the intel_encoder private
691          */
692         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
693                 struct intel_dp *intel_dp;
694
695                 if (encoder->crtc != crtc)
696                         continue;
697
698                 intel_dp = enc_to_intel_dp(encoder);
699                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT) {
700                         lane_count = intel_dp->lane_count;
701                         break;
702                 } else if (is_edp(intel_dp)) {
703                         lane_count = dev_priv->edp.lanes;
704                         bpp = dev_priv->edp.bpp;
705                         break;
706                 }
707         }
708
709         /*
710          * Compute the GMCH and Link ratios. The '3' here is
711          * the number of bytes_per_pixel post-LUT, which we always
712          * set up for 8-bits of R/G/B, or 3 bytes total.
713          */
714         intel_dp_compute_m_n(bpp, lane_count,
715                              mode->clock, adjusted_mode->clock, &m_n);
716
717         if (HAS_PCH_SPLIT(dev)) {
718                 I915_WRITE(TRANSDATA_M1(pipe),
719                            ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
720                            m_n.gmch_m);
721                 I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
722                 I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
723                 I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
724         } else {
725                 I915_WRITE(PIPE_GMCH_DATA_M(pipe),
726                            ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
727                            m_n.gmch_m);
728                 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
729                 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
730                 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
731         }
732 }
733
734 static void
735 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
736                   struct drm_display_mode *adjusted_mode)
737 {
738         struct drm_device *dev = encoder->dev;
739         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
740         struct drm_crtc *crtc = intel_dp->base.base.crtc;
741         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
742
743         intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
744         intel_dp->DP |= intel_dp->color_range;
745
746         if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
747                 intel_dp->DP |= DP_SYNC_HS_HIGH;
748         if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
749                 intel_dp->DP |= DP_SYNC_VS_HIGH;
750
751         if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
752                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
753         else
754                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
755
756         switch (intel_dp->lane_count) {
757         case 1:
758                 intel_dp->DP |= DP_PORT_WIDTH_1;
759                 break;
760         case 2:
761                 intel_dp->DP |= DP_PORT_WIDTH_2;
762                 break;
763         case 4:
764                 intel_dp->DP |= DP_PORT_WIDTH_4;
765                 break;
766         }
767         if (intel_dp->has_audio)
768                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
769
770         memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
771         intel_dp->link_configuration[0] = intel_dp->link_bw;
772         intel_dp->link_configuration[1] = intel_dp->lane_count;
773
774         /*
775          * Check for DPCD version > 1.1 and enhanced framing support
776          */
777         if (intel_dp->dpcd[0] >= 0x11 && (intel_dp->dpcd[2] & DP_ENHANCED_FRAME_CAP)) {
778                 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
779                 intel_dp->DP |= DP_ENHANCED_FRAMING;
780         }
781
782         /* CPT DP's pipe select is decided in TRANS_DP_CTL */
783         if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
784                 intel_dp->DP |= DP_PIPEB_SELECT;
785
786         if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
787                 /* don't miss out required setting for eDP */
788                 intel_dp->DP |= DP_PLL_ENABLE;
789                 if (adjusted_mode->clock < 200000)
790                         intel_dp->DP |= DP_PLL_FREQ_160MHZ;
791                 else
792                         intel_dp->DP |= DP_PLL_FREQ_270MHZ;
793         }
794 }
795
796 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
797 {
798         struct drm_device *dev = intel_dp->base.base.dev;
799         struct drm_i915_private *dev_priv = dev->dev_private;
800         u32 pp;
801
802         /*
803          * If the panel wasn't on, make sure there's not a currently
804          * active PP sequence before enabling AUX VDD.
805          */
806         if (!(I915_READ(PCH_PP_STATUS) & PP_ON))
807                 msleep(dev_priv->panel_t3);
808
809         pp = I915_READ(PCH_PP_CONTROL);
810         pp |= EDP_FORCE_VDD;
811         I915_WRITE(PCH_PP_CONTROL, pp);
812         POSTING_READ(PCH_PP_CONTROL);
813 }
814
815 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp)
816 {
817         struct drm_device *dev = intel_dp->base.base.dev;
818         struct drm_i915_private *dev_priv = dev->dev_private;
819         u32 pp;
820
821         pp = I915_READ(PCH_PP_CONTROL);
822         pp &= ~EDP_FORCE_VDD;
823         I915_WRITE(PCH_PP_CONTROL, pp);
824         POSTING_READ(PCH_PP_CONTROL);
825
826         /* Make sure sequencer is idle before allowing subsequent activity */
827         msleep(dev_priv->panel_t12);
828 }
829
830 /* Returns true if the panel was already on when called */
831 static bool ironlake_edp_panel_on (struct intel_dp *intel_dp)
832 {
833         struct drm_device *dev = intel_dp->base.base.dev;
834         struct drm_i915_private *dev_priv = dev->dev_private;
835         u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_STATE_ON_IDLE;
836
837         if (I915_READ(PCH_PP_STATUS) & PP_ON)
838                 return true;
839
840         pp = I915_READ(PCH_PP_CONTROL);
841
842         /* ILK workaround: disable reset around power sequence */
843         pp &= ~PANEL_POWER_RESET;
844         I915_WRITE(PCH_PP_CONTROL, pp);
845         POSTING_READ(PCH_PP_CONTROL);
846
847         pp |= PANEL_UNLOCK_REGS | POWER_TARGET_ON;
848         I915_WRITE(PCH_PP_CONTROL, pp);
849         POSTING_READ(PCH_PP_CONTROL);
850
851         if (wait_for((I915_READ(PCH_PP_STATUS) & idle_on_mask) == idle_on_mask,
852                      5000))
853                 DRM_ERROR("panel on wait timed out: 0x%08x\n",
854                           I915_READ(PCH_PP_STATUS));
855
856         pp |= PANEL_POWER_RESET; /* restore panel reset bit */
857         I915_WRITE(PCH_PP_CONTROL, pp);
858         POSTING_READ(PCH_PP_CONTROL);
859
860         return false;
861 }
862
863 static void ironlake_edp_panel_off (struct drm_device *dev)
864 {
865         struct drm_i915_private *dev_priv = dev->dev_private;
866         u32 pp, idle_off_mask = PP_ON | PP_SEQUENCE_MASK |
867                 PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK;
868
869         pp = I915_READ(PCH_PP_CONTROL);
870
871         /* ILK workaround: disable reset around power sequence */
872         pp &= ~PANEL_POWER_RESET;
873         I915_WRITE(PCH_PP_CONTROL, pp);
874         POSTING_READ(PCH_PP_CONTROL);
875
876         pp &= ~POWER_TARGET_ON;
877         I915_WRITE(PCH_PP_CONTROL, pp);
878         POSTING_READ(PCH_PP_CONTROL);
879
880         if (wait_for((I915_READ(PCH_PP_STATUS) & idle_off_mask) == 0, 5000))
881                 DRM_ERROR("panel off wait timed out: 0x%08x\n",
882                           I915_READ(PCH_PP_STATUS));
883
884         pp |= PANEL_POWER_RESET; /* restore panel reset bit */
885         I915_WRITE(PCH_PP_CONTROL, pp);
886         POSTING_READ(PCH_PP_CONTROL);
887 }
888
889 static void ironlake_edp_backlight_on (struct drm_device *dev)
890 {
891         struct drm_i915_private *dev_priv = dev->dev_private;
892         u32 pp;
893
894         DRM_DEBUG_KMS("\n");
895         /*
896          * If we enable the backlight right away following a panel power
897          * on, we may see slight flicker as the panel syncs with the eDP
898          * link.  So delay a bit to make sure the image is solid before
899          * allowing it to appear.
900          */
901         msleep(300);
902         pp = I915_READ(PCH_PP_CONTROL);
903         pp |= EDP_BLC_ENABLE;
904         I915_WRITE(PCH_PP_CONTROL, pp);
905 }
906
907 static void ironlake_edp_backlight_off (struct drm_device *dev)
908 {
909         struct drm_i915_private *dev_priv = dev->dev_private;
910         u32 pp;
911
912         DRM_DEBUG_KMS("\n");
913         pp = I915_READ(PCH_PP_CONTROL);
914         pp &= ~EDP_BLC_ENABLE;
915         I915_WRITE(PCH_PP_CONTROL, pp);
916 }
917
918 static void ironlake_edp_pll_on(struct drm_encoder *encoder)
919 {
920         struct drm_device *dev = encoder->dev;
921         struct drm_i915_private *dev_priv = dev->dev_private;
922         u32 dpa_ctl;
923
924         DRM_DEBUG_KMS("\n");
925         dpa_ctl = I915_READ(DP_A);
926         dpa_ctl |= DP_PLL_ENABLE;
927         I915_WRITE(DP_A, dpa_ctl);
928         POSTING_READ(DP_A);
929         udelay(200);
930 }
931
932 static void ironlake_edp_pll_off(struct drm_encoder *encoder)
933 {
934         struct drm_device *dev = encoder->dev;
935         struct drm_i915_private *dev_priv = dev->dev_private;
936         u32 dpa_ctl;
937
938         dpa_ctl = I915_READ(DP_A);
939         dpa_ctl &= ~DP_PLL_ENABLE;
940         I915_WRITE(DP_A, dpa_ctl);
941         POSTING_READ(DP_A);
942         udelay(200);
943 }
944
945 static void intel_dp_prepare(struct drm_encoder *encoder)
946 {
947         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
948         struct drm_device *dev = encoder->dev;
949
950         if (is_edp(intel_dp)) {
951                 ironlake_edp_backlight_off(dev);
952                 ironlake_edp_panel_off(dev);
953                 if (!is_pch_edp(intel_dp))
954                         ironlake_edp_pll_on(encoder);
955                 else
956                         ironlake_edp_pll_off(encoder);
957         }
958         intel_dp_link_down(intel_dp);
959 }
960
961 static void intel_dp_commit(struct drm_encoder *encoder)
962 {
963         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
964         struct drm_device *dev = encoder->dev;
965
966         if (is_edp(intel_dp))
967                 ironlake_edp_panel_vdd_on(intel_dp);
968
969         intel_dp_start_link_train(intel_dp);
970
971         if (is_edp(intel_dp)) {
972                 ironlake_edp_panel_on(intel_dp);
973                 ironlake_edp_panel_vdd_off(intel_dp);
974         }
975
976         intel_dp_complete_link_train(intel_dp);
977
978         if (is_edp(intel_dp))
979                 ironlake_edp_backlight_on(dev);
980 }
981
982 static void
983 intel_dp_dpms(struct drm_encoder *encoder, int mode)
984 {
985         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
986         struct drm_device *dev = encoder->dev;
987         struct drm_i915_private *dev_priv = dev->dev_private;
988         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
989
990         if (mode != DRM_MODE_DPMS_ON) {
991                 if (is_edp(intel_dp))
992                         ironlake_edp_backlight_off(dev);
993                 intel_dp_link_down(intel_dp);
994                 if (is_edp(intel_dp))
995                         ironlake_edp_panel_off(dev);
996                 if (is_edp(intel_dp) && !is_pch_edp(intel_dp))
997                         ironlake_edp_pll_off(encoder);
998         } else {
999                 if (is_edp(intel_dp))
1000                         ironlake_edp_panel_vdd_on(intel_dp);
1001                 if (!(dp_reg & DP_PORT_EN)) {
1002                         intel_dp_start_link_train(intel_dp);
1003                         if (is_edp(intel_dp)) {
1004                                 ironlake_edp_panel_on(intel_dp);
1005                                 ironlake_edp_panel_vdd_off(intel_dp);
1006                         }
1007                         intel_dp_complete_link_train(intel_dp);
1008                 }
1009                 if (is_edp(intel_dp))
1010                         ironlake_edp_backlight_on(dev);
1011         }
1012         intel_dp->dpms_mode = mode;
1013 }
1014
1015 /*
1016  * Fetch AUX CH registers 0x202 - 0x207 which contain
1017  * link status information
1018  */
1019 static bool
1020 intel_dp_get_link_status(struct intel_dp *intel_dp)
1021 {
1022         int ret;
1023
1024         ret = intel_dp_aux_native_read(intel_dp,
1025                                        DP_LANE0_1_STATUS,
1026                                        intel_dp->link_status, DP_LINK_STATUS_SIZE);
1027         if (ret != DP_LINK_STATUS_SIZE)
1028                 return false;
1029         return true;
1030 }
1031
1032 static uint8_t
1033 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1034                      int r)
1035 {
1036         return link_status[r - DP_LANE0_1_STATUS];
1037 }
1038
1039 static uint8_t
1040 intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
1041                                  int lane)
1042 {
1043         int         i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1044         int         s = ((lane & 1) ?
1045                          DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1046                          DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1047         uint8_t l = intel_dp_link_status(link_status, i);
1048
1049         return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1050 }
1051
1052 static uint8_t
1053 intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
1054                                       int lane)
1055 {
1056         int         i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1057         int         s = ((lane & 1) ?
1058                          DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1059                          DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1060         uint8_t l = intel_dp_link_status(link_status, i);
1061
1062         return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1063 }
1064
1065
1066 #if 0
1067 static char     *voltage_names[] = {
1068         "0.4V", "0.6V", "0.8V", "1.2V"
1069 };
1070 static char     *pre_emph_names[] = {
1071         "0dB", "3.5dB", "6dB", "9.5dB"
1072 };
1073 static char     *link_train_names[] = {
1074         "pattern 1", "pattern 2", "idle", "off"
1075 };
1076 #endif
1077
1078 /*
1079  * These are source-specific values; current Intel hardware supports
1080  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1081  */
1082 #define I830_DP_VOLTAGE_MAX         DP_TRAIN_VOLTAGE_SWING_800
1083
1084 static uint8_t
1085 intel_dp_pre_emphasis_max(uint8_t voltage_swing)
1086 {
1087         switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1088         case DP_TRAIN_VOLTAGE_SWING_400:
1089                 return DP_TRAIN_PRE_EMPHASIS_6;
1090         case DP_TRAIN_VOLTAGE_SWING_600:
1091                 return DP_TRAIN_PRE_EMPHASIS_6;
1092         case DP_TRAIN_VOLTAGE_SWING_800:
1093                 return DP_TRAIN_PRE_EMPHASIS_3_5;
1094         case DP_TRAIN_VOLTAGE_SWING_1200:
1095         default:
1096                 return DP_TRAIN_PRE_EMPHASIS_0;
1097         }
1098 }
1099
1100 static void
1101 intel_get_adjust_train(struct intel_dp *intel_dp)
1102 {
1103         uint8_t v = 0;
1104         uint8_t p = 0;
1105         int lane;
1106
1107         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1108                 uint8_t this_v = intel_get_adjust_request_voltage(intel_dp->link_status, lane);
1109                 uint8_t this_p = intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
1110
1111                 if (this_v > v)
1112                         v = this_v;
1113                 if (this_p > p)
1114                         p = this_p;
1115         }
1116
1117         if (v >= I830_DP_VOLTAGE_MAX)
1118                 v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
1119
1120         if (p >= intel_dp_pre_emphasis_max(v))
1121                 p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1122
1123         for (lane = 0; lane < 4; lane++)
1124                 intel_dp->train_set[lane] = v | p;
1125 }
1126
1127 static uint32_t
1128 intel_dp_signal_levels(uint8_t train_set, int lane_count)
1129 {
1130         uint32_t        signal_levels = 0;
1131
1132         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1133         case DP_TRAIN_VOLTAGE_SWING_400:
1134         default:
1135                 signal_levels |= DP_VOLTAGE_0_4;
1136                 break;
1137         case DP_TRAIN_VOLTAGE_SWING_600:
1138                 signal_levels |= DP_VOLTAGE_0_6;
1139                 break;
1140         case DP_TRAIN_VOLTAGE_SWING_800:
1141                 signal_levels |= DP_VOLTAGE_0_8;
1142                 break;
1143         case DP_TRAIN_VOLTAGE_SWING_1200:
1144                 signal_levels |= DP_VOLTAGE_1_2;
1145                 break;
1146         }
1147         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1148         case DP_TRAIN_PRE_EMPHASIS_0:
1149         default:
1150                 signal_levels |= DP_PRE_EMPHASIS_0;
1151                 break;
1152         case DP_TRAIN_PRE_EMPHASIS_3_5:
1153                 signal_levels |= DP_PRE_EMPHASIS_3_5;
1154                 break;
1155         case DP_TRAIN_PRE_EMPHASIS_6:
1156                 signal_levels |= DP_PRE_EMPHASIS_6;
1157                 break;
1158         case DP_TRAIN_PRE_EMPHASIS_9_5:
1159                 signal_levels |= DP_PRE_EMPHASIS_9_5;
1160                 break;
1161         }
1162         return signal_levels;
1163 }
1164
1165 /* Gen6's DP voltage swing and pre-emphasis control */
1166 static uint32_t
1167 intel_gen6_edp_signal_levels(uint8_t train_set)
1168 {
1169         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1170                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1171         switch (signal_levels) {
1172         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1173         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1174                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1175         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1176                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1177         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1178         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1179                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1180         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1181         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1182                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1183         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1184         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1185                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1186         default:
1187                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1188                               "0x%x\n", signal_levels);
1189                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1190         }
1191 }
1192
1193 static uint8_t
1194 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1195                       int lane)
1196 {
1197         int i = DP_LANE0_1_STATUS + (lane >> 1);
1198         int s = (lane & 1) * 4;
1199         uint8_t l = intel_dp_link_status(link_status, i);
1200
1201         return (l >> s) & 0xf;
1202 }
1203
1204 /* Check for clock recovery is done on all channels */
1205 static bool
1206 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1207 {
1208         int lane;
1209         uint8_t lane_status;
1210
1211         for (lane = 0; lane < lane_count; lane++) {
1212                 lane_status = intel_get_lane_status(link_status, lane);
1213                 if ((lane_status & DP_LANE_CR_DONE) == 0)
1214                         return false;
1215         }
1216         return true;
1217 }
1218
1219 /* Check to see if channel eq is done on all channels */
1220 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1221                          DP_LANE_CHANNEL_EQ_DONE|\
1222                          DP_LANE_SYMBOL_LOCKED)
1223 static bool
1224 intel_channel_eq_ok(struct intel_dp *intel_dp)
1225 {
1226         uint8_t lane_align;
1227         uint8_t lane_status;
1228         int lane;
1229
1230         lane_align = intel_dp_link_status(intel_dp->link_status,
1231                                           DP_LANE_ALIGN_STATUS_UPDATED);
1232         if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1233                 return false;
1234         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1235                 lane_status = intel_get_lane_status(intel_dp->link_status, lane);
1236                 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1237                         return false;
1238         }
1239         return true;
1240 }
1241
1242 static bool
1243 intel_dp_set_link_train(struct intel_dp *intel_dp,
1244                         uint32_t dp_reg_value,
1245                         uint8_t dp_train_pat)
1246 {
1247         struct drm_device *dev = intel_dp->base.base.dev;
1248         struct drm_i915_private *dev_priv = dev->dev_private;
1249         int ret;
1250
1251         I915_WRITE(intel_dp->output_reg, dp_reg_value);
1252         POSTING_READ(intel_dp->output_reg);
1253
1254         intel_dp_aux_native_write_1(intel_dp,
1255                                     DP_TRAINING_PATTERN_SET,
1256                                     dp_train_pat);
1257
1258         ret = intel_dp_aux_native_write(intel_dp,
1259                                         DP_TRAINING_LANE0_SET,
1260                                         intel_dp->train_set, 4);
1261         if (ret != 4)
1262                 return false;
1263
1264         return true;
1265 }
1266
1267 /* Enable corresponding port and start training pattern 1 */
1268 static void
1269 intel_dp_start_link_train(struct intel_dp *intel_dp)
1270 {
1271         struct drm_device *dev = intel_dp->base.base.dev;
1272         struct drm_i915_private *dev_priv = dev->dev_private;
1273         struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1274         int i;
1275         uint8_t voltage;
1276         bool clock_recovery = false;
1277         int tries;
1278         u32 reg;
1279         uint32_t DP = intel_dp->DP;
1280
1281         /* Enable output, wait for it to become active */
1282         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1283         POSTING_READ(intel_dp->output_reg);
1284         intel_wait_for_vblank(dev, intel_crtc->pipe);
1285
1286         /* Write the link configuration data */
1287         intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1288                                   intel_dp->link_configuration,
1289                                   DP_LINK_CONFIGURATION_SIZE);
1290
1291         DP |= DP_PORT_EN;
1292         if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1293                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1294         else
1295                 DP &= ~DP_LINK_TRAIN_MASK;
1296         memset(intel_dp->train_set, 0, 4);
1297         voltage = 0xff;
1298         tries = 0;
1299         clock_recovery = false;
1300         for (;;) {
1301                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1302                 uint32_t    signal_levels;
1303                 if (IS_GEN6(dev) && is_edp(intel_dp)) {
1304                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1305                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1306                 } else {
1307                         signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
1308                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1309                 }
1310
1311                 if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1312                         reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1313                 else
1314                         reg = DP | DP_LINK_TRAIN_PAT_1;
1315
1316                 if (!intel_dp_set_link_train(intel_dp, reg,
1317                                              DP_TRAINING_PATTERN_1))
1318                         break;
1319                 /* Set training pattern 1 */
1320
1321                 udelay(100);
1322                 if (!intel_dp_get_link_status(intel_dp))
1323                         break;
1324
1325                 if (intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1326                         clock_recovery = true;
1327                         break;
1328                 }
1329
1330                 /* Check to see if we've tried the max voltage */
1331                 for (i = 0; i < intel_dp->lane_count; i++)
1332                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1333                                 break;
1334                 if (i == intel_dp->lane_count)
1335                         break;
1336
1337                 /* Check to see if we've tried the same voltage 5 times */
1338                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1339                         ++tries;
1340                         if (tries == 5)
1341                                 break;
1342                 } else
1343                         tries = 0;
1344                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1345
1346                 /* Compute new intel_dp->train_set as requested by target */
1347                 intel_get_adjust_train(intel_dp);
1348         }
1349
1350         intel_dp->DP = DP;
1351 }
1352
1353 static void
1354 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1355 {
1356         struct drm_device *dev = intel_dp->base.base.dev;
1357         struct drm_i915_private *dev_priv = dev->dev_private;
1358         bool channel_eq = false;
1359         int tries, cr_tries;
1360         u32 reg;
1361         uint32_t DP = intel_dp->DP;
1362
1363         /* channel equalization */
1364         tries = 0;
1365         cr_tries = 0;
1366         channel_eq = false;
1367         for (;;) {
1368                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1369                 uint32_t    signal_levels;
1370
1371                 if (cr_tries > 5) {
1372                         DRM_ERROR("failed to train DP, aborting\n");
1373                         intel_dp_link_down(intel_dp);
1374                         break;
1375                 }
1376
1377                 if (IS_GEN6(dev) && is_edp(intel_dp)) {
1378                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1379                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1380                 } else {
1381                         signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
1382                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1383                 }
1384
1385                 if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1386                         reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1387                 else
1388                         reg = DP | DP_LINK_TRAIN_PAT_2;
1389
1390                 /* channel eq pattern */
1391                 if (!intel_dp_set_link_train(intel_dp, reg,
1392                                              DP_TRAINING_PATTERN_2))
1393                         break;
1394
1395                 udelay(400);
1396                 if (!intel_dp_get_link_status(intel_dp))
1397                         break;
1398
1399                 /* Make sure clock is still ok */
1400                 if (!intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1401                         intel_dp_start_link_train(intel_dp);
1402                         cr_tries++;
1403                         continue;
1404                 }
1405
1406                 if (intel_channel_eq_ok(intel_dp)) {
1407                         channel_eq = true;
1408                         break;
1409                 }
1410
1411                 /* Try 5 times, then try clock recovery if that fails */
1412                 if (tries > 5) {
1413                         intel_dp_link_down(intel_dp);
1414                         intel_dp_start_link_train(intel_dp);
1415                         tries = 0;
1416                         cr_tries++;
1417                         continue;
1418                 }
1419
1420                 /* Compute new intel_dp->train_set as requested by target */
1421                 intel_get_adjust_train(intel_dp);
1422                 ++tries;
1423         }
1424
1425         if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1426                 reg = DP | DP_LINK_TRAIN_OFF_CPT;
1427         else
1428                 reg = DP | DP_LINK_TRAIN_OFF;
1429
1430         I915_WRITE(intel_dp->output_reg, reg);
1431         POSTING_READ(intel_dp->output_reg);
1432         intel_dp_aux_native_write_1(intel_dp,
1433                                     DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1434 }
1435
1436 static void
1437 intel_dp_link_down(struct intel_dp *intel_dp)
1438 {
1439         struct drm_device *dev = intel_dp->base.base.dev;
1440         struct drm_i915_private *dev_priv = dev->dev_private;
1441         uint32_t DP = intel_dp->DP;
1442
1443         if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1444                 return;
1445
1446         DRM_DEBUG_KMS("\n");
1447
1448         if (is_edp(intel_dp)) {
1449                 DP &= ~DP_PLL_ENABLE;
1450                 I915_WRITE(intel_dp->output_reg, DP);
1451                 POSTING_READ(intel_dp->output_reg);
1452                 udelay(100);
1453         }
1454
1455         if (HAS_PCH_CPT(dev) && !is_edp(intel_dp)) {
1456                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1457                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1458         } else {
1459                 DP &= ~DP_LINK_TRAIN_MASK;
1460                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1461         }
1462         POSTING_READ(intel_dp->output_reg);
1463
1464         msleep(17);
1465
1466         if (is_edp(intel_dp))
1467                 DP |= DP_LINK_TRAIN_OFF;
1468
1469         if (!HAS_PCH_CPT(dev) &&
1470             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1471                 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1472
1473                 /* Hardware workaround: leaving our transcoder select
1474                  * set to transcoder B while it's off will prevent the
1475                  * corresponding HDMI output on transcoder A.
1476                  *
1477                  * Combine this with another hardware workaround:
1478                  * transcoder select bit can only be cleared while the
1479                  * port is enabled.
1480                  */
1481                 DP &= ~DP_PIPEB_SELECT;
1482                 I915_WRITE(intel_dp->output_reg, DP);
1483
1484                 /* Changes to enable or select take place the vblank
1485                  * after being written.
1486                  */
1487                 if (crtc == NULL) {
1488                         /* We can arrive here never having been attached
1489                          * to a CRTC, for instance, due to inheriting
1490                          * random state from the BIOS.
1491                          *
1492                          * If the pipe is not running, play safe and
1493                          * wait for the clocks to stabilise before
1494                          * continuing.
1495                          */
1496                         POSTING_READ(intel_dp->output_reg);
1497                         msleep(50);
1498                 } else
1499                         intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
1500         }
1501
1502         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1503         POSTING_READ(intel_dp->output_reg);
1504 }
1505
1506 /*
1507  * According to DP spec
1508  * 5.1.2:
1509  *  1. Read DPCD
1510  *  2. Configure link according to Receiver Capabilities
1511  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
1512  *  4. Check link status on receipt of hot-plug interrupt
1513  */
1514
1515 static void
1516 intel_dp_check_link_status(struct intel_dp *intel_dp)
1517 {
1518         if (!intel_dp->base.base.crtc)
1519                 return;
1520
1521         if (!intel_dp_get_link_status(intel_dp)) {
1522                 intel_dp_link_down(intel_dp);
1523                 return;
1524         }
1525
1526         if (!intel_channel_eq_ok(intel_dp)) {
1527                 intel_dp_start_link_train(intel_dp);
1528                 intel_dp_complete_link_train(intel_dp);
1529         }
1530 }
1531
1532 static enum drm_connector_status
1533 ironlake_dp_detect(struct intel_dp *intel_dp)
1534 {
1535         enum drm_connector_status status;
1536
1537         /* Can't disconnect eDP, but you can close the lid... */
1538         if (is_edp(intel_dp)) {
1539                 status = intel_panel_detect(intel_dp->base.base.dev);
1540                 if (status == connector_status_unknown)
1541                         status = connector_status_connected;
1542                 return status;
1543         }
1544
1545         status = connector_status_disconnected;
1546         if (intel_dp_aux_native_read(intel_dp,
1547                                      0x000, intel_dp->dpcd,
1548                                      sizeof (intel_dp->dpcd))
1549             == sizeof(intel_dp->dpcd)) {
1550                 if (intel_dp->dpcd[0] != 0)
1551                         status = connector_status_connected;
1552         }
1553         DRM_DEBUG_KMS("DPCD: %hx%hx%hx%hx\n", intel_dp->dpcd[0],
1554                       intel_dp->dpcd[1], intel_dp->dpcd[2], intel_dp->dpcd[3]);
1555         return status;
1556 }
1557
1558 static enum drm_connector_status
1559 g4x_dp_detect(struct intel_dp *intel_dp)
1560 {
1561         struct drm_device *dev = intel_dp->base.base.dev;
1562         struct drm_i915_private *dev_priv = dev->dev_private;
1563         enum drm_connector_status status;
1564         uint32_t temp, bit;
1565
1566         switch (intel_dp->output_reg) {
1567         case DP_B:
1568                 bit = DPB_HOTPLUG_INT_STATUS;
1569                 break;
1570         case DP_C:
1571                 bit = DPC_HOTPLUG_INT_STATUS;
1572                 break;
1573         case DP_D:
1574                 bit = DPD_HOTPLUG_INT_STATUS;
1575                 break;
1576         default:
1577                 return connector_status_unknown;
1578         }
1579
1580         temp = I915_READ(PORT_HOTPLUG_STAT);
1581
1582         if ((temp & bit) == 0)
1583                 return connector_status_disconnected;
1584
1585         status = connector_status_disconnected;
1586         if (intel_dp_aux_native_read(intel_dp, 0x000, intel_dp->dpcd,
1587                                      sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
1588         {
1589                 if (intel_dp->dpcd[0] != 0)
1590                         status = connector_status_connected;
1591         }
1592
1593         return status;
1594 }
1595
1596 /**
1597  * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1598  *
1599  * \return true if DP port is connected.
1600  * \return false if DP port is disconnected.
1601  */
1602 static enum drm_connector_status
1603 intel_dp_detect(struct drm_connector *connector, bool force)
1604 {
1605         struct intel_dp *intel_dp = intel_attached_dp(connector);
1606         struct drm_device *dev = intel_dp->base.base.dev;
1607         enum drm_connector_status status;
1608         struct edid *edid = NULL;
1609
1610         intel_dp->has_audio = false;
1611
1612         if (HAS_PCH_SPLIT(dev))
1613                 status = ironlake_dp_detect(intel_dp);
1614         else
1615                 status = g4x_dp_detect(intel_dp);
1616         if (status != connector_status_connected)
1617                 return status;
1618
1619         if (intel_dp->force_audio) {
1620                 intel_dp->has_audio = intel_dp->force_audio > 0;
1621         } else {
1622                 edid = drm_get_edid(connector, &intel_dp->adapter);
1623                 if (edid) {
1624                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
1625                         connector->display_info.raw_edid = NULL;
1626                         kfree(edid);
1627                 }
1628         }
1629
1630         return connector_status_connected;
1631 }
1632
1633 static int intel_dp_get_modes(struct drm_connector *connector)
1634 {
1635         struct intel_dp *intel_dp = intel_attached_dp(connector);
1636         struct drm_device *dev = intel_dp->base.base.dev;
1637         struct drm_i915_private *dev_priv = dev->dev_private;
1638         int ret;
1639
1640         /* We should parse the EDID data and find out if it has an audio sink
1641          */
1642
1643         ret = intel_ddc_get_modes(connector, &intel_dp->adapter);
1644         if (ret) {
1645                 if (is_edp(intel_dp) && !dev_priv->panel_fixed_mode) {
1646                         struct drm_display_mode *newmode;
1647                         list_for_each_entry(newmode, &connector->probed_modes,
1648                                             head) {
1649                                 if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
1650                                         dev_priv->panel_fixed_mode =
1651                                                 drm_mode_duplicate(dev, newmode);
1652                                         break;
1653                                 }
1654                         }
1655                 }
1656
1657                 return ret;
1658         }
1659
1660         /* if eDP has no EDID, try to use fixed panel mode from VBT */
1661         if (is_edp(intel_dp)) {
1662                 if (dev_priv->panel_fixed_mode != NULL) {
1663                         struct drm_display_mode *mode;
1664                         mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
1665                         drm_mode_probed_add(connector, mode);
1666                         return 1;
1667                 }
1668         }
1669         return 0;
1670 }
1671
1672 static bool
1673 intel_dp_detect_audio(struct drm_connector *connector)
1674 {
1675         struct intel_dp *intel_dp = intel_attached_dp(connector);
1676         struct edid *edid;
1677         bool has_audio = false;
1678
1679         edid = drm_get_edid(connector, &intel_dp->adapter);
1680         if (edid) {
1681                 has_audio = drm_detect_monitor_audio(edid);
1682
1683                 connector->display_info.raw_edid = NULL;
1684                 kfree(edid);
1685         }
1686
1687         return has_audio;
1688 }
1689
1690 static int
1691 intel_dp_set_property(struct drm_connector *connector,
1692                       struct drm_property *property,
1693                       uint64_t val)
1694 {
1695         struct drm_i915_private *dev_priv = connector->dev->dev_private;
1696         struct intel_dp *intel_dp = intel_attached_dp(connector);
1697         int ret;
1698
1699         ret = drm_connector_property_set_value(connector, property, val);
1700         if (ret)
1701                 return ret;
1702
1703         if (property == dev_priv->force_audio_property) {
1704                 int i = val;
1705                 bool has_audio;
1706
1707                 if (i == intel_dp->force_audio)
1708                         return 0;
1709
1710                 intel_dp->force_audio = i;
1711
1712                 if (i == 0)
1713                         has_audio = intel_dp_detect_audio(connector);
1714                 else
1715                         has_audio = i > 0;
1716
1717                 if (has_audio == intel_dp->has_audio)
1718                         return 0;
1719
1720                 intel_dp->has_audio = has_audio;
1721                 goto done;
1722         }
1723
1724         if (property == dev_priv->broadcast_rgb_property) {
1725                 if (val == !!intel_dp->color_range)
1726                         return 0;
1727
1728                 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
1729                 goto done;
1730         }
1731
1732         return -EINVAL;
1733
1734 done:
1735         if (intel_dp->base.base.crtc) {
1736                 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1737                 drm_crtc_helper_set_mode(crtc, &crtc->mode,
1738                                          crtc->x, crtc->y,
1739                                          crtc->fb);
1740         }
1741
1742         return 0;
1743 }
1744
1745 static void
1746 intel_dp_destroy (struct drm_connector *connector)
1747 {
1748         drm_sysfs_connector_remove(connector);
1749         drm_connector_cleanup(connector);
1750         kfree(connector);
1751 }
1752
1753 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
1754 {
1755         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1756
1757         i2c_del_adapter(&intel_dp->adapter);
1758         drm_encoder_cleanup(encoder);
1759         kfree(intel_dp);
1760 }
1761
1762 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
1763         .dpms = intel_dp_dpms,
1764         .mode_fixup = intel_dp_mode_fixup,
1765         .prepare = intel_dp_prepare,
1766         .mode_set = intel_dp_mode_set,
1767         .commit = intel_dp_commit,
1768 };
1769
1770 static const struct drm_connector_funcs intel_dp_connector_funcs = {
1771         .dpms = drm_helper_connector_dpms,
1772         .detect = intel_dp_detect,
1773         .fill_modes = drm_helper_probe_single_connector_modes,
1774         .set_property = intel_dp_set_property,
1775         .destroy = intel_dp_destroy,
1776 };
1777
1778 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
1779         .get_modes = intel_dp_get_modes,
1780         .mode_valid = intel_dp_mode_valid,
1781         .best_encoder = intel_best_encoder,
1782 };
1783
1784 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
1785         .destroy = intel_dp_encoder_destroy,
1786 };
1787
1788 static void
1789 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
1790 {
1791         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
1792
1793         if (intel_dp->dpms_mode == DRM_MODE_DPMS_ON)
1794                 intel_dp_check_link_status(intel_dp);
1795 }
1796
1797 /* Return which DP Port should be selected for Transcoder DP control */
1798 int
1799 intel_trans_dp_port_sel (struct drm_crtc *crtc)
1800 {
1801         struct drm_device *dev = crtc->dev;
1802         struct drm_mode_config *mode_config = &dev->mode_config;
1803         struct drm_encoder *encoder;
1804
1805         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
1806                 struct intel_dp *intel_dp;
1807
1808                 if (encoder->crtc != crtc)
1809                         continue;
1810
1811                 intel_dp = enc_to_intel_dp(encoder);
1812                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
1813                         return intel_dp->output_reg;
1814         }
1815
1816         return -1;
1817 }
1818
1819 /* check the VBT to see whether the eDP is on DP-D port */
1820 bool intel_dpd_is_edp(struct drm_device *dev)
1821 {
1822         struct drm_i915_private *dev_priv = dev->dev_private;
1823         struct child_device_config *p_child;
1824         int i;
1825
1826         if (!dev_priv->child_dev_num)
1827                 return false;
1828
1829         for (i = 0; i < dev_priv->child_dev_num; i++) {
1830                 p_child = dev_priv->child_dev + i;
1831
1832                 if (p_child->dvo_port == PORT_IDPD &&
1833                     p_child->device_type == DEVICE_TYPE_eDP)
1834                         return true;
1835         }
1836         return false;
1837 }
1838
1839 static void
1840 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
1841 {
1842         intel_attach_force_audio_property(connector);
1843         intel_attach_broadcast_rgb_property(connector);
1844 }
1845
1846 void
1847 intel_dp_init(struct drm_device *dev, int output_reg)
1848 {
1849         struct drm_i915_private *dev_priv = dev->dev_private;
1850         struct drm_connector *connector;
1851         struct intel_dp *intel_dp;
1852         struct intel_encoder *intel_encoder;
1853         struct intel_connector *intel_connector;
1854         const char *name = NULL;
1855         int type;
1856
1857         intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
1858         if (!intel_dp)
1859                 return;
1860
1861         intel_dp->output_reg = output_reg;
1862         intel_dp->dpms_mode = -1;
1863
1864         intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
1865         if (!intel_connector) {
1866                 kfree(intel_dp);
1867                 return;
1868         }
1869         intel_encoder = &intel_dp->base;
1870
1871         if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
1872                 if (intel_dpd_is_edp(dev))
1873                         intel_dp->is_pch_edp = true;
1874
1875         if (output_reg == DP_A || is_pch_edp(intel_dp)) {
1876                 type = DRM_MODE_CONNECTOR_eDP;
1877                 intel_encoder->type = INTEL_OUTPUT_EDP;
1878         } else {
1879                 type = DRM_MODE_CONNECTOR_DisplayPort;
1880                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
1881         }
1882
1883         connector = &intel_connector->base;
1884         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
1885         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
1886
1887         connector->polled = DRM_CONNECTOR_POLL_HPD;
1888
1889         if (output_reg == DP_B || output_reg == PCH_DP_B)
1890                 intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
1891         else if (output_reg == DP_C || output_reg == PCH_DP_C)
1892                 intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
1893         else if (output_reg == DP_D || output_reg == PCH_DP_D)
1894                 intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
1895
1896         if (is_edp(intel_dp))
1897                 intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
1898
1899         intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
1900         connector->interlace_allowed = true;
1901         connector->doublescan_allowed = 0;
1902
1903         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
1904                          DRM_MODE_ENCODER_TMDS);
1905         drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
1906
1907         intel_connector_attach_encoder(intel_connector, intel_encoder);
1908         drm_sysfs_connector_add(connector);
1909
1910         /* Set up the DDC bus. */
1911         switch (output_reg) {
1912                 case DP_A:
1913                         name = "DPDDC-A";
1914                         break;
1915                 case DP_B:
1916                 case PCH_DP_B:
1917                         dev_priv->hotplug_supported_mask |=
1918                                 HDMIB_HOTPLUG_INT_STATUS;
1919                         name = "DPDDC-B";
1920                         break;
1921                 case DP_C:
1922                 case PCH_DP_C:
1923                         dev_priv->hotplug_supported_mask |=
1924                                 HDMIC_HOTPLUG_INT_STATUS;
1925                         name = "DPDDC-C";
1926                         break;
1927                 case DP_D:
1928                 case PCH_DP_D:
1929                         dev_priv->hotplug_supported_mask |=
1930                                 HDMID_HOTPLUG_INT_STATUS;
1931                         name = "DPDDC-D";
1932                         break;
1933         }
1934
1935         intel_dp_i2c_init(intel_dp, intel_connector, name);
1936
1937         /* Cache some DPCD data in the eDP case */
1938         if (is_edp(intel_dp)) {
1939                 int ret;
1940                 u32 pp_on, pp_div;
1941
1942                 pp_on = I915_READ(PCH_PP_ON_DELAYS);
1943                 pp_div = I915_READ(PCH_PP_DIVISOR);
1944
1945                 /* Get T3 & T12 values (note: VESA not bspec terminology) */
1946                 dev_priv->panel_t3 = (pp_on & 0x1fff0000) >> 16;
1947                 dev_priv->panel_t3 /= 10; /* t3 in 100us units */
1948                 dev_priv->panel_t12 = pp_div & 0xf;
1949                 dev_priv->panel_t12 *= 100; /* t12 in 100ms units */
1950
1951                 ironlake_edp_panel_vdd_on(intel_dp);
1952                 ret = intel_dp_aux_native_read(intel_dp, DP_DPCD_REV,
1953                                                intel_dp->dpcd,
1954                                                sizeof(intel_dp->dpcd));
1955                 ironlake_edp_panel_vdd_off(intel_dp);
1956                 if (ret == sizeof(intel_dp->dpcd)) {
1957                         if (intel_dp->dpcd[0] >= 0x11)
1958                                 dev_priv->no_aux_handshake = intel_dp->dpcd[3] &
1959                                         DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
1960                 } else {
1961                         /* if this fails, presume the device is a ghost */
1962                         DRM_INFO("failed to retrieve link info, disabling eDP\n");
1963                         intel_dp_encoder_destroy(&intel_dp->base.base);
1964                         intel_dp_destroy(&intel_connector->base);
1965                         return;
1966                 }
1967         }
1968
1969         intel_encoder->hot_plug = intel_dp_hot_plug;
1970
1971         if (is_edp(intel_dp)) {
1972                 /* initialize panel mode from VBT if available for eDP */
1973                 if (dev_priv->lfp_lvds_vbt_mode) {
1974                         dev_priv->panel_fixed_mode =
1975                                 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
1976                         if (dev_priv->panel_fixed_mode) {
1977                                 dev_priv->panel_fixed_mode->type |=
1978                                         DRM_MODE_TYPE_PREFERRED;
1979                         }
1980                 }
1981         }
1982
1983         intel_dp_add_properties(intel_dp, connector);
1984
1985         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
1986          * 0xd.  Failure to do so will result in spurious interrupts being
1987          * generated on the port when a cable is not attached.
1988          */
1989         if (IS_G4X(dev) && !IS_GM45(dev)) {
1990                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
1991                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
1992         }
1993 }